WO2024031290A1 - 信息收发方法与装置 - Google Patents

信息收发方法与装置 Download PDF

Info

Publication number
WO2024031290A1
WO2024031290A1 PCT/CN2022/110977 CN2022110977W WO2024031290A1 WO 2024031290 A1 WO2024031290 A1 WO 2024031290A1 CN 2022110977 W CN2022110977 W CN 2022110977W WO 2024031290 A1 WO2024031290 A1 WO 2024031290A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal set
information
indication information
terminal device
Prior art date
Application number
PCT/CN2022/110977
Other languages
English (en)
French (fr)
Inventor
孙刚
王昕�
Original Assignee
富士通株式会社
孙刚
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 孙刚, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2022/110977 priority Critical patent/WO2024031290A1/zh
Publication of WO2024031290A1 publication Critical patent/WO2024031290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of this application relate to the field of communication technology.
  • millimeter wave frequency bands can provide larger bandwidth and become an important frequency band for 5G NR (New Radio) systems. Due to its shorter wavelength, millimeter waves have different propagation characteristics from traditional low-frequency bands, such as higher propagation loss, poor reflection and diffraction performance, etc. Therefore, larger antenna arrays are usually used to form shaped beams with greater gain, overcome propagation losses, and ensure system coverage.
  • the 5G NR standard designs a series of solutions for beam management such as beam scanning, beam measurement, beam reporting, and beam indication. However, when the number of transmitting and receiving beams is relatively large, the load and delay of the system will be greatly increased.
  • AI artificial intelligence
  • the transmitting end of the communication system has M beams and the receiving end has N beams.
  • M*N beams need to be measured.
  • M*N beams need to be measured.
  • Using a model (for example, AI model) to predict the optimal beam pair through a small number of beam measurement results can greatly reduce the system load and delay caused by beam measurement.
  • the network device configures a reference signal set for beam measurement and sends the reference signals in the reference signal set through different transmission beams.
  • the AI model only needs the measurement results of part of the transmit beams, that is, the terminal device only needs to receive part of the reference signals in the reference signal set.
  • the terminal device knows the information about this part of the reference signal required by the AI model, but the network device does not know the information about this part of the reference signal.
  • the terminal device does not know the information about this part of the reference signal.
  • Signal information scheme There is no way for the terminal device to inform the network device about this part of the reference signal.
  • the network device configures a reference signal set for beam measurement and sends the reference signals in the reference signal set through different transmission beams.
  • the terminal device is used for beam measurement, and the terminal device reports the measurement results to the network device as label data for AI model training.
  • the network device In the inference stage using the trained AI model, the network device only needs to configure some reference signals in the reference signal set and send them to the terminal device through partial transmission beams for beam measurement and reporting.
  • the information reported by the terminal device needs to include information about this part of the reference signal, but currently there is no solution for how the network device informs the terminal device of the information about this part of the reference signal.
  • embodiments of the present application provide an information transceiving method and device.
  • an information transceiving device which is applied to terminal equipment.
  • the device includes:
  • a first sending unit that sends request indication information for acquiring the first reference signal set to the network device
  • a first receiving unit that receives the first reference signal in the first reference signal set sent by the network device.
  • an information transceiving device which is applied to network equipment.
  • the device includes:
  • a second receiving unit that receives request indication information sent by the terminal device for acquiring the first reference signal set
  • the second sending unit is configured to send the first reference signal in the first reference signal set to the terminal device.
  • an information transceiving device which is applied to network equipment.
  • the device includes:
  • a third sending unit that sends third resource configuration information to the terminal device, where the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • a fourth sending unit which sends first reference signal set indication information to the terminal device
  • a fifth sending unit which sends the first reference signal in the first reference signal set to the terminal device.
  • an information transceiving device applied to terminal equipment, and the device includes:
  • a fourth receiving unit that receives third resource configuration information sent by the network device, where the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • a fifth receiving unit that receives the first reference signal set indication information sent by the network device
  • a sixth receiving unit which receives the first reference signal in the first reference signal set sent by the network device.
  • the terminal device sends request indication information for obtaining the part of the reference signal to the network device, thereby informing the network device of the information of the part of the reference signal used in the AI model inference phase, and can Effective use of AI models to predict optimal beam pairs can greatly reduce system load and delays caused by beam measurements.
  • the network device sends instruction information about this part of the reference signal to the terminal device, thereby informing the terminal device of the information about the part of the reference signal used in the AI model inference phase, and can effectively use it.
  • the AI model predicts the optimal beam pair, which can greatly reduce the system load and delay caused by beam measurement.
  • Figure 1 is a schematic diagram of the communication system of the present application.
  • Figure 2 is a schematic diagram of transmitting beams and receiving beams in the communication system according to the embodiment of the present application;
  • Figure 3 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the transmitting beam and the receiving beam according to the embodiment of the present application.
  • FIGS 5 to 7 are example diagrams of request indication information according to the embodiment of the present application.
  • Figures 8A and 8B are example diagrams of request indication information according to the embodiment of the present application.
  • Figure 9 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of an information transceiver device according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of an information transceiver device according to an embodiment of the present application.
  • Figure 18 is a schematic diagram of an information transceiver device according to an embodiment of the present application.
  • Figure 19 is a schematic diagram of an information transceiver device according to an embodiment of the present application.
  • Figure 20 is a schematic diagram of network equipment according to an embodiment of the present application.
  • Figure 21 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • communication between devices in the communication system can be carried out according to any stage of communication protocols, which may include but are not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G. , New Wireless (NR, New Radio), future 6G, etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc.
  • it may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay or low-power node (such as femeto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay or low-power node such as femeto, pico, etc.
  • base station may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device) refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • the terminal equipment may include but is not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld device, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld device machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to the side of the user or terminal, which may be a certain UE or may include one or more terminal devices as above.
  • device can refer to network equipment or terminal equipment.
  • uplink control signal and “uplink control information (UCI, Uplink Control Information)” or “physical uplink control channel (PUCCH, Physical Uplink Control Channel)” can be interchanged without causing confusion.
  • uplink data signal and “uplink data information” or “Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel)” can be interchanged;
  • downlink control signal and “downlink control information (DCI, Downlink Control Information)” or “physical downlink control channel (PDCCH, Physical Downlink Control Channel)” are interchangeable, and the terms “downlink data signal” and “downlink data information” are interchangeable.
  • Physical Downlink Shared Channel PDSCH, Physical Downlink Shared Channel
  • sending or receiving PUSCH can be understood as sending or receiving uplink data carried by PUSCH
  • sending or receiving PUCCH can be understood as sending or receiving uplink information carried by PUCCH
  • sending or receiving PRACH can be understood as sending or receiving uplink data carried by PRACH.
  • the uplink signal may include uplink data signals and/or uplink control signals, etc., and may also be called uplink transmission (UL transmission) or uplink information or uplink channel.
  • Sending an uplink transmission on an uplink resource can be understood as using the uplink resource to send the uplink transmission.
  • downlink data/signals/channels/information can be understood accordingly.
  • the high-level signaling may be, for example, Radio Resource Control (RRC) signaling; for example, it is called an RRC message (RRC message), and for example, it includes MIB, system information (system information), and dedicated RRC message; or it is called RRC IE (RRC information element).
  • RRC Radio Resource Control
  • high-level signaling may also be MAC (Medium Access Control) signaling; or it may be called MAC CE (MAC control element).
  • RRC Radio Resource Control
  • RRC message RRC message
  • MIB system information (system information), and dedicated RRC message
  • RRC IE RRC information element
  • high-level signaling may also be MAC (Medium Access Control) signaling; or it may be called MAC CE (MAC control element).
  • MAC CE Medium Access Control
  • Figure 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a terminal device and a network device as an example.
  • the communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • Figure 1 only takes two terminal devices and one network device as an example for illustration, but the embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • the terminal device 102 can send data to the network device 101, for example, using an authorized or authorization-free transmission method.
  • the network device 101 can receive data sent by one or more terminal devices 102 and feed back information to the terminal device 102, such as confirmed ACK/non-confirmed NACK information, etc.
  • the terminal device 102 can confirm the end of the transmission process based on the feedback information, or can further New data transmission is performed, or data retransmission can be performed.
  • Figure 1 shows that both terminal devices 102 and 103 are within the coverage of the network device 101, but the application is not limited thereto. Neither of the two terminal devices 102 and 103 may be within the coverage range of the network device 101, or one terminal device 102 may be within the coverage range of the network device 101 and the other terminal device 103 may be outside the coverage range of the network device 101.
  • AI models include but are not limited to: input layer (input), multiple convolutional layers, connection layer (concat), fully connected layer (FC), quantizer, etc. Among them, the processing results of multiple convolutional layers are combined in the connection layer.
  • input layer input
  • multiple convolutional layers connection layer (concat)
  • FC fully connected layer
  • quantizer quantizer
  • Figure 2 is a schematic diagram of transmitting beams and receiving beams in the communication system according to various embodiments of the present application.
  • the network device 101 may have M1 downlink transmit beams DL TX
  • the terminal device 102 may have N1 downlink receive beams DL RX.
  • the model 201 for predicting beam measurement results can be deployed on the network device 101 or the terminal device 102.
  • the model 201 can predict the measurement results of M1*N1 beams based on the measurement results of some beams.
  • the model 201 may be, for example, an AI model, and the model 201 may be deployed in the network device 101 or the terminal device 102.
  • the network device 101 may have N2 uplink receive beams (not shown in Figure 2), and the terminal device 102 may have M2 uplink transmit beams UL TX (not shown in Figure 2).
  • the embodiment of the present application provides a method for sending and receiving information, which is explained from the terminal device side, and the AI model is deployed on the terminal device side.
  • FIG 3 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application. As shown in Figure 3, the method includes:
  • the terminal device sends a request instruction message to obtain the first reference signal set to the network device;
  • the terminal device receives the first reference signal in the first reference signal set sent by the network device.
  • an AI model for beam prediction is deployed in the terminal device.
  • the AI model is used to predict the optimal beam pair through a small number of beam pair measurement results.
  • the input parameter of the AI model is the RSRP of some beam pairs (Reference Signal Receiving Power, reference signal receiving power) value, can also be the SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) value of some beam pairs.
  • the physical quantity of the output parameter is the RSRP or SINR of all beam pairs
  • Figure 4 is a schematic diagram of the transmitting beam, receiving beam and AI model in the embodiment of this application, as shown in Figure 4. For example, there are 12 downlink transmitting beams and 8 downlink receiving beams, totaling 96 beam pairs.
  • the UE only measured the RSRP of 24 beam pairs (6 downlink transmit beams and 4 downlink receive beams).
  • the input parameter dimension of the AI model is 24, the physical quantity is RSRP or SINR, the output parameter dimension is 96, the physical quantity is also RSRP or SINR, and the optimal beam pair can be selected from the prediction results.
  • the terminal device may send request indication information for acquiring the first reference signal set to the network device.
  • the terminal device sends the request indication information for obtaining the part of the reference signal to the network device, thereby informing the network device of the information of the part of the reference signal used in the AI model inference phase, and can effectively use the AI model to Predicting the optimal beam pair can greatly reduce the system load and delay caused by beam measurement.
  • reference signals and measurement resources or resources may be interchanged.
  • the network device configures measurement resources (reference signals) for the measurement of downlink transmit beams through the first resource configuration information.
  • the measurement resources (reference signals) may be reference signals such as CSI-RS and/or SSB, for example,
  • the configured measurement resources are a list of resource sets (reference signal sets). Each resource set consists of one or more measurement resources (reference signals).
  • the network device can configure multiple reference signals for the terminal device for beams.
  • the first resource configuration information includes a reference signal set identifier (measurement resource set identifier) and an identifier of one or more measurement resources (reference signals) constituting the reference signal set (measurement resource) set.
  • the first resource configuration information can be non-zero power CSI-RS resource set configuration information
  • the NZP-CSI-RS-ResourceSet uses abstract syntax to mark the ASN.1 data format and can be expressed as:
  • nzp-CSI-ResourceSetId represents the reference signal set identifier
  • SEQUENCE(SIZE(1..maxNrofNZP-CSI-RS-ResourcesPerSet))OF NZP-CSI-RS-ResourceId represents the reference signal of each reference signal in the reference signal set. logo.
  • the first resource configuration information can be CSI-SSB-ResourceSet, which uses abstract syntax to mark the ASN.1 data format and can be expressed as:
  • csi-SSB-ResourceSetId represents the reference signal set identification
  • SEQUENCE(SIZE(1..maxNrofCSI-SSB-ResourcePerSet))OF SSB-Index represents the identification of each reference signal in the reference signal set.
  • the first resource configuration information is carried by RRC signaling
  • the configured reference signal set can also be understood as the complete set of reference signals used for beam measurement.
  • the training phase of the AI model requires all the reference signal sets in the reference signal set. Measurement results of beam measurements using a reference signal.
