WO2024014179A1 - Rotating anode x-ray tube - Google Patents

Rotating anode x-ray tube Download PDF

Info

Publication number
WO2024014179A1
WO2024014179A1 PCT/JP2023/020757 JP2023020757W WO2024014179A1 WO 2024014179 A1 WO2024014179 A1 WO 2024014179A1 JP 2023020757 W JP2023020757 W JP 2023020757W WO 2024014179 A1 WO2024014179 A1 WO 2024014179A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray tube
rotating anode
rotating
fixed shaft
bearing gap
Prior art date
Application number
PCT/JP2023/020757
Other languages
French (fr)
Japanese (ja)
Inventor
広之 熊抱
Original Assignee
キヤノン電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022111312A external-priority patent/JP2024009635A/en
Application filed by キヤノン電子管デバイス株式会社 filed Critical キヤノン電子管デバイス株式会社
Publication of WO2024014179A1 publication Critical patent/WO2024014179A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes

Definitions

  • Embodiments of the present invention relate to a rotating anode X-ray tube.
  • a rotating anode X-ray tube has a fixed shaft and a rotating shaft in a vacuum inside a vacuum envelope.
  • the anode is fixed to the rotating shaft, and the rotating shaft is rotated with respect to the fixed shaft by a stator coil. It disperses the heat generated by the
  • the gap between the rotating shaft and the fixed shaft (bearing gap) is filled with liquid metal, and this liquid metal becomes a lubricant for the hydrodynamic sliding bearing when the rotating anode rotates.
  • the rotating anode is supported by the dynamic pressure effect generated in this dynamic pressure slide bearing.
  • liquid metal hereinafter referred to as "liquid lubricant”
  • liquid metal hereinafter referred to as "liquid lubricant”
  • the dynamic pressure effect decreases or disappears, causing direct contact between the rotating shaft and the fixed shaft, causing rotation to stop, and the liquid lubricant causing a potential difference inside the X-ray tube.
  • discharge occurs when it goes to a certain part.
  • Embodiments of the present invention provide a rotating anode X-ray tube that can prevent liquid lubricant from leaking from a bearing gap.
  • One embodiment includes a cathode and a rotating anode assembly housed in the vacuum envelope, and the rotating anode assembly includes a fixed shaft, a rotating shaft provided on the outer circumferential side of the fixed shaft, and the rotating anode assembly. a target that rotates together with the shaft and generates X-rays upon receiving the electron beam irradiated from the cathode, and a bearing filled with a liquid lubricant between the fixed shaft and the rotating shaft;
  • the rotary anode X-ray tube is provided with a gap, magnetic fine particles having magnetism are dispersed in the liquid lubricant, and a magnetic field is applied to the bearing gap.
  • FIG. 1 is a sectional view of a rotating anode X-ray tube according to a first embodiment.
  • FIG. 2 is a plan view of a magnet provided on the rotating shaft side in the rotating anode X-ray tube shown in FIG.
  • FIG. 3 is a sectional view of a rotating anode X-ray tube according to a second embodiment, showing the arrangement of magnets with respect to the bearing gap.
  • FIG. 4 is a sectional view of a rotating anode X-ray tube according to a third embodiment.
  • FIG. 5 is a sectional view showing an end of a bearing gap in a rotating anode X-ray tube according to a fourth embodiment.
  • FIG. 1 is a sectional view of a rotating anode X-ray tube according to a first embodiment.
  • FIG. 2 is a plan view of a magnet provided on the rotating shaft side in the rotating anode X-ray tube shown in FIG.
  • FIG. 3 is a sectional view of a rotating
  • FIG. 6 is a sectional view of a rotating anode X-ray tube according to a fifth embodiment.
  • FIG. 7 is a sectional view of a rotating anode X-ray tube according to a sixth embodiment.
  • FIG. 8 is a sectional view of a rotating anode X-ray tube according to a seventh embodiment.
  • FIG. 9 is a sectional view of a rotating anode X-ray tube according to the eighth embodiment.
  • FIG. 10 is a sectional view of a rotating anode X-ray tube according to a ninth embodiment.
  • FIG. 11 is a sectional view of a rotating anode X-ray tube according to a tenth embodiment.
  • FIG. 12 is a sectional view of a rotating anode X-ray tube according to the eleventh embodiment.
  • FIG. 13 is a sectional view of a rotating anode X-ray tube according to the twelfth embodiment.
  • FIG. 14 is a sectional view showing a modification of the first embodiment.
  • FIG. 15 is a sectional view showing the arrangement of magnets according to a modification of the rotating anode X-ray tube according to the sixth embodiment.
  • the rotating anode X-ray tube 1 includes a vacuum envelope 3, and a rotating anode assembly 5 and a cathode 7 housed in the vacuum envelope 3. .
  • a stator coil 9 is provided outside the vacuum envelope 3.
  • the rotating anode structure 5 includes a target 13, a fixed shaft 15, a rotating shaft 17, and a sliding bearing 19 formed between the fixed shaft 15 and the rotating shaft 17.
  • the target 13 is formed into a disk shape and is fixed to the outer peripheral surface of the rotating shaft 17.
  • the target 13 is provided coaxially with the fixed shaft 15 and the rotating shaft 17.
  • the target 13 includes a target body 13a and a target layer 13b provided on a part of the outer surface of the target body 13a.
  • the target 13 is rotatable together with the rotating shaft 17, and emits X-rays when electrons are incident on the target layer 13b.
  • the fixed shaft 15 is formed in a cylindrical shape and includes one end side portion 15a located on one end side of the tube axis a, and the other end side portion 15b located on the other end side in the tube axis direction.
  • the one end side portion 15a and the other end side portion 15b are each fixed to the vacuum envelope 3 via fixing members (not shown).
  • the fixed shaft 15 has a refrigerant passage 16 provided therein, and heat is radiated through the cooling medium introduced into the refrigerant passage 16.
  • the fixed shaft 15 rotatably supports a rotating shaft 17 provided on its outer periphery.
  • the fixed shaft 15 is made of metal such as Fe (iron) alloy or Mo (molybdenum) alloy.
  • the rotating shaft 17 is arranged coaxially with the fixed shaft 15 on the outer periphery of the fixed shaft 15.
  • the rotating shaft 17 includes a cylindrical main body 17a, an annular one end side cover part 17b provided on one end side of the main body 17a, and an annular other end side cover part 17c provided on the other end side. .
  • the rotating shaft 17 is made of metal such as Fe alloy or Mo alloy.
  • a drive rotor 31 is provided at a position facing the stator coil 9 on the outer peripheral surface of the main body 17a.
  • the drive rotor 31 has a cylindrical shape and is fixed to the outer peripheral surface of the main body 17a.
  • the drive rotor 31 is made of, for example, Cu (copper).
  • the sliding bearing 19 includes a bearing gap 21 and a liquid lubricant LM filled in the bearing gap 21.
  • the gap size of the bearing gap 21 is such that one end 21a and the other end 21b of the fixed shaft 15 in the longitudinal direction are narrower than the intermediate portion 21c.
  • Magnetic fine particles having magnetism are dispersed in the liquid lubricant LM.
  • the magnetic fine particles are formed, for example, by coating iron oxide particles with aluminum or silica.
  • a magnetic field is applied to one end 21a and the other end 21b of the bearing gap 21, respectively.
  • the magnetic field is applied by permanent magnets 23a and 23b placed at one end 21a and the other end 21b, respectively.
  • One permanent magnet 23a is provided on the outer periphery of the one end side lid portion 17b, and the other permanent magnet 23b is provided inside the one end side portion 15a of the fixed shaft 15.
  • the other permanent magnet 23b may be embedded in one end side portion 15a of the fixed shaft 15.
  • one of the permanent magnets 23a has an annular shape, with an N pole on the inner circumferential side and an S pole on the outer circumferential side.
  • the other permanent magnet 23b has an annular shape like the one permanent magnet 23a, but since it is arranged on the inner circumferential side of the one permanent magnet 23a, it has a smaller size than the one permanent magnet 23a. It is circular.
  • the inner circumferential side of one permanent magnet 23a is a north pole
  • the outer circumferential side of the other permanent magnet 23b which faces the inner circumferential side of one permanent magnet 23a across the bearing gap 21, is an south pole.
  • the cathode 7 is arranged to face the target layer 13b of the target 13 at a distance.
  • the cathode 7 is attached to the inner wall of the vacuum envelope 3.
  • the cathode 7 has a filament 7a as an electron emission source that emits electrons to irradiate the target layer 13b.
  • the vacuum envelope 3 is formed into a cylindrical shape.
  • the vacuum envelope 3 is made of glass and metal.
  • the stator coil 9 in the operating state of the rotating anode X-ray tube 1, the stator coil 9 generates a magnetic field applied to the rotating shaft 17 (particularly the drive rotor 31), and the rotating shaft 17 rotates around the fixed shaft 15. .
  • a relatively negative voltage is applied to the cathode 7, and a relatively positive voltage is applied to the target 13.
  • the target layer 13b emits X-rays when collided with electrons, and the emitted X-rays are transmitted through the vacuum envelope 3 and emitted.
  • high heat is generated in the target 13 due to electron impact.
  • the heat generated in the target 13 due to the electron impact is conducted to the fixed shaft 15 via the liquid lubricant LM of the sliding bearing 19, and the heat is released from the fixed shaft 15 to the cooling refrigerant in the refrigerant passage 16 for cooling.
  • the gap size is narrowed between one end 21a and the other end 21b, and a magnetic field is applied by permanent magnets 23a and 23b.
  • the dispersed magnetic fine particles are applied to the magnetic field ( Since the liquid lubricant LM is attracted by the action of magnetic lines of force and remains within the bearing gap between the ends 21a and 21b, it acts as a dam and holds the liquid lubricant LM within the gap, thereby preventing leakage of the liquid lubricant.
  • one permanent magnet 23a is arranged outside the rotating shaft 17, it can be installed more easily than when it is embedded in the rotating shaft 17.
  • Both the one permanent magnet 23a and the other permanent magnet 23b are annular magnets with magnetic poles formed on the inner circumferential side and the outer circumferential side, so that the structure can be simplified.
  • FIG. 3 shows a second embodiment.
  • rod-shaped permanent magnets 24a and 24b are used in place of the annular permanent magnets 23a and 23b of the first embodiment.
  • FIG. 3 shows a cross section of one end 21a (see FIG. 1) of the bearing gap 21, and one rod-shaped permanent magnet 24a and the other permanent magnet 24b are located on the inner and outer sides of the bearing gap 21.
  • One rod-shaped permanent magnet 24a and the other permanent magnet 24b are arranged in a circular shape.
  • One rod-shaped permanent magnet 24a and the other permanent magnet 24b are arranged such that opposite magnetic poles face each other on the inner circumferential side and the outer circumferential side.
  • the second embodiment differs from the first embodiment in that one of the permanent magnets 24a on the outer peripheral side is embedded in the one end side cover 17b of the rotating shaft 17.
  • one permanent magnet 24a may be arranged on the outer periphery of the rotating shaft 17 as in the first embodiment. , may be embedded in the rotating shaft 17 similarly to the one end portion 21a.
  • the lines of magnetic force K acting on the magnets have a spread, so the one and the other permanent magnets 24a and 24b facing each other in the circumferential direction are spaced apart in the circumferential direction.
