JPS5960949A - X-ray tube device of rotary anode type - Google Patents

X-ray tube device of rotary anode type

Info

Publication number
JPS5960949A
JPS5960949A JP17180582A JP17180582A JPS5960949A JP S5960949 A JPS5960949 A JP S5960949A JP 17180582 A JP17180582 A JP 17180582A JP 17180582 A JP17180582 A JP 17180582A JP S5960949 A JPS5960949 A JP S5960949A
Authority
JP
Japan
Prior art keywords
magnetic
rotating anode
axial
radial
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17180582A
Other languages
Japanese (ja)
Inventor
Hajime Sudo
肇 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17180582A priority Critical patent/JPS5960949A/en
Publication of JPS5960949A publication Critical patent/JPS5960949A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/103Magnetic bearings

Abstract

PURPOSE:To enable a rotary anode to be rotated without contact by supporting it inside radially supporting cylinders and an axially supporting cylinder which are made of a high permeability material and installed independently in the axial direction of the rotary anode while allowing the magnetic fluxes of permanent magnets, installed outside a case, to pass said case. CONSTITUTION:In the axial direction of a rotary anode 3 are provided radially supporting cylinders 16a and 16c and an axially supporting cylinder 16b which are made of a high permeability material. Inside the cylinders 16a-16c, coils 35, 36 and 43 which allow the magnetic fluxes of radially supporting annular permanent magnets 26 and 34 and an axially supporting annular permanent magnet 41, placed outside a vacuum case 1 corresponding to the cylinders 16a- 16c, to pass and produce magnetic attraction fna also regulate these magnetic fluxes, are installed. In addition, a driving motor 18 and displacement detectors 53 and 54 are installed, thereby constituting an X-ray tube device. Owing to such a constitution as above,the rotary anode 3 can be rotated without contact, and a stable regulation can be achieved by preventing any interference among axially and radially supporting forces.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、回転陽極型X線管装161に係り、特に、真
空容器外に設置された磁気力供給源によって回転陽極側
を完全非接触に支承させるようにしたX線管装置の改良
に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a rotating anode type X-ray tube equipment 161, and in particular, to a rotating anode type X-ray tube equipment 161, in which the rotating anode side is made completely non-contact by a magnetic force supply source installed outside the vacuum container. This invention relates to an improvement in an X-ray tube device that is supported.

〔発明の技術的背景〕[Technical background of the invention]

X線管装置を41゜ζ造的に分類すると固定陽極型と、
回転陽極型とに大別される。このうち、回転陽極型は、
陽極が回転しているので、陽極に加わる熱負荷の実効面
積を大きくでき、これによって、瞬間的な大負荷に耐え
ることができる利点を備えている。
X-ray tube devices can be categorized based on 41°ζ structure: fixed anode type;
It is broadly divided into two types: rotating anode type. Among these, the rotating anode type is
Since the anode is rotating, the effective area of the heat load applied to the anode can be increased, which has the advantage of being able to withstand instantaneous large loads.

ところで、回転陽極型のX線管装置にあって、陽極を大
負荷から保獲するには、陽極をでき得る限り高速回転さ
せる必要がある。このように、陽極を高速回転させるに
際して、回転陽極側を機械的軸受で支承さぜた揚台には
、通常は、高高、毎分1,8万回転程度が限界である。
By the way, in a rotating anode type X-ray tube device, in order to protect the anode from heavy loads, it is necessary to rotate the anode as high as possible. In this manner, when rotating the anode at high speed, a lifting platform whose rotating anode side is supported by a mechanical bearing usually has a maximum height of about 180,000 rotations per minute.

また、機械的軸受を用いた場合には、短時間に規定回転
数まで上昇させようとすると、大電力を必要とするばか
シか、軸受の寿命が著しく短かくなる欠点がある。さら
に、医療用として用いるにl′i機械的な接かによる騒
音が太き過ぎる問題がある。
Furthermore, when mechanical bearings are used, if an attempt is made to increase the rotational speed to a specified level in a short period of time, a large amount of electric power is required, and the life of the bearings is significantly shortened. Furthermore, there is a problem that the noise caused by the mechanical contact is too loud for medical use.

そこで、このような不具合を解消するために、最近では
、回転陽極側を、真空容器外から供給される磁気力で完
全非接触に支承されるようにしたものが提案されている
。すなわち、この磁気支承形の装置は、回転陽極に同軸
的に高透磁率材製の筒体を取シ付けるとともに真空容器
外に上記筒体に対して磁気支承力を作用させるのに必要
な磁気力を供給するだめの永久磁石および電磁石を配置
して上記筒体を軸方向、半径方向共に完全非接触に支承
するようにしている。
In order to solve this problem, recently it has been proposed that the rotating anode side is supported in a completely non-contact manner by magnetic force supplied from outside the vacuum vessel. In other words, in this magnetic bearing type device, a cylindrical body made of a high magnetic permeability material is coaxially attached to the rotating anode, and the magnetic force necessary to apply a magnetic bearing force to the cylindrical body outside the vacuum vessel is provided. Permanent magnets and electromagnets for supplying force are arranged to support the cylinder in a completely non-contact manner in both the axial and radial directions.