  • request indication information for obtaining a first reference signal set is sent to the network device, and the first reference signal in the first reference signal set is one or more reference signals in the reference signal set, the The first reference signal set may also be called a reference signal subset.
  • the terminal device may select one or more reference signals from the reference signal set as the first reference signal set according to the requirements of the AI model, and send a signal to the network device to obtain the first reference signal set. Reference signal set request indication information.
  • the request indication information includes the identification of the first reference signal in the first reference signal set, or the request indication information indicates the configured reference signal set in the form of a bitmap or starting position and interval information.
  • the request indication information can be carried by RRC or MAC CE or UCI.
  • the request indication information includes the identifier of the first reference signal in the first reference signal set, and the identifier of the first reference signal is CRI or SSB-RI.
  • the request indication information may also include the reference signal set identifier,
  • the reference signal set identifier is nzp-CSI-RS-ResourceSetId or CSI-SSB-ResourceSetId.
  • Figure 5 is an example diagram of the request indication information.
  • the request indication information includes the reference signal set identifier nzp-CSI- RS-ResourceSetId or CSI-SSB-ResourceSetId, and the identifiers CRI/SSB-RI#1, CRI/SSB-RI#2, ..., CRI/SSB of the K first reference signals in the first reference signal set -RI#K, the request indication information gives the identity of each first reference signal in the form of a list.
  • the request indication information can be newly added RRC signaling or existing RRC signaling or The new information elements in UCI are not limited by the embodiments of this application.
  • the request indication information indicates the first reference signal set in the configured reference signal set in the form of a bitmap.
  • the number of bits in the bitmap can be determined based on the number of reference signals in the reference signal set.
  • Each bit corresponds to a reference signal.
  • a reference signal in the set the value of this bit is used to indicate whether the corresponding reference signal is the first reference signal (or to indicate whether the first reference signal set contains the reference signal corresponding to this bit), for example, the bit value is 0
  • the bit value is 1, it indicates that the reference signal is not the first reference signal and is not included in the first reference signal set.
  • the bit value is 1, it indicates that the reference signal is the first reference signal and is included in the first reference signal set.
  • the bit value indicates that the reference signal is the first reference signal and is included in the first reference signal set.
  • the request indication information may also include a reference signal set identifier, and the reference signal set identifier is nzp-CSI-RS-ResourceSetId or CSI-SSB-ResourceSetId.
  • Figure 6 is an example diagram of the request indication information. As shown in Figure 6, the request indication information includes a reference signal set identifier (ID) of nzp-CSI-RS-ResourceSetId or CSI-SSB-ResourceSetId.
  • the reference signal set identifier corresponds to There are N reference signals in the reference signal set.
  • the bitmap is 10000110, then the reference signals #0, #5, and #6 in the reference signal set are the first reference signals and are included in the first reference signal set, or the bitmap is 10000110 indicating the first reference
  • the first reference signal in the signal set includes reference signals #0, #5, and #6 in the reference signal set.
  • the request indication information may be newly added RRC signaling or existing RRC signaling or UCI.
  • the embodiments of the present application are not limited to the newly added information elements; for example, the request indication information may also be newly added MAC CE signaling, and the request indication information may also include a cell ID (Cell ID). and/or partial bandwidth BWP identification (BWP ID), etc.
  • Figure 7 is an example diagram of the request indication information.
  • the request indication information includes a cell identifier, a BWP identifier, a reference signal set identifier (for example, 6 bits), and an indication of whether each reference signal in the reference signal set is is the bit T(k) of the first reference signal; if the T(k) value is 0, it means that the reference signal corresponding to T(k) is not the first reference signal; if it is 1, it means that the corresponding reference signal is A first reference signal, and all first reference signals constitute a first reference signal set.
  • the number of reference signals in the reference signal set is 64, the value of N is 10, and the value of k is 0 to 63.
  • the request indication information indicates the first reference signal set in the configured reference signal set in the form of starting position and interval information
  • the starting position offset represents the first reference signal in the reference signal set that is indicated as the first reference signal.
  • the interval information interval indicates the interval of the index of the first reference signal in the reference signal set, that is, indicating the starting position and interval of the index of the first reference signal set in the reference signal set.
  • the request indicates The information may also include a reference signal set identifier, which is nzp-CSI-RS-ResourceSetId or CSI-SSB-ResourceSetId.
  • Figure 8A is an example diagram of the request indication information.
  • the request indication information includes the reference signal set identifier nzp-CSI-RS-ResourceSetId or CSI-SSB-ResourceSetId.
  • the reference signal set identifier corresponds to the reference signal set.
  • N 64 reference signals.
  • the request indication information also includes the starting position offset m is 2, and the interval information interval n is 8.
  • the indexes in the reference signal set are #2, #10, #18, #26, #34.
  • the reference signals of #42, #50, and #58 are the first reference signals, or the reference signal centralized index is #2, #10, #18, #26, #34, #42, #50, #58 reference signal Constituting the first reference signal set, in this embodiment, the request indication information may be newly added RRC signaling or a new information element in existing RRC signaling or UCI. This embodiment of the present application does not take this as a limit.
  • the request indication information may also be newly added MAC CE signaling, and the request indication information may also include a cell identifier and/or a partial bandwidth BWP identifier, etc.
  • Figure 8B is an example diagram of the request indication information.
  • the request indication information includes a cell identifier, a BWP identifier, a reference signal set identifier (for example, 6 bits), and a starting position offset and interval information; for example, refer to The number of reference signals in the signal set is 64, and the values of the starting position offset and interval information interval are 0 to 63, which are also represented by 6 bits.
  • the network device may directly send each first reference signal in the first reference signal set indicated by the request indication information, or may also send each first reference signal in the first reference signal set after receiving the request indication information.
  • the second resource configuration information is sent before the first reference signal.
  • the second resource configuration information includes the identification indication information of the first reference signal in the first reference signal set, and optionally may also include the identification of the first reference signal set. , and/or the identifier of the reference signal set in the first resource configuration information corresponding to the first reference signal set, where the second resource configuration information may be newly added signaling, and the first resource configuration information may be sent separately, Examples are given below.
  • the implementation of the second resource configuration information is similar to that of the first resource configuration information.
  • the reference signal set in the first resource configuration information is The identifier is replaced with the identifier of the first reference signal set, and the identifier of each reference signal in the reference signal set is replaced with the identifier of each first reference signal in the first reference signal set (as the identifier indication information of the first reference signal), or
  • the identification indication information of the first reference signal in the second resource configuration information indicates the first reference signal in the configured reference signal set in the form of a bitmap or starting position and interval information.
  • the second resource configuration information is carried through RRC signaling, and examples are given below.
  • the first resource configuration information may be non-zero power CSI-RS resource set configuration information
  • the newly added second resource configuration information NZP-CSI-RS-ResourceSubSet uses abstract syntax to mark ASN.
  • the information element of the second resource configuration information NZP-CSI-RS-ResourceSubSet may include the identifier nzp-CSI-ResourceSubSetId of the first reference signal set.
  • the reference signal in the first resource configuration information corresponding to the first reference signal set The identifier of the set nzp-CSI-ResourceSetId, and the identifier indication information nzp-CSI-RS-Resources-subset of the first reference signal in the first reference signal set.
  • the identification indication information nzp-CSI-RS-Resources-subset of the first reference signal in the first reference signal set is indicated by a bitmap of the first reference signal corresponding to the reference signal set, and the length is maxNrofNZP-CSI -RS-ResourcesPerSet, a bit value of 0 in the bitmap indicates that the reference signal corresponding to the bit is not included in the first reference signal set, and a bit value of 1 indicates that the reference signal corresponding to the bit is included in the first reference signal set.
  • the signal is concentrated, and vice versa.
  • configuration information of the first reference signal set can be consistent with the configuration of the reference signal set in the first resource configuration information corresponding to the first reference signal set by default, that is, the corresponding configuration in the first resource configuration information can be reused.
  • Information element configuration no additional configuration is required.
  • the first resource configuration information may be non-zero power CSI-RS resource set configuration information
  • the newly added second resource configuration information NZP-CSI-RS-ResourceSubSet uses abstract syntax to mark ASN .1
  • the data format can also be expressed as:
  • the information element of the second resource configuration information NZP-CSI-RS-ResourceSubSet may include the identifier nzp-CSI-ResourceSubSetId of the first reference signal set.
  • the reference signal in the first resource configuration information corresponding to the first reference signal set The identifier of the set nzp-CSI-ResourceSetId, and the identifier indication information nzp-CSI-RS-Resources-subset of the first reference signal in the first reference signal set.
  • the identification indication information of the first reference signal in the first reference signal set is indicated by the offset field and the inveral field of the first reference signal corresponding to the reference signal set, respectively used to indicate that the first reference signal set is in the reference signal set.
  • the offset and interval fields are integers, and their ranges are determined based on maxNrofNZP-CSI-RS-ResourcesPerSet. It should be noted here that continuous integers are used to define the data types of offset and interval. Other data types may also be used, such as enumeration types. The embodiments of the present application are not limited to this. It should be noted that other configuration information of the first reference signal set, such as repetition, aperiodicTriggeringOffset, etc., can be consistent with the configuration of the reference signal set in the first resource configuration information corresponding to the first reference signal set by default, that is, the corresponding configuration in the first resource configuration information can be reused. Information element configuration, no additional configuration is required.
  • the first resource configuration information can be CSI-SSB-ResourceSet
  • the newly added second resource configuration information CSI-SSB-ResourceSubSet can be expressed in the abstract syntax mark ASN.1 data format as:
  • the information element of the second resource configuration information CSI-SSB-ResourceSubSet may include the identifier csi-SSB-ResourceSubSetId of the first reference signal set, and the reference signal set in the first resource configuration information corresponding to the first reference signal set.
  • the identification indication information of the first reference signal in the first reference signal set is indicated by a bitmap corresponding to the first reference signal and the reference signal set, with a length of maxNrofCSI-SSB-ResourcesPerSet, and each bitmap in the bitmap A bit value of 0 indicates that the reference signal corresponding to the bit is not included in the first reference signal set, and a bit value of 1 indicates that the reference signal corresponding to the bit is included in the first reference signal set, and vice versa.
  • other configuration information of the first reference signal set can be consistent with the configuration of the reference signal set in the first resource configuration information corresponding to the first reference signal set by default, that is, the corresponding information element configuration in the first resource configuration information can be reused. No additional configuration is required.
  • the first resource configuration information can be CSI-SSB-ResourceSet
  • the newly added second resource configuration information CSI-SSB-ResourceSubSet uses abstract syntax to mark the ASN.1 data format and can also be expressed as:
  • the information element of the second resource configuration information CSI-SSB-ResourceSubSet may include the identifier csi-SSB-ResourceSubSetId of the first reference signal set, and the reference signal set in the first resource configuration information corresponding to the first reference signal set.
  • the identification indication information of the first reference signal in the first reference signal set is indicated by the offset field and the inveral field of the first reference signal corresponding to the reference signal set, respectively used to indicate that the first reference signal set is in the reference signal set. The starting position and spacing of the concentrated index.
  • the offset and interval fields are integers, and their ranges are determined based on maxNrofCSI-SSB-ResourcesPerSet. It should be noted here that continuous integers are used to define the data types of offset and interval. Other data types may also be used, such as enumeration types. The embodiments of the present application are not limited to this. It should be noted that other configuration information of the first reference signal set can be consistent with the configuration of the reference signal set in the first resource configuration information corresponding to the first reference signal set by default, that is, the corresponding information element configuration in the first resource configuration information can be reused. No additional configuration is required.
  • the second resource configuration information when the second resource configuration information is newly added signaling, can also be implemented through MAC CE signaling. For example, after RRC signaling configures the first resource configuration information , using MAC CE to activate/deactivate reference signals in the reference signal set to indirectly indicate the resource configuration of each first reference signal in the first reference signal set.
  • the method for activating/deactivating the reference signal in the reference signal set for the MAC CE signaling may be indicated in the form of a bit bitmap or starting position and interval information. For example, the method may be indicated in the form of a bit bitmap or starting position and interval information.
  • each reference signal in the reference signal set is activated or deactivated is to indicate the activated reference signal in the reference signal set using a bitmap or starting position and interval information, and the activated reference signal is used as the first reference signal in the first reference signal set.
  • the specific implementation method of requesting indication information MAC CE signaling is similar, and will not be described in detail here.
  • the request indication information is sent after the first resource configuration information (excluding the second resource configuration information) but before the second resource configuration information.
  • the network device sends the first reference signal on a downlink channel based on the first resource configuration information and request indication information, or based on the second resource configuration information. That is, the terminal device receives the corresponding first reference signal on the corresponding time-frequency resource according to the time-frequency resource, period and other information mapped to the first reference signal configured in the resource configuration information, and concentrates on the first reference signal. Beam measurement is performed on the first reference signal, and the results of the beam measurement are used for inference of the AI model.