  • the one and the other permanent magnets 24a and 24b facing each other in the circumferential direction are arranged at an interval of about 45 degrees in the circumferential direction, but the interval is not limited to 30 degrees or 15 degrees. They may be arranged at arbitrary intervals such as 60 degrees or 60 degrees.
  • one annular permanent magnet 23a (see FIG. 2) and the other annular permanent magnet 23b are arranged side by side on the fixed shaft 15 side at one end 21a and the other end 21b of the bearing gap 21. ing. Further, a trap 26 is formed at one end 21a and the other end 21b of the bearing gap 21 to form irregularities to facilitate holding the liquid lubricant LM.
  • One permanent magnet 23a and the other permanent magnet 23a have the same size and shape, but have different magnetic poles on the inner circumferential side and the outer circumferential side. That is, one permanent magnet 23a has an N pole on the outer circumference side and an S pole on the inner circumference side, and the other permanent magnet 23b has an N pole on the outer circumference side and an S pole on the inner circumference side.
  • the same effects as those of the first embodiment can be achieved, and manufacturing is easy because both the one and the other permanent magnets 23a and 23b can be provided on the fixed shaft 15. . Furthermore, since the traps 26 are provided at the one end 21a and the other end 21 of the bearing gap 21, the liquid lubricant LM can be easily held in synergy with the action of the magnetic force.
  • FIG. 5 A fourth embodiment will be described with reference to FIG. 5.
  • one annular permanent magnet 23 (see FIG. 2) is arranged at one end 21a and the other end 21b of the bearing gap 21 on the fixed shaft 15 side.
  • This permanent magnet 23 has an annular N pole on one side and an S pole on the other side.
  • the same effects as the third embodiment are achieved, and since only one permanent magnet is required at each end 21a and the other end 21b of the bearing gap 21, the structure is further improved. can be easily done.
  • a fifth embodiment will be described with reference to FIG. 6.
  • the third embodiment has one annular permanent magnet 23 arranged on the fixed shaft 15 side
  • two annular permanent magnets 23a and 23b are arranged on the rotating shaft 17 side. Being there is different.
  • one permanent magnet 23a and the other permanent magnet 23b are arranged on the outer circumferential side of the rotating shaft 17, and one end of the bearing gap 21
  • one permanent magnet 23a and the other permanent magnet 23b are embedded in the one end side cover part 17b of the rotating shaft 17.
  • one permanent magnet 23a and the other permanent magnet 23b are arranged on the outer circumferential side of the rotating shaft 17, so there is no need to embed them in the rotating shaft 17. Easy to install.
  • a magnetic field is applied to an intermediate portion 21c of the bearing gap 21, excluding the one end portion 21a and the other end portion 21b.
  • the magnetic field is applied by a plurality of permanent magnets 23 arranged along the longitudinal direction of the intermediate portion 21c.
  • each permanent magnet 23 has a ring shape, and the inner circumferential side is magnetized to an S pole or N pole, and the outer circumferential side is magnetized to a magnetic pole opposite to the inner circumferential side. ing. That is, in Fig.
  • the inner circumferential side is the north pole and the outer circumferential side is the south pole, but on the contrary, two types of poles are used, in which the inner circumferential side is the south pole and the outer circumferential side is the north pole. .
  • adjacent magnets have N poles and S poles arranged alternately.
  • Each permanent magnet 23 is embedded in the fixed shaft 15.
  • the effects of the rotating anode X-ray tube according to the sixth embodiment will be explained.
  • the dispersed magnetic fine particles (not shown) in the liquid lubricant LM filled in the bearing gap 21 are exposed to the magnetic field (
  • the liquid lubricant LM is attracted by the magnetic field lines K) and remains in the intermediate portion 21c of the bearing gap 21, so that the liquid lubricant LM is held within the gap. That is, the liquid lubricant LM in which magnetic fine particles are dispersed is held in the pressure generating portion of the slide bearing 19 to prevent contact between the rotating shaft 17 and the fixed shaft 15 due to depletion of the liquid lubricant LM. Further, even when the rotating shaft 17 is stopped, by holding the liquid lubricant LM on the bearing surface of the sliding bearing 19, contact between the rotating shaft 17 and the fixed shaft 15 can be prevented.
  • the permanent magnet 23 is an annular magnet with magnetic poles formed on the inner circumferential side and the outer circumferential side, so that it can have a simple structure. As shown in FIG. 7, in this embodiment, the adjacent permanent magnets 23 have different opposing magnetic poles, so a stronger magnetic field is applied to the slide bearing 19 than when the opposing magnetic poles are the same. can be applied.
  • FIG. 8 shows a seventh embodiment.
  • a groove 25 is formed in the bearing gap 21 in the sliding bearing 19, and the magnet 23 is provided only at a position corresponding to the groove 25.
  • FIG. 8 only one groove 25 is shown, but in reality, a plurality of grooves 25 are formed at intervals along the direction of the tube axis a.
  • the groove 25 is formed between the bearing surface of the rotating shaft 17 by forming a step on the bearing surface of the fixed shaft 15, but the groove 25 is not limited to this. A step may be formed on the surface.
  • the liquid lubricant LM is held on the bearing surface by the pressure difference generated during rotation. Contact between the rotating shaft 17 and the fixed shaft 15 is prevented by installing the magnet 23 so that the lines of magnetic force K are arranged in the groove 25 that is the holding portion.
  • the magnets 23 are ring-shaped magnets, and a plurality of magnets 23 are arranged side by side in the direction of the tube axis a, and adjacent magnets 23 have different magnetic poles facing each other.
  • the liquid lubricant LM can be held in the groove 25 as in the sixth embodiment by the magnetic force line K passing through the groove 25, thereby preventing contact between the rotating shaft 17 and the fixed shaft 15. be able to.
  • FIG. 9 An eighth embodiment will be described with reference to FIG. This eighth embodiment differs from the seventh embodiment shown in FIG. 8 in the form of the permanent magnet 23. That is, the permanent magnets 23 are arranged so that different magnetic poles face each other in the direction of the tube axis a. In FIG. 9, two permanent magnets are arranged for one groove 25, but any number of permanent magnets, such as three or four, may be arranged in the tube axis direction. Note that each permanent magnet 23 is a ring-shaped magnet.
  • the liquid lubricant LM can be held in the groove 25 by the magnetic force lines K passing through the groove 25, thereby preventing contact between the rotating shaft 17 and the fixed shaft 15. be able to.
  • a ninth embodiment will be described with reference to FIG.
  • the ninth embodiment differs from the sixth embodiment in that a magnetic body 27 is provided on the rotating shaft 17 with respect to the rotating anode X-ray tube 1 according to the sixth embodiment.
  • the magnetic body 27 is made of iron, for example, and is provided facing the permanent magnet 23 provided on the fixed shaft 15 .
  • the magnetic body 27 is ring-shaped like the permanent magnet 23.
  • the ninth embodiment as extracted and shown in FIG. 10, it is possible to provide lines of magnetic force K that cross the bearing gap 21, and it is possible to apply a magnetic field to the liquid lubricant LM sealed in the bearing gap 21. . Thereby, the liquid lubricant LM can be held in the bearing gap 21, and contact between the rotating shaft 17 and the fixed shaft 15 can be prevented.
  • grooves 25 are formed in the sliding bearing 19 as in the seventh embodiment, and a permanent magnet 23 is arranged on the fixed shaft 15 at a position corresponding to the groove 25, and a magnetic material 27 is provided externally on the outer peripheral surface of the rotating shaft 17.
  • the magnetic body 27 is a ring-shaped iron material.
  • the same effects as the seventh embodiment can be achieved. Furthermore, by arranging the magnetic body 27 on the rotating shaft 17 so as to face the permanent magnet 23, the strength of the magnetic field can be increased. Thereby, the holding force for holding the liquid lubricant LM in the bearing gap 21 can be increased. Moreover, since the magnetic body 27 is externally attached to the outer circumferential surface of the rotating shaft 17 and is not embedded, installation is easy and the configuration is simple.
  • a groove 25 is formed in the sliding bearing 19 similarly to the 8th embodiment, and a permanent magnet 23 is arranged at a position corresponding to the groove 25.
  • the permanent magnet 23 was provided on the fixed shaft 15 in the eleventh embodiment, it is embedded in the rotating shaft 17 in this eleventh embodiment.
  • the permanent magnet 23 may not be embedded in the rotating shaft 17, but may be externally fixed to the outer peripheral surface of the rotating shaft 17.
  • ring-shaped permanent magnets 23 are provided on the fixed shaft 15 at intervals in the direction of the tube axis a, and a magnetic body 27 is provided on the rotating shaft 17.
  • the permanent magnets 23 adjacent in the direction of the tube axis a have the same opposing magnetic poles. That is, each permanent magnet 23 has the same magnetic pole on the outer circumferential side. In this embodiment, the outer circumferential side is the north pole, and the inner circumferential side is the south pole. According to the twelfth embodiment, the same effects as the ninth embodiment can be achieved.
  • bar-shaped permanent magnets 24a and 24b may be used instead of annular permanent magnets and arranged with an interval in the circumferential direction, as in the second embodiment.
  • a plurality of sets of permanent magnets with different magnetic poles facing each other are arranged at intervals in the circumferential direction
  • one end of the fixed shaft 15 is arranged.
  • Bar-shaped permanent magnets 24a having different magnetic poles at one end and the other end are arranged at intervals in the circumferential direction.
  • bar-shaped permanent magnets 23 may be arranged at intervals in the circumferential direction.
  • one permanent magnet 23a is not limited to being provided on the outer peripheral side of the rotating shaft 17, but may be embedded in the rotating shaft 17.
  • one of the permanent magnets 23a is embedded in the one end side lid portion 17b.
  • each permanent magnet 23 is not limited to being provided on the fixed shaft 15, but each permanent magnet 23 may be embedded in the rotating shaft 17, or externally attached to the outer peripheral surface of the rotating shaft 17. It may be fixed by Furthermore, in the first embodiment and the second embodiment, the permanent magnet 23 may be placed on both the fixed shaft 15 and the rotating shaft 17. In the ninth embodiment, the tenth embodiment, and the twelfth embodiment, permanent magnets 23 may be used instead of each magnetic body 27.
  • the magnetic body 27 and the permanent magnets 23 may be provided on the fixed shaft 15 at positions corresponding to the respective permanent magnets 23 provided on the rotating shaft 17.
  • FIG. 15 shows a modification of the sixth embodiment.
  • a cross section of the intermediate portion 21c of the bearing gap 21 is shown.
  • the permanent magnets 23 are not ring-shaped but bar magnets, and the bar magnets are arranged at intervals along the outer peripheral surface of the fixed shaft 15.
  • Adjacent magnets 23 are arranged with opposing magnetic poles facing each other on the inner and outer circumferential sides. The lines of magnetic force K act on adjacent magnets 23 so as to cross the bearing gap 21 .

