WO2024016230A1 - 信息收发方法与装置 - Google Patents

信息收发方法与装置 Download PDF

Info

Publication number
WO2024016230A1
WO2024016230A1 PCT/CN2022/106851 CN2022106851W WO2024016230A1 WO 2024016230 A1 WO2024016230 A1 WO 2024016230A1 CN 2022106851 W CN2022106851 W CN 2022106851W WO 2024016230 A1 WO2024016230 A1 WO 2024016230A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reference signal
downlink transmission
indication information
resource configuration
Prior art date
Application number
PCT/CN2022/106851
Other languages
English (en)
French (fr)
Inventor
孙刚
王昕�
Original Assignee
富士通株式会社
孙刚
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 孙刚, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2022/106851 priority Critical patent/WO2024016230A1/zh
Publication of WO2024016230A1 publication Critical patent/WO2024016230A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of this application relate to the field of communication technology.
  • millimeter wave frequency bands can provide larger bandwidth and become an important frequency band for 5G NR (New Radio) systems. Due to its shorter wavelength, millimeter waves have different propagation characteristics from traditional low-frequency bands, such as higher propagation loss, poor reflection and diffraction performance, etc. Therefore, larger antenna arrays are usually used to form shaped beams with greater gain, overcome propagation losses, and ensure system coverage.
  • the 5G NR standard designs a series of solutions for beam management such as beam scanning, beam measurement, beam reporting, and beam indication. However, when the number of transmitting and receiving beams is relatively large, the load and delay of the system will be greatly increased.
  • AI artificial intelligence
  • the transmitting end of the communication system has M beams and the receiving end has N beams.
  • M*N beams need to be measured.
  • M*N beams need to be measured.
  • Using a model (for example, AI model) to predict the optimal beam pair through a small number of beam measurement results can greatly reduce the system load and delay caused by beam measurement.
  • the network device configures the reference signal for beam measurement, and sends the reference signal to the terminal device through different downlink transmission beams for beam measurement, and the measurement result is used as the AI model input, but in addition to the measurement result, the AI model also needs to obtain the reference signal and downlink transmission beam (correspondence) associated with the measurement result. Since the reference signal is sent by the network device to the terminal device through the downlink transmission beam, therefore, The network device is aware of the corresponding relationship. However, in the existing technology (such as existing standards), the terminal device has no way to obtain the downlink transmit beam information corresponding to the reference signal used for its measurement (that is, it is unable to obtain the corresponding relationship).
  • embodiments of the present application provide an information transceiving method and device.
  • an information transceiving device which is applied to terminal equipment.
  • the device includes:
  • a first receiving unit that receives resource configuration information of a reference signal sent by a network device, where the resource configuration information includes or does not include indication information for indicating a downlink transmission beam corresponding to the reference signal;
  • the second receiving unit receives the reference signal sent by the network device.
  • an information transceiving device which is applied to network equipment.
  • the device includes:
  • a first sending unit that sends resource configuration information of the reference signal to the terminal device, where the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal;
  • a second sending unit which sends a reference signal to the terminal device.
  • a communication system including a terminal device and/or a network device.
  • the terminal device includes the information transceiver device of the foregoing aspect.
  • the network device includes the information transceiver device of another aspect. device.
  • the resource configuration information of the reference signal sent by the network device to the terminal device may or may not include indication information for indicating the downlink transmission beam corresponding to the reference signal. Therefore, The terminal equipment can determine the downlink transmission beam corresponding to the reference signal used for measurement based on the resource configuration information (that is, the correspondence between the reference signal used for measurement and the downlink transmission beam), and can effectively use the AI model to predict the optimal beam pair. It can greatly reduce the system load and delay caused by beam measurement.
  • Figure 1 is a schematic diagram of the communication system of the present application.
  • Figure 2 is a schematic diagram of transmitting beams and receiving beams in the communication system according to the embodiment of the present application;
  • Figure 3 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the transmitting beam and the receiving beam according to the embodiment of the present application.
  • FIGS 5 and 6 are schematic diagrams of downlink transmission beam identification information according to embodiments of the present application.
  • Figure 7 is a schematic diagram of downlink transmission beam angle information according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of the second logical index number according to the embodiment of the present application.
  • Figure 9 is a schematic diagram of the first logical index number in the embodiment of the present application.
  • Figure 10 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of an information transceiver device according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of an information transceiver device according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of a network device according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • communication between devices in the communication system can be carried out according to any stage of communication protocols, which may include but are not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G. , New Wireless (NR, New Radio), future 6G, etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc.
  • it may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay or low-power node (such as femeto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay or low-power node such as femeto, pico, etc.
  • base station may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device) refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • the terminal equipment may include but is not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld device, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld device machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to the side of the user or terminal, which may be a certain UE or may include one or more terminal devices as above.
  • device can refer to network equipment or terminal equipment.
  • uplink control signal and “uplink control information (UCI, Uplink Control Information)” or “physical uplink control channel (PUCCH, Physical Uplink Control Channel)” can be interchanged without causing confusion.
  • uplink data signal and “uplink data information” or “Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel)” can be interchanged;
  • downlink control signal and “downlink control information (DCI, Downlink Control Information)” or “physical downlink control channel (PDCCH, Physical Downlink Control Channel)” are interchangeable, and the terms “downlink data signal” and “downlink data information” are interchangeable.
  • Physical Downlink Shared Channel PDSCH, Physical Downlink Shared Channel
  • sending or receiving PUSCH can be understood as sending or receiving uplink data carried by PUSCH
  • sending or receiving PUCCH can be understood as sending or receiving uplink information carried by PUCCH
  • sending or receiving PRACH can be understood as sending or receiving uplink data carried by PRACH.
  • the uplink signal may include uplink data signals and/or uplink control signals, etc., and may also be called uplink transmission (UL transmission) or uplink information or uplink channel.
  • Sending an uplink transmission on an uplink resource can be understood as using the uplink resource to send the uplink transmission.
  • downlink data/signals/channels/information can be understood accordingly.
  • the high-level signaling may be, for example, Radio Resource Control (RRC) signaling; for example, it is called an RRC message (RRC message), and for example, it includes MIB, system information (system information), and dedicated RRC message; or it is called RRC IE (RRC information element).
  • RRC Radio Resource Control
  • high-level signaling may also be MAC (Medium Access Control) signaling; or it may be called MAC CE (MAC control element).
  • RRC Radio Resource Control
  • RRC message RRC message
  • MIB system information (system information), and dedicated RRC message
  • RRC IE RRC information element
  • high-level signaling may also be MAC (Medium Access Control) signaling; or it may be called MAC CE (MAC control element).
  • MAC CE Medium Access Control
  • Figure 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a terminal device and a network device as an example.
  • the communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • Figure 1 only takes two terminal devices and one network device as an example for illustration, but the embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • the terminal device 102 can send data to the network device 101, for example, using an authorized or authorization-free transmission method.
  • the network device 101 can receive data sent by one or more terminal devices 102 and feed back information to the terminal device 102, such as confirmed ACK/non-confirmed NACK information, etc.
  • the terminal device 102 can confirm the end of the transmission process based on the feedback information, or can further New data transmission is performed, or data retransmission can be performed.
  • Figure 1 shows that both terminal devices 102 and 103 are within the coverage of the network device 101, but the application is not limited thereto. Neither of the two terminal devices 102 and 103 may be within the coverage range of the network device 101, or one terminal device 102 may be within the coverage range of the network device 101 and the other terminal device 103 may be outside the coverage range of the network device 101.
  • AI models include but are not limited to: input layer (input), multiple convolutional layers, connection layer (concat), fully connected layer (FC), quantizer, etc. Among them, the processing results of multiple convolutional layers are combined in the connection layer.
  • input layer input
  • multiple convolutional layers connection layer (concat)
  • FC fully connected layer
  • quantizer quantizer
  • Figure 2 is a schematic diagram of transmitting beams and receiving beams in the communication system according to various embodiments of the present application.
  • the network device 101 may have M1 downlink transmit beams DL TX
  • the terminal device 102 may have N1 downlink receive beams DL RX.
  • the model 201 for predicting beam measurement results can be deployed on the network device 101 or the terminal device 102.
  • the model 201 can predict the measurement results of M1*N1 beams based on the measurement results of some beams.
  • the model 201 may be an AI model, for example.
  • the network device 101 may have N2 uplink receive beams (not shown in Figure 2), and the terminal device 102 may have M2 uplink transmit beams UL TX (not shown in Figure 2).
  • the network device configures a reference signal for beam measurement, and sends the reference signal to the terminal device through different downlink transmission beams for beam measurement, and the measurement result is used as an AI
  • the AI model also needs to obtain the downlink transmission beam corresponding to the reference signal associated with the measurement result. Since the AI model is deployed on the terminal device side, the terminal device does not know the downlink transmission corresponding to the reference signal. Beam, since the reference signal is sent by the network device to the terminal device through the downlink transmit beam, the network device knows the downlink transmit beam (correspondence). However, in the existing technology (such as existing standards), the terminal device has no way The downlink transmit beam information corresponding to the reference signal used for measurement is obtained (that is, the corresponding relationship cannot be obtained).
  • the embodiment of the present application provides a method for sending and receiving information, which will be explained from the terminal device side.
  • FIG 3 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application. As shown in Figure 3, the method includes:
  • the terminal device receives the resource configuration information of the reference signal sent by the network device, where the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal;
  • the terminal device receives the reference signal sent by the network device.
  • an AI model for beam prediction is deployed in the terminal device.
  • the AI model is used to predict the optimal beam pair through a small number of beam pair measurement results.
  • the input parameter of the AI model is the RSRP of some beam pairs (Reference Signal Receiving Power, reference signal receiving power) value, can also be the SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) value of some beam pairs.
  • the physical quantity of the output parameter is the RSRP or SINR of all beam pairs
  • Figure 4 is a schematic diagram of the transmitting beam, receiving beam and AI model in the embodiment of this application, as shown in Figure 4. For example, there are 12 downlink transmitting beams and 8 downlink receiving beams, totaling 96 beam pairs.
  • the UE only measured the RSRP of 24 beam pairs (6 downlink transmit beams and 4 downlink receive beams).
  • the input parameter dimension of the AI model is 24, the physical quantity is RSRP or SINR, the output parameter dimension is 96, the physical quantity is also RSRP or SINR, and the optimal beam pair can be selected from the prediction results.
  • the AI model deployed on the terminal equipment side needs to know the measurement results of the measurement reference signal and the downlink transmission beam associated with the measurement results, or the downlink transmission beam corresponding to the reference signal used for measurement. That is, the terminal equipment needs to know the corresponding relationship between the reference signal and the downlink transmission beam.