  • the terminal device sends the request indication information for obtaining the part of the reference signal to the network device, thereby informing the network device of the information of the part of the reference signal used in the AI model inference phase, and can effectively use the AI model to Predicting the optimal beam pair can greatly reduce the system load and delay caused by beam measurement.
  • the embodiment of the present application provides a method for sending and receiving information, which is explained from the network device side.
  • the AI model is deployed on the terminal device side. The same content as the embodiment of the first aspect will not be described again.
  • Figure 11 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application. As shown in Figure 11, the method includes:
  • the network device receives the request indication information sent by the terminal device for acquiring the first reference signal set
  • the network device sends the first reference signal in the first reference signal set to the terminal device.
  • the implementation of 1101-1102 corresponds to 301-302, which will not be described again here.
  • the implementation of the above request indication information may refer to the embodiment of the first aspect.
  • the network device may also send the first resource configuration information and the second resource configuration information to the terminal device.
  • the implementation may refer to the first aspect. The embodiments will not be described again here.
  • the terminal device sends the request indication information for obtaining the part of the reference signal to the network device, thereby informing the network device of the information of the part of the reference signal used in the AI model inference phase, and can effectively use the AI model to Predicting the optimal beam pair can greatly reduce the system load and delay caused by beam measurement.
  • the method for sending and receiving information between the terminal device and the network device in the embodiment of the first aspect and the embodiment of the second aspect is as follows:
  • Figure 9 is a schematic diagram of an information sending and receiving method in an embodiment of the present application. As shown in Figure 9, the method includes:
  • the network device sends the first resource configuration information to the terminal device
  • the network device sends measurement reporting configuration information to the terminal device
  • the terminal device sends request indication information to the network device
  • the network device sends the second resource configuration information to the terminal device
  • the network device sends the first reference signal in the first reference signal set to the terminal device;
  • the terminal device uses the first reference signal to perform beam measurement
  • the terminal device sends the measurement results as input to the AI model to obtain the prediction results
  • the terminal device sends beam measurement reporting information to the network device
  • the network device sends downlink data to the terminal device.
  • the implementation of 903 and 905 can be referred to 301-302, and repeated details will not be described again.
  • the terminal device in 902, configure the parameters required for measurement reporting, including: report quantity (Report Quantity), measurement constraint configuration, codebook configuration, group-based reporting configuration, reporting period, etc., for example, when beam management is required
  • report quantity Report Quantity
  • measurement constraint configuration codebook configuration
  • group-based reporting configuration reporting period, etc.
  • the terminal device passes the first reference
  • the signal measurement corresponds to the L1-RSRP or SINR of the downlink transmit beam as the measurement result.
  • the terminal device inputs the measurement result into the AI model and predicts one or several optimal downlink beam pairs.
  • the terminal device Corresponding time-frequency resource transmission beam measurement reporting information (carried by UCI), the reporting information includes the results of AI model prediction, for example, including the predicted downlink transmission beam information of one or several optimal downlink beam pairs and the corresponding Measurement results, for example, the reported information includes the measurement results RSRP (Reference Signal Receiving Power) values #1, #2, #3, #4, and the synchronization signal block resource indication associated with the measurement result RSRP ( SSB resource indicator (SSB RI) or channel state information reference signal resource indicator (CSI-RS resource indicator (CRI) #1, #2, #3, #4, because the network equipment side knows the SSB RI or CRI and the downlink transmit beam Correspondence, so the predicted one or several optimal downlink transmission beams can be implicitly specified through SSB RI or CRI.
  • the terminal device selects the downlink receive beam corresponding to the downlink transmit beam to receive the Downstream data.
  • Figure 10 is a schematic diagram of an information sending and receiving method in an embodiment of the present application. As shown in Figure 10, the method includes:
  • the network device sends the first resource configuration information to the terminal device;
  • the network device sends measurement reporting configuration information to the terminal device
  • the terminal device sends request indication information to the network device
  • the network device sends the first reference signal in the first reference signal set to the terminal device;
  • the terminal device uses the first reference signal to perform beam measurement
  • the terminal device sends the measurement results as input to the AI model to obtain the prediction results;
  • the terminal device sends beam measurement reporting information to the network device
  • the network device sends downlink data to the terminal device.
  • the embodiment of the present application provides a method for sending and receiving information, which is explained from the network device side, and the AI model is deployed on the network device side.
  • Figure 12 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application. As shown in Figure 12, the method includes:
  • the network device sends third resource configuration information to the terminal device, where the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • the network device sends the first reference signal set indication information to the terminal device;
  • the network device sends the first reference signal in the first reference signal set to the terminal device.
  • an AI model for beam prediction is deployed in a network device.
  • the AI model is used to predict the optimal beam pair through a small number of beam pair measurement results.
  • the input parameter of the AI model is the RSRP of some beam pairs (Reference Signal Receiving Power, reference signal receiving power) value, can also be the SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) value of some beam pairs.
  • the physical quantity of the output parameter is the RSRP or SINR of all beam pairs.
  • the model is the same as the AI model shown in Figure 4 and will not be described again here.
  • the network device only needs to configure some of the reference signals in the reference signal set and send them to the terminal device through partial transmission beams for beam measurement and reporting.
  • the information reported by the terminal device needs to include information about this part of the reference signal.
  • the network device sends the first reference signal set indication information to the terminal device.
  • the network device sends instruction information about this part of the reference signal to the terminal device, thereby informing the terminal device of the information about this part of the reference signal used in the AI model inference phase, and can effectively use the AI model to predict the optimal
  • the beam pairs can greatly reduce the system load and delay caused by beam measurement.
  • reference signals and measurement resources or resources may be interchanged.
  • the network device configures measurement resources (reference signals) for the measurement of downlink transmission beams through the third resource configuration information.
  • the measurement resources (reference signals) may be reference signals such as CSI-RS and/or SSB, for example,
  • the configured measurement resources are a list of resource sets (reference signal sets). Each resource set consists of one or more measurement resources (reference signals).
  • the network device can configure multiple reference signals for the terminal device for beams.
  • the third resource configuration information includes a reference signal set identifier (measurement resource set identifier) and an identifier of one or more measurement resources (reference signals) constituting the reference signal set (measurement resource) set.
  • the network device sends first reference signal set indication information to the terminal device.
  • first reference signal please refer to the embodiment of the first aspect.
  • the first reference signal set indication information includes an identification of the first reference signal in the first reference signal set, or the first reference signal set indication information is expressed through a bitmap or a starting position and The manner of the spacing information indicates the first reference signal set in the configured reference signal set, or the first reference signal set indication information indicates the activated reference signal in the reference signal set, and the activated reference signal is used as the first reference signal set in the first reference signal set.
  • first reference signal The first reference signal set indication information may be carried by RRC or MAC CE or DCI.
  • the first reference signal set indication information is included in the third resource configuration information or is not included in the third resource configuration information.
  • the first reference signal set indication information may be new Increased RRC signaling or MAC CE signaling, the first reference signal set indication information is not included in the third resource configuration information, but is sent separately from the third resource configuration information; or, for example, the first reference signal The set indication information may be a newly added information element.
  • the first reference signal set indication information is included in the third resource configuration information and is sent together with the third resource configuration information. The embodiments of the present application are not limited to this.
  • the implementation method may refer to the second resource configuration information in the embodiment of the first aspect, which will not be described again here.
  • the first reference signal set indication information is a newly added information element included in the third resource configuration information and sent together with the third resource configuration information
  • the indication method also includes the following examples, which will be described in detail below.
  • the first reference signal set indication information is a newly added information element in the third resource configuration information, and the newly added information element includes the identification of the first reference signal in the first reference signal set, or
  • the first reference signal set in the configured reference signal set is indicated by means of a bitmap or starting position and interval information.
  • the third resource configuration information can be non-zero power CSI-RS resource set configuration information
  • the NZP-CSI-RS-ResourceSet uses abstract syntax to mark the ASN.1 data format and can be expressed as:
  • nzp-CSI-RS-Resources-subset (first reference signal set indication information) is added to NZP-CSI-RS-ResourceSet (third resource configuration information), it is represented by a bitmap, and the length is maxNrofNZP-CSI-RS-ResourcesPerSet.
  • a bit value of 0 in the bitmap indicates that the reference signal corresponding to the bit is not included in the first reference signal set.
  • a bit value of 1 indicates that the reference signal corresponding to the bit is included in the first reference signal set. The first reference signal is concentrated, and vice versa.
  • the third resource configuration information can be non-zero power CSI-RS resource set configuration information
  • the NZP-CSI-RS-ResourceSet uses abstract syntax to mark the ASN.1 data format and can be expressed as:
  • nzp-CSI-RS-Resources-subset (first reference signal set indication information) is added to NZP-CSI-RS-ResourceSet (third resource configuration information), it contains starting position offset and interval information.
  • the offset and interval fields are integers, and their range is determined according to maxNrofNZP-CSI-RS-ResourcesPerSet. . It should be noted here that continuous integers are used to define the data types of offset and interval. Other data types may also be used, such as enumeration types. The embodiments of the present application are not limited to this.
  • the third resource configuration information can be CSI-SSB-ResourceSet, which uses abstract syntax to mark the ASN.1 data format and can be expressed as:
  • CSI-SSB-Resources-subset first reference signal set indication information
  • CSI-SSB-ResourceSet third resource configuration information
  • bitmap the length is maxNrofCSI-SSB- ResourcesPerSet
  • a bit value of 0 in the bitmap indicates that the reference signal corresponding to the bit is not included in the first reference signal set
  • a bit value of 1 indicates that the reference signal corresponding to the bit is included in the first reference signal set
  • the third resource configuration information can be CSI-SSB-ResourceSet, which uses abstract syntax to mark the ASN.1 data format and can be expressed as:
  • CSI-SSB-Resources-subset (first reference signal set indication information) is added to CSI-SSB-ResourceSet (third resource configuration information)
  • CSI-SSB-ResourceSet (third resource configuration information)
  • it contains two fields: starting position offset and interval information inverval. , used to indicate the starting position and interval of the index of the first reference signal in the first reference signal set in the reference signal set, where the offset and interval fields are integers, and their range is determined according to maxCSI-SSB-ResourcesPerSet.
  • continuous integers are used to define the data types of offset and interval. Other data types may also be used, such as enumeration types. The embodiments of the present application are not limited to this.
  • the third resource configuration information when the third resource configuration information contains the first reference signal set indication information, it indicates that the information of the first reference signal set needs to be configured, for example, it is applied in a scenario where an AI model is deployed, When the third resource configuration information does not include the first reference signal set indication information, it indicates that the information of the first reference signal set does not need to be configured, for example, it is applied in a scenario where no AI model is deployed.
  • the network device sends the first reference signal on a downlink channel based on the first reference signal set indication information. That is, the terminal device receives the corresponding first reference signal on the corresponding time-frequency resource according to the time-frequency resource, period and other information mapped by the first reference signal, and performs the processing on the first reference signal in the first reference signal set.
  • Beam measurement the network device receives the measurement result of the beam measurement of the first reference signal in the first reference signal set reported by the terminal device, and the beam measurement result is used for inference of the AI model.
  • the network device sends instruction information about this part of the reference signal to the terminal device, thereby informing the terminal device of the information about this part of the reference signal used in the AI model inference phase, and can effectively use the AI model to predict the optimal
  • the beam pairs can greatly reduce the system load and delay caused by beam measurement.
  • the embodiment of the present application provides a method for sending and receiving information, which is explained from the terminal device side.
  • the AI model is deployed on the network device side. The same content as the third embodiment will not be described again.
  • Figure 13 is a schematic diagram of an information sending and receiving method according to an embodiment of the present application. As shown in Figure 13, the method includes:
  • the terminal device receives the third resource configuration information sent by the network device.
  • the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • the terminal device receives the first reference signal set indication information sent by the network device;
  • the terminal device receives the first reference signal in the first reference signal set sent by the network device.
  • the implementation of 1301-1302 corresponds to 1201-1202, which will not be described again here.
  • the implementation of the above-mentioned first reference signal set indication information may refer to the embodiment of the third aspect, which will not be described again here.