Abstract

This rotating anode X-ray tube comprises a vacuum envelope, and a cathode and a rotating anode structure accommodated in the vacuum envelope. The rotating anode structure includes a fixed shaft, a rotating shaft provided on the outer peripheral side of the fixed shaft, and a target that rotates together with the rotating shaft and generates X-rays by receiving an electron beam emitted from the cathode. A bearing gap filled with a liquid lubricant is provided between the fixed shaft and the rotating shaft. Magnetic fine particles with magnetism are dispersed in the liquid lubricant, and a magnetic field is provided in the bearing gap.

Description

回転陽極X線管rotating anode x-ray tube
 本発明の実施形態は、回転陽極X線管に関する。 Embodiments of the present invention relate to a rotating anode X-ray tube.
 回転陽極X線管は、真空外囲器内の真空中に固定軸と回転軸を有し、回転軸に陽極が固定され、ステータコイルにより回転軸が固定軸に対して回転することで、陽極で発生する熱を分散している。回転軸と固定軸の隙間(軸受け隙間)には、液体金属が充填されており、この液体金属は回転陽極の回転時に動圧すべり軸受の潤滑材となる。そして、この動圧すべり軸受に発生する動圧効果により回転陽極は支持される。 A rotating anode X-ray tube has a fixed shaft and a rotating shaft in a vacuum inside a vacuum envelope.The anode is fixed to the rotating shaft, and the rotating shaft is rotated with respect to the fixed shaft by a stator coil. It disperses the heat generated by the The gap between the rotating shaft and the fixed shaft (bearing gap) is filled with liquid metal, and this liquid metal becomes a lubricant for the hydrodynamic sliding bearing when the rotating anode rotates. The rotating anode is supported by the dynamic pressure effect generated in this dynamic pressure slide bearing.
特開平8-212949号公報Japanese Patent Application Publication No. 8-212949
 液体金属を潤滑材として用いる回転陽極X線管は、軸受の表面張力により保持されていると考えられているが、回転動作中や外部からの衝撃などにより液体金属(以下「液体潤滑材」という)が軸受け隙間から漏れ出るおそれがあった。
 液体潤滑材が漏れ出た場合、動圧効果が減少もしくは消失し回転軸と固定軸が直接接触することで回転が停止するという不都合や、液体潤滑材がX線管内部の電位差が生じている部分にいくことで放電が発生するという不都合がある。
Rotating anode X-ray tubes that use liquid metal as a lubricant are thought to be held in place by the surface tension of their bearings, but liquid metal (hereinafter referred to as "liquid lubricant") ) could leak out from the bearing gap.
If the liquid lubricant leaks, the dynamic pressure effect decreases or disappears, causing direct contact between the rotating shaft and the fixed shaft, causing rotation to stop, and the liquid lubricant causing a potential difference inside the X-ray tube. There is an inconvenience that discharge occurs when it goes to a certain part.
 本発明の実施形態は、軸受け隙間から液体潤滑材の漏れを防止できる回転陽極X線管を提供する。 Embodiments of the present invention provide a rotating anode X-ray tube that can prevent liquid lubricant from leaking from a bearing gap.
 一実施形態は、前記真空外囲器内に収納された陰極及び回転陽極構体と、を備え、前記回転陽極構体は、固定軸と、前記固定軸の外周側に設けた回転軸と、前記回転軸と一体に回転すると共に前記陰極から照射された電子ビームを受けてX線を発生するターゲットと、を有し、前記固定軸と前記回転軸との間には、液体潤滑材を充填した軸受け隙間が設けてあり、前記液体潤滑材には磁性を有する磁性微粒子が分散されていると共に前記軸受け隙間に磁界が付与されている、回転陽極X線管である。 One embodiment includes a cathode and a rotating anode assembly housed in the vacuum envelope, and the rotating anode assembly includes a fixed shaft, a rotating shaft provided on the outer circumferential side of the fixed shaft, and the rotating anode assembly. a target that rotates together with the shaft and generates X-rays upon receiving the electron beam irradiated from the cathode, and a bearing filled with a liquid lubricant between the fixed shaft and the rotating shaft; The rotary anode X-ray tube is provided with a gap, magnetic fine particles having magnetism are dispersed in the liquid lubricant, and a magnetic field is applied to the bearing gap.
図1は、第1実施形態に係る回転陽極X線管の断面図である。FIG. 1 is a sectional view of a rotating anode X-ray tube according to a first embodiment. 図2は、図1に示す回転陽極X線管において、回転軸側に設けた磁石の平面図である。FIG. 2 is a plan view of a magnet provided on the rotating shaft side in the rotating anode X-ray tube shown in FIG. 図3は、第2実施形態に係る回転陽極X線管であって、軸受け隙間に対する磁石の配置を示す断面図である。FIG. 3 is a sectional view of a rotating anode X-ray tube according to a second embodiment, showing the arrangement of magnets with respect to the bearing gap. 図4は、第3実施形態に係る回転陽極X線管の断面図である。FIG. 4 is a sectional view of a rotating anode X-ray tube according to a third embodiment. 図5は、第4実施形態に係る回転陽極X線管であって、軸受け隙間の端部を示す断面図である。FIG. 5 is a sectional view showing an end of a bearing gap in a rotating anode X-ray tube according to a fourth embodiment. 図6は、第5実施形態に係る回転陽極X線管の断面図である。FIG. 6 is a sectional view of a rotating anode X-ray tube according to a fifth embodiment. 図7は、第6実施形態に係る回転陽極X線管の断面図である。FIG. 7 is a sectional view of a rotating anode X-ray tube according to a sixth embodiment. 図8は、第7実施形態に係る回転陽極X線管の断面図である。FIG. 8 is a sectional view of a rotating anode X-ray tube according to a seventh embodiment. 図9は、第8実施形態に係る回転陽極X線管の断面図である。FIG. 9 is a sectional view of a rotating anode X-ray tube according to the eighth embodiment. 図10は、第9実施形態に係る回転陽極X線管の断面図である。FIG. 10 is a sectional view of a rotating anode X-ray tube according to a ninth embodiment. 図11は、第10実施形態に係る回転陽極X線管の断面図である。FIG. 11 is a sectional view of a rotating anode X-ray tube according to a tenth embodiment. 図12は、第11実施形態に係る回転陽極X線管の断面図である。FIG. 12 is a sectional view of a rotating anode X-ray tube according to the eleventh embodiment. 図13は、第12実施形態に係る回転陽極X線管の断面図である。FIG. 13 is a sectional view of a rotating anode X-ray tube according to the twelfth embodiment. 図14は、第1実施形態の変形例を示す断面図である。FIG. 14 is a sectional view showing a modification of the first embodiment. 図15は、第6実施形態に係る回転陽極X線管の変形例に係る磁石の配置を示す断面図である。FIG. 15 is a sectional view showing the arrangement of magnets according to a modification of the rotating anode X-ray tube according to the sixth embodiment.
 以下に、図面を参照しながら、一実施形態に係る回転陽極X線管及び回転陽極X線管の製造方法について詳細に説明する。なお、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。 Below, a rotating anode X-ray tube and a method for manufacturing the rotating anode X-ray tube according to one embodiment will be described in detail with reference to the drawings. In addition, in order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the actual aspect, but this is just an example, and the drawings do not reflect the present invention. It does not limit interpretation. In addition, in this specification and each figure, the same reference numerals are given to components that perform the same or similar functions as those described above with respect to the existing figures, and overlapping detailed explanations may be omitted as appropriate. .
 (第1実施形態)
 まず、図1及び図2を参照して、第1実施形態について説明する。
 図1に示すように、第1実施形態に係る回転陽極X線管1は、真空外囲器3と、真空外囲器3内に収納された回転陽極構体5及び陰極7とを備えている。真空外囲器3の外側にはステータコイル9が設けられている。
(First embodiment)
First, a first embodiment will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the rotating anode X-ray tube 1 according to the first embodiment includes a vacuum envelope 3, and a rotating anode assembly 5 and a cathode 7 housed in the vacuum envelope 3. . A stator coil 9 is provided outside the vacuum envelope 3.
 回転陽極構体5は、ターゲット13と、固定軸15と、回転軸17と、固定軸15と回転軸17との間に形成したすべり軸受19とを備えている。
 ターゲット13は、円盤状に形成され且つ回転軸17の外周面に固定されている。ターゲット13は、固定軸15及び回転軸17と同軸的に設けられている。
 ターゲット13は、ターゲット本体13aと、ターゲット本体13aの外面の一部に設けられたターゲット層13bとを有している。ターゲット13は、回転軸17と共に回転可能であり、ターゲット層13bに電子が入射されることによりX線を放出する。
The rotating anode structure 5 includes a target 13, a fixed shaft 15, a rotating shaft 17, and a sliding bearing 19 formed between the fixed shaft 15 and the rotating shaft 17.
The target 13 is formed into a disk shape and is fixed to the outer peripheral surface of the rotating shaft 17. The target 13 is provided coaxially with the fixed shaft 15 and the rotating shaft 17.
The target 13 includes a target body 13a and a target layer 13b provided on a part of the outer surface of the target body 13a. The target 13 is rotatable together with the rotating shaft 17, and emits X-rays when electrons are incident on the target layer 13b.
 固定軸15は、円柱状に形成され、管軸線aの一端側に位置する一端側部15aと、管軸方向の他端側に位置する他端側部15bとを具備し、固定軸15の一端側部15aと他端側部15bとは、それぞれ固定部材(図示せず)を介して真空外囲器3に固定されている。
 固定軸15は、内部に冷媒通路16が設けてあり、冷媒通路16に導入された冷却媒体を介して放熱されている。
 固定軸15は、その外周に設けた回転軸17を回転可能に支持している。
 固定軸15は、Fe(鉄)合金やMo(モリブデン)合金等の金属で形成されている。
The fixed shaft 15 is formed in a cylindrical shape and includes one end side portion 15a located on one end side of the tube axis a, and the other end side portion 15b located on the other end side in the tube axis direction. The one end side portion 15a and the other end side portion 15b are each fixed to the vacuum envelope 3 via fixing members (not shown).
The fixed shaft 15 has a refrigerant passage 16 provided therein, and heat is radiated through the cooling medium introduced into the refrigerant passage 16.
The fixed shaft 15 rotatably supports a rotating shaft 17 provided on its outer periphery.
The fixed shaft 15 is made of metal such as Fe (iron) alloy or Mo (molybdenum) alloy.
 回転軸17は、固定軸15の外周に固定軸15と同軸的に配置してある。回転軸17は、円筒状の本体17aと、本体17aの一端側に設けた円環状の一端側蓋部17bと、他端側に設けた円環状の他端側蓋部17cとを備えている。回転軸17は、Fe合金やMo合金等の金属で形成されている。
 本体17aの外周面において、ステータコイル9に対向した位置には、駆動ローター31が設けてある。駆動ローター31は筒状であり、本体17aの外周面に固定されている。駆動ローター31は、例えばCu(銅)で形成されている。
The rotating shaft 17 is arranged coaxially with the fixed shaft 15 on the outer periphery of the fixed shaft 15. The rotating shaft 17 includes a cylindrical main body 17a, an annular one end side cover part 17b provided on one end side of the main body 17a, and an annular other end side cover part 17c provided on the other end side. . The rotating shaft 17 is made of metal such as Fe alloy or Mo alloy.