このように、回転陽極側を磁気力で支承するようにした
回転陽極型X線管装置にあっては、真空容器内において
回転陽極側が、いわゆる浮いている形態となるので、摩
擦によるエネルギの損失が存在せず、機械的軸受で支持
されたものに較べてg′F容回転回転数幅に向−ヒさせ
ることができ、しかも低消費電力で規定回転敬重で短時
間に上昇さぜることかできる。捷た、真空容器内に摩」
察役宋が存在していhいので騒音の心配がなく、シかも
、装置6′全体を大幅に長寿命化させることができる。
In this way, in a rotating anode X-ray tube device in which the rotating anode side is supported by magnetic force, the rotating anode side is in a so-called floating form within the vacuum vessel, which reduces energy loss due to friction. There is no such thing, and compared to those supported by mechanical bearings, it is possible to increase the range of g'F rotational speeds, and moreover, it is possible to increase the rotation speed to the specified speed in a short time with low power consumption. I can do it. After cutting, grind it in a vacuum container.
Since the sensor is present, there is no need to worry about noise, and the life of the entire device 6' can be significantly extended.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来の回転陽極型X線管装置にあっては
次のような間yq点があった。すなわち、回転陽極側(
il−磁気力によって支承するには、軸方向の1蝕気支
承力と半径方向の磁気支承力とを同時に作用させる必要
があるが、従来装置にあっては、2方向の磁気支承力を
共通の永久磁石から出た磁束によって得るようにしてい
る。
However, in the conventional rotating anode type X-ray tube device, there are the following points y and q. In other words, the rotating anode side (
il- In order to support using magnetic force, it is necessary to simultaneously apply an axial magnetic bearing force and a radial magnetic bearing force, but in conventional devices, the magnetic bearing force in both directions is common. It is obtained by the magnetic flux emitted from the permanent magnet.

このため、2つの方向に同時に十分な支承力を得ること
が困gで、永久磁石から得た磁気力だけでは安定した支
承か行なえない問題があった。
For this reason, it is difficult to obtain sufficient bearing force in two directions at the same time, and there is a problem in that stable bearing cannot be achieved using only the magnetic force obtained from the permanent magnet.

また、電?i!;j石を付勢して2つの方向の磁気支承
力を同時に制御する場合には、発生する相互干渉を考慮
に入れたflilJω1jを行なう必要があり、この結
果、制御系の複41′L化を免れ得ない問題もあった。
Also, electricity? i! ; When controlling the magnetic bearing force in two directions simultaneously by energizing the j-stone, it is necessary to perform flilJω1j taking into consideration the mutual interference that occurs, and as a result, the control system becomes complex There were some problems that could not be avoided.

さらに、上述した不具合を解消するために、一方の磁気
支承力を電磁石から得るようにしたものも考えられてい
るが、この場合には、電磁石を常時付勢する必要がある
ので電力消費が多くなる問題がある。
Furthermore, in order to eliminate the above-mentioned problems, it has been considered that one of the magnetic bearing forces is obtained from an electromagnet, but in this case, the electromagnet needs to be constantly energized, which consumes a lot of power. There is a problem.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に’41Mみてなされたもの
で、その目的とするとζろは、永久磁石を主たる51気
力供給源として用い、回転陽極側を軸方向ならびに半径
方向に大きな磁気剛性で支承でき、しかも両方向の支承
力を相互干渉なしに制i卸でき、もって、少ない消費電
力で安定した磁気支承の実現ならびに安定化制御系の単
rtJlf化を図れる回転陽極型X線管装置喉を提供す
ることにある。
The present invention was developed in view of these circumstances, and its purpose is to use a permanent magnet as the main 51 energy supply source, and to provide the rotating anode side with large magnetic rigidity in both the axial and radial directions. A rotary anode type It is about providing.

〔発明の概要〕[Summary of the invention]

本発明に係る回転陽極型X線管装置は、回転陽極側を磁
気支承するに必要な1191+方向支承カと半径方向支
承力とを互いに磁気的に独立して設けられた軸方向支承
系と半径方向支承系とで与えるようにするとともに各支
承系の主たる磁気力供給源としてそれぞれ専用の永久磁
石を用いたことを特もλとしている。
The rotating anode type X-ray tube device according to the present invention combines the 1191+ direction bearing force and the radial bearing force necessary for magnetically supporting the rotating anode side with an axial bearing system and a radial bearing system provided magnetically independently of each other. In particular, λ is provided by a directional bearing system, and a dedicated permanent magnet is used as the main magnetic force supply source for each bearing system.