  • the above resource configuration information may include indication information used to indicate the downlink transmission beam corresponding to the reference signal.
  • the resource configuration information of the reference signal sent by the network device to the terminal device may or may not include indication information for indicating the downlink transmission beam corresponding to the reference signal. Therefore, the terminal device can configure the reference signal according to the resource.
  • the configuration information determines the downlink transmit beam corresponding to the reference signal used for measurement (that is, the correspondence between the reference signal used for measurement and the downlink transmit beam).
  • the AI model can be effectively used to predict the optimal beam pair, which can greatly reduce the cost of beam measurement. Resulting system load and delays.
  • the network device uses the resource configuration information to configure measurement resources (reference signals) for the measurement of downlink transmission beams.
  • the measurement resources (reference signals) may be reference signals such as CSI-RS and/or SSB.
  • the The configured measurement resources are a list of resource sets. Each resource set consists of one or more measurement resources (reference signals).
  • the network device can configure one or more reference signals for the terminal device for beam measurement.
  • This resource The configuration information includes a measurement resource set identifier and an identifier of one or more measurement resources that constitute the measurement resource set. The measurement resource identifier is used to identify the measurement resource or the measurement resource set identifier is used to identify the measurement resource set.
  • the existing resource configuration information contains the aforementioned identifier.
  • a new identifier indicating the downlink transmit beam corresponding to the measurement resource is added to the resource configuration information. Instruction information, thereby establishing a corresponding relationship between the reference signal and the downlink transmission beam. Described in detail below, in the following description, reference signals and measurement resources or resources may be interchanged.
  • the indication information may be based on one reference signal as a granularity, indicating the downlink transmission beam corresponding to each configured reference signal, or may be based on a reference signal set (ie, multiple reference signals) as a granularity, indicating and configuring
  • the downlink transmission beam corresponding to the reference signal set that is, the downlink transmission beam indicated by the indication information is one or more, and the downlink transmission beam indicated by the indication information corresponds to one reference signal or multiple reference signals in the reference signal set.
  • one downlink transmission beam indicated by the indication information corresponds to the one reference signal; multiple downlink transmission beams indicated by the indication information respectively correspond to the multiple reference signals;
  • the multiple downlink transmission beams are the same or different, and this is not a limitation in the embodiment of the present application.
  • the indication information can use one reference signal as the granularity to indicate the downlink transmission beam corresponding to the configured reference signal, such as the resource configuration information (represented by the information element NZP-CSI-RS-ResourceSet). ), new indication information is added to the NZP-CSI-RS-Resource corresponding to each NZP-CSI-RS-ResourceId.
  • the indication information can be represented by the information element beamIndication, which is used to indicate the downlink transmission beam TxBeam corresponding to the reference signal.
  • the indicated downlink transmit beam TxBeam corresponds to the one CSI-RS (indicated by NZP-CSI-RS-ResourceId), that is, the resource configuration information indicates the correspondence between the configured reference signal and the downlink transmit beam. relationship, where the TxBeam field is a certain downlink transmission beam identification information.
  • the above field names can also be represented by other names, and the embodiments of this application are not limited by this.
  • the NZP-CSI-RS-Resource uses abstract syntax notation ASN.1 data format can be expressed as:
  • new indication information (beamIndication) indicating the downlink transmission beam corresponding to the measurement resource (reference signal) nzp-CSI-RS-ResourceId is determined (reference Signal) nzp-CSI-RS-ResourceId and the indicated downlink transmission beam TxBeam corresponding relationship.
  • the indication information can use the reference signal set (ie, multiple reference signals) as the granularity to indicate the downlink transmission beam corresponding to the configured multiple reference signals, for example, in the resource configuration information (using New indication information is added to the information element NZP-CSI-RS-ResourceSet), which is expressed using the information element beamIndicationlist, which is used to indicate multiple downlink transmission beams TxBeam corresponding to multiple reference signals, or multiple indicated
  • the downlink transmission beam TxBeam has a one-to-one correspondence with multiple measurement resources (indicated by NZP-CSI-RS-ResourceId) in the measurement resource set list (one-to-one correspondence in the order of instructions), but the embodiment of the present application is not limited to this.
  • the NZP-CSI-RS-ResourceSet uses abstract syntax notation ASN.1 data format can be expressed as:
  • indication information (beamIndicationList) indicating the downlink transmission beam corresponding to the measurement resource (reference signal) is added to indicate multiple downlink transmission beams.
  • BeamIndicationList multiple CSI-RSs in the NZP-CSI-RS-ResourceSet and multiple downlink transmit beams in the beamIndicationList are in one-to-one correspondence in the default order.
  • Multiple downlink transmit beams indicated in beamIndicationList are the same or different.
  • the indication information can use the reference signal set (that is, multiple reference signals) as the granularity to indicate the downlink transmission beam corresponding to the configured multiple reference signals, for example, in the resource configuration information (using information element New indication information is added in CSI-SSB-ResourceSet (represented by CSI-SSB-ResourceSet).
  • the indication information is represented by the information element beamIndicationlist, which is used to indicate multiple downlink transmission beams TxBeam corresponding to multiple reference signals, or that the indicated multiple downlink transmission beams TxBeam and Multiple measurement resources (indicated by SSB-Index) in the measurement resource set list have a one-to-one correspondence (one-to-one correspondence in the order of instructions, but this is not a limitation in this embodiment of the application), that is, in the resource configuration information Indicates the corresponding relationship between multiple reference signals and multiple downlink transmit beams in the configured reference signal set, where the TxBeam field is the identification information of a certain downlink transmit beam.
  • the above field names can also be represented by other names, and the embodiments of this application are not limited by this.
  • the CSI-SSB-ResourceSet uses abstract syntax notation ASN.1 data format can be expressed as:
  • indication information (beamIndicationList) indicating the downlink transmission beam corresponding to the measurement resource (reference signal) is added to indicate multiple downlink transmission beams.
  • BeamIndicationList multiple SSBs in the CSI-SSB-ResourceSet and multiple downlink transmit beams in the beamIndicationList are in one-to-one correspondence in the default order.
  • Multiple downlink transmit beams indicated in beamIndicationList are the same or different.
  • the network device can configure multiple resource configuration information for the terminal device, and each resource configuration information configures a resource set list, that is, the network device is the terminal device.
  • the device is configured with multiple resource set lists.
  • Each resource set is composed of one or more resources (reference signals).
  • the indication information of the downlink transmission beam can be based on a measurement resource or a measurement resource set in the measurement set. This embodiment has this No restrictions.
  • the network device can configure the indication information of the downlink transmission beam at the granularity of a single measurement resource, add the indication information of the downlink transmission beam in NZP-CSI-RS-Resource, or configure the indication information of the downlink transmission beam at the granularity of a resource set.
  • the downlink transmit beam indication information can be added to NZP-CSI-RS-ResourceSet and/or CSI-SSB-ResourceSet.
  • the following takes the example of adding indication information in a resource configuration information (such as an NZP-CSI-RS-Resource or an NZP-CSI-RS-ResourceSet or a CSI-SSB-ResourceSet) to illustrate the implementation of the indication information.
  • a resource configuration information such as an NZP-CSI-RS-Resource or an NZP-CSI-RS-ResourceSet or a CSI-SSB-ResourceSet
  • the resource configuration information when the resource configuration information includes the indication information, it implicitly indicates the configuration of the indication information to enable the downlink transmission beam corresponding to the reference signal.
  • the resource configuration information does not include the indication information.
  • the configuration of the indication information for disabling the downlink transmission beam corresponding to the reference signal is implicitly indicated.
  • the resource configuration information sent by the network device indicates the instruction information to enable the downlink transmission beam corresponding to the reference signal.
  • Configuration that is, the resource configuration information includes the above indication information.
  • the resource configuration information indication sent by the network device is disabled and the above The configuration of the indication information of the downlink transmission beam corresponding to the reference signal, that is, the resource configuration information does not include the above indication information (the indication information is defaulted (omitted)), that is, the resource configuration information is still implemented in the existing manner.
  • the resource configuration information may also include enable and disable information, and the enable and disable information is used to explicitly indicate the configuration of the indication information for enabling or disabling the downlink transmission beam corresponding to the reference signal.
  • the resource configuration information when the enabling disabling information indicates enabling the configuration of the indication information of the downlink transmission beam corresponding to the reference signal, the resource configuration information includes the indication information, and when the enabling disabling information indicates disabling and When configuring the indication information of the downlink transmission beam corresponding to the reference signal, the resource configuration information does not include the indication information.
  • a 1-bit information element may be used to represent the enabling and disabling information.
  • this bit When the value of this bit is 1, it indicates the configuration of the indication information for enabling the downlink transmission beam corresponding to the reference signal. When the value of this bit is When 0, it indicates the configuration of the indication information for disabling the downlink transmission beam corresponding to the reference signal, and vice versa, or when the resource configuration information contains this 1 bit (the value of this 1 bit can be 0 or 1) , indicating the configuration of the indication information for enabling the downlink transmission beam corresponding to the reference signal. When the resource configuration information does not contain this 1 bit (the enable disabling information is defaulted (omitted)), it indicates that the information for disabling the downlink transmission beam corresponding to the reference signal is disabled.
  • the configuration of the indication information of the corresponding downlink transmission beam can also be configured vice versa, and no examples are given here.
  • the resource configuration information sent by the network device includes 1 bit of enable and disable information (and the bit value is 1) , that is, the resource configuration information includes the above instruction information.
  • the resource configuration information sent by the network device includes 1 bit of enable and disable. information (and the bit value is 0), that is, the resource configuration information does not include the above indication information (the indication information is default (omitted)), that is, the resource configuration information is different from the existing one in that it also contains 1 bit. Enable disable information.
  • the resource configuration information sent by the network device includes 1 bit of enable and disable information, that is, the resource configuration information includes the above Instruction information.
  • the resource configuration information sent by the network device does not include 1-bit enable and disable information, that is, the resource configuration information
  • the above indication information is also not included (the indication information is defaulted (omitted)), that is, the resource configuration information is still implemented using the existing method.
  • the indication granularity of the enabling and disabling information is the same as the indication granularity of the indication information of the downlink transmission beam, that is, the enabling and disabling information can be in the granularity of one reference signal, or can be in the form of a reference signal set (i.e., multiple reference signals). ) is the granularity, indicating the configuration of the indication information to enable or disable the downlink transmission beam corresponding to the reference signal.