A drive rotor 31 is provided at a position facing the stator coil 9 on the outer peripheral surface of the main body 17a. The drive rotor 31 has a cylindrical shape and is fixed to the outer peripheral surface of the main body 17a. The drive rotor 31 is made of, for example, Cu (copper).
 すべり軸受19は、軸受け隙間21と、軸受け隙間21に充填された液体潤滑材LMとで構成されている。
 軸受け隙間21の隙間寸法は、固定軸15の長手方向における一端部21aと、他端部21bとが、中間部21cよりも狭小に形成されている。
The sliding bearing 19 includes a bearing gap 21 and a liquid lubricant LM filled in the bearing gap 21.
The gap size of the bearing gap 21 is such that one end 21a and the other end 21b of the fixed shaft 15 in the longitudinal direction are narrower than the intermediate portion 21c.
 液体潤滑材LMには、磁性を有する磁性微粒子が分散されている。磁性微粒子は、例えば、酸化鉄の粒子にアルミニウム又はシリカを被覆して形成されている。 Magnetic fine particles having magnetism are dispersed in the liquid lubricant LM. The magnetic fine particles are formed, for example, by coating iron oxide particles with aluminum or silica.
 本実施形態では、軸受け隙間21の一端部21aと他端部21bとには、それぞれ磁界が付与されている。
 磁界は、一端部21aと他端部21bに、それぞれ配置された永久磁石23a、23bにより付与されている。
 一方の永久磁石23aは一端側蓋部17bの外周に設けてあり、他方の永久磁石23bは、固定軸15の一端側部15aの内部に設けている。他方の永久磁石23bは、固定軸15の一端側部15aに埋め込まれていても良い。
In this embodiment, a magnetic field is applied to one end 21a and the other end 21b of the bearing gap 21, respectively.
The magnetic field is applied by permanent magnets 23a and 23b placed at one end 21a and the other end 21b, respectively.
One permanent magnet 23a is provided on the outer periphery of the one end side lid portion 17b, and the other permanent magnet 23b is provided inside the one end side portion 15a of the fixed shaft 15. The other permanent magnet 23b may be embedded in one end side portion 15a of the fixed shaft 15.
 一方の永久磁石23aは、図2に示すように、円環状を成しており、内周側をN極とし、外周側をS極としている。他方の永久磁石23bは、一方の永久磁石23aと同様に、円環状を成しているが、一方の永久磁石23aの内周側に配置されるので、一方の永久磁石23aよりも小さい寸法の円環状である。
 一方の永久磁石23aの内周側はN極であり、一方の永久磁石23aの内周側で軸受け隙間21を挟んで対向する他方の永久磁石23bの外周側はS極としてある。
As shown in FIG. 2, one of the permanent magnets 23a has an annular shape, with an N pole on the inner circumferential side and an S pole on the outer circumferential side. The other permanent magnet 23b has an annular shape like the one permanent magnet 23a, but since it is arranged on the inner circumferential side of the one permanent magnet 23a, it has a smaller size than the one permanent magnet 23a. It is circular.
The inner circumferential side of one permanent magnet 23a is a north pole, and the outer circumferential side of the other permanent magnet 23b, which faces the inner circumferential side of one permanent magnet 23a across the bearing gap 21, is an south pole.
 図1に示すように、陰極7は、ターゲット13のターゲット層13bに間隔を置いて対向配置されている。陰極7は、真空外囲器3の内壁に取付けられている。陰極7は、ターゲット層13bに照射する電子を放出する電子放出源としてのフィラメント7aを有している。 As shown in FIG. 1, the cathode 7 is arranged to face the target layer 13b of the target 13 at a distance. The cathode 7 is attached to the inner wall of the vacuum envelope 3. The cathode 7 has a filament 7a as an electron emission source that emits electrons to irradiate the target layer 13b.
 真空外囲器3は、円筒状に形成されている。真空外囲器3は、ガラス及び金属で形成されている。 The vacuum envelope 3 is formed into a cylindrical shape. The vacuum envelope 3 is made of glass and metal.
 次に、第1実施形態に係る回転陽極X線管の作用効果について、説明する。
 図1に示すように、回転陽極X線管1の動作状態では、ステータコイル9は回転軸17(特に駆動ローター31)に与える磁界を発生し、固定軸15の回りを回転軸17が回転する。これにより、ターゲット13は回転する。また、陰極7に相対的に負の電圧が印加され、ターゲット13に相対的に正の電圧が印加される。
 これにより、陰極7及びターゲット13間に電位差が生じる。このため、フィラメント7aは、電子を放出すると、この電子は、加速され、ターゲット層13bに衝突する。これにより、ターゲット層13bは、電子と衝突するときにX線を放出し、放出されたX線は真空外囲器3を透過して放出される。
 X線放射時に、電子衝撃によりターゲット13では高熱を発生する。
Next, the effects of the rotating anode X-ray tube according to the first embodiment will be explained.
As shown in FIG. 1, in the operating state of the rotating anode X-ray tube 1, the stator coil 9 generates a magnetic field applied to the rotating shaft 17 (particularly the drive rotor 31), and the rotating shaft 17 rotates around the fixed shaft 15. . This causes the target 13 to rotate. Further, a relatively negative voltage is applied to the cathode 7, and a relatively positive voltage is applied to the target 13.
This creates a potential difference between the cathode 7 and the target 13. Therefore, when the filament 7a emits electrons, the electrons are accelerated and collide with the target layer 13b. Thereby, the target layer 13b emits X-rays when collided with electrons, and the emitted X-rays are transmitted through the vacuum envelope 3 and emitted.
During X-ray radiation, high heat is generated in the target 13 due to electron impact.
 電子衝撃によりターゲット13に発生する熱は、すべり軸受19の液体潤滑材LMを介して、固定軸15に伝導し、固定軸15からその冷媒通路16の冷却冷媒に熱を逃がして冷却する。
 一方、すべり軸受け19の軸受け隙間21では、その一端部21aと他端部21bとでは隙間寸法を狭小にしていると共に、永久磁石23a、23bにより磁界を印加している。
 このように、軸受け隙間21に磁界を印加することで、軸受け隙間21の各端部21a、21bに充填されている液体潤滑材LMでは、分散されている磁性微粒子(図示せず)が磁界(磁力線)の作用を受けて引き付けられて、各端部21a、21bの軸受け隙間内に留まることから、堰となって液体潤滑材LMが隙間内に保持され、液体潤滑材の漏れを防止できる。
 一方の永久磁石23aは、回転軸17の外側に配置しているので、回転軸17に埋め込む場合に比較して設置が容易にできる。
 一方の永久磁石23a及び他方の永久磁石23bは共に、円環状の磁石で内周側と外周側とに磁極を形成しているから、簡易な構成にできる。
The heat generated in the target 13 due to the electron impact is conducted to the fixed shaft 15 via the liquid lubricant LM of the sliding bearing 19, and the heat is released from the fixed shaft 15 to the cooling refrigerant in the refrigerant passage 16 for cooling.
On the other hand, in the bearing gap 21 of the sliding bearing 19, the gap size is narrowed between one end 21a and the other end 21b, and a magnetic field is applied by permanent magnets 23a and 23b.
In this way, by applying a magnetic field to the bearing gap 21, in the liquid lubricant LM filled in each end 21a, 21b of the bearing gap 21, the dispersed magnetic fine particles (not shown) are applied to the magnetic field ( Since the liquid lubricant LM is attracted by the action of magnetic lines of force and remains within the bearing gap between the ends 21a and 21b, it acts as a dam and holds the liquid lubricant LM within the gap, thereby preventing leakage of the liquid lubricant.
Since one permanent magnet 23a is arranged outside the rotating shaft 17, it can be installed more easily than when it is embedded in the rotating shaft 17.
Both the one permanent magnet 23a and the other permanent magnet 23b are annular magnets with magnetic poles formed on the inner circumferential side and the outer circumferential side, so that the structure can be simplified.
 以下に他の実施形態について説明するが、以下の説明において、上述した第1実施形態と同一の作用効果を奏する部分には、同一の符号を付して、その部分の詳細な説明を省略する。 Other embodiments will be described below, but in the following description, parts that have the same functions and effects as those of the first embodiment described above will be given the same reference numerals, and detailed explanations of those parts will be omitted. .
 (第2実施形態)
 図3に、第2実施形態を示す。この第2実施形態では、第1実施形態の円環状の一方の永久磁石23a、23bに替えて、棒状の永久磁石24a、24bを用いている。図3では、軸受け隙間21の一端部21a(図1参照)の断面を示しており、棒状の一方の永久磁石24aと他方の永久磁石24bは、軸受け隙間21を挟んだ内周側と外周側とに円形状に棒状の一方の永久磁石24aと他方の永久磁石24bを並べている。棒状の一方の永久磁石24aと他方の永久磁石24bは、内周側と外周側とで互いに反対の磁極を対向して配置している。
 また、外周側の一方の永久磁石24aは回転軸17の一端側蓋部17bに埋め込んでいることが第1実施形態と異なっている。
 尚、この第2実施形態において、軸受け隙間21の他端部21bについては示していないが、一方の永久磁石24aは、第1実施形態と同様に回転軸17の外周に配置しても良いし、一端部21aと同様に回転軸17内に埋め込まれていても良い。
(Second embodiment)
FIG. 3 shows a second embodiment. In the second embodiment, rod-shaped permanent magnets 24a and 24b are used in place of the annular permanent magnets 23a and 23b of the first embodiment. FIG. 3 shows a cross section of one end 21a (see FIG. 1) of the bearing gap 21, and one rod-shaped permanent magnet 24a and the other permanent magnet 24b are located on the inner and outer sides of the bearing gap 21. One rod-shaped permanent magnet 24a and the other permanent magnet 24b are arranged in a circular shape. One rod-shaped permanent magnet 24a and the other permanent magnet 24b are arranged such that opposite magnetic poles face each other on the inner circumferential side and the outer circumferential side.
Further, the second embodiment differs from the first embodiment in that one of the permanent magnets 24a on the outer peripheral side is embedded in the one end side cover 17b of the rotating shaft 17.
Although the other end 21b of the bearing gap 21 is not shown in the second embodiment, one permanent magnet 24a may be arranged on the outer periphery of the rotating shaft 17 as in the first embodiment. , may be embedded in the rotating shaft 17 similarly to the one end portion 21a.
 図3に示すように、この第2実施形態では、磁石により作用する磁力線Kは広がりを持っているので、周方向で対向する一方及び他方の永久磁石24a、24bは、周方向に間隔をあけて配置した場合でも、軸受け隙間21の周方向全体に連続して磁力を作用させることができる。
 図3に示す第2実施形態では、周方向で対向する一方及び他方の永久磁石24a、24bは、周方向に約45度の間隔で配置しているが、これに限らず、30度や15度、60度等の任意の間隔で配置しても良い。
 この第2実施形では、一方及び他方の永久磁石24a、24bに汎用性の高い棒磁石を用いているので、製造が容易である。また、一方及び他方の永久磁石24a、24bは周方向における配置密度を変えることにより、軸受け隙間21に作用させる磁力の調整が容易にできる。
As shown in FIG. 3, in this second embodiment, the lines of magnetic force K acting on the magnets have a spread, so the one and the other permanent magnets 24a and 24b facing each other in the circumferential direction are spaced apart in the circumferential direction. Even in the case where the bearing gap 21 is arranged in the same manner as shown in FIG.
In the second embodiment shown in FIG. 3, the one and the other permanent magnets 24a and 24b facing each other in the circumferential direction are arranged at an interval of about 45 degrees in the circumferential direction, but the interval is not limited to 30 degrees or 15 degrees. They may be arranged at arbitrary intervals such as 60 degrees or 60 degrees.
In this second embodiment, since highly versatile bar magnets are used for the one and the other permanent magnets 24a and 24b, manufacturing is easy. Further, by changing the arrangement density of one and the other permanent magnets 24a and 24b in the circumferential direction, the magnetic force acting on the bearing gap 21 can be easily adjusted.