〔発明の効果〕〔Effect of the invention〕

上記のように、軸方向支承系と半径方向支承系とが磁気
的に独立しているので、各支承系の主たる磁気方便給源
である永久磁石の選択等によって、軸方向支承力と半径
方向支承力とを態別に任意に設定することができ、両支
承カを十分に太きくする仁とができるので、主として永
久磁石による磁気力のみで軸方向、半径方向共に大きい
磁気剛性で支承でき、この結果、非常に少ない消費電力
で磁気支承を実現できる。丑た、両支水系は磁気的に独
立しているので、両支承力を同時に制御しても互いに干
渉することがない。したがって、安定化制御を行なう系
の単純化を図ることができる。
As mentioned above, since the axial bearing system and the radial bearing system are magnetically independent, the axial bearing force and the radial bearing force can be controlled by selecting the permanent magnet that is the main magnetic supply source for each bearing system. The force can be set arbitrarily depending on the type of force, and both bearing forces can be made sufficiently thick, so it can be supported with large magnetic rigidity in both the axial and radial directions mainly by the magnetic force of the permanent magnet. As a result, magnetic bearings can be realized with extremely low power consumption. Additionally, since both branch systems are magnetically independent, they will not interfere with each other even if both bearing forces are controlled simultaneously. Therefore, the system for performing stabilization control can be simplified.

〔発明の実施ド0〕 以下、本発明の実施例を図面を参照しながら説明する。[Practice of the invention 0] Embodiments of the present invention will be described below with reference to the drawings.

第1図において、図中1は絶縁材で筒状に形成された真
空容器であり、この真空容器1内の図中上部には陰極2
と、たとえば円板状に形成された回転陽極3とが図中上
下方向に頗1間対向して配置されている。
In FIG. 1, numeral 1 in the figure is a cylindrical vacuum container made of an insulating material, and a cathode 2 is located at the upper part of the vacuum container 1 in the figure.
and a rotary anode 3 formed, for example, in the shape of a disk, are arranged facing each other by a distance of 1 in the vertical direction in the figure.

陰極2には内部にし1示しないフィラメントが装角され
ている。そして、上記陰極2は真壁容器1の図中上壁中
央部を気密に貫1巾して設けられた導体4の先端部に同
定されている。
The cathode 2 is equipped with a filament (not shown) inside. The cathode 2 is located at the tip of a conductor 4 which is provided airtightly through the center of the upper wall of the Makabe container 1 in the figure.

回転陽極3は、その図中上■1周辺部が、常に陰極2と
対向する関係に配置6′されており、上記周辺部上面は
外周縁に近づくにしたがって所望のX線を得るのに必璧
なテーパ面に形成されている。そして回転陽極3は後述
するところの回転子1ノによって支持されている。
The rotating anode 3 is arranged so that its upper part (1) in the figure always faces the cathode 2 (6'), and as it approaches the outer periphery, the upper surface of the peripheral part is arranged 6' to obtain the desired X-rays. It is formed with a perfect tapered surface. The rotating anode 3 is supported by a rotor 1, which will be described later.

しかして、前記真2 k器1の壁部で前記回転陽極30
図中下面に対向する部分には、このyB分を上記回転内
棒3の側へ向けて有底筒状に凹没させた凹没壁5が形成
されており、さらに上記凹没壁5の、いわゆる底壁中火
部には、上記中央部を上記凹没壁5と同心的に回転陽極
側とは反対(piへ向けて凹没さぜた内側凹没壁6が形
成されている。そして、上記凹没壁5とその外側に位1
コ1する筒状の壁部7との間に形成された筒状空間8お
よび前R1−、:内佃凹没壁6内に回転子1)が回転自
在に収容されている。
Therefore, the rotating anode 30 is
In the part facing the lower surface in the figure, a recessed wall 5 is formed which is recessed in a cylindrical shape with a bottom by an amount of yB toward the rotating inner rod 3. In the so-called bottom wall medium heating section, an inner recessed wall 6 is formed in which the central portion is recessed concentrically with the recessed wall 5 and opposite to the rotating anode side (towards pi). Then, the above-mentioned recessed wall 5 and a position 1 on the outside thereof are provided.
A rotor 1) is rotatably housed in a cylindrical space 8 formed between the inner cylindrical wall 7 and the inner recessed wall 6.

回転子1ノは大きく分りで、前記回転陽極3と同軸的に
配設され図中上端部が上記回転陽極3の図中下面中央部
に連結されるとともに図中下端側が前記内側凹没壁6で
囲まれた空洞内に嵌入した尋’ffi、性の補助軸12
と、図中上端部が環状絶縁材ノ3を介して補助軸12に
接続されるとともに図中下端側が前記筒状空間B内に嵌
入した筒状の回l伝子本体14とで構成されている。回
転子本体14は、外径が前記壁部7の内径より小さく、
また内径が前記凹没壁、5の外径より大きい寸法に非磁
性材捷たは常磁性旧で形成された筒状の支持枠15と、
この支持枠15の内周面に軸方向に3段構成に形成され
た環状溝16a、16h 、16cと、これら環状溝1
6a、16b、16c内に装着された高透磁率材製の筒
体17 a + 17 b + 17 cと、上記支持
枠15のたとえば外周面中央部に固定されたモータ18
のロータ19とで(11,成されている。
The rotor 1 has two main parts: it is disposed coaxially with the rotating anode 3, and its upper end in the figure is connected to the center of the lower surface of the rotary anode 3 in the figure, and its lower end in the figure is connected to the inner recessed wall 6. Hiron'ffi inserted into the cavity surrounded by, sexual auxiliary axis 12
It is composed of a cylindrical main body 14 whose upper end in the figure is connected to the auxiliary shaft 12 via the annular insulating material 3, and whose lower end in the figure is fitted into the cylindrical space B. There is. The rotor body 14 has an outer diameter smaller than the inner diameter of the wall portion 7;
Further, a cylindrical support frame 15 made of non-magnetic material or paramagnetic material and having an inner diameter larger than the outer diameter of the recessed wall 5;
Annular grooves 16a, 16h, 16c are formed in three stages in the axial direction on the inner peripheral surface of the support frame 15, and these annular grooves 1
Cylinders 17 a + 17 b + 17 c made of a high magnetic permeability material are mounted inside 6 a, 16 b, and 16 c, and a motor 18 is fixed to, for example, the center of the outer peripheral surface of the support frame 15.
and the rotor 19 (11).

