JP4886760B2 - X-ray equipment - Google Patents

X-ray equipment Download PDF

Info

Publication number
JP4886760B2
JP4886760B2 JP2008298233A JP2008298233A JP4886760B2 JP 4886760 B2 JP4886760 B2 JP 4886760B2 JP 2008298233 A JP2008298233 A JP 2008298233A JP 2008298233 A JP2008298233 A JP 2008298233A JP 4886760 B2 JP4886760 B2 JP 4886760B2
Authority
JP
Japan
Prior art keywords
target
focusing electrode
electron beam
cathode
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008298233A
Other languages
Japanese (ja)
Other versions
JP2009043741A (en
Inventor
隆 下野
克則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008298233A priority Critical patent/JP4886760B2/en
Publication of JP2009043741A publication Critical patent/JP2009043741A/en
Application granted granted Critical
Publication of JP4886760B2 publication Critical patent/JP4886760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ターゲットに電子ビームを照射してX線を発生させるX線装置に関する。   The present invention relates to an X-ray apparatus that generates X-rays by irradiating a target with an electron beam.

従来、この種のX線を発生させるX線装置としては、マイクロフォーカスX線発生装置に用いる透過型マイクロフォーカスX線発生管球がある。   Conventionally, as an X-ray apparatus that generates this type of X-ray, there is a transmission type microfocus X-ray generation tube used for the microfocus X-ray generation apparatus.

そして、反射型マイクロフォーカスX線発生管球の場合には、大半で寿命の問題は存在しなかった。一方、透過型マイクロフォーカスX線管発生管球は、小型で検査物とX線源を接近して配設できるため、拡大倍率を大きくでき、超精密なX線透過検査ができる。ところが、透過型マイクロフォーカスX線発生管球の場合には、ターゲットに電子ビームを照射してX線を発生させているが、ターゲットの微小面積に大きな電力の電子ビームを照射し、この電子ビームのエネルギのほとんどが熱となるため、ターゲットが劣化してターゲットに寿命の問題がある。そこで、透過型マイクロフォーカスX線発生装置では開放型としてターゲットを定期的に交換する必要があり、構造は複雑になり大型で高価なものである。また、このような構造を取る必要があるため、X線源となるターゲットから測定物までの距離を接近させることが困難で、X線検査の拡大率の性能には限界がある。   In the case of the reflective microfocus X-ray generation tube, there is no problem of the lifetime in most cases. On the other hand, the transmission-type microfocus X-ray tube generating tube is small and can be disposed close to the inspection object and the X-ray source. Therefore, the magnification can be increased and an ultra-precise X-ray transmission inspection can be performed. However, in the case of a transmission type microfocus X-ray generation tube, an X-ray is generated by irradiating a target with an electron beam. Since most of the energy becomes heat, the target deteriorates, and the target has a problem of life. Therefore, in the transmission type microfocus X-ray generator, it is necessary to periodically replace the target as an open type, and the structure becomes complicated and large and expensive. In addition, since it is necessary to adopt such a structure, it is difficult to make the distance from the target as the X-ray source to the measurement object, and the performance of the magnification rate of the X-ray inspection is limited.

近年、小型で構成の簡単な封止切りの透過型マイクロフォーカスX線発生管球が開発されているが、ターゲットの熱的な劣化のために寿命が短くなり、焦点サイズが5μmのもので2W程度の入力がターゲットの限界である。   In recent years, a transparent microfocus X-ray generation tube having a small size and a simple structure has been developed. However, the lifetime is shortened due to thermal degradation of the target, and the focus size is 5 μm and 2 W. The degree of input is the target limit.

そこで、たとえばターゲットの寿命を延ばす構造として、真空容器内に電子ビームを照射する陰極およびこの陰極からの電子ビームを照射してX線を発生するターゲットを配設し、このターゲットを電子ビームの軸方向に対して直交する方向に移動可能に配設し、このターゲットを真空容器の外部の磁石により移動させ、電子ビームが照射されるターゲットの位置を異ならせ、ターゲットの電子ビームが照射されるある位置が寿命になった場合に、磁石によりターゲットを移動させて初期の性能を回復するものが知られている(たとえば特許文献1参照)。
特開平3−22331号公報(第2頁−第3頁、第1図)
Therefore, for example, as a structure for extending the life of the target, a cathode that irradiates an electron beam in a vacuum vessel and a target that generates an X-ray by irradiating the electron beam from the cathode are disposed, and this target is placed on the axis of the electron beam It is arranged to be movable in a direction perpendicular to the direction, this target is moved by a magnet outside the vacuum vessel, the position of the target irradiated with the electron beam is changed, and the target electron beam is irradiated. When the position reaches the end of its life, it is known to restore the initial performance by moving the target with a magnet (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 3-22331 (page 2 to page 3, FIG. 1)

しかしながら、上述のように真空容器内のターゲットを移動させる場合、ターゲット自体を移動可能にするとともに、ターゲットを移動させるための磁石を配設するなど構造が複雑になる問題を有している。   However, when the target in the vacuum vessel is moved as described above, there is a problem that the structure itself becomes complicated, such as making the target itself movable and arranging a magnet for moving the target.