 (第3実施形態)
 図4を参照して、第3実施の形態について説明する。
 この第3実施形態では、軸受け隙間21の一端部21a及び他端部21bには、固定軸15側に、環状の一方の永久磁石23a(図2参照)及び他方の永久磁石23bを並べて配置している。
 また、軸受け隙間21の一端部21a及び他端部21bには、凹凸を形成して液体潤滑材LMを保持し易くするためのトラップ26が形成されている。
 一方の永久磁石23a及び他方の永久磁石23aは、同じ寸法と形状であるが、内周側と外周側とで磁極が異なっている。即ち、一方の永久磁石23aは外周側がN極であり、内周側がS極で、他方の永久磁石23bは外周側がN極であり、内周側がS極としてある。
(Third embodiment)
A third embodiment will be described with reference to FIG. 4.
In this third embodiment, one annular permanent magnet 23a (see FIG. 2) and the other annular permanent magnet 23b are arranged side by side on the fixed shaft 15 side at one end 21a and the other end 21b of the bearing gap 21. ing.
Further, a trap 26 is formed at one end 21a and the other end 21b of the bearing gap 21 to form irregularities to facilitate holding the liquid lubricant LM.
One permanent magnet 23a and the other permanent magnet 23a have the same size and shape, but have different magnetic poles on the inner circumferential side and the outer circumferential side. That is, one permanent magnet 23a has an N pole on the outer circumference side and an S pole on the inner circumference side, and the other permanent magnet 23b has an N pole on the outer circumference side and an S pole on the inner circumference side.
 この第3実施形態によれば、第1実施形態と同様の作用効果を奏することができると共に、一方及び他方の永久磁石23a、23bは共に固定軸15に設ければ良いので製造が容易である。
 また、軸受け隙間21の一端部21a及び他端部21には、トラップ26を設けているので、磁力による作用に相乗して液体潤滑材LMを保持し易い。
According to the third embodiment, the same effects as those of the first embodiment can be achieved, and manufacturing is easy because both the one and the other permanent magnets 23a and 23b can be provided on the fixed shaft 15. .
Furthermore, since the traps 26 are provided at the one end 21a and the other end 21 of the bearing gap 21, the liquid lubricant LM can be easily held in synergy with the action of the magnetic force.
 (第4実施形態)
 図5を参照して、第4実施形態について説明する。
 この第4実施形態では、軸受け隙間21の一端部21a及び他端部21bには、固定軸15側に、環状(図2参照)の一つの永久磁石23を配置している。この永久磁石23は、環状の一面側にN極を、他面側にS極を配置している。
 この第4実施形態によれば、第3実施形態と同様な作用効果を奏すると共に、軸受け隙間21の各一端部21a及び他端部21bでは、永久磁石の数は一つで済むので、更に構成を簡易にできる。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. 5.
In the fourth embodiment, one annular permanent magnet 23 (see FIG. 2) is arranged at one end 21a and the other end 21b of the bearing gap 21 on the fixed shaft 15 side. This permanent magnet 23 has an annular N pole on one side and an S pole on the other side.
According to the fourth embodiment, the same effects as the third embodiment are achieved, and since only one permanent magnet is required at each end 21a and the other end 21b of the bearing gap 21, the structure is further improved. can be easily done.
 (第5実施形態)
 図6を参照して第5実施形態について説明する。
 この第5実施形態では、第3実施形態が1つの環状の永久磁石23を固定軸15側に配置したのに対して、回転軸17側に2つの環状の永久磁石23a、23bを配置していることが異なっている。
 また、第5実施形態では、軸受け隙間21の他端部21b側では、一方の永久磁石23aと他方の永久磁石23bとは、回転軸17の外周側に配置しており、軸受け隙間21の一端部21a側では、一方の永久磁石23aと他方の永久磁石23bとは、回転軸17の一端側蓋部17bに埋め込んで配置している。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIG. 6.
In this fifth embodiment, while the third embodiment has one annular permanent magnet 23 arranged on the fixed shaft 15 side, two annular permanent magnets 23a and 23b are arranged on the rotating shaft 17 side. Being there is different.
Further, in the fifth embodiment, on the other end 21b side of the bearing gap 21, one permanent magnet 23a and the other permanent magnet 23b are arranged on the outer circumferential side of the rotating shaft 17, and one end of the bearing gap 21 On the part 21a side, one permanent magnet 23a and the other permanent magnet 23b are embedded in the one end side cover part 17b of the rotating shaft 17.
 この第5実施形態によれば、第3実施と同様の作用効果を奏することができる。
 更に、軸受け隙間21の他端部21b側では、一方の永久磁石23aと他方の永久磁石23bとは、回転軸17の外周側に配置しているので、回転軸17に埋め込まなくて済むから、設置が容易にできる。
According to the fifth embodiment, the same effects as the third embodiment can be achieved.
Furthermore, on the other end 21b side of the bearing gap 21, one permanent magnet 23a and the other permanent magnet 23b are arranged on the outer circumferential side of the rotating shaft 17, so there is no need to embed them in the rotating shaft 17. Easy to install.
 (第6実施形態)
 図7に示すように、第6実施形態では、軸受け隙間21には、一端部21aと他端部21bを除く、中間部21cに、磁界が付与されている。
 磁界は、中間部21cにおける長手方向に沿って配置された複数の永久磁石23により付与されている。
 図2を参照するように、各永久磁石23は、リング状を成しており、内周側をS極又はN極に磁化されており、外周側は内周側と反対の磁極に磁化されている。即ち、図2では、内周側をN極に、外周側をS極としているが、これと反対に内周側をS極に、外周側をN極としている2種類のものを用いている。
 図7に示すように、各永久磁石23は、その並び方向において、隣り合う磁石は、N極とS極とが交互に配置されている。各永久磁石23は、固定軸15に埋め込まれている。
(Sixth embodiment)
As shown in FIG. 7, in the sixth embodiment, a magnetic field is applied to an intermediate portion 21c of the bearing gap 21, excluding the one end portion 21a and the other end portion 21b.
The magnetic field is applied by a plurality of permanent magnets 23 arranged along the longitudinal direction of the intermediate portion 21c.
As shown in FIG. 2, each permanent magnet 23 has a ring shape, and the inner circumferential side is magnetized to an S pole or N pole, and the outer circumferential side is magnetized to a magnetic pole opposite to the inner circumferential side. ing. That is, in Fig. 2, the inner circumferential side is the north pole and the outer circumferential side is the south pole, but on the contrary, two types of poles are used, in which the inner circumferential side is the south pole and the outer circumferential side is the north pole. .
As shown in FIG. 7, in the arrangement direction of each permanent magnet 23, adjacent magnets have N poles and S poles arranged alternately. Each permanent magnet 23 is embedded in the fixed shaft 15.
 次に、第6実施形態に係る回転陽極X線管の作用効果について、説明する。
 第6実施形態では、軸受け隙間21の中間部21cに磁界が印加されることで、軸受け隙間21に充填されている液体潤滑材LMでは、分散されている磁性微粒子(図示せず)が磁界(磁力線K)の作用を受けて引き付けられて、軸受け隙間21の中間部21cに留まることから、液体潤滑材LMが隙間内に保持される。
 即ち、磁性を有する微粒子が分散された液体潤滑材LMがすべり軸受19の圧力発生部に保持され、液体潤滑材LMの枯渇による回転軸17と固定軸15の接触を防止する。また、回転軸17が停止中であっても、液体潤滑材LMをすべり軸受19の軸受け面に保持することで回転軸17と固定軸15の接触を防ぐことができる。
Next, the effects of the rotating anode X-ray tube according to the sixth embodiment will be explained.
In the sixth embodiment, by applying a magnetic field to the intermediate portion 21c of the bearing gap 21, the dispersed magnetic fine particles (not shown) in the liquid lubricant LM filled in the bearing gap 21 are exposed to the magnetic field ( The liquid lubricant LM is attracted by the magnetic field lines K) and remains in the intermediate portion 21c of the bearing gap 21, so that the liquid lubricant LM is held within the gap.
That is, the liquid lubricant LM in which magnetic fine particles are dispersed is held in the pressure generating portion of the slide bearing 19 to prevent contact between the rotating shaft 17 and the fixed shaft 15 due to depletion of the liquid lubricant LM. Further, even when the rotating shaft 17 is stopped, by holding the liquid lubricant LM on the bearing surface of the sliding bearing 19, contact between the rotating shaft 17 and the fixed shaft 15 can be prevented.
 永久磁石23は、円環状の磁石で内周側と外周側とに磁極を形成しているから、簡易な構成にできる。
 図7に示すように、本実施の形態では、隣り合う永久磁石23は、互いに対向する磁極を異ならせているので、対向する磁極を同じにする場合に比較して、すべり軸受19に強い磁界を印加することができる。
The permanent magnet 23 is an annular magnet with magnetic poles formed on the inner circumferential side and the outer circumferential side, so that it can have a simple structure.
As shown in FIG. 7, in this embodiment, the adjacent permanent magnets 23 have different opposing magnetic poles, so a stronger magnetic field is applied to the slide bearing 19 than when the opposing magnetic poles are the same. can be applied.
 (第7実施形態)
 図8に、第7実施形態を示す。この第7実施形態では、すべり軸受け19には、軸受け隙間21において、その隙間の間隔を狭くしたグルーヴ25が形成されており、磁石23はこのグルーヴ25に対応した位置にのみ設けてある。
 図8では、グルーヴ25は一か所のみを示しているが、実際には管軸線a方向に沿って間隔を空けて複数形成されている。
(Seventh embodiment)
FIG. 8 shows a seventh embodiment. In the seventh embodiment, a groove 25 is formed in the bearing gap 21 in the sliding bearing 19, and the magnet 23 is provided only at a position corresponding to the groove 25.
In FIG. 8, only one groove 25 is shown, but in reality, a plurality of grooves 25 are formed at intervals along the direction of the tube axis a.
 第7実施の形態では、グルーヴ25は、固定軸15の軸受け面に段差を形成して回転軸17の軸受け面との間に形成しているが、これに限らず、回転軸17の軸受け面に段差を形成しても良い。
 このすべり軸受19では、グルーヴ25を形成することで、回転時に生じる圧力差により液体潤滑材LMを軸受面で保持している。その保持部であるグルーヴ25に磁力線Kを配するように磁石23を設置することで回転軸17と固定軸15の接触を防いでいる。
 磁石23は、第6実施形態と同様に、リング状の磁石であり、管軸線a方向に複数並べて配置していると共に隣り合う磁石23は互いに対向する磁極を異にしている。
In the seventh embodiment, the groove 25 is formed between the bearing surface of the rotating shaft 17 by forming a step on the bearing surface of the fixed shaft 15, but the groove 25 is not limited to this. A step may be formed on the surface.
In this sliding bearing 19, by forming the groove 25, the liquid lubricant LM is held on the bearing surface by the pressure difference generated during rotation. Contact between the rotating shaft 17 and the fixed shaft 15 is prevented by installing the magnet 23 so that the lines of magnetic force K are arranged in the groove 25 that is the holding portion.
Similar to the sixth embodiment, the magnets 23 are ring-shaped magnets, and a plurality of magnets 23 are arranged side by side in the direction of the tube axis a, and adjacent magnets 23 have different magnetic poles facing each other.