また、前記内側凹没壁6の内面には、非常時等だけ前記
補助軸12を機械的に支持する軸受21a、21bが、
常時は、上記補助ihb 12に対して非接触とカるB
’、I係に設けである。さらに、補助軸12の図中下端
面には凹状の球面が形成されており、この球面22に対
向する位置には接触用ボール23がケース内に回転自在
に収容された状態に配設され、これら接触用ボール23
と球面22とで内棒電流導入装置がオル成されている。
Further, on the inner surface of the inner recessed wall 6, bearings 21a and 21b are provided to mechanically support the auxiliary shaft 12 only in an emergency.
At all times, the above auxiliary IHB 12 is called non-contact B.
', is provided in Section I. Furthermore, a concave spherical surface is formed on the lower end surface of the auxiliary shaft 12 in the figure, and a contact ball 23 is disposed in a position opposite to this spherical surface 22 so as to be rotatably housed in the case. These contact balls 23
and the spherical surface 22 constitute an inner rod current introducing device.

そして、上記ケースは、スプリング24f介して内側凹
没壁6のいわゆる底壁を気密に貫通した導電棒25の先
端に電気的に接続されている。
The case is electrically connected to the tip of a conductive rod 25 that hermetically penetrates the so-called bottom wall of the inner recessed wall 6 via a spring 24f.

しかして、前記凹没壁5で囲まれた空間内には、第1図
中上方から下方に亘って、前記筒体17aとで半<rp
丈方向承系を形成する磁気支承要素26と、前Be= 
’jF!]体Z7bとで軸方向支承系を形成する磁気支
承−開先27と、前記補体17cとで半径方向支承系を
・形lノにする磁気支承要素28とが相互間に非磁性材
製のスペーサ29゜30を介在させて同1q目的に装着
されている。前記筒体17m、17cとで半径方向支承
系を構成する磁気支承υ素26,28はほぼ同様に(E
H成されており、fiji状部3)およびこの筒状部3
1の一端側外周向に81!、2図に示すように90度の
開き角を・もって一体重に突設された磁極32a、32
b 、32c 、32dからなる磁極材33と、上記筒
状部3ノの外周に装着され図示極性で示す如く半径方向
にン、!−fイムされた環状永久磁石34と、この環状
永久イld石34の外周向に装着された高透磁率材製の
リング35と、前記各磁極32a〜32dの外周に装着
された半径方向安定北側1jtl用のコイル36a、3
6b +36 c 、 、? 6 dとで構成されてい
る。そして、磁極材33の軸方向の長さは筒体17aの
それとほぼ同程度に設定されている。一方、前記筒体1
7bとで軸方向支承系を構成する磁気支承要素27は、
筒状部38および上記筒状部38の両端にリング状に一
体的に欠設された磁極部39a、39bからなる磁極材
40と、筒状部38の中央部外周に装置fされ図示極性
で示す如く半径方向に着磁された環状永久磁石4ノと、
この環状永久磁石4ノの外周に装着された品透磁率利製
のリング42と、磁極部39aと環状永久磁石41との
間およびfa極’1[S 39 bと環状永久磁石41
との間に装着された軸方向安定化101」節用のコイル
43 a 、 4.3 bとで(1q成されている。そ
して、上記イ藏極都39h 、39b間の軸方向の間茜
は筒体17bの軸方向の長さと同程度に設定されている
Therefore, in the space surrounded by the recessed wall 5, from the upper part to the lower part in FIG.
The magnetic bearing element 26 forming the longitudinal bearing system and the front Be=
'jF! ] A magnetic bearing groove 27 forming an axial bearing system with the body Z7b and a magnetic bearing element 28 forming a radial bearing system with the complement 17c are made of non-magnetic material. It is installed for the same purpose with spacers 29 and 30 interposed therebetween. The magnetic bearing elements 26 and 28, which constitute the radial support system with the cylinders 17m and 17c, are similar to each other (E
H is formed, and the fiji-shaped part 3) and this cylindrical part 3
81 toward the outer circumference of one end of 1! , as shown in Figure 2, magnetic poles 32a, 32 are integrally protruded with an opening angle of 90 degrees.
A magnetic pole material 33 consisting of b, 32c, and 32d is attached to the outer periphery of the cylindrical portion 3 and is oriented in the radial direction as shown by the illustrated polarity. A ring 35 made of a high magnetic permeability material is attached to the outer periphery of the annular permanent magnet 34, and a radial stabilizer is attached to the outer periphery of each of the magnetic poles 32a to 32d. Coil 36a, 3 for north side 1jtl
6b +36c, ,? It is composed of 6 d. The length of the magnetic pole material 33 in the axial direction is set to be approximately the same as that of the cylindrical body 17a. On the other hand, the cylinder 1
The magnetic support element 27, which together with 7b constitutes an axial support system, is
A magnetic pole material 40 consisting of a cylindrical portion 38 and magnetic pole portions 39a and 39b integrally provided in a ring shape at both ends of the cylindrical portion 38, and a device f provided on the outer periphery of the central portion of the cylindrical portion 38 with the illustrated polarity. As shown, four annular permanent magnets magnetized in the radial direction,
A ring 42 made of magnetically permeable material is attached to the outer periphery of the annular permanent magnet 4, and between the magnetic pole part 39a and the annular permanent magnet 41, and between the fa pole '1 [S 39b and the annular permanent magnet 41].
The coils 43a and 4.3b for the axial stabilization section 101 are installed between the axially stabilizing coils 43a and 4.3b. The length is set to be approximately the same as the axial length of the cylindrical body 17b.

