WO2024016760A1 - 电子设备、玻璃盖板和化学强化微晶玻璃 - Google Patents

电子设备、玻璃盖板和化学强化微晶玻璃 Download PDF

Info

Publication number
WO2024016760A1
WO2024016760A1 PCT/CN2023/089019 CN2023089019W WO2024016760A1 WO 2024016760 A1 WO2024016760 A1 WO 2024016760A1 CN 2023089019 W CN2023089019 W CN 2023089019W WO 2024016760 A1 WO2024016760 A1 WO 2024016760A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
chemically strengthened
equal
ceramics
mass fraction
Prior art date
Application number
PCT/CN2023/089019
Other languages
English (en)
French (fr)
Inventor
许文彬
陈秋群
尹学文
史振国
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024016760A1 publication Critical patent/WO2024016760A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to an electronic equipment, a glass cover plate and chemically strengthened crystallized glass.
  • Embodiments of the present application provide an electronic device, a glass cover, and chemically strengthened crystallized glass for improving the drop resistance of the electronic device.
  • the application provides an electronic device, including a glass cover plate.
  • the glass cover plate includes chemically strengthened crystallized glass.
  • the chemically strengthened crystallized glass includes opposite first and second surfaces.
  • the chemically strengthened crystallized glass has stress. Curve, the stress curve is a curve drawn with the distance between any point inside the chemically strengthened glass-ceramics and the first surface or the second surface as the abscissa and the stress intensity at that point as the ordinate.
  • the area enclosed by the stress curve is greater than or equal to 36000t2-21600t+3150MPa* ⁇ m, where t is the thickness of chemically strengthened glass-ceramics, in mm.
  • the integrated area S of the stress curve L in the x ⁇ [50 ⁇ m, DOC] interval is greater than or equal to 36000t2-21600t+3150MPa* ⁇ m, that is, S ⁇ 36000t2-21600t+3150MPa* ⁇ m.
  • DOC is the depth of the compressive stress layer of chemically strengthened glass-ceramics, and the depth of the compressive stress layer refers to the depth where the stress intensity is 0.
  • the depth of the compressive stress layer of chemically strengthened glass-ceramics is greater than or equal to 0.18t and less than or equal to 0.25t. That is, 0.18t ⁇ compressive stress layer depth ⁇ 0.25t.
  • the chemically strengthened glass-ceramics has a deeper compressive stress layer depth, so that the compressive stress layer is formed in a deeper part of the chemically strengthened glass-ceramics, which is beneficial to improving the resistance of chemically strengthened glass-ceramics to puncture by hard objects. strength to prevent electronic equipment from falling When it falls on rough ground, it collides with protrusions on the rough ground and breaks.
  • the central tensile stress of chemically strengthened glass-ceramics is greater than or equal to 70Mpa, and after the chemically strengthened glass-ceramics is crushed under the pressure of a 10mm diameter round-head metal pressure bar, the fragments are the longest The average size of the sides is greater than or equal to 5mm.
  • the chemically strengthened glass-ceramics in the embodiments of this application can ensure that the internal tension of the chemically strengthened glass-ceramics is appropriate when the central tensile stress CT is greater than or equal to 70Mpa, avoiding the risk of self-explosion, with high safety performance and resistance to falling on rough ground. powerful.
  • the central tensile stress of chemically strengthened glass-ceramics is greater than or equal to 90Mpa, and after the chemically strengthened glass-ceramics is crushed under the pressure of a 10mm diameter round-head metal pressure bar, the fragments are the longest The average size of the sides is greater than or equal to 5mm.
  • the chemically strengthened glass-ceramics in the embodiments of this application can ensure appropriate internal tension of the chemically strengthened glass-ceramics when the central tensile stress CT is greater than or equal to 90Mpa, avoiding the risk of self-explosion, with high safety performance and resistance to falling on rough ground. powerful.
  • the central tensile stress of the chemically strengthened glass-ceramic is greater than or equal to 100 MPa, and after the chemically strengthened glass-ceramic is crushed under the pressure of a 10mm diameter round-headed metal pressure bar, the fragments The average size of the longest side is greater than or equal to 5mm.
  • the chemically strengthened glass-ceramics in the embodiments of this application can ensure that the internal tension of the chemically strengthened glass-ceramics is appropriate when the central tensile stress CT is greater than or equal to 100Mpa, avoiding the risk of self-explosion, with high safety performance and resistance to falling on rough ground. powerful.
  • the glass-ceramics used to form chemically strengthened glass-ceramics includes a main crystalline phase and a secondary crystalline phase.
  • the main crystalline phase is the crystallographic phase with the highest content in the glass-ceramics.
  • the microcrystalline The remaining crystal phases in the glass except the main crystal phase are sub-crystalline phases, and the ratio of the mass fraction of the main crystal phase to the mass fraction of the sub-crystalline phase is greater than or equal to 5.
  • the ratio of the mass fraction of the main crystal phase to the mass fraction of the sub-crystalline phase is equal to 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.
  • the purity of the main crystalline phase can be improved, the number of scatterings between different crystalline phases can be reduced, and the crystallized glass can be improved.
  • the transmittance of the glass-ceramics can be reduced, the haze of the glass-ceramics can be reduced, and the optical properties of the glass-ceramics can be improved, which in turn can help improve the optical properties of the chemically strengthened glass-ceramics.
  • the mass fraction of the subcrystalline phase is less than or equal to 10%.
  • the mass fraction of the subcrystalline phase can be 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4% , 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, etc.
  • the purity of the main crystal phase can be further ensured and the optical properties of crystallized glass and chemically strengthened crystallized glass can be improved.
  • the main crystal phase is lithium disilicate.
  • the lithium disilicate crystal phase has an irregular and non-oriented microstructure with good mechanical properties, which can increase the hardness and Young's modulus of the glass-ceramics, thereby preventing the surface or interior of the glass-ceramics from The further expansion of microcracks may cause the microcracks to bend and become less likely to spread, thereby greatly improving the strength and mechanical properties of the glass-ceramics.
  • the lithium disilicate crystal phase can provide high mechanical strength and fracture toughness to the glass-ceramics, reduce the sensitivity of the glass-ceramics to lithium ions, and improve the acid and alkali cleaning resistance of the glass-ceramics. Reducing the processing difficulty of glass-ceramics in the subsequent chemical strengthening process allows the glass-ceramics to undergo ion exchange to obtain additional mechanical strength, thereby improving the mechanical strength of chemically strengthened glass-ceramics.
  • the refractive index of the lithium disilicate crystal phase is close to the refractive index of glass, which can reduce the number of refractions of the glass-ceramics, increase the transmittance of the glass-ceramics, and reduce the haze of the glass-ceramics, thus further improving the
  • the optical properties of glass-ceramics can, in turn, improve the optical properties of chemically strengthened glass-ceramics.
  • the sub-crystalline phase includes at least one of lithium feldspar, lithium metasilicate, zirconium salt, and phosphate crystals.
  • the main crystalline phase is lithium disilicate and the secondary crystalline phase includes at least one of lithium feldspar, lithium metasilicate, and zirconium salt and phosphate crystals.
  • the average particle size of the crystal phase of the glass-ceramics is less than or equal to 80 nm.
  • the average particle size of the crystal phase of the crystallized glass is less than or equal to 60 nm.
  • the average particle size of the crystal phase of the glass-ceramics is less than or equal to 40nm.
  • the average particle size of the crystal phase of the glass-ceramics is less than or equal to 30nm.
  • the average particle size of the crystal phase of the above-mentioned glass-ceramics is small, which can ensure that the average transmittance of the glass-ceramics is high and the haze is small, so that the glass-ceramics have excellent optical properties, thereby ensuring chemically strengthened glass-ceramics. optical properties.
  • the average particle size of the crystal phase of the glass-ceramics is greater than or equal to 10 nm.
  • the average particle size of the crystal phase is too small, which affects the drop resistance of the glass-ceramics. Therefore, by controlling the average particle size of the crystal phase of the glass-ceramics to not less than 10 nm, both the optical performance and the drop resistance of the glass-ceramics can be achieved.
  • the transmittance of the crystallized glass at a wavelength of 550 nm is not less than 90%.
  • the Young's modulus of the crystallized glass is greater than or equal to 95 GPa. In this way, the rigidity and impact resistance of the glass-ceramics can be improved, which will help reduce the deformation of the glass cover and provide better protection for the screen.
  • the crystallized glass in the embodiments of the present application is based on a higher Young's modulus, so that the crystallized glass has a higher compressive stress bearing value and strong glass safety characteristics, and can be used to bear higher chemical strengthening stress. This can further improve the drop resistance of chemically strengthened glass-ceramics and reduce the processing difficulty of chemically strengthened glass-ceramics.
  • the glass-ceramics can be processed using the following high-temperature ion exchange process to obtain chemically strengthened glass-ceramics:
  • S10 Perform the first strengthening treatment on the crystallized glass in the first molten salt.
  • the first molten salt includes NaNO3, and the mass fraction of NaNO3 is greater than or equal to 30%.
  • the time of the first strengthening treatment is 1.5h to 10h.
  • the temperature of the first strengthening treatment is 380°C ⁇ 450°C.
  • the first strengthened glass-ceramic is subjected to a second strengthening treatment in a second molten salt.
  • the second molten salt includes KNO3, and the mass fraction of KNO3 is greater than or equal to 80%.
  • the second strengthening treatment The time of the second strengthening treatment is 0.2h ⁇ 6h, and the temperature of the second strengthening treatment is 380°C ⁇ 450°C.
  • the glass-ceramics used to form chemically strengthened glass-ceramics has low sensitivity to the concentration of lithium ions, no need Strictly control the mass fraction of LiNO3 in the first molten salt and the second molten salt, so that the first molten salt and the second molten salt have high compatibility with LiNO3.
  • the mass fraction of Li NO3 in the first molten salt and the second molten salt can be greater than or equal to 0 and less than or equal to 3%.
  • the crystallized glass is processed from a glass matrix.
  • the chemical composition of the glass matrix includes: SiO2, Al2O3, Li2O, Na2O, K2O, P2O5 and ZrO2.
  • the mass fraction of SiO2 is the same as that of Al2O3.
  • the sum of the mass fractions is greater than or equal to 65% and less than or equal to 80%
  • the mass fraction of Li2O is greater than or equal to 8% and less than or equal to 15%
  • the sum of the mass fractions of Na2O and K2O is greater than 0 and Less than or equal to 10%
  • the sum of the mass fraction of P2O5 and ZrO2 is greater than or equal to 5% and less than or equal to 15%.
  • the crystallized glass is produced by subjecting a glass matrix to a first step of heat treatment and a second step of heat treatment.
  • the temperature of the first step of heat treatment is 500°C to 550°C, and the treatment time is 1 hour to 550°C. 8h
  • the temperature of the second step of heat treatment is 600°C ⁇ 900°C
  • the treatment time is 1h ⁇ 8h.
  • crystallized glass with the above main crystal phase type, main crystal phase purity, and average particle size of the crystal phase can be prepared, so that the crystallized glass has excellent mechanical properties and optical properties, and thus can obtain satisfactory results.
  • the processing difficulty and processing cost of chemically strengthened glass-ceramics are reduced.
  • the average grain size change of the glass-ceramics is less than or equal to 5%, and/or the haze is less than or equal to 0.2%, and/or The color coordinate
  • the electronic device further includes a middle frame and a display screen.
  • the display screen is provided on one side of the middle frame.
  • the glass cover and the display screen are stacked, and the glass cover is located on the side of the display screen. The side away from the middle frame.
  • the glass cover is used as a light-transmitting cover of electronic equipment.
  • the electronic device further includes a middle frame and a display screen, and the display screen and the glass cover are respectively provided on opposite sides of the middle frame.
  • the glass cover is used for the back cover of the electronic device.
  • the glass cover is a 3D glass cover.
  • a glass cover plate which includes chemically strengthened crystallized glass.
  • the chemically strengthened crystallized glass includes a first surface and a second surface that are opposite to each other.
  • the chemically strengthened crystallized glass has a stress curve, and the stress curve is: A curve drawn with the distance between any point inside the chemically strengthened glass-ceramics and the first surface or the second surface as the abscissa and the stress intensity at that point as the ordinate.
  • the depth of the compressive stress layer of chemically strengthened glass-ceramics is greater than or equal to 0.18t and less than or equal to 0.25t. That is, 0.18t ⁇ compressive stress layer depth ⁇ 0.25t.
  • the central tensile stress of the chemically strengthened glass-ceramics is greater than or equal to 70 MPa, and after the chemically strengthened glass-ceramics is crushed under the pressure of a 10mm diameter round-headed metal pressure bar, the fragments The average size of the longest side is greater than or equal to 5mm.
  • the glass-ceramics used to form chemically strengthened glass-ceramics includes a main crystalline phase and a sub-crystalline phase.
  • the main crystalline phase is the crystallographic phase with the highest content in the glass-ceramics.
  • the microcrystalline The remaining crystal phases in the glass except the main crystal phase are sub-crystalline phases, and the ratio of the mass fraction of the main crystal phase to the mass fraction of the sub-crystalline phase is greater than or equal to 5.
  • the mass fraction of the subcrystalline phase is less than or equal to 10%.
  • the main crystalline phase is lithium disilicate
  • the secondary crystalline phase includes at least one of lithium feldspar, lithium metasilicate, zirconium salt, and phosphate crystal.
  • the transmittance of the crystallized glass at a wavelength of 550 nm is not less than 90%.
  • the Young's modulus of the crystallized glass is greater than or equal to 95 GPa.
  • the glass-ceramics can be processed using the following high-temperature ion exchange process to obtain chemically strengthened glass-ceramics:
  • S10 Perform the first strengthening treatment on the crystallized glass in the first molten salt.
  • the first molten salt includes NaNO3, and the mass fraction of NaNO3 is greater than or equal to 30%.
  • the time of the first strengthening treatment is 1.5h to 10h.
  • the temperature of the first strengthening treatment is 380°C ⁇ 450°C.
  • the first strengthened glass-ceramic is subjected to a second strengthening treatment in a second molten salt.
  • the second molten salt includes KNO3, and the mass fraction of KNO3 is greater than or equal to 80%.
  • the second strengthening treatment The time of the second strengthening treatment is 0.2h ⁇ 6h, and the temperature of the second strengthening treatment is 380°C ⁇ 450°C.
  • the crystallized glass is processed from a glass matrix.
  • the glass matrix includes: SiO2, Al2O3, Li2O, Na2O, K2O, P2O5 and ZrO2.
  • the mass fraction of SiO2 is the same as the mass fraction of Al2O3. The sum is greater than or equal to 65% and less than or equal to 80%, the mass fraction of Li2O is greater than or equal to 8% and less than or equal to 15%, the sum of the mass fraction of Na2O and K2O is greater than 0 and less than or equal to 10%, The sum of the mass fraction of P2O5 and the mass fraction of ZrO2 is greater than or equal to 5% and less than or equal to 15%.
  • the crystallized glass is produced by subjecting a glass matrix to a first step of heat treatment and a second step of heat treatment.
  • the temperature of the first step of heat treatment is 500°C to 550°C, and the treatment time is 1 hour to 550°C. 8h
  • the temperature of the second step of heat treatment is 600°C ⁇ 900°C
  • the treatment time is 1h ⁇ 8h.
  • the glass cover is a 3D glass cover.
  • the glass cover is used as a light-transmitting cover or back cover of an electronic device.
  • this application proposes a chemically strengthened crystallized glass.
  • the chemically strengthened crystallized glass includes an opposite first surface and a second surface.
  • the chemically strengthened crystallized glass has a stress curve.
  • the stress curve is based on the internal structure of the chemically strengthened crystallized glass.
  • the distance between any point and the first surface or the second surface is the abscissa and the stress intensity at that point is the ordinate.
  • the central tensile stress of chemically strengthened glass-ceramics is greater than or equal to 70MPa, and after the chemically strengthened glass-ceramics is crushed under the pressure of a 10mm diameter round-headed metal pressure bar, the fragments are the longest The average size of the sides is greater than or equal to 5mm.
  • Figure 1 is a schematic structural diagram of an electronic device provided by some embodiments of the present application.
  • Figure 2 is a cross-sectional view of the electronic device shown in Figure 1 along line A-A;
  • Figure 3 is a cross-sectional view of chemically strengthened glass-ceramics provided by some embodiments of the present application.
  • Figure 4 is an internal stress curve of chemically strengthened glass-ceramics provided by some embodiments of the present application.
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the term "at least one” refers to one or more, and “multiple” refers to two or more. "At least one of the following" or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the term “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items.
  • the term “and/or” is an association relationship that describes related objects, indicating that there can be three relationships. For example, A and/or B can mean: A alone exists, A and B exist simultaneously, and B alone exists. situation.
  • the character "/" in this application generally indicates that the related objects are an "or" relationship.
  • connection may be detachably
  • connection can also be a non-detachable connection; it can be a direct connection or an indirect connection through an intermediary.
  • fixed connection means that they are connected to each other and their relative positional relationship remains unchanged after connection.
  • connection can be detachably connected, or it can be detachably connected.
  • Non-detachably connected either directly or indirectly through an intermediary.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article or device that includes a series of elements not only includes those elements, It also includes other elements not expressly listed or inherent in the process, method, article or apparatus.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method, article or apparatus that includes that element.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method, article or apparatus that includes that element.
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes a glass cover.
  • the glass cover can be used as a light-transmitting cover, a back cover, etc. of the electronic device.
  • the glass cover consists of chemically strengthened glass-ceramic. That is, at least part of the glass cover is made of chemically strengthened crystallized glass.
  • Electronic devices provided by the embodiments of this application include but are not limited to mobile phones, tablet computers (tablet personal computers), laptop computers (laptop computers), personal digital assistants (personal digital assistants, PDAs), personal computers, notebook computers, and vehicle-mounted equipment. and electronic devices such as wearables.