本発明は、上記問題点に鑑みなされたもので、簡単な構成で長寿命化を図ったX線装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an X-ray apparatus that has a simple configuration and has a long life.

本発明は、真空容器と、この真空容器内に配置され、電子ビームを照射する陰極と、前記真空容器内に配置され、前記陰極に対して正の電圧が印加され、前記電子ビームが照射されてX線を発生するターゲットと、前記真空容器内の前記ターゲットと陰極との間に配置され、前記ターゲットに印加された電圧の値よりも小さい値の負の電圧が印加された静電型の第1集束電極と、この第1集束電極と前記ターゲットとの間に配置され、前記第1集束電極に印加された電圧の値よりも大きく前記ターゲットに印加された電圧の値よりも小さい値の正の電圧が印加された静電型の第2集束電極と、この第2集束電極と前記ターゲットとの間に、前記第1集束電極と前記陰極との間隔および前記第1集束電極と前記第2集束電極との間隔よりも広い間隔で前記第2集束電極から離間されて配置され、前記第1集束電極に印加された電圧の値よりも大きく前記ターゲットに印加された電圧の値よりも小さい値の正の電圧が印加された静電型の第3集束電極と、前記真空容器外に取り付けられた永久磁石を備え、電子ビームの軸方向に沿った中心位置が前記第3集束電極と陰極との間に位置し、ターゲットに照射される電子ビームの照射位置を前記永久磁石により移動させる磁石部とを具備したもので、電子ビームを照射してX線を発生させていた照射位置が寿命になっても、ターゲットの他の位置に磁石部の真空外囲器外に取り付けられた永久磁石により電子ビームの照射位置を移動させることができるため、照射位置をターゲットの寿命になってない位置に変えることにより初期の性能を得ることができ、長寿命化を図れるとともに、磁石部の電子ビームの軸方向に沿った中心位置が陰極と、静電型の第1ないし第3集束電極のうち最もターゲット側に位置する第3集束電極との間に位置することで、陰極から放出される電子の初期段階で磁界によるスピンがかかることにより焦点形状の歪みやボケが最小になる。 The present invention provides a vacuum container, a cathode disposed in the vacuum container and irradiating an electron beam, and disposed in the vacuum container, a positive voltage is applied to the cathode, and the electron beam is irradiated. An electrostatic type electrode that is disposed between a target that generates X-rays and the target and the cathode in the vacuum vessel, and to which a negative voltage smaller than the voltage applied to the target is applied. A first focusing electrode, and is disposed between the first focusing electrode and the target, and has a value larger than a voltage value applied to the first focusing electrode and smaller than a voltage value applied to the target. An electrostatic type second focusing electrode to which a positive voltage is applied, a distance between the first focusing electrode and the cathode, and the first focusing electrode and the first between the second focusing electrode and the target. Wider than the distance between the two focusing electrodes Are arranged intervals by spaced apart from the second focusing electrode, wherein the positive voltage of a value smaller than the value of the voltage applied to increase the target than the value of the first focusing electrode to the applied voltage is applied An electrostatic type third focusing electrode and a permanent magnet attached to the outside of the vacuum vessel are provided, and the center position along the axial direction of the electron beam is located between the third focusing electrode and the cathode, And a magnet portion that moves the irradiation position of the irradiated electron beam by the permanent magnet, and even if the irradiation position where the X-rays are generated by irradiating the electron beam reaches the end of its life, Since the irradiation position of the electron beam can be moved by a permanent magnet attached to the position outside the vacuum envelope of the magnet part, the initial performance can be improved by changing the irradiation position to a position where the target life is not reached. Rukoto can, together attained the life of, the center position in the axial direction of the electron beam of the magnet unit is located on the most target side of the cathode and the first to third focusing electrodes of the electrostatic By being positioned between the three focusing electrodes, a spin due to a magnetic field is applied in the initial stage of electrons emitted from the cathode, thereby minimizing distortion and blurring of the focal shape.

本発明によれば、電子ビームを照射してX線を発生させていた照射位置が寿命になっても、真空容器外に位置する磁石部の永久磁石により電子ビームの照射位置をターゲットの他の位置に移動させることができるため、照射位置をターゲットの寿命になってない位置に変えることにより初期の性能を得ることができ、長寿命化を図ることができるとともに、磁石部の電子ビームの軸方向に沿った中心位置が陰極と、静電型の第1ないし第3集束電極のうち最もターゲット側に位置する第3集束電極との間に位置することで、陰極から放出される電子の初期段階で磁界によるスピンがかかることにより焦点形状の歪みやボケを最小にできる。 According to the present invention, even when the irradiation position where the X-rays are generated by irradiating the electron beam reaches the end of its life, the irradiation position of the electron beam is changed by the permanent magnet of the magnet portion located outside the vacuum container. Since it can be moved to a position, the initial performance can be obtained by changing the irradiation position to a position where the life of the target is not reached, the life can be extended, and the axis of the electron beam of the magnet part The center position along the direction is located between the cathode and the third focusing electrode located closest to the target among the electrostatic first to third focusing electrodes, so that the electrons emitted from the cathode By applying a spin due to a magnetic field in the initial stage, distortion and blurring of the focal shape can be minimized.