しかして、前ML真空容器1の壁部7の外側には、上記
壁部7との間に所定の間隙51をあけて非磁性材又は常
磁性月で有底筒状に形成された前体52が装着されてい
る。そして、上記間隙5〕内の図中上部および下部で磁
気支承要素26.28の前記磁イへ、? 2 a〜32
 dに対向する位置近fgには第2図に示すように前記
回転子本体J4−の軸方向と直交する方向のりに位を検
出する変位検出器53が設けてあシ、さらに軸方向変位
を1・鈷出する変位検出2+v 54も設けである。
Therefore, on the outside of the wall 7 of the front ML vacuum container 1, there is a front body formed in a bottomed cylindrical shape of a non-magnetic material or a paramagnetic material with a predetermined gap 51 between the wall 7 and the wall 7. 52 is installed. Then, to the magnetic poles of the magnetic bearing elements 26 and 28 at the upper and lower parts of the figure in the gap 5], ? 2 a~32
As shown in FIG. 2, a displacement detector 53 for detecting the position of the rotor body J4- in the direction orthogonal to the axial direction is provided near the position fg opposite to the rotor body J4-. 1. Displacement detection 2+v 54 for ejecting is also provided.

また、上iEc空間51内の前MLロータ19に対向す
る位11tにはモータ18のステータ20が取シ付けら
れている。そして、上記ステータ20の電機子巻想は′
−図ボしないモータ駆動用電源に接続され、また各変位
検出器53および54の出力端は回転子安定化11il
J fiiU装置6ノに接続されている。上記回転子安
定化1ulJ御装置61は、実際には、半径方向の安定
化を図るものと、軸方向の安定化を図るものとでイ“1
q成されており、さらに、両者共に公知の位置規11i
lJ 1lilJ御方式を実現するものと公知のカバラ
ンス制御方式を実現するものとで構成されている。今、
半径方向のカバランス制御方式を実現するものの1つを
取シ出して示すと、第1図に示すように対向する位置に
存在する変位検出器53の出力を波形・位相処理装置6
2、信号増幅装置63、・ぞワー増幅装置64に力え、
このパワー増幅1檻゛64で上記変位検出器間に位置□
する半径方向安定化制御用のコイルに、磁気ギヤラグ長
の変化を2回および1同機分した値に対応するml、6
ffを含む電流を磁気ギヤラグ長が増加する方向に位置
するものには磁束を増加させる向きに供給し、また磁気
ギヤラグ長が減少する方向に位IYIするものには磁束
をdJ工少させる向きに供給するようにしている。軸方
向変位検出器54の出力も同じ原理で処理されるーなお
、第1図中65はX線透過窓を示している。
Further, a stator 20 of the motor 18 is attached to a position 11t in the upper iEc space 51 facing the front ML rotor 19. The armature winding of the stator 20 is ′
- Connected to the power supply for driving the motor, which is not shown in the figure, and the output terminal of each displacement detector 53 and 54 is connected to the rotor stabilization 11il.
It is connected to the J fiiU device 6. The rotor stabilization 1ulJ control device 61 is actually divided into two types: one for stabilization in the radial direction and the other for stabilization in the axial direction.
q, and both are equipped with a known positioning guide 11i.
The control system is comprised of one that implements the lJ 1lilJ control method and one that implements the known cover balance control method. now,
One of the methods for realizing the radial cover balance control method is as shown in FIG.
2. Power the signal amplification device 63, the power amplification device 64,
This power amplification cage 64 is located between the displacement detectors □
ml, 6, corresponding to the value obtained by changing the magnetic gear lug length twice and once in the same machine, in the coil for radial stabilization control.
A current containing ff is supplied in a direction that increases the magnetic flux to those located in the direction where the magnetic gear lug length increases, and a current containing dJ is supplied to those located in the direction in which the magnetic gear lug length decreases. We are trying to supply it. The output of the axial displacement detector 54 is also processed on the same principle; 65 in FIG. 1 indicates an X-ray transmission window.