  • the embodiments of the present application do not place special restrictions on the specific forms of the above-mentioned electronic devices.
  • Figure 1 is a schematic structural diagram of an electronic device 100 provided by some embodiments of the present application.
  • Figure 2 is a cross-sectional view of the electronic device 100 shown in Figure 1 along line A-A.
  • the electronic device 100 is a tablet phone.
  • the electronic device 100 includes a screen 10 , a middle frame 20 , a back cover 30 , a circuit board 40 and a battery 50 . Since the circuit board 40 and the battery 50 are not visible inside the electronic device 100, the circuit board 40 and the battery 50 are represented by dotted lines in FIG. 1 .
  • FIG. 1 and FIG. 2 and the relevant drawings below only schematically illustrate some components included in the electronic device 100 , and the actual shapes, actual sizes, actual positions and actual configurations of these components are not affected by FIG. 1 and FIG. 2 and the following figures.
  • the electronic device 100 may not include the screen 10 .
  • the screen 10 is used to display images, videos, etc.
  • the screen 10 may include a light-transmitting cover 11 and a display screen 12 .
  • the light-transmitting cover 11 and the display screen 12 are stacked and fixedly connected.
  • the light-transmitting cover 11 is mainly used to protect the display screen 12 and prevent dust.
  • the light-transmitting cover 11 can be a 2D cover, a 2.5D cover or a 3D cover.
  • the 2D cover is an ordinary pure plane without any arc design. All points on the cover are on the same plane, and this type of cover is collectively called a 2D cover.
  • the 2.5D cover is flat in the middle, but has a certain arc design on the edge.
  • the 2.5D cover has a curved edge on the basis of the flat cover.
  • the 3D cover adopts a curved design in the middle and edge of the flat cover.
  • the curved surface design in the 3D cover can increase the viewing area, more in line with the curvature of the human retina, and bring a better visual experience.
  • the display screen 12 may be a flexible display screen or a rigid display screen.
  • the middle frame 20 is the “support frame” of the electronic device 100 . Please refer to FIG. 2 .
  • the middle frame 20 includes a frame 21 and a middle plate 22 .
  • the middle plate 22 is fixed on the inner surface of the frame 21 .
  • the middle plate 22 can be fixed on the frame 21 by welding, or the middle plate 22 and the frame 21 can also be an integrally formed structure.
  • the screen 10 is fixedly connected to one side of the frame 21 by means of the transparent cover 11 .
  • the light-transmitting cover 11 can be fixedly connected to the frame 21 through adhesive.
  • the back cover 30 is fixedly connected to the side of the middle frame 20 away from the screen 10 .
  • the frame 21 is located between the back cover 30 and the transparent cover 11 .
  • the light-transmitting cover 11 , the back cover 30 and the frame 21 form an internal accommodation space of the electronic device 100 , and the internal accommodation space accommodates the display screen 12 , the circuit board 40 and the like.
  • the back cover 30 can be fixedly connected to the frame 21 through adhesive.
  • the circuit board 40, battery 50, etc. can be fixedly connected to the middle plate 22 through threaded connection, clamping, welding, etc.
  • the back cover 30 can be a 2D cover, a 2.5D cover or a 3D cover.
  • one of the light-transmitting cover 11 and the back cover 30 is provided as a glass cover, or both the light-transmitting cover 11 and the back cover 30 are provided.
  • glass cover For glass cover.
  • 3D glass covers that is, curved covers).
  • 3D glass covers are more fragile and more expensive than 2D covers, so there is an urgent need to design glass covers that are more resistant to falling.
  • the glass cover in some embodiments includes chemical Strengthened glass-ceramic.
  • the glass cover plate can be made of chemically strengthened glass-ceramics as a whole, or the glass cover plate can also be partly made of chemically-strengthened glass-ceramics.
  • glass-ceramics refers to the basic glass of a specific composition with the addition of a crystal nucleating agent (or without a crystal nucleating agent). It is subjected to crystallization heat treatment under a certain temperature system to uniformly precipitate a large number of tiny crystals in the glass to form a dense A multiphase complex of microcrystalline and glassy phases.
  • a high-temperature ion exchange process also called a chemical strengthening treatment process
  • chemically strengthened crystallized glass can be obtained.
  • the alkali metal ions on the surface of the glass-ceramics are replaced by alkali metal ions with a larger diameter to obtain chemically strengthened glass-ceramics.
  • lithium ions in the glass-ceramics can be replaced by sodium ions in the molten salt (also called a salt bath), and sodium ions in the glass-ceramics can be replaced by potassium ions in the salt bath. .
  • the volume difference forms a compressive stress layer of a certain depth on the surface of chemically strengthened glass-ceramics.
  • the compressive stress layer can eliminate or inhibit micro-cracks on the surface of chemically strengthened glass-ceramics.
  • FIG 3 is a cross-sectional view of chemically strengthened crystallized glass 13 provided by some embodiments of the present application.
  • the chemically strengthened crystallized glass 13 in this embodiment is in a 3D form.
  • the chemically strengthened crystallized glass 13 has a first surface 131 and a second surface 132 opposite in the thickness direction thereof.
  • Figure 4 is an internal stress curve of chemically strengthened glass-ceramics provided in some embodiments of the present application.
  • the stress curve L is a curve drawn with the distance between any point inside the chemically strengthened crystallized glass 13 and the first surface 131 or the second surface 132 as the abscissa, and the stress intensity at the point as the ordinate.
  • the abscissa can also be recorded as depth, with the unit being mm, and the ordinate with the unit being MPa.
  • This stress curve can be measured using the scattered light photoelastic stress meter SLP2000.
  • the application is not limited to this, and the stress curve can also be measured by other stress testers.
  • t is the total thickness of chemically strengthened glass-ceramics, and the unit of t is mm. It should be noted that in the embodiment of the present application, the thickness of the chemically strengthened crystallized glass is the distance between the first surface and the second surface.
  • the integrated area S of the stress curve L within the x ⁇ [50 ⁇ m, DOC] interval is greater than or equal to 36000t 2 -21600t+3150MPa* ⁇ m, that is, S ⁇ 36000t 2 -21600t+3150MPa* ⁇ m.
  • DOC is the depth of the compressive stress layer of chemically strengthened glass-ceramics, and the depth of the compressive stress layer refers to the depth where the stress intensity is 0.
  • the depth of the compressive stress layer of chemically strengthened glass-ceramics is greater than or equal to 0.18t and less than or equal to 0.25t. That is, 0.18t ⁇ compressive stress layer depth ⁇ 0.25t.
  • the chemically strengthened glass-ceramics has a deeper compressive stress layer depth, so that the compressive stress layer is formed in a deeper part of the chemically strengthened glass-ceramics, which is beneficial to improving the resistance of chemically strengthened glass-ceramics to puncture by hard objects. strength to prevent electronic equipment from falling to rough ground and contact with rough ground. The protrusions on the surface collide and break.
  • the central tensile stress CT of the chemically strengthened glass-ceramics in the embodiments of this application is greater than or equal to 70Mpa, and the chemically strengthened glass-ceramics are squeezed on a 10mm diameter round-headed metal pressure bar until it breaks, and the average size of the longest side of the fragments Greater than or equal to 5mm.
  • the "average size of the longest side of the fragments" mentioned in this application refers to the size of the longest side of the fragments formed when chemically strengthened glass-ceramics is crushed by a 10mm diameter round-headed metal pressure bar. average value. When calculating, you can add the dimensions of the longest sides of each fragment and divide by the number of fragments. That is, the average size of the longest sides of the fragments is equal to the sum of the sizes of the longest sides of each fragment divided by the number of fragments.
  • the central tensile stress CT refers to the absolute value of the stress intensity of chemically strengthened glass-ceramics at a depth of one-half t (i.e. t/2).
  • the thickness of the chemically strengthened glass-ceramics is 0.62mm
  • the absolute value of the stress intensity of the chemically strengthened glass-ceramics at a depth of 0.31mm is the central tensile stress of the chemically strengthened glass-ceramics.
  • the central tensile stress CT of chemically strengthened glass-ceramics is greater than or equal to 90Mpa, and the chemically strengthened glass-ceramics is squeezed by a 10mm diameter round-headed metal pressure rod until it breaks, and the average size of the longest side of the fragments is greater than or equal to 5mm.
  • the central tensile stress CT of chemically strengthened glass-ceramics is greater than or equal to 100Mpa, and the chemically strengthened glass-ceramics is squeezed by a 10mm diameter round-headed metal pressure rod until it breaks, and the average size of the longest side of the fragments is greater than or equal to 5mm.
  • the compressive stress and tensile stress are in a complementary state, keeping the overall stress of the glass in balance.
  • the corresponding central tensile stress will also increase accordingly.
  • the intrinsic strength of glass depends on the material and thickness. When the central tensile stress CT of the glass is too high and reaches the limit of the intrinsic strength of the glass, there will be a risk of self-explosion.
  • the chemically strengthened glass-ceramics in the embodiments of this application can ensure that the internal tension of the chemically strengthened glass-ceramics is appropriate when the central tensile stress CT is greater than or equal to 70Mpa, 90Mpa, or 100Mpa, avoiding the risk of self-explosion, and has high safety performance and roughness resistance. Strong fall resistance to the ground.
  • the chemical crystallized glass is obtained by subjecting the crystallized glass to a high-temperature ion exchange process (also known as a chemical strengthening treatment process).
  • Crystallized glass includes main crystalline phase and secondary crystalline phase.
  • the main crystal phase is the crystal phase with the highest content in the glass-ceramics
  • the secondary crystal phase is the remaining crystal phases except the main crystal phase.
  • the main crystal phase is lithium disilicate (Li 2 Si 2 O 5 ).
  • the lithium disilicate crystal phase has an irregular and non-oriented microstructure with good mechanical properties, which can increase the hardness and Young's modulus of the glass-ceramics, thereby preventing the surface or interior of the glass-ceramics from The further expansion of microcracks may cause the microcracks to bend and become less likely to spread, thereby greatly improving the strength and mechanical properties of the glass-ceramics.
  • the lithium disilicate crystal phase can provide high mechanical strength and fracture toughness to the glass-ceramics, reduce the sensitivity of the glass-ceramics to lithium ions, and improve the acid and alkali cleaning resistance of the glass-ceramics. Reducing the processing difficulty of glass-ceramics in the subsequent chemical strengthening process allows the glass-ceramics to undergo ion exchange to obtain additional mechanical strength, thereby improving the mechanical strength of chemically strengthened glass-ceramics.
  • the refractive index of the lithium disilicate crystal phase is close to the refractive index of glass, which can reduce the number of refractions of the glass-ceramics, increase the transmittance of the glass-ceramics, and reduce the haze of the glass-ceramics, thus further improving the
  • the optical properties of glass-ceramics can, in turn, improve the optical properties of chemically strengthened glass-ceramics.
  • the subcrystalline phase includes one or more of lithium feldspar, lithium metasilicate, zirconium salt, and phosphate crystals.
  • the ratio of the mass fraction of the main crystalline phase to the mass fraction of the subcrystalline phase is greater than or equal to At 5. That is, the mass fraction of the main crystalline phase is 5 times or more than the mass fraction of the secondary crystalline phase.
  • the calculation formula for the mass fraction of the main crystal phase is: the mass fraction of the main crystal phase is equal to the mass of the main crystal phase divided by the mass of the glass-ceramics.
  • the calculation formula for the mass fraction of the subcrystalline phase is: the mass fraction of the subcrystalline phase is equal to the mass of the subcrystalline phase divided by the mass of the glass-ceramics.
  • the ratio of the mass fraction of the main crystalline phase to the mass fraction of the subcrystalline phase is equal to 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, etc.
  • the purity of the main crystalline phase can be improved, the number of scatterings between different crystalline phases can be reduced, and the crystallized glass can be improved.
  • the transmittance of the glass-ceramics can be reduced, the haze of the glass-ceramics can be reduced, and the optical properties of the glass-ceramics can be improved, which in turn can help improve the optical properties of the chemically strengthened glass-ceramics.
  • the mass fraction of the secondary crystalline phase in the glass-ceramics is less than or equal to 10%.
  • the mass fraction of the subcrystalline phase can be 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4% , 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, etc.
  • the average particle size of the crystal phase of the crystallized glass is less than or equal to 80 nm.
  • the average particle size of the crystal phase of the crystallized glass is less than or equal to 60 nm.
  • the average particle size of the crystal phase of the glass-ceramics is less than or equal to 40nm.
  • the average particle size of the crystal phase of the glass-ceramics is less than or equal to 30nm.
  • the average particle size of the crystal phase of the above-mentioned glass-ceramics is small, which can ensure that the average transmittance of the glass-ceramics is high and the haze is small, so that the glass-ceramics have excellent optical properties, thereby ensuring chemically strengthened glass-ceramics. optical properties.
  • the average particle size of the crystal phase is the average value of the particle size of the crystal phase.
  • the average particle size of the crystal phase can be measured using a SEM scanning electron microscope and an X-ray device (XRD).
  • the average particle size of the crystal phase of glass-ceramics is greater than or equal to 10 nm.
  • the average particle size of the crystal phase of the glass ceramics is 10 nm to 80 nm, or 10 nm to 70 nm, or 10 nm to 60 nm, or 10 nm to 30 nm.
  • the average particle size of the crystal phase is too small, which affects the drop resistance of the glass-ceramics. Therefore, by controlling the average particle size of the crystal phase of the glass-ceramics to not less than 10 nm, both the optical performance and the drop resistance of the glass-ceramics can be achieved.
  • the glass-ceramics by controlling the type of the main crystal phase, the purity of the main crystal phase, and the average particle size of the crystal phase in the glass-ceramics, the glass-ceramics can have excellent optical properties and drop resistance, and can Reduce the processing difficulty of chemically strengthened glass-ceramics.
  • the transmittance of glass-ceramics at a wavelength of 550nm is not less than 90%.
  • the Young's modulus of the crystallized glass is greater than or equal to 95 GPa.
  • the Young's modulus of the crystallized glass is greater than or equal to 100 GPa. More preferably, the Young's modulus of the crystallized glass is greater than or equal to 110 GPa.
  • the rigidity and impact resistance of the glass-ceramics can be improved, which will help reduce the deformation of the glass cover and provide better protection for the screen.
  • the crystallized glass in the embodiments of the present application is based on a higher Young's modulus, so that the crystallized glass has a higher compressive stress bearing value and strong glass safety characteristics, and can be used to bear higher chemical strengthening stress. This can further improve the drop resistance of chemically strengthened glass-ceramics and reduce the processing difficulty of chemically strengthened glass-ceramics.
  • the crystallized glass in the embodiments of the present application can be processed by the following high-temperature ion exchange process (that is, a chemical strengthening treatment process) to obtain chemically strengthened crystallized glass:
  • the first molten salt includes NaNO 3 , and the mass fraction of NaNO 3 is greater than or equal to 30%.
  • the mass fraction of NaNO 3 is 30%, 33%, 35%, 40%, 45%, 50%, 55%, 60%, etc.
  • the time of the first strengthening treatment is 1.5h-10h, and the temperature of the first strengthening treatment is 380°C-450°C.
  • the time of the first intensive treatment is 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h, 5h, 5.5h, 6h, 6.5h, 7h, 7.5h, 8h, 8.5h, 9h, 9.5h, 10h, etc.
  • the temperatures for the first strengthening treatment are 380°C, 390°C, 400°C, 410°C, 420°C, 430°C, 440°C, 450°C, etc.
  • the first strengthened glass-ceramic is subjected to a second strengthening treatment in a second molten salt.
  • the second molten salt includes KNO 3 , and the mass fraction of KNO 3 is greater than or equal to 80%.
  • the mass fraction of KNO 3 is 80%, 85%, 88%, 90%, 92%, 93%, 95%, etc.
  • the time of the second strengthening treatment is 0.2h-6h, and the temperature of the second strengthening treatment is 380°C-450°C.
  • the time of the second intensive treatment is 0.2h, 0.3h, 0.5h, 0.8h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h, 5h, 5.5h, 6h wait.
  • the temperatures for the second strengthening treatment are 380°C, 390°C, 400°C, 410°C, 420°C, 430°C, 440°C, 450°C, etc.
  • the mass fraction of Li NO 3 in the first molten salt and the second molten salt can be greater than or equal to 0 and less than or equal to 3%, so that on the premise of obtaining chemically strengthened crystallized glass that meets the above stress curve requirements, the It is difficult to process chemically strengthened glass-ceramics, extend the service life of the first molten salt and the second molten salt, and reduce processing costs.
  • the crystallized glass with the above-mentioned main crystal phase type and main crystal phase purity also has excellent thermal bending properties, has good processing performance of curved glass cover (that is, 3D glass cover), and is suitable for processing 3D glass cover plate.
  • the glass-ceramics in the embodiments of the present application are subjected to high-temperature heat bending at 670°C to 780°C.
  • the average particle size change of the crystal phase of the glass-ceramics before and after heat bending is less than or equal to 5 nm, and the mass fraction change of the crystallinity is less than or equal to 5 nm. or equal to 5%.
  • value of glass-ceramics is less than or equal to 0.6, and the haze is less than or equal to 0.2%.
  • the thermal bending process has little impact on the crystal phase in the glass-ceramics.
  • the size of the crystal phase is stable and controllable, and the optical properties are stable and controllable. There is no need for additional compensation processing due to excessive changes in crystal phase size and/or excessive changes in optical properties. .
  • the above-mentioned crystallized glass also has good acid and alkali resistance.
  • the weight loss of the crystallized glass in a HCl solution with a mass fraction of 5% is no more than 0.2 mg/cm 2 when kept at 95°C for 24 hours.
  • the weight loss of this glass-ceramic in a NaOH solution with a mass fraction of 5% when kept at 95°C for 6 hours is no more than 0.2 mg/cm 2 .
  • Good acid and alkali resistance enables the glass-ceramics to meet the cleaning requirements in the 3D process: use a cleaning solvent with a PH of 12-14 and clean it in an ultrasonic cleaning machine or flatbed cleaning machine for ⁇ 2 hours; before and after cleaning, the glass-ceramics
  • value change is ⁇ 0.2; after cleaning, the anti-fingerprint coating is directly evaporated or sprayed on the surface of the ceramic glass.
