WO2024017062A1 - 加热器以及包括该加热器的气溶胶生成装置 - Google Patents

加热器以及包括该加热器的气溶胶生成装置 Download PDF

Info

Publication number
WO2024017062A1
WO2024017062A1 PCT/CN2023/105867 CN2023105867W WO2024017062A1 WO 2024017062 A1 WO2024017062 A1 WO 2024017062A1 CN 2023105867 W CN2023105867 W CN 2023105867W WO 2024017062 A1 WO2024017062 A1 WO 2024017062A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
infrared electrothermal
conductive
coating
conductive electrode
Prior art date
Application number
PCT/CN2023/105867
Other languages
English (en)
French (fr)
Inventor
卢志明
陈伟
胡瑞龙
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2024017062A1 publication Critical patent/WO2024017062A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present application relates to the field of electronic atomization technology, and in particular, to a heater and an aerosol generating device including the heater.
  • An existing aerosol generating device mainly coats the outer surface of a substrate with a far-infrared coating and a conductive coating. After being energized, the far-infrared coating emits far-infrared rays that penetrate the substrate and form a matrix for the aerosol in the substrate. Heating; because far-infrared rays have strong penetrability, they can penetrate the periphery of the aerosol-forming matrix and enter the interior, making the aerosol-forming matrix more uniformly heated.
  • the problem with this aerosol generating device is that the resistance of the far-infrared coating is relatively large, which results in a long preheating time for the aerosol-forming substrate, affecting the user's puffing experience.
  • the present application provides a heater and an aerosol generating device including the heater, aiming to solve the problem of high resistance of the far-infrared coating in existing aerosol generating devices.
  • the present application provides a heater, which includes:
  • An infrared electric heating coating is provided on the surface of the substrate; the infrared electric heating coating is used to generate infrared rays that radiate and heat the aerosol to form the substrate after being energized;
  • a conductive element including a first conductive electrode, a second conductive electrode and at least one connecting electrode spaced apart from each other on the surface of the base body;
  • the at least one connecting electrode is used to separate the infrared electrothermal coating into at least two sub-infrared electrothermal coatings connected in series between the first conductive electrode and the second conductive electrode;
  • one of the first conductive electrode and the second conductive electrode is configured to receive external A current flows in, and the inflowing current flows out from the other of the first conductive electrode and the second conductive electrode after passing through the at least two series-connected sub-infrared electrothermal coatings.
  • an aerosol generating device including a power source for providing power, and the heater.
  • the application provides a heater and an aerosol generating device including the heater, which separates the infrared electrothermal coating into at least two sub-infrared electrothermal coatings connected in series between the first conductive electrode and the second conductive electrode through connecting electrodes. , and the sub-infrared electrothermal coatings connected in series start heating the aerosol to form a matrix at the same time; this avoids the problem of high resistance of the far-infrared coating and improves the user's smoking experience.
  • Figure 1 is a schematic diagram of an aerosol generation device provided by an embodiment of the present application.
  • Figure 2 is an exploded schematic diagram of the aerosol generation device provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the first heater provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the infrared electrothermal coating in the first heater provided by the embodiment of the present application after unfolding;
  • Figure 5 is a schematic diagram of the connection electrode provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the second heater provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the third heater provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of the fourth heater provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the fifth heater provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of the infrared electrothermal coating of the fifth heater provided by the embodiment of the present application after unfolding;
  • Figure 11 is a schematic diagram of the sixth heater provided by the embodiment of the present application.
  • Figure 12 is a schematic diagram of the sixth heater provided by the embodiment of the present application after the infrared electrothermal coating is unfolded.
  • FIGS 1-2 illustrate an aerosol generation device 100 provided by an embodiment of the present application, including a housing assembly 6 and a heater 11.
  • the heater 11 is provided in the housing assembly 6 .
  • the heater 11 can radiate infrared rays to heat the aerosol-forming substrate to generate an inhalable aerosol.
  • the shell assembly 6 includes a shell 61, a fixed shell 62, a base and a bottom cover 64.
  • the fixed shell 62 and the base are both fixed in the shell 61.
  • the base is used to fix the heater 11, and the base is arranged in the fixed shell 62.
  • the bottom cover 64 is provided at one end of the housing 61 and covers the housing 61 .
  • the fixed shell 62 is provided with an insertion opening through which the aerosol-forming substrate is removably received or inserted into the heater 11 .
  • the base includes a base 15 that is sleeved on the upper end of the heater 11 and a base 13 that is sleeved on the lower end of the heater 11.
  • the base 15 and the base 13 are both located in the fixed shell 62, and the bottom cover 64 has a protruding inlet.
  • the air pipe 641 and one end of the base 13 away from the base 15 are connected to the air inlet pipe 641.
  • the base 15, the heater 11, the base 13 and the air inlet pipe 641 are coaxially arranged, and the heater 11 is connected to the base 15 and the air inlet pipe 641.
  • the space is sealed by a seal, and the base 13 and the air inlet pipe 641 are also sealed.
  • the air inlet pipe 641 is connected to the outside air so that the user can smoothly take in air when suctioning.
  • the aerosol generating device 100 also includes a circuit board 3 and a battery core 7 .
  • the fixed shell 62 includes a front shell 621 and a back shell 622. The front shell 621 and the back shell 622 are fixedly connected.
  • the circuit board 3 and the battery core 7 are both arranged in the fixed shell 62.
  • the battery core 7 is electrically connected to the circuit board 3.
  • the buttons 4 are protruding. It is provided on the housing 61, and by pressing the button 4, the heater 11 can be powered on or off.
  • the circuit board 3 is also connected to a charging interface 31, which is exposed on the bottom cover 64. The user can charge or upgrade the aerosol generating device 100 through the charging interface 31 to ensure the continuous use of the aerosol generating device 100.
  • the aerosol generating device 100 also includes a heat-insulating tube 17.
  • the heat-insulating tube 17 is arranged in the fixed shell 62.
  • the heat-insulating tube 17 is arranged on the periphery of the heater 11.
  • the heat-insulating tube 17 can prevent a large amount of heat from being transferred to the outer shell 61. Causes users to feel hot.
  • Thermal insulation pipes include thermal insulation materials, which can be thermal insulation glue, aerogel, airgel felt, asbestos, aluminum silicate, calcium silicate, diatomaceous earth, zirconia, etc.
  • the insulated pipe can also be a vacuum insulated pipe.
  • An infrared reflective coating may also be formed inside the heat insulating tube 17 to reflect the infrared rays radiated by the heater 11 toward the aerosol forming substrate to improve heating efficiency.
  • the aerosol generation device 100 also includes a temperature sensor 2, such as an NTC temperature sensor, for detecting the real-time temperature of the heater 11 and transmitting the detected real-time temperature to the circuit board 3, which regulates the flow through the heater according to the real-time temperature. 11 the size of the current. specific,
  • the circuit board 3 controls the battery core 7 to output a higher voltage to the conductive element, thereby increasing the temperature of the heater. 11
  • the fed current increases the heating power of the aerosol-forming matrix and reduces the time the user has to wait for inhalation.
  • the circuit board 3 controls the battery core 7 to output a normal voltage to the heater 11.
  • the circuit board 3 controls the battery core 7 to output a lower voltage to the heater 11 .
  • the circuit board 3 controls the battery core 7 to stop outputting voltage to the heater 11 .
  • FIGS 3-4 are the first heater provided by the embodiment of the present application.
  • the heater 11 includes:
  • the base 110 can be made of high temperature resistant and transparent materials such as quartz glass, ceramics or mica, or can be made of other materials with higher infrared transmittance, such as: resistant materials with an infrared transmittance of more than 95%. High-temperature materials are not specifically limited here.
  • the base 110 is generally in the shape of a tube, preferably in the shape of a circular tube.
  • the interior hollow portion of the base body 110 defines or forms a chamber for receiving the aerosol-forming matrix.
  • the inner diameter of the base 110 is between 7mm and 14mm, or between 7mm and 12mm, or between 7mm and 10mm.
  • An aerosol-forming matrix is one that releases volatile compounds that can form aerosols. This volatile compound can be released by heating the aerosol-forming matrix.
  • the aerosol-forming matrix may be solid or liquid or include both solid and liquid components.
  • the aerosol-forming substrate can be adsorbed, coated, impregnated or otherwise loaded onto a carrier or support. Aerosol-forming matrices can conveniently be used to generate aerosols part of the finished product.
  • the aerosol-forming base may include nicotine.
  • the aerosol-forming substrate may comprise tobacco, for example, may comprise tobacco-containing material containing volatile tobacco flavor compounds that are released from the aerosol-forming substrate when heated.
  • the aerosol-forming matrix may comprise at least one aerosol-forming agent, which may be any suitable known compound or mixture of compounds which, in use, facilitates densification and stabilization of the aerosol. formation and are substantially resistant to thermal degradation at the operating temperatures of the aerosol generating system.
  • Suitable aerosol-forming agents include, but are not limited to: polyols such as triethylene glycol, 1,3-butanediol and glycerol; esters of polyols such as glycerol mono-, di- or triacetate ; and fatty acid esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyltetradecanedioate.
  • the infrared electrothermal coating 111 is formed on the surface of the base 110 .
  • the infrared electrothermal coating 111 can be formed on the outer surface of the base 110 or on the inner surface of the base 110 .
  • the infrared electrothermal coating 111 is formed on the outer surface of the base 110 .
  • the length of the infrared electrothermal coating 111 extending along the axial direction of the substrate 110 is between 5mm and 40mm; or between 5mm and 30mm; or between 5mm and 20mm; or between 10mm and 20mm.
  • the infrared electrothermal coating 111 receives electric power to generate heat, and then radiates infrared rays of a certain wavelength, such as far-infrared rays of 8 ⁇ m to 15 ⁇ m.
  • a certain wavelength such as far-infrared rays of 8 ⁇ m to 15 ⁇ m.
  • the wavelength of infrared rays matches the absorption wavelength of the aerosol-forming matrix, the energy of the infrared rays is easily absorbed by the aerosol-forming matrix.
  • the wavelength of the infrared ray is not limited, and can be infrared ray of 0.75 ⁇ m to 1000 ⁇ m, preferably far infrared ray of 1.5 ⁇ m to 400 ⁇ m.