  • the NZP-CSI-RS-Resource uses abstract syntax to mark the ASN.1 data format and can also be expressed as:
  • the new design enables disabling information, indicating the configuration of enabling or disabling the downlink transmission beam corresponding to a reference signal. If it is configured to enable (configuration
  • the resource configuration information also includes indication information. If it is configured to disable (the configuration method is as mentioned above), the indication information is omitted (default).
  • the NZP-CSI-RS-ResourceSet uses abstract syntax to mark the ASN.1 data format and can also be expressed as:
  • the new design enables disabling information, indicating whether to enable or disable the downlink transmit beam corresponding to multiple reference signals (indicated by NZP-CSI-RS-ResourceId).
  • Configuration of information If it is configured to enable (the configuration method is as described above), the resource configuration information also includes indication information. If it is configured to disable (the configuration method is as mentioned above), the indication information is omitted (missing Republic).
  • the CSI-SSB-ResourceSet uses abstract syntax to mark the ASN.1 data format and can also be expressed as:
  • the new design enables disabling information, indicating the configuration of enabling or disabling the indication information of the downlink transmit beam corresponding to multiple reference signals (indicated by SSB-Index). If If configured to enable (configuration method as described above), the resource configuration information also includes indication information. If configured to disable (configuration method as described above), the indication information is omitted (default).
  • the one downlink transmission beam TxBeam or the multiple downlink transmission beams TxBeam indicated by the above indication information may be the downlink transmission beam identification information or the downlink transmission beam angle information or the downlink transmission beam among all the downlink transmission beams in the training set. It is represented by a logical index or the second logical index of the beam pair where the downlink transmit beam is located among all the beam pairs in the training set. It should be noted that in the above example, the TxBeam is the downlink transmission beam identification information, but the TxBeam can also be the downlink transmission beam angle information or the first logical index or the second logical index. They are explained below.
  • the downlink transmission beam indication information is the downlink transmission beam identification information, including a first identification of the horizontal direction beam sequence number and a second identification of the vertical direction beam sequence number, or a third identification including the beam sequence number.
  • the downlink transmit beam is a 3D beamforming, that is, the beam can contain two dimensions: horizontal and vertical, then it can be sequentially numbered in the horizontal and vertical directions (taking 8 downlink transmit beams as an example, as shown in Figure 5 shown), therefore, the downlink transmission beam identification information includes the first identification of the horizontal direction beam sequence number and the second identification of the vertical direction beam sequence number.
  • sequential numbering can also be performed in two dimensions (taking 8 downlink transmission beams as an example, as shown in Figure 6).
  • the downlink transmission beam identification information includes the third identification of the beam sequence number.
  • Figure 5 As shown in Figure 6, 8 downlink transmission beams are taken as an example. They are numbered first in the horizontal direction and then in the vertical direction. However, the embodiments of the present application are not limited to this. They can also be numbered first in the vertical direction and then in the horizontal direction, or in other numbers. Downlink transmission beams are not explained one by one here.
  • the above-mentioned first identifier, second identifier, and third identifier may be represented by a binary code of predetermined bits.
  • the indication information when the indication information indicates multiple downlink transmission beams corresponding to the reference signal set, the indication information may be expressed as multiple downlink transmission beam identification information #1, #3, #4...,
  • the arrangement order of the plurality of downlink transmit beam identification information corresponds to the arrangement order of the plurality of reference signals in the reference signal set.
  • the downlink transmission beam indication information is the downlink transmission beam angle information, including horizontal direction beam angle information and vertical direction beam angle information.
  • the downlink transmit beam is a 3D beamforming, that is, the beam can contain two dimensions: horizontal and vertical, then the horizontal angle and vertical angle of the downlink transmit beam in space can be used to uniquely indicate the 8 downlink
  • Figure 7 is an example diagram of the downlink transmit beam angle information, as shown in Figure 6. It is assumed that there are 2 angles in the vertical direction (e.g. 45 degrees, 135 degrees) and 4 angles in the horizontal direction (e.g.-67 degrees, -22 degrees, 22 degrees, 67 degrees), therefore, the downlink transmission beam angle information includes horizontal direction beam angle information and vertical direction beam angle information.
  • the indication information indicates multiple downlink transmission beams corresponding to the reference signal set
  • the indication information may be expressed as multiple downlink transmission beam angle information #(45,-67), #(45,22), #(45 ,67).
  • the arrangement order of multiple downlink transmit beam angle information corresponds to the arrangement order of multiple reference signals in the reference signal set.
  • the resource configuration information is used for training and/or inference of AI models.
  • the instruction information can be used in the training phase or inference phase of the AI model, and the embodiments of the present application are not limited to this.
  • training data needs to be collected to train the AI model.
  • the terminal device needs to measure all downlink transmit beams and use the measurement results as label data for AI model training.
  • the AI model needs to know the measurement results.
  • the reference signal used and the downlink transmission beam corresponding to the reference signal that is to say, the network device needs to indicate all downlink transmission beams corresponding to the reference signal through the indication information.
  • the implementation of the indication information is as described above.
  • the terminal device during the inference phase of the AI model, only measures part of the downlink transmission beams, and uses the measurement results to input to the AI model to infer the optimal transmission beams. That is to say, the network device only transmits part of the downlink transmission beams.
  • the beam transmits the reference signal, that is, the indication information is used to indicate part of the downlink transmission beam corresponding to the reference signal.
  • the implementation of the indication information is as described above.
  • the indication information can also be the first logical index of the downlink transmit beam among all downlink transmit beams in the training set or the second logical index of the beam pair where the downlink transmit beam is located among all the beam pairs in the training set.
  • the AI model has collected the information of all downlink transmission beams in the training phase.
  • the terminal device has collected the measurement results of all 96 beam pairs.
  • this indication information is the first logical index or second logical index.
  • all beams in the training set can be uniformly numbered (the second logical index number or the first logical index number), and in the AI model inference phase, the first logical index or the first logical index number can be used.
  • the second logical index indicates those downlink transmit beams corresponding to the reference signal during the inference phase.
  • Figure 8 is a schematic diagram of the unified numbering of downlink receiving beams and downlink transmitting beams in the embodiment of the present application.
  • the second logical index is 1 to 96.
  • the shaded part is the downlink corresponding to the reference signal indicated by the indication information.
  • the second logical index of the beam pair where the transmit beam is located is 1, 7, 50, 56. This second logical index can indirectly indicate the downlink transmit beam.
  • Figure 9 is a schematic diagram of uniform numbering of only downlink transmission beams in the embodiment of the present application.
  • the first logical index is 1 to 12.
  • the shaded part is the downlink transmission beam corresponding to the reference signal indicated by the indication information.
  • the first logical index is 1, 2, 7, 8.
  • the first logical index may indicate the downlink transmission beam.
  • the above resource configuration information is carried by downlink control information (DCI) or radio resource control signaling RRC or media access control layer control element MAC CE.
  • DCI downlink control information
  • RRC radio resource control signaling
  • MAC CE media access control layer control element
  • the indication information and/or the enabling and disabling information may be RRC Or a new information element in the resource configuration information carried on MAC CE or DCI.
  • the resource configuration information may also include other information elements, such as the related parameter "Repetition” indicating the use of the reference signal and the tracking related parameter "trs-Info", resource mapping configuration, etc.
  • the related parameter "Repetition” indicating the use of the reference signal
  • trs-Info resource mapping configuration
  • the network device after configuring the resource configuration information of the reference signal in step 301, in step 302, the network device sends the reference signal on the downlink channel based on the resource configuration information. That is, the terminal device receives the corresponding reference signal on the corresponding time-frequency resource according to the time-frequency resource, period and other information mapped to the reference signal configured in the resource configuration information.
  • Figure 10 is a schematic diagram of an information sending and receiving method in an embodiment of the present application. As shown in Figure 10, the method includes:
  • the terminal device receives the resource configuration information sent by the network device;
  • the terminal device receives the reported configuration information sent by the network device;
  • the terminal device receives the measurement reference signal sent by the network device;
  • the terminal equipment uses the reference signal to perform beam measurement
  • the terminal device sends the measurement results as input to the AI model to obtain the prediction results;
  • the terminal device sends beam measurement reporting information to the network device.
  • the implementation of 1001 may be referred to 301, and repeated details will not be described again.
  • the network device in 1002, configure parameters required for measurement reporting, including: report quantity (Report Quantity), measurement constraint configuration, codebook configuration, group-based reporting configuration, reporting period, etc., for example, when beam management is required
  • report quantity Report Quantity
  • measurement constraint configuration codebook configuration
  • group-based reporting configuration reporting period, etc.
  • the reported amount is a combination of the following parameters: CRI-RSRP/SINR (CSI-RS-based beam management) or SSBRI-RSRP/SINR (SSB-based beam management);
  • the network device passes the downlink The channel sends a reference signal for beam measurement.
  • the terminal device measures the L1-RSRP or SINR corresponding to the downlink transmission beam through the reference signal as the measurement result.
  • the terminal device combines the measurement result and the reference used for the measurement.
  • the downlink transmit beam information corresponding to the signal and the downlink receive beam information corresponding to the measurement are input to the AI model, and one or several optimal downlink beam pairs are predicted.
  • the terminal device transmits the beam measurement report in the corresponding time-frequency resource.
  • Information (carried by UCI).
  • the reported information includes the results predicted by the AI model, such as the predicted downlink transmit beam information of one or several optimal downlink beam pairs and the corresponding measurement results.
  • the status information refers to the signal resource indicator (CSI-RS resource indicator, CRI) #1, #2, #3, #4. Since the network device side knows the correspondence between the SSB RI or CRI and the downlink transmit beam, it uses the SSB RI or CRI. One or several predicted optimal downlink transmission beams can be implicitly specified. So that the network device uses the downlink transmission beam to transmit downlink data. Regarding 1002, 1004, 1005-1006, reference can be made to the existing technology, and no examples are given here.
  • the resource configuration information of the reference signal sent by the network device to the terminal device may or may not include indication information for indicating the downlink transmission beam corresponding to the reference signal. Therefore, the terminal device can configure the reference signal according to the resource.
  • the configuration information determines the downlink transmit beam corresponding to the reference signal used for measurement (that is, the correspondence between the reference signal used for measurement and the downlink transmit beam).
  • the AI model can be effectively used to predict the optimal beam pair, which can greatly reduce the cost of beam measurement. Resulting system load and delays.
  • the embodiment of the present application provides a method for sending and receiving information, which will be described from the network device side, and the same content as the embodiment of the first aspect will not be described again.
  • Figure 11 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application. As shown in Figure 11, the method includes:
  • the network device sends the resource configuration information of the reference signal to the terminal device;
  • the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal;
