WO2024016522A1 - 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法 - Google Patents

一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法 Download PDF

Info

Publication number
WO2024016522A1
WO2024016522A1 PCT/CN2022/130712 CN2022130712W WO2024016522A1 WO 2024016522 A1 WO2024016522 A1 WO 2024016522A1 CN 2022130712 W CN2022130712 W CN 2022130712W WO 2024016522 A1 WO2024016522 A1 WO 2024016522A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction
iron
leaching system
solution
stripping
Prior art date
Application number
PCT/CN2022/130712
Other languages
English (en)
French (fr)
Inventor
张罗虎
王振堂
钟传刚
薛捷豪
朱优武
盛汝国
Original Assignee
万宝矿产有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万宝矿产有限公司 filed Critical 万宝矿产有限公司
Publication of WO2024016522A1 publication Critical patent/WO2024016522A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0086Treating solutions by physical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0093Treating solutions by chemical methods by gases, e.g. hydrogen or hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/28Amines
    • C22B3/284Aromatic amines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of non-ferrous metal smelting, and specifically relates to a method for reducing acid iron concentration in a secondary copper sulfide ore biological heap leaching system.
  • the "bioheap leaching-extraction-electrodeposition" process has the advantages of efficient resource utilization, short process flow, low production cost, and low pollution. It has attracted more and more attention, especially in the processing of low-grade ores. It has been widely used in low-grade secondary copper sulfide copper mines. Currently, nearly 20 secondary copper sulfide mines around the world use this technology.
  • Secondary copper sulfide ores are often associated with pyrite.
  • pyrite undergoes an oxidation reaction to produce ferric iron and sulfuric acid.
  • the heat released by the oxidation and the ferric iron produced promote secondary Leaching of raw copper sulfide ores.
  • the oxidation of pyrite will lead to excess accumulation of acid iron in the system.
  • the technical problem to be solved by the present invention is: how to provide a method for reducing the concentration of acid iron in a secondary copper sulfide ore bio-heap leaching system, so as to solve the problem of excessive accumulation of acid iron and acid return during extraction in the secondary copper sulfide ore heap leaching system. Causes problems with excess acid in the system.
  • the present invention provides a method for reducing acid iron concentration in a secondary copper sulfide ore bioheap leaching system, which includes the following steps:
  • Step 1 Pour sulfur dioxide into the qualified liquid or raffinate of the heap leaching system, start the mixer to fully mix the sulfur dioxide and the solution, control the ventilation speed to 10-100L/L- liquid ⁇ h, and the reaction time to 2-4 hours, and mix the qualified liquid or raffinate.
  • Fe 3+ in the raffinate reduces Fe 2+ ;
  • Step 2 Control the reaction time of the Fe 2+ oxidation and hydrolysis process in the qualified liquid or raffinate to be 1-4h, the reaction temperature is 180-200°C, and the oxygen partial pressure is 400-500kPa.
  • Fe 2+ will generate solid phase red after oxidation and hydrolysis.
  • Iron slag is used to separate copper and iron, and the solid hematite slag is discharged from the heap leaching system.
  • the main reactions are as follows:
  • Step 3 Prepare the extraction liquid according to a certain proportion of tris(2-ethylhexyl)amine, sulfonated kerosene and isotridecyl alcohol, and use a three-stage countercurrent extraction process to fully stir and mix with the iron-removed liquid in step 2 to remove the iron.
  • the sulfuric acid in the post-iron liquid is extracted from the water phase to the organic phase, and then a three-stage back-extraction is set up. Water is used as the back-extraction agent.
  • the loaded organic phase produced by the extraction is fully stirred and mixed with water, so that the acid in the loaded phase enters the water phase. , to obtain a dilute acid solution, the reaction equation is as follows;
  • Step 4 After clarification and separation of the solution after stripping in step 3, the acidic iron solution with reduced concentration is sent to the copper extraction-electrowinning system to produce cathode copper or returned to the heap leaching system, and the resulting dilute acid solution is discharged from the heap leaching system. outside the system.
  • the configuration ratio of each reagent in the extraction solution in step 3 is:
  • the configuration ratio of tris(2-ethylhexyl)amine is 40%-50%;
  • the sulfonated kerosene configuration ratio is 10%-20%
  • the configuration ratio of the isotridecyl alcohol is 35%-40%.
  • the loaded organic phase is back-extracted with water at a given temperature to obtain the recovered product pure dilute sulfuric acid solution, and the regenerated organic phase is recycled.
  • the stripping reaction is reaction formula (2) and (3) in step 3. the reverse process.
  • the stripping temperature is 20-30°C.