  • the infrared electrothermal coating 111 is spaced apart from the upper end of the substrate 110, and the spacing distance is between 0.2 mm and 1 mm, which is convenient for manufacturing and production.
  • the infrared electrothermal coating 111 and the lower end of the substrate 110 are also spaced apart from each other.
  • the spacing distance is between 1 mm and 4 mm, which facilitates the arrangement of conductive electrodes and prevents the temperature of the lower end of the substrate 110 from being too high. It should be noted that from the flow direction of the aerosol, the upper end of the base body 110 is located downstream of the lower end of the base body 110 .
  • the conductive element includes conductive electrodes 112a, conductive electrodes 112b, connecting electrodes 113a and connecting electrodes 113b spaced apart from each other on the surface of the base 110. Being spaced apart means that there is no direct contact between any two electrodes to form a short circuit.
  • the conductive electrode 112a includes a coupling portion 112a1 extending along the circumferential direction of the base 110 and a conductive portion 112a2 extending axially from the coupling portion 112a1 toward the upper end of the base 110.
  • the coupling portion 112a1 is arc-shaped, and is spaced apart from the infrared electrothermal coating 111.
  • the coupling portion 112a1 is disposed on the infrared electrothermal coating.
  • a wire can be welded on the coupling portion 112a1 to form an electrical connection with a power source outside the heater 11, such as the battery core 7 or the converted voltage of the battery core 7, or through other
  • the electrical connector is electrically connected to the power source.
  • the conductive portion 112a2 is in a strip shape, and its axial extension length is greater than the axial extension length of the infrared electrothermal coating 111; the conductive portion 112a2 remains in contact with the infrared electrothermal coating 111 to form an electrical connection.
  • the structure of the conductive electrode 112b is similar to that of the conductive electrode 112a, and the conductive electrode 112b and the conductive electrode 112a are symmetrically arranged on the base 110.
  • connection electrode 113a is provided in the right half of the infrared electrothermal coating 111
  • connection electrode 113b is provided in the left half of the infrared electrothermal coating 111.
  • the left half of the infrared electrothermal coating 111 and the right half of the infrared electrothermal coating 111 are connected in parallel between the conductive part 112a2 and the conductive part 112b2.
  • the connecting electrode 113a is in a strip shape, and its axial extension length is the same as the axial extension length of the right half of the infrared electrothermal coating 111.
  • the connection electrode 113a separates the right half of the infrared electrothermal coating 111 into two sub-infrared electrothermal coatings (shown as A1 and A2 in Figure 4) connected in series between the conductive part 112a2 and the conductive part 112b2.
  • Layer A1 and sub-infrared electrothermal coating A2 are distributed along the circumferential direction of the substrate 110; the equivalent resistance of sub-infrared electrothermal coating A1 and the equivalent resistance of sub-infrared electrothermal coating A2 may be the same or different.
  • the connecting electrode 113a By providing the connecting electrode 113a, the overall resistance of the right half of the infrared electrothermal coating 111 can be reduced. For example, if a connection electrode 113a is provided between the conductive part 112a2 and the conductive part 112b2, the overall resistance of the right half of the infrared electrothermal coating 111 can be reduced by about 20%.
  • connection electrodes 113a can be provided in the right half of the infrared electrothermal coating 111, and the right half of the infrared electrothermal coating 111 is divided into a plurality of electrodes connected in series between the conductive portion 112a2 and the conductive portion 112b2.
  • the equivalent resistance of the three sub-infrared electrothermal coatings can be all The same or different, or the equivalent resistance of two sub-infrared electrothermal coatings is the same.
  • the connecting electrode 113b is similar to this, and the separated sub-infrared electrothermal coatings can be shown as A3 and A4 in Figure 4 .
  • the coupling part 112a1 is electrically connected to the positive pole of the power supply, and the coupling part 112b1 is electrically connected to the negative pole of the power supply (and vice versa)
  • the current flows from the conductive part 112a2 and sequentially passes through the sub-infrared electrothermal coating A1 After passing through the sub-infrared electrothermal coating A2 or sequentially passing through the sub-infrared electrothermal coating A3 and the sub-infrared electrothermal coating A4, it flows out from the conductive part 112b2.
  • connection electrode 113a and the connection electrode 113b are not connected to The power supply or circuit connection outside the heater 11, that is, the connection electrode 113a and the connection electrode 113b are suspended, and the current cannot flow directly from the connection electrode 113a and then flow out from the conductive part 112b2 or the conductive part 112a2.
  • the conductive electrode 112a, the conductive electrode 112b, the connecting electrode 113a and the connecting electrode 113b preferably adopt a continuous conductive coating.
  • the conductive coating can be a metal coating, and the metal coating can include silver, gold, palladium, platinum, copper, nickel, and molybdenum. , tungsten, niobium or the above metal alloy materials.
  • the width of the connection electrode 113a and the connection electrode 113b is between 0.5mm and 3mm; or between 0.5mm and 2.5mm; in specific examples, it can be 1mm or 2mm.
  • connection electrode 113a and/or the connection electrode 113b may also adopt a discontinuous conductive coating, such as the conductive coating with mesh as shown in FIG. 5 .
  • connection electrode 113a and/or the connection electrode 113b can be disposed between the base 110 and the infrared electrothermal coating 111 along the direction perpendicular to the surface of the base 110; also The infrared electrothermal coating 111 may be disposed between the base body 110 and the connection electrode.
  • At least one of the conductive electrode 112a, the conductive electrode 112b, the connecting electrode 113a and the connecting electrode 113b can be attached to the infrared electrothermal coating 111.
  • At least one of the conductive electrode 112a, the conductive electrode 112b, the connecting electrode 113a and the connecting electrode 113b can be coated on the inner wall of the sleeve, and the sleeve is sleeved on the base 110, so that the conductive electrode 112a, the conductive electrode 112b, are connected At least one of the electrode 113a and the connecting electrode 113b is in close contact with the infrared electrothermal coating 111; the arrangement of the conductive electrode 112a, the conductive electrode 112b, the connecting electrode 113a and the connecting electrode 113b can refer to the above example.
  • Figure 6 is a second heater provided by an embodiment of the present application.
  • the conductive electrode 112a and the conductive electrode 112b are both ring-shaped and extend along the circumferential direction of the base 110; a plurality of connection electrodes 113a are provided between the conductive electrode 112a and the conductive electrode 112b, and the connection electrodes 113a are also It is in the shape of a ring; multiple connection electrodes 113a separate the infrared electrothermal coating 111 into four sub-infrared electrothermal coatings connected in series between the conductive part 112a2 and the conductive part 112b2 (shown as A1, A2, A3, and A4 in the figure) ).
  • the equivalent resistances of the four sub-infrared electric heating coatings are different. In this way, on the one hand, the overall resistance of the infrared electrothermal coating 111 is reduced, and on the other hand, the uniformity of the temperature field of the substrate 110 can be improved.
  • four sub-infrared electrothermal coatings are distributed along the axial direction of the base body 110 , and the length of the connecting electrode 113a extending along the circumferential direction of the base body 110 is consistent with the length of the infrared electrothermal coating 111 extending along the circumferential direction of the base body 110 of the same length.
  • connection electrode 113a it is also feasible for the connection electrode 113a to be in an arc shape.
  • the conductive electrode 112a is electrically connected to the positive electrode of the power supply
  • the conductive electrode 112b is electrically connected to the negative electrode of the power supply.
  • Current flows from the conductive electrode 112a and passes through the sub-infrared electrothermal coating A1 and the sub-infrared electrothermal coating A2 in sequence. , sub-infrared electrothermal coating A3, sub-infrared electrothermal coating A4, and then flows out from the conductive electrode 112b.
  • Figure 7 is a third heater provided by an embodiment of the present application.
  • the conductive element includes conductive electrodes 112c spaced apart from other conductive electrodes and connecting electrodes.
  • the conductive electrodes 112a, 112b and 112c separate the infrared electrothermal coating 111 into two independent heating areas, upper and lower; by controlling these two independent heating areas to start heating, segmented heating of the aerosol-forming substrate can be achieved ;For example, start the upper heating area first to heat the upper half of the product; then start the lower heating area to heat the lower half of the product; or start the upper heating area first. , to heat the corresponding upper part of the product; and then start the entire heating area to heat the entire product.
  • connection electrode 113a is disposed between the conductive electrode 112a and the conductive electrode 112c.
  • the connection electrode 113a separates the heating area of the upper half into two sub-infrared electrothermal coatings connected in series between the conductive electrode 112a and the conductive electrode 112c (in the figure (shown as A1 and A2).
  • connection electrode 113b is disposed between the conductive electrode 112c and the conductive electrode 112b.
  • the connection electrode 113b separates the heating area of the lower half into two sub-infrared electrothermal coatings connected in series between the conductive electrode 112c and the conductive electrode 112b (in the figure shown in A3 and A4).
  • the conductive electrode 112a When the heating area of the upper part is activated, for example, the conductive electrode 112a is electrically connected to the positive electrode of the power supply, and the conductive electrode 112c is electrically connected to the negative electrode of the power supply.
  • the current flows from the conductive electrode 112a and sequentially passes through the sub-infrared electrothermal coating A1 and the sub-infrared electrothermal coating A1. After coating A2, it flows out from the conductive electrode 112c.
  • the conductive electrode 112c When the heating area of the lower half is activated, for example, the conductive electrode 112c is electrically connected to the positive electrode of the power supply, and the conductive electrode 112b is electrically connected to the negative electrode of the power supply.
  • the current flows from the conductive electrode 112c, and sequentially passes through the sub-infrared electrothermal coating A3, the sub-infrared electrothermal coating A3, and the sub-infrared electrothermal coating A3. After coating A4, it flows out from the conductive electrode 112b.
  • Figure 8 is a fourth heater provided by an embodiment of the present application.
  • both the conductive electrode 112a and the conductive electrode 112b extend spirally along the axial direction of the base body 110; a connecting electrode 113a is provided between the conductive electrode 112a and the conductive electrode 112b, and the connecting electrode 113a also extends along the base body.