  • the network device sends a reference signal to the terminal device.
  • the implementation of 1101-1102 corresponds to 301-302, which will not be described again here.
  • the resource configuration information of the reference signal sent by the network device to the terminal device may or may not include indication information for indicating the downlink transmission beam corresponding to the reference signal. Therefore, the terminal device can configure the reference signal according to the resource.
  • the configuration information determines the downlink transmit beam corresponding to the reference signal used for measurement (that is, the correspondence between the reference signal used for measurement and the downlink transmit beam).
  • the AI model can be effectively used to predict the optimal beam pair, which can greatly reduce the cost of beam measurement. Resulting system load and delays.
  • An embodiment of the present application provides an information transceiving device.
  • the device may be, for example, a terminal device, or may be some or some parts or components configured in the terminal device, and the same content as the embodiment of the first aspect will not be described again.
  • FIG 12 is a schematic diagram of an information transceiver device according to an embodiment of the present application. As shown in Figure 12, the information transceiving device 1200 includes:
  • the first receiving unit 1201 receives the resource configuration information of the reference signal sent by the network device; the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal;
  • the second receiving unit 1202 receives the reference signal sent by the network device.
  • the implementation of the first receiving unit 1201 and the second receiving unit 1202 corresponds to 301-302, which will not be described again here.
  • the information transceiving device 1200 may also include other components or modules.
  • the specific contents of these components or modules please refer to related technologies.
  • FIG. 12 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the resource configuration information of the reference signal sent by the network device to the terminal device may or may not include indication information for indicating the downlink transmission beam corresponding to the reference signal. Therefore, the terminal device can configure the reference signal according to the resource.
  • the configuration information determines the downlink transmit beam corresponding to the reference signal used for measurement (that is, the correspondence between the reference signal used for measurement and the downlink transmit beam).
  • the AI model can be effectively used to predict the optimal beam pair, which can greatly reduce the cost of beam measurement. Resulting system load and delays.
  • An embodiment of the present application provides an information transceiving device.
  • the device may be, for example, a network device, or may be one or some components or components configured on the network device.
  • the same content as in the embodiment of the second aspect will not be described again.
  • FIG 13 is a schematic diagram of an information transceiver device according to an embodiment of the present application. As shown in Figure 13, the information transceiving device 1300 includes:
  • the first sending unit 1301 sends the resource configuration information of the reference signal to the terminal device, where the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal;
  • the second sending unit 1302 sends a reference signal to the terminal device.
  • the implementation of the first sending unit 1301 and the second sending unit 1302 corresponds to 301-302, which will not be described again here.
  • the information transceiving device 1300 may also include other components or modules.
  • the specific contents of these components or modules please refer to related technologies.
  • FIG. 13 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the resource configuration information of the reference signal sent by the network device to the terminal device may or may not include indication information for indicating the downlink transmission beam corresponding to the reference signal. Therefore, the terminal device can configure the reference signal according to the resource.
  • the configuration information determines the downlink transmit beam corresponding to the reference signal used for measurement (that is, the correspondence between the reference signal used for measurement and the downlink transmit beam).
  • the AI model can be effectively used to predict the optimal beam pair, which can greatly reduce the cost of beam measurement. Resulting system load and delays.
  • An embodiment of the present application also provides a communication system. Refer to FIG. 1 . Contents that are the same as those in the first to fourth embodiments will not be described again.
  • the communication system 100 may at least include: a network device 101 and/or a terminal device 102.
  • the terminal device receives the resource configuration information of the reference signal sent by the network device, and the resource configuration information includes or does not include Instruction information used to indicate the downlink transmission beam corresponding to the reference signal; the terminal device receives the reference signal sent by the network device.
  • Figure 14 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application. As shown in Figure 14, the method includes:
  • the network device sends resource configuration information to the terminal device
  • the network device sends reported configuration information to the terminal device
  • the network device sends the measurement reference signal to the terminal device
  • the terminal equipment uses the reference signal to perform beam measurement
  • the terminal device sends the measurement results as input to the AI model for training or inference (prediction).
  • prediction When used for prediction, the prediction result is obtained;
  • the terminal device sends beam measurement reporting information to the network device
  • the network device selects a downlink transmit beam from one or several optimal downlink transmit beams to send downlink data to the terminal device.
  • the terminal device selects a downlink transmit beam based on the indication information about the downlink transmit beam in TCI (transmission configuration indicator) signaling.
  • TCI transmission configuration indicator
  • the implementation of 1401-1406 can be referred to 1001-1006, and repeated details will not be described again.
  • the terminal device measures all downlink transmit beams, obtains measurement results, and uses the measurement results of all downlink beam pairs, as well as the downlink beam pairs corresponding to each measurement result. Information is used as training data to train AI models.
  • the terminal device In the inference phase, the terminal device only measures part of the downlink transmit beam, and uses the measurement results, as well as the part of the downlink transmit beam information corresponding to the reference signal used in the measurement and the downlink receive beam information corresponding to the measurement, to input it into the AI model. The measurement results of all downlink beam pairs are extrapolated to derive the optimal downlink transmit beam.
  • the embodiment of the present application also provides a network device, which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • a network device which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • Figure 15 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the network device 1500 may include a processor 1510 (eg, a central processing unit CPU) and a memory 1520 ; the memory 1520 is coupled to the processor 1510 .
  • the memory 1520 can store various data; in addition, it also stores an information processing program 1530, and the program 1530 is executed under the control of the processor 1510.
  • the processor 1510 may be configured to execute a program to implement the information transceiving method described in the embodiment of the second aspect.
  • the processor 1510 may be configured to perform the following control: transmit the resource configuration information of the reference signal to the terminal device, where the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal; Send a reference signal to the terminal device.
  • the network device 1500 may also include: a transceiver 1540, an antenna 1550, etc.; the functions of the above components are similar to those of the existing technology and will not be described again here. It is worth noting that the network device 1500 does not necessarily include all components shown in Figure 15; in addition, the network device 1500 may also include components not shown in Figure 15, and reference can be made to the existing technology.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this and can also be other devices.
  • Figure 16 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1600 may include a processor 1610 and a memory 1620; the memory 1620 stores data and programs and is coupled to the processor 1610. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the processor 1610 may be configured to execute a program to implement the information transceiving method described in the embodiment of the first aspect.
  • the processor 1610 may be configured to perform the following control: receiving resource configuration information of a reference signal sent by a network device, where the resource configuration information includes or does not include indication information for indicating a downlink transmission beam corresponding to the reference signal. ; Receive the reference signal sent by the network device.
  • the terminal device 1600 may also include: a communication module 1630, an input unit 1640, a display 1650, and a power supply 1660.
  • the functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the terminal device 1600 does not necessarily include all components shown in Figure 16, and the above components are not required; in addition, the terminal device 1600 may also include components not shown in Figure 16, please refer to the current There is technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the information transceiving method described in the embodiment of the first aspect.
  • Embodiments of the present application also provide a storage medium storing a computer program, wherein the computer program causes a terminal device to execute the information transceiving method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the information transceiving method described in the embodiment of the second aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes a network device to execute the information transceiving method described in the embodiment of the second aspect.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application can be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • a method for sending and receiving information, applied to terminal equipment characterized in that the method includes:
  • the terminal device receives the resource configuration information of the reference signal sent by the network device, and the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal;
  • the terminal device receives the reference signal sent by the network device.
  • the resource configuration information further includes enable and disable information
  • the enable and disable information is used to enable or disable indication information of the downlink transmission beam corresponding to the reference signal. Configuration.
  • the resource configuration information includes the indication information
  • the enable disabling information indicates the configuration of the indication information for disabling the downlink transmission beam corresponding to the reference signal
  • the resource configuration information does not include the indication information
  • the indication information is downlink transmission beam identification information or downlink transmission beam angle information or the first logic of the downlink transmission beam among all downlink transmission beams in the training set Index or the second logical index of the beam pair where the downlink transmit beam is located among all beam pairs in the training set.
  • the downlink transmission beam identification information includes a first identification of a horizontal direction beam sequence number and a second identification of a vertical direction beam sequence number, or a third identification including a beam sequence number.
  • the downlink transmission beam angle information includes horizontal direction beam angle information and vertical direction beam angle information.
  • the AI model is deployed in the terminal device.
  • the indication information is the first logical index or the second logical index.
  • the downlink transmission beams indicated by the indication information include all downlink transmission beams, and the When the beam measurement results are used for inference of the AI model, the downlink transmission beam indicated by the indication information includes part of all downlink transmission beams at the end of the downlink transmission.
  • a method for sending and receiving information, applied to network equipment characterized in that the method includes:
  • the network device sends resource configuration information of the reference signal to the terminal device, where the resource configuration information includes or does not include indication information for indicating the downlink transmission beam corresponding to the reference signal;
  • the network device sends a reference signal to the terminal device.
  • resource configuration information further includes enable and disable information
  • the enable and disable information is used to enable or disable indication information of the downlink transmission beam corresponding to the reference signal. Configuration.
  • the resource configuration information includes the indication information
  • the enable disabling information indicates the configuration of the indication information for disabling the downlink transmission beam corresponding to the reference signal
  • the resource configuration information does not include the indication information
  • a network device comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the method as described in any one of appendices 16 to 19.
  • a terminal device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method described in any one of appendices 1 to 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息收发方法以及装置。该方法包括:终端设备接收网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;所述终端设备接收所述网络设备发送的参考信号。

Description

信息收发方法与装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
随着低频段频谱资源变得稀缺,毫米波频段能够提供更大带宽,成为了5G NR(New Radio,新无线)系统的重要频段。毫米波由于波长较短,具有与传统低频段不同的传播特性,例如更高的传播损耗,反射和衍射性能差等。因此通常会采用更大规模的天线阵列,以形成增益更大的赋形波束,克服传播损耗,确保系统覆盖。5G NR标准为波束管理设计了波束扫描,波束测量,波束汇报,波束指示等一系列的方案。但当收发波束数目比较大的时候,会大大增加系统的负荷和延时。
伴随着人工智能(Artificial Intelligence,AI)技术的发展,将人工智能技术应用到无线通信物理层上,来解决传统方法的难点成为当前一个技术方向。对于波束管理而言,利用AI模型,根据少量波束测量的结果预测出空间上最优的波束对,能够大幅度减少系统的负荷和延时。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
假设通信系统的发送端有M个波束,接收端有N个波束,在现有的标准中,需要对M*N个波束进行测量,当M和N数量较大时,对M*N个波束进行测量会导致较大的系统负荷和较长的延时。利用模型(例如,AI模型),通过少量的波束测量结果来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
发明人发现,如果AI模型部署在终端设备侧,网络设备配置用于波束测量的参考信号,并通过不同的下行发送波束将参考信号发送给终端设备,用于波束测量,该测量结果作为AI模型的输入,但除了该测量结果外,AI模型还需要获取与该测量结果关联的参考信号和下行发送波束(对应关系),由于参考信号是网络设备通过下行 发送波束发送给终端设备的,因此,网络设备已知该对应关系,然而现有技术(例如现有标准)中,终端设备还没有办法获知其测量使用的参考信号对应的下行发送波束信息(即无法获知该对应关系)。
针对上述问题的至少之一,本申请实施例提供一种信息收发方法以及装置。
根据本申请实施例的一个方面,提供一种信息收发装置,应用于终端设备,所述装置包括:
第一接收单元,其接收网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
第二接收单元,其接收所述网络设备发送的参考信号。
根据本申请实施例的另一个方面,提供一种信息收发装置,应用于网络设备,所述装置包括:
第一发送单元,其向终端设备发送参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
第二发送单元,其向所述终端设备发送参考信号。
根据本申请实施例的另一个方面,提供一种通信系统,包括终端设备和/或网络设备,所述终端设备包括前述一个方面的信息收发装置,所述网络设备包括前述另一个方面的信息收发装置。
本申请实施例的有益效果之一在于:网络设备向终端设备发送的参考信号的资源配置信息中可以包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息,由此,终端设备能够根据该资源配置信息确定其测量使用的参考信号对应的下行发送波束(即测量使用的参考信号与下行发送波束的对应关系),能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在, 但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请的通信系统的一示意图;
图2是本申请实施例的通信系统中发送波束和接收波束的一个示意图;
图3是本申请实施例的信息收发方法的示意图;
图4是本申请实施例的发送波束和接收波束的示意图;
图5和图6是本申请实施例的下行发送波束标识信息的示意图;
图7是本申请实施例的下行发送波束角度信息的示意图;
图8是本申请实施例的第二逻辑索引编号的示意图;
图9是本申请实施例的第一逻辑索引编号的示意图;
图10是本申请实施例的信息收发方法的示意图;
图11是本申请实施例的信息收发方法的示意图;
图12是本申请实施例的信息收发装置的示意图;
图13是本申请实施例的信息收发装置的示意图;
图14是本申请实施例的信息收发方法的示意图;
图15是本申请实施例的网络设备的示意图;
图16是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术 语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)、未来的6G等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络 并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
在以下的说明中,在不引起混淆的情况下,术语“上行控制信号”和“上行控制信息(UCI,Uplink Control Information)”或“物理上行控制信道(PUCCH,Physical Uplink Control Channel)”可以互换,术语“上行数据信号”和“上行数据信息”或“物理上行共享信道(PUSCH,Physical Uplink Shared Channel)”可以互换;
术语“下行控制信号”和“下行控制信息(DCI,Downlink Control Information)”或“物理下行控制信道(PDCCH,Physical Downlink Control Channel)”可以互换,术语“下行数据信号”和“下行数据信息”或“物理下行共享信道(PDSCH,Physical Downlink Shared Channel)”可以互换。
另外,发送或接收PUSCH可以理解为发送或接收由PUSCH承载的上行数据,发送或接收PUCCH可以理解为发送或接收由PUCCH承载的上行信息,发送或接收PRACH可以理解为发送或接收由PRACH承载的preamble;上行信号可以包括上行数据信号和/或上行控制信号等,也可以称为上行传输(UL transmission)或上行信息或上行信道。在上行资源上发送上行传输可以理解为使用该上行资源发送该上行传输。类似地,可以相应地理解下行数据/信号/信道/信息。
在本申请实施例中,高层信令例如可以是无线资源控制(RRC)信令;例如称为RRC消息(RRC message),例如包括MIB、系统信息(system information)、专用RRC消息;或者称为RRC IE(RRC information element)。高层信令例如还可以是MAC(Medium Access Control)信令;或者称为MAC CE(MAC control element)。但本申请不限于此。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,终端设备102可以向网络设备101发送数据,例如使用授权或免授权传输方式。网络设备101可以接收一个或多个终端设备102发送的数据,并向终端设备102反馈信息,例如确认ACK/非确认NACK信息等,终端设备102根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本申请不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
AI模型(或ML模型)包括但不限于:输入层(input)、多个卷积层、连接层(concat)、全连接层(FC)以及量化器等。其中,多个卷积层的处理结果在连接层进行合并,关于AI模型的具体结构可以参考现有技术,此处不再赘述。
图2是本申请各实施例的通信系统中发送波束和接收波束的一个示意图。如图2所示,在通信系统100中,以下行信道为例,网络设备101可以具有M1个下行发送波束DL TX,终端设备102可以具有N1个下行接收波束DL RX。
在本申请实施例中,如图2所示,用于预测波束测量结果的模型201可以被部署于网络设备101或终端设备102。模型201可以根据部分波束的测量结果,预测M1*N1个波束的测量结果。其中,模型201例如可以是AI模型。
此外,针对上行信道,网络设备101可以具有N2个上行接收波束(图2未示出),终端设备102可以具有M2个上行发送波束UL TX(图2未示出)。
发明人发现,模型201部署在终端设备102中时,网络设备配置用于波束测量的参考信号,并通过不同的下行发送波束将参考信号发送给终端设备,用于波束测量,该测量结果作为AI模型的输入,但除了该测量结果外,AI模型还需要获取与该测量结果关联的参考信号对应的下行发送波束,由于AI模型部署在终端设备侧,终端设备不知道该参考信号对应的下行发送波束,由于参考信号是网络设备通过下行发送波束发送给终端设备的,因此,网络设备已知该下行发送波束(对应关系),然而现有技术(例如现有标准)中,终端设备还没有办法获知其测量使用的参考信号对应的下行发送波束信息(即无法获知该对应关系)。
针对上述问题,本申请实施例提供一种信息收发方法以及装置,以下结合附图和实施例进行说明。
第一方面的实施例
本申请实施例提供一种信息收发方法,从终端设备侧进行说明。
图3是本申请实施例的信息收发方法的一示意图,如图3所示,该方法包括:
301,终端设备接收网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
302,所述终端设备接收所述网络设备发送的参考信号。
值得注意的是,以上附图3仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图3的记载。
在一些实施例中,用于波束预测的AI模型部署在终端设备中,利用该AI模型,通过少量的波束对测量结果预测最优波束对,该AI模型输入参数为部分波束对的RSRP(Reference Signal Receiving Power,参考信号接收功率)值,也可以为部分波束对 的SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)值,输出参数的物理量为所有波束对的RSRP或者SINR,图4是本申请实施例中发送波束和接收波束以及AI模型示意图,如图4所示,例如下行发送波束有12个,下行接收波束有8个,总共有96波束对。通过配置,UE只测量了其中24个波束对RSRP(6个下行发送波束和4个下行接收波束)。此时AI模型的输入参数的维度为24,物理量为RSRP或SINR,输出参数的维度为96,物理量也为RSRP或SINR,可以从预测结果中选出最优的波束对。
为了使用该AI模型用于波束预测,部署在终端设备侧的AI模型需要获知测量参考信号的测量结果,以及与测量结果关联的下行发送波束,或者说测量使用的参考信号对应的下行发送波束,即终端设备需要获知参考信号和下行发送波束的对应关系。为此,在本申请实施例中,上述资源配置信息可以包括用于指示与所述参考信号对应的下行发送波束的指示信息。
通过上述实施例,网络设备向终端设备发送的参考信号的资源配置信息中可以包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息,由此,终端设备能够根据该资源配置信息确定其测量使用的参考信号对应的下行发送波束(即测量使用的参考信号与下行发送波束的对应关系),能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
以下详细说明。
在一些实施例中,网络设备通过该资源配置信息为下行发送波束的测量配置测量资源(参考信号),该测量资源(参考信号)可以是CSI-RS和/或SSB等参考信号,例如,该配置的测量资源是资源集列表,每个资源集由一个或者多个测量资源(参考信号)组成,换句话说,网络设备可以为终端设备配置一个或多个参考信号用于波束测量,该资源配置信息中包括测量资源集标识以及构成测量资源集的一个或者多个测量资源的标识,使用该测量资源标识来标识测量资源或使用测量资源集标识来标识测量资源集。
在一些实施例中,如前所述,现有的资源配置信息中包含了前述标识,本申请实施例中,在资源配置信息中新增指示与测量资源(参考信号)对应的下行发送波束的指示信息,由此,建立参考信号与下行发送波束的对应关系。以下详细说明,在以下的说明中,参考信号和测量资源或资源可以互相替换。
在一些实施例中,该指示信息可以以一个参考信号为粒度,指示与配置的每个参考信号对应的下行发送波束,或者可以以参考信号集(即多个参考信号)为粒度,指示与配置的参考信号集对应的下行发送波束,即该指示信息指示的下行发送波束为一个或多个,该指示信息指示的下行发送波束与一个参考信号对应或者与参考信号集中的多个参考信号对应。也就是说,所述指示信息指示的一个下行发送波束与所述一个参考信号对应;所述指示信息指示的多个下行发送波束分别与所述多个参考信号对应,与多个参考信号对应的多个下行发送波束相同或不同,本申请实施例并不以此作为限制。
例如,在参考信号为CSI-RS时,指示信息可以以一个参考信号为粒度,指示与配置的参考信号对应的下行发送波束,例如该资源配置信息(使用信息元NZP-CSI-RS-ResourceSet表示)中每个NZP-CSI-RS-ResourceId所对应的NZP-CSI-RS-Resource中新增指示信息,该指示信息可以使用信息元beamIndication表示,其用于指示与参考信号对应的下行发送波束TxBeam,或者说指示的下行发送波束TxBeam与该一个CSI-RS(通过NZP-CSI-RS-ResourceId指示的)对应,即在该资源配置信息中指示了配置的该一个参考信号和下行发送波束的对应关系,其中TxBeam字段为某个下行发送波束标识信息。以上字段名称还可以使用其他名称表示,本申请实施例并不以此作为限制。该NZP-CSI-RS-Resource使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022106851-appb-000001
也就是说,在NZP-CSI-RS-Resource中,新增指示与测量资源(参考信号)nzp-CSI-RS-ResourceId对应的下行发送波束的指示信息(beamIndication),由此,确定了(参考信号)nzp-CSI-RS-ResourceId和指示的下行发送波束TxBeam的对应关系。
例如,在参考信号为CSI-RS时,指示信息可以以参考信号集(即多个参考信号)为粒度,指示与配置的多个参考信号对应的下行发送波束,例如在该资源配置信息(使用信息元NZP-CSI-RS-ResourceSet表示)中新增指示信息,该指示信息使用信息元beamIndicationlist表示,其用于指示与多个参考信号对应的多个下行发送波束TxBeam,或者说指示的多个下行发送波束TxBeam与该测量资源集列表中的多个测量资源(通过NZP-CSI-RS-ResourceId指示的)一一对应(按照指示顺序一一对应,但本申请实施例并不以此作为限制),即在该资源配置信息中指示了配置的该参考信号集中的多个参考信号和多个下行发送波束的对应关系,其中TxBeam字段为某个下行发送波束标识信息。以上字段名称还可以使用其他名称表示,本申请实施例并不以此作为限制。该NZP-CSI-RS-ResourceSet使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022106851-appb-000002
也就是说,在NZP-CSI-RS-ResourceSet中,新增指示与测量资源(参考信号)对应的下行发送波束的指示信息(beamIndicationList),指示多个下行发送波束。NZP-CSI-RS-ResourceSet中的多个CSI-RS和beamIndicationList中多个下行发送波束是按默认的顺序一一对应。beamIndicationList中指示的多个下行发送波束相同或不同。
例如,在参考信号为SSB时,指示信息可以以参考信号集(即多个参考信号)为粒度,指示与配置的多个参考信号对应的下行发送波束,例如在该资源配置信息(使用信息元CSI-SSB-ResourceSet表示)中新增指示信息,该指示信息使用信息元beamIndicationlist表示,用于指示与多个参考信号对应的多个下行发送波束TxBeam, 或者说指示的多个下行发送波束TxBeam与该测量资源集列表中的多个测量资源(通过SSB-Index指示的)一一对应(按照指示顺序一一对应,但本申请实施例并不以此作为限制),即在该资源配置信息中指示了配置的该参考信号集中的多个参考信号和多个下行发送波束的对应关系,其中TxBeam字段为某个下行发送波束标识信息。以上字段名称还可以使用其他名称表示,本申请实施例并不以此作为限制。该CSI-SSB-ResourceSet使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022106851-appb-000003
也就是说,在CSI-SSB-ResourceSet中,新增指示与测量资源(参考信号)对应的下行发送波束的指示信息(beamIndicationList),指示多个下行发送波束。CSI-SSB-ResourceSet中的多个SSB和beamIndicationList中多个下行发送波束是按默认的顺序一一对应。beamIndicationList中指示的多个下行发送波束相同或不同。
以上说明了一个资源配置信息中,指示信息的指示粒度,需要说明的是,网络设备可以为终端设备配置多个资源配置信息,每个资源配置信息中配置一个资源集列表,即网络设备为终端设备配置多个资源集列表,每个资源集由一个或者多个资源(参考信号)构成,下行发送波束的指示信息可以基于测量集中的一个测量资源或者测量资源集来进行,本实施例对此不做限制。例如网络设备可以以单个测量资源为粒度来配置下行发送波束的指示信息,可在NZP-CSI-RS-Resource中添加下行发送波束的指示信息,或以资源集为粒度来配置下行发送波束的指示信息,可在NZP-CSI-RS-ResourceSet和/或CSI-SSB-ResourceSet添加下行发送波束的指示信息。
以下以一个资源配置信息(例如一个NZP-CSI-RS-Resource或一个NZP-CSI-RS-ResourceSet或一个CSI-SSB-ResourceSet)中新增指示信息为例对该指 示信息的实施方式进行说明。
在一些实施例中,在所述资源配置信息包括所述指示信息时,隐式地指示使能与所述参考信号对应的下行发送波束的指示信息的配置,在所述资源配置信息不包括所述指示信息(指示信息缺省(省略))时,隐式地指示禁用与所述参考信号对应的下行发送波束的指示信息的配置。
例如,在用于波束预测的AI模型部署在终端设备,即终端设备需要使用AI模型进行波束预测时,网络设备发送的资源配置信息指示使能与所述参考信号对应的下行发送波束的指示信息的配置,即该资源配置信息包括上述指示信息,在用于波束预测的AI模型部署在网络设备,或者不需要使用AI模型预测最优波束时,网络设备发送的资源配置信息指示禁用与所述参考信号对应的下行发送波束的指示信息的配置,即该资源配置信息不包括上述指示信息(指示信息缺省(省略)),也就是该资源配置信息仍采用现有的方式实现。
在一些实施例中,该资源配置信息还可以包括使能禁用信息,所述使能禁用信息用于显式地指示使能或禁用与所述参考信号对应的下行发送波束的指示信息的配置。其中,在所述使能禁用信息指示使能与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息包括所述指示信息,在所述使能禁用信息指示禁用与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息不包括所述指示信息。例如,可以使用1比特信息元来表示该使能禁用信息,在该比特的值为1时,指示使能与所述参考信号对应的下行发送波束的指示信息的配置,在该比特的值为0时,指示禁用与所述参考信号对应的下行发送波束的指示信息的配置,反之亦可,或者,在资源配置信息中包含该1比特(该1比特的值为0或1均可)时,指示使能与所述参考信号对应的下行发送波束的指示信息的配置,在资源配置信息中不包含该1比特(使能禁用信息缺省(省略))时,指示禁用与所述参考信号对应的下行发送波束的指示信息的配置,反之亦可,此处不再一一举例。
例如,在用于波束预测的AI模型部署在终端设备,即终端设备需要使用AI模型进行波束预测时,网络设备发送的资源配置信息中包括1bit的使能禁用信息(且该比特值为1),即该资源配置信息包括上述指示信息,在用于波束预测的AI模型部署在网络设备,或者不需要使用AI模型预测最优波束时,网络设备发送的资源配置信息中包括1bit的使能禁用信息(且该比特值为0),即该资源配置信息不包括上述指示 信息(指示信息缺省(省略)),也就是该资源配置信息与现有不同之处在于,还包含了1比特的使能禁用信息。
例如,在用于波束预测的AI模型部署在终端设备,即终端设备需要使用AI模型进行波束预测时,网络设备发送的资源配置信息中包括1bit的使能禁用信息,即该资源配置信息包括上述指示信息,在用于波束预测的AI模型部署在网络设备,或者不需要使用AI模型预测最优波束时,网络设备发送的资源配置信息中不包括1bit的使能禁用信息,即该资源配置信息也不包括上述指示信息(指示信息缺省(省略)),也就是该资源配置信息仍采用现有的方式实现。
在一些实施例中,该使能禁用信息的指示粒度和下行发送波束的指示信息的指示粒度相同,即使能禁用信息可以以一个参考信号为粒度,或者可以以参考信号集(即多个参考信号)为粒度,指示使能或禁用与所述参考信号对应的下行发送波束的指示信息的配置。
例如,在以一个参考信号为粒度指示时,如前所述,该NZP-CSI-RS-Resource使用抽象语法标记ASN.1数据格式还可以表示为:
Figure PCTCN2022106851-appb-000004
也就是说,在NZP-CSI-RS-Resource中,新设计使能禁用信息,指示使能或禁用与一个参考信号对应的下行发送波束的指示信息的配置,如果被配置为使能enable(配置方式如前所述),则资源配置信息还包括指示信息,如果被配置为禁用disable(配置方式如前所述),则指示信息省略(缺省)。
例如,在以参考信号集(即多个参考信号)为粒度指示时,如前所述,该NZP-CSI-RS-ResourceSet使用抽象语法标记ASN.1数据格式还可以表示为:
Figure PCTCN2022106851-appb-000005
也就是说,在NZP-CSI-RS-ResourceSet中,新设计使能禁用信息,指示使能或禁用与多个参考信号(通过NZP-CSI-RS-ResourceId指示的)对应的下行发送波束的指示信息的配置,如果被配置为使能enable(配置方式如前所述),则资源配置信息还包括指示信息,如果被配置为禁用disable(配置方式如前所述),则指示信息省略(缺省)。
例如,在以参考信号集(即多个参考信号)为粒度指示时,如前所述,该CSI-SSB-ResourceSet使用抽象语法标记ASN.1数据格式还可以表示为:
Figure PCTCN2022106851-appb-000006
也就是说,在CSI-SSB-ResourceSet中,新设计使能禁用信息,指示使能或禁用 与多个参考信号(通过SSB-Index指示的)对应的下行发送波束的指示信息的配置,如果被配置为使能enable(配置方式如前所述),则资源配置信息还包括指示信息,如果被配置为禁用disable(配置方式如前所述),则指示信息省略(缺省)。
以上使能禁用信息,指示信息的名称仅为示例说明,本申请实施例并不以此作为限制。
在一些实施例中,上述指示信息指示的一个下行发送波束TxBeam或多个下行发送波束TxBeam可以是下行发送波束标识信息或下行发送波束角度信息或下行发送波束在训练集所有下行发送波束中的第一逻辑索引或下行发送波束所在波束对在训练集所有波束对中的第二逻辑索引来表示。需要说明的是,以上示例中,以TxBeam为下行发送波束标识信息为例,但该TxBeam还可以是下行发送波束角度信息或第一逻辑索引或第二逻辑索引。以下分别说明。
例如,下行发送波束指示信息是下行发送波束标识信息,包括水平方向波束序号第一标识和垂直方向波束序号第二标识,或者包括波束序号的第三标识。其中,如果下行发送波束是3D的波束赋形,即波束可以包含水平方向和垂直方向2个维度,则可以在水平和垂直方向分别进行顺序编号(以8个下行发送波束为例,如图5所示),因此,下行发送波束标识信息包括水平方向波束序号第一标识和垂直方向波束序号第二标识。或者,也可以2个维度统一进行顺序编号(以8个下行发送波束为例,如图6所示),因此,下行发送波束标识信息包括波束序号的第三标识,需要说明的是,图5和图6中以8个下行发送波束为例,先水平方向后垂直方向的顺序编号,但本申请实施例并不以此作为限制,也可以是先垂直方向再水平方向,或者是其他数量的下行发送波束,此处不再一一示例。上述第一标识、第二标识、第三标识可以使用预定比特的二进制编码表示。例如,在指示信息指示与参考信号集对应的多个下行发送波束时,该指示信息可以表示为多个下行发送波束标识信息#1,#3,#4.........,多个下行发送波束标识信息的排列顺序与参考信号集中的多个参考信号排列顺序一一对应。
例如,下行发送波束指示信息是下行发送波束角度信息,包括水平方向波束角度信息和垂直方向波束角度信息。其中,如果下行发送波束是3D的波束赋形,即波束可以包含水平方向和垂直方向2个维度,则可以使用下行发送波束在空间上的水平方向角度和垂直方向角度唯一指示,以8个下行发送波束为例,图7是下行发送波束角度信息示例图,如图6所示,假设垂直方向有2个角度(e.g.45度,135度),水平 方向有4个角度(e.g-67度,-22度,22度,67度),因此,下行发送波束角度信息包括水平方向波束角度信息和垂直方向波束角度信息,需要说明的是,图7中以8个下行发送波束,垂直方向2个角度,水平方向4个角度为例,但本申请实施例并不以此作为限制,此处不再一一示例。上述水平方向波束角度信息和垂直方向波束角度信息可以使用预定比特的二进制编码表示。例如,在指示信息指示与参考信号集对应的多个下行发送波束时,该指示信息可以表示为多个下行发送波束角度信息#(45,-67),#(45,22),#(45,67).........,多个下行发送波束角度信息的排列顺序与参考信号集中的多个参考信号排列顺序一一对应。
以上对于下行发送波束采用显式的方式指示,但本申请并不以此作为限制,还可以采用隐式的方式指示下行发送波束。
在一些实施例中,所述资源配置信息用于AI模型的训练和/或推理。
以上实施方式中,指示信息可以用于AI模型的训练阶段或推理阶段,本申请实施例并不以此作为限制。
在一些实施例中,在AI模型的训练阶段,需要收集训练数据来训练AI模型,终端设备需要测量所有的下行发送波束,并将测量结果作为AI模型训练的标签数据,AI模型需要知道测量结果使用的参考信号以及与该参考信号对应的下行发送波束,也就是说,网络设备需要通过该指示信息指示与该参考信号对应的所有下行发送波束,该指示信息的实施方式如前所述。
在一些实施例中,在AI模型的推理阶段,终端设备仅对部分下行发送波束进行测量,并利用测量结果输入至AI模型,推断最优发送波束,也就是说,网络设备只为部分下行发送波束发送参考信号,即通过该指示信息指示与参考信号对应的部分下行发送波束,该指示信息的实施方式如前所述。
此外,在AI模型的推理阶段,该指示信息还可以是下行发送波束在训练集所有下行发送波束中的第一逻辑索引或下行发送波束所在波束对在训练集所有波束对中的第二逻辑索引,其中,假设AI模型在训练阶段,已经收集了所有下行发送波束的信息,如图4所示,终端设备收集了所有96个波束对的测量结果,在推理阶段,该指示信息是第一逻辑索引或者第二逻辑索引。
在一些实施例中,可以在AI模型的训练阶段,对训练集中的所有波束进行统一编号(第二逻辑索引编号或第一逻辑索引编号),在AI模型推理阶段,可以使用第一 逻辑索引或第二逻辑索引指示在推理阶段与参考信号对应的那些下行发送波束。
图8是本申请实施例中对下行接收波束和下行发送波束进行统一编号示意图,一共有96个波束对,第二逻辑索引为1~96,阴影部分为指示信息指示的与参考信号对应的下行发送波束所在波束对的第二逻辑索引1,7,50,56,该第二逻辑索引可以间接指示下行发送波束。
图9是本申请实施例中只对下行发送波束统一编号示意图,一共有12个下行发送波束,第一逻辑索引为1~12,阴影部分为指示信息指示的与参考信号对应的下行发送波束的第一逻辑索引1,2,7,8,该第一逻辑索引可以指示下行发送波束。
在一些实施例中,上述资源配置信息由下行控制信息(DCI)或无线资源控制信令RRC或媒体接入控制层控制元素MAC CE承载,例如该指示信息和/或使能禁用信息可以是RRC或MAC CE或DCI上承载的资源配置信息中新增的信息元。该资源配置信息中还可以包括其他信息元,例如指示使用参考信号的相关参数“Repetition”(重复)和跟踪相关参数“trs-Info”,资源映射配置等,具体可以参考现有技术,此处不再一一举例。
在一些实施例中,在301中配置了参考信号的资源配置信息后,在302中,网络设备基于该资源配置信息在下行信道发送该参考信号。也就是,终端设备根据资源配置信息中配置的参考信号映射的时频资源、周期等信息,在对应的时频资源上接收对应的参考信号。
图10是本申请实施例中信息收发方法示意图,如图10所示,该方法包括:
1001,终端设备接收网络设备发送的资源配置信息;
1002,终端设备接收网络设备发送的上报配置信息;
1003,终端设备接收网络设备发送的测量参考信号;
1004,终端设备使用该参考信号进行波束测量;
1005,终端设备将测量结果作为输入送入AI模型,得到预测结果;
1006,终端设备向网络设备发送波束测量上报信息。
在一些实施例中,1001的实施方式可以参考301,重复之处不再赘述。
在一些实施例中,在1002中,配置测量上报所需要的参数,包括:上报量(Report Quantity)、测量约束配置、码本配置、基于组的上报配置、上报周期等,例如在需要波束管理时,该上报量为以下参数的组合:CRI-RSRP/SINR(基于CSI-RS的波束管 理)或SSBRI-RSRP/SINR(基于SSB的波束管理);在1003(302)中,网络设备通过下行信道发送用于波束测量的参考信号,在1004中,终端设备通过该参考信号测量对应下行发送波束的L1-RSRP或SINR作为测量结果,在1005中,终端设备将测量结果和该测量使用的参考信号对应的下行发送波束信息以及该测量对应的下行接收波束信息输入至AI模型,预测得到一个或几个最优的下行波束对,在1006中,终端设备在相应的时频资源发送波束测量上报信息(由UCI承载),该上报信息中包括AI模型预测的结果,例如包括预测得到的一个或几个最优的下行波束对的下行发送波束信息以及对应的测量结果,例如,该上报信息中包括测量结果RSRP(Reference Signal Receiving Power,参考信号接收功率)值#1,#2,#3,#4,以及与测量结果RSRP关联的同步信号块资源指示(SSB resource indicator,SSB RI)或者信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)#1,#2,#3,#4,由于网络设备侧知道SSB RI或者CRI和下行发送波束的对应关系,因此通过SSB RI或CRI能够隐式的指明预测得到的一个或几个最优的下行发送波束。以便网络设备使用该下行发送波束进行下行数据的发送。关于1002,1004,1005-1006可以参考现有技术,此处不再一一示例。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
通过上述实施例,网络设备向终端设备发送的参考信号的资源配置信息中可以包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息,由此,终端设备能够根据该资源配置信息确定其测量使用的参考信号对应的下行发送波束(即测量使用的参考信号与下行发送波束的对应关系),能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
第二方面的实施例
本申请实施例提供一种信息收发方法,从网络设备侧进行说明,与第一方面的实施例相同的内容不再赘述。
图11是本申请实施例的信息收发方法的一示意图,如图11所示,该方法包括:
1101,网络设备向终端设备发送参考信号的资源配置信息;该资源配置信息包括 或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
1102,该网络设备向所述终端设备发送参考信号。
值得注意的是,以上附图11仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11的记载。
在一些实施例中,1101-1102的实施方式与301-302对应,此处不再赘述。
在一些实施例中,上述资源配置信息的实施方式可以参考第一方面的实施例,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
通过上述实施例,网络设备向终端设备发送的参考信号的资源配置信息中可以包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息,由此,终端设备能够根据该资源配置信息确定其测量使用的参考信号对应的下行发送波束(即测量使用的参考信号与下行发送波束的对应关系),能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
第三方面的实施例
本申请实施例提供一种信息收发装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一方面的实施例相同的内容不再赘述。
图12是本申请实施例的信息收发装置的一示意图。如图12所示,信息收发装置1200包括:
第一接收单元1201,其接收网络设备发送的参考信号的资源配置信息;该资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
第二接收单元1202,其接收所述网络设备发送的参考信号。
在一些实施例中,第一接收单元1201和第二接收单元1202的实施方式与301-302对应,此处不再赘述。
在一些实施例中,上述资源配置信息的实施方式可以参考第一方面的实施例,此 处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信息收发装置1200还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图12中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
通过上述实施例,网络设备向终端设备发送的参考信号的资源配置信息中可以包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息,由此,终端设备能够根据该资源配置信息确定其测量使用的参考信号对应的下行发送波束(即测量使用的参考信号与下行发送波束的对应关系),能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
第四方面的实施例
本申请实施例提供一种信息收发装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件,与第二方面的实施例相同的内容不再赘述。
图13是本申请实施例的信息收发装置的一示意图。如图13所示,信息收发装置1300包括:
第一发送单元1301,其向终端设备发送参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
第二发送单元1302,其向所述终端设备发送参考信号。
在一些实施例中,第一发送单元1301和第二发送单元1302的实施方式与301-302对应,此处不再赘述。
在一些实施例中,上述资源配置信息的实施方式可以参考第一方面的实施例,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信息收发装置1300还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图13中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
通过上述实施例,网络设备向终端设备发送的参考信号的资源配置信息中可以包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息,由此,终端设备能够根据该资源配置信息确定其测量使用的参考信号对应的下行发送波束(即测量使用的参考信号与下行发送波束的对应关系),能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一至四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100至少可以包括:网络设备101和/或终端设备102,所述终端设备接收所述网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;所述终端设备接收所述网络设备发送的参考信号。
在一些实施例中,上述资源配置信息的实施方式可以参考第一方面的实施例,此处不再赘述。
图14是本申请实施例的信息收发方法示意图,如图14所示,该方法包括:
1401,网络设备向终端设备发送资源配置信息;
1402,网络设备向终端设备发送上报配置信息;
1403,网络设备向终端设备发送测量参考信号;
1404,终端设备使用该参考信号进行波束测量;
1405,终端设备将测量结果作为输入送入AI模型,用于训练或者推理(预测),在用于预测时,得到预测结果;
1406,终端设备向网络设备发送波束测量上报信息;
1407,网络设备从一个或几个最优下行发送波束中,选择一个下行发送波束发送下行数据给终端设备,终端设备根据TCI(transmission configuration indicator)信令中关于该下行发送波束的指示信息,选择对应该下行发送波束中的下行接收波束接收该下行数据。
在一些实施例中,1401-1406的实施方式可以参考1001-1006,重复之处不再赘述。
在一些实施例中,在1404-1405中,在训练阶段,终端设备对所有下行发送波束进行测量,得到测量结果,并使用所有下行波束对的测量结果,以及与各测量结果对应的下行波束对信息作为训练数据,训练AI模型。在推理阶段,终端设备仅对部分下行发送波束进行测量,并利用测量结果,以及与该测量使用的参考信号对应的该部分下行发送波束信息以及该测量对应的下行接收波束信息输入至AI模型,推断所有下行波束对的测量结果,进而得出最优下行发送波束。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图15是本申请实施例的网络设备的构成示意图。如图15所示,网络设备1500可以包括:处理器1510(例如中央处理器CPU)和存储器1520;存储器1520耦合到处理器1510。其中该存储器1520可存储各种数据;此外还存储信息处理的程序1530,并且在处理器1510的控制下执行该程序1530。
例如,处理器1510可以被配置为执行程序而实现如第二方面的实施例所述的信息收发方法。例如处理器1510可以被配置为进行如下的控制:向终端设备发送参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;向所述终端设备发送参考信号。
此外,如图15所示,网络设备1500还可以包括:收发机1540和天线1550等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备 1500也并不是必须要包括图15中所示的所有部件;此外,网络设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图16是本申请实施例的终端设备的示意图。如图16所示,该终端设备1600可以包括处理器1610和存储器1620;存储器1620存储有数据和程序,并耦合到处理器1610。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1610可以被配置为执行程序而实现如第一方面的实施例所述的信息收发方法。例如处理器1610可以被配置为进行如下的控制:接收网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;接收所述网络设备发送的参考信号。
如图16所示,该终端设备1600还可以包括:通信模块1630、输入单元1640、显示器1650、电源1660。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1600也并不是必须要包括图16中所示的所有部件,上述部件并不是必需的;此外,终端设备1600还可以包括图16中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面的实施例所述的信息收发方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的信息收发方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第二方面的实施例所述的信息收发方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第二方面的实施例所述的信息收发方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模 块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种信息收发方法,应用于终端设备,其特征在于,所述方法包括:
所述终端设备接收网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
所述终端设备接收所述网络设备发送的参考信号。
2.根据附记1所述的方法,其中,在所述资源配置信息包括所述指示信息时, 指示使能与所述参考信号对应的下行发送波束的指示信息的配置,在所述资源配置信息不包括所述指示信息时,指示禁用与所述参考信号对应的下行发送波束的指示信息的配置。
3.根据附记1所述的方法,其中,所述资源配置信息还包括使能禁用信息,所述使能禁用信息用于使能或禁用与所述参考信号对应的下行发送波束的指示信息的配置。
4.根据附记3所述的方法,其中,在所述使能禁用信息指示使能与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息包括所述指示信息,在所述使能禁用信息指示禁用与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息不包括所述指示信息。
5.根据附记1至4任一项所述的方法,其中,所述指示信息指示的下行发送波束为一个或多个。
6.根据附记5所述的方法,其中,所述指示信息指示的下行发送波束与一个参考信号对应或者与参考信号集中的多个参考信号对应。
7.根据附记6所述的方法,其中,所述指示信息指示的一个下行发送波束与所述一个参考信号对应;所述指示信息指示的多个下行发送波束分别与所述多个参考信号对应。
8.根据附记1至7任一项所述的方法,其中,所述参考信号是CSI-RS或SSB。
9.根据附记1至8任一项所述的方法,其中,所述指示信息是下行发送波束标识信息或下行发送波束角度信息或下行发送波束在训练集所有下行发送波束中的第一逻辑索引或下行发送波束所在波束对在训练集所有波束对中的第二逻辑索引。
10.根据附记9所述的方法,其中,所述下行发送波束标识信息包括水平方向波束序号第一标识和垂直方向波束序号第二标识,或者包括波束序号的第三标识。
11.根据附记9所述的方法,其中,所述下行发送波束角度信息包括水平方向波束角度信息和垂直方向波束角度信息。
12.根据附记1至11任一项所述的方法,其中,所述参考信号用于波束测量,所述波束测量的结果用于AI模型的训练和/或推理。
13.根据附记12所述的方法,所述AI模型部署在所述终端设备中。
14.根据附记9至13任一项所述的方法,其中,在波束测量的结果用于AI模型 的推理时,所述指示信息是第一逻辑索引或者第二逻辑索引。
15.根据附记12至14任一项所述的方法,其中,所述波束测量的结果用于AI模型的训练时,所述指示信息指示的下行发送波束包括所有的下行发送波束,所述波束测量的结果用于AI模型的推理时,所述指示信息指示的下行发送波束包括所有下行发送波束中的部分下行发送结束。
16.一种信息收发方法,应用于网络设备,其特征在于,所述方法包括:
所述网络设备向终端设备发送参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
所述网络设备向所述终端设备发送参考信号。
17.根据附记16所述的方法,其中,在所述资源配置信息包括所述指示信息时,指示使能与所述参考信号对应的下行发送波束的指示信息的配置,在所述资源配置信息不包括所述指示信息时,指示禁用与所述参考信号对应的下行发送波束的指示信息的配置。
18.根据附记16所述的方法,其中,所述资源配置信息还包括使能禁用信息,所述使能禁用信息用于使能或禁用与所述参考信号对应的下行发送波束的指示信息的配置。
19.根据附记18所述的方法,其中,在所述使能禁用信息指示使能与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息包括所述指示信息,在所述使能禁用信息指示禁用与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息不包括所述指示信息。
20.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记16至19任一项所述的方法。
21.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至15任一项所述的方法。