以下、本発明の一実施の形態のマイクロフォーカスX線装置の透過型のマイクロフォーカスX線管球を図面を参照して説明する。   Hereinafter, a transmission type microfocus X-ray tube of a microfocus X-ray apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、1はX線装置としての真空管であるマイクロフォーカスX線発生装置の透過型のマイクロフォーカスX線発生管球で、このマイクロフォーカスX線発生管球1は、真空気密を保つ真空容器としての真空外囲器2を有し、この真空外囲器2は円筒状の筒状部3を有し、この筒状部3には真空排気用の排気管を取り付ける排気管取付部4が形成されている。なお、この排気管は真空排気後封止切りされる。   As shown in FIG. 1, reference numeral 1 denotes a transmission type microfocus X-ray generation tube of a microfocus X-ray generation device which is a vacuum tube as an X-ray device. The microfocus X-ray generation tube 1 is vacuum-tight. A vacuum envelope 2 is provided as a vacuum container to be maintained, and the vacuum envelope 2 has a cylindrical tube portion 3, and an exhaust pipe attachment for attaching an exhaust pipe for vacuum exhaust to the cylindrical portion 3 Part 4 is formed. The exhaust pipe is sealed after being evacuated.

また、筒状部3の基端側には、円環のフランジ状の管球取付金具5が取り付けられる。この管球取付金具5は、この管球取付金具5を固定するねじなどを挿通するねじ挿通孔6が複数形成され、この管球取付金具5の背面側には、冷却用の油がこの管球取付金具5に沿って漏出することを防止する図示しないOリングを装着する装着溝7が全周にわたって形成されている。   An annular flange-shaped tube mounting bracket 5 is attached to the proximal end side of the cylindrical portion 3. The tube mounting bracket 5 is formed with a plurality of screw insertion holes 6 through which screws and the like for fixing the tube mounting bracket 5 are inserted. Cooling oil is provided on the back side of the tube mounting bracket 5. A mounting groove 7 for mounting an O-ring (not shown) that prevents leakage along the ball mounting bracket 5 is formed over the entire circumference.

さらに、筒状部3の基端側となる管球取付金具5の背面側には、基端側が閉塞された二重筒状のガラス容器11が位置し、このガラス容器11の開放している外筒の先端には、金属性の円環状の外筒接続体12がガラス容器11に溶着されるなどして一体的に取り付けられ、この外筒接続体12が管球取付金具5に溶接されて気密に封止されている。また、ガラス容器11の内筒の内周側には内筒を閉塞する閉塞部13が形成されている。さらに、ガラス容器11の内筒の先端には、金属性の円環状の内筒接続体14がガラス容器11に溶着されるなどして一体的に取り付けられ、この内筒接続体14の先端には支持体15が接続されている。   Further, a double-cylindrical glass container 11 whose base end side is closed is located on the back side of the tube fitting 5 that is the base end side of the cylindrical portion 3, and the glass container 11 is open. A metallic annular outer cylinder connector 12 is integrally attached to the tip of the outer cylinder, for example, by being welded to the glass container 11, and the outer cylinder connector 12 is welded to the tube fitting 5. And hermetically sealed. Further, a closing portion 13 for closing the inner cylinder is formed on the inner peripheral side of the inner cylinder of the glass container 11. Further, a metallic annular inner cylinder connector 14 is integrally attached to the tip of the inner cylinder of the glass container 11 by being welded to the glass container 11, and is attached to the tip of the inner cylinder connector 14. Is connected to a support 15.

そして、この支持体15の先端には環状板の保持体16が取り付けられ、この保持体16の内部には陰極保持体17が取り付けられ、この陰極保持体17に陰極18が装着されている。この陰極18は図示しないフィラメントを内蔵し、このフィラメントを加熱して熱電子となり電子ビームを放出する。また、陰極18はフィラメント21を有し、このフィラメント21にはガラス容器11の閉塞部13を気密状態で貫通するフィラメント端子22が接続され、このフィラメント端子22からフィラメント21を介して、外部からの電力が陰極18に供給される。   An annular plate holder 16 is attached to the tip of the support 15, a cathode holder 17 is attached inside the holder 16, and a cathode 18 is attached to the cathode holder 17. The cathode 18 incorporates a filament (not shown) and heats the filament to become thermoelectrons to emit an electron beam. Further, the cathode 18 has a filament 21, and a filament terminal 22 that penetrates the closed portion 13 of the glass container 11 in an airtight state is connected to the filament 21, and from the filament terminal 22 through the filament 21 from the outside Power is supplied to the cathode 18.

