JPS60163355A - X-ray tube - Google Patents

X-ray tube

Info

Publication number
JPS60163355A
JPS60163355A JP1778784A JP1778784A JPS60163355A JP S60163355 A JPS60163355 A JP S60163355A JP 1778784 A JP1778784 A JP 1778784A JP 1778784 A JP1778784 A JP 1778784A JP S60163355 A JPS60163355 A JP S60163355A
Authority
JP
Japan
Prior art keywords
rotor
ray tube
anode
tube device
shielding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1778784A
Other languages
Japanese (ja)
Other versions
JPH0372182B2 (en
Inventor
Kenichi Takahara
憲一 高原
Hajime Sudo
肇 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1778784A priority Critical patent/JPS60163355A/en
Priority to DE8484308700T priority patent/DE3479268D1/en
Priority to EP84308700A priority patent/EP0151878B1/en
Publication of JPS60163355A publication Critical patent/JPS60163355A/en
Publication of JPH0372182B2 publication Critical patent/JPH0372182B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/103Magnetic bearings

Abstract

PURPOSE:To keep a rotary drive section free from the effect of electromagnetic waves or heat from a rotary anode by placing a shield member made of a conductive and high thermal reflexibility material between a rotary anode and its rotary drive section. CONSTITUTION:In the joint area of partitions 1a, 1b of a vacuum enclosure 1 is fixed a shield member 3 (made of a conductive material such as molybdenum) which has a high thermal reflexibility coating material applied on its surface; a cathode 7 and a rotary anode 8 are arranged in the partition 1a, and in the partition 1b is installed a rotary drive mechanism 10 consisting of one element, which drives a rotor 11 connected to the rotary anode 8 from the outside, and another element, which supports the rotor 11 by the magnetic force with no mechanical contact; this is the way a rotary anode type X-ray tube is formed. Therefore, the electromagnetic waves and heat emitted from the rotary anode 8 are prevented from being transmitted to the rotary drive mechanism 10 by the shield member 3, thus ensuring the smooth rotation by the stable position control all the time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、X線管装置に係り、特に、陽極を回転させる
ようにするとともに上記陽極を回転させる回転子を回転
駆動部によって完全非接触に支承させるとともに回転駆
動させるようにしたX線管装置の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an X-ray tube device, and in particular, to an X-ray tube device, in which an anode is rotated and a rotor that rotates the anode is completely non-contacted by a rotation drive unit. The present invention relates to an improvement in an X-ray tube device that is supported and rotatably driven.

〔発明の背景技術〕[Background technology of the invention]

X線管装置を構造的に分類すると固定陽極型と、回転陽
極型とに大別される。仁のうち回転陽極型は、陽極が回
転しているので、陽極に加わる熱負荷の実効面積を大き
くでき、これによって瞬間的な大負荷に耐えられること
などの利点を備えている。
Structurally, X-ray tube devices are roughly divided into fixed anode types and rotating anode types. Since the anode of the rotating anode type rotates, the effective area of the heat load applied to the anode can be increased, which has the advantage of being able to withstand momentary large loads.

ところで、回転陽極型のX線管装置にあっては、陽極の
回転数が高ければ高い程、上記陽極を大負荷から保穫す
ることができる。したがって、陽極に大負荷を加える場
合には、陽極をでき得る限り高速回転させる必要がある
。このように、陽極を高速回転させるには高速回転駆動
源を必要とするが、この回転駆動源の回転子を機械的軸
受装置で支承させた場合には、通常は高々、毎分1万回
転程度が限界である。また、機械的軸受装置を用いた場
合には短時間に規定回転数まで上昇させようとすると、
大電力を必要とするばかシか軸受の寿命が著しく短かく
なり、しかもこの軸受装置を陰極と陽極とが位置する真
空容器内に設けなければならない関係上、装置全体の寿
命も短かく、さらには医療用として用いられるには機械
軸受の回転接触による騒音が大きすぎると云う不具合が
ある。
Incidentally, in a rotating anode type X-ray tube device, the higher the rotation speed of the anode, the more the anode can be protected from heavy loads. Therefore, when applying a large load to the anode, it is necessary to rotate the anode as fast as possible. In this way, a high-speed rotational drive source is required to rotate the anode at high speed, but when the rotor of this rotational drive source is supported by a mechanical bearing device, the rotation speed is normally at most 10,000 rotations per minute. The extent is the limit. Also, when using a mechanical bearing device, if you try to increase the rotation speed to the specified speed in a short time,
The life of the bearing, which requires a large amount of power, will be significantly shortened, and since the bearing device must be installed in a vacuum container where the cathode and anode are located, the life of the entire device will also be shortened. However, there is a problem in that the noise generated by the rotating contact of the mechanical bearings is too large to be used for medical purposes.

そこで、このような不具合を解消するために、最近では
、回転陽極を支持する回転子を真空容器外から供給され
る磁気力で完全非接触に支承させるようにしたものが提
案されている。すなわち、との磁気支承型の装置は、回
転子に高透磁率材製のリングを取シ付けるとともに真空
容器外に磁気支承用の磁気力を供給するための永久磁石
を配置し、上記永久磁石から出た磁束を、永久磁石〜前
記リングル真空容器外に設けられた磁極付き継鉄〜永久
磁石の経路で通過させることによって回転子を軸方向、
半径方向共に完全非接触に支承するようにしている。
Therefore, in order to solve this problem, recently it has been proposed that the rotor supporting the rotating anode is supported in a completely non-contact manner by magnetic force supplied from outside the vacuum container. In other words, in the magnetic bearing type device, a ring made of a high magnetic permeability material is attached to the rotor, and a permanent magnet for supplying magnetic force for magnetic support is placed outside the vacuum vessel. The rotor is moved in the axial direction by passing the magnetic flux emitted from the ring through a path from a permanent magnet to a yoke with a magnetic pole provided outside the Ringle vacuum vessel to a permanent magnet.
It supports completely non-contact in both radial directions.

〔背景技術の問題点〕[Problems with background technology]

上述のように、回転@極を支持する回転子を永久磁石に
よる磁気力で支承するようにしたものにあっては、回転
子を常に安定支承するために・以下のような回転子の位
置制御が行われる。
As mentioned above, in the case where the rotor that supports the rotation @ poles is supported by the magnetic force of permanent magnets, the following rotor position control is required in order to always stably support the rotor. will be held.

すなわち、上記装置における前記磁極にはコイルが装着
され、また真空容器外部の回転子と対向する位置に非接
触変位検出器が設けられる。
That is, in the above device, a coil is attached to the magnetic pole, and a non-contact displacement detector is provided at a position facing the rotor outside the vacuum container.

そして、この検出器で回転子の軸方向および径方向位置
を常に監視させ、上記検出器からの信号に基づ込て前記
フィルを付勢するようにしている。これによって、回転
子は、その変位を適切に修正され、常に安定支承される
This detector constantly monitors the axial and radial positions of the rotor, and the fill is energized based on the signal from the detector. This allows the rotor to have its displacement appropriately corrected and to be stably supported at all times.

ところが、上記非接触変位検出器は、一般にX線のよう
な電磁波に対し、非常に敏感に応答するという性質を有
している。したがって、上述の装置のように回転陽極と
非接触変位検出器とが比較的近い位置に配置される装置
にあっては、容器内部に散乱し検出器に侵入するX線の
影響が無視できず、回転子の安定支承を行ううえでの不
安定要因の1つとなっていた。
However, the non-contact displacement detector generally has the property of responding very sensitively to electromagnetic waves such as X-rays. Therefore, in devices such as the above-mentioned device in which the rotating anode and the non-contact displacement detector are placed relatively close to each other, the influence of X-rays scattered inside the container and entering the detector cannot be ignored. This was one of the causes of instability in stably supporting the rotor.

また、この種のX線管装置は、装置の稼動時において、
回転陽極の電子照射面が手数百度の高温度に達する。こ
のため、回転陽極で発生した熱は輻射または熱伝導によ
って回転子に伝達され、回転駆動部全体の温度を非常に
高めるととになる。この結果、磁石の特性劣化や非接触
変位検出器の検出性能低下を招き、これが回転子の安定
支承を損ねる他の要因ともなってbた。
In addition, when this type of X-ray tube device is in operation,
The electron irradiation surface of the rotating anode reaches a high temperature of several hundred degrees. Therefore, the heat generated at the rotating anode is transferred to the rotor by radiation or thermal conduction, which significantly increases the temperature of the entire rotating drive section. As a result, the characteristics of the magnet deteriorate and the detection performance of the non-contact displacement detector deteriorates, which becomes another factor that impairs the stable support of the rotor.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる点に基づきなされたものであシ、その
目的とするところは、回転陽極から放出される電磁波ま
たは熱が回転駆動部に直接的に与える影響の抑制を図れ
、もって、回転陽極を常に安定した位置で回転させるこ
とができるX線管装置を提供することにある。
The present invention has been made based on the above points, and an object of the present invention is to suppress the direct influence of electromagnetic waves or heat emitted from the rotating anode on the rotating drive part, and thereby An object of the present invention is to provide an X-ray tube device that can be rotated at a stable position at all times.

〔発明の概要〕[Summary of the invention]

本発明は、陰極から出射された電子が衝突されてX線を
放出する回転陽極と、この回転陽極を支持する回転子を
有するとともにこの回転子を磁気力によって完全非接触
に支承する要素および回転駆動する要素からなる回転駆
動部との間に、遮蔽部材を設けたことを特徴としている
The present invention has a rotating anode that emits X-rays when electrons emitted from the cathode collide with each other, a rotor that supports the rotating anode, an element that supports the rotor completely non-contact by magnetic force, and a rotating It is characterized in that a shielding member is provided between the rotary drive section consisting of the driving element.

なお、とこに遮蔽部材とは、具体的には電磁遮蔽部材、
熱遮蔽部材または電磁・熱遮蔽部材のうち・いずれか1
つを指すものである。
Note that the shielding member specifically refers to an electromagnetic shielding member,
Either one of heat shielding member or electromagnetic/thermal shielding member
It refers to one thing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、回転陽極と回転駆動部との間に、単に
遮蔽板を設けるだけという至って簡単な手段を講するこ
とによシ、例えば電磁波や輻射熱といった回転子の安定
支承を阻害する要因の直接的な影響を取り除くことがで
きる。したがって、これによシ、回転駆動部における回
転子の安定支承性能を大幅に向上させることができる。
According to the present invention, by taking a very simple measure of simply providing a shielding plate between the rotating anode and the rotating drive unit, it is possible to eliminate factors that inhibit stable support of the rotor, such as electromagnetic waves and radiant heat. can eliminate the direct influence of Therefore, the stable supporting performance of the rotor in the rotary drive unit can be significantly improved.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明の詳細を図示の実施例に基づき説明する。 Hereinafter, details of the present invention will be explained based on illustrated embodiments.

第1図において、lは筒状に形成された真空容器である
。この真空容器1は、それぞれ一端側を開放した分割体
Ia、lbから構成され、これら分割体1a、1bの両
開放端を図中上下方向に重合し、ねじ2によって固定し
たものとなっている。この重合部には、真空容器1の内
部空間を図中上下に部分する環状の遮蔽板3が固定され
ている。
In FIG. 1, l is a cylindrical vacuum container. This vacuum container 1 is composed of divided bodies Ia and lb each having one end open. Both open ends of these divided bodies 1a and 1b are overlapped in the vertical direction in the figure and fixed with screws 2. . An annular shielding plate 3 that divides the internal space of the vacuum container 1 into upper and lower portions in the figure is fixed to this overlapping portion.

この遮蔽板3は、たとえば熱反射率の高い材料または、
熱反射率の高いコーテイング材を表面に塗布したたとえ
ばモリブデン、タングステン等の導電性部材にて形成さ
れ、真空容器10図中上下の空間相互の電磁的および熱
的な遮断機能を発揮する。
This shielding plate 3 is made of, for example, a material with high heat reflectance or
It is formed of a conductive material such as molybdenum or tungsten with a coating material having a high heat reflectance applied to its surface, and functions as an electromagnetic and thermal shield between the upper and lower spaces in the vacuum vessel 10 (FIG. 10).

真空容器1の内部の上記遮蔽板3で区画された図中上側
の空間には、陰極7と、たとえば円板状に形成された回
転陽極8とが図中上下方向に離間対向して配置されてb
る。
In the upper space in the figure partitioned by the shielding plate 3 inside the vacuum vessel 1, a cathode 7 and a rotating anode 8 formed, for example, in the shape of a disk are arranged facing each other and separated from each other in the vertical direction in the figure. Teb
Ru.

陰極7には内部に図示しないフィラメントが装着されて
いる。そして、上記陰極7は導体9に接続されている。
A filament (not shown) is attached inside the cathode 7. The cathode 7 is connected to a conductor 9.

導体9は、真空容器1の図中土壁中央部を軸心線方向に
気密に貫通する部分9aと、この部分9aの真空容器1
内に位置する先端部から、たとえば直角に延びる部分9
bとから構成されておシ、上記部分9bの先端部に前記
陰極7を固定している。なお、フィラメントの両端は導
体9内に配設された図示しない絶縁線を介して真空容器
1外へ導かれている。
The conductor 9 has a portion 9a that airtightly penetrates the central portion of the soil wall of the vacuum vessel 1 in the axial direction, and a portion 9a of the vacuum vessel 1 in this portion 9a.
A portion 9 extending, for example at right angles, from the tip located within
b, and the cathode 7 is fixed to the tip of the portion 9b. Note that both ends of the filament are guided to the outside of the vacuum vessel 1 via an insulated wire (not shown) disposed within the conductor 9.

回転陽極8は、その図中上面周辺部が常に陰極7と対向
する関係に配置されておシ、上記周辺部上面は外周縁に
近付くにしたがって、所望のX線を得るのに必要なテー
ノや面に形成されている。そして回転陽極8は後述する
ところの回転駆動機構L!の回転子11によって支持さ
れている。
The rotating anode 8 is arranged such that the peripheral part of its upper surface always faces the cathode 7 in the figure, and as the upper surface of the peripheral part approaches the outer periphery, the anode and the like necessary to obtain the desired X-rays are formed on the surface. The rotary anode 8 is provided by a rotary drive mechanism L, which will be described later. is supported by a rotor 11.

一方、遮蔽板3の下端の空間には回転駆動機構すの回転
子11が収容されている。すなわち、前記真空容器1の
壁部で前記遮蔽板30図中下面に対向する部分には、こ
の部分を上記遮蔽板3の側へ向けて有底筒状に凹没させ
た凹没壁15が形成されておシ、さらに上記凹没壁15
の、いわゆる底壁中央部には、上記中央部を上記凹没壁
15と同心的に、遮蔽板3とは反対側へ向けて凹没させ
た内側凹没壁16が形成されている。そして、上記凹没
壁15とその外側に位置する筒状の壁部17との間に形
成された筒状空間Pおよび前記内側凹没壁16内に回転
子11が回転自在に収容されている。
On the other hand, a rotor 11 of a rotational drive mechanism is housed in a space at the lower end of the shielding plate 3. That is, in a portion of the wall of the vacuum vessel 1 facing the lower surface of the shielding plate 30 in the figure, there is a recessed wall 15 that is recessed in a cylindrical shape with a bottom toward the shielding plate 3. Furthermore, the recessed wall 15 is formed.
An inner recessed wall 16 is formed in the center of the so-called bottom wall, the center being recessed toward the side opposite to the shielding plate 3, concentrically with the recessed wall 15. The rotor 11 is rotatably housed within the cylindrical space P formed between the recessed wall 15 and the cylindrical wall portion 17 located outside thereof, and within the inner recessed wall 16. .

回転子11は大きく分けて、前記回転陽極8と同軸的に
配設され1図中上端部が上記回転陽極80図中下面中央
部に連結されるとともに図中下端側が前記遮蔽板3の孔
3&を貫通して前記内側凹没壁16で囲まれた空洞内に
嵌入した導電性の補助軸19と、図中上端部が環状絶縁
材20を介して補助軸19に接続されるとともに図中下
端部が前記筒状空間P内に嵌入した筒状の回転子本体2
1とで構成されている。上記回転子本体21は、外形が
前記壁部17の内径よル小さく、また内径が前記凹没壁
15の外形よ)大きい寸法に非磁性材または常磁性材で
形成された円筒体24と、この円筒体24の内周面に図
中上下に2段構成に形成された環状溝24a、24b内
にそれぞれ装着固定された高透磁率材性のリング25a
、25bと、上記円筒体24の例えば外周面中央部に固
定されたモータ26のロータ27とで構成されている。
Broadly speaking, the rotor 11 is disposed coaxially with the rotating anode 8, and its upper end in FIG. An electrically conductive auxiliary shaft 19 is inserted into the cavity surrounded by the inner recessed wall 16 and the upper end in the figure is connected to the auxiliary shaft 19 via the annular insulating material 20, and the lower end in the figure is connected to the auxiliary shaft 19 through the annular insulating material 20. a cylindrical rotor body 2 whose portion is fitted into the cylindrical space P;
It consists of 1. The rotor main body 21 includes a cylindrical body 24 made of a non-magnetic material or a paramagnetic material and having an outer diameter smaller than the inner diameter of the wall portion 17 and a larger inner diameter than the outer diameter of the recessed wall 15; Rings 25a made of a high magnetic permeability material are respectively installed and fixed in annular grooves 24a and 24b formed on the inner circumferential surface of the cylindrical body 24 in two stages vertically in the figure.
, 25b, and a rotor 27 of a motor 26 fixed to, for example, the center of the outer peripheral surface of the cylindrical body 24.

また、前記内側凹没壁16の内面には、非常時等だけ前
記補助軸19を機械的に支持する軸受28a、28bが
、常時は、上記補助軸19に対して非接触に設けである
。さらに、補助軸19の図中下端面にはピン29が突設
しである。
Furthermore, bearings 28a and 28b are provided on the inner surface of the inner recessed wall 16 to mechanically support the auxiliary shaft 19 only in an emergency, etc., without contacting the auxiliary shaft 19 at all times. Furthermore, a pin 29 is provided protruding from the lower end surface of the auxiliary shaft 19 in the drawing.

このピン29に対向する位置には接触板3oが配設され
、これら接触板3θとビン29とで陽極電流導入装置が
構成されている。そして、上記接触板30は、内側凹没
壁16のいわゆる底壁を気密に貫通した導電棒3ノの先
端に接続されている。
A contact plate 3o is disposed at a position facing the pin 29, and the contact plate 3θ and the bottle 29 constitute an anode current introducing device. The contact plate 30 is connected to the tip of a conductive rod 3 that passes through the so-called bottom wall of the inner recessed wall 16 in an airtight manner.

しかして、前記凹没壁15で囲まれた空間内には上記凹
没壁15と同心的にヨーク35が挿着されている。この
ヨーク35は、たとえば複数のブロックを組合わせて構
成され、全体的に環状に形成されてお)、中央部だ前記
内側凹没壁16が嵌入し得る孔36を有している。そし
て、ヨーク35の外周面で図中上下端には、周方向へ9
0°の開き角で突設された4つの磁極37*、37b、
37cおよび37d(但し、37b、3rdは図示せず
)を1組とする2組の半径方向位置制御用の磁極群3 
B 、 、? 9が設けられてbる。なお、各磁極群J
 8 、39の軸心線と直交する同一線上に突設された
磁極の磁、極面間距離は前記凹没壁15の内径と略等し
い値に設定されている。そして、各磁極群38゜390
各磁極の外周には、それぞれ半径方向安定化用コイル4
,0が装着されている。また各磁極群38.39との間
の中央位置には、軸心線口シに環状の軸方向位置制御用
の磁極45が突設されており、この磁極45の軸方向の
両側には、相互間で上記磁極45を挾む関係に軸方向安
定化用コイル46 a # 46 bが装着されている
。しかして、ヨーク35の外周で、かつ磁極群38とコ
イル461Lとの間および磁極群39とコイル46bと
の間に位置する部分には、半径方向に磁化された環状の
永久磁石47a247bが装着されている。そして上記
、のようにコイル40,46h、46b、永久磁石47
a。
A yoke 35 is inserted in a space surrounded by the recessed wall 15 and concentrically with the recessed wall 15. The yoke 35 is constructed, for example, by combining a plurality of blocks and is formed into an annular shape as a whole, and has a hole 36 in the center into which the inner recessed wall 16 can fit. On the outer circumferential surface of the yoke 35, at the upper and lower ends in the figure, there are 9
Four magnetic poles 37*, 37b protruding at an opening angle of 0°,
Two sets of magnetic pole groups 3 for radial position control, one set being 37c and 37d (37b and 3rd are not shown)
B...? 9 is provided. In addition, each magnetic pole group J
The distance between the magnetic poles of the magnetic poles 8 and 39 protruding on the same line perpendicular to the axial center line and the pole face is set to a value approximately equal to the inner diameter of the recessed wall 15. And each magnetic pole group 38°390
A radial stabilizing coil 4 is provided on the outer periphery of each magnetic pole.
,0 are attached. Further, an annular magnetic pole 45 for controlling the axial position is protruded from the shaft center line opening at the center position between each magnetic pole group 38 and 39, and on both sides of the magnetic pole 45 in the axial direction, Axial stabilizing coils 46a and 46b are mounted to sandwich the magnetic poles 45 between them. A ring-shaped permanent magnet 47a247b magnetized in the radial direction is mounted on the outer periphery of the yoke 35 and in a portion located between the magnetic pole group 38 and the coil 461L and between the magnetic pole group 39 and the coil 46b. ing. And as above, coils 40, 46h, 46b, permanent magnet 47
a.

47bの装着されたヨーク35は、前記凹没壁15で囲
まれた空間内に装着されている。
The yoke 35 to which the yoke 47b is mounted is mounted in a space surrounded by the recessed wall 15.

しかして、前記真空容器1の壁部17の外側には、上記
壁部17との間に所定の間隙Qt−あけて非磁性材また
は常磁性材で有底筒状に形成された筒一体48が装着さ
れている。そして、上記間ffQ内の図中上部および下
部で前記磁極群38.39の各磁極の磁極面に対向する
位置には、前記回転子本体21の軸方向と直交する方向
の変位を検出する変位検出器50および軸方向変位を検
出する変位検出器51が設けてあシ、また、上記間隙Q
内の前記ロータ22に対向する位置にはモータ26のス
テータ52が取付けられている。上記ステータ52の電
機子巻線53は図示しないモータ駆動用電源に接続され
、また各変位検出器50および51の出力端は図示しな
い回転子安定化制御装置に接続されている。上記回転子
安定化制御装置は、実際には、半径方向の安定化を図る
−ものと、軸方向の安定化を図るものとで構成されてい
る。なお、第1図中54はX線透過窓を示している。
On the outside of the wall portion 17 of the vacuum container 1, a cylindrical body 48 is formed of a non-magnetic material or a paramagnetic material and has a bottomed cylindrical shape with a predetermined gap Qt between the wall portion 17 and the wall portion 17. is installed. At the upper and lower parts of the figure within the above-mentioned interval ffQ, at positions facing the magnetic pole faces of the respective magnetic poles of the magnetic pole group 38, 39, there are displacements for detecting displacement in a direction orthogonal to the axial direction of the rotor main body 21. A detector 50 and a displacement detector 51 for detecting axial displacement are provided, and the gap Q
A stator 52 of the motor 26 is attached at a position facing the rotor 22 inside. The armature winding 53 of the stator 52 is connected to a motor drive power source (not shown), and the output end of each displacement detector 50 and 51 is connected to a rotor stabilization control device (not shown). The rotor stabilization control device described above actually consists of one for stabilizing the rotor in the radial direction and one for stabilizing the rotor in the axial direction. Note that 54 in FIG. 1 indicates an X-ray transmission window.

以上の如く構成されたX線管装置においては、永久磁石
47a、47bによって生じた磁束が、永久磁石47*
、47b〜回転子11の各リングル各磁極〜ヨーク〜永
久磁石47a、47bの経路を貫通ルて、複数の磁気ル
ープを形成する。これら各磁気ループは、各々の磁気ル
ープを挾める向きの磁気力を回転子11に作用させる。
In the X-ray tube device configured as described above, the magnetic flux generated by the permanent magnets 47a and 47b is transmitted to the permanent magnet 47*.
, 47b to each ringle of the rotor 11 to each magnetic pole to the yoke to the permanent magnets 47a and 47b to form a plurality of magnetic loops. Each of these magnetic loops applies a magnetic force to the rotor 11 in a direction that pinches each magnetic loop.

この磁気力によって、回転子1ノは完全非接触状態で支
承される。このとき、外方等によって生じる回転子11
の軸方向および径方向の変位は、各変位検出器50.5
1によって検出される。この検出信号に基づいて、各磁
極に巻装されたコイルは適宜付勢され、回転子1ノの変
位は修正される。かくして、ここに回転子11の安定な
非接触支承が実現される。回転子11zB−e−p26
によって回転駆動され、これによって回転陽極8も回転
する。
Due to this magnetic force, the rotor 1 is supported in a completely non-contact state. At this time, the rotor 11 generated by the outside etc.
The axial and radial displacement of each displacement detector 50.5
Detected by 1. Based on this detection signal, the coils wound around each magnetic pole are appropriately energized, and the displacement of the rotor 1 is corrected. Thus, stable non-contact support of the rotor 11 is realized here. Rotor 11zB-e-p26
The rotating anode 8 also rotates.

しかして、X線の照射時は、回転子IIを図中下方へ移
動させて補助軸19に固定されたビン29と接触板3o
とを接触させ、回転陽極8に高電圧を印加する。これに
よって、陰極7のフィラメントから電子が出射され、加
速されて回転陽極8に衝突する。この結果、回転陽極8
からはX線が出射される。このX線は、その殆んどがX
線透過窓54を通過して外部に照射されるが、通常、そ
の一部が真空容器1の内部に拡散される。
Therefore, during X-ray irradiation, the rotor II is moved downward in the figure to connect the bottle 29 fixed to the auxiliary shaft 19 and the contact plate 3o.
and a high voltage is applied to the rotating anode 8. As a result, electrons are emitted from the filament of the cathode 7, accelerated, and collide with the rotating anode 8. As a result, the rotating anode 8
X-rays are emitted from the Most of these X-rays are
Although the radiation passes through the ray transmission window 54 and is irradiated to the outside, a portion of the radiation is normally diffused into the interior of the vacuum container 1 .

しかしながら、本実施例の構成でおれば、回転陽極と回
転駆動機構10との間に導電性の遮蔽板3を設けている
ので、この遮蔽板3で上記拡散されたX線を充分に吸収
することができる。
However, with the configuration of this embodiment, since the conductive shielding plate 3 is provided between the rotating anode and the rotational drive mechanism 10, this shielding plate 3 can sufficiently absorb the above-mentioned diffused X-rays. be able to.

したがって、X線が回転駆動機構10Kまで拡散するこ
とがない。
Therefore, the X-rays do not diffuse to the rotational drive mechanism 10K.

また、X線の照射に伴なって回転陽極8は、手数百度に
昇温する。しかし、本実施例では、回転陽極8と回転駆
動機構10との間に設けた遮蔽板3を熱反射率の高いも
のとしているので、上記遮蔽板3が輻射熱の遮断機能を
発揮する。
Further, as the rotating anode 8 is irradiated with X-rays, the temperature of the rotating anode 8 increases to several hundred degrees. However, in this embodiment, the shielding plate 3 provided between the rotary anode 8 and the rotary drive mechanism 10 has a high heat reflectance, so that the shielding plate 3 exhibits a function of blocking radiant heat.

このため、輻射熱によって回転駆動機構りが温度上昇す
るのを有効に防止することができる。
Therefore, it is possible to effectively prevent the rotational drive mechanism from increasing in temperature due to radiant heat.

このように、本実施例によれば前述した効果を充分に奏
することができる。
In this way, according to this embodiment, the aforementioned effects can be fully achieved.

なお、本発明は、上述した実施例に限定されるものでは
ない。たとえば、第2図に示すように、環状の遮蔽板6
oの内周に、非常時のみ補助軸19を機械的に支持する
軸受28gを固定するようにしてもよい。このように遮
蔽板6゜が軸受28aの支持部材をも兼ねるような構造
とすれば、軸受28aと軸受28bとの相対位置を変え
ることなしに、その絶対位置を図中上方へ移動させるこ
とができる。このため、真空容器1の内側凹没壁15で
形成される空間を小型化することができ、これによって
増加する余剰スペースを有効に利用することができる。
Note that the present invention is not limited to the embodiments described above. For example, as shown in FIG.
A bearing 28g that mechanically supports the auxiliary shaft 19 only in an emergency may be fixed to the inner circumference of the shaft. If the structure is such that the shielding plate 6° also serves as a support member for the bearing 28a, the absolute position of the bearing 28a and the bearing 28b can be moved upward in the figure without changing the relative positions of the bearing 28a and the bearing 28b. can. Therefore, the space formed by the inner recessed wall 15 of the vacuum container 1 can be downsized, and the increased surplus space can be effectively utilized.

したがって、第2図に示すようにヨーク35の外径を小
型化して、全体の小型化を図ることもできる。
Therefore, as shown in FIG. 2, the outer diameter of the yoke 35 can be reduced to reduce the overall size.

また、第3図に示すように、遮蔽板70の内部に冷媒通
路7ノを形成し、遮蔽板2θの熱を外部に効果的に放出
するようにしてもよい。この場合には、第3図に示す如
く、たとえば遮蔽板70の内部に環状空間Rを形成する
。さらに上記環状空間Rを軸方向に部分して空間R1゜
R2を形成するとともに、これら空間R1rR2を上記
環状空間Rの内周部で連通ずるよりに、上記環状空間R
K環状板7ノを挿設する。
Further, as shown in FIG. 3, a refrigerant passage 7 may be formed inside the shielding plate 70 to effectively release the heat of the shielding plate 2θ to the outside. In this case, as shown in FIG. 3, for example, an annular space R is formed inside the shielding plate 70. Furthermore, the annular space R is divided in the axial direction to form spaces R1°R2, and these spaces R1rR2 are communicated at the inner circumference of the annular space R.
Insert K annular plate 7.

そして、この遮蔽板70の外周部の半径方向に対向する
位置に、それぞれ冷媒の導入ロア2および排出ロア3を
設けるようにすればよい。
The refrigerant introduction lower 2 and the refrigerant discharge lower 3 may be provided at radially opposite positions on the outer circumference of the shielding plate 70, respectively.

この場合、遮蔽板70に熱吸収性、熱伝導性の高い部材
を用いれば、回転陽極付近の温度を全体的に下げること
ができる。そして、上記冷媒通路71に図示しない冷媒
を通流させることにより熱吸収性能を更に向上させるこ
とができ、本発明の効果を更に高めることができる。
In this case, if a member with high heat absorption and heat conductivity is used for the shielding plate 70, the temperature in the vicinity of the rotating anode can be lowered overall. By flowing a refrigerant (not shown) through the refrigerant passage 71, the heat absorption performance can be further improved, and the effects of the present invention can be further enhanced.

なお、以上の実施例においては、遮蔽板に電磁的な遮蔽
効果と熱的な遮蔽効果とを同時に満足する部材を用いる
ようにしたが、いずれか一方の効果を単独に満足し得る
もの−Cあっても、本発明の効果を呈することができる
ことはいりまでもない。
In the above embodiments, a member that satisfies the electromagnetic shielding effect and the thermal shielding effect at the same time is used for the shielding plate, but it is also possible to use a member that can satisfy either of the effects independently. It goes without saying that even if there is, the effects of the present invention can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るXm管装置の縦断面図
、第2図は本発明の他の実施例に係るX線管装置の縦断
面図、第3図は本発明の更に他の実施例に係るX線管装
置の一部を示す縦断面図である。 1・・・真空容器、3,60.70・・・遮蔽板、7・
・・陰極、8・・・回転陽極、9・・・導体、10・・
・回転駆動機構、11・・・回転子、19・・・補助軸
、25a。 25 b−・・リング、26 ・・・モータ、28m、
2Elb・・・軸受、29・・・ピン、30・・・接触
板、31・・・導電棒、35−・・ヨーク、37 a 
* 37 b r 37 c t45−・・磁極、40
・・・半径方向安定化用コイル、46m、46b・・・
軸方向安定化用コイル、47a。 47b・・・永久磁石、50.51・・・変位検出器、
54・・・X線透過窓。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図
FIG. 1 is a longitudinal cross-sectional view of an X-ray tube device according to one embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of an X-ray tube device according to another embodiment of the present invention, and FIG. FIG. 7 is a longitudinal sectional view showing a part of an X-ray tube device according to another embodiment. 1... Vacuum container, 3,60.70... Shielding plate, 7.
... Cathode, 8... Rotating anode, 9... Conductor, 10...
- Rotation drive mechanism, 11... rotor, 19... auxiliary shaft, 25a. 25 b-...Ring, 26...Motor, 28m,
2Elb... Bearing, 29... Pin, 30... Contact plate, 31... Conductive rod, 35-... Yoke, 37 a
*37 b r 37 c t45-...magnetic pole, 40
...Radial stabilization coil, 46m, 46b...
Axial stabilization coil, 47a. 47b... Permanent magnet, 50.51... Displacement detector,
54...X-ray transparent window. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)陰極と、この陰極から出射された電子が衝突され
てX線を放出する回転陽極と、この回転陽極を支持する
回転子を有するとともに上記回転子を磁気力によって完
全非接触に支承する要素および回転駆動する要素からな
る回転駆動部とを具備したX線管装置において、前記回
転陽極と前記回転駆動部との間に遮蔽部材を設けたこと
を特徴とするX線管装置。
(1) It has a cathode, a rotating anode that emits X-rays when electrons emitted from the cathode collide with each other, and a rotor that supports the rotating anode, and the rotor is supported by magnetic force in a completely non-contact manner. What is claimed is: 1. An X-ray tube device comprising an element and a rotational drive section including a rotationally driven element, characterized in that a shielding member is provided between the rotary anode and the rotation drive section.
(2)前記遮蔽部材は、導電性材料で構成されたもので
あることを特徴とする特許請求の範囲第1項記載のX線
管装置。
(2) The X-ray tube device according to claim 1, wherein the shielding member is made of a conductive material.
(3)前記遮蔽部材は、熱吸収率または熱伝導率の高い
材料にて構成されたものである仁とを特徴とする特許請
求の範囲第1項または第2項のいずれか1項に記載のX
線管装置。
(3) The shielding member is made of a material having a high heat absorption rate or a high heat conductivity. X of
wire tube device.
(4)前記遮蔽部材は、熱反射率の高い材料または熱反
射率の高いコニティング剤を塗布した材料にて構成され
たものであることを特徴とする特許請求の範囲第1項ま
たは第2項のいずれか1項に記載のX線管装置。
(4) The shielding member is made of a material having a high heat reflectance or a material coated with a conniting agent having a high heat reflectance. The X-ray tube device according to any one of the above items.
(5) 前記遮蔽部材は、内部に冷媒通路の形成された
ものであることを特徴とする特許請求の範囲第1項乃至
第3項のいずれか1項に記載のX線管装置。
(5) The X-ray tube device according to any one of claims 1 to 3, wherein the shielding member has a refrigerant passage formed therein.
(6)前記遮蔽部材は、前記回転子を緊急時において機
械的に支持する機械軸受の支持材を兼ねたものであるこ
とを特徴とする特許請求の範囲第1項乃至第5項のいず
れか1項に記載のX線管装置。
(6) The shielding member also serves as a support member for a mechanical bearing that mechanically supports the rotor in an emergency. The X-ray tube device according to item 1.
JP1778784A 1984-02-03 1984-02-03 X-ray tube Granted JPS60163355A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1778784A JPS60163355A (en) 1984-02-03 1984-02-03 X-ray tube
DE8484308700T DE3479268D1 (en) 1984-02-03 1984-12-13 Rotating-anode x-ray tube
EP84308700A EP0151878B1 (en) 1984-02-03 1984-12-13 Rotating-anode x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1778784A JPS60163355A (en) 1984-02-03 1984-02-03 X-ray tube

Publications (2)

Publication Number Publication Date
JPS60163355A true JPS60163355A (en) 1985-08-26
JPH0372182B2 JPH0372182B2 (en) 1991-11-15

Family

ID=11953422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1778784A Granted JPS60163355A (en) 1984-02-03 1984-02-03 X-ray tube

Country Status (3)

Country Link
EP (1) EP0151878B1 (en)
JP (1) JPS60163355A (en)
DE (1) DE3479268D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208843A (en) * 1990-05-16 1993-05-04 Kabushiki Kaisha Toshiba Rotary X-ray tube and method of manufacturing connecting rod consisting of pulverized sintered material
JPH05135720A (en) * 1991-04-17 1993-06-01 General Electric Cgr Sa Shielding device of motor stator for rotary anode of x-ray tube
JP2016146281A (en) * 2015-02-09 2016-08-12 株式会社大阪真空機器製作所 Target mount for x-ray generation apparatus and x-ray generation apparatus using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626108B1 (en) * 1988-01-18 1990-05-04 Thomson Cgr ROTATING ANODE X-RAY TUBE HAVING AN ANODIC CURRENT FLOW DEVICE
US8385505B2 (en) 2009-06-19 2013-02-26 Varian Medical Systems, Inc. X-ray tube bearing assembly
DE102014204112A1 (en) * 2014-03-06 2015-09-10 Siemens Aktiengesellschaft X-ray tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182952A (en) * 1981-04-23 1982-11-11 Philips Nv High voltage vacuum tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2601529C2 (en) * 1976-01-16 1982-04-29 Philips Patentverwaltung Gmbh, 2000 Hamburg Magnetic bearing of the rotating shaft of the rotating anode for an X-ray tube
DE2845007C2 (en) * 1978-10-16 1983-05-05 Philips Patentverwaltung Gmbh, 2000 Hamburg Rotating anode X-ray tube with a metal piston
NL7903580A (en) * 1979-05-08 1980-11-11 Philips Nv TURNAROOD RODGEN TUBE WITH AXIAL MAGNET BEARING AND RADIAL BEARING.
JPS5819844A (en) * 1981-07-30 1983-02-05 Toshiba Corp Rotary anode x ray-tube
DE3233064A1 (en) * 1982-09-06 1984-03-08 Siemens AG, 1000 Berlin und 8000 München TURNING ANODE TUBE TUBES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182952A (en) * 1981-04-23 1982-11-11 Philips Nv High voltage vacuum tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208843A (en) * 1990-05-16 1993-05-04 Kabushiki Kaisha Toshiba Rotary X-ray tube and method of manufacturing connecting rod consisting of pulverized sintered material
JPH05135720A (en) * 1991-04-17 1993-06-01 General Electric Cgr Sa Shielding device of motor stator for rotary anode of x-ray tube
JP2016146281A (en) * 2015-02-09 2016-08-12 株式会社大阪真空機器製作所 Target mount for x-ray generation apparatus and x-ray generation apparatus using the same

Also Published As

Publication number Publication date
EP0151878B1 (en) 1989-08-02
JPH0372182B2 (en) 1991-11-15
DE3479268D1 (en) 1989-09-07
EP0151878A1 (en) 1985-08-21

Similar Documents

Publication Publication Date Title
US10804064B2 (en) Magnetic lift device for an x-ray tube
US4322624A (en) X-ray tube having a magnetically supported rotary anode
JPS60164013A (en) Magnetic bearing
US4024424A (en) Rotary-anode X-ray tube
JPS5819844A (en) Rotary anode x ray-tube
US10381188B2 (en) Radiographic image diagnostic apparatus and X-ray tube
JPS60163355A (en) X-ray tube
JPH04223099A (en) Magnetic coupling device
US10629403B1 (en) Magnetic assist bearing
US3619696A (en) An electric drive motor for rotatably driving the anode of an x-ray tube
JPH0371569B2 (en)
JPS5941269B2 (en) rotating anode x-ray tube
JPS5960949A (en) X-ray tube device of rotary anode type
US20200105493A1 (en) Vacuum penetration for magnetic assist bearing
JPS58186145A (en) X-ray tube equipment
JPH11214199A (en) Evacuation device for cyclotron device, evacuation method and reproducing method for vacuum pump
JPS61223326A (en) Magnetic bearing
JP2006100032A (en) Rotating anode x-ray tube
JPS5996641A (en) Rotary anode x-ray tube
JPS60112298A (en) Rotating anode x-ray tube apparatus
JPH05129092A (en) Device for feeding electric power to rotating body
JPH04355037A (en) Rotary cathode x-ray tube device
JPS5960951A (en) X-ray tube device of rotary anode type
JPS58126654A (en) X-ray tube
JPS61158655A (en) X-ray tube device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term