 この第7実施形態によれば、磁力線Kがグルーヴ25を通ることにより第6実施形態と同様に液体潤滑材LMをグルーヴ25に保持することができ、回転軸17と固定軸15の接触を防ぐことができる。 According to the seventh embodiment, the liquid lubricant LM can be held in the groove 25 as in the sixth embodiment by the magnetic force line K passing through the groove 25, thereby preventing contact between the rotating shaft 17 and the fixed shaft 15. be able to.
 (第8実施形態)
 図9を参照して、第8実施の形態について説明する。
 この第8実施形態では、図8に示す第7実施形態に対して、永久磁石23の形態が異なっている。即ち、永久磁石23は、管軸線a方向で磁極が互いに異なる磁極を対向するように、配置している。
 図9では一つのグルーヴ25に対して2つの永久磁石を配置しているが、管軸方向に並べて3つ又は4つ等、いくつ配置しても良い。尚、各永久磁石23はリング状の磁石である。
(Eighth embodiment)
An eighth embodiment will be described with reference to FIG.
This eighth embodiment differs from the seventh embodiment shown in FIG. 8 in the form of the permanent magnet 23. That is, the permanent magnets 23 are arranged so that different magnetic poles face each other in the direction of the tube axis a.
In FIG. 9, two permanent magnets are arranged for one groove 25, but any number of permanent magnets, such as three or four, may be arranged in the tube axis direction. Note that each permanent magnet 23 is a ring-shaped magnet.
 この第8実施形態においても、第7実施形態と同様に、磁力線Kがグルーヴ25を通ることにより液体潤滑材LMをグルーヴ25に保持することができ、回転軸17と固定軸15の接触を防ぐことができる。 In the eighth embodiment, as in the seventh embodiment, the liquid lubricant LM can be held in the groove 25 by the magnetic force lines K passing through the groove 25, thereby preventing contact between the rotating shaft 17 and the fixed shaft 15. be able to.
 (第9実施形態)
 図10を参照して、第9実施形態について説明する。
 この第9実施形態では、第6実施形態に係る回転陽極X線管1に対して、回転軸17に磁性体27を設けたことが第6実施形態と異なっている。
 磁性体27は例えば、鉄材であり、固定軸15に設けた永久磁石23に対向して設けている。磁性体27は、永久磁石23と同様にリング状である。
(Ninth embodiment)
A ninth embodiment will be described with reference to FIG.
The ninth embodiment differs from the sixth embodiment in that a magnetic body 27 is provided on the rotating shaft 17 with respect to the rotating anode X-ray tube 1 according to the sixth embodiment.
The magnetic body 27 is made of iron, for example, and is provided facing the permanent magnet 23 provided on the fixed shaft 15 . The magnetic body 27 is ring-shaped like the permanent magnet 23.
 この第9実施の形態によれば、図10に抜き出して示すように、軸受け隙間21を横断する磁力線Kを付与することができ、軸受け隙間21に封入された液体潤滑材LMに磁界を印加できる。これにより、液体潤滑材LMを軸受け隙間21に保持することができ、回転軸17と固定軸15の接触を防ぐことができる。 According to the ninth embodiment, as extracted and shown in FIG. 10, it is possible to provide lines of magnetic force K that cross the bearing gap 21, and it is possible to apply a magnetic field to the liquid lubricant LM sealed in the bearing gap 21. . Thereby, the liquid lubricant LM can be held in the bearing gap 21, and contact between the rotating shaft 17 and the fixed shaft 15 can be prevented.
 (第10実施形態)
 図11を参照して第10実施形態について説明する。
 この第10実施形態では、第7実施形態と同様にすべり軸受け19にグルーヴ25を形成してあり、固定軸15にはグルーヴ25に対応する位置に永久磁石23が配置してあると共に、磁性体27を回転軸17の外周面に外付けにより設けている。
 磁性体27はリング形状の鉄材である。
(10th embodiment)
A tenth embodiment will be described with reference to FIG. 11.
In this tenth embodiment, grooves 25 are formed in the sliding bearing 19 as in the seventh embodiment, and a permanent magnet 23 is arranged on the fixed shaft 15 at a position corresponding to the groove 25, and a magnetic material 27 is provided externally on the outer peripheral surface of the rotating shaft 17.
The magnetic body 27 is a ring-shaped iron material.
 この第10実施形態によれば、第7実施と同様の作用効果を奏することができる。
 更に、永久磁石23に対向して回転軸17に磁性体27を配置することで、磁界の強度を高めることができる。これにより液体潤滑材LMを軸受け隙間21に保持する保持力を高めることができる。
 しかも、磁性体27は回転軸17の外周面に外付けにより取り付けており、埋め込んでいないので、設置が容易にできると共に構成が簡易である。
According to the tenth embodiment, the same effects as the seventh embodiment can be achieved.
Furthermore, by arranging the magnetic body 27 on the rotating shaft 17 so as to face the permanent magnet 23, the strength of the magnetic field can be increased. Thereby, the holding force for holding the liquid lubricant LM in the bearing gap 21 can be increased.
Moreover, since the magnetic body 27 is externally attached to the outer circumferential surface of the rotating shaft 17 and is not embedded, installation is easy and the configuration is simple.
 (第11実施形態)
 図12を参照して第11実施形態について説明する。
 この第11実施形態では、第8実施形態と同様にすべり軸受け19にグルーヴ25を形成してあり、グルーヴ25に対応する位置に永久磁石23が配置してある。永久磁石23は、第11実施形態では固定軸15に設けていたが、この第11実施形態では、回転軸17に埋め込んで設けている。
(Eleventh embodiment)
An eleventh embodiment will be described with reference to FIG. 12.
In this 11th embodiment, a groove 25 is formed in the sliding bearing 19 similarly to the 8th embodiment, and a permanent magnet 23 is arranged at a position corresponding to the groove 25. Although the permanent magnet 23 was provided on the fixed shaft 15 in the eleventh embodiment, it is embedded in the rotating shaft 17 in this eleventh embodiment.
 この第11実施形態によれば、第8実施と同様の作用効果を奏することができる。
 尚、永久磁石23は回転軸17に埋め込まないで、回転軸17の外周面に外付けにより固定しても良い。
According to the eleventh embodiment, the same effects as the eighth embodiment can be achieved.
Note that the permanent magnet 23 may not be embedded in the rotating shaft 17, but may be externally fixed to the outer peripheral surface of the rotating shaft 17.
 (第12実施形態)
 図13を参照して第12実施形態について説明する。
 この第12実施形態では、第9実施形態と同様に、固定軸15にはリング形状の永久磁石23を管軸線a方向に間隔をあけて設けると共に、回転軸17には磁性体27を設けているが、管軸線a方向で隣り合う永久磁石23は、対向する磁極を同じにしている。即ち、各永久磁石23は、外周側を全て同じ磁極としている。本実施形態では、外周側をN極とし、内周側をS極としてある。
 この第12実施形態によれば、第9実施と同様の作用効果を奏することができる。
(12th embodiment)
A twelfth embodiment will be described with reference to FIG. 13.
In this twelfth embodiment, as in the ninth embodiment, ring-shaped permanent magnets 23 are provided on the fixed shaft 15 at intervals in the direction of the tube axis a, and a magnetic body 27 is provided on the rotating shaft 17. However, the permanent magnets 23 adjacent in the direction of the tube axis a have the same opposing magnetic poles. That is, each permanent magnet 23 has the same magnetic pole on the outer circumferential side. In this embodiment, the outer circumferential side is the north pole, and the inner circumferential side is the south pole.
According to the twelfth embodiment, the same effects as the ninth embodiment can be achieved.
 上述した一実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The embodiment described above is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the invention described in the claims and its equivalents.
 例えば、第3~第5実施形態において、第2実施形態と同様に、環状の永久磁石でなく、棒状の永久磁石24a、24bを用いて、周方向に間隔を開けて配置しても良い。
この場合、第3及び第5実施形態では、互いに異なる磁極が対向する一組の永久磁石を周方向に間隔を開けて複数組を配置するものとし、第4実施形態では、固定軸15の一端側と他端側とで異なる磁極となる棒状の永久磁石24aを周方向に間隔を開けて配置する。
For example, in the third to fifth embodiments, bar-shaped permanent magnets 24a and 24b may be used instead of annular permanent magnets and arranged with an interval in the circumferential direction, as in the second embodiment.
In this case, in the third and fifth embodiments, a plurality of sets of permanent magnets with different magnetic poles facing each other are arranged at intervals in the circumferential direction, and in the fourth embodiment, one end of the fixed shaft 15 is arranged. Bar-shaped permanent magnets 24a having different magnetic poles at one end and the other end are arranged at intervals in the circumferential direction.
 第7~第12実施形態においても、環状の永久磁石23でなく、棒状の永久磁石23を周方向に間隔を開けて配置しても良い。 Also in the seventh to twelfth embodiments, instead of the annular permanent magnets 23, bar-shaped permanent magnets 23 may be arranged at intervals in the circumferential direction.
 図14に示すように、第1実施形態において、一方の永久磁石23aは回転軸17の外周側に設けることに限らず、回転軸17に埋め囲まれていても良く、例えば図14の変形例では、一方の永久磁石23aは一端側蓋部17bに埋め込まれている。 As shown in FIG. 14, in the first embodiment, one permanent magnet 23a is not limited to being provided on the outer peripheral side of the rotating shaft 17, but may be embedded in the rotating shaft 17. For example, in the modified example of FIG. Here, one of the permanent magnets 23a is embedded in the one end side lid portion 17b.
 第6実施形態及び第7実施形態において、各永久磁石23は固定軸15に設けることに限らず、各永久磁石23を回転軸17に埋め込んで配置したり、回転軸17の外周面に外付けにより固定しても良いし。更に、第1実施形態及び第2実施形態において、固定軸15及び回転軸17の両方に永久磁石23を配置しても良い。
 第9実施形態、第10実施形態及び第12実施形態において、各磁性体27に代えて永久磁石23を用いても良い。
In the sixth embodiment and the seventh embodiment, each permanent magnet 23 is not limited to being provided on the fixed shaft 15, but each permanent magnet 23 may be embedded in the rotating shaft 17, or externally attached to the outer peripheral surface of the rotating shaft 17. It may be fixed by Furthermore, in the first embodiment and the second embodiment, the permanent magnet 23 may be placed on both the fixed shaft 15 and the rotating shaft 17.
In the ninth embodiment, the tenth embodiment, and the twelfth embodiment, permanent magnets 23 may be used instead of each magnetic body 27.
 第11実施形態において、回転軸17に設けた各永久磁石23に対応する位置において、固定軸15に磁性体27や永久磁石23を設けても良い。 In the eleventh embodiment, the magnetic body 27 and the permanent magnets 23 may be provided on the fixed shaft 15 at positions corresponding to the respective permanent magnets 23 provided on the rotating shaft 17.
 図15に第6実施形態の変形例を示す。図15では、軸受け隙間21の中間部21cの断面を示している。この変形例では、永久磁石23はリング状ではなく、棒磁石であり、棒磁石を固定軸15の外周面に沿って間隔をあけて配置している。隣り合う磁石23は、内周側と外周側とで互いに反対の磁極を対向して配置している。
 磁力線Kは隣り合う磁石23において、軸受け隙間21を横断するように作用する。
FIG. 15 shows a modification of the sixth embodiment. In FIG. 15, a cross section of the intermediate portion 21c of the bearing gap 21 is shown. In this modification, the permanent magnets 23 are not ring-shaped but bar magnets, and the bar magnets are arranged at intervals along the outer peripheral surface of the fixed shaft 15. Adjacent magnets 23 are arranged with opposing magnetic poles facing each other on the inner and outer circumferential sides.
The lines of magnetic force K act on adjacent magnets 23 so as to cross the bearing gap 21 .