このような構成であると、磁気支承要素26゜28の各
永久磁石34から出た磁束および磁気支承要素27の永
久磁石4ノから出た磁束は、第4図に破線矢印で示す経
路X1lX2+Y1+Y2を通って半径方向支承および
軸方向支承に供される。すなわち、磁気支承要素26の
永久磁石34から出た磁束は筒体17mに、その内面か
ら直角に入り、この筒体17a内を軸方向に進行した後
、イ+3)、 極J’ 、? 3の磁IFIJA 32
 a r 32br32c 、32dを経由して永久磁
石34へ戻る経路を通る。したがって、磁気支承要素2
6と筒体17aとの間にtよ半径方向の磁気的吸引力、
つまシ半径方向のイ(d気支承力が作用することになる
。磁気支承要素28の永久磁石34から出た磁束も同様
に経路X2を辿る。したがって、磁気支承要素28と筒
体17cとの間にも半径方向の磁気支承力が作用するこ
とになる。一方、磁気支承要素27の永久磁石4)から
出た磁束は、筒体17bの中央部に、その内「11と直
角に入り、筒体17b内を軸方向に進漢行した後、筒体
17bの軸方向両ψm部から磁極材40の磁極部39a
、39bを経由して永久イ1パ石4ノへ戻る2つの経路
Y lr Y zを通る。したかつで、磁気支承要素2
7と前体17bとの間には軸方向の磁気的吸引力、つ1
り軸方向の磁気支承力が作用することになる。
With such a configuration, the magnetic flux emitted from each permanent magnet 34 of the magnetic bearing elements 26° 28 and the magnetic flux emitted from the four permanent magnets of the magnetic bearing element 27 follow the path X1lX2+Y1+Y2 shown by the broken line arrow in FIG. through which it is provided for radial and axial bearing. That is, the magnetic flux emitted from the permanent magnet 34 of the magnetic bearing element 26 enters the cylindrical body 17m from its inner surface at a right angle, and after traveling in the axial direction inside this cylindrical body 17a, the magnetic flux is a +3), a pole J', ? 3 magnet IFIJA 32
It takes a route that returns to the permanent magnet 34 via a r 32br32c and 32d. Therefore, magnetic bearing element 2
A magnetic attraction force in the radial direction t between 6 and the cylinder 17a,
A (d) air bearing force acts in the radial direction of the tab. The magnetic flux emitted from the permanent magnet 34 of the magnetic bearing element 28 similarly follows the path X2. Therefore, the relationship between the magnetic bearing element 28 and the cylindrical body 17c On the other hand, the magnetic flux emitted from the permanent magnet 4) of the magnetic bearing element 27 enters the central part of the cylindrical body 17b at a right angle to ``11''. After advancing in the axial direction inside the cylinder 17b, the magnetic pole part 39a of the magnetic pole material 40 is
, 39b and return to the permanent Ippa stone 4 through two routes Y lr Y z. Then, magnetic bearing element 2
There is an axial magnetic attraction force between 7 and the front body 17b.
Therefore, a magnetic bearing force in the axial direction will act.

このため、回転子1ノは永久磁石、34 、41から供
給された磁束によって半径方向および軸方向共に大きな
支承力で支承されることになる。
Therefore, the rotor 1 is supported with a large supporting force in both the radial and axial directions by the magnetic flux supplied from the permanent magnets 34 and 41.

なお、このとき、前述した回転子安定化制御装置61に
よ−)で、上記磁気的支承力か回転子に加わる外力とつ
り合う様に回転子の位置が調節される。そして、つり合
った時点で回転子安定化制御装置汽61の動作が停止す
る。したがって、回転子11は、上記永久磁石34.4
1による磁気的支承力によって完全に非接触状態、つ1
り浮き上った状態に支承される。この状態でモータ18
のステータ20に電源を接続すると、そのロータ19が
回転し、これに伴なって前記ロータ19の取着されてい
る回転子11が回転を開始する。したがって、回転陽極
3も回転を開始する。そして、回転子1ノが規定回転載
に至った時点で軸方向安定化1tll (’ill用の
コイル43a。
At this time, the position of the rotor is adjusted by the rotor stabilization control device 61 described above so as to balance the magnetic bearing force with the external force applied to the rotor. Then, when the balance is achieved, the operation of the rotor stabilization control device steam 61 is stopped. Therefore, the rotor 11 is connected to the permanent magnet 34.4.
Completely non-contact state due to the magnetic bearing force of 1.
It is supported in a floating state. In this state, the motor 18
When a power source is connected to the stator 20 of the rotor 19, the rotor 19 rotates, and accordingly, the rotor 11 to which the rotor 19 is attached starts rotating. Therefore, the rotating anode 3 also starts rotating. Then, when the rotor 1 reaches the specified rotation, the axial stabilization 1tll ('ill coil 43a) is activated.