また、保持体16には、一体的に形成された電子レンズとなる静電型の集束電極体23が取り付けられ、この集束電極体23および陰極18により微小焦点電子銃が形成されている。この集束電極体23は、保持体16に棒状の電極保持絶縁体24が取り付けられ、この電極保持絶縁体24は陰極側から、マイナス数百Vの電圧を印加する第1集束電極25、プラス数kVの電圧を印加する第2集束電極26、やや大きめの間隙を介してプラス数kVの電圧を印加する第3集束電極27が所定の寸法に従い順次配設されている。また、第1集束電極25、第2集束電極26の中心には図示しない電子ビーム挿通孔が開口形成され、第3集束電極27の中心には、第1集束電極25および第2集束電極26の電子ビーム挿通孔との延長軸上に直線的に連通する電子ビーム挿通孔28が電子ビームの照射方向に沿って直線的に配設されている。   The holding body 16 is attached with an electrostatic focusing electrode body 23 serving as an integrally formed electron lens, and the focusing electrode body 23 and the cathode 18 form a microfocus electron gun. In this focusing electrode body 23, a rod-shaped electrode holding insulator 24 is attached to a holding body 16, and this electrode holding insulator 24 is a first focusing electrode 25 for applying a voltage of minus several hundreds V from the cathode side, and a plus number. A second focusing electrode 26 for applying a voltage of kV and a third focusing electrode 27 for applying a voltage of plus several kV through a slightly larger gap are sequentially arranged according to a predetermined dimension. Further, an electron beam insertion hole (not shown) is formed at the center of the first focusing electrode 25 and the second focusing electrode 26, and the first focusing electrode 25 and the second focusing electrode 26 are formed at the center of the third focusing electrode 27. An electron beam insertion hole 28 that linearly communicates with an extension axis of the electron beam insertion hole is linearly disposed along the irradiation direction of the electron beam.

一方、筒状部3の先端側には、先端に向けて径小となる蓋体31が取り付けられ、この蓋体31の先端には取付部32が形成され、この取付部32には開口33が形成され、取付部32にはターゲット保持体34が保持され、このターゲット保持体34は開口35を有し、このターゲット保持体34に窓となる透過型のターゲット36が真空外囲器2の一部として気密に取り付けられている。このターゲット36は、第1集束電極25の電子ビーム挿通孔、第2集束電極26の電子ビーム挿通孔および第3集束電極27の電子ビーム挿通孔28を介して陰極18に対向して配設されている。また、ターゲット36は、真空気密の隔壁を目的とし厚さ数百μmのX線の透過損失が少ないX線透過窓となるベリリウム薄板やAl基板等を基板とし、このベリリウム薄板等の真空側に例えば約5μmないし10μmのX線の発生性能が優れているタングステン等のX線源となる薄膜を成膜して形成されている。ベリリウム薄板等は、真空気密の隔壁の目的で、X線の透過損失が少ない材料として選ばれている。なお、タングステン薄膜厚さは、電子ビームの潜り込む深さと発生したX線の減衰量とに基づき設計されている。   On the other hand, a lid body 31 whose diameter decreases toward the distal end is attached to the distal end side of the cylindrical portion 3, and an attachment portion 32 is formed at the distal end of the lid body 31. The target holding body 34 is held in the mounting portion 32, the target holding body 34 has an opening 35, and a transmission type target 36 serving as a window is formed in the target holding body 34 of the vacuum envelope 2. It is airtightly attached as part. The target 36 is disposed to face the cathode 18 through the electron beam insertion hole of the first focusing electrode 25, the electron beam insertion hole of the second focusing electrode 26, and the electron beam insertion hole 28 of the third focusing electrode 27. ing. The target 36 is made of a beryllium thin plate or an Al substrate, which is an X-ray transmission window with a thickness of several hundreds of μm and has a small X-ray transmission loss for the purpose of a vacuum-tight partition wall. For example, a thin film serving as an X-ray source such as tungsten having excellent X-ray generation performance of about 5 μm to 10 μm is formed. A beryllium thin plate or the like is selected as a material having a small X-ray transmission loss for the purpose of a vacuum-tight partition. The thickness of the tungsten thin film is designed based on the penetration depth of the electron beam and the amount of attenuation of the generated X-ray.