  • the wear resistance of the fingerprint layer meets the water droplet angle >100° after 2500 times of rubber rubbing.
  • the processing steps for processing the 3D glass cover plate using the crystallized glass are the same as the processing steps for processing the 3D glass cover plate using the di-strength glass.
  • the processing steps for processing 3D glass cover using this glass-ceramic are: CNC ⁇ Cleaning ⁇ 3D hot bending ⁇ Polishing ⁇ Cleaning ⁇ Chemical strengthening ⁇ Cleaning ⁇ Printing ink ⁇ Cleaning ⁇ Evaporation or spraying of anti-fingerprint layer.
  • the chemical composition of the glass matrix used to form the crystallized glass includes SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, P 2 O 5 and ZrO 2 .
  • the sum of the mass fraction of SiO 2 and the mass fraction of Al 2 O 3 is greater than or equal to 65% and less than or equal to 80%, the mass fraction of Li 2 O is greater than or equal to 8% and less than or equal to 15%, and Na 2 O
  • the sum of the mass fraction of P 2 O 5 and the mass fraction of K 2 O is greater than 0 and less than or equal to 10%, and the sum of the mass fraction of P 2 O 5 and the mass fraction of ZrO 2 is greater than or equal to 5% and less than or equal to 15%.
  • the calculation formula for the mass fraction of each component in the glass matrix is: the mass of each component divided by the total mass of the glass matrix.
  • the sum of the mass fractions of SiO 2 and Al 2 O 3 is 65%, 68%, 70%, 72%, 75%, 78%, 80%.
  • the mass fraction of Li 2 O is 8%, 9%, 10%, 11%, 12%, 12%, 14%, and 15%.
  • the sum of the mass fractions of Na 2 O and K 2 O is 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, and 10%.
  • the sum of the mass fractions of P 2 O 5 and ZrO 2 is 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%.
  • SiO 2 is a component that constitutes the glass skeleton. As the main body of the glass network structure, it gives the base glass and glass-ceramics better chemical stability, mechanical properties and molding properties. During the glass microcrystallization process, a source of SiO2 is provided for the formation of crystal phases.
  • Al 2 O 3 also stabilizes the glass network structure and also provides improved mechanical properties and chemical durability. Since the volume of Al 2 O 3 is larger than that of the silicon-oxygen tetrahedron, adding Al 2 O 3 can create larger gaps in the glass structure, which is conducive to ion exchange, makes the chemical strengthening effect better, and improves the glass's strength. Mechanical behavior.
  • Li 2 O is an oxide outside the network, which helps to reduce the viscosity of the glass, promotes the melting and clarification of the glass, and helps to form the lithium disilicate crystal phase during the crystallization process.
  • Li 2 O can also exchange with Na during the chemical strengthening process to form deep compressive stress, which helps to introduce a Na/Li exchange layer to form compressive stress, which is beneficial to improving The resistance of glass to puncture by hard objects.
  • Na 2 O and K 2 O can significantly reduce the viscosity of the base glass, promote the melting and clarification of the base glass, and at the same time lower the crystallization temperature of the glass, allowing the crystallized glass to be strengthened with K ions in the potassium nitrate molten salt, which is beneficial to strengthening the base glass.
  • P 2 O 5 and ZrO 2 are nucleating agents.
  • P 2 O 5 can promote the formation of crystals, improve the crystallinity of glass-ceramics, and increase the hardness and strength of glass-ceramics.
  • ZrO 2 can increase the network structure of glass, which is beneficial to the chemical strengthening of glass-ceramics, increases the depth of the ion exchange layer of glass-ceramics products, and improves the height of the drop ball test of glass-ceramics products.
  • ZrO 2 and P 2 O 5 cooperate with each other to refine the grains and reduce the haze of crystallized glass and crystallized glass products.
  • the glass matrix can be produced by melt casting. Crystallized glass can be obtained after heat treatment of the glass matrix.
  • the glass substrate is subjected to the following two-step heat treatment to obtain crystallized glass with the above-mentioned main crystal phase type and main crystal phase purity:
  • the temperature of the first step of heat treatment is 500°C ⁇ 550°C, and the treatment time is 1h ⁇ 8h.
  • the temperature of the first step of heat treatment is 500°C, 510°C, 520°C, 530°C, 540°C, 540°C, etc.
  • the treatment time is 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, etc. .
  • the temperature of the second step of heat treatment is 600°C ⁇ 900°C, and the treatment time is 1h ⁇ 8h.
  • the second step of heat treatment The processing temperatures are 600°C, 640°C, 650°C, 700°C, 750°C, 800°C, 850°C, 900°C, etc., and the processing times are 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, etc.
  • crystallized glass with the above main crystal phase type, main crystal phase purity and average particle size of the crystal phase can be prepared, so that the crystallized glass has excellent mechanical properties and optical properties, and thus can obtain satisfactory results.
  • the processing difficulty and cost of chemically strengthened glass-ceramics are reduced.
  • the preparation methods of 3D glass cover include:
  • the glass matrix is prepared by melt casting method.
  • the composition of the glass matrix includes: the sum of the mass fraction of SiO 2 and the mass fraction of Al 2 O 3 is 65%; the mass fraction of Li 2 O is 1%; Na 2 O The sum of the mass fraction of P 2 O 5 and the mass fraction of K 2 O is 10%; the sum of the mass fraction of P 2 O 5 and the mass fraction of ZrO 2 is 10%;
  • the prepared glass matrix is subjected to two-step heat treatment to obtain crystallized glass: the first step of heat treatment is at a temperature of 540°C and a treatment time of 2 hours; in the second step, the temperature of the heat treatment is 750°C to 900°C and the treatment time is 5 hours; after testing It is obtained that the main crystal phase of the glass-ceramic is lithium disilicate, the ratio of the mass fraction of the main crystal phase to the mass fraction of the sub-crystal phase is 15, and the average particle size of the crystal phase is 35 nm;
  • the prepared glass-ceramics are cut/grinded/polished into original glass sheets, and then hot-bent into 3D shapes using 3D graphite molds.
  • the maximum hot-bending temperature is 650°C, and the hot-bending compressive stress is 0.9MPa.
  • Stationary hot bending time is 30 seconds; before and after hot bending, the increase in mass fraction of crystallization of glass-ceramics shall not be greater than 5%;
  • the molten salt used for the chemical strengthening treatment includes NaNO 3 , KNO 3 and LiNO 3 , where the mass fraction of NaNO 3 is 30 %, the mass fraction of KNO 3 is 67%, the mass fraction of LiNO 3 is 3%, the strengthening temperature is 380°C, and the strengthening time is 10h;
  • the preparation methods of 3D glass cover include:
  • the glass matrix is prepared by melt casting method.
  • the composition of the glass matrix includes: the sum of the mass fraction of SiO 2 and the mass fraction of Al 2 O 3 is 80%; the mass fraction of Li 2 O is 14%; Na 2 O The sum of the mass fraction of P 2 O 5 and the mass fraction of K 2 O is 1%; the sum of the mass fraction of P 2 O 5 and the mass fraction of ZrO 2 is 5%;
  • the prepared glass matrix is subjected to two-step heat treatment to obtain crystallized glass: the first step of heat treatment is at a temperature of 500°C and a treatment time of 4 hours, and the second step of heat treatment is at a temperature of 640°C and for a treatment time of 5 hours; it is measured that the micron
  • the main crystalline phase of crystalline glass is lithium disilicate, the ratio of the mass fraction of the main crystalline phase to the mass fraction of the subcrystalline phase is 12, and the average particle size of the crystalline phase is 53nm;
  • the prepared glass-ceramics are cut/grinded/polished into original glass sheets, and then hot-bent into 3D shapes using 3D graphite molds.
  • the maximum hot-bending temperature is 720°C, and the hot-bending compressive stress is 0.5MPa.
  • the mass fraction increase in the crystallinity of the glass-ceramics shall not be greater than 3%;
  • the polished 3D glass-ceramics are subjected to the first chemical strengthening treatment: the molten salt used for the first chemical strengthening treatment is pure NaNO 3 , that is, the mass fraction of NaNO 3 is 100%. Strengthening The temperature is 450°C and the strengthening time is 0.5h;
  • the molten salt used for the second chemical strengthening treatment includes KNO 3 , NaNO 3 and LiNO 3 , among which, the mass fraction of KNO 3 is 80%, the mass fraction of NaNO 3 is 19.5%, the mass fraction of LiNO 3 is 0.5%, the strengthening temperature is 380°C, and the strengthening time is 6h;
  • the prepared chemically strengthened crystallized glass is sequentially cleaned, printed with ink, cleaned, and evaporated with an anti-fingerprint coating to obtain a 3D glass cover.
  • the preparation methods of 3D glass cover include:
  • the glass matrix is prepared by melt casting method.
  • the composition of the glass matrix includes: the sum of the mass fraction of SiO 2 and the mass fraction of Al 2 O 3 is 75%; the mass fraction of Li 2 O is 8%; Na 2 O The sum of the mass fraction of P 2 O 5 and the mass fraction of K 2 O is 1%; the sum of the mass fraction of P 2 O 5 and the mass fraction of ZrO 2 is 10%;
  • the prepared glass matrix is subjected to two-step heat treatment to obtain glass-ceramics: the first step of heat treatment is at a temperature of 520°C and a treatment time of 6 hours; in the second step, the temperature of the heat treatment is 760°C and a treatment time of 2 hours; it is measured that the micron
  • the main crystalline phase of the crystalline glass is lithium disilicate, the ratio of the mass fraction of the main crystalline phase to the mass fraction of the subcrystalline phase is 5, and the average particle size of the crystalline phase is 80nm;
  • the prepared glass-ceramics are cut/grinded/polished into original glass sheets, and then hot-bent into 3D shapes using 3D graphite molds.
  • the maximum hot-bending temperature is 750°C, and the hot-bending compressive stress is 0.1MPa.
  • Stationary hot bending time is 120s; before and after hot bending, the increase in mass fraction of crystallized glass crystallinity is not more than 3%;
  • the polished 3D glass-ceramics are subjected to the first chemical strengthening treatment: the molten salt used for the first chemical treatment includes NaNO 3 and KNO 3 , the mass fraction of NaNO 3 is 80%, and the strengthening temperature is 430 °C, strengthening time is 2h;
  • the molten salt used for the second chemical strengthening treatment includes KNO 3 and NaNO 3 , where , the mass fraction of KNO 3 is 95%, the mass fraction of NaNO 3 is 5%, the strengthening temperature is 450°C, and the strengthening time is 0.2h;
  • the prepared chemically strengthened crystallized glass is sequentially cleaned, printed with ink, cleaned, and evaporated with an anti-fingerprint coating to obtain a 3D glass cover.
  • the preparation methods of 3D glass cover include:
  • the glass matrix is prepared by melt casting method.
  • the composition of the glass matrix includes: the mass fraction of SiO 2 and The sum of the mass fractions of Al 2 O 3 is 75%; the mass fraction of Li 2 O is 8%; the sum of the mass fractions of Na 2 O and K 2 O is 1%; the mass fraction of P 2 O 5 is The sum of the mass fractions of ZrO 2 is 10%;
  • the prepared glass matrix is subjected to two-step heat treatment to obtain crystallized glass: the first step of heat treatment is at a temperature of 540°C and a treatment time of 2 hours; in the second step, the temperature of the heat treatment is 750°C to 900°C and the treatment time is 5 hours; after testing It is obtained that the main crystal phase of the glass-ceramic is lithium disilicate, the ratio of the mass fraction of the main crystal phase to the mass fraction of the sub-crystal phase is 15, and the average particle size of the crystal phase is 35 nm;
  • the prepared glass-ceramics are cut/grinded/polished into original glass sheets, and then hot-bent into 3D shapes using 3D graphite molds.
  • the maximum hot-bending temperature is 650°C, and the hot-bending compressive stress is 0.9MPa.
  • Stationary hot bending time is 30 seconds; before and after hot bending, the increase in mass fraction of crystallization of glass-ceramics shall not be greater than 5%;
  • the molten salt used for chemical treatment includes NaNO 3 , KNO 3 and LiNO 3 , among which the mass fraction of NaNO 3 is 30%. , the mass fraction of KNO 3 is 67%, the mass fraction of LiNO 3 is 3%, the strengthening temperature is 370°C, and the strengthening time is 5h;
  • the preparation methods of 3D glass cover include:
  • the glass matrix is prepared by melt casting method.
  • the composition of the glass matrix includes: the sum of the mass fraction of SiO 2 and the mass fraction of Al 2 O 3 is 49%; the mass fraction of Li 2 O is 17%; Na 2 O The sum of the mass fraction of P 2 O 5 and the mass fraction of K 2 O is 4%; the sum of the mass fraction of P 2 O 5 and the mass fraction of ZrO 2 is 10%;
  • the prepared glass matrix is subjected to two-step heat treatment to obtain crystallized glass: the first step of heat treatment is at a temperature of 490°C and a treatment time of 4 hours, and the second step of heat treatment is at a temperature of 640°C and for a treatment time of 4 hours; it is measured that the micron
  • the main crystalline phase of crystalline glass is lithium disilicate, the ratio of the mass fraction of the main crystalline phase to the mass fraction of the subcrystalline phase is 2, and the average particle size of the crystalline phase is 32nm;
  • the prepared glass-ceramics are cut/grinded/polished into original glass sheets, and then hot-bent into 3D shapes using 3D graphite molds.
  • the maximum hot-bending temperature is 690°C, and the hot-bending compressive stress is 0.4MPa.
  • Standing hot bending time is 30s;
  • the molten salt used for chemical treatment includes NaNO 3 , KNO 3 and LiNO 3 , among which the mass fraction of NaNO 3 is 30%. , the mass fraction of KNO 3 is 67%, the mass fraction of LiNO 3 is 3%, the strengthening temperature is 380°C, and the strengthening time is 10h;
  • the thickness of the glass cover in Example 1 is 0.4mm
  • the depth of the compressive stress layer DOC is 100 ⁇ m
  • the integrated area S of the stress curve L in the x ⁇ [50 ⁇ m, DOC] interval is 270MPa* ⁇ m.
  • 36000t 2 -21600t+3150 270MPa* ⁇ m, it satisfies that S is greater than or equal to 36000t 2 -21600t+3150, that is, it satisfies S ⁇ 36000t 2 -21600t+3150.
  • the glass cover in this embodiment showed excellent anti-drop performance in the drop test. Specifically, the average drop height on the 180#SiC sandpaper surface was 1.9m, and the average drop height on the 80#SiC sandpaper surface was 1.5m.
  • the drop test method of the glass cover in this application is: attach the glass cover to a sample of electronic equipment such as a mobile phone, drop it from a high place, and record the height at which the glass cover breaks. This height value can be Reflects the strength of the glass cover.
  • the glass cover also has excellent optical properties, specifically as follows: 550nm light transmittance of 91.5%, color difference
  • the glass cover has excellent mechanical properties, specifically as follows: Young's modulus is 106GPa, pressure layer depth DOC is 100 ⁇ m, central tensile stress CT is 125MPa, and chemically strengthened microcrystals are extruded on a 10mm diameter round-head metal pressure rod. When the glass is broken, the average size of the longest side of the fragments is 9mm.
  • the thickness of the glass cover plate in Example 2 is 0.62mm, the depth of the compressive stress layer DOC is 141 ⁇ m, and the integrated area S of the stress curve L in the x ⁇ [50 ⁇ m, DOC] interval is 11004MPa* ⁇ m.
  • 36000t 2 -21600t+3150 3596.4MPa* ⁇ m, which satisfies S greater than or equal to 36000t 2 -21600t+3150, that is, it satisfies S ⁇ 36000t 2 -21600t+3150.
  • the glass cover in this embodiment showed excellent anti-drop performance in the drop test. Specifically, the average drop height on the 180#SiC sandpaper surface was 2.5m, and the average drop height on the 80#SiC sandpaper surface was 2.2m.
  • the glass cover also has excellent optical properties, specifically as follows: 550nm light transmittance is 91.3%, color difference
  • the glass cover has excellent mechanical properties, specifically as follows: Young's modulus is 95GPa, pressure layer depth DOC is 141 ⁇ m, central tensile stress CT is 115MPa, and chemically strengthened microcrystals are extruded on a 10mm diameter round-head metal pressure rod. When the glass is broken, the average size of the longest side of the fragments is 5mm.
  • the glass cover in this embodiment showed excellent anti-drop performance in the drop test. Specifically, the average drop height on the 180#SiC sandpaper surface was 2.1m, and the average drop height on the 80#SiC sandpaper surface was 1.8m.
  • the glass cover also has excellent optical properties, specifically as follows: 550nm light transmittance of 90%, color difference
  • the glass cover has excellent mechanical properties, specifically as follows: Young's modulus is 115GPa, pressure layer depth DOC is 102 ⁇ m, central tensile stress CT is 70MPa, and chemically strengthened microcrystals are extruded on a 10mm diameter round-head metal pressure rod. When the glass is broken, the average size of the longest side of the fragments is 11mm.
  • the anti-drop performance of the glass cover in this embodiment is not ideal in the drop test. Specifically, the average drop height on the 180#SiC sandpaper surface is only 1.4m, and the average drop height on the 80#SiC sandpaper surface is only 1m.
  • the thickness of the glass cover in Comparative Example 2 is 0.4mm
  • the depth of the compressive stress layer DOC is 68 ⁇ m
  • the integrated area S of the stress curve L in the x ⁇ [50 ⁇ m, DOC] interval is 32MPa* ⁇ m
  • the drop resistance and optical performance of the glass cover in this embodiment are not ideal in the drop test. Specifically, the average drop height on the 180#SiC sandpaper surface is only 1.5m, and the average drop height on the 80#SiC sandpaper surface is only 1.5m.
  • the transmittance of 1m, 550nm light is 89.8%, the
  • the integrated area S of the stress curve L within the range of x ⁇ [50 ⁇ m, DOC] is greater than or equal to 36000t 2 -21600t+3150MPa* ⁇ m, which can improve the rough drop resistance of chemically strengthened glass-ceramics, thereby improving the glass cover and the drop resistance of electronic devices including the glass cover.
  • Table 2 shows the comparison of the cleaning resistance of the glass-ceramics prepared in Example 1 and Comparative Example 2 before hot bending. than the result.
  • value indicates that cleaning has little impact on surface quality and the glass is more resistant to cleaning.
  • value of the glass-ceramics prepared in Comparative Example 2 based on the composition and heat treatment process of its glass matrix changed to 0.18 after the first cleaning.
  • The value of
  • changes to 0.45.
  • changes to 0.61.
  • value of the glass-ceramics changed significantly. It can be seen from this that the crystallized glass in Comparative Example 2 has poor cleaning resistance.
  • the crystallized glass prepared in Example 1 based on the composition of the glass matrix and the heat treatment process, after the first cleaning, the
  • the glass cover of the electronic device (such as a light-transmitting cover, a back cover, etc.) to the above-mentioned chemically strengthened crystallized glass, the compressive stress bearing value of the glass cover can be improved, and the electronic device can be significantly improved.
  • the electronic device when the above-mentioned chemically strengthened glass-ceramic is applied as a light-transmitting cover or back cover of an electronic device, the electronic device exhibits excellent anti-drop performance in a drop test. It has been measured that the average drop height of electronic equipment on the surface of 80#SiC sandpaper is not less than 1.5m, and the average drop height of electronic equipment on the surface of 180#SiC sandpaper is not less than 1.9m.
  • the drop test method for electronic equipment is as follows: drop the electronic equipment from a high place by free fall, record the drop height when the glass cover is broken, and calculate the average drop height of the electronic equipment through multiple drop tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种电子设备、玻璃盖板和化学强化微晶玻璃,其中,电子设备包括玻璃盖板,玻璃盖板包括化学强化微晶玻璃,化学强化微晶玻璃包括相对的第一表面和第二表面,化学强化微晶玻璃具有应力曲线,应力曲线为以化学强化微晶玻璃内部任一点与第一表面或第二表面的距离为横坐标、以该点处的应力强度为纵坐标绘制的曲线L,该曲线L与直线x=50μm、y=0所围成的积分面积S的数值大于等于36000t 2-21600t+3150计算得到的数值,t为所述化学强化微晶玻璃的厚度,单位为mm,S的单位是 MPa*μm。化学强化微晶玻璃具有提升的抗粗糙跌落性能,玻璃盖板和包括该玻璃盖板的电子设备具有提升的抗跌落性能。