Claims (20)

  1. 一种信息收发装置,应用于终端设备,其特征在于,所述装置包括:
    第一接收单元,其接收网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
    第二接收单元,其接收所述网络设备发送的参考信号。
  2. 根据权利要求1所述的装置,其中,在所述资源配置信息包括所述指示信息时,指示使能与所述参考信号对应的下行发送波束的指示信息的配置,在所述资源配置信息不包括所述指示信息时,指示禁用与所述参考信号对应的下行发送波束的指示信息的配置。
  3. 根据权利要求1所述的装置,其中,所述资源配置信息还包括使能禁用信息,所述使能禁用信息用于使能或禁用与所述参考信号对应的下行发送波束的指示信息的配置。
  4. 根据权利要求3所述的装置,其中,在所述使能禁用信息指示使能与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息包括所述指示信息,在所述使能禁用信息指示禁用与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息不包括所述指示信息。
  5. 根据权利要求1所述的装置,其中,所述指示信息指示的下行发送波束为一个或多个。
  6. 根据权利要求5所述的装置,其中,所述指示信息指示的下行发送波束与一个参考信号对应或者与参考信号集中的多个参考信号对应。
  7. 根据权利要求6所述的装置,其中,所述指示信息指示的一个下行发送波束与所述一个参考信号对应;所述指示信息指示的多个下行发送波束分别与所述多个参考信号对应。
  8. 根据权利要求1所述的装置,其中,所述参考信号是CSI-RS或SSB。
  9. 根据权利要求1所述的装置,其中,所述指示信息是下行发送波束标识信息或下行发送波束角度信息或下行发送波束在训练集所有下行发送波束中的第一逻辑索引或下行发送波束所在波束对在训练集所有波束对中的第二逻辑索引。
  10. 根据权利要求9所述的装置,其中,所述下行发送波束标识信息包括水平方 向波束序号第一标识和垂直方向波束序号第二标识,或者包括波束序号的第三标识。
  11. 根据权利要求9所述的装置,其中,所述下行发送波束角度信息包括水平方向波束角度信息和垂直方向波束角度信息。
  12. 根据权利要求1所述的装置,其中,所述参考信号用于波束测量,所述波束测量的结果用于AI模型的训练和/或推理。
  13. 根据权利要求12所述的装置,所述AI模型部署在所述终端设备中。
  14. 根据权利要求9所述的装置,其中,在波束测量的结果用于AI模型的推理时,所述指示信息是第一逻辑索引或者第二逻辑索引。
  15. 根据权利要求12所述的装置,其中,所述波束测量的结果用于AI模型的训练时,所述指示信息指示的下行发送波束包括所有的下行发送波束,所述波束测量的结果用于AI模型的推理时,所述指示信息指示的下行发送波束包括所有下行发送波束中的部分下行发送结束。
  16. 一种信息收发装置,应用于网络设备,其特征在于,所述装置包括:
    第一发送单元,其向终端设备发送参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;
    第二发送单元,其向所述终端设备发送参考信号。
  17. 根据权利要求16所述的装置,其中,在所述资源配置信息包括所述指示信息时,指示使能与所述参考信号对应的下行发送波束的指示信息的配置,在所述资源配置信息不包括所述指示信息时,指示禁用与所述参考信号对应的下行发送波束的指示信息的配置。
  18. 根据权利要求16所述的装置,其中,所述资源配置信息还包括使能禁用信息,所述使能禁用信息用于使能或禁用与所述参考信号对应的下行发送波束的指示信息的配置。
  19. 根据权利要求18所述的装置,其中,在所述使能禁用信息指示使能与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息包括所述指示信息,在所述使能禁用信息指示禁用与所述参考信号对应的下行发送波束的指示信息的配置时,所述资源配置信息不包括所述指示信息。
  20. 一种通信系统,包括网络设备和/或终端设备,其特征在于,所述终端设备接收所述网络设备发送的参考信号的资源配置信息,所述资源配置信息包括或不包括用于指示与所述参考信号对应的下行发送波束的指示信息;所述终端设备接收所述网络设备发送的参考信号。
PCT/CN2022/106851 2022-07-20 2022-07-20 信息收发方法与装置 WO2024016230A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106851 WO2024016230A1 (zh) 2022-07-20 2022-07-20 信息收发方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106851 WO2024016230A1 (zh) 2022-07-20 2022-07-20 信息收发方法与装置

Publications (1)

Publication Number Publication Date
WO2024016230A1 true WO2024016230A1 (zh) 2024-01-25

Family

ID=89616637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106851 WO2024016230A1 (zh) 2022-07-20 2022-07-20 信息收发方法与装置

Country Status (1)

Country Link
WO (1) WO2024016230A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018233541A1 (zh) * 2017-06-20 2018-12-27 中国移动通信有限公司研究院 Csi传输方法、装置、计算机可读存储介质
CN110401471A (zh) * 2017-11-17 2019-11-01 华为技术有限公司 通信方法及装置
US20210258942A1 (en) * 2020-02-13 2021-08-19 Qualcomm Incorporated Common beam training for a group of component carriers
US20210377774A1 (en) * 2019-02-15 2021-12-02 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
CN113785508A (zh) * 2019-06-14 2021-12-10 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2022021445A1 (zh) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 测量的方法、终端设备及网络设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018233541A1 (zh) * 2017-06-20 2018-12-27 中国移动通信有限公司研究院 Csi传输方法、装置、计算机可读存储介质
CN110401471A (zh) * 2017-11-17 2019-11-01 华为技术有限公司 通信方法及装置
CN110401470A (zh) * 2017-11-17 2019-11-01 华为技术有限公司 通信方法及装置
US20210377774A1 (en) * 2019-02-15 2021-12-02 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
CN113785508A (zh) * 2019-06-14 2021-12-10 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US20210258942A1 (en) * 2020-02-13 2021-08-19 Qualcomm Incorporated Common beam training for a group of component carriers
WO2022021445A1 (zh) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 测量的方法、终端设备及网络设备

Similar Documents

Publication Publication Date Title
CN113228731B (zh) 指示信道状态信息的测量目的的方法、装置和系统
WO2018082641A1 (zh) 传输信息的方法和设备
WO2020207269A1 (zh) 干扰测量的方法和装置
CN113068260B (zh) 发送上行信号的方法和设备
US20220006539A1 (en) Signal transmission method, apparatus, electronic device and computer readable storage medium
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
WO2021052473A1 (zh) 通信方法和通信装置
US20210168636A1 (en) Method for assessing radio link quality, parameter configuration method, apparatuses thereof and system
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
WO2020248101A1 (zh) 上报csi的方法和终端设备
WO2018059470A1 (zh) 传输信息的方法和设备
WO2020029160A1 (zh) 信号上报的方法、终端设备和网络设备
WO2024016230A1 (zh) 信息收发方法与装置
WO2022028501A1 (zh) 一种信号传输方法、装置及存储介质
WO2024000156A1 (zh) 信息收发方法与装置
WO2021017893A1 (zh) 波束测量方法及装置
WO2024031290A1 (zh) 信息收发方法与装置
WO2023206272A1 (zh) 波束信息的发送和接收方法、装置和通信系统
WO2024098184A1 (zh) 信息收发方法与装置
CN115473614A (zh) 一种csi上报方法及装置、终端设备、网络设备
WO2024060078A1 (zh) 信息收发方法与装置
WO2023236143A1 (zh) 信息收发方法与装置
WO2023201460A1 (zh) 参数发送和接收的方法、装置和通信系统
WO2023206445A1 (zh) Ai监测装置以及方法
WO2021159386A1 (zh) 上行信号的发送和接收方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951507

Country of ref document: EP

Kind code of ref document: A1