  • the thermal coating 111 is divided into two sub-infrared electrothermal coatings (shown as A1 and A2 in the figure) connected in series between the conductive electrode 112a and the conductive electrode 112b.
  • the conductive electrode 112a is electrically connected to the positive electrode of the power supply
  • the conductive electrode 112b is electrically connected to the negative electrode of the power supply.
  • Current flows from the conductive electrode 112a and passes through the sub-infrared electrothermal coating A1 and the sub-infrared electrothermal coating A2 in sequence. Then, it flows out from the conductive electrode 112b.
  • segmented heating of the aerosol-forming substrate achieved by adding conductive electrodes 112c in Figure 7 is also applicable to the heaters in Figures 3-4 and 8. It will be appreciated that multi-stage heating can be achieved through multiple conductive electrodes.
  • Figures 9-10 are the fifth heater provided by the embodiment of the present application.
  • the infrared electrothermal coating 111 includes two infrared electrothermal coatings arranged at intervals, as shown in the figure as the infrared electrothermal coating 111a and the infrared electrothermal coating 111b. Among them, the infrared electrothermal coating 111a is closer to the mouth end of the aerosol generating device 100 than the infrared electrothermal coating 111b. The distance between the infrared electrothermal coating 111a and the infrared electrothermal coating 111b is between 0.2 mm and 1 mm.
  • the conductive electrode 112a includes a coupling portion 112a1 extending along the circumferential direction of the base 110 and a conductive portion 112a2 extending axially from the coupling portion 112a1 toward the upper end of the base 110.
  • the coupling portion 112a1 is arc-shaped.
  • the coupling portion 112a1 is spaced apart from the infrared electrothermal coating 111b.
  • the coupling portion 112a1 is disposed between the infrared electrothermal coating 111b and the lower end of the base 110; wires can be welded on the coupling portion 112a1 to It is electrically connected to a power source external to the heater 11, such as the battery core 7 or the converted voltage of the battery core 7, and may also be electrically connected to the power source through other electrical connectors.
  • the conductive part 112a2 is in a strip shape, and the axial extension length is greater than the axial extension length of the infrared electrothermal coating 111b.
  • the upper end of the conductive part 112a2 is flush with the upper end of the infrared electrothermal coating 111b; the conductive part 112a2 is maintained with the infrared electrothermal coating 111b. contact to form an electrical connection.
  • the conductive electrode 112b is in a strip shape, and its axial extension length is the same as the axial extension length of the infrared electrothermal coating 111a.
  • the conductive electrode 112b remains in contact with the infrared electrothermal coating 111a to form an electrical connection.
  • the structure of the conductive electrode 112c is similar to that of the conductive electrode 112a.
  • the coupling portion 112c1 of the conductive electrode 112c is disposed between the infrared electrothermal coating 111b and the lower end of the base 110.
  • the conductive portion 112c2 is in a strip shape, but its axial extension length is longer than the axis of the infrared electrothermal coating 111a and the infrared electrothermal coating 111b.
  • the upper end of the conductive part 112c2 is flush with the upper end of the infrared electrothermal coating 111a.
  • the conductive part 112c2 maintains contact with both the infrared electrothermal coating 111a and the infrared electrothermal coating 111b to form an electrical connection.
  • connection electrode 113a and the connection electrode 113b are in a strip shape and are disposed in the infrared electrothermal coating 111b.
  • the axial extension lengths of the connection electrodes 113a and 113b are the same as the axial extension length of the infrared electrothermal coating 111b.
  • the connection electrode 113a is provided between the conductive electrode 112a and the conductive electrode 112c.
  • the connecting electrode 113a separates the infrared electrothermal coating between the conductive electrode 112a and the conductive electrode 112c into two sub-infrared electrothermal coatings (B1 and B2 in Figure 10) connected in series between the conductive electrode 112a and the conductive electrode 112c. shown), the sub-infrared electrothermal coating B1 and the sub-infrared electrothermal coating B2 are distributed along the circumferential direction of the substrate 110; the equivalent resistance of the sub-infrared electrothermal coating B1 and the equivalent resistance of the sub-infrared electrothermal coating B2 can be the same, It can also be different.
  • connection electrode 113b is also provided between the conductive electrode 112a and the conductive electrode 112c.
  • the connecting electrode 113b separates the infrared electrothermal coating between the conductive electrode 112a and the conductive electrode 112c into two sub-infrared electrothermal coatings connected in series between the conductive electrode 112a and the conductive electrode 112c (B3 and B4 in Figure 10 shown), the sub-infrared electrothermal coating B3 and the sub-infrared electrothermal coating B4 are distributed along the circumferential direction of the substrate 110; the equivalent resistance of the sub-infrared electrothermal coating B3 and the equivalent resistance of the sub-infrared electrothermal coating B4 can be the same, It can also be different.
  • the connecting electrode 113a and the connecting electrode 113b By providing the connecting electrode 113a and the connecting electrode 113b, the overall resistance of the infrared electrothermal coating 111b can be reduced.
  • the infrared electrothermal coating 111a and the infrared electrothermal coating 111b can be independently controlled.
  • the power supply can be controlled to provide heating power to the infrared electrothermal coating 111a and/or the infrared electrothermal coating 111b; for example, the power supply is first controlled to provide heating power to the infrared electrothermal coating 111a to heat the upper half of the aerosol-generating product ( The portion corresponding to the area of the infrared electrothermal coating 111a); and then the power supply is controlled to provide heating power to the infrared electrothermal coating 111b to heat the lower half of the aerosol-generating product (the portion corresponding to the area of the infrared electrothermal coating 111b).
  • the power supply is first controlled to provide heating power to the infrared electrothermal coating 111a to heat the upper half of the aerosol-generating product ( The portion corresponding to the area of the infrared electrothermal coating 111a); and then the power supply is
  • the power supply is first controlled to provide heating power to the infrared electrothermal coating 111a to heat the upper half of the aerosol-generating product; and then the power supply is controlled to provide heating power to the infrared electrothermal coating 111a and the infrared electrothermal coating 111b at the same time to heat the entire The aerosol-generating article is heated.
  • the power supply is first controlled to provide heating power to the infrared electrothermal coating 111b to heat the lower half of the aerosol-generating product; and then the power supply is controlled to provide heating power to the infrared electrothermal coating 111a and the infrared electrothermal coating 111b at the same time to heat the entire The aerosol-generating article is heated.
  • the conductive electrode 112b is electrically connected to the positive electrode of the power supply.
  • the coupling part 112c1 is electrically connected to the negative electrode of the power supply; in this way, the current flows from the conductive electrode 112b, passes through the sub-infrared electrothermal coating A1 or the sub-infrared electrothermal coating A2 along the circumferential direction of the base 110, and then flows from the conductive part 112c2 Outflow.
  • the coupling portion 112a1 is electrically connected to the positive electrode of the power supply
  • the coupling portion 112c1 is electrically connected to the negative electrode of the power supply.
  • the current flows from the conductive portion 112a2 and sequentially passes through the sub-infrared electrothermal coating B1 and the sub-infrared electrothermal coating B1. After the infrared electric heating coating B2, or after passing through the sub-infrared electric heating coating B4 and the sub-infrared electric heating coating B3 in sequence, it flows out from the conductive part 112c2.
  • connection electrode 113a and the connection electrode 113b are not connected to the power supply or circuit outside the heater 11, that is, the connection electrode 113a and the connection electrode 113b are suspended, and the current cannot directly flow in from the connection electrode 113a and then flow out from the conductive part 112b2 or the conductive part 112a2. .
  • the existence of the connecting electrode 113a and the connecting electrode 113b can reduce the overall resistance of the infrared electrothermal coating 111b.
  • Figures 11-12 are the sixth heater provided by the embodiment of the present application.
  • the axial extension length of the conductive portion 112a2 of the conductive electrode 112a is greater than the sum of the axial extension lengths of the infrared electrothermal coating 111a and the infrared electrothermal coating 111b.
  • the upper end of the conductive portion 112a2 is The upper end of the infrared electrothermal coating 111a is flush.
  • the conductive portion 112a2 maintains contact with both the infrared electrothermal coating 111a and the infrared electrothermal coating 111b to form an electrical connection.
  • the conductive electrode 112b and the conductive electrode 112d are both disposed in the area of the infrared electrothermal coating 111a and remain in contact with the infrared electrothermal coating 111a to form an electrical connection.
  • the conductive electrode 112b, the conductive portion 112a2, the conductive electrode 112d, and the conductive portion 112c2 are sequentially arranged at intervals along the circumferential direction of the base 110.
  • the infrared electrothermal coating 111a can be independently controlled, but the infrared electrothermal coating 111b cannot be independently controlled.
  • the power supply is controlled to provide heating power to the infrared electrothermal coating 111a through the conductive electrode 112b and the conductive electrode 112d; then, the power supply is controlled to provide heating power to the infrared electrothermal coating 111a and 112c through the conductive electrode 112a and the conductive electrode 112c.
  • the infrared electric heating coating 111b also provides heating power.
  • the conductive portion (the conductive portion 112a2 of the conductive electrode 112a and the conductive portion 112c2 of the conductive electrode 112c) located between the conductive electrode 112b and the conductive electrode 112d is not energized.
  • This conductive portion corresponds to that shown in FIG. 9-The connecting electrode in the example of Figure 10, thereby reducing the overall resistance of the infrared electrothermal coating 111a, causing the infrared electrothermal coating 111a to heat up quickly, which can quickly heat the upper part of the aerosol-generating product to achieve rapid aerosol generation. Purpose.
  • the infrared electrothermal coating 111a and the infrared electrothermal coating 111b are heated at the same time or the infrared electrothermal coating 111 is heated as a whole, the presence of the conductive electrodes 112b and 112d will reduce the overall resistance of the infrared electrothermal coating 111a, so that The temperature of the infrared electrothermal coating 111a area is increased, changing the temperature field of the entire infrared electrothermal coating 111 area.