Description

电子设备、玻璃盖板和化学强化微晶玻璃
本申请要求于2022年07月22日提交国家知识产权局、申请号为202210872140.2、发明名称为“电子设备、玻璃盖板和化学强化微晶玻璃”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种电子设备、玻璃盖板和化学强化微晶玻璃。
背景技术
随着智能手机、平板电脑等电子设备的普及,显示屏的大尺寸化及电子设备的超薄化的设计需求日益突出,对用于保护显示屏的玻璃盖板的机械性能提出了更高的要求。如何提高玻璃盖板的机械性能,进而提高电子设备的抗跌落性能,是目前亟待解决的技术问题。
发明内容
本申请实施例提供一种电子设备、玻璃盖板和化学强化微晶玻璃,用于提高电子设备的抗跌落性能。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供一种电子设备,包括玻璃盖板,玻璃盖板包括化学强化微晶玻璃,化学强化微晶玻璃包括相对的第一表面和第二表面,化学强化微晶玻璃具有应力曲线,应力曲线为以化学强化微晶玻璃内部任一点与第一表面或第二表面的距离为横坐标、以该点处的应力强度为纵坐标绘制的曲线,直线x=50μm、y=0与应力曲线所围成的面积大于或等于36000t2-21600t+3150MPa*μm,其中,t为化学强化微晶玻璃的厚度,单位为mm。
也即是,应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S大于或等于36000t2-21600t+3150MPa*μm,即,S≥36000t2-21600t+3150MPa*μm。其中,DOC为化学强化微晶玻璃的压应力层深度,压应力层深度是指应力强度为0处的深度。
由于应力曲线L与直线y=0、直线x=50μm围成的面积S越大,深度为50μm与压应层力深度区间范围内的应力强度值越大,化学强化微晶玻璃的抗粗糙跌落效果越好,能够承受的跌落地面越粗糙。由此,本申请实施例中的电子设备,通过使化学强化微晶玻璃的应力曲线L与直线y=0、直线x=50μm围成的面积S大于或等于36000t2-21600t+3150MPa*μm,也即是化学强化微晶玻璃的应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S大于或等于36000t2-21600t+3150MPa*μm,能提升化学强化微晶玻璃的抗粗糙跌落性能,进而能提升玻璃盖板和包括该玻璃盖板的电子设备的抗跌落性能。
在第一方面的一种可能的实现方式中,化学强化微晶玻璃的压应力层深度大于或等于0.18t且小于或等于0.25t。也即是0.18t≤压应力层深度≤0.25t。这样一来,可以保证化学强化微晶玻璃具有较深的压应力层深度,使得压应力层形成在化学强化微晶玻璃的更深的部分,有利于提高化学强化微晶玻璃的抗硬物刺穿强度,避免电子设备跌 落至粗糙地面时、与粗糙地面上的突起物发生碰撞而发生破裂。
在第一方面的一种可能的实现方式中,化学强化微晶玻璃的中心张应力大于或等于70Mpa,且化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。本申请实施例中的化学强化微晶玻璃,能在中心张应力CT大于或等于70Mpa时,保证化学强化微晶玻璃内部张力适当,避免了自爆的风险,安全性能高且抗粗糙地面的跌落能力强。
在第一方面的一种可能的实现方式中,化学强化微晶玻璃的中心张应力大于或等于90Mpa,且化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。本申请实施例中的化学强化微晶玻璃,能在中心张应力CT大于或等于90Mpa时,保证化学强化微晶玻璃内部张力适当,避免了自爆的风险,安全性能高且抗粗糙地面的跌落能力强。
在第一方面的一种可能的实现方式中,化学强化微晶玻璃的中心张应力大于或等于100兆帕,且化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。本申请实施例中的化学强化微晶玻璃,能在中心张应力CT大于或等于100Mpa时,保证化学强化微晶玻璃内部张力适当,避免了自爆的风险,安全性能高且抗粗糙地面的跌落能力强。
在第一方面的一种可能的实现方式中,用于形成化学强化微晶玻璃的微晶玻璃包括主晶相和次晶相,主晶相为微晶玻璃中含量最高的晶相,微晶玻璃中除主晶相之外的其余晶相为次晶相,主晶相的质量分数与次晶相的质量分数的比值大于或等于5。示例性的,主晶相的质量分数与次晶相的质量分数的比值等于5、6、7、8、9、10、11、12、13、14。
这样,通过将主晶相的质量分数与次晶相的质量分数的比值控制为大于或等于5,可以提高主晶相的纯度,减少不同晶相之间散射的次数,从而能够提高微晶玻璃的透过率,减小微晶玻璃的雾度,提高微晶玻璃的光学性能,进而有利于提高化学强化微晶玻璃的光学性能。
在第一方面的一种可能的实现方式中,次晶相的质量分数小于或等于10%。示例性的,次晶相的质量分数可以为10%、9.5%、9%、8.5%、8%、7.5%、7%、6.5%、6%、5.5%、5%、4.5%、4%、3.5%、3%、2.5%、2%、1.5%、1%等。这样,能进一步保证主晶相的纯度,提高微晶玻璃和化学强化微晶玻璃的光学性能。
在第一方面的一种可能的实现方式中,主晶相为二硅酸锂。一方面,在微晶玻璃内部,二硅酸锂晶相为无规则无取向的微观结构,机械性能好,能提高微晶玻璃的硬度和杨氏模量,进而能够阻止微晶玻璃表面或内部微裂纹的进一步扩展或使微裂纹折向而不易扩散,从而能大大改善微晶玻璃的强度和力学性能。这样一来,二硅酸锂晶相能够为微晶玻璃提供较高的机械强度和断裂韧度,且可以降低微晶玻璃对锂离子的敏感度,提高微晶玻璃的耐酸碱清洗能力,降低微晶玻璃在后续化学强化过程中的加工难度,使得微晶玻璃可以进行离子交换获得额外的机械强度,进而能提升化学强化微晶玻璃的机械强度。另一方面,二硅酸锂晶相的折射率与玻璃折射率接近,能减小微晶玻璃的折射次数,提高微晶玻璃的透过率,降低微晶玻璃的雾度,进而能进一步提高微晶玻璃的光学性能,进而能提升化学强化微晶玻璃的光学性能。
在第一方面的一种可能的实现方式中,次晶相包括透锂长石、偏硅酸锂及锆盐、磷酸盐晶体中的至少一种。
在第一方面的一种可能的实现方式中,主晶相为二硅酸锂且次晶相包括透锂长石、偏硅酸锂及锆盐、磷酸盐晶体中的至少一种。
在第一方面的一种可能的实现方式中,微晶玻璃的晶相平均粒径小于或等于80nm。示例性的,微晶玻璃的晶相平均粒径尺寸小于或等于60nm。或者微晶玻璃的晶相平均粒径尺寸小于或等于40nm。或者微晶玻璃的晶相平均粒径尺寸小于或等于30nm。上述微晶玻璃的晶相平均粒径较小,能保证微晶玻璃的平均透过率较高,且雾度较小,使得微晶玻璃具备优异的光学性能,进而能保证化学强化微晶玻璃的光学性能。
在第一方面的一种可能的实现方式中,微晶玻璃的晶相平均粒径大于或等于10nm。晶相的平均粒径过小,影响微晶玻璃的抗跌落性能。由此,通过将微晶玻璃的晶相平均粒径尺寸控制在不小于10nm,能兼顾微晶玻璃的光学性能和抗跌落性能。
在第一方面的一种可能的实现方式中,微晶玻璃在550nm波长的透过率不低于90%。
在第一方面的一种可能的实现方式中,微晶玻璃的杨氏模量大于或等于95GPa。这样,可以提高微晶玻璃的刚性和抗冲击性能,有利于减小玻璃盖板的变形,使得屏幕能获得更好的保护。另外,本申请实施例中的微晶玻璃基于较高的杨氏模量,使得微晶玻璃具备较高的压应力承载值及强大的玻璃安全特性,能够用于承载更高的化学强化应力,进而能进一步提升化学强化微晶玻璃的抗跌性能的同时,降低化学强化微晶玻璃的加工难度。
在第一方面的一种可能的实现方式中,微晶玻璃可以采用如下高温离子交换工艺处理得到化学强化微晶玻璃:
S10:将微晶玻璃在第一熔融盐中进行第一次强化处理,第一熔融盐中包括NaNO3,且NaNO3的质量分数大于或等于30%,第一次强化处理的时间为1.5h~10h,第一次强化处理的温度为380℃~450℃。
S20:将经过第一次强化处理的微晶玻璃在第二熔融盐中进行第二次强化处理,第二熔融盐中包括KNO3,且KNO3的质量分数大于或等于80%,第二次强化处理的时间为0.2h~6h,第二次强化处理的温度为380℃~450℃。
这样,经上述高温离子交换工艺处理后,可以得到化学强化微晶玻璃,且由于本申请实施例中,用于形成化学强化微晶玻璃的微晶玻璃,对锂离子的浓度敏感度低,无需严格控制第一熔融盐和第二熔融盐中LiNO3的质量分数,使得第一熔融盐和第二熔融盐对LiNO3的兼容性高。具体的,第一熔融盐和第二熔融盐中Li NO3的质量分数可以大于等于0且小于或等于3%,这样可以在获得满足上述应力曲线要求的化学强化微晶玻璃的前提下,降低化学强化微晶玻璃的加工难度,延长第一熔融盐和第二熔融盐的使用寿命,降低加工成本。
在第一方面的一种可能的实现方式中,微晶玻璃由玻璃基体加工而成,玻璃基体化学组成包括:SiO2、Al2O3、Li2O、Na2O、K2O、P2O5和ZrO2,SiO2的质量分数与Al2O3的质量分数之和大于或等于65%且小于或等于80%,Li2O的质量分数大于或等于8%且小于或等于15%,Na2O的质量分数与K2O的质量分数之和大于0且 小于或等于10%,P2O5的质量分数与ZrO2的质量分数之和大于或等于5%且小于或等于15%。基于上述配方,有利于制备具有上述主晶相种类、主晶相纯度以及晶相的平均粒径的微晶玻璃,使得微晶玻璃具有优异的机械性能和光学性能,进而能在获得满足上述应力曲线要求的化学强化微晶玻璃的前提下,降低化学强化微晶玻璃的加工难度和加工成本。
在第一方面的一种可能的实现方式中,微晶玻璃由玻璃基体经过第一步热处理和第二步热处理制得,第一步热处理的温度为500℃~550℃,处理时间为1h~8h,第二步热处理的温度为600℃~900℃,处理时间1h~8h。基于上述配方和热处理工艺,可以制备具有上述主晶相种类、主晶相纯度以及晶相的平均粒径的微晶玻璃,使得微晶玻璃具有优异的机械性能和光学性能,进而能在获得满足上述应力曲线要求的化学强化微晶玻璃的前提下,降低化学强化微晶玻璃的加工难度和加工成本。
在第一方面的一种可能的实现方式中,微晶玻璃热弯前后,微晶玻璃的平均晶粒尺寸变化量小于或等于5%,和/或雾度小于或等于0.2%,和/或微晶玻璃热弯后色坐标|b|值小于或等于0.6。
在第一方面的一种可能的实现方式中,电子设备还包括中框和显示屏,显示屏设在中框的一侧,玻璃盖板与显示屏层叠设置,且玻璃盖板位于显示屏的背离中框的一侧。该实施例中,玻璃盖板用于电子设备的透光盖板。
在第一方面的一种可能的实现方式中,电子设备还包括中框和显示屏,显示屏和玻璃盖板分别设在中框的相对两侧。该实施例中,玻璃盖板用于电子设备的背盖。
在第一方面的一种可能的实现方式中,玻璃盖板为3D玻璃盖板。
第二方面,本申请实施例提供一种玻璃盖板,包括化学强化微晶玻璃,化学强化微晶玻璃包括相对的第一表面和第二表面,化学强化微晶玻璃具有应力曲线,应力曲线为以化学强化微晶玻璃内部任一点与第一表面或第二表面的距离为横坐标、以该点处的应力强度为纵坐标绘制的曲线,直线x=50μm、y=0与应力曲线所围成的面积大于或等于36000t2-21600t+3150MPa*μm,其中,t为化学强化微晶玻璃的厚度,单位为mm。
在第二方面的一种可能的实现方式中,化学强化微晶玻璃的压应力层深度大于或等于0.18t且小于或等于0.25t。也即是0.18t≤压应力层深度≤0.25t。
在第二方面的一种可能的实现方式中,化学强化微晶玻璃的中心张应力大于或等于70兆帕,且化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。
在第二方面的一种可能的实现方式中,用于形成化学强化微晶玻璃的微晶玻璃包括主晶相和次晶相,主晶相为微晶玻璃中含量最高的晶相,微晶玻璃中除主晶相之外的其余晶相为次晶相,主晶相的质量分数与次晶相的质量分数的比值大于或等于5。
在第二方面的一种可能的实现方式中,次晶相的质量分数小于或等于10%。
在第二方面的一种可能的实现方式中,主晶相为二硅酸锂,和/或次晶相包括透锂长石、偏硅酸锂及锆盐、磷酸盐晶体中的至少一种。
在第二方面的一种可能的实现方式中,微晶玻璃在550nm波长的透过率不低于90%。
在第二方面的一种可能的实现方式中,微晶玻璃的杨氏模量大于或等于95GPa。
在第二方面的一种可能的实现方式中,微晶玻璃可以采用如下高温离子交换工艺处理得到化学强化微晶玻璃:
S10:将微晶玻璃在第一熔融盐中进行第一次强化处理,第一熔融盐中包括NaNO3,且NaNO3的质量分数大于或等于30%,第一次强化处理的时间为1.5h~10h,第一次强化处理的温度为380℃~450℃。
S20:将经过第一次强化处理的微晶玻璃在第二熔融盐中进行第二次强化处理,第二熔融盐中包括KNO3,且KNO3的质量分数大于或等于80%,第二次强化处理的时间为0.2h~6h,第二次强化处理的温度为380℃~450℃。
在第二方面的一种可能的实现方式中,微晶玻璃由玻璃基体加工而成,玻璃基体包括:SiO2、Al2O3、Li2O、Na2O、K2O、P2O5和ZrO2,SiO2的质量分数与Al2O3的质量分数之和大于或等于65%且小于或等于80%,Li2O的质量分数大于或等于8%且小于或等于15%,Na2O的质量分数与K2O的质量分数之和大于0且小于或等于10%,P2O5的质量分数与ZrO2的质量分数之和大于或等于5%且小于或等于15%。
在第二方面的一种可能的实现方式中,微晶玻璃由玻璃基体经过第一步热处理和第二步热处理制得,第一步热处理的温度为500℃~550℃,处理时间为1h~8h,第二步热处理的温度为600℃~900℃,处理时间1h~8h。
在第二方面的一种可能的实现方式中,玻璃盖板为3D玻璃盖板。
在第二方面的一种可能的实现方式中,玻璃盖板用于电子设备的透光盖板或背盖。
第三方面,本申请提出一种化学强化微晶玻璃,化学强化微晶玻璃包括相对的第一表面和第二表面,化学强化微晶玻璃具有应力曲线,应力曲线为以化学强化微晶玻璃内部任一点与第一表面或第二表面的距离为横坐标、以该点处的应力强度为纵坐标绘制的曲线,直线x=50μm、y=0与应力曲线所围成的面积大于或等于36000t2-21600t+3150MPa*μm,其中,t为化学强化微晶玻璃的厚度,单位为mm。
在第三方面的一种可能的实现方式中,化学强化微晶玻璃的中心张应力大于或等于70MPa,且化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。
其中,第二方面至第三方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请一些实施例提供的电子设备的结构示意图;
图2为图1所示电子设备在A-A线处的剖视图;
图3为本申请一些实施例提供的化学强化微晶玻璃的剖视图;
图4为本申请一些实施例提供的化学强化微晶玻璃的内部应力曲线。
附图标记:
100、电子设备;
10、屏幕;11、透光盖板;12、显示屏;13、化学强化微晶玻璃;131、第一表面;
132、第二表面;20、中框;21、边框;22、中板;30、背盖;
40、电路板;41、主电路板;42、副电路板;50、电池。
具体实施方式