  • the iron removal and extraction method is suitable for use in the field of hydrometallurgical bioheap leaching or other technical fields that require adjusting the acidic iron content of the solution in the system.
  • the present invention has the following beneficial effects:
  • the present invention reduces the iron concentration of the heap leach system solution or raffinate through a hematite iron removal process.
  • the process has high iron removal efficiency and does not require additives.
  • the present invention reduces the acidity of the heap leach system solution through solvent extraction, which is beneficial to producing qualified liquid with low acidity and ensuring the copper transfer amount in the extraction process.
  • the present invention can effectively avoid the generation and treatment costs of neutralization slag, and does not introduce other impurity elements.
  • Figure 1 is a flow chart of the method of the present invention.
  • this embodiment provides a method for reducing the concentration of acid iron in a secondary copper sulfide ore bioheap leaching system, as shown in Figure 1, which includes the following steps:
  • Step 1 Pour sulfur dioxide into the qualified liquid or raffinate of the heap leaching system, start the mixer to fully mix the sulfur dioxide and the solution, control the ventilation speed to 10-100L/L- liquid ⁇ h, and the reaction time to 2-4 hours, and mix the qualified liquid or raffinate.
  • Fe 3+ in the raffinate reduces Fe 2+ ;
  • Step 2 Control the reaction time of the Fe 2+ oxidation and hydrolysis process in the qualified liquid or raffinate to be 1-4h, the reaction temperature is 180-200°C, and the oxygen partial pressure is 400-500kPa.
  • Fe 2+ will generate solid phase red after oxidation and hydrolysis.
  • Iron slag is used to separate copper and iron, and the solid hematite slag is discharged from the heap leaching system.
  • the main reactions are as follows:
  • Step 3 Prepare the extraction liquid according to a certain proportion of tris(2-ethylhexyl)amine, sulfonated kerosene and isotridecyl alcohol, and use a three-stage countercurrent extraction process to fully stir and mix with the iron-removed liquid in step 2 to remove the iron.
  • the sulfuric acid in the post-iron liquid is extracted from the water phase to the organic phase, and then a three-stage back-extraction is set up. Water is used as the back-extraction agent.
  • the loaded organic phase produced by the extraction is fully stirred and mixed with water, so that the acid in the loaded phase enters the water phase. , to obtain a dilute acid solution, the reaction equation is as follows;
  • Step 4 After clarification and separation of the solution after stripping in step 3, the acidic iron solution with reduced concentration is sent to the copper extraction-electrowinning system to produce cathode copper or returned to the heap leaching system, and the resulting dilute acid solution is discharged from the heap leaching system. outside the system.
  • the configuration ratio of each reagent in the extraction solution in step 3 is:
  • the configuration ratio of tris(2-ethylhexyl)amine is 40%-50%;
  • the sulfonated kerosene configuration ratio is 10%-20%
  • the configuration ratio of the isotridecyl alcohol is 35%-40%.
  • the loaded organic phase is back-extracted with water at a given temperature to obtain the recovered product pure dilute sulfuric acid solution, and the regenerated organic phase is recycled.
  • the stripping reaction is reaction formula (2) and (3) in step 3. the reverse process.
  • the stripping temperature is 20-30°C.
  • the iron removal and extraction method is suitable for the field of hydrometallurgical bioheap leaching or other technical fields that need to adjust the acidity of the solution in the system.
  • the present invention provides a method for utilizing valuable elements in a secondary copper sulfide ore biological heap leaching system.
  • the perate ferric qualified liquid treated by the present invention contains 3.7g/l copper.
  • the acid concentration is 8.6g/l
  • the iron concentration is 14.7g/l.
  • the specific process operations, control conditions and test results are as follows:
  • Fe 3+ reduction process control Pour sulfur dioxide into the qualified solution, start stirring to promote complete mixing with the solution, control the ventilation speed to 50 ⁇ 80L/(L- liquid ⁇ h), and the reaction time is 2.5h.
  • Fe 2+ oxidation and hydrolysis process control control the reaction temperature to be 180°C, the oxygen partial pressure to be 400kPa, and the reaction time to be 4 hours. After Fe 2+ is oxidized and hydrolyzed, solid-phase hematite slag (Fe 2 O 3 ) is generated. .
  • the extraction agent is composed of amine extractant, diluent and phase regulator.
  • the formula is 40% tris(2-ethylhexyl)amine (TEHA), 20% sulfonated kerosene, 40% isomerism Tridecanol.
  • the stripping temperature is 30°C.
  • Test results The iron removal rate is 90%, and the produced hematite slag contains 59% iron, less than 0.5% copper, and less than 2% sulfur. After treatment, it can be used as a raw material for ironmaking or cement production; After 3-stage extraction and 3-stage back-extraction, the total sulfuric acid extraction rate is more than 90%, and the total back-extraction rate is more than 94%.