Landscapes

  • Resistance Heating (AREA)

Abstract

一种加热器(11)以及气溶胶生成装置(100),加热器(11)包括:基体(110);红外电热涂层(111);导电元件,包括第一导电电极(112a)、第二导电电极(112b)以及至少一个连接电极(113a、113b);至少一个连接电极(113a、113b)用于将红外电热涂层(111)分隔成至少两个串联连接在第一导电电极(112a)和第二导电电极(112b)之间的子红外电热涂层(A1、A2);第一导电电极(112a)配置为接受外部电流流入,流入的电流依次经过至少两个串联连接的子红外电热涂层(A1、A2)后,从第二导电电极(112b)流出,子红外电热涂层(A1、A2)同时启动加热气溶胶形成基质;避免了远红外涂层的阻值较大的问题,提升了用户的抽吸体验。

Description

加热器以及包括该加热器的气溶胶生成装置
相关文件的交叉引用
本申请要求2022年07月21日向中国国家知识产权局递交的申请号为202210862107.1,名称为“加热器以及包括该加热器的气溶胶生成装置”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及电子雾化技术领域,尤其涉及一种加热器以及包括该加热器的气溶胶生成装置。
背景技术
现有的一种气溶胶生成装置,主要是在基体的外表面涂覆远红外涂层和导电涂层,通电后的远红外涂层发出远红外线穿透基体并对基体内的气溶胶形成基质进行加热;由于远红外线具有较强的穿透性,可以穿透气溶胶形成基质的外围进入内部,使得对气溶胶形成基质的加热较为均匀。
该气溶胶生成装置存在的问题是,远红外涂层的阻值较大,导致气溶胶形成基质的预热时间长,影响用户的抽吸体验。
发明内容
本申请提供一种加热器以及包括该加热器的气溶胶生成装置,旨在解决现有气溶胶生成装置存在的远红外涂层的阻值较大的问题。
本申请一方面提供一种加热器,所述加热器包括:
基体;
红外电热涂层,设置在所述基体的表面上;所述红外电热涂层用于在通电后产生辐射加热气溶胶形成基质的红外线;
导电元件,包括彼此间隔设置于所述基体的表面上的第一导电电极、第二导电电极以及至少一个连接电极;
所述至少一个连接电极用于将所述红外电热涂层分隔成至少两个串联连接在所述第一导电电极和所述第二导电电极之间的子红外电热涂层;
其中,所述第一导电电极和所述第二导电电极中的一个电极配置为接受外 部电流流入,流入的电流依次经过所述至少两个串联连接的子红外电热涂层后,从所述第一导电电极和所述第二导电电极中的另一个电极流出。
本申请另一方面提供一种气溶胶生成装置,包括用于提供电力的电源、以及所述的加热器。
本申请提供的加热器以及包括该加热器的气溶胶生成装置,通过连接电极将红外电热涂层分隔成至少两个串联连接在第一导电电极和第二导电电极之间的子红外电热涂层,而串联连接的子红外电热涂层同时启动加热气溶胶形成基质;避免了远红外涂层的阻值较大的问题,提升了用户的抽吸体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限定。
图1是本申请实施方式提供的气溶胶生成装置示意图;
图2是本申请实施方式提供的气溶胶生成装置的分解示意图;
图3是本申请实施方式提供的第一种加热器示意图;
图4是本申请实施方式提供的第一种加热器中红外电热涂层展开后的示意图;
图5是本申请实施方式提供的连接电极示意图;
图6是本申请实施方式提供的第二种加热器示意图;
图7是本申请实施方式提供的第三种加热器示意图;
图8是本申请实施方式提供的第四种加热器示意图;
图9是本申请实施方式提供的第五种加热器示意图;
图10是本申请实施方式提供的第五种加热器中红外电热涂层展开后的示意图;
图11是本申请实施方式提供的第六种加热器示意图;
图12是本申请实施方式提供的第六种加热器中红外电热涂层展开后的示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1-图2是本申请实施方式提供的一种气溶胶生成装置100,包括壳体组件6和加热器11。加热器11设于壳体组件6内。加热器11可辐射出红外线对气溶胶形成基质进行加热,以生成可吸食的气溶胶。
壳体组件6包括外壳61、固定壳62、基座以及底盖64,固定壳62、基座均固定于外壳61内,其中基座用于固定加热器11,基座设置于固定壳62内,底盖64设于外壳61一端且盖设外壳61。固定壳62上设置有插入口,气溶胶形成基质通过该插入口可移除地接收或者插入在加热器11中。
基座包括套接在加热器11上端的基座15和套接在加热器11下端的基座13,基座15和基座13均设于固定壳62内,底盖64上凸设有进气管641,基座13背离基座15的一端与进气管641连接,基座15、加热器11、基座13以及进气管641同轴设置,且加热器11与基座15、基座13之间通过密封件密封,基座13与进气管641也密封,进气管641与外界空气连通以便于用户抽吸时可以顺畅进气。
气溶胶生成装置100还包括线路板3和电芯7。固定壳62包括前壳621与后壳622,前壳621与后壳622固定连接,线路板3和电芯7均设置在固定壳62内,电芯7与线路板3电连接,按键4凸设在外壳61上,通过按压按键4,可以实现对加热器11的通电或断电。线路板3还连接有一充电接口31,充电接口31裸露于底盖64上,用户可以通过充电接口31对气溶胶生成装置100进行充电或升级,以保证气溶胶生成装置100的持续使用。
气溶胶生成装置100还包括隔热管17,隔热管17设置在固定壳62内,隔热管17设置在加热器11的外围,隔热管17可以避免大量的热量传递到外壳61上而导致用户觉得烫手。隔热管包括隔热材料,隔热材料可以为隔热胶、气凝胶、气凝胶毡、石棉、硅酸铝、硅酸钙、硅藻土、氧化锆等。隔热管也可以为真空隔热管。隔热管17内还可形成有红外线反射涂层,以将加热器11辐射出的红外线向气溶胶形成基质方向反射,提高加热效率。
气溶胶生成装置100还包括温度传感器2,例如NTC温度传感器,用于检测加热器11的实时温度,并将检测的实时温度传输到线路板3,线路板3根据该实时温度调节流经加热器11的电流的大小。具体的,
当NTC温度传感器检测到加热器11的实时温度较低时,譬如检测到加热器11的温度不到150℃时,线路板3控制电芯7输出较高的电压给导电元件,进而提高加热器11馈入的电流,提高气溶胶形成基质的加热功率,减少用户抽吸所要等待的时间。
当NTC温度传感器检测到加热器11的温度为150℃-200℃时,线路板3控制电芯7输出正常的电压给加热器11。
当NTC温度传感器检测到加热器11的温度在200℃-250℃时,线路板3控制电芯7输出较低的电压给加热器11。
当NTC温度传感器检测到加热器11的温度在250℃及以上时,线路板3控制电芯7停止输出电压给加热器11。
图3-图4是本申请实施方式提供的第一种加热器,加热器11包括:
基体110,可以由石英玻璃、陶瓷或云母等耐高温且透明的材料制成,也可以由其它具有较高的红外线透过率的材料制成,例如:红外线透过率在95%以上的耐高温材料,具体地在此不作限定。
基体110大致呈管状,优选的采用圆管状。基体110内部中空部分界定或者形成接收气溶胶形成基质的腔室。基体110的内径介于7mm~14mm,或介于7mm~12mm,或介于7mm~10mm。
气溶胶形成基质是一种能够释放可形成气溶胶的挥发性化合物的基质。这种挥发性化合物可通过加热该气溶胶形成基质而被释放出来。气溶胶形成基质可以是固体或液体或包括固体和液体组分。气溶胶形成基质可吸附、涂覆、浸渍或以其它方式装载到载体或支承件上。气溶胶形成基质可便利地是气溶胶生 成制品的一部分。
气溶胶形成基质可以包括尼古丁。气溶胶形成基质可以包括烟草,例如可以包括含有挥发性烟草香味化合物的含烟草材料,当加热时所述挥发性烟草香味化合物从气溶胶形成基质释放。气溶胶形成基质可以包括至少一种气溶胶形成剂,气溶胶形成剂可为任何合适的已知化合物或化合物的混合物,在使用中,所述化合物或化合物的混合物有利于致密和稳定气溶胶的形成,并且对在气溶胶生成系统的操作温度下的热降解基本具有抗性。合适的气溶胶形成剂是本领域众所周知的,并且包括但不限于:多元醇,例如三甘醇,1,3-丁二醇和甘油;多元醇的酯,例如甘油单、二或三乙酸酯;和一元、二元或多元羧酸的脂肪酸酯,例如二甲基十二烷二酸酯和二甲基十四烷二酸酯。