在本申请实施例中,术语“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例的描述中,术语“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
在本申请实施例的描述中,术语“和/或”是指并且涵盖相关联的所列出的项目中的一个或多个项目的任何和全部可能的组合。术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。其中,“固定连接”是指彼此连接且连接后的相对位置关系不变。
在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。
在本申请实施例的描述中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
本申请实施例提供一种电子设备,该电子设备包括玻璃盖板,该玻璃盖板可以用作电子设备的透光盖板、背盖等。玻璃盖板包括化学强化微晶玻璃。也即是,玻璃盖板的至少部分由化学强化微晶玻璃加工而成。
为了提高电子设备的抗跌性能,本申请实施例提供的电子设备中,化学强化微晶玻璃的应力曲线L与直线x=50μm、y=0围成的面积大于或等于36000t2-21600t+3150MPa*μm。也即是,化学强化微晶玻璃的应力曲线L在x∈[50μm,DOC]区间范围内的积分面积大于或等于36000t2-21600t+3150MPa*μm,其中,DOC为化学强化微晶玻璃的压应力层深度,t为化学强化微晶玻璃的厚度,t的单位为mm。由于化学强化微晶玻璃的应力曲线L在x∈[50μm,DOC]区间范围内的积分面积越大,化学强化微晶玻璃的抗粗糙地面跌落效果越 好,化学强化微晶玻璃能承受的地面粗糙度越大,因此,本申请实施例中电子设备的玻璃盖板以及包括该玻璃盖板的电子设备,具备较高的压应力承载值,使得电子设备的抗粗糙地面跌落能力得到显著提升。
本申请实施例提供的电子设备包括但不限于手机、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,PDA)、个人计算机、笔记本电脑、车载设备和可穿戴设备等电子设备。本申请实施例对上述电子设备的具体形式不做特殊限制。
请参阅图1和图2,图1为本申请一些实施例提供的电子设备100的结构示意图,图2为图1所示电子设备100在A-A线处的剖视图。在本实施例中,电子设备100为平板手机。具体的,电子设备100包括屏幕10、中框20、背盖30、电路板40和电池50。由于电路板40和电池50位于电子设备100的内部不可见,故图1中的电路板40和电池50用虚线表示。
可以理解的是,图1和图2以及下文相关附图仅示意性的示出了电子设备100包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1和图2以及下文各附图限定。在其他一些实施例中,电子设备100也可以不包括屏幕10。
屏幕10用于显示图像、视频等。屏幕10可以包括透光盖板11和显示屏12。透光盖板11与显示屏12层叠设置并固定连接。透光盖板11主要用于对显示屏12起到保护以及防尘作用。透光盖板11可以为2D盖板、2.5D盖板或3D盖板。其中,2D盖板就是普通的纯平面,没有任何弧形设计。盖板上所有的点都处在同一平面上,这种盖板统称为2D盖板。2.5D盖板是中间是平面的,但边缘有一定的弧形设计,相对于2D盖板,2.5D盖板在平面盖板的基础上对边缘进行了弧度处理。3D盖板是在平面盖板的中间部位和边缘部位都采用了弧形设计。3D盖板中的曲面设计可以增加可视面积,更符合人眼视网膜的弧度,带来更好的视觉体验。
显示屏12可以采用柔性显示屏,也可以采用刚性显示屏。
中框20为电子设备100的“支撑骨架”。请参阅图2,中框20包括边框21和中板22,中板22固定于边框21的内表面一周。示例地,中板22可以通过焊接固定于边框21上,或者中板22也可以与边框21为一体成型结构。屏幕10借助透光盖板11固定连接在边框21的一侧。示例性的,透光盖板11可以通过胶粘固定连接在边框21上。
背盖30固定连接在中框20的远离屏幕10的一侧。边框21位于背盖30与透光盖板11之间。透光盖板11、背盖30与边框21围成电子设备100的内部容纳空间,该内部容纳空间将显示屏12、电路板40等容纳在内。示例性的,背盖30可以通过胶粘固定连接于边框21上。电路板40、电池50等可以通过螺纹连接、卡接、焊接等方式固定连接在中板22上。背盖30可以为2D盖板、2.5D盖板或3D盖板。
在一些实施例中,为了提高电子设备100的外观美观性,将透光盖板11和背盖30中的其中一个设置为玻璃盖板,或者,将透光盖板11和背盖30均设置为玻璃盖板。并且,随着用户对电子设备100的要求越来越高,为带给用户更好的使用体验,越来越多的手机尤其是高端定位的手机采用3D玻璃盖板(也即是曲面盖板)设计。然而,3D玻璃盖板相比2D盖板更易碎且成本更高,因此亟待设计更加耐摔的玻璃盖板。
在此基础上,为了提高电子设备100的耐摔性能,一些实施例中的玻璃盖板包括化学 强化微晶玻璃。具体而言,玻璃盖板可以整体为化学强化微晶玻璃,或者玻璃盖板也可以局部为化学强化微晶玻璃。
其中,微晶玻璃是指加有晶核剂(或不加晶核剂)的特定组成的基础玻璃,在一定温度制度下进行晶化热处理,在玻璃内均匀地析出大量的微小晶体,形成致密的微晶相和玻璃相的多相复合体。
微晶玻璃经过高温离子交换工艺(也称为化学强化处理工艺)处理后,可以得到化学强化微晶玻璃。离子交换后,微晶玻璃表面的碱金属离子被直径更大的碱金属离子所替换得到化学强化微晶玻璃。示例性的,高温离子交换工艺中,微晶玻璃中的锂离子可以被熔融盐(也称为盐浴)中的钠离子取代,微晶玻璃中的钠离子可以被盐浴中的钾离子取代。这使得离子交换前后,在化学强化微晶玻璃表面形成一个体积差,体积差在化学强化微晶玻璃表面形成一定深度的压应力层,压应力层可以消除或抑制化学强化微晶玻璃表面微裂纹的产生和扩展,从而达到提升化学强化微晶玻璃的机械性能的目的。
为了进一步提高化学强化微晶玻璃的强度,获得更高的性能,使得化学强化微晶玻璃能在不同的粗糙地面(例如大理石地面、柏油马路地面等)均具有较好的抗跌表现,请参阅图3,图3为本申请一些实施例提供的化学强化微晶玻璃13的剖视图。本实施例中的化学强化微晶玻璃13为3D形态。化学强化微晶玻璃13具有在其厚度方向上相对的第一表面131和第二表面132。请参阅图4,图4为本申请一些实施例提供的化学强化微晶玻璃的内部应力曲线。该应力曲线L为以化学强化微晶玻璃13的内部任一点与第一表面131或第二表面132的距离为横坐标、该点处的应力强度为纵坐标绘制的曲线。其中,横坐标也可记为深度,单位为mm,纵坐标的单位为MPa。该应力曲线可以采用散乱光光弹性应力仪SLP2000测得。当然,本申请并不限于此,该应力曲线也可以经其他应力测试仪测得。
为了保证化学强化微晶玻璃的抗跌落性能,请参阅图4,本申请一些实施例提供的化学强化微晶玻璃的应力曲线L与直线y=0、直线x=50μm围成的面积S大于或等于36000t2-21600t+3150MPa*μm。t为化学强化微晶玻璃的总厚度,t的单位为mm。需要说明的是,本申请实施例中化学强化微晶玻璃的厚度为第一表面与第二表面之间的距离。
也即是,应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S大于或等于36000t2-21600t+3150MPa*μm,即,S≥36000t2-21600t+3150MPa*μm。其中,DOC为化学强化微晶玻璃的压应力层深度,压应力层深度是指应力强度为0处的深度。
由于应力曲线与直线y=0、直线x=50μm围成的面积S越大,深度为50μm与压应层力深度区间范围内的应力强度值越大,化学强化微晶玻璃的抗粗糙跌落效果越好,能够承受的跌落地面越粗糙。由此,本申请实施例中的电子设备,通过使化学强化微晶玻璃的应力曲线L与直线y=0、直线x=50μm围成的面积S大于或等于36000t2-21600t+3150MPa*μm,也即是化学强化微晶玻璃的应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S大于或等于36000t2-21600t+3150MPa*μm,能提升化学强化微晶玻璃的抗粗糙跌落性能,进而能提升玻璃盖板和包括该玻璃盖板的电子设备的抗跌落性能。
在本申请的一些实施例中,化学强化微晶玻璃的压应力层深度大于或等于0.18t,且小于或等于0.25t。也即是0.18t≤压应力层深度≤0.25t。这样一来,可以保证化学强化微晶玻璃具有较深的压应力层深度,使得压应力层形成在化学强化微晶玻璃的更深的部分,有利于提高化学强化微晶玻璃的抗硬物刺穿强度,避免电子设备跌落至粗糙地面时、与粗糙地 面上的突起物发生碰撞而发生破裂。
进一步的,本申请实施例中的化学强化微晶玻璃的中心张应力CT大于或等于70Mpa,且在10mm直径圆头金属压杆挤压化学强化微晶玻璃至破碎,碎片最长边的平均尺寸大于或等于5mm。需要说明的是,本申请中所述的“碎片最长边的平均尺寸”是指化学强化微晶玻璃在10mm直径圆头金属压杆挤压至破碎,所形成的碎片的最长边尺寸的平均值。在计算时,可以将各个碎片的最长边的尺寸相加,再除以碎片的个数。也即是,碎片最长边的平均尺寸等于各个碎片的最长边的尺寸之和除以碎片的个数。
其中,中心张应力CT是指化学强化微晶玻璃在深度为二分之一t(即t/2)处的应力强度绝对值。示例性的,在图4的示例中,化学强化微晶玻璃的厚度为0.62mm,化学强化微晶玻璃在深度为0.31mm处的应力强度绝对值即为该化学强化微晶玻璃的中心张应力CT。
进一步的,化学强化微晶玻璃的中心张应力CT大于或等于90Mpa,且在10mm直径圆头金属压杆挤压化学强化微晶玻璃至破碎,碎片最长边的平均尺寸大于或等于5mm。
更进一步的,化学强化微晶玻璃的中心张应力CT大于或等于100Mpa,且在10mm直径圆头金属压杆挤压化学强化微晶玻璃至破碎,碎片最长边的平均尺寸大于或等于5mm。
微晶玻璃强化后,压应力和张应力处于互补状态,保持玻璃整体应力处于平衡。提高玻璃压应力,对应的中心张应力也会相应的提高。玻璃的本征强度取决于材质和厚度,当玻璃的中心张应力CT过高,达到玻璃本征强度承受极限,将存在自爆风险。本申请实施例中的化学强化微晶玻璃,能在中心张应力CT大于或等于70Mpa、90Mpa、100Mpa时,保证化学强化微晶玻璃内部张力适当,避免了自爆的风险,安全性能高且抗粗糙地面的跌落能力强。
本申请实施例中,化学微晶玻璃由微晶玻璃经高温离子交换工艺(也称为化学强化处理工艺)处理后获得。微晶玻璃包括主晶相和次晶相。其中,主晶相为微晶玻璃中含量最高的晶相,次晶相为除主晶相之外的其余晶相。
在上述任一实施例的基础上,为了在保证化学强化微晶玻璃的抗跌落性能的基础上,保证化学强化微晶玻璃的光学性能,降低化学强化微晶玻璃的加工难度,在一些实施例中,主晶相为二硅酸锂(Li2Si2O5)。一方面,在微晶玻璃内部,二硅酸锂晶相为无规则无取向的微观结构,机械性能好,能提高微晶玻璃的硬度和杨氏模量,进而能够阻止微晶玻璃表面或内部微裂纹的进一步扩展或使微裂纹折向而不易扩散,从而能大大改善微晶玻璃的强度和力学性能。
这样一来,二硅酸锂晶相能够为微晶玻璃提供较高的机械强度和断裂韧度,且可以降低微晶玻璃对锂离子的敏感度,提高微晶玻璃的耐酸碱清洗能力,降低微晶玻璃在后续化学强化过程中的加工难度,使得微晶玻璃可以进行离子交换获得额外的机械强度,进而能提升化学强化微晶玻璃的机械强度。另一方面,二硅酸锂晶相的折射率与玻璃折射率接近,能减小微晶玻璃的折射次数,提高微晶玻璃的透过率,降低微晶玻璃的雾度,进而能进一步提高微晶玻璃的光学性能,进而能提升化学强化微晶玻璃的光学性能。
在一些实施例中,次晶相包括含透锂长石,偏硅酸锂及锆盐、磷酸盐晶体中的一种或多种。
在上述任一实施例的基础上,主晶相的质量分数与次晶相的质量分数的比值大于或等 于5。也即是,主晶相的质量分数是次晶相的质量分数的5倍或5倍以上。主晶相的质量分数的计算公式为:主晶相的质量分数等于主晶相的质量除以微晶玻璃的质量。次晶相的质量分数的计算公式为:次晶相的质量分数等于次晶相的质量除以微晶玻璃的质量。示例性的,主晶相的质量分数与次晶相的质量分数的比值等于5、6、7、8、9、10、11、12、13、14等。
这样,通过将主晶相的质量分数与次晶相的质量分数的比值控制为大于或等于5,可以提高主晶相的纯度,减少不同晶相之间散射的次数,从而能够提高微晶玻璃的透过率,减小微晶玻璃的雾度,提高微晶玻璃的光学性能,进而有利于提高化学强化微晶玻璃的光学性能。
为了进一步保证主晶相的纯度,提高微晶玻璃和化学强化微晶玻璃的光学性能,一些实施例中,微晶玻璃中次晶相的质量分数小于或等于10%。示例性的,次晶相的质量分数可以为10%、9.5%、9%、8.5%、8%、7.5%、7%、6.5%、6%、5.5%、5%、4.5%、4%、3.5%、3%、2.5%、2%、1.5%、1%等。
在一些实施例中,微晶玻璃的晶相平均粒径尺寸(也即是平均晶粒尺寸)小于或等于80nm。示例性的,微晶玻璃的晶相平均粒径尺寸小于或等于60nm。或者微晶玻璃的晶相平均粒径尺寸小于或等于40nm。或者微晶玻璃的晶相平均粒径尺寸小于或等于30nm。上述微晶玻璃的晶相平均粒径较小,能保证微晶玻璃的平均透过率较高,且雾度较小,使得微晶玻璃具备优异的光学性能,进而能保证化学强化微晶玻璃的光学性能。
晶相平均粒径尺寸为晶相粒径尺寸的平均值。晶相平均粒径尺寸可以利用SEM扫描电镜、X射线仪(XRD)进行测定。
在此基础上,微晶玻璃的晶相平均粒径尺寸大于或等于10nm。示例性的,微晶玻璃的晶相平均粒径尺寸为10nm~80nm,或者10nm~70nm,或者10nm~60nm,或者10nm~30nm。晶相的平均粒径过小,影响微晶玻璃的抗跌落性能。由此,通过将微晶玻璃的晶相平均粒径尺寸控制在不小于10nm,能兼顾微晶玻璃的光学性能和抗跌落性能。
本申请实施例中,通过对微晶玻璃中主晶相的种类、主晶相的纯度以及晶相的平均粒径进行控制,可以使微晶玻璃具有优异的光学性能和抗跌落性能,并能降低化学强化微晶玻璃的加工难度。
具体的,经测得,在小于1.3mm的厚度下,微晶玻璃在550nm波长的透过率不低于90%。
一些实施例中,微晶玻璃的杨氏模量大于或等于95GPa。优选的,微晶玻璃的杨氏模量大于或等于100GPa。更优选的,微晶玻璃的杨氏模量大于或等于110GPa。这样,可以提高微晶玻璃的刚性和抗冲击性能,有利于减小玻璃盖板的变形,使得屏幕能获得更好的保护。另外,本申请实施例中的微晶玻璃基于较高的杨氏模量,使得微晶玻璃具备较高的压应力承载值及强大的玻璃安全特性,能够用于承载更高的化学强化应力,进而能进一步提升化学强化微晶玻璃的抗跌性能的同时,降低化学强化微晶玻璃的加工难度。
具体的,本申请实施例中的微晶玻璃可以采用如下高温离子交换工艺(也即是化学强化处理工艺)处理得到化学强化微晶玻璃:
S10:将微晶玻璃在第一熔融盐中进行第一次强化处理,第一熔融盐中包括NaNO3,且NaNO3的质量分数大于或等于30%,示例性的,NaNO3的质量分数为30%、33%、35%、 40%、45%、50%、55%、60%等。
一些实施例中,第一次强化处理的时间为1.5h~10h,第一次强化处理的温度为380℃~450℃。示例性的,第一次强化处理的时间为1.5h、2h、2.5h、3h、3.5h、4h、4.5h、5h、5.5h、6h、6.5h、7h、7.5h、8h、8.5h、9h、9.5h、10h等。第一次强化处理的温度为380℃、390℃、400℃、410℃、420℃、430℃、440℃、450℃等。