さらに、図2にも示すように、真空外囲器2の外周には磁石部40が取り付けられ、この磁石部40は真空外囲器2と間隙を介して円環状の磁石保持体41がたとえば手動により回転自在に取り付けられ、磁石保持体41の径方向に沿って対向し電子ビームが通過する経路で約10ガウスないし50ガウスの強さの磁束を形成する永久磁石42,42が異なる極が対向した状態で方向性を持って配設されている。また、真空外囲器2の周囲には、掘込構造が採られて例えば18°毎に20箇所に円錐状の係止孔43が形成されている。一方、図3に示すように、磁石保持体41には90°毎に4箇所に穴溝44が径方向に沿って形成され、この穴溝44にはボール押しスプリング45が挿入され、このボール押しスプリング45の先端には穴溝44に挿入可能な大きさの位置決め用のボール46が位置している。そして、ボール押しスプリング45により磁石保持体41のボール46が真空外囲器2の中心方向に付勢されて真空外囲器2の係止孔43に係止されることにより、所定の位置に位置決めされる。なお、対向する永久磁石42の周方向の中心を結ぶ線はターゲット36の中心を通り、永久磁石42の電子ビームの軸方向に沿った位置は、中心が陰極18の先端ないし最もターゲット36側に位置する第3集束電極27の間のLの中に含まれる位置に位置する。   Further, as shown in FIG. 2, a magnet portion 40 is attached to the outer periphery of the vacuum envelope 2, and the magnet portion 40 is connected to the vacuum envelope 2 via a gap, for example, an annular magnet holder 41. The poles of the permanent magnets 42 and 42, which are attached manually and freely rotate, form a magnetic flux having a strength of about 10 to 50 gauss in the path through which the electron beam passes and face along the radial direction of the magnet holder 41, are different. It is arranged with directivity in the opposed state. Further, around the vacuum envelope 2, a digging structure is adopted, and for example, conical locking holes 43 are formed at 20 locations every 18 °. On the other hand, as shown in FIG. 3, the magnet holder 41 is formed with four hole grooves 44 along the radial direction every 90 °, and a ball pushing spring 45 is inserted into the hole groove 44, and this ball A positioning ball 46 of a size that can be inserted into the hole groove 44 is located at the tip of the push spring 45. The ball 46 of the magnet holder 41 is urged toward the center of the vacuum envelope 2 by the ball pressing spring 45 and is locked in the locking hole 43 of the vacuum envelope 2, so that the ball 46 is brought into a predetermined position. Positioned. Note that the line connecting the circumferential center of the permanent magnet 42 facing the center passes through the center of the target 36, and the position of the permanent magnet 42 along the axial direction of the electron beam is centered at the tip of the cathode 18 or closest to the target 36. It is located at a position included in L between the third focusing electrodes 27 located.

次に、上記実施の形態の動作について説明する。   Next, the operation of the above embodiment will be described.

まず、陰極18に電圧を印加すると、フィラメントが加熱されて熱電子となり電子ビームを放出し、集束電極体23を介してターゲット36に照射される。具体的には、陰極18から放出された電子ビームは、第1集束電極25のマイナス数百Vの電圧の電子レンズで集束され、第2集束電極26および第3集束電極27のプラス数kVの電圧でさらに集束され、ターゲット36に約100kVの電圧で印加され、2μmないし5μmたとえば約5μmの直径の電子ビームとなって、ターゲット36の真空側面に結像する。   First, when a voltage is applied to the cathode 18, the filament is heated to become thermoelectrons to emit an electron beam, and the target 36 is irradiated through the focusing electrode body 23. Specifically, the electron beam emitted from the cathode 18 is focused by an electron lens having a voltage of minus several hundreds V of the first focusing electrode 25, and a plus number kV of the second focusing electrode 26 and the third focusing electrode 27. It is further focused by the voltage, applied to the target 36 at a voltage of about 100 kV, and becomes an electron beam having a diameter of 2 μm to 5 μm, for example, about 5 μm, and forms an image on the vacuum side of the target 36.

また、磁石部40の永久磁石42により形成される磁界により、永久磁石42の位置に従い電子ビームはターゲット36の中心よりややずれた位置に結像する。   Further, due to the magnetic field formed by the permanent magnet 42 of the magnet unit 40, the electron beam forms an image at a position slightly displaced from the center of the target 36 according to the position of the permanent magnet 42.

そして、このターゲット36の真空側面に結像した電子ビームは、このターゲット36のタングステン薄膜に衝突してX線となり、このX線はベリリウム薄板を透過して外部に取り出され、精密検査装置のX線源として利用される。   Then, the electron beam focused on the vacuum side surface of the target 36 collides with the tungsten thin film of the target 36 and becomes X-rays. The X-rays pass through the beryllium thin plate and are taken out to the outside. Used as a radiation source.

ところが、数ミクロンメータの焦点径に数Wのエネルギが入力されるためタングステン薄膜等のX線源の成膜面が高温になって劣化し、経時的に徐々にX線の発生量が低下するため、タングステン薄膜等のX線源の寿命が数百時間ないし1000時間程度で寿命となる。   However, since energy of several watts is input to a focal diameter of several micrometers, the film formation surface of an X-ray source such as a tungsten thin film becomes high temperature and deteriorates, and the amount of X-ray generation gradually decreases with time. Therefore, the lifetime of an X-ray source such as a tungsten thin film becomes a lifetime in the order of several hundred hours to 1000 hours.

