WO2024016673A1 - Propulseur à nacelle électrique à couplage magnétique modularisé - Google Patents

Propulseur à nacelle électrique à couplage magnétique modularisé Download PDF

Info

Publication number
WO2024016673A1
WO2024016673A1 PCT/CN2023/078896 CN2023078896W WO2024016673A1 WO 2024016673 A1 WO2024016673 A1 WO 2024016673A1 CN 2023078896 W CN2023078896 W CN 2023078896W WO 2024016673 A1 WO2024016673 A1 WO 2024016673A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic coupling
turbine
cabin
pipeline
main
Prior art date
Application number
PCT/CN2023/078896
Other languages
English (en)
Chinese (zh)
Inventor
吴百公
詹铭静
刘金星
姚震球
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2024016673A1 publication Critical patent/WO2024016673A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H2005/075Arrangements on vessels of propulsion elements directly acting on water of propellers using non-azimuthing podded propulsor units, i.e. podded units without means for rotation about a vertical axis, e.g. rigidly connected to the hull

Definitions

  • the invention relates to a propulsion device in the field of shipbuilding and offshore engineering, and in particular to a modular magnetic coupling electric pod thruster.
  • the traditional shaft propeller has low efficiency, high emissions, and loud vibration and noise. It cannot meet the latest emission standards and cannot well meet the requirements of green ships. .
  • electric propulsion has shown significant advantages. Compared with the traditional shaft propeller propulsion system, the electric propulsion method is characterized by the flexible layout of the cabin and is not restricted by the space requirements of the main shaft; in addition, it can reduce carbon emissions and is in line with the concept of green ships; the propulsion direction can be controlled to achieve a
  • the paddle is versatile and can be used for both propulsion and steering.
  • domestic high-power pod thrusters have basically not been industrialized.
  • the purpose of the present invention is to provide a modular magnetically coupled electric pod thruster to ensure sealing and improve drag reduction and heat dissipation effects.
  • a modular magnetic coupling electric pod thruster including a box, a main cabin, and a turbine cabin.
  • the box is installed on the outer peripheral surface of the main cabin and connected to its interior through a variety of pipelines.
  • the main cabin There is a motor and a magnetic coupling disk inside the body.
  • the motor is fixed in the main cabin body, and its motor main shaft and the magnetic coupling disk are coaxially connected.
  • a turbine main shaft and a magnetic coupling disk are installed inside the turbine cabin.
  • the turbine main shaft passes through
  • the bearing is installed inside the turbine cabin, and one end of the bearing is coaxially connected to the magnetic coupling plate 2.
  • One end of the turbine cabin is connected to one end of the main cabin through a flange, so that the magnetic coupling plate 1 is connected to the magnetic coupling plate 1.
  • the two force coupling disks are coaxially spaced apart and connected to each other by magnetic force.
  • Turbine blades are arranged on the outer periphery of the turbine cabin.
  • the inner rings of the turbine blades extend into the turbine cabin and are connected to the turbine main shaft.
  • a high-pressure gas pipeline is installed on one side wall of the box, and a circumferentially arranged high-pressure air pipeline is installed on the outer peripheral surface of the connection between the main cabin and the turbine cabin.
  • the high-pressure gas pipeline and the high-pressure air pipeline Connected, there are multiple air outlets distributed on the high-pressure air pipeline.
  • High-pressure air can be ejected at high speed from the air outlet of the high-pressure air pipeline, forming an air film on the surface of the main cabin, thereby reducing the resistance of the propeller.
  • the gas pipelines that form the air film are on the surface of the main cabin and the wall of the box. The pipelines do not enter the interior of the main cabin, thereby ensuring the water tightness of the cabin.
  • the diameter of the air outlet is 1mm ⁇ 2mm, and the distance between two adjacent air outlets is 2 ⁇ 3mm.
  • an air bubble film will be formed on the outer wall of the pod.
  • a titanium alloy isolation layer is provided between the connection surface of the main cabin body and the turbine cabin.
  • the titanium alloy isolation layer seals the connection end surface of the main cabin body and the turbine cabin.
  • the first magnetic coupling disk, the second magnetic coupling disk and the titanium alloy There are distances A and C between the isolation layers respectively.
  • Magnetic coupling disk one and magnetic coupling disk two attract each other, and there is a distance between them and the titanium alloy isolation layer, so friction can be avoided.
  • the thickness of the titanium alloy isolation layer is 1 to 2 mm.
  • the distance A and the distance C between the first and second magnetic coupling disks and the titanium alloy isolation layer are both 1 to 2 mm.
  • the magnetic coupling disk is required to be able to transmit a torque greater than the torque generated by the pod propeller impeller.