红外电热涂层111形成在基体110的表面上。红外电热涂层111可以形成在基体110的外表面上,也可以形成在基体110的内表面上。优选的,红外电热涂层111形成在基体110的外表面上。红外电热涂层111沿着基体110的轴向方向延伸的长度介于5mm~40mm;或者介于5mm~30mm;或者介于5mm~20mm;或者介于10mm~20mm。
红外电热涂层111接受电功率产生热量,进而辐射出一定波长的红外线,例如:8μm~15μm的远红外线。当红外线的波长与气溶胶形成基质的吸收波长匹配时,红外线的能量易于被气溶胶形成基质吸收。
在本示例中,对红外线的波长不作限定,可以为0.75μm~1000μm的红外线,优选的为1.5μm~400μm的远红外线。
红外电热涂层111与基体110的上端间隔设置,间隔距离介于0.2mm~1mm,利于制造生产。红外电热涂层111与基体110的下端也是间隔设置的,间隔距离介于1mm~4mm,利于导电电极的布置,同时避免基体110下端的温度过高。需要说明的是,从气溶胶的流向来看,基体110的上端位于基体110下端的下游。
导电元件,包括彼此间隔设置于基体110的表面上的导电电极112a、导电电极112b、连接电极113a以及连接电极113b。彼此间隔指的是任意两个电极之间没有直接接触形成短路。
导电电极112a包括沿基体110周向方向延伸的耦接部112a1以及自耦接部112a1朝向基体110上端的方向轴向延伸的导电部112a2。耦接部112a1呈弧状,耦接部112a1与红外电热涂层111间隔设置,耦接部112a1设置在红外电热涂 层111与基体110的下端之间;可以在耦接部112a1上焊接导线,以与加热器11外的电源,例如电芯7或者电芯7转换后的电压,形成电连接,也可以通过其它电连接件与电源电连接。导电部112a2呈条形状,轴向延伸的长度大于红外电热涂层111轴向延伸的长度;导电部112a2与红外电热涂层111保持接触,以形成电连接。导电电极112b的结构与导电电极112a类似,导电电极112b与导电电极112a对称地布置在基体110上。
由图3中可以看出,导电部112a2和导电部112b2将红外电热涂层111分隔成左右两半。连接电极113a设置在右半部分红外电热涂层111中,连接电极113b设置在左半部分红外电热涂层111中。左半部分红外电热涂层111与右半部分红外电热涂层111并联连接在导电部112a2和导电部112b2之间。
连接电极113a呈条形状,其轴向延伸的长度与右半部分红外电热涂层111轴向延伸的长度相同。连接电极113a将右半部分红外电热涂层111分隔成两个串联连接在导电部112a2和导电部112b2之间的子红外电热涂层(图4中的A1、A2所示),子红外电热涂层A1与子红外电热涂层A2沿着基体110的周向方向分布;子红外电热涂层A1的等效电阻与子红外电热涂层A2的等效电阻可以相同,也可以不同。通过设置的连接电极113a,可以减少右半部分红外电热涂层111的整体阻值。例如,在导电部112a2和导电部112b2之间设置1个连接电极113a,右半部分红外电热涂层111的整体阻值可以减少约20%。
需要说明的是,可以根据需要,在右半部分红外电热涂层111中设置多个连接电极113a,将右半部分红外电热涂层111分隔成多个串联连接在导电部112a2和导电部112b2之间的子红外电热涂层;例如:2个连接电极113a分隔成3个串联连接在导电部112a2和导电部112b2之间的子红外电热涂层,3个子红外电热涂层的等效电阻可以都相同或者都不同,或者其中2个子红外电热涂层的等效电阻相同。
连接电极113b与此类似,分隔成的子红外电热涂层可参考图4中的A3、A4所示。
在加热器11通电后,例如耦接部112a1与电源的正极电连接,耦接部112b1与电源的负极电连接(反之亦可),电流从导电部112a2流入,依次经过子红外电热涂层A1与子红外电热涂层A2后或者依次经过子红外电热涂层A3与子红外电热涂层A4后,从导电部112b2流出。连接电极113a和连接电极113b不与 加热器11外的电源或者电路连接,即连接电极113a和连接电极113b是悬空的,电流不能从连接电极113a直接流入,然后从导电部112b2或者导电部112a2流出。
导电电极112a、导电电极112b、连接电极113a以及连接电极113b优选的采用连续导电涂层,导电涂层可以为金属涂层,金属涂层可以包括银、金、钯、铂、铜、镍、钼、钨、铌或上述金属合金材料。连接电极113a和连接电极113b的宽度介于0.5mm~3mm;或者介于0.5mm~2.5mm;具体示例中,可以为1mm、2mm。
在其它示例中,连接电极113a和/或连接电极113b也可以采用非连续导电涂层,例如图5所示的具有网孔的导电涂层。
需要说明的是,在加热器11的制备过程中,可以将连接电极113a和/或连接电极113b,沿着垂直于基体110表面的方向,设置在基体110与红外电热涂层111之间;也可以将红外电热涂层111设置在基体110与连接电极之间。
需要说明的是,与上述示例不同的是,在其它示例中,导电电极112a、导电电极112b、连接电极113a以及连接电极113b中的至少一个,可以贴合在红外电热涂层111上。例如:导电电极112a、导电电极112b、连接电极113a以及连接电极113b中的至少一个可以涂覆在套筒的内壁,将套筒套接在基体110上,使得导电电极112a、导电电极112b、连接电极113a以及连接电极113b中的至少一个与红外电热涂层111紧密贴合;导电电极112a、导电电极112b、连接电极113a以及连接电极113b的排布可参考上述示例。
图6是本申请实施方式提供的第二种加热器。
与图3-图4不同的是,导电电极112a和导电电极112b均呈环形状,沿基体110周向方向延伸;导电电极112a和导电电极112b之间设置多个连接电极113a,连接电极113a也呈环形状;多个连接电极113a将红外电热涂层111分隔成4个串联连接在导电部112a2和导电部112b2之间的子红外电热涂层(图中的A1、A2、A3、A4所示)。4个子红外电热涂层的等效电阻都不同。这样,一方面降低了红外电热涂层111的整体阻值,另一方面可改善基体110温度场的均匀性。
在该示例中,4个子红外电热涂层沿着基体110的轴向方向分布,连接电极113a沿着基体110的周向方向延伸的长度与红外电热涂层111沿着基体110的周向方向延伸的长度相同。
需要说明的是,在其它示例中,连接电极113a呈弧形状也是可行的。
在加热器11通电后,例如导电电极112a与电源的正极电连接,导电电极112b与电源的负极电连接,电流从导电电极112a流入,依次经过子红外电热涂层A1、子红外电热涂层A2、子红外电热涂层A3、子红外电热涂层A4后,从导电电极112b流出。
图7是本申请实施方式提供的第三种加热器。
与图6不同的是,导电元件包括与其它导电电极和连接电极间隔设置的导电电极112c。导电电极112a、导电电极112b以及导电电极112c将红外电热涂层111分隔为上下两个独立的加热区域;通过控制这两个独立的加热区域启动加热,可以实现对气溶胶形成基质进行分段加热;例如,先启动上半部分的加热区域,以加热制品对应的上半部分;然后再启动下半部分的加热区域,以加热制品对应的下半部分;或者,先启动上半部分的加热区域,以加热制品对应的上半部分;然后再启动整个加热区域,以加热整个制品。
连接电极113a设置在导电电极112a和导电电极112c之间,连接电极113a将上半部分的加热区域分隔成两个串联连接在导电电极112a和导电电极112c之间的子红外电热涂层(图中的A1、A2所示)。
连接电极113b设置在导电电极112c和导电电极112b之间,连接电极113b将下半部分的加热区域分隔成两个串联连接在导电电极112c和导电电极112b之间的子红外电热涂层(图中的A3、A4所示)。
在启动上半部分的加热区域时,例如导电电极112a与电源的正极电连接,导电电极112c与电源的负极电连接,电流从导电电极112a流入,依次经过子红外电热涂层A1、子红外电热涂层A2后,从导电电极112c流出。