そこで、タングステン薄膜等のX線源の寿命となる数百時間、たとえば300時間から800時間程度で磁石部40の磁石保持体41を真空外囲器2の中心を回転軸として18°手動あるいは機械的に回動させ、ボール46がボール押しスプリング45の付勢に抗して穴溝44内に収容され、隣合う係止孔43の位置で再びボール押しスプリング45により磁石保持体41のボール46が真空外囲器2の中心方向に付勢されて真空外囲器2の係止孔43に係止されることにより、18°移動した所定の位置に位置決めされる。そして、この磁石保持体41の回動により、永久磁石42により形成される磁界の径方向の角度が変わることにより、永久磁石42の位置に従い電子ビームはターゲット36の以前照射された位置と異なる、たとえば50μmから100μm程度ずれた位置に結像する。この電子ビームの結像位置の変更により、電子ビームはターゲット36の新しいタングステン薄膜等のX線源の位置に衝突することになり、X線はターゲット36の新しい位置で初期性能と等しいX線量を発生する。なお、この動作は、磁石保持体41の所定の停止位置に従い磁界の方向との関係も含め、全部で20通りのターゲット36の照射位置を設定できる。   Therefore, the magnet holder 41 of the magnet unit 40 is manually operated at an angle of 18 ° or around the center of the vacuum envelope 2 for several hundred hours, for example, about 300 to 800 hours, which is the life of an X-ray source such as a tungsten thin film. The ball 46 is accommodated in the hole groove 44 against the urging force of the ball pressing spring 45, and the ball 46 of the magnet holder 41 is again moved by the ball pressing spring 45 at the position of the adjacent locking hole 43. Is urged toward the center of the vacuum envelope 2 and locked in the locking hole 43 of the vacuum envelope 2, thereby being positioned at a predetermined position moved by 18 °. Then, the rotation of the magnet holder 41 changes the angle in the radial direction of the magnetic field formed by the permanent magnet 42, so that the electron beam differs from the previously irradiated position of the target 36 according to the position of the permanent magnet 42. For example, the image is formed at a position shifted from 50 μm to about 100 μm. This change in the imaging position of the electron beam causes the electron beam to collide with the position of an X-ray source such as a new tungsten thin film on the target 36, and the X-ray has an X-ray dose equal to the initial performance at the new position of the target 36. appear. In this operation, a total of 20 irradiation positions of the target 36 can be set including the relationship with the direction of the magnetic field according to a predetermined stop position of the magnet holder 41.

なお、磁石保持体41の回動により最初の位置からX線の照射位置が順次動いていくが、寿命終了までにおよそ0.3mm以下の動きであり、X線を照射した後の検査装置の受像側の調整は不要である。   Although the X-ray irradiation position sequentially moves from the initial position by the rotation of the magnet holder 41, the movement is about 0.3 mm or less until the end of the life, and the X-ray irradiation position of the inspection apparatus after irradiation with X-rays No adjustment on the image receiving side is necessary.

このようにして、規定使用時間毎に磁石保持体41を順次回転させることで、焦点サイズが数μmの封止切り透過型のマイクロフォーカスX線発生管球1として、1万時間を越える寿命を実現できた。   In this way, by rotating the magnet holder 41 sequentially for each specified usage time, the sealed cut-through transmission type microfocus X-ray generating tube 1 having a focal point size of several μm has a lifetime exceeding 10,000 hours. Realized.

また、永久磁石42の磁力を強くすると一度の磁石保持体41の回動による移動距離は大きくなり、目的あるいは装置の大きさにあわせて移動量を設定調整できる。なお、永久磁石42で電子の焦点をずらす方式では、電子レンズとなる第1集束電極25、第2集束電極26および第3集束電極27の性能を悪化させないでターゲット36に結像させることが必要である。   In addition, when the magnetic force of the permanent magnet 42 is increased, the movement distance by one rotation of the magnet holder 41 is increased, and the movement amount can be set and adjusted according to the purpose or the size of the apparatus. In the method in which the focus of electrons is shifted by the permanent magnet 42, it is necessary to form an image on the target 36 without deteriorating the performance of the first focusing electrode 25, the second focusing electrode 26, and the third focusing electrode 27 to be an electron lens. It is.