  • the mass concentration of the outlet water phase acid is about 6g/L, and the mass concentration of the product acid is 7g/L. around, and is a pure sulfuric acid solution.
  • the high-acid iron qualified liquid treated by the present invention contains 5.1g/l copper, an acid concentration of 13.5g/l, and an iron concentration of 32g/l.
  • the specific process operations, control conditions and test results are as follows:
  • Fe 3+ reduction process control Pour sulfur dioxide into the qualified solution, start stirring to promote complete mixing with the solution, control the ventilation speed to 50-80L/(L-liquid ⁇ h), and the reaction time is 3.5h.
  • Fe 2+ oxidation and hydrolysis process control control the reaction temperature to be 190°C, the oxygen partial pressure to be 400kPa, and the reaction time to be 3 hours. After Fe 2+ is oxidized and hydrolyzed, solid-phase hematite slag (Fe 2 O 3 ) is generated. .
  • Extraction solution configuration The extraction agent is composed of amine extractant, diluent and phase regulator. The formula is 45% tris(2-ethylhexyl)amine (TEHA), 20% sulfonated kerosene, 35% isomerization Tridecanol.
  • TEHA tris(2-ethylhexyl)amine
  • the stripping temperature is 30°C.
  • Test results The iron removal rate is 91%, and the produced hematite slag contains 61% iron, less than 0.5% copper, and less than 2% sulfur. After treatment, it can be used as a raw material for ironmaking or cement production; After 3-stage extraction and 3-stage back-extraction, the total sulfuric acid extraction rate is more than 90%, and the total back-extraction rate is more than 95%.
  • the mass concentration of the outlet water phase acid is about 8g/L, and the mass concentration of the product acid is 12g/L. around, and is a pure sulfuric acid solution.
  • the high-acid iron qualified liquid treated by the present invention contains 7.2g/l copper, an acid concentration of 23g/l, and an iron concentration of 49g/l.
  • the specific process operations, control conditions and test results are as follows:
  • Fe 3+ reduction process control Pour sulfur dioxide into the qualified solution, start stirring to promote complete mixing with the solution, control the ventilation speed to 60 ⁇ 100L/(L-liquid ⁇ h), and the reaction time is 4h.
  • Fe 2+ oxidation and hydrolysis process control control the reaction temperature to be 200°C, the oxygen partial pressure to be 400kPa, and the reaction time to be 2 hours. After Fe 2+ is oxidized and hydrolyzed, solid phase hematite slag (Fe 2 O 3 ) is generated. .
  • the extraction agent is composed of amine extractant, diluent and phase regulator.
  • the formula is 50% tris(2-ethylhexyl)amine (TEHA), 10% sulfonated kerosene, 40% isomerization Tridecanol.
  • the stripping temperature is 30°C.
  • Test results The iron removal rate is 92%, and the produced hematite slag contains 65% iron, less than 0.5% copper, and less than 2% sulfur. After treatment, it can be used as a raw material for ironmaking or cement production; After 3-stage extraction and 3-stage back-extraction, the total sulfuric acid extraction rate is more than 90%, and the total strip-extraction rate is more than 94%.
  • the mass concentration of the outlet water phase acid is about 9g/L, and the mass concentration of the product acid is 20g/L. around, and is a pure sulfuric acid solution.
  • the high-acid iron raffinate treated by the present invention contains 1.64g/l copper, an acid concentration of 17g/l, and an iron concentration of 37g/l.
  • the specific process operations, control conditions and test results are as follows:
  • Fe 3+ reduction process control Pour sulfur dioxide into the qualified solution, start stirring to promote complete mixing with the solution, control the ventilation speed to 60 ⁇ 100L/(L-liquid ⁇ h), and the reaction time is 3.5h.
  • Fe 2+ oxidation and hydrolysis process control control the reaction temperature to be 200°C, the oxygen partial pressure to be 400kPa, and the reaction time to be 2 hours. After Fe 2+ is oxidized and hydrolyzed, solid phase hematite slag (Fe 2 O 3 ) is generated. .
  • Extraction solution configuration The extraction agent is composed of amine extractant, diluent and phase regulator. The formula is 45% tris(2-ethylhexyl)amine (TEHA), 20% sulfonated kerosene, 35% isomerization Tridecanol.
  • TEHA tris(2-ethylhexyl)amine
  • the stripping temperature is 30°C.
  • Test results The iron removal rate is 92%, and the produced hematite slag contains 64% iron, less than 0.5% copper, and less than 2% sulfur. After treatment, it can be used as a raw material for ironmaking or cement production; After 3-stage extraction and 3-stage back-extraction, the total sulfuric acid extraction rate is more than 90%, and the total strip-extraction rate is more than 95%.
  • the mass concentration of the outlet water phase acid is about 9g/L, and the mass concentration of the product acid is 15g/L. around, and is a pure sulfuric acid solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,属于有色金属冶炼领域。通过使用赤铁矿除铁工艺降低堆浸铜合格液或萃余液中铁浓度,使用一种可选择性地萃取硫酸而铜、亚铁等金属离子不被萃取的有机萃取剂,使溶液中的硫酸从水相转入有机相,负载有机相经过水反萃后得到纯度较高的稀硫酸,酸铁浓度降低后的溶液进入铜萃取-电积系统生产阴极铜或返回堆浸系统。

Description

一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法 技术领域
本发明属于有色金属冶炼领域,具体涉及一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法。
背景技术
“生物堆浸-萃取-电积”流程作为一种处理低品位矿石的工艺,具有资源利用高效、工艺流程短、生产成本低、污染小等优点,越来越受到人们的重视,尤其在处理低品位次生硫化铜铜矿中得到了广泛应用,目前全球有近20座次生硫化铜矿矿山采用该项技术。
次生硫化铜矿中往往伴生有黄铁矿,在次生硫化铜矿生物堆浸过程中,黄铁矿发生氧化反应产生三价铁与硫酸,氧化放出的热量以及产生的三价铁促进次生硫化铜矿的浸出。但如果次生硫化铜矿中伴生的黄铁矿较多,而耗酸脉石较少的情况下,随着溶液不断在系统中循环,黄铁矿的氧化会导致系统中酸铁积累过剩,萃取返酸以及沉矾产酸等因素也会加剧系统中酸过剩的情况,从而对后续萃取-电积生产带来不利影响。首先,如果进入萃取的合格液酸浓度过高,会降低萃取效率,减少铜传递量,最终导致阴极铜产量受限;其次,合格液的铁浓度过高,会导致电积液中含铁量过高,严重影响电流效率,造成生产成本过高。
在生产实际中,通常采用开路部分萃余液后利用石灰或者石灰石中和的方法来降低系统中的酸铁度,但此方法一方面成本较高,另一方面产生的中和渣对环境影响巨大。现有的一种控制堆浸体系酸和铁浓度的方法,使铁在矿堆内部沉矾、萃余液利用石灰石中和自由酸后再返回堆场喷淋,该方法会产生大量中和渣,存在堆存占用空间、污染周边环境、夹带铜金属损失等缺点,而且铁矾覆盖在矿石表面会阻碍铜矿物的浸出;还有是通过每层堆浸单元浸出完成后,在上层铺设一定粒度、厚度的石灰石,通过对石灰石层厚度的控制,来调节堆浸系统中的酸铁浓度,但这种方法仅能在初期对系统中的酸铁浓度作出一定调 整,随着堆浸的进行,石灰石消耗以及石灰石表面与硫酸反应钝化,将不会再起到相应的作用。
发明内容
本发明要解决的技术问题是:如何提供一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,用于解决次生硫化铜矿堆浸系统中酸铁积累过剩以及萃取返酸导致系统中酸过剩的问题。
为解决上述技术问题,本发明提供一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其包括以下步骤:
步骤1:向堆浸系统合格液或萃余液中通入二氧化硫,启动搅拌机促使二氧化硫与溶液充分混合,控制通气速度10~100L/L- ·h,反应时间2~4h,将合格液或萃余液中的Fe 3+还原Fe 2+
步骤2:控制合格液或萃余液中Fe 2+氧化水解过程反应时间为1-4h、反应温度为180~200℃、氧分压400~500kPa,Fe 2+经氧化水解后生成固相赤铁矿渣,实现铜铁分离,将固相赤铁矿渣排出堆浸系统,主要反应如下:
2FeSO 4+0.5O 2+2H 2O=Fe 2O 3↓+2H 2SO 4      (1);
步骤3:按一定比例的三(2-乙基己基)胺、磺化煤油和异构十三醇配置萃取液,采用三级逆流萃取工序与步骤2中除铁后液充分搅拌混合,使除铁后液中硫酸从水相被萃取到有机相,再设三级反萃,选用水作为反萃剂,将萃取产生的负载有机相与水充分搅拌混合,使负载相中酸进入水相中,获得稀酸溶液,反应方程式如下;
Figure PCTCN2022130712-appb-000001
Figure PCTCN2022130712-appb-000002
步骤4:将步骤3反萃后的溶液经过澄清分离后,将浓度降低后的酸铁溶液送至铜萃取-电积系统生产阴极铜或返回堆浸系统,将所得的稀酸溶液排出堆浸系统外。
其中,所述步骤3中萃取液中各项试剂配置比例为:
所述三(2-乙基己基)胺配置比例为40%-50%;
所述磺化煤油配置比例为10%-20%;
所述异构十三醇配置比例为35%-40%。
其中,在给定温度下将负载有机相经水反萃后得到回收产品纯稀硫酸溶液,再生后的有机相循环使用,所述反萃反应是步骤3中反应式(2)与(3)的逆过程。
其中,所述步骤3中当用水作为反萃剂时,反萃取温度为20~30℃。
其中,所述的萃取方式中萃取条件为温度30℃、相比A/O=1:2~1:3,经过3级萃取。
其中,所述的萃取方式中反萃条件为温度30℃、相比A/O=2:1~1:1,经过3级反萃。
其中,所述除铁和萃取方法适用于湿法冶金生物堆浸领域或者其他需要调解系统中溶液酸铁度的技术领域。
与现有技术相比较,本发明具备如下有益效果:
1)本发明通过赤铁矿除铁工艺降低堆浸系统溶液或萃余液的铁浓度,其工艺除铁效率高且无需添加剂。
2)本发明通过溶剂萃取的方法降低堆浸系统溶液的酸度,利于产出低酸度的合格液,保证萃取过程的铜传递量。
3)相较于传统中和法,本发明可有效避免中和渣产生及处理成本,而且不引入其他杂质元素。
附图说明
图1为本发明方法流程图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面对本发明的具体实施方式作进一步详细描述。
为解决上述技术问题,本实施例提供一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,如图1所示,其包括以下步骤:
步骤1:向堆浸系统合格液或萃余液中通入二氧化硫,启动搅拌机促使二氧化硫与溶液充分混合,控制通气速度10~100L/L- ·h,反应时间2~4h,将合格液 或萃余液中的Fe 3+还原Fe 2+
步骤2:控制合格液或萃余液中Fe 2+氧化水解过程反应时间为1-4h、反应温度为180~200℃、氧分压400~500kPa,Fe 2+经氧化水解后生成固相赤铁矿渣,实现铜铁分离,将固相赤铁矿渣排出堆浸系统,主要反应如下:
2FeSO 4+0.5O 2+2H 2O=Fe 2O 3↓+2H 2SO 4     (1);
步骤3:按一定比例的三(2-乙基己基)胺、磺化煤油和异构十三醇配置萃取液,采用三级逆流萃取工序与步骤2中除铁后液充分搅拌混合,使除铁后液中硫酸从水相被萃取到有机相,再设三级反萃,选用水作为反萃剂,将萃取产生的负载有机相与水充分搅拌混合,使负载相中酸进入水相中,获得稀酸溶液,反应方程式如下;
Figure PCTCN2022130712-appb-000003
Figure PCTCN2022130712-appb-000004
步骤4:将步骤3反萃后的溶液经过澄清分离后,将浓度降低后的酸铁溶液送至铜萃取-电积系统生产阴极铜或返回堆浸系统,将所得的稀酸溶液排出堆浸系统外。
其中,所述步骤3中萃取液中各项试剂配置比例为:
所述三(2-乙基己基)胺配置比例为40%-50%;
所述磺化煤油配置比例为10%-20%;
所述异构十三醇配置比例为35%-40%。
其中,在给定温度下将负载有机相经水反萃后得到回收产品纯稀硫酸溶液,再生后的有机相循环使用,所述反萃反应是步骤3中反应式(2)与(3)的逆过程。
其中,所述步骤3中当用水作为反萃剂时,反萃取温度为20~30℃。
其中,所述的萃取方式中萃取条件为温度30℃、相比A/O=1:2~1:3,经过3级萃取。
其中,所述的萃取方式中反萃条件为温度30℃、相比A/O=2:1~1:1,经过3级反萃。
其中,所述除铁和萃取方法适用于湿法冶金生物堆浸领域或者其他需要调解系统中溶液酸铁度的技术领域。
实施例1
为解决上述技术问题,本发明提供一种利用次生硫化铜矿生物堆浸系统中有价元素的方法,如图1所示,本发明所处理的高酸铁合格液含铜3.7g/l,酸浓度8.6g/l,铁浓度14.7g/l,具体工序操作、控制条件和试验结果如下:
(1)Fe 3+还原过程控制:向合格液中通入二氧化硫,启动搅拌促使与溶液充分混合,控制通气速度50~80L/(L- ·h),反应时间2.5h。
(2)Fe 2+氧化水解过程控制:控制反应温度为180℃、氧分压400kPa的操作条件,反应时间4h,Fe 2+经氧化水解后生成固相赤铁矿渣(Fe 2O 3)。
(3)萃取液配置:萃取剂由胺类萃取剂、稀释剂和相调节剂组成,配方为40%三(2-乙基己基)胺(TEHA),20%磺化煤油,40%异构十三醇。
(4)采用逆流萃取工序使合格液与上述萃取液充分搅拌混合。萃取条件为温度30℃、相比A/O=1:3,经过3级萃取。反萃条件为水作为反萃剂,温度30℃、相比A/O=1:1,经过3级反萃。反萃取温度为30℃。
(5)试验结果:除铁率90%,产出的赤铁矿渣含铁59%、含铜小于0.5%、含硫小于2%,经处理后可作为炼铁或生产水泥等的原料;经3级萃取和3级反萃,硫酸总萃取率为90%以上,总反萃取率为94%以上,出口水相酸的质量浓度为6g/L左右,产品酸的质量浓度为7g/L左右,且为纯净硫酸溶液。
实施例2
参见图1,本发明所处理的高酸铁合格液含铜5.1g/l,酸浓度13.5g/l,铁浓度32g/l,具体工序操作、控制条件和试验结果如下:
(1)Fe 3+还原过程控制:向合格液中通入二氧化硫,启动搅拌促使与溶液充分混合,控制通气速度50~80L/(L-液·h),反应时间3.5h。
(2)Fe 2+氧化水解过程控制:控制反应温度为190℃、氧分压400kPa的操作条件,反应时间3h,Fe 2+经氧化水解后生成固相赤铁矿渣(Fe 2O 3)。
(3)萃取液配置:萃取剂由胺类萃取剂、稀释剂和相调节剂组成,配方为45%三(2-乙基己基)胺(TEHA),20%磺化煤油,35%异构十三醇。
(4)采用逆流萃取工序使合格液与上述萃取液充分搅拌混合。萃取条件为温度30℃、相比A/O=1:2,经过3级萃取。反萃条件为水作为反萃剂,温度30℃、相比A/O=1:1,经过3级反萃。反萃取温度为30℃。
(5)试验结果:除铁率91%,产出的赤铁矿渣含铁61%、含铜小于0.5%、含硫小于2%,经处理后可作为炼铁或生产水泥等的原料;经3级萃取和3级反萃,硫酸总萃取率为90%以上,总反萃取率为95%以上,出口水相酸的质量浓度为8g/L左右,产品酸的质量浓度为12g/L左右,且为纯净硫酸溶液。
实施例3
参见图1,本发明所处理的高酸铁合格液含铜7.2g/l,酸浓度23g/l,铁浓度49g/l,具体工序操作、控制条件和试验结果如下:
(1)Fe 3+还原过程控制:向合格液中通入二氧化硫,启动搅拌促使与溶液充分混合,控制通气速度60~100L/(L-液·h),反应时间4h。
(2)Fe 2+氧化水解过程控制:控制反应温度为200℃、氧分压400kPa的操作条件,反应时间2h,Fe 2+经氧化水解后生成固相赤铁矿渣(Fe 2O 3)。
(3)萃取液配置:萃取剂由胺类萃取剂、稀释剂和相调节剂组成,配方为50%三(2-乙基己基)胺(TEHA),10%磺化煤油,40%异构十三醇。
(4)采用逆流萃取工序使合格液与上述萃取液充分搅拌混合。萃取条件为温度30℃、相比A/O=1:2,经过3级萃取。反萃条件为水作为反萃剂,温度30℃、相比A/O=2:1,经过3级反萃。反萃取温度为30℃。
(5)试验结果:除铁率92%,产出的赤铁矿渣含铁65%、含铜小于0.5%、含硫小于2%,经处理后可作为炼铁或生产水泥等的原料;经3级萃取和3级反萃,硫酸总萃取率为90%以上,总反萃取率为94%以上,出口水相酸的质量浓度为9g/L左右,产品酸的质量浓度为20g/L左右,且为纯净硫酸溶液。
实施例4
参见图1,本发明所处理的高酸铁萃余液含铜1.64g/l,酸浓度17g/l,铁浓度37g/l,具体工序操作、控制条件和试验结果如下:
(1)Fe 3+还原过程控制:向合格液中通入二氧化硫,启动搅拌促使与溶液充分混合,控制通气速度60~100L/(L-液·h),反应时间3.5h。
(2)Fe 2+氧化水解过程控制:控制反应温度为200℃、氧分压400kPa的操作条件,反应时间2h,Fe 2+经氧化水解后生成固相赤铁矿渣(Fe 2O 3)。
(3)萃取液配置:萃取剂由胺类萃取剂、稀释剂和相调节剂组成,配方为45%三(2-乙基己基)胺(TEHA),20%磺化煤油,35%异构十三醇。
(4)采用逆流萃取工序使合格液与上述萃取液充分搅拌混合。萃取条件为温度30℃、相比A/O=1:2,经过3级萃取。反萃条件为水作为反萃剂,温度30℃、相比A/O=1:1,经过3级反萃。反萃取温度为30℃。
(5)试验结果:除铁率92%,产出的赤铁矿渣含铁64%、含铜小于0.5%、含硫小于2%,经处理后可作为炼铁或生产水泥等的原料;经3级萃取和3级反萃,硫酸总萃取率为90%以上,总反萃取率为95%以上,出口水相酸的质量浓度为9g/L左右,产品酸的质量浓度为15g/L左右,且为纯净硫酸溶液。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

  1. 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其特征在于,其包括以下步骤:
    步骤1:向堆浸系统合格液或萃余液中通入二氧化硫,启动搅拌机促使二氧化硫与溶液充分混合,控制通气速度10~100L/L- ·h,反应时间2~4h,将合格液或萃余液中的Fe 3+还原Fe 2+
    步骤2:控制合格液或萃余液中Fe 2+氧化水解过程反应时间为1-4h、反应温度为180~200℃、氧分压400~500kPa,Fe 2+经氧化水解后生成固相赤铁矿渣,实现铜铁分离,将固相赤铁矿渣排出堆浸系统,主要反应如下:
    2FeSO 4+0.5O 2+2H 2O=Fe 2O 3↓+2H 2SO 4  (1);
    步骤3:按一定比例的三(2-乙基己基)胺、磺化煤油和异构十三醇配置萃取液,采用三级逆流萃取工序与步骤2中除铁后液充分搅拌混合,使除铁后液中硫酸从水相被萃取到有机相,再设三级反萃,选用水作为反萃剂,将萃取产生的负载有机相与水充分搅拌混合,使负载相中酸进入水相中,获得稀酸溶液,反应方程式如下;
    Figure PCTCN2022130712-appb-100001
    Figure PCTCN2022130712-appb-100002
    步骤4:将步骤3反萃后的溶液经过澄清分离后,将浓度降低后的酸铁溶液送至铜萃取-电积系统生产阴极铜或返回堆浸系统,将所得的稀酸溶液排出堆浸系统外。
  2. 如权利要求1所述的降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其特征在于,所述步骤3中萃取液中各项试剂配置比例为:
    所述三(2-乙基己基)胺配置比例为40%-50%;
    所述磺化煤油配置比例为10%-20%;
    所述异构十三醇配置比例为35%-40%。
  3. 如权利要求2所述的降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其特征在于,在给定温度下将负载有机相经水反萃后得到回收产品纯稀硫酸溶液,再生后的有机相循环使用,所述反萃反应是步骤3中反应式(2)与(3)的逆过程。
  4. 如权利要求3所述的降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其特征在于,所述步骤3中当用水作为反萃剂时,反萃取温度为20~30℃。
  5. 如权利要求4所述的降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其特征在于,所述的萃取方式中萃取条件为温度30℃、相比A/O=1:2~1:3,经过3级萃取。
  6. 如权利要求5所述的降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其特征在于,所述的萃取方式中反萃条件为温度30℃、相比A/O=2:1~1:1,经过3级反萃。
  7. 如权利要求6所述的降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法,其特征在于,所述除铁和萃取方法适用于湿法冶金生物堆浸领域或者其他需要调解系统中溶液酸铁度的技术领域。
PCT/CN2022/130712 2022-07-20 2022-11-08 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法 WO2024016522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210862046.9 2022-07-20
CN202210862046.9A CN115161476B (zh) 2022-07-20 2022-07-20 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法

Publications (1)

Publication Number Publication Date
WO2024016522A1 true WO2024016522A1 (zh) 2024-01-25

Family

ID=83494738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130712 WO2024016522A1 (zh) 2022-07-20 2022-11-08 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法

Country Status (2)

Country Link
CN (1) CN115161476B (zh)
WO (1) WO2024016522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161476B (zh) * 2022-07-20 2023-06-02 万宝矿产有限公司 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440734A (en) * 1981-03-24 1984-04-03 Gouvernement Du Quebec Process for the recovery of sulfuric acid
US5582737A (en) * 1995-11-07 1996-12-10 Eichrom Industries, Inc. Ion exchange and regeneration process for separation and removal of iron (III) ions from aqueous sulfuric acid metal ion-containing solutions
US5670035A (en) * 1995-06-06 1997-09-23 Henkel Corporation Method for recovering copper
WO2000023629A1 (en) * 1998-10-16 2000-04-27 Mintek Process for bioleaching of copper concentrates
CN104232924A (zh) * 2014-09-25 2014-12-24 河南工信华鑫环保科技有限公司 一种铜矿石酸浸出液的提铜除铁方法
CN115161476A (zh) * 2022-07-20 2022-10-11 万宝矿产有限公司 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA953924A (en) * 1971-02-19 1974-09-03 Cominco Ltd. Hydrometallurgical process for extraction of copper and sulphur from copper-iron sulphides
CA953925A (en) * 1971-03-05 1974-09-03 Godefridus M. Swinkels Hydrometallurgical process for treating copper-iron sulphides
SU829705A1 (ru) * 1979-08-01 1981-05-15 Институт Металлургии И Обогащенияан Казахской Ccp Способ кучного выщелачивани медныхРуд
CN101191153B (zh) * 2006-11-28 2010-05-12 北京有色金属研究总院 次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺
AU2008267769B2 (en) * 2007-06-28 2012-05-31 Technological Resources Pty. Limited Leaching ores
CN101824550B (zh) * 2009-03-02 2012-05-23 姚龚斌 高纯镍萃取提纯工艺
CN102978391A (zh) * 2012-12-23 2013-03-20 河南豫光锌业有限公司 锌湿法清洁冶炼及资源综合回收利用工艺
US9683277B2 (en) * 2013-09-24 2017-06-20 Likivia Process Metalúrgicos SPA Process for preparing a ferric nitrate reagent from copper raffinate solution and use of such reagent in the leaching and/or curing of copper substances
CN103540765B (zh) * 2013-10-12 2014-12-24 中南大学 一种锌冶炼的工艺
CN103754952B (zh) * 2014-01-22 2015-08-19 同济大学 一种同步去除废水中重金属的铁基材料制备方法及应用
CN104131169B (zh) * 2014-08-07 2016-08-24 陕西煤业化工集团陕南投资开发有限公司 粉煤灰酸浸综合回收钒、钾的方法
CN105274342B (zh) * 2015-11-20 2017-12-01 湖南鑫海环保科技有限公司 一种利用废酸、废锌渣生产一水硫酸锌的工艺
CN106319228B (zh) * 2016-08-26 2018-06-19 荆门市格林美新材料有限公司 一种从含镍钴锰废渣中同步回收镍钴锰的方法
CN106957965B (zh) * 2017-05-09 2018-08-07 甘肃有色冶金职业技术学院 一种氧化铁产品的制备方法
CN107130110A (zh) * 2017-07-06 2017-09-05 万宝矿产有限公司 一种生物堆浸矿堆翻堆的方法
CN107385216B (zh) * 2017-07-20 2018-05-18 台山市化工厂有限公司 从含锌废渣制备一水硫酸锌的方法
CN107916434B (zh) * 2017-10-28 2019-11-12 株洲冶炼集团股份有限公司 一种含锑精矿的矿浆电解液的净化方法
CN108300857A (zh) * 2018-03-16 2018-07-20 山东国大黄金股份有限公司 一种从含铜酸浸液中综合回收有价金属及循环利用的方法
CN109576491B (zh) * 2018-12-25 2020-12-29 中国科学院过程工程研究所 一种硫化矿生物堆浸过程中堆内成矾降铁的方法
CN114250489B (zh) * 2022-01-05 2023-09-22 三门峡宏鑫新材料科技有限公司 一种基于电沉积法制备铜铁合金的方法
CN114645137B (zh) * 2022-03-17 2024-05-31 四川省冕宁县方兴稀土有限公司 一种铁钍废渣资源化利用的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440734A (en) * 1981-03-24 1984-04-03 Gouvernement Du Quebec Process for the recovery of sulfuric acid
US5670035A (en) * 1995-06-06 1997-09-23 Henkel Corporation Method for recovering copper
US5582737A (en) * 1995-11-07 1996-12-10 Eichrom Industries, Inc. Ion exchange and regeneration process for separation and removal of iron (III) ions from aqueous sulfuric acid metal ion-containing solutions
WO2000023629A1 (en) * 1998-10-16 2000-04-27 Mintek Process for bioleaching of copper concentrates
CN104232924A (zh) * 2014-09-25 2014-12-24 河南工信华鑫环保科技有限公司 一种铜矿石酸浸出液的提铜除铁方法
CN115161476A (zh) * 2022-07-20 2022-10-11 万宝矿产有限公司 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法

Also Published As

Publication number Publication date
CN115161476B (zh) 2023-06-02
CN115161476A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
RU2023728C1 (ru) Способ извлечения цинка, меди, свинца и серебра из цинкжелезосодержащего сульфидного сырья
CN114032397B (zh) 一种超声强化铅锌冶炼含锗烟尘还原浸出的方法
He et al. Pressure leaching of high silica Pb–Zn oxide ore in sulfuric acid medium
CN113897491B (zh) 一种综合高效处理锌浸出渣的方法
CN105543479B (zh) 一种铋冰铜的综合回收方法
WO2024016522A1 (zh) 一种降低次生硫化铜矿生物堆浸系统中酸铁浓度的方法
CN113832346B (zh) 一种高效简化处理含锗锌浸渣的方法
CN102168181B (zh) 卧式加压浸出釜以及使用其的硫化锌精矿浸出方法
CN104726724A (zh) 从红土镍矿中提取钪的方法
EA012819B1 (ru) Способ извлечения меди из медносульфидной руды
CN110016548A (zh) 钒钛磁铁矿精矿焙烧萃取提钒的方法
CN106957965B (zh) 一种氧化铁产品的制备方法
CN110585865B (zh) 利用湿法炼锌含铁沉淀渣处理锌冶炼二氧化硫烟气的方法
CN103484694A (zh) 一种从铜铋精矿中提取铋的方法
CN111235404A (zh) 一种铜萃余液生产氢氧化钴的除杂方法
CN104862503A (zh) 从红土镍矿中提取钪的方法
CN110273070B (zh) 一种硫化铜精矿氧压浸出液的除铁方法
CN111748690B (zh) 一种基于水热晶格转型的湿法冶金浸出液净化除铁的方法
CN111100996B (zh) 酸性低浓度钒液制取氧化钒的方法
CN105821208A (zh) 利用二氧化硫还原浸出含锌物料的方法
CN102730748B (zh) 一种利用中低品位氧化锌矿和氧化锌、氧化铅共生矿制备氯化铅和硫酸锌的方法
CN110295290B (zh) 一种酸浸渣搭配铅渣一釜三段氧压浸出锌的方法
CN114959260B (zh) 一种低铁锌精矿氧压浸出方法
CN101845548A (zh) 一种硫化锌精矿的臭氧常压浸出法
WO2012065406A1 (zh) 一种生物冶金过程中利用铁矾生成实现铁平衡的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951784

Country of ref document: EP

Kind code of ref document: A1