  • ⁇ 0 vacuum magnetic permeability is a constant, ⁇ r relative magnetic permeability is much greater than 1, B is the magnetic field strength, n is the number of magnets in a single magnetic coupling disk, S is the area of a single magnet, and Rc is the effective magnetic coupling disk radius, the required magnetic field strength is derived, and the parameters of the individual magnets are obtained.
  • large-flow gas inlet pipelines there are large-flow gas inlet pipelines, large-flow gas outlet pipelines, high-current cable pipelines, and signal line pipelines inside the box.
  • the large-flow gas inlet pipelines, and the large-flow gas outlet pipelines are respectively connected with the motor. Internally connected, high current cable pipelines and signal wire pipelines are connected to the motor respectively.
  • Each pipeline is set up independently of each other.
  • the oil, gas and electrical pipelines inside the box are independent of each other and do not interfere with each other, making it easy to maintain. build.
  • a separate gas pipeline enters the inside of the motor, performs heat exchange on the heat inside the motor, and takes the heat out of the main cabin. At the same time, the seawater around the cabin can also cool down the entire main cabin.
  • the large-flow gas inlet pipeline is connected to the air heat exchange equipment inside the ship through a high-pressure air inlet pump
  • the large-flow gas outlet pipeline is connected to the air heat exchange equipment inside the ship through a high-pressure air outlet pump.
  • the air heat exchange equipment is the ship's own equipment.
  • the air enters the high-pressure air inlet pump from the heat exchange equipment, and then enters the high-flow gas inlet pipe from the high-pressure air inlet pipe. It enters the main cabin through the large-flow gas inlet pipe, and then enters the large-flow gas outlet pipe. It is pumped through the high-pressure air outlet pump. The heat is taken away and enters the heat exchange device. This cycle takes the heat inside the motor out of the main cabin. At the same time, the seawater around the main cabin can also cool down the entire cabin.
  • a temperature sensor, a humidity sensor, and a water level sensor are installed inside the main cabin, and a rotational speed sensor is installed inside the turbine cabin.
  • the four are respectively connected to high-current cable pipelines and signal line pipelines.
  • the rotational speed sensor collects the turbine rotational speed in real time, and the temperature sensor, humidity sensor, and water level sensor can monitor the temperature and humidity and other parameters inside the main cabin in real time to take early warning measures.
  • main cabin is barrel-shaped, with a rear fairing installed at the other end, and a front fairing installed at the other end of the turbine cabin, and the front fairing is located outside the turbine blades.
  • the surface of the main cabin is smooth, and the barrel structure is easy to process.
  • Torque is transmitted between the main cabin and the turbine cabin through magnetic coupling, and the motor main shaft does not have a complex dynamic sealing structure.
  • the main surface of the electric pod propeller has an air film forming mechanism, which can form an air film on the surface of the main cabin, greatly reducing fluid resistance.
  • Figure 1 is a schematic front view of the structure of the present invention
  • Figure 2 is a schematic structural diagram of the present invention without the turbine cabin
  • Figure 3 is a schematic top view of the structure of the present invention.
  • Figure 4 is a schematic side view of the structure of the present invention.
  • Figure 5 is a schematic structural diagram of the turbine cabin.
  • a modular magnetic coupling electric pod thruster as shown in Figures 1 to 5, includes a box 101, a main cabin 201, and a turbine cabin 301.
  • the main cabin body 201 has a cylindrical structure, and its outer surface is smooth and easy to process.
  • the motor 202 is fixed in the main cabin 201, and its motor main shaft 204 is coaxially connected to the magnetic coupling plate 205.
  • the interior of the turbine cabin 301 is provided with a turbine main shaft 305 and a magnetic coupling plate 304.
  • the turbine main shaft 305 is installed inside the turbine cabin 301 through bearings.
  • One end of the turbine main shaft 305 is coaxially connected to the magnetic coupling plate 304.
  • the turbine cabin 301 One end is connected to one end of the main cabin 201 through the flange 302, so that the magnetic coupling plate 205 and the magnetic coupling plate 2 304 are coaxially spaced, opposite and magnetically attracted to each other.
  • the turbine cabin 301 is provided with turbine blades 306 on its outer periphery. The inner ring of the turbine blade 306 extends into the turbine cabin 301 and is connected to the turbine main shaft 305 .
  • a rear fairing 208 is installed at the other end of the main cabin 201
  • a front fairing 307 is installed at the other end of the turbine cabin 301 .
  • the front fairing 307 is located outside the turbine blades 306 .
  • the box 101 is installed on the outer peripheral surface of the main cabin 201.
  • the box 101 is provided with internal pipelines and external pipelines, which are independent of each other.
  • the box 101 is provided with a variety of pipelines connected to the interior of the main cabin 201, including a large-flow gas inlet pipeline 103, a large-flow gas outlet pipeline 104, a high-current cable pipeline 105, and a signal line pipeline 106.
  • the large-flow gas inlet pipeline 103 and the large-flow gas outlet pipeline 104 are respectively connected with the inside of the motor 202
  • the high-current cable pipeline 105 and the signal line pipeline 106 are connected with the motor 202 respectively.
  • the large-flow gas inlet pipeline 103 is connected to the air heat exchange equipment inside the ship through a high-pressure air inlet pump, and the large-flow gas outlet pipeline 104 is connected to the air heat exchange equipment inside the ship through a high-pressure air outlet pump.
  • the air heat exchange equipment is the ship's own equipment.
  • the air enters the high-pressure air inlet pump from the heat exchange device, and then enters the high-flow gas inlet pipe from the high-pressure air inlet pump. It enters the main cabin through the large-flow gas inlet pipe 103, and then enters the large-flow gas outlet pipe 104 after a period of time. , the heat is taken away into the heat exchange equipment through the high-pressure air outlet pump. This cycle takes the heat inside the motor out of the main cabin. At the same time, the seawater around the main cabin can also cool down the entire cabin.
  • the heat accumulated inside the motor 202 mainly relies on the large-flow gas inlet pipe 103 and the large-flow gas outlet pipe.
  • the two gas pipelines 104 dissipate heat with the water flow outside the main cabin 201. Since the gas pressure is much greater than the seawater pressure, it can also be ensured that the internal pressure of the motor 202 is greater than the external water pressure, thereby ensuring that seawater will not enter the main cabin 201.
  • a high-pressure gas pipeline 102 is installed on the side wall outside the box 101.
  • a circumferentially arranged high-pressure air pipeline 206 is installed on the outer peripheral surface of the connection between the main cabin 201 and the turbine cabin 301.
  • the high-pressure gas pipeline 102 and The high-pressure air pipeline 206 is connected, and multiple air outlets 207 are distributed on the high-pressure air pipeline 206.
  • the diameter of the air outlets 207 is 1 to 2 mm, and the interval between two adjacent air outlets 207 is 2 to 3 mm.
  • the high-pressure air can directly pass from the high-pressure gas pipeline 102 to the high-pressure air pipeline 206, and be separated from the air flow that dissipates air to the motor 202 to ensure the airtightness of the main cabin 201.
  • the air outlet 207 has a very small diameter and will eject high-pressure air to create a tiny gas layer on the surface of the main cabin 201, thus reducing the seawater resistance of the main cabin 201 and improving the propulsion efficiency of the system.
  • a temperature sensor, a humidity sensor, and a water level sensor are also installed inside the main cabin 201, which can monitor the temperature and humidity and other parameters inside the main cabin 201 in real time to take early warning measures.
  • a rotational speed sensor that is not afraid of seawater corrosion is installed inside the turbine cabin to collect the turbine rotational speed in real time.
  • the temperature sensor, humidity sensor, water level sensor, and rotational speed sensor are connected to the high-current cable pipeline 105 and the signal line pipeline 106 respectively.
  • a titanium alloy isolation layer 303 is provided between the connection surface of the main cabin body 201 and the turbine cabin 301.
  • the titanium alloy isolation layer 303 seals the connection end surface of the main cabin body 201 and the turbine cabin 301.
  • the flange plate 302 and the titanium alloy isolation layer There are sealing rings between 303 for sealing, and there is a distance A and a distance C between the first magnetic coupling disk 205, the second magnetic coupling disk 304 and the titanium alloy isolation layer 303 respectively.
  • the thickness of the titanium alloy isolation layer 303 is 1 to 2 mm.
  • the spacing between the magnetic coupling disc one 205, the magnetic coupling disc two 304 and the titanium alloy isolation layer 303 is all 1 to 2 mm. The larger the spacing, the better the permanent magnet embedded in the magnetic coupling disc. The greater the magnetic field strength required.
  • Titanium alloy can transmit magnetic fields and has high strength.
  • the titanium alloy isolation layer 303 with a thickness of 1 to 2 mm can well block seawater outside the main cabin 201 and ensure that seawater will not enter the main cabin 201.
  • the torque transmission between the motor 202 and the turbine completely relies on the magnetic coupling transmission of the magnetic coupling disk one 205 and the magnetic coupling disk two 304. In this way, the motor main shaft 204 and the turbine main shaft 305 realize torque transmission without contact, and the dynamic seal becomes a
  • a layer of titanium alloy isolation layer 303 forms a static seal, thus improving the reliability of the seal.
  • high-pressure air enters the pipeline and forms an air film through multiple air outlets distributed on the high-pressure air pipeline.
  • the signal and detection system is powered on, and the temperature sensor, humidity sensor, water level sensor, etc. are used to test whether the air pressure, humidity, and temperature in the main cabin meet the startup conditions, and to determine whether there is water leakage inside the main cabin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

La présente invention concerne un propulseur à nacelle électrique à couplage magnétique modularisé, comprenant un corps de boîte (101), un corps de nacelle principal (201) et une cabine de turbine (301). Le corps de boîte (101) est monté sur une surface circonférentielle externe du corps de nacelle principal (201) et est en communication avec l'intérieur du corps de nacelle principal (201) au moyen de tuyaux ; un moteur électrique (202) et un disque de couplage magnétique I (205) sont agencés dans le corps de nacelle principal (201), et un arbre principal de moteur électrique (204) est relié de manière coaxiale au disque de couplage magnétique I (205) ; un arbre principal de turbine (305) et un disque de couplage magnétique II (304) sont agencés dans la cabine de turbine (301), l'arbre principal de turbine (305) est monté dans la cabine de turbine (301) au moyen d'un palier, une extrémité de l'arbre principal de turbine est reliée de manière coaxiale au disque de couplage magnétique II (304), et une extrémité de la cabine de turbine (301) est reliée à une extrémité du corps de nacelle principal (201) au moyen d'un disque de bride (302), de telle sorte que le disque de couplage magnétique I (205) et le disque de couplage magnétique II (304) sont espacés de manière coaxiale et opposés l'un à l'autre et sont attirés magnétiquement l'un vers l'autre ; des pales de turbine (306) sont disposées sur la périphérie de la cabine de turbine (301) ; et des bagues internes des pales de turbine (306) s'étendent dans la cabine de turbine (301) et sont reliées à l'arbre principal de turbine (305). Le couple est transmis entre le corps de nacelle principal et la cabine de turbine du propulseur à nacelle au moyen d'un couplage magnétique ; et l'arbre principal de moteur électrique n'a pas de structure d'étanchéité dynamique complexe, et le corps de nacelle principal est complètement scellé statiquement, de telle sorte qu'il n'y a pas de risque d'infiltration d'eau, et la fiabilité de l'appareil peut être améliorée.
PCT/CN2023/078896 2022-07-21 2023-03-01 Propulseur à nacelle électrique à couplage magnétique modularisé WO2024016673A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210873270.8 2022-07-21
CN202210873270.8A CN115195979A (zh) 2022-07-21 2022-07-21 一种模块化磁力耦合电力吊舱推进器

Publications (1)

Publication Number Publication Date
WO2024016673A1 true WO2024016673A1 (fr) 2024-01-25

Family

ID=83584831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078896 WO2024016673A1 (fr) 2022-07-21 2023-03-01 Propulseur à nacelle électrique à couplage magnétique modularisé

Country Status (2)

Country Link
CN (1) CN115195979A (fr)
WO (1) WO2024016673A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115195979A (zh) * 2022-07-21 2022-10-18 江苏科技大学 一种模块化磁力耦合电力吊舱推进器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362487A (ja) * 2001-06-04 2002-12-18 Kawasaki Heavy Ind Ltd 電動式ポッド型推進機
JP2010095018A (ja) * 2008-10-14 2010-04-30 Eisaku Mano 船舶
CN104773280A (zh) * 2014-01-10 2015-07-15 森元信吉 装备有主螺旋桨和追加螺旋桨的船及其混合航行方法
CN205615692U (zh) * 2016-04-12 2016-10-05 大连海事大学 一种运用磁力耦合传动的吊舱装置
CN205770094U (zh) * 2016-05-25 2016-12-07 南京高精船用设备有限公司 船舶用吊舱式推进器
CN209043503U (zh) * 2018-12-13 2019-06-28 长春工程学院 水下扭矩测试装置
CN111661297A (zh) * 2020-06-15 2020-09-15 南京高精船用设备有限公司 一种吊舱推进器的冷却结构
CN115195979A (zh) * 2022-07-21 2022-10-18 江苏科技大学 一种模块化磁力耦合电力吊舱推进器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017902A (ja) * 2002-06-19 2004-01-22 Mitsubishi Heavy Ind Ltd 船舶用電気推進モータ冷却装置
CN2652812Y (zh) * 2003-10-17 2004-11-03 武汉理工大学 减阻用微气泡生成装置
US20140230715A1 (en) * 2011-10-07 2014-08-21 Samsung Heavy Ind. Co., Ltd Excitation force reducing type ship
JP5255147B1 (ja) * 2012-10-12 2013-08-07 英治 川西 船舶の上下推進装置
CN103818535B (zh) * 2014-03-14 2016-04-13 中国船舶重工集团公司第七○二研究所 集成电机推进装置
CN105711789B (zh) * 2016-01-26 2018-06-22 河北工业大学 一种模块化auv尾部推进结构
CN109747799B (zh) * 2019-01-14 2021-02-19 西安增材制造国家研究院有限公司 一种超空泡鱼雷

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362487A (ja) * 2001-06-04 2002-12-18 Kawasaki Heavy Ind Ltd 電動式ポッド型推進機
JP2010095018A (ja) * 2008-10-14 2010-04-30 Eisaku Mano 船舶
CN104773280A (zh) * 2014-01-10 2015-07-15 森元信吉 装备有主螺旋桨和追加螺旋桨的船及其混合航行方法
CN205615692U (zh) * 2016-04-12 2016-10-05 大连海事大学 一种运用磁力耦合传动的吊舱装置
CN205770094U (zh) * 2016-05-25 2016-12-07 南京高精船用设备有限公司 船舶用吊舱式推进器
CN209043503U (zh) * 2018-12-13 2019-06-28 长春工程学院 水下扭矩测试装置
CN111661297A (zh) * 2020-06-15 2020-09-15 南京高精船用设备有限公司 一种吊舱推进器的冷却结构
CN115195979A (zh) * 2022-07-21 2022-10-18 江苏科技大学 一种模块化磁力耦合电力吊舱推进器

Also Published As

Publication number Publication date
CN115195979A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN202414147U (zh) 一种集成推进器
CN101546931B (zh) 一种集成推进器
CN105292424B (zh) 一种船舶轮缘集成推进器
KR101689228B1 (ko) 추진장치
US7235894B2 (en) Integrated fluid power conversion system
WO2024016673A1 (fr) Propulseur à nacelle électrique à couplage magnétique modularisé
CN105109650A (zh) 对转无轴轮缘驱动推进器
CN114056529B (zh) 一种具有假轴结构的轮缘驱动推进器
CN203482005U (zh) 涵道力矩转子集成螺旋电动喷水推进器
CN212172505U (zh) 一种气体减阻支撑的对转式电力推进器
CN209396017U (zh) 一种潜艇喷水推进装置
CN113815832B (zh) 轮缘驱动的半浸式推进器
CN109050849B (zh) 一种集成式水空两用推进器
CN114524074A (zh) 磁悬浮永磁电机轮缘驱动推进器
CN110697011B (zh) 机-桨-身融合式集成推进装置
CN205150207U (zh) 一种船舶轮缘集成推进器
CN111703563B (zh) 一种无叶片潜航推进系统
JPS626892A (ja) 水ジエツト発生装置
CN114313189B (zh) 一种密封轮缘推进器
CN115258120A (zh) 一种船用吊舱推进模块的高效冷却结构
CN114701628A (zh) 一种适应于水下航行器的隔振电机舱
CN115384739A (zh) 一种低温升水下推进器
CN214267933U (zh) 一种串列轴流式喷水推进泵
CN218431698U (zh) 船用吊舱推进模块的高效冷却结构
CN114524072B (zh) 一种基于科恩达效应的全回转推进器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841751

Country of ref document: EP

Kind code of ref document: A1