Claims (11)

  1.  真空外囲器と、前記真空外囲器内に収納された陰極及び回転陽極構体と、を備え、
     前記回転陽極構体は、固定軸と、前記固定軸の外周側に設けた回転軸と、前記回転軸と一体に回転すると共に前記陰極から照射された電子ビームを受けてX線を発生するターゲットと、を有し、
     前記固定軸と前記回転軸との間には、液体潤滑材を充填した軸受け隙間が設けてあり、
     前記液体潤滑材には磁性を有する磁性微粒子が分散されていると共に前記軸受け隙間に磁界が付与されている、回転陽極X線管。
    comprising a vacuum envelope, and a cathode and rotating anode assembly housed within the vacuum envelope,
    The rotating anode structure includes a fixed shaft, a rotating shaft provided on the outer circumferential side of the fixed shaft, and a target that rotates together with the rotating shaft and generates X-rays by receiving the electron beam irradiated from the cathode. , has
    A bearing gap filled with a liquid lubricant is provided between the fixed shaft and the rotating shaft,
    A rotating anode X-ray tube, wherein magnetic fine particles having magnetism are dispersed in the liquid lubricant and a magnetic field is applied to the bearing gap.
  2.  前記磁界は、前記軸受け隙間の端部に付与されている、請求項1に記載の回転陽極X線管。 The rotating anode X-ray tube according to claim 1, wherein the magnetic field is applied to an end of the bearing gap.
  3.  前記磁界は、固定軸側及び回転軸側の少なくとも一方に設けた磁石により前記軸受け隙間を横断する磁束である請求項2に記載の回転陽極X線管。 The rotating anode X-ray tube according to claim 2, wherein the magnetic field is a magnetic flux that crosses the bearing gap by a magnet provided on at least one of the fixed shaft side and the rotating shaft side.
  4.  前記磁石は、前記軸受け隙間を挟んで設けた一対の永久磁石であり、互いに反対の磁極を対向して設けている請求項3に記載の回転陽極X線管。 The rotating anode X-ray tube according to claim 3, wherein the magnets are a pair of permanent magnets provided with the bearing gap in between, and the magnets are provided with opposite magnetic poles facing each other.
  5.  前記磁石は、固定軸側又は回転軸側に並んで設けた永久磁石であり、互いに反対の磁極を対向して配置している請求項3に記載の回転陽極X線管。 4. The rotating anode X-ray tube according to claim 3, wherein the magnets are permanent magnets arranged side by side on the fixed shaft side or the rotating shaft side, with mutually opposite magnetic poles facing each other.
  6.  前記軸受け隙間は、隙間の間隔を部分的に狭くしたグルーヴを有し、前記磁界はグルーヴの領域に付与されている請求項1に記載の回転陽極X線管。 2. The rotating anode X-ray tube according to claim 1, wherein the bearing gap has a groove in which the gap is partially narrowed, and the magnetic field is applied to a region of the groove.
  7.  前記磁界は、固定軸側及び回転軸側の少なくとも一方に設けた磁石により前記軸受け隙間を横断する磁束により形成されている請求項6に記載の回転陽極X線管。 The rotating anode X-ray tube according to claim 6, wherein the magnetic field is formed by a magnetic flux that crosses the bearing gap by a magnet provided on at least one of the fixed shaft side and the rotating shaft side.
  8.  前記磁界は、固定軸側及び回転軸側の少なくとも一方に設けた磁石と、他方に設けた磁性体により形成されている請求項6に記載の回転陽極X線管。 The rotating anode X-ray tube according to claim 6, wherein the magnetic field is formed by a magnet provided on at least one of the fixed shaft side and the rotating shaft side, and a magnetic material provided on the other side.
  9.  前記磁界は、前記軸受け隙間を挟んで設けた一対の永久磁石により形成されており、前記磁石は互いに反対の磁極を対向して設けている請求項6に記載の回転陽極X線管。 7. The rotating anode X-ray tube according to claim 6, wherein the magnetic field is formed by a pair of permanent magnets provided with the bearing gap in between, and the magnets are provided with opposite magnetic poles facing each other.
  10.  前記磁界は、固定軸又は回転軸に管軸方向で並んで設けた永久磁石により形成されており、前記永久磁石は互いに反対の磁極を対向して配置している請求項6に記載の回転陽極X線管。 7. The rotating anode according to claim 6, wherein the magnetic field is formed by permanent magnets arranged on a fixed shaft or a rotating shaft in the tube axis direction, and the permanent magnets are arranged with mutually opposite magnetic poles facing each other. X-ray tube.
  11.  前記磁性微粒子は、酸化鉄の粒子にアルミニウム又はシリカを被覆してなる請求項1に記載の回転陽極X線管。 The rotating anode X-ray tube according to claim 1, wherein the magnetic fine particles are made of iron oxide particles coated with aluminum or silica.
PCT/JP2023/020757 2022-07-11 2023-06-05 Rotating anode x-ray tube WO2024014179A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-111312 2022-07-11
JP2022111312A JP2024009635A (en) 2022-07-11 2022-07-11 Rotary anode x-ray tube
JP2022-168377 2022-10-20
JP2022168377 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024014179A1 true WO2024014179A1 (en) 2024-01-18