  • the network device sends instruction information about this part of the reference signal to the terminal device, thereby informing the terminal device of the information about this part of the reference signal used in the AI model inference phase, and can effectively use the AI model to predict the optimal
  • the beam pairs can greatly reduce the system load and delay caused by beam measurement.
  • the method for sending and receiving information between the terminal device and the network device in the embodiment of the third aspect and the embodiment of the fourth aspect is as follows:
  • Figure 14 is a schematic diagram of an information sending and receiving method in an embodiment of the present application. As shown in Figure 14, the method includes:
  • the network device sends the third resource configuration information to the terminal device;
  • the network device sends measurement reporting configuration information to the terminal device
  • the network device sends the first reference signal set indication information to the terminal device (configure the first reference signal or activate the first reference signal);
  • the network device sends the first reference signal in the first reference signal set to the terminal device
  • the terminal device uses the first reference signal to perform beam measurement
  • the terminal device sends beam measurement reporting information to the network device
  • the network device sends the measurement results as input to the AI model to obtain the prediction results
  • the network device sends downlink data to the terminal device
  • the network device since the AI model is deployed on the network device side, the network device can select the first reference signal according to the AI model requirements without the need for the terminal device to notify the first reference signal by requesting indication information. And, the network device sends the first reference signal set indication information to the terminal device; in addition, since the AI model is deployed on the network device side, in 1407-1408, the output of the AI model is the prediction result of all beam pairs, and then it can The optimal downlink transmission beam is selected from the prediction results, and the network device uses the optimal downlink transmission beam to send downlink data.
  • Figure 15 is a schematic diagram of an information sending and receiving method in an embodiment of the present application. As shown in Figure 15, the method includes:
  • the network device sends the third resource configuration information (including the first reference signal set indication information) to the terminal device;
  • the network device sends measurement reporting configuration information to the terminal device
  • the network device sends the first reference signal in the first reference signal set to the terminal device;
  • the terminal device uses the first reference signal to perform beam measurement
  • the terminal device sends beam measurement reporting information to the network device;
  • the network device sends the measurement results as input to the AI model to obtain the prediction results;
  • the network device sends downlink data to the terminal device
  • the network device includes the first reference signal set indication information in the third resource configuration information and sends it.
  • An embodiment of the present application provides an information transceiving device.
  • the device may be, for example, a terminal device, or may be some or some parts or components configured in the terminal device, and the same content as the embodiments of the first or fourth aspect will not be described again.
  • FIG 16 is a schematic diagram of an information transceiver device according to an embodiment of the present application. As shown in Figure 16, the information transceiving device 1600 includes:
  • the first sending unit 1601 sends request indication information for obtaining the first reference signal set to the network device
  • the first receiving unit 1602 receives the first reference signal in the first reference signal set sent by the network device.
  • the first sending unit 1601 and the first receiving unit 1602 reference may be made to the embodiment of the first aspect.
  • the first receiving unit is also configured to receive the first
  • For the resource configuration information and the second resource configuration information please refer to the embodiment of the first aspect for details, and no further details are needed here.
  • the device may further include:
  • a first processing unit (not shown) performs beam measurement on the first reference signal in the first reference signal set, and the result of the beam measurement is used for inference of the AI model.
  • FIG 17 is a schematic diagram of an information transceiver device according to an embodiment of the present application. As shown in Figure 17, the information transceiving device 1700 includes:
  • the fourth receiving unit 1701 receives the third resource configuration information sent by the network device, where the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • the fifth receiving unit 1702 receives the first reference signal set indication information sent by the network device
  • the sixth receiving unit 1703 receives the first reference signal in the first reference signal set sent by the network device.
  • the fourth receiving unit 1701 the fifth receiving unit 1702 and the sixth receiving unit 1703
  • the third resource configuration information and the first reference signal set indication information please refer to the third The embodiments of this aspect will not be described again here.
  • the information transceiver 1600 or 1700 may also include other components or modules.
  • the specific content of these components or modules please refer to related technologies.
  • FIG. 16 and 17 only illustrate the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • An embodiment of the present application provides an information transceiving device.
  • the device may be, for example, a network device, or may be some or some parts or components configured on the network device. The same content as in the second or third embodiment will not be described again.
  • FIG 18 is a schematic diagram of an information transceiver device according to an embodiment of the present application. As shown in Figure 18, the information transceiving device 1800 includes:
  • the second receiving unit 1801 receives the request indication information sent by the terminal device for acquiring the first reference signal set
  • the second sending unit 1802 is configured to send the first reference signal in the first reference signal set to the terminal device.
  • the second receiving unit 1801 and the second sending unit 1802 reference may be made to the embodiment of the second aspect.
  • the embodiment of requesting indication information reference may be made to the embodiment of the first aspect.
  • the second sending unit is also used to send the first
  • For the resource configuration information and the second resource configuration information please refer to the embodiment of the first aspect for details, and no further details are needed here.
  • FIG 19 is a schematic diagram of an information transceiver device according to an embodiment of the present application. As shown in Figure 19, the information transceiving device 1900 includes:
  • the third sending unit 1901 sends third resource configuration information to the terminal device, where the third resource configuration information includes a reference signal set identifier and the identifier of each reference signal in the reference signal set;
  • the fourth sending unit 1902 which sends the first reference signal set indication information to the terminal device
  • the fifth sending unit 1903 is configured to send the first reference signal in the first reference signal set to the terminal device.
  • the third sending unit 1901 the fourth sending unit 1902 and the fifth sending unit 1903
  • the third resource configuration information and the first reference signal set indication information please refer to the third The embodiments of this aspect will not be described again here.
  • the apparatus may further include: a third receiving unit (not shown) that receives a measurement result of beam measurement on the first reference signal in the first reference signal set reported by the terminal device, and the measurement result is used for Inference of AI models.
  • a third receiving unit (not shown) that receives a measurement result of beam measurement on the first reference signal in the first reference signal set reported by the terminal device, and the measurement result is used for Inference of AI models.
  • the information transceiver 1800 or 1900 may also include other components or modules.
  • the specific content of these components or modules please refer to related technologies.
  • FIGS. 18 and 19 only illustrate the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used. .
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • An embodiment of the present application also provides a communication system. Refer to FIG. 1 . Contents that are the same as those in the first to fourth embodiments will not be described again.
  • the communication system 100 may at least include: a network device 101 and/or a terminal device 102.
  • the network device 101 includes the information transceiver 1800 or 1900 in the embodiment of the sixth aspect.
  • the terminal device 102 includes the fifth aspect.
  • the information transceiving device 1600 or 1700 in the embodiment of the invention will not be described again here.
  • the embodiment of the present application also provides a network device, which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • a network device which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • FIG 20 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • network device 2000 may include: a processor 2010 (eg, a central processing unit CPU) and a memory 2020; the memory 2020 is coupled to the processor 2010.
  • the memory 2020 can store various data; in addition, it also stores an information processing program 2030, and the program 2030 is executed under the control of the processor 2010.
  • the processor 2010 may be configured to execute a program to implement the information transceiving method as described in the embodiment of the second or third aspect.
  • the network device 2000 may also include: a transceiver 2040, an antenna 2050, etc.; the functions of the above components are similar to those of the existing technology and will not be described again here. It is worth noting that the network device 2000 does not necessarily include all components shown in Figure 20; in addition, the network device 2000 may also include components not shown in Figure 20, and reference can be made to the existing technology.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this and may also be other devices.
  • Figure 21 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 2100 may include a processor 2110 and a memory 2120; the memory 2120 stores data and programs and is coupled to the processor 2110. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the processor 2110 may be configured to execute a program to implement the information transceiving method described in the embodiment of the first or fourth aspect.
  • the terminal device 2100 may also include: a communication module 2130, an input unit 2140, a display 2150, and a power supply 2160.
  • the functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the terminal device 2100 does not necessarily include all the components shown in Figure 21, and the above components are not required; in addition, the terminal device 2100 can also include components not shown in Figure 21, please refer to the current There is technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the information transceiving method described in the embodiment of the first or fourth aspect.
  • Embodiments of the present application also provide a storage medium storing a computer program, wherein the computer program causes the terminal device to execute the information transceiving method described in the embodiment of the first or fourth aspect.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the information transceiving method described in the embodiment of the second or third aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes the network device to execute the information transceiving method described in the embodiment of the second or third aspect.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • a method for sending and receiving information, applied to terminal equipment characterized in that the method includes:
  • the terminal device sends request indication information for obtaining the first reference signal set to the network device;
  • the terminal device receives the first reference signal in the first reference signal set sent by the network device.
  • the terminal device is further configured to receive first resource configuration information sent by the network device, where the first resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set.
  • the terminal device is further configured to receive second resource configuration information sent by the network device before receiving the first reference signal in the first reference signal set, where the second resource configuration information includes the first reference signal. Concentrate the identification indication information of the first reference signal.
  • the request indication information includes the identification of the first reference signal in the first reference signal set, or the request indication information passes through a bitmap or The starting position and spacing information indicate the first reference signal set in the configured reference signal set.
  • the terminal device performs beam measurement on the first reference signal in the first reference signal set, and the result of the beam measurement is used for inference of the AI model.
  • a method for sending and receiving information, applied to network equipment characterized in that the method includes:
  • the network device sends third resource configuration information to the terminal device, where the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • the network device sends first reference signal set indication information to the terminal device
  • the network device sends the first reference signal in the first reference signal set to the terminal device.
  • the first reference signal set indication information includes an identification of the first reference signal in the first reference signal set, or the first reference signal
  • the set indication information indicates the first reference signal set in the configured reference signal set in the form of a bitmap or starting position and interval information, or the first reference signal set indication information indicates an activated reference signal in the reference signal set,
  • the reference signal is activated as a first reference signal in the first reference signal set.
  • the network device receives the measurement result of beam measurement on the first reference signal in the first reference signal set reported by the terminal device, and the measurement result is used for inference of the AI model.
  • a method for sending and receiving information, applied to network equipment characterized in that the method includes:
  • the network device receives request indication information sent by the terminal device for obtaining the first reference signal set
  • the network device sends the first reference signal in the first reference signal set to the terminal device.
  • the network device sends first resource configuration information to the terminal device, where the first resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set.
  • the network device sends second resource configuration information to the terminal device, where the second resource configuration information includes the identifier of the first reference signal in the first reference signal set.
  • a method for sending and receiving information, applied to terminal equipment characterized in that the method includes:
  • the terminal device receives third resource configuration information sent by the network device, where the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • the terminal device receives the first reference signal set indication information sent by the network device;
  • the terminal device receives the first reference signal in the first reference signal set sent by the network device.
  • An information transceiver device applied to terminal equipment, characterized in that the device includes:
  • a fourth receiving unit that receives third resource configuration information sent by the network device, where the third resource configuration information includes a reference signal set identifier and an identifier of each reference signal in the reference signal set;
  • a fifth receiving unit that receives the first reference signal set indication information sent by the network device
  • a sixth receiving unit which receives the first reference signal in the first reference signal set sent by the network device.
  • a network device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of appendices 11 to 23.
  • a terminal device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of appendices 1 to 10, 23
  • a communication system comprising the network device described in Supplementary Note 25 and/or the terminal device described in Supplementary Note 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息收发方法以及装置。该方法包括:终端设备向网络设备发送用于获取第一参考信号集的请求指示信息;接收所述网络设备发送的第一参考信号集中的第一参考信号。或者,网络设备向终端设备发送第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;向所述终端设备发送第一参考信号集指示信息;向所述终端设备发送第一参考信号集中的第一参考信号

Description

信息收发方法与装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
随着低频段频谱资源变得稀缺,毫米波频段能够提供更大带宽,成为了5G NR(New Radio,新无线)系统的重要频段。毫米波由于波长较短,具有与传统低频段不同的传播特性,例如更高的传播损耗,反射和衍射性能差等。因此通常会采用更大规模的天线阵列,以形成增益更大的赋形波束,克服传播损耗,确保系统覆盖。5G NR标准为波束管理设计了波束扫描,波束测量,波束汇报,波束指示等一系列的方案。但当收发波束数目比较大的时候,会大大增加系统的负荷和延时。
伴随着人工智能(Artificial Intelligence,AI)技术的发展,将人工智能技术应用到无线通信物理层上,来解决传统方法的难点成为当前一个技术方向。对于波束管理而言,利用AI模型,根据少量波束测量的结果预测出空间上最优的波束对,能够大幅度减少系统的负荷和延时。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
假设通信系统的发送端有M个波束,接收端有N个波束,在现有的标准中,需要对M*N个波束进行测量,当M和N数量较大时,对M*N个波束进行测量会导致较大的系统负荷和较长的延时。利用模型(例如,AI模型),通过少量的波束测量结果来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
发明人发现,如果AI模型部署在终端设备侧,在对该AI模型进行训练的阶段,网络设备配置用于波束测量的参考信号集,并通过不同的发送波束分别将参考信号集中的参考信号发送给终端设备用来波束测量,并将测量结果作为AI模型训练的标签数据。在使用训练好的AI模型进行推理的阶段,AI模型只需要部分发送波束的测量 结果,即终端设备只需要接收参考信号集中的部分参考信号。不过由于AI模型部署在终端设备侧,终端设备知道AI模型需要的该部分参考信号的信息,但网络设备并不知道该部分参考信号的信息,目前并没有终端设备如何告知网络设备关于该部分参考信号的信息的方案。
发明人发现,如果AI模型部署在网络设备侧,在对该AI模型进行训练的阶段,网络设备配置用于波束测量的参考信号集,并通过不同的发送波束分别将参考信号集中的参考信号发送给终端设备用来波束测量,终端设备将测量结果上报给网络设备作为AI模型训练的标签数据。在使用训练好的AI模型进行推理的阶段,网络设备只需要配置参考信号集中的部分参考信号,并通过部分发送波束发送给终端设备用于波束的测量和汇报。终端设备上报的信息中需要包括该部分参考信号的信息,但目前并没有网络设备如何告知终端设备关于该部分参考信号的信息的方案。
针对上述问题的至少之一,本申请实施例提供一种信息收发方法以及装置。
根据本申请实施例的一个方面,提供一种信息收发装置,应用于终端设备,所述装置包括:
第一发送单元,其向网络设备发送用于获取第一参考信号集的请求指示信息;
第一接收单元,其接收所述网络设备发送的第一参考信号集中的第一参考信号。
根据本申请实施例的另一个方面,提供一种信息收发装置,应用于网络设备,所述装置包括:
第二接收单元,其接收终端设备发送的用于获取第一参考信号集的请求指示信息;
第二发送单元,其向所述终端设备发送第一参考信号集中的第一参考信号。
根据本申请实施例的一个方面,提供一种信息收发装置,应用于网络设备,所述装置包括:
第三发送单元,其向终端设备发送第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
第四发送单元,其向所述终端设备发送第一参考信号集指示信息;
第五发送单元,其向所述终端设备发送第一参考信号集中的第一参考信号。
根据本申请实施例的另一个方面,提供一种信息收发装置,应用于终端设备,所述装置包括:
第四接收单元,其接收网络设备发送的第三资源配置信息,所述第三资源配置信 息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
第五接收单元,其接收所述网络设备发送的第一参考信号集指示信息;
第六接收单元,其接收所述网络设备发送的第一参考信号集中的第一参考信号。
本申请实施例的有益效果之一在于:终端设备向网络设备发送用于获取该部分参考信号的请求指示信息,由此,告知网络设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
本申请实施例的有益效果之一在于:网络设备向终端设备发送关于该部分参考信号的指示信息,由此,告知终端设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请的通信系统的一示意图;
图2是本申请实施例的通信系统中发送波束和接收波束的一个示意图;
图3是本申请实施例的信息收发方法的示意图;
图4是本申请实施例的发送波束和接收波束的示意图;
图5至图7是本申请实施例的请求指示信息的示例图;
图8A和图8B是本申请实施例的请求指示信息的示例图;
图9是本申请实施例的信息收发方法的示意图;
图10是本申请实施例的信息收发方法的示意图;
图11是本申请实施例的信息收发方法的示意图;
图12是本申请实施例的信息收发方法的示意图;
图13是本申请实施例的信息收发方法的示意图;
图14是本申请实施例的信息收发方法的示意图;
图15是本申请实施例的信息收发方法的示意图;
图16是本申请实施例的信息收发装置的示意图;
图17是本申请实施例的信息收发装置的示意图;
图18是本申请实施例的信息收发装置的示意图;
图19是本申请实施例的信息收发装置的示意图;
图20是本申请实施例的网络设备的示意图;
图21是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)、未来的6G等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
在以下的说明中,在不引起混淆的情况下,术语“上行控制信号”和“上行控制信息(UCI,Uplink Control Information)”或“物理上行控制信道(PUCCH,Physical Uplink Control Channel)”可以互换,术语“上行数据信号”和“上行数据信息”或“物理上行共享信道(PUSCH,Physical Uplink Shared Channel)”可以互换;
术语“下行控制信号”和“下行控制信息(DCI,Downlink Control Information)”或“物理下行控制信道(PDCCH,Physical Downlink Control Channel)”可以互换,术语“下行数据信号”和“下行数据信息”或“物理下行共享信道(PDSCH,Physical Downlink Shared Channel)”可以互换。
另外,发送或接收PUSCH可以理解为发送或接收由PUSCH承载的上行数据,发送或接收PUCCH可以理解为发送或接收由PUCCH承载的上行信息,发送或接收PRACH可以理解为发送或接收由PRACH承载的preamble;上行信号可以包括上行数据信号和/或上行控制信号等,也可以称为上行传输(UL transmission)或上行信息或上行信道。在上行资源上发送上行传输可以理解为使用该上行资源发送该上行传输。类似地,可以相应地理解下行数据/信号/信道/信息。
在本申请实施例中,高层信令例如可以是无线资源控制(RRC)信令;例如称为RRC消息(RRC message),例如包括MIB、系统信息(system information)、专用RRC消息;或者称为RRC IE(RRC information element)。高层信令例如还可以是MAC(Medium Access Control)信令;或者称为MAC CE(MAC control element)。但本申请不限于此。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备 为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,终端设备102可以向网络设备101发送数据,例如使用授权或免授权传输方式。网络设备101可以接收一个或多个终端设备102发送的数据,并向终端设备102反馈信息,例如确认ACK/非确认NACK信息等,终端设备102根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本申请不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
AI模型(或ML模型)包括但不限于:输入层(input)、多个卷积层、连接层(concat)、全连接层(FC)以及量化器等。其中,多个卷积层的处理结果在连接层进行合并,关于AI模型的具体结构可以参考现有技术,此处不再赘述。
图2是本申请各实施例的通信系统中发送波束和接收波束的一个示意图。如图2所示,在通信系统100中,以下行信道为例,网络设备101可以具有M1个下行发送波束DL TX,终端设备102可以具有N1个下行接收波束DL RX。
在本申请实施例中,如图2所示,用于预测波束测量结果的模型201可以被部署于网络设备101或终端设备102。模型201可以根据部分波束的测量结果,预测M1*N1个波束的测量结果。其中,模型201例如可以是AI模型,模型201可以部署在网络设备101中或终端设备102中。
此外,针对上行信道,网络设备101可以具有N2个上行接收波束(图2未示出),终端设备102可以具有M2个上行发送波束UL TX(图2未示出)。
针对上述问题,本申请实施例提供一种信息收发方法以及装置,以下结合附图和 实施例进行说明。
第一方面的实施例
本申请实施例提供一种信息收发方法,从终端设备侧进行说明,该AI模型部署在该终端设备侧。
图3是本申请实施例的信息收发方法的一示意图,如图3所示,该方法包括:
301,终端设备向网络设备发送获取第一参考信号集的请求指示信息;
302,所述终端设备接收所述网络设备发送的第一参考信号集中的第一参考信号。
值得注意的是,以上附图3仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图3的记载。
在一些实施例中,用于波束预测的AI模型部署在终端设备中,利用该AI模型,通过少量的波束对测量结果预测最优波束对,该AI模型输入参数为部分波束对的RSRP(Reference Signal Receiving Power,参考信号接收功率)值,也可以为部分波束对的SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)值,输出参数的物理量为所有波束对的RSRP或者SINR,图4是本申请实施例中发送波束和接收波束以及AI模型示意图,如图4所示,例如下行发送波束有12个,下行接收波束有8个,总共有96波束对。通过配置,UE只测量了其中24个波束对RSRP(6个下行发送波束和4个下行接收波束)。此时AI模型的输入参数的维度为24,物理量为RSRP或SINR,输出参数的维度为96,物理量也为RSRP或SINR,可以从预测结果中选出最优的波束对。
也就是说,在AI模型的推理阶段,并不需要所有发送波束的测量结果,只需要部分发送波束的测量结果,终端设备只需要接收该部分发送波束发送的参考信号(也称为部分参考信号或第一参考信号)进行波束测量,即可以得到预测结果。由于AI模型部署在终端设备侧,网络设备并不知道终端设备侧AI模型需要哪些部分参考信号。为此,在本申请实施例中,终端设备可以向网络设备发送获取第一参考信号集的请求指示信息。
通过上述实施例,终端设备向网络设备发送用于获取该部分参考信号的请求指示 信息,由此,告知网络设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
以下详细说明,在以下的说明中,参考信号和测量资源或资源可以互相替换。
在一些实施例中,网络设备通过第一资源配置信息为下行发送波束的测量配置测量资源(参考信号),该测量资源(参考信号)可以是CSI-RS和/或SSB等参考信号,例如,该配置的测量资源是资源集列表(参考信号集),每个资源集由一个或者多个测量资源(参考信号)组成,换句话说,网络设备可以为终端设备配置多个参考信号用于波束测量,该第一资源配置信息中包括参考信号集标识(测量资源集标识)以及构成参考信号集(测量资源)集的一个或者多个测量资源(参考信号)的标识。
例如,在参考信号为CSI-RS时,该第一资源配置信息可以是非零功率CSI-RS资源集配置信息,NZP-CSI-RS-ResourceSet使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000001
也就是说,nzp-CSI-ResourceSetId表示该参考信号集标识,SEQUENCE(SIZE(1..maxNrofNZP-CSI-RS-ResourcesPerSet))OF NZP-CSI-RS-ResourceId表示该参考信号集中的各个参考信号的标识。
例如,在参考信号为SSB时,该第一资源配置信息可以CSI-SSB-ResourceSet,其使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000002
Figure PCTCN2022110977-appb-000003
也就是说,csi-SSB-ResourceSetId表示该参考信号集标识,SEQUENCE(SIZE(1..maxNrofCSI-SSB-ResourcePerSet))OF SSB-Index表示该参考信号集中的各个参考信号的标识。
在一些实施例中,该第一资源配置信息由RRC信令承载,其配置的参考信号集也可以理解为用于波束测量的参考信号的全集,AI模型的训练阶段需要该参考信号集中的所有参考信号进行波束测量的测量结果。
在一些实施例中,在301中,向网络设备发送用于获取第一参考信号集的请求指示信息,第一参考信号集中的第一参考信号是参考信号集中的一个或多个参考信号,该第一参考信号集也可以称为参考信号子集,终端设备可以根据AI模型的需求从参考信号集中选择一个或多个参考信号作为第一参考信号集,并向网络设备发送用于获取第一参考信号集的请求指示信息。
在一些实施例中,请求指示信息包括所述第一参考信号集中的第一参考信号的标识,或者所述请求指示信息通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集。该请求指示信息可以由RRC或MAC CE或UCI承载。
以下分别说明。
例如,该请求指示信息包括所述第一参考信号集中的第一参考信号的标识,该第一参考信号的标识为CRI或SSB-RI,该所述请求指示信息还可以包括参考信号集标识,该参考信号集标识为nzp-CSI-RS-ResourceSetId或CSI-SSB-ResourceSetId,图5是该请求指示信息示例图,如图5所示,该请求指示信息包括参考信号集标识为nzp-CSI-RS-ResourceSetId或CSI-SSB-ResourceSetId,以及所述第一参考信号集中的K个第一参考信号的标识CRI/SSB-RI#1,CRI/SSB-RI#2,...,CRI/SSB-RI#K,该请 求指示信息以列表的形式给出每个第一参考信号的标识,在该实施例中,该请求指示信息可以是新增的RRC信令或者是现有RRC信令或UCI中新增的信息元,本申请实施例并不以此作为限制。
例如,该请求指示信息通过比特位图的方式指示配置的参考信号集中的第一参考信号集,该比特位图中比特的数量可以根据参考信号集中参考信号的数量确定,每一个比特对应参考信号集中的一个参考信号,该比特的值用于指示对应的参考信号是否是第一参考信号(或者说用于指示第一参考信号集中是否包含该比特对应的参考信号),例如,比特值为0时,指示该参考信号不是第一参考信号,不被包含在第一参考信号集中,比特值为1时,指示该参考信号是第一参考信号,被包含在第一参考信号集中,反之亦可;该所述请求指示信息还可以包括参考信号集标识,该参考信号集标识为nzp-CSI-RS-ResourceSetId或CSI-SSB-ResourceSetId。图6是该请求指示信息示例图,如图6所示,该请求指示信息包括参考信号集标识(ID)为nzp-CSI-RS-ResourceSetId或CSI-SSB-ResourceSetId,该参考信号集标识对应的参考信号集中有N个参考信号,该请求指示信息还包括N个比特,N个比特分别依次对应参考信号集中的参考信号#0,参考信号#1...,参考信号#N,例如N=8,该比特位图为10000110,则参考信号集中的参考信号#0,#5,#6为第一参考信号,被包含在第一参考信号集中,或者说比特位图为10000110指示第一参考信号集中的第一参考信号包括参考信号集中的参考信号#0,#5,#6,在该实施例中,该请求指示信息可以是新增的RRC信令或者是现有RRC信令或UCI中新增的信息元,本申请实施例并不以此作为限制;例如,该请求指示信息还可以是新增的MAC CE信令,该所述请求指示信息还可以包括小区标识(Cell ID)和/或部分带宽BWP标识(BWP ID)等。图7是该请求指示信息示例图,如图7所示,该请求指示信息中包含小区标识、BWP标识、参考信号集标识(例如6比特)、以及指示参考信号集中的每个参考信号的是否为第一参考信号的比特T(k);如果T(k)值为0的话,表示T(k)所对应的参考信号不是第一参考信号,为1的话,表示其所对应的参考信号为第一参考信号,所有第一参考信号构成第一参考信号集。例如参考信号集中参考信号个数为64,N值为10,k的值为0~63。
例如,该请求指示信息通过起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集,该起始位置offset表示参考信号集中第一个被指示为第一参考信 号的参考信号在参考信号集中索引的位置,该间隔信息interval表示第一参考信号在参考信号集中的索引的间隔,即指示第一参考信号集在参考信号集中索引的起始位置和间隔,该所述请求指示信息还可以包括参考信号集标识,该参考信号集标识为nzp-CSI-RS-ResourceSetId或CSI-SSB-ResourceSetId。图8A是该请求指示信息示例图,如图8A所示,该请求指示信息包括参考信号集标识为nzp-CSI-RS-ResourceSetId或CSI-SSB-ResourceSetId,该参考信号集标识对应的参考信号集中有N=64个参考信号,该请求指示信息还包括起始位置offset m为2,间隔信息interval n为8,则参考信号集中的索引为#2,#10,#18,#26,#34,#42,#50,#58的参考信号为第一参考信号,或者说参考信号集中索引为#2,#10,#18,#26,#34,#42,#50,#58参考信号构成第一参考信号集中,在该实施例中,该请求指示信息可以是新增的RRC信令或者是现有RRC信令或UCI中新增的信息元,本申请实施例并不以此作为限制。例如,该请求指示信息还可以是新增的MAC CE信令,该所述请求指示信息还可以包括小区标识和/或部分带宽BWP标识等。图8B是该请求指示信息示例图,如图8B所示,该请求指示信息中包含小区标识、BWP标识、参考信号集标识(例如6比特)、以及起始位置offset和间隔信息interval;例如参考信号集中参考信号个数为64,起始位置offset和间隔信息interval的值为0~63,也采用6比特表示。