43bに信号を力え、回転子の位1ζ1′を軸方向に強
i1i目的にずらずことによって陽極電流尋人装置を接
触させると、回転陽極3と陰極2との間の電位差が大き
くカリ、陰極2で発生した電子が回転陽極3に衝突し、
これによってX線Pが第1図中矢印で示すように放出さ
れる。したがって、ここに回転陽極型のX線管装R1と
しての機能が発揮されることになる。そして、x it
i非照射時には、コイル43 a 、 4 、? bの
付勢を解除するとともにモータ電源をしゃ断する。この
とき、回転子1)は高真空中を完全非接触で支承されて
いるから、摩擦による回転数の減衰は無く、又、この時
の磁気支承力は、11とんど永久磁石34.41による
ものであるため、消費する電力の非常に小さい状態で回
転を常時維持することが可能となり、したがって、任意
の時に、最小の待ち時間でX線を照射することができる
When a signal is applied to the rotor 43b and the rotor position 1ζ1' is moved axially toward the purpose of i1i, the anode current control device is brought into contact with the rotor, the potential difference between the rotating anode 3 and the cathode 2 becomes large Electrons generated at the cathode 2 collide with the rotating anode 3,
As a result, X-rays P are emitted as shown by arrows in FIG. Therefore, the function of the rotating anode type X-ray tube R1 is exhibited here. And x it
i When not irradiated, the coils 43a, 4, ? The energization of b is released and the motor power is cut off. At this time, the rotor 1) is supported in a high vacuum in a completely non-contact manner, so there is no attenuation of the rotational speed due to friction, and the magnetic bearing force at this time is 11, 34.41 Therefore, it is possible to constantly maintain rotation with extremely low power consumption, and therefore, X-rays can be irradiated at any time with minimum waiting time.

このように、軸方向支承系と半径方向支承系とを磁気的
に独立して設け、かつ、各支承系の主たる磁気力供給源
として永久磁石を用いるようにしている。したがって、
永久磁石のノ19択等によって、軸方向支承力と半径方
向支承力とを別々に任意に設定することができ、両支承
力を十分に大きくすることができるので、主として永久
磁石による(1序気力のみで軸方向、半径方向共に大き
い磁気剛性で支承でき、この結果、非常に少ない消費′
IJ’l、’力で磁気支承を実現できる。
In this way, the axial bearing system and the radial bearing system are provided magnetically independently, and a permanent magnet is used as the main source of magnetic force for each bearing system. therefore,
The axial bearing force and the radial bearing force can be arbitrarily set separately by selecting permanent magnets, etc., and both bearing forces can be made sufficiently large. It can be supported with high magnetic rigidity in both axial and radial directions using only air force, resulting in extremely low consumption.
IJ'l, 'Magnetic support can be realized by force.

また、両支承糸は磁気的に独立しているので、両支承力
を同時に制御ql Lでも互いに干渉することがない。
Furthermore, since both bearing threads are magnetically independent, they do not interfere with each other even when both bearing forces are controlled simultaneously.

したがって、安定化制御を行なう系の単純化を図ること
ができる。
Therefore, the system for performing stabilization control can be simplified.

なお、本発明は上述した実施例に限定されるものではな
い。すなわち、上述した実施例では、各磁気支承要素の
内側に回転子を位置させているが、この関係を逆にして
も何ら支障はない。
Note that the present invention is not limited to the embodiments described above. That is, in the embodiment described above, the rotor is located inside each magnetic bearing element, but there is no problem even if this relationship is reversed.

1だ、実施例においては冷却手段が省略されているが真
空容器外から冷却するようにしてもよい。壕だ陽極電v
IL剪、入装置i>も実施例のものしこ限られるもので
は万<、動作時に良好な電気的特性と耐摩耗性を発揮す
るものであればよい。
1. Although the cooling means is omitted in the embodiment, cooling may be provided from outside the vacuum container. Anode electrode v
The IL shearing and inserting device i> is not limited to that of the embodiment, but may be any device that exhibits good electrical characteristics and wear resistance during operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るX線管装置の要部縦断
面図、第2図は同装置6を第1図におけるA −A p
ijに沿って切11Jr L矢印方向に見た断面図、第
3図は間装f6゛を均1,1図におけるB−B線、に沿
って切mr L矢印方向に見たu′J′r面図、第4図
は同装置り1゛における磁束の通過経路を説明するため
の図である。 1・・・真空容器、2・・・陰極、3・・・回転陽極、
5・・・凹没Q、’y、11・・・回転子、14・・・
回転子本体、17a、17b、17cm筒体、I 8 
・・・モータ、26.27.28・・・磁気支承要素。
FIG. 1 is a vertical cross-sectional view of a main part of an X-ray tube device according to an embodiment of the present invention, and FIG.
Cut along ij 11Jr A sectional view seen in the direction of the L arrow, Figure 3 is a cross-sectional view of the interior f6゛ cut along the line BB in Figure 1, 1 mr u'J' seen in the direction of the L arrow The r-plane view and FIG. 4 are diagrams for explaining the passage path of magnetic flux in the same device. 1... Vacuum vessel, 2... Cathode, 3... Rotating anode,
5...Concavity Q, 'y, 11...Rotor, 14...
Rotor body, 17a, 17b, 17cm cylinder, I 8
...Motor, 26.27.28...Magnetic bearing element.

Claims (1)

【特許請求の範囲】[Claims] 真空容器内に陰極と回転陽極とを離間対向させて配置す
るとともに真空容器外に設けられた磁気力供給源によっ
て上記回転陽極側を完全非接触状態に磁気支承するよう
にした回転陽極型X線管装置において、前記回転陽極に
軸方向に連結して設けられた高透磁率材製の半径方向支
承用筒体および軸方向支承用筒体と、前記真空容器外に
前記各筒体と嵌合する関係に配置された半径方向支承用
環状永久磁石および軸方向支承用環状永久磁石と、これ
ら環状永久9石から出た磁束をそれぞれ独立的に対応す
る前記筒体内に軸方向に通過させて戻す経路で案内する
ことによって前記半径方向支承用筒体に半径方向の磁気
的吸引力をまた前記軸方向支承用筒体に軸方向の磁気的
吸引力をそれぞれ付与する磁極材と、これら磁極材を通
過する磁束を制御し得るように装着された複数のコイル
とを具備してなることを特徴とする回転陽極型X線管装
置。
A rotating anode type X-ray in which a cathode and a rotating anode are placed facing each other in a vacuum container, and the rotating anode side is magnetically supported in a completely non-contact state by a magnetic force supply source provided outside the vacuum container. In the tube device, a radial support cylinder and an axial support cylinder made of a high magnetic permeability material are provided axially connected to the rotating anode, and each cylinder is fitted to the outside of the vacuum vessel. The annular permanent magnets for radial support and the annular permanent magnets for axial support are arranged in such a relationship that the magnetic fluxes emitted from these nine annular permanent magnets are passed through the respective corresponding cylindrical bodies in the axial direction and returned. a magnetic pole material that applies a radial magnetic attraction force to the radial support tube and an axial magnetic attraction force to the axial support tube by guiding the magnetic pole materials along a path; A rotating anode type X-ray tube device comprising a plurality of coils installed so as to control passing magnetic flux.
JP17180582A 1982-09-30 1982-09-30 X-ray tube device of rotary anode type Pending JPS5960949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17180582A JPS5960949A (en) 1982-09-30 1982-09-30 X-ray tube device of rotary anode type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17180582A JPS5960949A (en) 1982-09-30 1982-09-30 X-ray tube device of rotary anode type

Publications (1)

Publication Number Publication Date
JPS5960949A true JPS5960949A (en) 1984-04-07

Family

ID=15930043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17180582A Pending JPS5960949A (en) 1982-09-30 1982-09-30 X-ray tube device of rotary anode type

Country Status (1)

Country Link
JP (1) JPS5960949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261251A (en) * 1985-09-12 1987-03-17 Fujitsu Ltd Rotary anode for x-ray generator
US11309160B2 (en) 2020-05-08 2022-04-19 GE Precision Healthcare LLC Methods and systems for a magnetic motor X-ray assembly
US11523793B2 (en) 2020-05-08 2022-12-13 GE Precision Healthcare LLC Methods for x-ray tube rotors with speed and/or position control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261251A (en) * 1985-09-12 1987-03-17 Fujitsu Ltd Rotary anode for x-ray generator
JPH0418420B2 (en) * 1985-09-12 1992-03-27 Fujitsu Ltd
US11309160B2 (en) 2020-05-08 2022-04-19 GE Precision Healthcare LLC Methods and systems for a magnetic motor X-ray assembly
US11523793B2 (en) 2020-05-08 2022-12-13 GE Precision Healthcare LLC Methods for x-ray tube rotors with speed and/or position control

Similar Documents

Publication Publication Date Title
US4322624A (en) X-ray tube having a magnetically supported rotary anode
US4779614A (en) Magnetically suspended rotor axial flow blood pump
JPS5819844A (en) Rotary anode x ray-tube
EP0130541B1 (en) Flywheel apparatus
EP0662262B1 (en) Magnetic bearing system and method
JPS60164013A (en) Magnetic bearing
JP2005127222A (en) Magnetic levitating pump
US4597613A (en) Electromagnetic bearing
US4340261A (en) Magnetic bearing arrangement
JPH02121245A (en) Floating system of rotating anode of x-ray tube having passive magnetic bearing
US3878395A (en) Method and means for operating x-ray tubes with rotary anodes
JPS5942165B2 (en) Magnetic non-contact bearing device
JPS5960949A (en) X-ray tube device of rotary anode type
JPS5883552A (en) Rotary machine
JPH0371569B2 (en)
JPS5937323A (en) Magnetic bearing device
JPH0372182B2 (en)
JPS5941269B2 (en) rotating anode x-ray tube
JPH0332176B2 (en)
US10629403B1 (en) Magnetic assist bearing
JPS5999116A (en) Magnetic bearing device
JPS5998445A (en) Rotary anode x-ray tube
JPS5960950A (en) X-ray tube device of rotary anode type
JPH04271287A (en) Magnetic levitation actuator
CN110300859A (en) Magnetic bearing and method for operating magnetic bearing