在启动下半部分的加热区域时,例如导电电极112c与电源的正极电连接,导电电极112b与电源的负极电连接,电流从导电电极112c流入,依次经过子红外电热涂层A3、子红外电热涂层A4后,从导电电极112b流出。
图8是本申请实施方式提供的第四种加热器。
与图3-图4不同的是,导电电极112a和导电电极112b均沿基体110的轴向方向螺旋延伸;导电电极112a和导电电极112b之间设置1个连接电极113a,连接电极113a也沿基体110的轴向方向螺旋延伸、且螺旋延伸的高度与红外电热涂层111沿着基体110的轴向方向延伸的长度相同;连接电极113a将红外电 热涂层111分隔成2个串联连接在导电电极112a和导电电极112b之间的子红外电热涂层(图中的A1、A2所示)。
在加热器11通电后,例如导电电极112a与电源的正极电连接,导电电极112b与电源的负极电连接,电流从导电电极112a流入,依次经过子红外电热涂层A1、子红外电热涂层A2后,从导电电极112b流出。
需要说明的是,对于图7中通过增加导电电极112c实现对气溶胶形成基质的分段加热,同样适用于图3-图4、图8的加热器。可以理解的是,可以通过多个导电电极实现多段加热。
图9-图10是本申请实施方式提供的第五种加热器。
与图3-图4不同的是,红外电热涂层111包括间隔设置的两个红外电热涂层,图中的红外电热涂层111a、红外电热涂层111b所示。其中,红外电热涂层111a相比红外电热涂层111b更靠近气溶胶生成装置100的嘴端。红外电热涂层111a与红外电热涂层111b之间的间隔距离介于0.2mm~1mm。
导电电极112a包括沿基体110周向方向延伸的耦接部112a1以及自耦接部112a1朝向基体110上端的方向轴向延伸的导电部112a2。耦接部112a1呈弧状,耦接部112a1与红外电热涂层111b间隔设置,耦接部112a1设置在红外电热涂层111b与基体110的下端之间;可以在耦接部112a1上焊接导线,以与加热器11外的电源,例如电芯7或者电芯7转换后的电压,形成电连接,也可以通过其它电连接件与电源电连接。导电部112a2呈条形状,轴向延伸的长度大于红外电热涂层111b轴向延伸的长度,导电部112a2的上端与红外电热涂层111b的上端齐平;导电部112a2与红外电热涂层111b保持接触,以形成电连接。
导电电极112b呈条形状,其轴向延伸的长度与红外电热涂层111a轴向延伸的长度是相同的。导电电极112b与红外电热涂层111a保持接触,以形成电连接。
导电电极112c的结构与导电电极112a类似。导电电极112c的耦接部112c1设置在红外电热涂层111b与基体110的下端之间,导电部112c2呈条形状,但其轴向延伸的长度大于红外电热涂层111a与红外电热涂层111b轴向延伸的长度之和,导电部112c2的上端与红外电热涂层111a的上端齐平。导电部112c2与红外电热涂层111a、红外电热涂层111b均保持接触,以形成电连接。
连接电极113a和连接电极113b均呈条形状且设置在红外电热涂层111b中。 连接电极113a和连接电极113b的轴向延伸的长度与红外电热涂层111b轴向延伸的长度相同。
连接电极113a设置在导电电极112a与导电电极112c之间。连接电极113a将导电电极112a与导电电极112c之间的红外电热涂层,分隔成两个串联连接在导电电极112a与导电电极112c之间的子红外电热涂层(图10中的B1、B2所示),子红外电热涂层B1与子红外电热涂层B2沿着基体110的周向方向分布;子红外电热涂层B1的等效电阻与子红外电热涂层B2的等效电阻可以相同,也可以不同。
连接电极113b也是设置在导电电极112a与导电电极112c之间。连接电极113b将导电电极112a与导电电极112c之间的红外电热涂层,分隔成两个串联连接在导电电极112a与导电电极112c之间的子红外电热涂层(图10中的B3、B4所示),子红外电热涂层B3与子红外电热涂层B4沿着基体110的周向方向分布;子红外电热涂层B3的等效电阻与子红外电热涂层B4的等效电阻可以相同,也可以不同。
通过设置的连接电极113a和连接电极113b,可以减少红外电热涂层111b的整体阻值。
与图7或者图8类似的,通过图9中的导电元件设置,红外电热涂层111a和红外电热涂层111b是可以独立控制的。具体地,可以控制电源向红外电热涂层111a和/或红外电热涂层111b提供加热功率;例如,先控制电源向红外电热涂层111a提供加热功率,以加热气溶胶生成制品的上半部分(与红外电热涂层111a区域对应的部分);然后再控制电源向红外电热涂层111b提供加热功率,以加热气溶胶生成制品的下半部分(与红外电热涂层111b区域对应的部分)。反之亦可。
或者,先控制电源向红外电热涂层111a提供加热功率,以加热气溶胶生成制品的上半部分;然后再控制电源向红外电热涂层111a和红外电热涂层111b同时提供加热功率,以对整个气溶胶生成制品进行加热。
或者,先控制电源向红外电热涂层111b提供加热功率,以加热气溶胶生成制品的下半部分;然后再控制电源向红外电热涂层111a和红外电热涂层111b同时提供加热功率,以对整个气溶胶生成制品进行加热。
在控制红外电热涂层111a加热时,例如导电电极112b与电源的正极电连 接,耦接部112c1与电源的负极电连接;这样,电流从导电电极112b流入,沿着基体110的周向方向经过子红外电热涂层A1或者子红外电热涂层A2后,从导电部112c2流出。
在控制红外电热涂层111b加热时,例如耦接部112a1与电源的正极电连接,耦接部112c1与电源的负极电连接,电流从导电部112a2流入,依次经过子红外电热涂层B1、子红外电热涂层B2后,或者依次经过子红外电热涂层B4与子红外电热涂层B3后,从导电部112c2流出。连接电极113a和连接电极113b不与加热器11外的电源或者电路连接,即连接电极113a和连接电极113b是悬空的,电流不能从连接电极113a直接流入,然后从导电部112b2或者导电部112a2流出。连接电极113a和连接电极113b的存在,可以减少红外电热涂层111b的整体阻值。
图11-图12是本申请实施方式提供的第六种加热器。
与图9-图10不同的是,导电电极112a的导电部112a2,其轴向延伸的长度大于红外电热涂层111a与红外电热涂层111b轴向延伸的长度之和,导电部112a2的上端与红外电热涂层111a的上端齐平。导电部112a2与红外电热涂层111a和红外电热涂层111b均保持接触以形成电连接。导电电极112b和导电电极112d均设置在红外电热涂层111a区域中,且与红外电热涂层111a保持接触以形成电连接。导电电极112b、导电部112a2、导电电极112d、导电部112c2沿着基体110的周向方向依次间隔设置。
与图9-图10不同的是,红外电热涂层111a可以独立控制,而红外电热涂层111b是不可以独立控制的。
在控制加热器11加热时,首先通过导电电极112b和导电电极112d,控制电源向红外电热涂层111a提供加热功率;然后再通过导电电极112a和导电电极112c,控制电源向红外电热涂层111a和红外电热涂层111b同时提供加热功率。
在导电电极112b和导电电极112d通电时,位于导电电极112b和导电电极112d之间的导电部(导电电极112a的导电部112a2和导电电极112c的导电部112c2)没有通电,该导电部相当于图9-图10示例中的连接电极,进而减少红外电热涂层111a的整体阻值,使得红外电热涂层111a快速升温,可将气溶胶生成制品的上半部分快速加热,达到快速产生气溶胶的目的。
在导电电极112a和导电电极112c通电时,位于导电电极112a和导电电极112c之间的导电电极112b、导电电极112d没有通电,也是相当于图9-图10示例中的连接电极的,进而减少红外电热涂层111a的整体阻值。此时,由于红外电热涂层111a和红外电热涂层111b同时加热或者红外电热涂层111整体加热,由于导电电极112b、导电电极112d的存在,会减少红外电热涂层111a的整体阻值,使得红外电热涂层111a区域的温度得到提升,改变了整个红外电热涂层111区域的温场。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (14)