在一些实施例中,网络设备在收到该请求指示信息后,可以直接发送该请求指示信息指示的第一参考信号集中的各个第一参考信号,或者,也可以在发送第一参考信号集中的第一参考信号前,发送第二资源配置信息,所述第二资源配置信息包括所述第一参考信号集中第一参考信号的标识指示信息,可选的还可以包括第一参考信号集的标识,和/或第一参考信号集所对应的第一资源配置信息中参考信号集的标识,其中,该第二资源配置信息可以是新增的信令,和第一资源配置信息可以分开发送,以下分别举例说明。
在一些实施例中,在该第二资源配置信息是新增的信令时,该第二资源配置信息与第一资源配置信息的实施方式类似,例如,将第一资源配置信息中参考信号集标识替换为第一参考信号集标识,将参考信号集中的各个参考信号的标识替换为第一参考信号集中的各个第一参考信号的标识(作为第一参考信号的标识指示信息)即可,或者所述第二资源配置信息中的第一参考信号的标识指示信息通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号。该第二资源配置信 息通过RRC信令承载,以下分别举例说明。
例如,在参考信号为CSI-RS时,该第一资源配置信息可以是非零功率CSI-RS资源集配置信息,新增的第二资源配置信息NZP-CSI-RS-ResourceSubSet使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000004
如上所示,第二资源配置信息NZP-CSI-RS-ResourceSubSet的信息元可以包括第一参考信号集的标识nzp-CSI-ResourceSubSetId,第一参考信号集所对应的第一资源配置信息中参考信号集的标识nzp-CSI-ResourceSetId,以及所述第一参考信号集中第一参考信号的标识指示信息nzp-CSI-RS-Resources-subset。其中,所述第一参考信号集中第一参考信号的标识指示信息nzp-CSI-RS-Resources-subset是用第一参考信号对应与参考信号集的比特位图来指示的,长度为maxNrofNZP-CSI-RS-ResourcesPerSet,比特位图中的每个比特值为0表示该比特所对应的参考信号不包含在第一参考信号集中,比特值为1表示该比特所对应的参考信号包含在第一参考信号集中,反之亦可。需要说明第一参考信号集的其他配置信息,例如repetition,aperiodicTriggeringOffset等可以默认和第一参考信号集对应的第一资源配置信息中参考信号集的配置一致,即可重用第一资源配置信息中对应的信息元配置,无须额外配置。
再例如,在参考信号为CSI-RS时,该第一资源配置信息可以是非零功率CSI-RS资源集配置信息,新增的第二资源配置信息NZP-CSI-RS-ResourceSubSet使用抽象语法标记ASN.1数据格式也可以表示为:
Figure PCTCN2022110977-appb-000005
Figure PCTCN2022110977-appb-000006
也就是说,第二资源配置信息NZP-CSI-RS-ResourceSubSet的信息元可以包括第一参考信号集的标识nzp-CSI-ResourceSubSetId,第一参考信号集所对应的第一资源配置信息中参考信号集的标识nzp-CSI-ResourceSetId,以及所述第一参考信号集中第一参考信号的标识指示信息nzp-CSI-RS-Resources-subset。其中,所述第一参考信号集中第一参考信号的标识指示信息是用第一参考信号对应与参考信号集的offest字段和intveral字段来指示的,分别用于指示第一参考信号集在参考信号集中索引的起始位置和间隔。需要说明,offset和interval字段为整数,其范围根据maxNrofNZP-CSI-RS-ResourcesPerSet来确定。这里需要说明,这里采用连续的整数来定义offset和interval的数据类型,也可以采用其他数据类型,比如枚举型,本申请实施例并不以此作为限制。需要说明第一参考信号集的其他配置信息,例如repetition,aperiodicTriggeringOffset等可以默认和第一参考信号集对应的第一资源配置信息中参考信号集的配置一致,即可重用第一资源配置信息中对应的信息元配置,无须额外配置。
例如,在参考信号为SSB时,该第一资源配置信息可以是CSI-SSB-ResourceSet,新增的第二资源配置信息CSI-SSB-ResourceSubSet使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000007
也就是说,第二资源配置信息CSI-SSB-ResourceSubSet的信息元可以包括第一参考信号集的标识csi-SSB-ResourceSubSetId,第一参考信号集所对应的第一资源配置信息中参考信号集的标识csi-SSB-ResourceSetId,以及所述第一参考信号集中第一参考信号的标识指示信息csi-SSB-Resources-subset。其中,所述第一参考信号集中 第一参考信号的标识指示信息是用第一参考信号对应与参考信号集的比特位图来指示的,长度为maxNrofCSI-SSB-ResourcesPerSet,比特位图中的每个比特值为0表示该比特所对应的参考信号不包含在第一参考信号集中,比特值为1表示该比特所对应的参考信号包含在第一参考信号集中,反之亦可。需要说明第一参考信号集的其他配置信息,可以默认和第一参考信号集对应的第一资源配置信息中参考信号集的配置一致,即可重用第一资源配置信息中对应的信息元配置,无须额外配置。
例如,在参考信号为SSB时,该第一资源配置信息可以是CSI-SSB-ResourceSet,新增的第二资源配置信息CSI-SSB-ResourceSubSet使用抽象语法标记ASN.1数据格式还可以表示为:
Figure PCTCN2022110977-appb-000008
也就是说,第二资源配置信息CSI-SSB-ResourceSubSet的信息元可以包括第一参考信号集的标识csi-SSB-ResourceSubSetId,第一参考信号集所对应的第一资源配置信息中参考信号集的标识csi-SSB-ResourceSetId,以及所述第一参考信号集中第一参考信号的标识指示信息csi-SSB-Resources-subset。其中,所述第一参考信号集中第一参考信号的标识指示信息是用第一参考信号对应与参考信号集的offest字段和intveral字段来指示的,分别用于指示第一参考信号集在参考信号集中索引的起始位置和间隔。需要说明,offset和interval字段为整数,其范围根据maxNrofCSI-SSB-ResourcesPerSet来确定。这里需要说明,这里采用连续的整数来定义offset和interval的数据类型,也可以采用其他数据类型,比如枚举型,本申请实施例并不以此作为限制。需要说明第一参考信号集的其他配置信息,可以默认和第一参考信号集对应的第一资源配置信息中参考信号集的配置一致,即可重用第一资源配置信息中对应的信息元配置,无须额外配置。
在一些实施例中,在该第二资源配置信息是新增的信令时,该第二资源配置信息也可以通过MAC CE信令实现,例如,在RRC信令配置了第一资源配置信息后,采用MAC CE来激活/去激活参考信号集中的参考信号,以间接指示第一参考信号集中的各个第一参考信号的资源配置。关于该MAC CE信令激活/去激活参考信号集中的参考信号的方法可以是比特位图或者起始位置和间隔信息的方式指示,例如,采用比特位图或者起始位置和间隔信息的方式指示参考信号集中各个参考信号是激活还是去激活,即采用比特位图或者起始位置和间隔信息的方式指示参考信号集中的激活参考信号,将激活参考信号作为第一参考信号集中的第一参考信号,具体与请求指示信息MAC CE信令实现方式类似,此处不再一一赘述。
需要说明的是,以上各字段名称仅为示例,本申请实施例并不以此作为限制。
在一些实施例中,该请求指示信息在第一资源配置信息(不包含第二资源配置信息)之后但在第二资源配置信息之前发送。
在一些实施例中,在302中,网络设备基于该第一资源配置信息和请求指示信息,或者基于第二资源配置信息在下行信道发送该第一参考信号。也就是,终端设备根据资源配置信息中配置的第一参考信号映射的时频资源、周期等信息,在对应的时频资源上接收对应的第一参考信号,并对所述第一参考信号集中的第一参考信号进行波束测量,所述波束测量的结果用于AI模型的推理。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
通过上述实施例,终端设备向网络设备发送用于获取该部分参考信号的请求指示信息,由此,告知网络设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
第二方面的实施例
本申请实施例提供一种信息收发方法,从网络设备侧进行说明,AI模型部署在终端设备侧,与第一方面的实施例相同的内容不再赘述。
图11是本申请实施例的信息收发方法的一示意图,如图11所示,该方法包括:
1101,网络设备接收终端设备发送的用于获取第一参考信号集的请求指示信息;
1102,该网络设备向所述终端设备发送第一参考信号集中的第一参考信号。
值得注意的是,以上附图11仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11的记载。
在一些实施例中,1101-1102的实施方式与301-302对应,此处不再赘述。
在一些实施例中,上述请求指示信息的实施方式可以参考第一方面的实施例,网络设备还可以向终端设备发送第一资源配置信息和第二资源配置信息,其实施方式可以参考第一方面的实施例,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
通过上述实施例,终端设备向网络设备发送用于获取该部分参考信号的请求指示信息,由此,告知网络设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
以上,针对第一方面的实施例和第二方面的实施例中终端设备和网络设备之间的信息收发方法如下所述:
图9是本申请实施例中信息收发方法示意图,如图9所示,该方法包括:
901,网络设备向终端设备发送第一资源配置信息;
902,网络设备向终端设备发送测量上报配置信息;
903,终端设备向网络设备发送请求指示信息;
904,网络设备向终端设备发送第二资源配置信息;
905,网络设备向终端设备发送第一参考信号集中的第一参考信号;
906,终端设备使用该第一参考信号进行波束测量;
907,终端设备将测量结果作为输入送入AI模型,得到预测结果;
908,终端设备向网络设备发送波束测量上报信息;
909,网络设备向终端设备发送下行数据。
在一些实施例中,903,905的实施方式可以参考301-302,重复之处不再赘述。
在一些实施例中,在902中,配置测量上报所需要的参数,包括:上报量(Report Quantity)、测量约束配置、码本配置、基于组的上报配置、上报周期等,例如在需要波束管理时,该上报量为以下参数的组合:CRI-RSRP/SINR(基于CSI-RS的波束管理)或SSBRI-RSRP/SINR(基于SSB的波束管理);在906中,终端设备通过该第一参考信号测量对应下行发送波束的L1-RSRP或SINR作为测量结果,在907中,终端设备将测量结果输入至AI模型,预测得到一个或几个最优的下行波束对,在908中,终端设备在相应的时频资源发送波束测量上报信息(由UCI承载),该上报信息中包括AI模型预测的结果,例如包括预测得到的一个或几个最优的下行波束对的下行发送波束信息以及对应的测量结果,例如,该上报信息中包括测量结果RSRP(Reference Signal Receiving Power,参考信号接收功率)值#1,#2,#3,#4,以及与测量结果RSRP关联的同步信号块资源指示(SSB resource indicator,SSB RI)或者信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)#1,#2,#3,#4,由于网络设备侧知道SSB RI或者CRI和下行发送波束的对应关系,因此通过SSB RI或CRI能够隐式的指明预测得到的一个或几个最优的下行发送波束。以便909中网络设备使用该下行发送波束进行下行数据的发送,终端设备根据TCI(transmission configuration indicator)信令中关于该下行发送波束的指示信息,选择对应该下行发送波束中的下行接收波束接收该下行数据。
图10是本申请实施例中信息收发方法示意图,如图10所示,该方法包括:
1001,网络设备向终端设备发送第一资源配置信息;
1002,网络设备向终端设备发送测量上报配置信息;
1003,终端设备向网络设备发送请求指示信息;
1004,网络设备向终端设备发送第一参考信号集中的第一参考信号;
1005,终端设备使用该第一参考信号进行波束测量;
1006,终端设备将测量结果作为输入送入AI模型,得到预测结果;
1007,终端设备向网络设备发送波束测量上报信息;
1008,网络设备向终端设备发送下行数据。
图10中与图9相同之处不再赘述,不同之处在于,网络设备不需要发送第二资 源配置信息,直接根据请求指示信息发送第一参考信号集中的第一参考信号。
第三方面的实施例
本申请实施例提供一种信息收发方法,从网络设备侧进行说明,该AI模型部署在该网络设备侧。
图12是本申请实施例的信息收发方法的一示意图,如图12所示,该方法包括:
1201,网络设备向终端设备发送第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
1202,该网络设备向所述终端设备发送第一参考信号集指示信息;
1203,该网络设备向所述终端设备发送第一参考信号集中的第一参考信号。
值得注意的是,以上附图12仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图12的记载。
在一些实施例中,用于波束预测的AI模型部署在网络设备中,利用该AI模型,通过少量的波束对测量结果预测最优波束对,该AI模型输入参数为部分波束对的RSRP(Reference Signal Receiving Power,参考信号接收功率)值,也可以为部分波束对的SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)值,输出参数的物理量为所有波束对的RSRP或者SINR,该模型与图4所示的AI模型相同,此处不再赘述。
也就是说,在AI模型的推理阶段,网络设备只需要配置参考信号集中的部分参考信号,并通过部分发送波束发送给终端设备用于波束的测量和汇报。终端设备上报的信息中需要包括该部分参考信号的信息,为此,在本申请实施例中,网络设备向所述终端设备发送第一参考信号集指示信息。
通过上述实施例,网络设备向终端设备发送关于该部分参考信号的指示信息,由此,告知终端设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
以下详细说明,在以下的说明中,参考信号和测量资源或资源可以互相替换。
在一些实施例中,网络设备通过第三资源配置信息为下行发送波束的测量配置测 量资源(参考信号),该测量资源(参考信号)可以是CSI-RS和/或SSB等参考信号,例如,该配置的测量资源是资源集列表(参考信号集),每个资源集由一个或者多个测量资源(参考信号)组成,换句话说,网络设备可以为终端设备配置多个参考信号用于波束测量,该第三资源配置信息中包括参考信号集标识(测量资源集标识)以及构成参考信号集(测量资源)集的一个或者多个测量资源(参考信号)的标识。关于第三资源配置信息的实施方式可以参考第一方面实施例中第一资源配置信息的实施方式,此处不再赘述。
在一些实施例中,在1202中,网络设备向终端设备发送第一参考信号集指示信息,该第一参考信号的含义请参考第一方面的实施例。
在一些实施例中,所述第一参考信号集指示信息包括所述第一参考信号集中的第一参考信号的标识,或者所述第一参考信号集指示信息通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集,或者所述第一参考信号集指示信息指示参考信号集中的激活参考信号,所述激活参考信号作为所述第一参考信号集中的第一参考信号。该第一参考信号集指示信息可以由RRC或MAC CE或DCI承载。
在一些实施例中,该第一参考信号集指示信息被包含在所述第三资源配置信息中或者不包含在所述第三资源配置信息中,例如该第一参考信号集指示信息可以是新增的RRC信令或MAC CE信令,该第一参考信号集指示信息不包含在所述第三资源配置信息中,而是与第三资源配置信息分开发送;或者,例如该第一参考信号集指示信息可以是新增的信息元,该第一参考信号集指示信息包含在所述第三资源配置信息中,与第三资源配置信息一起发送,本申请实施例并不以此作为限制。
在一些实施例中,在该第一参考信号集指示信息是新增信令时,其实施方式可以参考第一方面的实施例中第二资源配置信息,此处不再赘述。在该第一参考信号集指示信息是新增的信息元包含在所述第三资源配置信息中,与第三资源配置信息一起发送时,其指示方式还包括如下几种示例,以下详细说明。
在一些实施例中,该第一参考信号集指示信息是第三资源配置信息中新增的信元,该新增的信元包括所述第一参考信号集中的第一参考信号的标识,或者通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集。
例如,在参考信号为CSI-RS时,该第三资源配置信息可以是非零功率CSI-RS 资源集配置信息,NZP-CSI-RS-ResourceSet使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000009
也就是说,如在NZP-CSI-RS-ResourceSet(第三资源配置信息)增加一个字段nzp-CSI-RS-Resources-subset(第一参考信号集指示信息),用比特位图表示,长度为maxNrofNZP-CSI-RS-ResourcesPerSet,比特位图中的每个比特值为0表示该比特所对应的参考信号不包含在第一参考信号集中,比特值为1表示该比特所对应的参考信号包含在第一参考信号集中,反之亦可。
例如,在参考信号为CSI-RS时,该第三资源配置信息可以是非零功率CSI-RS资源集配置信息,NZP-CSI-RS-ResourceSet使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000010
Figure PCTCN2022110977-appb-000011
也就是说,如在NZP-CSI-RS-ResourceSet(第三资源配置信息)增加一个字段nzp-CSI-RS-Resources-subset(第一参考信号集指示信息),包含起始位置offset和间隔信息inverval两个字段,用于指示第一参考信号集中的第一参考信号在参考信号集中索引的起始位置和间隔,其中offset和interval字段为整数,其范围根据maxNrofNZP-CSI-RS-ResourcesPerSet来确定。这里需要说明,这里采用连续的整数来定义offset和interval的数据类型,也可以采用其他数据类型,比如枚举型,本申请实施例并不以此作为限制。
例如,在参考信号为SSB时,该第三资源配置信息可以是CSI-SSB-ResourceSet,其使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000012
也就是说,如在CSI-SSB-ResourceSet(第三资源配置信息)增加一个字段CSI-SSB-Resources-subset(第一参考信号集指示信息),用比特位图表示,长度为maxNrofCSI-SSB-ResourcesPerSet,比特位图中的每个比特值为0表示该比特所对应的参考信号不包含在第一参考信号集中,比特值为1表示该比特所对应的参考信号包含在第一参考信号集中,反之亦可。
例如,在参考信号为SSB时,该第三资源配置信息可以是CSI-SSB-ResourceSet,其使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110977-appb-000013
也就是说,如在CSI-SSB-ResourceSet(第三资源配置信息)增加一个字段CSI-SSB-Resources-subset(第一参考信号集指示信息),包含起始位置offset和间隔信息inverval两个字段,用于指示第一参考信号集中的第一参考信号在参考信号集中索引的起始位置和间隔,其中offset和interval字段为整数,其范围根据maxCSI-SSB-ResourcesPerSet来确定。这里需要说明,这里采用连续的整数来定义offset和interval的数据类型,也可以采用其他数据类型,比如枚举型,本申请实施例并不以此作为限制。
在以上实施例(新增信元)中,在第三资源配置信息包含该第一参考信号集指示信息时,表示需要配置第一参考信号集的信息,例如应用在部署了AI模型的场景,在第三资源配置信息不包含该第一参考信号集指示信息时,表示不需要配置第一参考信号集的信息,例如应用在没有部署AI模型的场景。
在一些实施例中,在1203中,网络设备基于该第一参考信号集指示信息在下行信道发送该第一参考信号。也就是,终端设备根据第一参考信号映射的时频资源、周期等信息,在对应的时频资源上接收对应的第一参考信号,并对所述第一参考信号集中的第一参考信号进行波束测量,网络设备接收所述终端设备上报的对所述第一参考信号集中的第一参考信号进行波束测量的测量结果,所述波束测量的结果用于AI模型的推理。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可 以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
通过上述实施例,网络设备向终端设备发送关于该部分参考信号的指示信息,由此,告知终端设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
第四方面的实施例
本申请实施例提供一种信息收发方法,从终端设备侧进行说明,AI模型部署在网络设备侧,与第三方面的实施例相同的内容不再赘述。
图13是本申请实施例的信息收发方法的一示意图,如图13所示,该方法包括:
1301,终端设备接收网络设备发送的第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
1302,终端设备接收所述网络设备发送的第一参考信号集指示信息;
1303,终端设备接收所述网络设备发送的第一参考信号集中的第一参考信号。
值得注意的是,以上附图13仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图13的记载。
在一些实施例中,1301-1302的实施方式与1201-1202对应,此处不再赘述。
在一些实施例中,上述第一参考信号集指示信息的实施方式可以参考第三方面的实施例,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
通过上述实施例,网络设备向终端设备发送关于该部分参考信号的指示信息,由此,告知终端设备在AI模型推理阶段使用的该部分参考信号的信息,能够有效的使用AI模型来预测最优的波束对,能够大大减少波束测量所导致的系统负荷和延时。
以上,针对第三方面的实施例和第四方面的实施例中终端设备和网络设备之间的 信息收发方法如下所述:
图14是本申请实施例中信息收发方法示意图,如图14所示,该方法包括:
1401,网络设备向终端设备发送第三资源配置信息;
1402,网络设备向终端设备发送测量上报配置信息;
1403,网络设备向终端设备发送第一参考信号集指示信息(配置第一参考信号或激活第一参考信号);
1404,网络设备向终端设备发送第一参考信号集中的第一参考信号;
1405,终端设备使用该第一参考信号进行波束测量;
1406,终端设备向网络设备发送波束测量上报信息;
1407,网络设备将测量结果作为输入送入AI模型,得到预测结果;
1408,网络设备向终端设备发送下行数据;
与图9中的实施方式不同之处在于,由于AI模型部署在网络设备侧,网络设备可以根据AI模型需求选择第一参考信号,而不需要终端设备通过请求指示信息告知该第一参考信号,并且,网络设备将该第一参考信号集指示信息发送给终端设备;另外,由于AI模型部署在网络设备侧,在1407-1408中,该AI模型的输出为所有波束对的预测结果,进而可以从预测结果中选出最优的下行发送波束,网络设备使用最优下行发送波束发送下行数据。
图15是本申请实施例中信息收发方法示意图,如图15所示,该方法包括:
1501,网络设备向终端设备发送第三资源配置信息(包括第一参考信号集指示信息);
1502,网络设备向终端设备发送测量上报配置信息;
1503,网络设备向终端设备发送第一参考信号集中的第一参考信号;
1504,终端设备使用该第一参考信号进行波束测量;
1505,终端设备向网络设备发送波束测量上报信息;
1506,网络设备将测量结果作为输入送入AI模型,得到预测结果;
1507,网络设备向终端设备发送下行数据;
图15中与图14相同之处不再赘述,不同之处在于,网络设备将第一参考信号集指示信息包含在第三资源配置信息中发送。
第五方面的实施例
本申请实施例提供一种信息收发装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一或第四方面的实施例相同的内容不再赘述。
图16是本申请实施例的信息收发装置的一示意图。如图16所示,信息收发装置1600包括:
第一发送单元1601,其向网络设备发送用于获取第一参考信号集的请求指示信息;
第一接收单元1602,其接收所述网络设备发送的第一参考信号集中的第一参考信号。
关于第一发送单元1601和第一接收单元1602的实施方式可以参考第一方面的实施例,请求指示信息的实施方式可以参考第一方面的实施例,该第一接收单元还用于接收第一资源配置信息和第二资源配置信息,具体请参考第一方面的实施例,此处不足赘述。
在一些实施例中,该装置还可以包括:
第一处理单元(未图示),其对所述第一参考信号集中的第一参考信号进行波束测量,所述波束测量的结果用于AI模型的推理。
图17是本申请实施例的信息收发装置的一示意图。如图17所示,信息收发装置1700包括:
第四接收单元1701,其接收网络设备发送的第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
第五接收单元1702,其接收所述网络设备发送的第一参考信号集指示信息;
第六接收单元1703,其接收所述网络设备发送的第一参考信号集中的第一参考信号。
关于第四接收单元1701,第五接收单元1702和第六接收单元1703的实施方式可以参考第四方面的实施例,该第三资源配置信息和第一参考信号集指示信息,具体请参考第三方面的实施例,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例, 也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信息收发装置1600或1700还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图16和图17中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
第六方面的实施例
本申请实施例提供一种信息收发装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件,与第二或第三方面的实施例相同的内容不再赘述。
图18是本申请实施例的信息收发装置的一示意图。如图18所示,信息收发装置1800包括:
第二接收单元1801,其接收终端设备发送的用于获取第一参考信号集的请求指示信息;
第二发送单元1802,其向所述终端设备发送第一参考信号集中的第一参考信号。
关于第二接收单元1801和第二发送单元1802的实施方式可以参考第二方面的实施例,请求指示信息的实施方式可以参考第一方面的实施例,该第二发送单元还用于发送第一资源配置信息和第二资源配置信息,具体请参考第一方面的实施例,此处不足赘述。
图19是本申请实施例的信息收发装置的一示意图。如图19所示,信息收发装置1900包括:
第三发送单元1901,其向终端设备发送第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
第四发送单元1902,其向所述终端设备发送第一参考信号集指示信息;
第五发送单元1903,其向所述终端设备发送第一参考信号集中的第一参考信号。
关于第三发送单元1901,第四发送单元1902和第五发送单元1903的实施方式 可以参考第三方面的实施例,该第三资源配置信息和第一参考信号集指示信息,具体请参考第三方面的实施例,此处不再赘述。
该装置还可以包括:第三接收单元(未图示),其接收所述终端设备上报的对所述第一参考信号集中的第一参考信号进行波束测量的测量结果,所述测量结果用于AI模型的推理。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信息收发装置1800或1900还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图18和图19中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
第七方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一至四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100至少可以包括:网络设备101和/或终端设备102,该网络设备101包括第六方面的实施例中的信息收发装置1800或1900,该终端设备102包括第五方面的实施例中的信息收发装置1600或1700,此处不再赘述。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图20是本申请实施例的网络设备的构成示意图。如图20所示,网络设备2000可以包括:处理器2010(例如中央处理器CPU)和存储器2020;存储器2020耦合到处理器2010。其中该存储器2020可存储各种数据;此外还存储信息处理的程序2030,并且在处理器2010的控制下执行该程序2030。
例如,处理器2010可以被配置为执行程序而实现如第二或第三方面的实施例所 述的信息收发方法。
此外,如图20所示,网络设备2000还可以包括:收发机2040和天线2050等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备2000也并不是必须要包括图20中所示的所有部件;此外,网络设备2000还可以包括图20中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图21是本申请实施例的终端设备的示意图。如图21所示,该终端设备2100可以包括处理器2110和存储器2120;存储器2120存储有数据和程序,并耦合到处理器2110。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器2110可以被配置为执行程序而实现如第一或第四方面的实施例所述的信息收发方法。
如图21所示,该终端设备2100还可以包括:通信模块2130、输入单元2140、显示器2150、电源2160。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备2100也并不是必须要包括图21中所示的所有部件,上述部件并不是必需的;此外,终端设备2100还可以包括图21中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一或第四方面的实施例所述的信息收发方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一或第四方面的实施例所述的信息收发方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第二或第三方面的实施例所述的信息收发方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第二或第三方面的实施例所述的信息收发方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种信息收发方法,应用于终端设备,其特征在于,所述方法包括:
所述终端设备向网络设备发送用于获取第一参考信号集的请求指示信息;
所述终端设备接收所述网络设备发送的第一参考信号集中的第一参考信号。
2.根据附记1所述的方法,其中,
所述终端设备还用于接收所述网络设备发送的第一资源配置信息,所述第一资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识。
3.根据附记1或2所述的方法,其中,
所述终端设备还用于在接收所述第一参考信号集中的第一参考信号前,接收所述网络设备发送的第二资源配置信息,所述第二资源配置信息包括所述第一参考信号集中第一参考信号的标识指示信息。
4.根据附记1至3任一项所述的方法,其中,所述请求指示信息指示的第一参考信号集中的第一参考信号是参考信号集中的一个或多个参考信号。
5.根据附记1至4任一项所述的方法,其中,所述请求指示信息包括所述第一参考信号集中的第一参考信号的标识,或者所述请求指示信息通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集。
6.根据附记5所述的方法,其中,所述第一参考信号集中的第一参考信号的标识为CRI或SSB-RI。
7.根据附记5所述的方法,其中,所述请求指示信息还包括参考信号集标识。
8.根据附记1至7任一项所述的方法,其中,AI模型部署在所述终端设备侧。
9.根据附记1至8任一项所述的方法,其中,所述方法还包括:
所述终端设备对所述第一参考信号集中的第一参考信号进行波束测量,所述波束测量的结果用于AI模型的推理。
10.根据附记1至9任一项所述的方法,其中,所述请求指示信息由RRC或MAC CE或UCI承载。
11.一种信息收发方法,应用于网络设备,其特征在于,所述方法包括:
所述网络设备向终端设备发送第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
所述网络设备向所述终端设备发送第一参考信号集指示信息;
所述网络设备向所述终端设备发送第一参考信号集中的第一参考信号。
12.根据附记11所述的方法,其中,所述第一参考信号集指示信息指示的第一参考信号集中的第一参考信号是参考信号集中的一个或多个参考信号。
13.根据附记11或12所述的方法,其中,所述第一参考信号集指示信息由RRC或MAC CE或DCI承载。
14.根据附记13所述的方法,其中,所述第一参考信号集指示信息被包含在所述第三资源配置信息中或者不包含在所述第三资源配置信息中。
15.根据附记11至14任一项所述的方法,其中,所述第一参考信号集指示信息包括所述第一参考信号集中的第一参考信号的标识,或者所述第一参考信号集指示信息通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集,或者所述第一参考信号集指示信息指示参考信号集中的激活参考信号,所述激活参考信号作为所述第一参考信号集中的第一参考信号。
16.根据附记15所述的方法,其中,所述第一参考信号集中的第一参考信号的标识为CRI或SSB-RI。
17.根据附记11至16任一项所述的方法,其中,所述第一参考信号集指示信息还包括参考信号集标识。
18.根据附记11至17任一项所述的方法,其中,AI模型部署在所述网络设备侧。
19.根据附记11至18任一项所述的方法,其中,所述方法还包括:
所述网络设备接收所述终端设备上报的对所述第一参考信号集中的第一参考信号进行波束测量的测量结果,所述测量结果用于AI模型的推理。
20.一种信息收发方法,应用于网络设备,其特征在于,所述方法包括:
所述网络设备接收终端设备发送的用于获取第一参考信号集的请求指示信息;
所述网络设备向所述终端设备发送第一参考信号集中的第一参考信号。
21.根据附记20所述的方法,其中,所述方法还包括:
所述网络设备向所述终端设备发送第一资源配置信息,所述第一资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识。
22.根据附记20或21所述的方法,其中,所述方法还包括:
所述网络设备向所述终端设备发送第二资源配置信息,所述第二资源配置信息包括所述第一参考信号集中第一参考信号的标识。
23.一种信息收发方法,应用于终端设备,其特征在于,所述方法包括:
所述终端设备接收网络设备发送的第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
所述终端设备接收所述网络设备发送的第一参考信号集指示信息;
所述终端设备接收所述网络设备发送的第一参考信号集中的第一参考信号。
24.一种信息收发装置,应用于终端设备,其特征在于,所述装置包括:
第四接收单元,其接收网络设备发送的第三资源配置信息,所述第三资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
第五接收单元,其接收所述网络设备发送的第一参考信号集指示信息;
第六接收单元,其接收所述网络设备发送的第一参考信号集中的第一参考信号。
25.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记11至23任一项所述的方法。
26.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至10,23任一项所述的方法
27.一种通信系统,包括附记25所述的网络设备和/或附记26所述的终端设备。