Family

ID=89536584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020757 WO2024014179A1 (en) 2022-07-11 2023-06-05 Rotating anode x-ray tube

Country Status (1)

Country Link
WO (1) WO2024014179A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149758A (en) * 1980-04-19 1981-11-19 Shimadzu Corp Anode of rotary anode x-ray tube
JPH08270654A (en) * 1995-03-20 1996-10-15 Siemens Ag Liquid metallic type plain bearing
JPH09112542A (en) * 1995-08-30 1997-05-02 Internatl Business Mach Corp <Ibm> Self-pressurization journal-bearing-assembly
JPH11289709A (en) * 1998-04-01 1999-10-19 Nippon Seiko Kk Spindle motor
JP2003533363A (en) * 2000-05-17 2003-11-11 ユニヴァーシティ オヴ フロリダ Coated nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149758A (en) * 1980-04-19 1981-11-19 Shimadzu Corp Anode of rotary anode x-ray tube
JPH08270654A (en) * 1995-03-20 1996-10-15 Siemens Ag Liquid metallic type plain bearing
JPH09112542A (en) * 1995-08-30 1997-05-02 Internatl Business Mach Corp <Ibm> Self-pressurization journal-bearing-assembly
JPH11289709A (en) * 1998-04-01 1999-10-19 Nippon Seiko Kk Spindle motor
JP2003533363A (en) * 2000-05-17 2003-11-11 ユニヴァーシティ オヴ フロリダ Coated nanoparticles

Similar Documents

Publication Publication Date Title
US7206381B2 (en) X-ray equipment
JPH08222395A (en) X-ray tube assembly
JP2014026964A (en) X-ray tube and operation method thereof
JP2008108700A (en) Rotating anode x-ray tube assembly
US6873683B2 (en) Axial flux motor driven anode target for X-ray tube
JPH11166633A (en) Magnetic field resistant magnetic fluid sealing device
WO2024014179A1 (en) Rotating anode x-ray tube
JP7214336B2 (en) Systems and methods for reducing relative bearing shaft deflection in x-ray tubes
US9741523B2 (en) X-ray tube
KR101891020B1 (en) Rotating anode x-ray tube
JP2024009635A (en) Rotary anode x-ray tube
JP2009021161A (en) Rotary positive electrode type x-ray tube assembly and x-ray device
JP5823206B2 (en) X-ray tube device
CN115315774A (en) Sliding bearing unit and rotary anode type X-ray tube
JP5531293B2 (en) Rotating anode type X-ray tube and X-ray tube device
JP4886760B2 (en) X-ray equipment
JP7066568B2 (en) Rotating anode X-ray tube and rotating anode X-ray tube device
JP2011233364A (en) Rotating anode x-ray tube and rotating anode x-ray tube assembly
JP2018060621A (en) X-ray tube
KR101948303B1 (en) Plain bearing, and rotating anode type X-ray tube
JP2010212088A (en) Rotating anode x-ray tube
JPS60163355A (en) X-ray tube
JP2020021647A (en) Rotary anode x-ray tube
WO2023228430A1 (en) Rotary positive electrode x-ray tube
JP2006100032A (en) Rotating anode x-ray tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839355

Country of ref document: EP

Kind code of ref document: A1