  1. 一种加热器,其特征在于,包括:
    基体;
    红外电热涂层,设置在所述基体的表面上;所述红外电热涂层用于在通电后产生辐射加热气溶胶形成基质的红外线;
    导电元件,包括彼此间隔设置于所述基体的表面上的第一导电电极、第二导电电极以及至少一个连接电极;
    所述至少一个连接电极用于将所述红外电热涂层分隔成至少两个串联连接在所述第一导电电极和所述第二导电电极之间的子红外电热涂层;
    其中,所述第一导电电极和所述第二导电电极中的一个电极配置为接受外部电流流入,流入的电流依次经过所述至少两个串联连接的子红外电热涂层后,从所述第一导电电极和所述第二导电电极中的另一个电极流出。
  2. 根据权利要求1所述的加热器,其特征在于,任意一个子红外电热涂层的等效电阻与其它子红外电热涂层的等效电阻不相同;或者,
    一子红外电热涂层的等效电阻与其它子红外电热涂层中的至少一个子红外电热涂层的等效电阻相同。
  3. 根据权利要求1所述的加热器,其特征在于,所述连接电极为形成在所述基体表面上的连续导电涂层。
  4. 根据权利要求3所述的加热器,其特征在于,所述连接电极的宽度介于0.5mm~3mm。
  5. 根据权利要求1所述的加热器,其特征在于,所述连接电极为形成在所述基体表面上的非连续导电涂层。
  6. 根据权利要求1所述的加热器,其特征在于,沿着垂直于所述基体表面的方向,所述连接电极设置在所述基体与所述红外电热涂层之间;或者,所述红外电热涂层设置在所述基体与所述连接电极之间。
  7. 根据权利要求1所述的加热器,其特征在于,所述基体包括第一端、位于所述第一端的上游且与所述第一端相对的第二端;
    所述红外电热涂层与所述第一端间隔设置。
  8. 根据权利要求7所述的加热器,其特征在于,所述红外电热涂层与所述 第一端的间隔距离介于0.2mm~1mm。
  9. 根据权利要求1所述的加热器,其特征在于,所述基体被构造成管状;
    所述至少两个串联连接的子红外电热涂层沿着所述基体的周向方向分布,所述连接电极被构造成沿着所述基体的轴向方向延伸的条形电极;或者,所述至少两个串联连接的子红外电热涂层沿着所述基体的轴向方向分布,所述连接电极被构造成沿着所述基体的周向方向延伸的环形电极或者弧形电极;或者,所述子红外电热涂层和所述连接电极均沿着所述基体的轴向方向螺旋延伸。
  10. 根据权利要求1所述的加热器,其特征在于,所述基体被构造成管状;
    所述连接电极沿着所述基体的轴向方向延伸的长度与所述红外电热涂层沿着所述基体的轴向方向延伸的长度相同;或者,所述连接电极沿着所述基体的周向方向延伸的长度与所述红外电热涂层沿着所述基体的周向方向延伸的长度相同;或者,所述连接电极沿着所述基体的轴向方向螺旋延伸的高度与所述红外电热涂层沿着所述基体的轴向方向延伸的长度相同。
  11. 根据权利要求1所述的加热器,其特征在于,所述导电元件还包括设置于所述基体的表面上的第三导电电极,所述第一导电电极、所述第二导电电极以及所述第三导电电极将所述红外电热涂层分隔为至少两个独立的加热区域;
    所述至少一个连接电极用于将所述至少两个独立的加热区域分隔成至少两个串联连接在所述第一导电电极和所述第三导电电极之间的第一子红外电热涂层;所述第一导电电极和所述第三导电电极中的一个电极配置为接受外部电流流入,流入的电流依次经过所述至少两个串联连接的第一子红外电热涂层后,从所述第一导电电极和所述第三导电电极中的另一个电极流出;和/或,
    所述至少一个连接电极用于将所述至少两个独立的加热区域分隔成至少两个串联连接在所述第二导电电极和所述第三导电电极之间的第二子红外电热涂层;所述第二导电电极和所述第三导电电极中的一个电极配置为接受外部电流流入,流入的电流依次经过所述至少两个串联连接的第二子红外电热涂层后,从所述第二导电电极和所述第三导电电极中的另一个电极流出。
  12. 根据权利要求1所述的加热器,其特征在于,所述红外电热涂层包括间隔设置在所述基体表面上的第一红外电热涂层和第二红外电热涂层;
    所述至少一个连接电极包括第一连接电极和第二连接电极;所述第一连接电极和所述第二连接电极与所述第一红外电热涂层保持接触以形成电连接;
    所述第一导电电极和所述第二导电电极与所述第一红外电热涂层保持接触以形成电连接,且所述第一导电电极和所述第二导电电极与所述第二红外电热涂层也保持接触以形成电连接;
    所述第一连接电极、所述第一导电电极、所述第二连接电极、所述第二导电电极沿着所述基体的周向方向依次间隔设置;
    其中,所述第一连接电极和所述第二连接电极中的一个电极配置为接受外部电流流入,从所述第一连接电极和所述第二连接电极中的另一个电极流出;或者,所述第一导电电极和所述第二导电电极中的一个电极配置为接受外部电流流入,从所述第一导电电极和所述第二导电电极中的另一个电极流出。
  13. 根据权利要求1所述的加热器,其特征在于,所述基体被构造成管状,该管状基体的内径介于7mm~14mm;
    所述红外电热涂层沿着所述基体的轴向方向延伸的长度介于5mm~40mm。
  14. 一种气溶胶生成装置,其特征在于,包括用于提供电力的电源、以及权利要求1-13任意一项所述的加热器。
PCT/CN2023/105867 2022-07-21 2023-07-05 加热器以及包括该加热器的气溶胶生成装置 WO2024017062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210862107.1A CN117461886A (zh) 2022-07-21 2022-07-21 加热器以及包括该加热器的气溶胶生成装置
CN202210862107.1 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024017062A1 true WO2024017062A1 (zh) 2024-01-25

Family

ID=89616991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105867 WO2024017062A1 (zh) 2022-07-21 2023-07-05 加热器以及包括该加热器的气溶胶生成装置

Country Status (2)

Country Link
CN (1) CN117461886A (zh)
WO (1) WO2024017062A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110384264A (zh) * 2019-07-15 2019-10-29 深圳市合元科技有限公司 加热器及低温加热烟具
KR20200011723A (ko) * 2018-07-25 2020-02-04 (주)인터플렉스 발열장치
CN114098166A (zh) * 2020-09-01 2022-03-01 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN114304749A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
JP2022067751A (ja) * 2020-10-21 2022-05-09 Future Technology株式会社 喫煙カートリッジ用加熱器
CN216875043U (zh) * 2021-12-31 2022-07-05 芜湖艾尔达科技有限责任公司 加热组件、气溶胶生成装置及流体加热装置
CN218354597U (zh) * 2022-07-21 2023-01-24 深圳市合元科技有限公司 加热器以及包括该加热器的气溶胶生成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011723A (ko) * 2018-07-25 2020-02-04 (주)인터플렉스 발열장치
CN110384264A (zh) * 2019-07-15 2019-10-29 深圳市合元科技有限公司 加热器及低温加热烟具
CN114098166A (zh) * 2020-09-01 2022-03-01 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
JP2022067751A (ja) * 2020-10-21 2022-05-09 Future Technology株式会社 喫煙カートリッジ用加熱器
CN114304749A (zh) * 2021-12-31 2022-04-12 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN216875043U (zh) * 2021-12-31 2022-07-05 芜湖艾尔达科技有限责任公司 加热组件、气溶胶生成装置及流体加热装置
CN218354597U (zh) * 2022-07-21 2023-01-24 深圳市合元科技有限公司 加热器以及包括该加热器的气溶胶生成装置

Also Published As

Publication number Publication date
CN117461886A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2022048569A1 (zh) 气溶胶生成装置以及红外加热器
WO2022012678A1 (zh) 加热器以及包括该加热器的烟具
WO2021129679A1 (zh) 加热器以及包括该加热器的烟具
CN218354597U (zh) 加热器以及包括该加热器的气溶胶生成装置
US20230284699A1 (en) Heater and cigarette device with the heater
WO2021104472A1 (zh) 加热器以及包括该加热器的烟具
CN219353089U (zh) 加热器及气溶胶生成装置
WO2021104471A1 (zh) 加热器以及包含该加热器的烟具
WO2021139786A1 (zh) 气雾生成装置
CN219781579U (zh) 加热器及气溶胶生成装置
CN219182820U (zh) 加热组件以及气溶胶生成装置
US20220279854A1 (en) Atomizing device and electronic cigarette
WO2024017059A1 (zh) 加热组件以及气溶胶生成装置
CN215347048U (zh) 气溶胶生成装置以及红外加热器
CN113068866A (zh) 加热器以及包括该加热器的烟具
WO2024017062A1 (zh) 加热器以及包括该加热器的气溶胶生成装置
CN219182821U (zh) 加热组件以及气溶胶生成装置
WO2022028430A1 (zh) 加热器以及含有该加热器的烟具
US20240008539A1 (en) Aerosol-generation device
CN112841740B (zh) 加热器以及包含该加热器的烟具
WO2024017370A1 (zh) 气溶胶生成装置及其控制方法、生成气溶胶的方法
WO2024120141A1 (zh) 加热器以及气溶胶生成装置
WO2024120193A1 (zh) 加热器及其制作方法、气溶胶生成装置
WO2024060982A1 (zh) 加热组件以及气溶胶生成装置
CN213344352U (zh) 加热器以及包含该加热器的烟具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842127

Country of ref document: EP

Kind code of ref document: A1