S20:将经过第一次强化处理的微晶玻璃在第二熔融盐中进行第二次强化处理,第二熔融盐中包括KNO3,且KNO3的质量分数大于或等于80%,示例性的,KNO3的质量分数为80%、85%、88%、90%、92%、93%、95%等。
一些实施例中,第二次强化处理的时间为0.2h~6h,第二次强化处理的温度为380℃~450℃。示例性的,第二次强化处理的时间为0.2h、0.3h、0.5h、0.8h、1h、1.5h、2h、2.5h、3h、3.5h、4h、4.5h、5h、5.5h、6h等。第二次强化处理的温度为380℃、390℃、400℃、410℃、420℃、430℃、440℃、450℃等。
这样,经上述高温离子交换工艺处理后,可以得到化学强化微晶玻璃,且由于本申请实施例中,用于形成化学强化微晶玻璃的微晶玻璃,对锂离子的浓度敏感度低,无需严格控制第一熔融盐和第二熔融盐中LiNO3的质量分数,使得第一熔融盐和第二熔融盐对LiNO3的兼容性高。具体的,第一熔融盐和第二熔融盐中Li NO3的质量分数可以大于等于0且小于或等于3%,这样可以在获得满足上述应力曲线要求的化学强化微晶玻璃的前提下,降低化学强化微晶玻璃的加工难度,延长第一熔融盐和第二熔融盐的使用寿命,降低加工成本。
可以理解的是,得益于微晶玻璃自身较高的本体强度,在另一些实施例中,也可以仅对微晶玻璃进行第一次化学强化处理,而不再进行第二次化学强化处理。这样,能简化化学强化微晶玻璃的加工工序,进一步降低化学强化微晶玻璃的加工难度,从而能进一步降低化学强化微晶玻璃的加工成本。
另外,具有上述主晶相种类和主晶相纯度的微晶玻璃还具有优异的热弯性能,具有良好的曲面玻璃盖板(也即是3D玻璃盖板)加工性能,适于加工3D玻璃盖板。
具体的,本申请实施例中的微晶玻璃在670℃~780℃下进行高温热弯,热弯前后微晶玻璃的晶相平均粒径尺寸变化小于或等于5nm,结晶度的质量分数变化小于或等于5%。热弯后,微晶玻璃色坐标|b|值小于或等于0.6,雾度小于或等于0.2%。热弯过程对微晶玻璃内的晶相影响小,晶相尺寸稳定可控、光学性能稳定可控,不需要额外增加因晶相尺寸变化过大和/或光学性能变化过大而进行的补偿处理。
进一步的,上述的微晶玻璃还具有良好的耐酸碱性能。具体表现为,该微晶玻璃在质量分数为5%的HCl溶液中,在95℃下保温24h的重量损失不大于0.2mg/cm2。该微晶玻璃在质量分数为5%的NaOH溶液中,在95℃下保温6h的重量损失不大于0.2mg/cm2
良好的耐酸碱性能,使得该微晶玻璃满足3D制程中的清洗要求:采用PH为12-14的清洗溶剂,在超声清洗机或者平板清洗机下清洗≤2h;清洗前后,微晶玻璃的色坐标|b|值变化≤0.2;清洗后,在微晶玻璃表面直接蒸镀或者喷涂防指纹涂层,该指纹层的耐磨能力满足橡皮摩擦2500次后,水滴角>100°。这样,相对于采用二强玻璃加工3D玻璃盖板的工序,本申请实施例中,采用上述微晶玻璃加工3D玻璃盖板无需增加新的工序,加工方法简单,有利于降低加工成本。
在一些实施例中,采用该微晶玻璃加工3D玻璃盖板的加工工序与采用二强玻璃加工3D玻璃盖板的加工工序相同。具体的,采用该微晶玻璃加工3D玻璃盖板的加工工序为:CNC→清洗→3D热弯→抛光→清洗→化学强化→清洗→印刷油墨→清洗→蒸镀或者喷涂防指纹层。
为了形成具有上述主晶相种类和主晶相纯度的微晶玻璃,用于形成微晶玻璃的玻璃基体化学组成包括SiO2、Al2O3、Li2O、Na2O、K2O、P2O5和ZrO2。其中,SiO2的质量分数与Al2O3的质量分数之和大于或等于65%且小于或等于80%,Li2O的质量分数大于或等于8%且小于或等于15%,Na2O的质量分数与K2O的质量分数之和大于0且小于或等于10%,P2O5的质量分数与ZrO2的质量分数之和大于或等于5%且小于或等于15%。玻璃基体中各组分的质量分数的计算公式为:各组分的质量除以玻璃基体的总质量。
示例性的,在一些实施例中,SiO2的质量分数与Al2O3的质量分数之和为65%、68%、70%、72%、75%、78%、80%。Li2O的质量分数为8%、9%、10%、11%、12%、12%、14%、15%。Na2O的质量分数与K2O的质量分数之和为0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%。P2O5的质量分数与ZrO2的质量分数之和为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%。
SiO2是构成玻璃骨架的成分,其作为玻璃网络结构的主体,赋予了基础玻璃及微晶玻璃较佳的化学稳定性、机械性能和成型性能。在玻璃微晶化过程中,为形成晶相提供SiO2来源。
Al2O3也可稳定玻璃网络结构,且还提供改善的机械性能和化学耐久性。由于Al2O3的体积比硅氧四面体的体积大,通过添加Al2O3,能够在玻璃结构中能够产生更大的缝隙,有利于离子交换,使得化学强化效果更好,提高玻璃的机械性能。
Li2O属于网络外体氧化物,有助于降低玻璃的粘度,促使玻璃的熔化和澄清,有助于晶化过程中形成二硅酸锂晶相。Li2O除了用于形成硅酸锂类的晶体增强玻璃本体强度外,还能够在化学强化过程中与Na交换,形成深层压应力,助于引入Na/Li交换层形成压应力,有利于提高玻璃的抗硬物刺穿强度。
Na2O和K2O能显著降低基础玻璃的粘度,促使基础玻璃的熔化和澄清,同时降低玻璃晶化温度,促使晶化玻璃能够与硝酸钾熔盐中K离子进行强化,有利于增强基础玻璃和微晶玻璃的化学强化能力。
P2O5和ZrO2为成核剂。P2O5可促进晶体的形成,提高微晶玻璃的结晶度,增加微晶玻璃的硬度和强度。ZrO2可增大玻璃的网络结构,有利于微晶玻璃的化学强化,增加微晶玻璃制品的离子交换层深度,提高微晶玻璃制品的落球试验高度。ZrO2与P2O5相互配合可细化晶粒,降低微晶玻璃和微晶玻璃制品的雾度。
具体的,玻璃基体可以采用熔融浇筑法制得。玻璃基体经过热处理后可以得到微晶玻璃。一些实施例中,玻璃基体通过如下两步热处理获得具有上述主晶相种类和主晶相纯度的微晶玻璃:
第一步热处理的温度为500℃~550℃,处理时间为1h~8h。一些实施例中,第一步热处理的温度为500℃、510℃、520℃、530℃、540℃、540℃等,处理时间为1h、2h、3h、4h、5h、6h、7h、8h等。
第二步热处理的温度为600℃~900℃,处理时间1h~8h。一些实施例中,第二步热处 理的温度为600℃、640℃、650℃、700℃、750℃、800℃、850℃、900℃等,处理时间为1h、2h、3h、4h、5h、6h、7h、8h等。
基于上述配方和热处理工艺,可以制备具有上述主晶相种类、主晶相纯度以及晶相的平均粒径的微晶玻璃,使得微晶玻璃具有优异的机械性能和光学性能,进而能在获得满足上述应力曲线要求的化学强化微晶玻璃的前提下,降低化学强化微晶玻璃的加工难度和加工成本。
以下结合具体实施例对包括上述化学强化微晶玻璃的3D玻璃盖板的制备方法进行详细描述。
实施例1
3D玻璃盖板的制备方法包括:
(1)采用熔融浇筑法制备玻璃基体,玻璃基体的成分组成包括:SiO2的质量分数与Al2O3的质量分数之和为65%;Li2O的质量分数为1%;Na2O的质量分数与K2O的质量分数之和为10%;P2O5的质量分数与ZrO2的质量分数之和为10%;
(2)将制备的玻璃基体通过两步热处理获得微晶玻璃:第一步热处理的温度为540℃,处理时间2h,第二步热处理的温度为750℃~900℃,处理时间5h;经测得,微晶玻璃的主晶相为二硅酸锂,主晶相的质量分数与次晶相的质量分数的比值为15,晶相的平均粒径尺寸为35nm;
(3)将制备的微晶玻璃,经切割/研磨/抛光成玻璃原片,再采用3D石墨模具热弯成3D造型,其中最高热弯温度为650℃,热弯压应力为0.9MPa,单站热弯时间30s;热弯前后,微晶玻璃结晶度的质量分数增加量不大于5%;
(4)将热弯处理得到的3D微晶玻璃采用3D抛光毛刷抛光其凹凸面;
(5)将抛光处理后的3D微晶玻璃进行化学强化处理得到化学强化微晶玻璃:用于化学强化处理的熔融盐包括NaNO3、KNO3和LiNO3,其中,NaNO3的质量分数为30%,KNO3的质量分数为67%,LiNO3的质量分数为3%,强化温度为380℃,强化时间为10h;
(6)将化学强化微晶玻璃,依次进行清洗、印刷油墨、清洗、蒸镀防指纹涂层处理后,得到3D玻璃盖板。
化学强化微晶玻璃清洗前后色差|b|值变化0.12,成品经2500次橡皮摩擦后,水滴角为108°,满足应用需求。该3D玻璃盖板的其它性能见表1。
实施例2
3D玻璃盖板的制备方法包括:
(1)采用熔融浇筑法制备玻璃基体,玻璃基体的成分组成包括:SiO2的质量分数与Al2O3的质量分数之和为80%;Li2O的质量分数为14%;Na2O的质量分数与K2O的质量分数之和为1%;P2O5的质量分数与ZrO2的质量分数之和为5%;
(2)将制备的玻璃基体通过两步热处理获得微晶玻璃:第一步热处理的温度为500℃,处理时间4h,第二步热处理的温度为640℃,处理时间5h;经测得,微晶玻璃的主晶相为二硅酸锂,主晶相的质量分数与次晶相的质量分数的比值为12,晶相的平均粒径尺寸为53nm;
(3)将制备的微晶玻璃,经切割/研磨/抛光成玻璃原片,再采用3D石墨模具热弯成3D造型,其中最高热弯温度为720℃,热弯压应力为0.5MPa,单站热弯时间90s;热弯前 后,微晶玻璃结晶度的质量分数增加量不大于3%;
(4)将热弯处理得到的3D微晶玻璃采用3D抛光毛刷抛光其凹凸面;
(5)将抛光处理后的3D微晶玻璃进行第一次化学强化处理:用于第一次化学强化处理的熔融盐为纯NaNO3,也即是,NaNO3的质量分数为100%,强化温度为450℃,强化时间为0.5h;
(6)将第一次化学强化处理后的3D微晶玻璃进行第二次化学强化处理得到化学强化微晶玻璃:用于第二次化学强化处理的熔融盐包括KNO3、NaNO3和LiNO3,其中,KNO3的质量分数为80%,NaNO3的质量分数为19.5%,LiNO3的质量分数为0.5%,强化温度为380℃,强化时间为6h;
(7)将制备的化学强化微晶玻璃,依次进行清洗、印刷油墨、清洗、蒸镀防指纹涂层处理后,得到3D玻璃盖板。
化学强化微晶玻璃清洗前后色差|b||b|值变化0.12,成品经2500次橡皮摩擦后,水滴角为118°,满足应用需求。该3D玻璃盖板的其它性能见表1。
实施例3
3D玻璃盖板的制备方法包括:
(1)采用熔融浇筑法制备玻璃基体,玻璃基体的成分组成包括:SiO2的质量分数与Al2O3的质量分数之和为75%;Li2O的质量分数为8%;Na2O的质量分数与K2O的质量分数之和为1%;P2O5的质量分数与ZrO2的质量分数之和为10%;
(2)将制备的玻璃基体通过两步热处理获得微晶玻璃:第一步热处理的温度为520℃,处理时间6h,第二步热处理的温度为760℃,处理时间2h;经测得,微晶玻璃的主晶相为二硅酸锂,主晶相的质量分数与次晶相的质量分数的比值为5,晶相的平均粒径尺寸为80nm;
(3)将制备的微晶玻璃,经切割/研磨/抛光成玻璃原片,再采用3D石墨模具热弯成3D造型,其中最高热弯温度为750℃,热弯压应力为0.1MPa,单站热弯时间120s;热弯前后,微晶玻璃结晶度的质量分数增加量不大于3%;
(4)将热弯处理得到的3D微晶玻璃采用3D抛光毛刷抛光其凹凸面;
(5)将抛光处理后的3D微晶玻璃进行第一次化学强化处理:用于第一次化学处理的熔融盐包括NaNO3和KNO3,NaNO3的质量分数为80%,强化温度为430℃,强化时间为2h;
(6)将第一次化学强化处理后的3D微晶玻璃进行第二次化学强化处理,得到化学强化微晶玻璃:用于第二次化学强化处理的熔融盐包括KNO3和NaNO3,其中,KNO3的质量分数为95%,NaNO3的质量分数为5%强化温度为450℃,强化时间为0.2h;
(7)将制备的化学强化微晶玻璃,依次进行清洗、印刷油墨、清洗、蒸镀防指纹涂层处理后,得到3D玻璃盖板。
该化学强化微晶玻璃清洗前后|b|值变化0.07,成品经2500次橡皮摩擦后,水滴角为106°,满足应用需求。该3D玻璃盖板的其它性能见表1。
对比例1
3D玻璃盖板的制备方法包括:
(1)采用熔融浇筑法制备玻璃基体,玻璃基体的成分组成包括:SiO2的质量分数与 Al2O3的质量分数之和为75%;Li2O的质量分数为8%;Na2O的质量分数与K2O的质量分数之和为1%;P2O5的质量分数与ZrO2的质量分数之和为10%;
(2)将制备的玻璃基体通过两步热处理获得微晶玻璃:第一步热处理的温度为540℃,处理时间2h,第二步热处理的温度为750℃~900℃,处理时间5h;经测得,微晶玻璃的主晶相为二硅酸锂,主晶相的质量分数与次晶相的质量分数的比值为15,晶相的平均粒径尺寸为35nm;
(3)将制备的微晶玻璃,经切割/研磨/抛光成玻璃原片,再采用3D石墨模具热弯成3D造型,其中最高热弯温度为650℃,热弯压应力为0.9MPa,单站热弯时间30s;热弯前后,微晶玻璃结晶度的质量分数增加量不大于5%;
(4)将热弯处理得到的3D微晶玻璃采用3D抛光毛刷抛光其凹凸面;
(5)将抛光处理后的3D微晶玻璃进行化学强化处理得到化学强化微晶玻璃:用于化学处理的熔融盐包括NaNO3、KNO3和LiNO3,其中,NaNO3的质量分数为30%,KNO3的质量分数为67%,LiNO3的质量分数为3%,强化温度为370℃,强化时间为5h;
(6)将化学强化微晶玻璃,依次进行清洗、印刷油墨、清洗、蒸镀防指纹涂层处理后,得到3D玻璃盖板。
该化学强化微晶玻璃清洗前后色差|b|值变化0.12,成品经2500次橡皮摩擦后,水滴角为109°,满足应用需求。该3D玻璃盖板的其它性能见表1。
对比例2
3D玻璃盖板的制备方法包括:
(1)采用熔融浇筑法制备玻璃基体,玻璃基体的成分组成包括:SiO2的质量分数与Al2O3的质量分数之和为49%;Li2O的质量分数为17%;Na2O的质量分数与K2O的质量分数之和为4%;P2O5的质量分数与ZrO2的质量分数之和为10%;
(2)将制备的玻璃基体通过两步热处理获得微晶玻璃:第一步热处理的温度为490℃,处理时间4h,第二步热处理的温度为640℃,处理时间4h;经测得,微晶玻璃的主晶相为二硅酸锂,主晶相的质量分数与次晶相的质量分数的比值为2,晶相的平均粒径尺寸为32nm;
(3)将制备的微晶玻璃,经切割/研磨/抛光成玻璃原片,再采用3D石墨模具热弯成3D造型,其中最高热弯温度为690℃,热弯压应力为0.4MPa,单站热弯时间30s;
(4)将热弯处理得到的3D微晶玻璃采用3D抛光毛刷抛光其凹凸面;
(5)将抛光处理后的3D微晶玻璃进行化学强化处理得到化学强化微晶玻璃:用于化学处理的熔融盐包括NaNO3、KNO3和LiNO3,其中,NaNO3的质量分数为30%,KNO3的质量分数为67%,LiNO3的质量分数为3%,强化温度为380℃,强化时间为10h;
(6)将化学强化微晶玻璃,依次进行清洗、印刷油墨、清洗、蒸镀防指纹涂层处理后,得到3D玻璃盖板。
该化学强化微晶玻璃清洗前后色差|b|变化0.3,成品经2500次橡皮摩擦后,水滴角为68°,不满足应用需求。该3D玻璃盖板的其它性能见表1。
表1实施例1-3以及对比例1-2中的3D玻璃盖板的性能表