Claims (20)

  1. 一种信息收发装置,应用于终端设备,其特征在于,所述装置包括:
    第一发送单元,其向网络设备发送用于获取第一参考信号集的请求指示信息;
    第一接收单元,其接收所述网络设备发送的第一参考信号集中的第一参考信号。
  2. 根据权利要求1所述的装置,其中,
    所述第一接收单元还用于接收所述网络设备发送的第一资源配置信息,所述第一资源配置信息包括参考信号集标识,以及所述参考信号集中的各个参考信号的标识。
  3. 根据权利要求1所述的装置,其中,
    所述第一接收单元还用于在接收所述第一参考信号集中的第一参考信号前,接收所述网络设备发送的第二资源配置信息,所述第二资源配置信息包括所述第一参考信号集中第一参考信号的标识指示信息。
  4. 根据权利要求1所述的装置,其中,所述请求指示信息指示的第一参考信号集中的第一参考信号是参考信号集中的一个或多个参考信号。
  5. 根据权利要求1所述的装置,其中,所述请求指示信息包括所述第一参考信号集中的第一参考信号的标识,或者所述请求指示信息通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集。
  6. 根据权利要求5所述的装置,其中,所述第一参考信号集中的第一参考信号的标识为CRI或SSB-RI。
  7. 根据权利要求5所述的装置,其中,所述请求指示信息还包括参考信号集标识。
  8. 根据权利要求1所述的装置,其中,AI模型部署在所述终端设备侧。
  9. 根据权利要求1所述的装置,其中,所述装置还包括:
    第一处理单元,其对所述第一参考信号集中的第一参考信号进行波束测量,所述波束测量的结果用于AI模型的推理。
  10. 根据权利要求1所述的装置,其中,所述请求指示信息由RRC或MAC CE或UCI承载。
  11. 一种信息收发装置,应用于网络设备,其特征在于,所述装置包括:
    第三发送单元,其向终端设备发送第三资源配置信息,所述第三资源配置信息包 括参考信号集标识,以及所述参考信号集中的各个参考信号的标识;
    第四发送单元,其向所述终端设备发送第一参考信号集指示信息;
    第五发送单元,其向所述终端设备发送第一参考信号集中的第一参考信号。
  12. 根据权利要求11所述的装置,其中,所述第一参考信号集指示信息指示的第一参考信号集中的第一参考信号是参考信号集中的一个或多个参考信号。
  13. 根据权利要求11所述的装置,其中,所述第一参考信号集指示信息由RRC或MAC CE或DCI承载。
  14. 根据权利要求13所述的装置,其中,所述第一参考信号集指示信息被包含在所述第三资源配置信息中或者不包含在所述第三资源配置信息中。
  15. 根据权利要求11所述的装置,其中,所述第一参考信号集指示信息包括所述第一参考信号集中的第一参考信号的标识,或者所述第一参考信号集指示信息通过比特位图或者起始位置和间隔信息的方式指示配置的参考信号集中的第一参考信号集,或者所述第一参考信号集指示信息指示参考信号集中的激活参考信号,所述激活参考信号作为所述第一参考信号集中的第一参考信号。
  16. 根据权利要求15所述的装置,其中,所述第一参考信号集中的第一参考信号的标识为CRI或SSB-RI。
  17. 根据权利要求11所述的装置,其中,所述第一参考信号集指示信息还包括参考信号集标识。
  18. 根据权利要求11所述的装置,其中,AI模型部署在所述网络设备侧。
  19. 根据权利要求11所述的装置,其中,所述装置还包括:
    第三接收单元,其接收所述终端设备上报的对所述第一参考信号集中的第一参考信号进行波束测量的测量结果,所述测量结果用于AI模型的推理。
  20. 一种信息收发装置,应用于网络设备,其特征在于,所述装置包括:
    第二接收单元,其接收终端设备发送的用于获取第一参考信号集的请求指示信息;
    第二发送单元,其向所述终端设备发送第一参考信号集中的第一参考信号。
PCT/CN2022/110977 2022-08-08 2022-08-08 信息收发方法与装置 WO2024031290A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110977 WO2024031290A1 (zh) 2022-08-08 2022-08-08 信息收发方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110977 WO2024031290A1 (zh) 2022-08-08 2022-08-08 信息收发方法与装置

Publications (1)

Publication Number Publication Date
WO2024031290A1 true WO2024031290A1 (zh) 2024-02-15

Family

ID=89850255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110977 WO2024031290A1 (zh) 2022-08-08 2022-08-08 信息收发方法与装置

Country Status (1)

Country Link
WO (1) WO2024031290A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511010A (zh) * 2019-01-31 2020-08-07 华为技术有限公司 发送和接收指示的方法和装置
CN111867017A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种发送和接收参考信号集合的方法及装置
CN111866938A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 测量上报的方法与装置
CN112399441A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 无线链路监测方法及相关装置
WO2021146892A1 (en) * 2020-01-21 2021-07-29 Nec Corporation Methods for communication, terminal device, network device, and computer readable media
US20210337549A1 (en) * 2019-01-10 2021-10-28 Huawei Technologies Co., Ltd. Resource indication method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210337549A1 (en) * 2019-01-10 2021-10-28 Huawei Technologies Co., Ltd. Resource indication method and apparatus
CN111511010A (zh) * 2019-01-31 2020-08-07 华为技术有限公司 发送和接收指示的方法和装置
CN111867017A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种发送和接收参考信号集合的方法及装置
CN111866938A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 测量上报的方法与装置
CN112399441A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 无线链路监测方法及相关装置
WO2021146892A1 (en) * 2020-01-21 2021-07-29 Nec Corporation Methods for communication, terminal device, network device, and computer readable media

Similar Documents

Publication Publication Date Title
CN113228731B (zh) 指示信道状态信息的测量目的的方法、装置和系统
EP3598676B1 (en) Method for transmitting data, terminal device, and network device
CN111345007B (zh) 信令指示和接收方法、装置及通信系统
CN113068260B (zh) 发送上行信号的方法和设备
WO2018137703A1 (zh) 一种信息传输方法和装置
WO2019157663A1 (zh) 参考信号资源的发送位置的指示方法、装置及通信系统
US20180227862A1 (en) System and Method for Beam Adaptation in a Beam-Based Communications System
CN112703779B (zh) 一种上行传输的功率控制方法及终端设备
WO2021052473A1 (zh) 通信方法和通信装置
CN113424621B (zh) 上报csi的方法和终端设备
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
US20220078731A1 (en) Wireless Communication Methods, Terminal Device and Network Device
US20200305140A1 (en) Signal Reception Apparatus and Method and Communications System
WO2022151299A1 (zh) 指示信息的上报和接收方法以及装置
CN112567839A (zh) 评估无线链路质量的方法、参数配置方法、装置和系统
WO2020029160A1 (zh) 信号上报的方法、终端设备和网络设备
WO2024031290A1 (zh) 信息收发方法与装置
WO2022061782A1 (zh) 信道状态信息的反馈方法、装置、终端设备和存储介质
WO2024016230A1 (zh) 信息收发方法与装置
WO2024000156A1 (zh) 信息收发方法与装置
WO2024060078A1 (zh) 信息收发方法与装置
CN115473614A (zh) 一种csi上报方法及装置、终端设备、网络设备
WO2024098184A1 (zh) 信息收发方法与装置
WO2023206272A1 (zh) 波束信息的发送和接收方法、装置和通信系统
WO2023206437A1 (zh) 信息传输方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954270

Country of ref document: EP

Kind code of ref document: A1