また、永久磁石42の強さと焦点寸法の移動と焦点直径の寸法と寿命時間との関係から、永久磁石42の最適位置を設定する。なお、永久磁石42の電子ビームの軸方向に沿った位置は、第1集束電極25からターゲット36までの間にあれば、照射位置となる焦点位置を移動することは可能であるが、第3集束電極27からターゲット36までの間にあると、磁石保持体41の回動に伴なって焦点サイズが不均一になったり周辺がボケたりするなど不安定となり、性能が劣化するおそれがある。したがって、永久磁石42の電子ビームの軸方向に沿った位置は、陰極18から第3集束電極27の間にあることにより、陰極18から放出される電子の初期段階で磁界によるスピンがかかることにより焦点形状の歪みやボケを最小にできる。   Further, the optimum position of the permanent magnet 42 is set based on the relationship between the strength of the permanent magnet 42, the movement of the focal dimension, the dimension of the focal diameter, and the lifetime. If the position of the permanent magnet 42 along the axial direction of the electron beam is between the first focusing electrode 25 and the target 36, the focal position as the irradiation position can be moved. If it is between the focusing electrode 27 and the target 36, the focal point size becomes non-uniform or the surroundings are blurred as the magnet holder 41 rotates, and the performance may deteriorate. Therefore, the position of the permanent magnet 42 along the axial direction of the electron beam is between the cathode 18 and the third focusing electrode 27, so that a spin due to a magnetic field is applied at the initial stage of electrons emitted from the cathode 18. The distortion and blurring of the focus shape can be minimized.

次に、他の実施の形態を図4を参照して説明する。   Next, another embodiment will be described with reference to FIG.

この図4に示す実施の形態は、真空外囲器2の外周に係止孔43を有さない従来のものに、真空外囲器2に断面L字状の環状の外付け金具51を嵌合させ、この外付け金具51に、図1ないし図3に示す実施の形態の係止孔43と同様に係止孔52を形成し、この外付け金具51の周囲に、磁石部40の磁石保持体41を真空外囲器2に対して回転自在に取り付け、この係止孔52に磁石保持体41のボール46を係止させるものである。   In the embodiment shown in FIG. 4, an annular external fitting 51 having an L-shaped cross section is fitted to the vacuum envelope 2 in a conventional one having no locking hole 43 on the outer periphery of the vacuum envelope 2. Then, a locking hole 52 is formed in the external fitting 51 in the same manner as the locking hole 43 in the embodiment shown in FIGS. 1 to 3, and the magnet of the magnet portion 40 is formed around the external fitting 51. A holding body 41 is rotatably attached to the vacuum envelope 2, and the ball 46 of the magnet holding body 41 is locked in the locking hole 52.

このように、マイクロフォーカスX線発生管球1自体を改造することなく外付け金具51を真空外囲器2に取り付け、この外付け金具51に磁石保持体41を取り付けることにより、従来の磁石部40を有さないマイクロフォーカスX線発生管球1も、電子ビームを移動させることができるようになり、長寿命化を図ることができるようになる。   In this way, by attaching the external fitting 51 to the vacuum envelope 2 without modifying the microfocus X-ray generation tube 1 itself, and attaching the magnet holder 41 to the external fitting 51, the conventional magnet portion The microfocus X-ray generation tube 1 that does not have 40 can also move the electron beam, and the life can be extended.

本発明の一実施の形態のマイクロフォーカスX線発生管球の図2に示すI−I断面図である。It is II sectional drawing shown in FIG. 2 of the micro focus X-ray generation tube of one embodiment of this invention. 同上平面図である。It is a top view same as the above. 同上真空外囲器の係止孔を拡大して示す断面図である。It is sectional drawing which expands and shows the locking hole of a vacuum envelope same as the above. 同上他の実施の形態のマイクロフォーカスX線発生管球の外付け金具を拡大して示す断面図である。It is sectional drawing which expands and shows the external metal fitting of the microfocus X-ray generation tube of other embodiment same as the above.

符号の説明Explanation of symbols

1 X線装置としてのマイクロフォーカスX線発生管球
真空容器としての真空外囲器
18 陰極
25 第1集束電極
26 第2集束電極
27 第3集束電極
36 ターゲット
40 磁石部
42 永久磁石
1 Microfocus X-ray generator tube as an X-ray device
2 Vacuum envelope as a vacuum vessel
18 Cathode
25 First focusing electrode
26 Second focusing electrode
27 Third focusing electrode
36 targets
40 Magnet part
42 Permanent magnet

Claims (3)