由表1可知,实施例1中的玻璃盖板的厚度为0.4mm,压应力层深度DOC为100μm,应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S为270MPa*μm,36000t2-21600t+3150=270MPa*μm,满足S大于或等于36000t2-21600t+3150,也即是,满足S≥36000t2-21600t+3150。
该实施例中的玻璃盖板在跌落测试中表现出优异的抗跌落性能,具体的,在180#SiC砂纸面跌落高度均值为1.9m,80#SiC砂纸面跌落高度均值为1.5m。其中,本申请中玻璃盖板的跌落测试方法为:将玻璃盖板与手机等电子设备样品贴附在一起,由高处自由落体跌下,记录玻璃盖板破碎的高度,这一高度值可以反映玻璃盖板的强度。
该玻璃盖板还具有优异的光学性能,具体表现为:550nm光线透过率为91.5%,色差|b|值为0.4,雾度为0.08%。
该玻璃盖板具有优异的机械性能,具体表现为:杨氏模量为106GPa,压力层深度DOC为100μm,中心张应力CT为125MPa,且在10mm直径圆头金属压杆挤压化学强化微晶玻璃至破碎,碎片最长边的平均尺寸为9mm。
实施例2中的玻璃盖板的厚度为0.62mm,压应力层深度DOC为141μm,应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S为11004MPa*μm, 36000t2-21600t+3150=3596.4MPa*μm,满足S大于或等于36000t2-21600t+3150,也即是,满足S≥36000t2-21600t+3150。
该实施例中的玻璃盖板在跌落测试中表现出优异的抗跌落性能,具体的,在180#SiC砂纸面跌落高度均值为2.5m,80#SiC砂纸面跌落高度均值为2.2m。
该玻璃盖板还具有优异的光学性能,具体表现为:550nm光线透过率为91.3%,色差|b|值为0.3,雾度为0.1%,
该玻璃盖板具有优异的机械性能,具体表现为:杨氏模量为95GPa,压力层深度DOC为141μm,中心张应力CT为115MPa,且在10mm直径圆头金属压杆挤压化学强化微晶玻璃至破碎,碎片最长边的平均尺寸为5mm。
实施例3中的玻璃盖板的厚度为0.65mm,压应力层深度DOC为102μm,应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S为6350MPa*μm,36000t2-21600t+3150=4320MPa*μm,满足S大于或等于36000t2-21600t+3150,也即是,满足S≥36000t2-21600t+3150。
该实施例中的玻璃盖板在跌落测试中表现出优异的抗跌落性能,具体的,在180#SiC砂纸面跌落高度均值为2.1m,80#SiC砂纸面跌落高度均值为1.8m。
该玻璃盖板还具有优异的光学性能,具体表现为:550nm光线透过率为90%,色差|b|值为0.6,雾度为0.12%。
该玻璃盖板具有优异的机械性能,具体表现为:杨氏模量为115GPa,压力层深度DOC为102μm,中心张应力CT为70MPa,且在10mm直径圆头金属压杆挤压化学强化微晶玻璃至破碎,碎片最长边的平均尺寸为11mm。
对比例1中的玻璃盖板的厚度为0.4mm,压应力层深度DOC为75μm,应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S为35MPa*μm,36000t2-21600t+3150=270MPa*μm,不满足S大于或等于36000t2-21600t+3150,也即是,不满足S≥36000t2-21600t+3150。
该实施例中的玻璃盖板在跌落测试中的抗跌落性能不理想,具体的,在180#SiC砂纸面跌落高度均值仅为1.4m,80#SiC砂纸面跌落高度均值仅为1m。
对比例2中的玻璃盖板的厚度为0.4mm,压应力层深度DOC为68μm,应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S为32MPa*μm,36000t2-21600t+3150=270MPa*μm,不满足S大于或等于36000t2-21600t+3150,也即是,不满足S≥36000t2-21600t+3150。
该实施例中的玻璃盖板在跌落测试中的抗跌落性能和光学性能均不理想,具体的,在180#SiC砂纸面跌落高度均值仅为1.5m,80#SiC砂纸面跌落高度均值仅为1m,550nm光线的透过率为89.8%,|b|值为0.97,雾度为0.25%。
综上可知,通过使化学强化微晶玻璃的应力曲线L与直线y=0、直线x=50μm围成的面积S大于或等于36000t2-21600t+3150MPa*μm,也即是化学强化微晶玻璃的应力曲线L在x∈[50μm,DOC]区间范围内的积分面积S大于或等于36000t2-21600t+3150MPa*μm,能提升化学强化微晶玻璃的抗粗糙跌落性能,进而能提升玻璃盖板和包括该玻璃盖板的电子设备的抗跌落性能。
请参阅表2,表2为实施例1和对比例2制备的微晶玻璃在热弯加工前耐清洗能力对 比结果。
表2
清洗前后,|b|值变化小的样品,表明清洗对表面质量影响小,玻璃更耐清洗。
由表2可以看出,对比例2中基于其玻璃基体的组分和热处理工艺制备得到的微晶玻璃,第一次清洗后,|b|值变化为0.18,第二次清洗后,|b|值变化为0.32,第三次清洗后,|b|值变化为0.45,第四次清洗后,|b|值变化为0.61。第二次清洗前后、第三清洗前后以及第四次清洗前后,微晶玻璃的|b|值变化均较大。由此可知,对比例2中的微晶玻璃的耐清洗能力较差。
而实施例1中基于其玻璃基体的组分和热处理工艺制备得到的微晶玻璃,第一次清洗后,|b|值变化为0.02,第二次清洗后,|b|值变化为0.05,第三次清洗后,|b|值变化为0.12,第四次清洗后,|b|值变化为0.2。第一次清洗前后、第二次清洗前后、第三清洗前后以及第四次清洗前后,微晶玻璃|b|值变化均较小。由此可知,实施例1中的微晶玻璃的耐清洗能力较好。
本申请实施例中,通过将电子设备的玻璃盖板(例如透光盖板、背盖等)设置为上述的化学强化微晶玻璃,可以提高玻璃盖板的压应力承载值,能显著提升电子设备的抗粗糙地面跌落能力。
具体的,当上述化学强化微晶玻璃应用为电子设备的透光盖板或背盖时,电子设备在跌落测试中表现出优异的抗跌落性能。经测得,电子设备在80#SiC砂纸面跌落高度均值不小于1.5m,且电子设备在180#SiC砂纸面跌落高度均值不小于1.9m。电子设备的跌落测试方法为:将电子设备由高处自由落体跌下,记录玻璃盖板破碎的跌落高度,并通过多次跌落测试,计算获得电子设备的跌落高度均值。
这样,当电子设备跌落至粗糙度较大的地面上,电子设备的玻璃盖板也不容易损坏,能有效地提高电子设备的使用寿命,降低维修成本。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种电子设备,其特征在于,包括玻璃盖板,所述玻璃盖板包括化学强化微晶玻璃,所述化学强化微晶玻璃包括相对的第一表面和第二表面,所述化学强化微晶玻璃具有应力曲线,所述应力曲线为以所述化学强化微晶玻璃内部任一点与所述第一表面或所述第二表面的距离为横坐标、以该点处的应力强度为纵坐标绘制的曲线,直线x=50μm、y=0与所述应力曲线所围成的面积大于或等于36000t2-21600t+3150MPa*μm,其中,t为所述化学强化微晶玻璃的厚度,单位为mm。
  2. 根据权利要求1所述的电子设备,其特征在于,所述化学强化微晶玻璃的压应力层深度大于或等于0.18t且小于或等于0.25t。
  3. 根据权利要求1或2所述的电子设备,其特征在于,所述化学强化微晶玻璃的中心张应力大于或等于70MPa,且所述化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。
  4. 根据权利要求1-3中任一项所述的电子设备,其特征在于,用于形成所述化学强化微晶玻璃的微晶玻璃包括主晶相和次晶相,所述主晶相的质量分数与所述次晶相的质量分数的比值大于或等于5。
  5. 根据权利要求4所述的电子设备,其特征在于,所述次晶相的质量分数小于或等于10%。
  6. 根据权利要求4或5所述的电子设备,其特征在于,所述主晶相为二硅酸锂,和/或所述次晶相包括透锂长石、偏硅酸锂及锆盐、磷酸盐晶体中的至少一种。
  7. 根据权利要求4-6中任一项所述的电子设备,其特征在于,所述微晶玻璃的晶相平均粒径小于或等于80nm。
  8. 根据权利要求7所述的电子设备,其特征在于,所述微晶玻璃的晶相平均粒径大于或等于10nm。
  9. 根据权利要求4-8中任一项所述的电子设备,其特征在于,所述微晶玻璃的杨氏模量大于或等于95GPa。
  10. 根据权利要求4-9中任一项所述的电子设备,其特征在于,所述微晶玻璃由玻璃基体加工而成,所述玻璃基体的化学组成包括:SiO2、Al2O3、Li2O、Na2O、K2O、P2O5和ZrO2,所述SiO2的质量分数与所述Al2O3的质量分数之和大于或等于65%且小于或等于80%,所述Li2O的质量分数大于或等于8%且小于或等于15%,所述Na2O的质量分数与K2O的质量分数之和大于0且小于或等于10%,所述P2O5的质量分数与所述ZrO2的质量分数之和大于或等于5%且小于或等于15%。
  11. 根据权利要求10所述的电子设备,其特征在于,所述微晶玻璃由所述玻璃基体经过第一步热处理和第二步热处理制得,所述第一步热处理的温度为500℃~550℃,处理时间为1h~8h,所述第二步热处理的温度为600℃~900℃,处理时间1h~8h。
  12. 根据权利要求1-11中任一项所述的电子设备,其特征在于,所述玻璃盖板为3D玻璃盖板。
  13. 一种玻璃盖板,其特征在于,包括化学强化微晶玻璃,所述化学强化微晶玻璃包括相对的第一表面和第二表面,所述化学强化微晶玻璃具有应力曲线,所述应力曲线为以所述化学强化微晶玻璃内部任一点与所述第一表面或所述第二表面的距离为横 坐标、以该点处的应力强度为纵坐标绘制的曲线,直线x=50μm、y=0与所述应力曲线所围成的面积大于或等于36000t2-21600t+3150MPa*μm,其中,t为所述化学强化微晶玻璃的厚度,单位为mm。
  14. 根据权利要求13所述的玻璃盖板,其特征在于,所述化学强化微晶玻璃的中心张应力大于或等于70兆帕,且所述化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。
  15. 根据权利要求13或14所述的玻璃盖板,其特征在于,用于形成所述化学强化微晶玻璃的微晶玻璃包括主晶相和次晶相,所述主晶相的质量分数与所述次晶相的质量分数的比值大于或等于5。
  16. 根据权利要求15所述的玻璃盖板,其特征在于,所述次晶相的质量分数小于或等于10%。
  17. 根据权利要求15或16所述的玻璃盖板,其特征在于,所述主晶相为二硅酸锂,和/或所述次晶相包括透锂长石、偏硅酸锂及锆盐、磷酸盐晶体中的至少一种。
  18. 一种化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃包括相对的第一表面和第二表面,所述化学强化微晶玻璃具有应力曲线,所述应力曲线为以所述化学强化微晶玻璃内部任一点与所述第一表面或所述第二表面的距离为横坐标、以该点处的应力强度为纵坐标绘制的曲线,直线x=50μm、y=0与所述应力曲线所围成的面积大于或等于36000t2-21600t+3150MPa*μm,其中,t为所述化学强化微晶玻璃的厚度,单位为mm。
  19. 根据权利要求18所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃的中心张应力大于或等于70兆帕,且所述化学强化微晶玻璃在10mm直径圆头金属压杆挤压下破碎后,碎片最长边的平均尺寸大于或等于5mm。
PCT/CN2023/089019 2022-07-22 2023-04-18 电子设备、玻璃盖板和化学强化微晶玻璃 WO2024016760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210872140.2 2022-07-22
CN202210872140.2A CN117466524A (zh) 2022-07-22 2022-07-22 电子设备、玻璃盖板和化学强化微晶玻璃

Publications (1)

Publication Number Publication Date
WO2024016760A1 true WO2024016760A1 (zh) 2024-01-25

Family

ID=89616953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089019 WO2024016760A1 (zh) 2022-07-22 2023-04-18 电子设备、玻璃盖板和化学强化微晶玻璃

Country Status (2)

Country Link
CN (1) CN117466524A (zh)
WO (1) WO2024016760A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124723A (ja) * 2014-12-26 2016-07-11 旭硝子株式会社 表示装置用前面ガラス及び表示装置付き機器
CN113526872A (zh) * 2020-04-13 2021-10-22 华为技术有限公司 微晶玻璃、电子设备及微晶玻璃的制备方法
CN113754289A (zh) * 2021-09-18 2021-12-07 重庆鑫景特种玻璃有限公司 一种低翘曲的强化微晶玻璃、及其制备方法和用途
CN114671618A (zh) * 2022-04-24 2022-06-28 清远南玻节能新材料有限公司 微晶玻璃、强化玻璃及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124723A (ja) * 2014-12-26 2016-07-11 旭硝子株式会社 表示装置用前面ガラス及び表示装置付き機器
CN113526872A (zh) * 2020-04-13 2021-10-22 华为技术有限公司 微晶玻璃、电子设备及微晶玻璃的制备方法
CN113754289A (zh) * 2021-09-18 2021-12-07 重庆鑫景特种玻璃有限公司 一种低翘曲的强化微晶玻璃、及其制备方法和用途
CN114671618A (zh) * 2022-04-24 2022-06-28 清远南玻节能新材料有限公司 微晶玻璃、强化玻璃及其制备方法与应用

Also Published As

Publication number Publication date
CN117466524A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US10189739B2 (en) Glass for chemical tempering and chemically tempered glass
JP5874803B2 (ja) タッチパネル用ガラスの製造方法
KR101460624B1 (ko) 터치 스크린을 위한 규산 알루미늄 유리
JP5088717B1 (ja) 強化ガラス基板及びその製造方法
CN101337770B (zh) 高强度铝硅酸盐玻璃及其化学钢化方法
TWI491571B (zh) 用於顯示器裝置的玻璃板,用於顯示器裝置的平板玻璃及其製造方法
WO2020135280A1 (zh) 一种铝硅酸盐微晶玻璃及其制备方法和产品
JP5668828B1 (ja) 化学強化ガラス板
KR20120132486A (ko) 강인화에 적합하고 3-디 정밀 성형을 위한 박막 리튬-규산 알루미늄 유리
TW201245079A (en) Method for producing chemically tempered glass, and glass for chemical tempering
JP2010202514A (ja) 携帯型液晶ディスプレイ用のガラス基板及びその製造方法並びにこれを用いた携帯型液晶ディスプレイ
WO2021115435A1 (zh) 具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃
CN106348588A (zh) 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN114096493A (zh) 化学强化玻璃及其制造方法
CN110872176B (zh) 玻璃基底和制造该玻璃基底的方法
CN113735450A (zh) 透明高硬镁铝硅微晶玻璃及其制备方法
WO2024016760A1 (zh) 电子设备、玻璃盖板和化学强化微晶玻璃
JPWO2014112446A1 (ja) 白色ガラスを含む筐体、白色ガラスを含む筐体の製造方法およびポータブル電子装置
TW201829346A (zh) 化學強化用玻璃板和化學強化玻璃板的製造方法
KR20210080689A (ko) 유리 제품 및 이를 포함하는 디스플레이 장치
CN115477473B (zh) 微晶玻璃盖板及制备方法、修复和抗指纹方法、电子设备
WO2024043194A1 (ja) 強化ガラス板、強化ガラス板の製造方法及び強化用ガラス板
US20240083800A1 (en) Electronic device
JP2014019627A (ja) 強化ガラス及び表示デバイス
KR20230107437A (ko) 유리 조성물, 이로부터 제조된 유리 제품 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841833

Country of ref document: EP

Kind code of ref document: A1