真空容器と、
この真空容器内に配置され、電子ビームを照射する陰極と、
前記真空容器内に配置され、前記陰極に対して正の電圧が印加され、前記電子ビームが照射されてX線を発生するターゲットと、
前記真空容器内の前記ターゲットと陰極との間に配置され、前記ターゲットに印加された電圧の値よりも小さい値の負の電圧が印加された静電型の第1集束電極と、
この第1集束電極と前記ターゲットとの間に配置され、前記第1集束電極に印加された電圧の値よりも大きく前記ターゲットに印加された電圧の値よりも小さい値の正の電圧が印加された静電型の第2集束電極と、
この第2集束電極と前記ターゲットとの間に、前記第1集束電極と前記陰極との間隔および前記第1集束電極と前記第2集束電極との間隔よりも広い間隔で前記第2集束電極から離間されて配置され、前記第1集束電極に印加された電圧の値よりも大きく前記ターゲットに印加された電圧の値よりも小さい値の正の電圧が印加された静電型の第3集束電極と、
前記真空容器外に取り付けられた永久磁石を備え、電子ビームの軸方向に沿った中心位置が前記第3集束電極と陰極との間に位置し、ターゲットに照射される電子ビームの照射位置を前記永久磁石により移動させる磁石部と
を具備したことを特徴とするX線装置。
A vacuum vessel;
A cathode disposed in the vacuum vessel and irradiating an electron beam;
A target disposed in the vacuum vessel, applied with a positive voltage to the cathode, and irradiated with the electron beam to generate X-rays;
An electrostatic first focusing electrode disposed between the target and the cathode in the vacuum vessel, to which a negative voltage smaller than the voltage applied to the target is applied;
A positive voltage which is disposed between the first focusing electrode and the target and which is larger than the voltage applied to the first focusing electrode and smaller than the voltage applied to the target is applied. An electrostatic second focusing electrode;
Between the second focusing electrode and the target, the distance from the second focusing electrode is wider than the distance between the first focusing electrode and the cathode and the distance between the first focusing electrode and the second focusing electrode. An electrostatic third focusing electrode that is spaced apart and applied with a positive voltage that is larger than the voltage applied to the first focusing electrode and smaller than the voltage applied to the target. When,
A permanent magnet attached to the outside of the vacuum vessel, the center position along the axial direction of the electron beam is located between the third focusing electrode and the cathode, and the irradiation position of the electron beam irradiated to the target is An X-ray apparatus comprising: a magnet unit that is moved by a permanent magnet.
磁石部は、電子ビームの軸方向を中心として周囲を回転可能でこの回転により電子ビームの照射位置を変化させる
ことを特徴とする請求項1記載のX線装置。
The X-ray apparatus according to claim 1, wherein the magnet portion is rotatable around the axial direction of the electron beam, and the irradiation position of the electron beam is changed by the rotation.
磁石部は、電子ビームを挟んで対向して配設される
ことを特徴とする請求項2記載のX線装置。
The X-ray apparatus according to claim 2, wherein the magnet portions are disposed to face each other with the electron beam interposed therebetween.
JP2008298233A 2008-11-21 2008-11-21 X-ray equipment Expired - Fee Related JP4886760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298233A JP4886760B2 (en) 2008-11-21 2008-11-21 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298233A JP4886760B2 (en) 2008-11-21 2008-11-21 X-ray equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003004674A Division JP2004265602A (en) 2003-01-10 2003-01-10 X-ray apparatus

Publications (2)

Publication Number Publication Date
JP2009043741A JP2009043741A (en) 2009-02-26
JP4886760B2 true JP4886760B2 (en) 2012-02-29

Family

ID=40444210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298233A Expired - Fee Related JP4886760B2 (en) 2008-11-21 2008-11-21 X-ray equipment

Country Status (1)

Country Link
JP (1) JP4886760B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222960B2 (en) * 2012-11-12 2017-11-01 キヤノン株式会社 Radiation generating apparatus and radiation imaging apparatus
JP6264145B2 (en) 2014-03-28 2018-01-24 株式会社島津製作所 X-ray generator
JP6667366B2 (en) 2016-05-23 2020-03-18 キヤノン株式会社 X-ray generator tube, X-ray generator, and X-ray imaging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030069B2 (en) * 1990-09-13 2000-04-10 イメイトロン インコーポレーテッド X-ray tube
JPH06188092A (en) * 1992-12-17 1994-07-08 Hitachi Ltd X-ray generating target, x-ray source, and x-ray image pickup device
DE4434704C1 (en) * 1994-09-28 1995-06-29 Siemens Ag X=ray tube with annular vacuum housing
JPH11144653A (en) * 1997-11-06 1999-05-28 Mitsubishi Heavy Ind Ltd X-ray generator

Also Published As

Publication number Publication date
JP2009043741A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US7206381B2 (en) X-ray equipment
EP1096543B1 (en) X-ray tube
CN110574137B (en) X-ray tube and X-ray generating apparatus
US7428298B2 (en) Magnetic head for X-ray source
JP6264145B2 (en) X-ray generator
US20140105367A1 (en) X-ray generating apparatus
US10903037B2 (en) Charged particle beam device
JP2016126969A (en) X-ray tube device
JP4886760B2 (en) X-ray equipment
JP5342317B2 (en) X-ray tube
JP2005243331A (en) X-ray tube
CN109791863B (en) X-ray tube
KR20200024212A (en) Compact source for generating ionized lines
JP2022167821A (en) Method and system for liquid-cooling insulated radiolucent target
JP4309176B2 (en) X-ray equipment
JP7196046B2 (en) X-ray tube
JP2020526866A (en) Processes for manufacturing small sources for producing ionizing radiation, assemblies containing multiple sources and sources
JP2016051629A (en) X-ray tube device
JP2005293884A (en) X-ray generator
JP2023082796A (en) Image tube and image tube manufacturing method
JP2008034137A (en) X-ray tube
JP2016039056A (en) X-ray tube device
JP2016131141A (en) X-ray tube assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees