WO2024014026A1 - Refrigerator, refrigerator control device, refrigerator control method, and program - Google Patents

Refrigerator, refrigerator control device, refrigerator control method, and program Download PDF

Info

Publication number
WO2024014026A1
WO2024014026A1 PCT/JP2023/005771 JP2023005771W WO2024014026A1 WO 2024014026 A1 WO2024014026 A1 WO 2024014026A1 JP 2023005771 W JP2023005771 W JP 2023005771W WO 2024014026 A1 WO2024014026 A1 WO 2024014026A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
low
stage compressor
circuit
refrigerant
Prior art date
Application number
PCT/JP2023/005771
Other languages
French (fr)
Japanese (ja)
Inventor
真悟 佐藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024014026A1 publication Critical patent/WO2024014026A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements

Definitions

  • the present disclosure relates to a refrigerator, a refrigerator control device, a refrigerator control method, and a program.
  • This application claims priority to Japanese Patent Application No. 2022-112320 filed in Japan on July 13, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a configuration in which, in a refrigerator including a plurality of outdoor units each equipped with a compressor arranged in parallel, the pressure of oil supplied to the compressor together with refrigerant is adjusted between the plurality of outdoor units by an oil equalizing pipe. ing.
  • the refrigerator includes a low-stage compressor that compresses low-pressure refrigerant into intermediate-pressure refrigerant, and a high-stage compressor that compresses intermediate-pressure refrigerant into high-pressure refrigerant.
  • a low-pressure refrigerant flows through a pipe on the upstream side of the refrigerant flow direction with respect to the low-stage compressor.
  • Medium-pressure refrigerant compressed by the low-stage compressor flows through the pipe between the low-stage compressor and the high-stage compressor.
  • High-pressure refrigerant flows through the piping on the downstream side of the refrigerant flow direction with respect to the high-stage compressor.
  • the low-pressure piping upstream of the low-stage compressor, the intermediate-pressure piping between the low-stage compressor and the high-stage compressor, and the high-pressure piping downstream of the high-stage compressor are connected.
  • refrigerant pressure There is a difference in refrigerant pressure between the two.
  • the configuration tends to become complicated in order to equalize the pressures among the low pressure piping, intermediate pressure piping, and high pressure piping.
  • the present disclosure has been made to solve the above problems, and aims to provide a refrigerator, a refrigerator control device, a refrigerator control method, and a program that can easily equalize the pressure.
  • a refrigerator includes: a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant; a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant; a low-pressure pipe connected to the compressor and through which the low-pressure refrigerant flows; an intermediate-pressure pipe connected between the low-stage compressor and the high-stage compressor and through which the medium-pressure refrigerant flows; A high-pressure pipe connected to the high-pressure pipe through which the high-pressure refrigerant flows, a first circuit extending from the high-pressure pipe to the low-pressure pipe, and a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the medium-pressure pipe.
  • the first circuit includes a first valve that opens and closes a flow path in the first circuit
  • the pressure equalization circuit includes a pressure equalization valve that opens and closes a flow path in the pressure equalization circuit.
  • a refrigerator control device includes a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant, and a high-stage compressor that is connected to the low-stage compressor.
  • a low-pressure pipe through which the low-pressure refrigerant flows, an intermediate-pressure pipe connected between the low-stage compressor and the high-stage compressor, and an intermediate-pressure pipe through which the medium-pressure refrigerant flows, and a high-pressure pipe connected to the high-stage compressor; a high-pressure pipe through which a refrigerant flows; a first valve control unit that is capable of controlling a refrigerator and opens a first valve of a first circuit extending to the high-pressure pipe and the low-pressure pipe; A pressure equalizing valve control unit that opens a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the pressure piping and the pressure piping.
  • a method for controlling a refrigerator includes a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant, and a high-stage compressor that is connected to the low-stage compressor.
  • a method for controlling a refrigerator comprising: a high-pressure pipe through which a refrigerant flows; The method includes the steps of opening a first valve of a circuit, and opening a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the intermediate pressure piping.
  • a program includes: a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant; a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant; a low-pressure pipe connected between the low-stage compressor and the high-stage compressor and through which the medium-pressure refrigerant flows; and a high-pressure pipe connected to the high-stage compressor and through which the high-pressure refrigerant flows.
  • a first valve of a first circuit extending to the high-pressure pipe and the low-pressure pipe when the operation of the low-stage compressor and the high-stage compressor is stopped. and opening a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the intermediate pressure pipe.
  • refrigerator control device According to the refrigerator, refrigerator control device, refrigerator control method, and program of the present disclosure, it is possible to provide a refrigerator that is easy to pressure equalize.
  • FIG. 1 is a diagram showing the configuration of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a first circuit and a pressure equalization circuit provided in a refrigerator according to an embodiment of the present disclosure.
  • FIG. 1 is a functional block diagram of a refrigerator control device according to an embodiment of the present disclosure. 1 is a flowchart illustrating a procedure of a method for controlling a refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the flow of refrigerant during normal operation in the refrigerator according to the embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the flow of refrigerant when operation is stopped in the refrigerator according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a hardware configuration of a refrigerator control device according to an embodiment of the present disclosure.
  • the refrigerator 1 mainly includes a compression section 2, a condenser 3, an expansion valve 4, and a receiver 5.
  • Refrigerator 1 is an outdoor unit that constitutes a refrigeration cycle system.
  • the refrigerator 1 circulates refrigerant between it and an indoor unit (not shown) that constitutes a refrigeration cycle system.
  • Refrigerator 1 cools refrigerant and generates liquid refrigerant.
  • the refrigerator 1 supplies the generated liquid refrigerant to an indoor unit (not shown).
  • the refrigerator 1 sucks refrigerant whose temperature has increased by performing heat exchange with the indoor unit from the indoor unit.
  • the refrigerant is, for example, carbon dioxide (CO 2 ).
  • the refrigerant may be other than carbon dioxide.
  • the compression section 2 compresses refrigerant circulated from the indoor unit.
  • the compression section 2 mainly includes an inlet accumulator (accumulator) 21, a sub-accumulator 22, a low-stage compressor 23, an intercooler 24, an intermediate accumulator 25, a high-stage compressor 26, and an oil separator 27.
  • accumulator inlet accumulator
  • sub-accumulator 22 sub-accumulator
  • low-stage compressor 23 low-stage compressor
  • intercooler 24 an intermediate accumulator 25
  • high-stage compressor 26 high-stage compressor 26
  • oil separator 27 oil separator
  • the inlet accumulator 21 sucks refrigerant from the indoor unit through the first pipe 101.
  • the inlet accumulator 21 separates refrigerant sucked in from an indoor unit (not shown) into gas refrigerant and liquid refrigerant.
  • Refrigerant discharged from an indoor unit (not shown) flows into the inlet accumulator 21 through the first pipe 101.
  • the inlet accumulator 21 supplies the gas refrigerant separated within the inlet accumulator 21 to the sub-accumulator 22 through the second pipe 102.
  • the second pipe 102 connects the inlet accumulator 21 and the sub-accumulator 22.
  • Oil contained in the liquid refrigerant separated at the inlet accumulator 21 is sent to the sub-accumulator 22 through the first oil return pipe 401.
  • the first oil return pipe 401 connects the bottom of the inlet accumulator 21 and the second pipe 102.
  • the oil supplied into the second pipe 102 through the first oil return pipe 401 mixes with the gas refrigerant flowing inside the second pipe 102 and is sent to the sub-accumulator 22.
  • the gas refrigerant separated at the inlet accumulator 21 flows into the sub-accumulator 22 through the second pipe 102 .
  • the sub-accumulator 22 separates gas refrigerant and liquid refrigerant.
  • the sub-accumulator 22 separates liquid refrigerant contained in the gas refrigerant separated by the inlet accumulator 21.
  • the sub-accumulator 22 supplies the gas refrigerant separated within the sub-accumulator 22 to the low stage compressor 23 through the third pipe 103.
  • the third pipe 103 connects the sub-accumulator 22 and the low-stage compressor 23.
  • the low-stage compressor 23 sucks the gas refrigerant separated by the sub-accumulator 22 through the third pipe 103 due to the negative pressure generated by the operation of the low-stage compressor 23 .
  • the low stage compressor 23 compresses the sucked gas refrigerant.
  • the low-stage compressor 23 is a two-stage compressor that includes a first rotary compression section (compression section) 231 and a first scroll compression section (compression section) 232 in series.
  • the first rotary compression section 231 compresses the gas refrigerant sucked through the third pipe 103.
  • the first scroll compression section 232 further compresses the refrigerant compressed by the first rotary compression section 231.
  • the refrigerant compressed in the first scroll compression section 232 is discharged to the intercooler 24 through the fourth pipe 104.
  • the fourth pipe 104 connects the low stage compressor 23 and the intercooler 24.
  • Intercooler 24 and intermediate accumulator 25 are arranged between low stage compressor 23 and high stage compressor 26.
  • the refrigerant compressed by the low-stage compressor 23 is sent to the intercooler 24 through the fourth pipe 104.
  • the intercooler 24 cools the refrigerant sent therein.
  • the intercooler 24 is, for example, an air-cooled type.
  • Intercooler 24 includes an intercooler main body 241 and a fan 242.
  • the intercooler main body 241 has a flow path (not shown) for the refrigerant compressed by the low stage compressor 23.
  • the intercooler main body 241 exchanges heat between the refrigerant flowing inside the flow pipe and the outside air outside the flow pipe.
  • the fan 242 sends air to the intercooler body 241 to improve the efficiency of heat exchange in the intercooler body 241.
  • the refrigerant cooled by the intercooler 24 is sent to the intermediate accumulator 25 through the fifth pipe 105.
  • the fifth pipe 105 connects the intercooler 24 and the intermediate accumulator 25.
  • the intermediate accumulator 25 is cooled by the intercooler 24 and separates the refrigerant sent through the fifth pipe 105 into a gas refrigerant and a liquid refrigerant.
  • the gas refrigerant separated in the intermediate accumulator 25 is supplied to the high stage compressor 26 through the sixth pipe 106.
  • the sixth pipe 106 connects the intermediate accumulator 25 and the high-stage compressor 26.
  • the oil contained in the liquid refrigerant separated in the intermediate accumulator 25 is sent to the high stage compressor 26 through the second oil return pipe 402.
  • the second oil return pipe 402 connects the bottom of the intermediate accumulator 25 and the sixth pipe 106.
  • the oil supplied into the sixth pipe 106 through the second oil return pipe 402 mixes with the refrigerant flowing inside the sixth pipe 106 and is sent to the high stage compressor 26.
  • the high-stage compressor 26 sucks the gas refrigerant separated by the intermediate accumulator 25 through the sixth pipe 106 due to the negative pressure generated by the operation of the high-stage compressor 26 .
  • the high stage compressor 26 compresses the sucked gas refrigerant.
  • the high-stage compressor 26 is a two-stage compressor that includes a second rotary compression section (compression section) 261 and a second scroll compression section (compression section) 262 in series.
  • the second rotary compression section 261 compresses the gas refrigerant sucked through the sixth pipe 106.
  • the second scroll compression section 262 further compresses the high temperature and high pressure refrigerant compressed by the second rotary compression section 261.
  • the refrigerant compressed by the high-stage compressor 26 is sent to the oil separator 27 through the seventh pipe 107.
  • the seventh pipe 107 connects the high-stage compressor 26 and the oil separator 27.
  • the oil separator 27 separates oil contained in the refrigerant from the refrigerant compressed by the high-stage compressor 26 and sent through the seventh pipe 107.
  • the refrigerant from which oil has been separated by the oil separator 27 is sent to the condenser 3 through the eighth pipe 108.
  • the eighth pipe 108 connects the oil separator 27 and the capacitor 3.
  • the oil separated by the oil separator 27 is discharged into the oil tank 28 through the third oil return pipe 403.
  • the third oil return pipe 403 connects the oil separator 27 and the oil tank 28.
  • the oil tank 28 stores oil discharged from the oil separator 27 through the third oil return pipe 403.
  • the oil stored in the oil tank 28 is returned to the low stage compressor 23 and the high stage compressor 26 through a fourth oil return pipe 404 and a fifth oil return pipe 405.
  • An oil cooler 29 is provided in the middle of the fourth oil return pipe 404 and the fifth oil return pipe 405. The oil cooler 29 cools the oil passing through the fourth oil return pipe 404 and the fifth oil return pipe 405.
  • the condenser 3 cools and condenses the refrigerant sent through the eighth pipe 108.
  • the capacitor 3 is, for example, an air-cooled type.
  • the capacitor 3 includes a capacitor body 31 and a fan 32.
  • the condenser body 31 has a flow path (not shown) for the refrigerant fed through the eighth pipe 108.
  • the fan 32 sends air to the capacitor body 31 to improve the efficiency of heat exchange in the capacitor body 31.
  • the refrigerant cooled by the condenser 3 is sent to the expansion valve 4 through the ninth pipe 109.
  • the ninth pipe 109 connects the condenser 3 and the expansion valve 4.
  • the expansion valve 4 expands the refrigerant condensed in the condenser 3 and sent through the ninth pipe 109.
  • the expansion valve 4 sends the expanded refrigerant to the receiver 5 through the tenth pipe 110.
  • the tenth pipe 110 connects the expansion valve 4 and the receiver 5.
  • the receiver 5 separates the refrigerant expanded by the expansion valve 4 and sent through the tenth pipe 110 into a gas refrigerant and a liquid refrigerant.
  • the receiver 5 supplies the separated liquid refrigerant to an indoor unit (not shown) through the eleventh pipe 111.
  • a subcooling heat exchanger 6 is provided in the middle of the eleventh pipe 111.
  • the supercooling heat exchanger 6 further cools (supercools) the liquid refrigerant supplied to the indoor unit through the eleventh pipe 111.
  • the subcooling heat exchanger 6 includes a first flow path (not shown) for liquid refrigerant sent through the eleventh pipe 111 and a second flow path (not shown) for the liquid refrigerant sent through the twelfth pipe 112. ,have.
  • the twelfth pipe 112 branches from the eleventh pipe 111. One end of the twelfth pipe 112 is branched from the eleventh pipe 111 on the upstream side of the subcooling heat exchanger 6 in the flow direction of the refrigerant in the eleventh pipe 111. . The other end of the twelfth pipe 112 is connected to the second flow path of the subcooling heat exchanger 6.
  • the twelfth pipe 112 is equipped with an injection valve 61 and an expansion valve 62 for a supercooling heat exchanger.
  • the injection valve 61 opens and closes the liquid refrigerant flow path within the twelfth pipe 112 .
  • the opening and closing operations of the injection valve 61 are controlled by the control device 300.
  • the injection valve 61 is opened, liquid refrigerant is supplied to the supercooling heat exchanger 6 through the twelfth pipe 112.
  • the injection valve 61 is closed, the liquid refrigerant is not supplied to the subcooling heat exchanger 6 through the twelfth pipe 112.
  • the subcooling heat exchanger expansion valve 62 expands the liquid refrigerant passing through the twelfth pipe 112.
  • the subcooling heat exchanger 6 has a first flow path (not shown) for the liquid refrigerant sent through the eleventh pipe 111 and a second flow path for the liquid refrigerant sent through the twelfth pipe 112. The flow directions of the two are opposite to each other.
  • the supercooling heat exchanger 6 exchanges heat between the liquid refrigerant in the first flow path and the liquid refrigerant in the second flow path, which flow in opposite directions.
  • the liquid refrigerant in the first flow path is cooled by heat exchange with the liquid refrigerant in the second flow path expanded by the subcooling heat exchanger expansion valve 62.
  • the liquid refrigerant cooled in the first flow path of the supercooling heat exchanger 6 is supplied to the indoor unit through the eleventh pipe 111.
  • the temperature of the liquid refrigerant in the second flow path increases through heat exchange with the liquid refrigerant in the first flow path.
  • the liquid refrigerant heated in the second flow path of the subcooling heat exchanger 6 is supplied to the high stage compressor 26 through the injection circuit 120.
  • the injection circuit 120 connects the subcooling heat exchanger 6 and the sixth pipe 106.
  • the injection circuit 120 is connected to a sixth pipe 106 that is disposed on the downstream side of the intermediate accumulator 25 in the flow direction of the refrigerant.
  • the injection circuit 120 is connected to the sixth pipe 106 between the intercooler 24 and the high-stage compressor 26.
  • the injection circuit 120 sends the liquid refrigerant heated by the subcooling heat exchanger 6 to the high stage compressor 26 through the sixth pipe 106.
  • the sixth pipe 106 is connected to the high stage compressor 26 between the second rotary compression section 261 and the second scroll compression section 262.
  • the injection circuit 120 feeds the liquid refrigerant into the high-stage compressor 26 on the downstream side of the second rotary compression section 261 .
  • the injection circuit 120 injects liquid refrigerant into the high-stage compressor 26 through the sixth pipe 106 when the injection valve 61 is opened under the control of the control device 300 .
  • the injection circuit 120 does not inject liquid refrigerant into the high-stage compressor 26 when the injection valve 61 is closed under the control of the control device 300 .
  • Such a refrigerator 1 has a low pressure pipe 100L, a medium pressure pipe 100M, and a high pressure pipe 100H.
  • the low-pressure refrigerant before being compressed by the low-stage compressor 23 flows through the low-pressure pipe 100L.
  • the low pressure refrigerant flowing through the low pressure pipe 100L has the lowest pressure in the refrigerator 1.
  • the low pressure pipe 100L is connected to the low stage compressor 23.
  • the low-pressure pipe 100L includes a first pipe 101, a second pipe 102, and a third pipe 103, which are arranged on the upstream side of the low-stage compressor 23 in the flow direction of the refrigerant.
  • the low stage compressor 23 compresses low pressure refrigerant into medium pressure refrigerant.
  • Medium pressure refrigerant compressed by the low stage compressor 23 flows through the medium pressure pipe 100M.
  • the medium pressure pipe 100M is connected between the low stage compressor 23 and the high stage compressor 26.
  • the medium pressure pipe 100M includes a fourth pipe 104, a fifth pipe 105, and a sixth pipe 106.
  • the high-stage compressor 26 compresses medium-pressure refrigerant into high-pressure refrigerant.
  • a high-pressure refrigerant compressed by the high-stage compressor 26 flows through the high-pressure pipe 100H.
  • the high pressure refrigerant flowing through the high pressure pipe 100H has the highest pressure in the refrigerator 1.
  • High pressure piping 100H is connected to high stage compressor 26.
  • High pressure piping 100H is arranged between high stage compressor 26 and expansion valve 4.
  • the high pressure pipe 100H includes a seventh pipe 107, an eighth pipe 108, and a ninth pipe 109.
  • the refrigerator 1 includes a pressure equalization mechanism 500.
  • the pressure equalization mechanism 500 attempts to equalize the pressure between the low pressure pipe 100L, the medium pressure pipe 100M, and the high pressure pipe 100H when the operation is stopped.
  • the pressure equalization mechanism 500 includes a first circuit 510 and a pressure equalization circuit 520.
  • the first circuit 510 extends from the high pressure pipe 100H to the low pressure pipe 100L.
  • the first circuit 510 connects the downstream side of the high-pressure refrigerant flow direction with respect to the oil separator 27 in the high-pressure pipe 100H, and the downstream side of the low-pressure refrigerant flow direction with respect to the inlet accumulator 21 in the low-pressure pipe 100L.
  • One end 510a of the first circuit 510 is connected to the eighth pipe 108 on the downstream side of the oil separator 27 in the high-pressure refrigerant flow direction in the high-pressure pipe 100H.
  • the other end 510b of the first circuit 510 is connected to the second pipe 102 on the downstream side of the inlet accumulator 21 in the low-pressure refrigerant flow direction in the low-pressure pipe 100L.
  • the first circuit 510 includes a first valve 511 and a flow rate adjustment mechanism 512.
  • the first valve 511 opens and closes the flow path within the first circuit 510.
  • the first circuit 510 supplies high-pressure refrigerant that flows through the high-pressure pipe 100H and has a higher pressure and temperature than the low-pressure refrigerant to the low-pressure pipe 100L.
  • the opening and closing operations of the first valve 511 are controlled by the control device 300.
  • the first valve 511 is opened, high-pressure refrigerant is supplied to the low-pressure pipe 100L through the first circuit 510 and the high-pressure pipe 100H. Thereby, pressure equalization between the high pressure pipe 100H and the low pressure pipe 100L is achieved.
  • the first valve 511 is closed, no pressure equalization through the first circuit 510 takes place.
  • the flow rate adjustment mechanism 512 is disposed in the first circuit 510 on the downstream side of the first valve 511 in the refrigerant flow direction in the first circuit 510 .
  • the flow rate adjustment mechanism 512 is, for example, a capillary pipe.
  • the refrigerant flowing through the first circuit 510 is subjected to flow path resistance by a flow rate adjustment mechanism 512 made of capillary piping, and its flow rate is reduced.
  • the flow rate adjustment mechanism 512 may have a configuration other than capillary piping.
  • the pressure equalization circuit 520 is capable of connecting the first circuit 510 and the injection circuit 120.
  • the pressure equalization circuit 520 connects the injection circuit 120 and a position 513 on the downstream side of the first circuit 510 in the flow direction of the high-pressure refrigerant.
  • One end 520a of the pressure equalization circuit 520 is connected to the injection circuit 120.
  • One end 520a of the pressure equalization circuit 520 is connected to the injection circuit 120 between the subcooling heat exchanger 6 and the sixth pipe 106.
  • the other end 520b of the pressure equalizing circuit 520 is connected to the first circuit 510.
  • the other end 520b of the pressure equalizing circuit 520 is connected to a position 513 in the first circuit 510 on the downstream side of the first valve 511 in the flow direction of the high-pressure refrigerant.
  • the pressure equalization circuit 520 includes a pressure equalization valve 521.
  • the pressure equalization valve 521 opens and closes the flow path within the pressure equalization circuit 520.
  • the pressure equalization circuit 520 connects the first circuit 510 and the injection circuit 120 when the pressure equalization valve 521 is opened.
  • the first circuit 510 and the injection circuit 120 communicate with each other through the pressure equalization circuit 520.
  • the pressure equalization valve 521 is opened, the high pressure pipe 100H and the low pressure pipe 100L, which are communicated through the first circuit 510, communicate with the medium pressure pipe 100M via the pressure equalization circuit 520 and the injection circuit 120.
  • the pressure equalization valve 521 is opened, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized.
  • the opening and closing operations of the pressure equalizing valve 521 are controlled by the control device 300.
  • the control device 300 is capable of controlling the refrigerator 1.
  • the control device 300 controls the opening and closing operations of at least the low stage compressor 23, the high stage compressor 26, the injection valve 61, the first valve 511, and the pressure equalizing valve 521.
  • the control device 300 includes a Central Processing Unit (hereinafter referred to as "CPU") 310 and a memory 320.
  • CPU Central Processing Unit
  • the CPU 310 functionally includes an operation control section 311, an injection valve control section 312, a first valve control section 313, and a pressure equalization valve control section 314. That is, the CPU 310 functions as the operation control section 311, the injection valve control section 312, the first valve control section 313, and the pressure equalization valve control section 314 by operating based on a predetermined program.
  • Memory 320 stores various data acquired by control device 300.
  • the operation control unit 311 controls the operation of the refrigerator 1 based on a control command output from the indoor unit in response to an operation performed on the indoor unit side.
  • the operation control unit 311 controls the low stage compressor 23 and the high stage compressor 26 based on control commands output from the indoor unit.
  • the operation control unit 311 controls the operation of each part of the refrigerator 1, such as the fans 242 and 32, based on control commands output from the indoor unit.
  • the injection valve control unit 312 controls the opening/closing operation of the injection valve 61 of the injection circuit 120. For example, when the temperature inside the high-stage compressor 26 detected by a temperature sensor (not shown) exceeds a predetermined standard, the injection valve control unit 312 opens the injection valve 61 and controls the injection circuit 120. Injection of refrigerant into the high-stage compressor 26 is performed through the high-stage compressor 26.
  • the first valve control unit 313 controls the opening/closing operation of the first valve 511 of the first circuit 510.
  • the first valve control unit 313 opens the first valve 511 to equalize the pressures of the high pressure pipe 100H and the low pressure pipe 100L via the first circuit 510.
  • the pressure equalization valve control unit 314 controls the opening and closing operations of the pressure equalization valve 521 of the pressure equalization circuit 520.
  • the pressure equalization valve control unit 314 equalizes the pressure between the first circuit 510 and the intermediate pressure pipe 100M via the pressure equalization circuit 520 by opening the pressure equalization valve 521.
  • the method S10 for controlling the refrigerator 1 includes step S11 of opening the first valve 511 of the first circuit 510, and step S12 of opening the pressure equalizing valve 521 of the pressure equalizing circuit 520. and, including.
  • the method S10 for controlling the refrigerator 1 is automatically executed when the operation of the low stage compressor 23 and the high stage compressor 26 is stopped.
  • step S11 of opening the first valve 511 of the first circuit 510 the first valve 511 of the first circuit 510 is opened under the control of the first valve control section 313. Then, as shown in FIG. 6, the high-pressure pipe 100H and the low-pressure pipe 100L communicate with each other through the first circuit 510 extending from the high-pressure pipe 100H to the low-pressure pipe 100L. Thereby, the pressures of the high pressure pipe 100H and the low pressure pipe 100L are equalized.
  • step S12 of opening the pressure equalizing valve 521 of the pressure equalizing circuit 520 the pressure equalizing valve 521 of the pressure equalizing circuit 520 is opened under the control of the pressure equalizing valve control section 314.
  • the injection valve 61 is opened under the control of the injection valve control section 312. Thereby, the first circuit 510 and the medium pressure pipe 100M communicate with each other via the pressure equalization circuit 520. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized.
  • the refrigerator 1 includes a first circuit 510 extending from the high pressure pipe 100H to the low pressure pipe 100L, and a pressure equalizing circuit 520 that can equalize the pressure between the medium pressure pipe 100M.
  • a first circuit 510 extending from the high pressure pipe 100H to the low pressure pipe 100L
  • a pressure equalizing circuit 520 that can equalize the pressure between the medium pressure pipe 100M.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • the first circuit 510 of the refrigerator 1 supplies high-pressure refrigerant having a higher temperature than the low-pressure refrigerant to the low-pressure pipe 100L.
  • the temperature of the refrigerant supplied from the low-pressure pipe 100L to the low-stage compressor 23 drops too much, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the low stage compressor 23 can be increased.
  • the pressure equalization circuit 520 connects the first circuit 510 and the injection circuit 120, so that the first circuit 510 equalizes the pressure of the high pressure pipe 100H and the low pressure pipe 100L, and the medium pressure pipe 100M through the injection circuit 120.
  • the pressure can be equalized. In this way, by using the injection circuit 120 also for pressure equalization, the number of newly installed piping can be reduced.
  • a pressure equalization circuit 520 connects the injection circuit 120 and a position 513 on the downstream side in the flow direction of the high-pressure refrigerant in the first circuit 510.
  • the downstream position 513 in the flow direction of the high-pressure refrigerant in the first circuit 510 is a position close to the low-pressure pipe 100L. Therefore, at a position close to the low pressure pipe 100L in the first circuit 510, the pressures of the medium pressure pipe 100M and the low pressure pipe 100L can be equalized via the injection circuit 120.
  • the refrigerator 1 supplies the refrigerant through the injection circuit 120 to the refrigerant cooled by the intercooler 24 provided in the medium pressure pipe 100M. If the temperature drops too much, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the high-stage compressor 26 is increased.
  • the first circuit 510 includes a flow rate adjustment mechanism 512, so that when the first valve 511 is opened, the flow rate of high-pressure refrigerant flowing from the high-pressure pipe 100H side to the low-pressure pipe 100L side can be adjusted. I can do it.
  • the downstream side of the oil separator 27 in the flow direction of the high-pressure refrigerant is a position where the pressure of the high-pressure refrigerant compressed by the high-stage compressor 26 is highest.
  • the downstream side of the inlet accumulator 21 in the flow direction of the low-pressure refrigerant is a position immediately before the low-stage compressor 23, where the pressure of the low-pressure refrigerant is lowest.
  • the first circuit 510 connects the downstream side of the oil separator 27 in the direction of flow of the high-pressure refrigerant, and the downstream side of the inlet accumulator 21 in the direction of flow of the low-pressure refrigerant in the low-pressure pipe 100L.
  • the high-stage compressor 26 and the low-stage compressor 23 each include two compression sections 231, 232, 261, and 262 in series. That is, the high-stage compressor 26 and the low-stage compressor 23 include a total of four stages of compression sections 231, 232, 261, and 262. In such a configuration, it is possible to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L.
  • the control device 300 of the refrigerator 1 opens the first valve 511 provided in the first circuit 510, and the high-pressure pipe 100H is opened.
  • the pressure of the low pressure pipe 100L is equalized.
  • the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the medium pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • programs for realizing various functions of the control device 300 are recorded on a computer-readable recording medium, and the programs recorded on the recording medium are read into a computer system such as a microcomputer. , various processes are performed by executing.
  • various processes of the CPU of the computer system are stored in a computer-readable recording medium in the form of a program, and the various processes described above are performed by reading and executing this program by the computer.
  • the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like.
  • this computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
  • the computer included in the control device 300 includes a CPU 310, a memory 320, a storage/playback device 330, an input/output interface (hereinafter referred to as "IO I/F”) 340, and a communication interface ( (hereinafter referred to as "communication I/F”) 350.
  • IO I/F input/output interface
  • communication I/F communication interface
  • the memory 320 is a medium such as Random Access Memory (hereinafter referred to as "RAM") that temporarily stores data and the like used in programs executed by the control device 300.
  • the storage/reproduction device 330 is a device for storing data and the like in external media such as CD-ROM, DVD, and flash memory, and for reproducing data and the like from the external media.
  • the IO I/F 340 is an interface for inputting/outputting information between the control device 300 and other devices.
  • the communication I/F 350 is an interface that communicates with other devices via a communication line such as the Internet or a dedicated communication line.
  • the refrigerator 1, the controller 300 for the refrigerator 1, the control method S10 for the refrigerator 1, and the program described in the embodiment are understood as follows, for example.
  • the refrigerator 1 includes a low-stage compressor 23 that compresses low-pressure refrigerant into medium-pressure refrigerant, a high-stage compressor 26 that compresses the medium-pressure refrigerant into high-pressure refrigerant, and the low-stage compressor 26 that compresses the medium-pressure refrigerant into high-pressure refrigerant.
  • a low-pressure pipe 100L connected to the compressor 23 and through which the low-pressure refrigerant flows; an intermediate-pressure pipe 100M connected between the low-stage compressor 23 and the high-stage compressor 26 through which the medium-pressure refrigerant flows;
  • a high-pressure pipe 100H connected to the high-stage compressor 26 and through which the high-pressure refrigerant flows, a first circuit 510 extending from the high-pressure pipe 100H to the low-pressure pipe 100L, and between the first circuit 510 and the medium-pressure pipe 100M.
  • the first circuit 510 includes a first valve 511 that opens and closes a flow path in the first circuit 510, and the pressure equalizing circuit 520 A pressure equalizing valve 521 that opens and closes a flow path in the circuit 520 is provided.
  • This refrigerator 1 includes a first circuit 510 extending from the high pressure pipe 100H to the low pressure pipe 100L, and a pressure equalizing circuit 520 that can equalize the pressure between the medium pressure pipe 100M.
  • a first circuit 510 extending from the high pressure pipe 100H to the low pressure pipe 100L
  • a pressure equalizing circuit 520 that can equalize the pressure between the medium pressure pipe 100M.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • the refrigerator 1 according to the second aspect is the refrigerator 1 of (1), in which when the first circuit 510 opens the first valve 511, the flow flows through the high pressure pipe 100H, and the The high-pressure refrigerant, which has a higher temperature than the low-pressure refrigerant, is supplied to the low-pressure pipe 100L.
  • the first circuit 510 supplies high-pressure refrigerant, which has a higher temperature than the low-pressure refrigerant, to the low-pressure pipe 100L.
  • the temperature of the refrigerant supplied from the low-pressure pipe 100L to the low-stage compressor 23 drops too much, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the low stage compressor 23 can be increased.
  • the refrigerator 1 according to the third aspect is the refrigerator 1 of (1) or (2), which is connected to the medium pressure pipe 100M, and is connected to the high stage compressor 26.
  • the pressure equalizing circuit 520 is capable of connecting the first circuit 510 and the injection circuit 120.
  • the pressure equalization circuit 520 connects the first circuit 510 and the injection circuit 120, so that the first circuit 510 equalizes the pressure of the high pressure pipe 100H and the low pressure pipe 100L, and the medium pressure pipe 100M through the injection circuit 120.
  • the pressure can be equalized. In this way, by using the injection circuit 120 also for pressure equalization, the number of newly installed piping can be reduced.
  • the refrigerator 1 according to the fourth aspect is the refrigerator 1 according to (3), in which the pressure equalization circuit 520 is connected to the injection circuit 120 and the first circuit 510. 513 on the downstream side in the flow direction of the high-pressure refrigerant.
  • the pressure equalization circuit 520 connects the injection circuit 120 and the position 513 on the downstream side in the flow direction of the high-pressure refrigerant in the first circuit 510.
  • the downstream position 513 in the flow direction of the high-pressure refrigerant in the first circuit 510 is a position close to the low-pressure pipe 100L. Therefore, at a position close to the low pressure pipe 100L in the first circuit 510, the pressures of the medium pressure pipe 100M and the low pressure pipe 100L can be equalized via the injection circuit 120.
  • the refrigerator 1 according to the fifth aspect is the refrigerator 1 of (3) or (4), which is disposed in the middle of the medium pressure pipe 100M and compressed by the low stage compressor 23.
  • the injection circuit 120 includes an intercooler 24 that cools the medium-pressure refrigerant, and the injection circuit 120 is connected between the intercooler 24 and the high-stage compressor 26 with respect to the medium-pressure pipe 100M.
  • the temperature of the refrigerant decreases too much by being cooled by the intercooler 24, for example. In this case, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the high-stage compressor 26 is increased.
  • the refrigerator 1 according to the sixth aspect is the refrigerator 1 according to any one of (1) to (5), and when the first circuit 510 opens the first valve 511, A flow rate adjustment mechanism 512 that adjusts the flow rate of the high-pressure refrigerant is provided.
  • the first circuit 510 includes the flow rate adjustment mechanism 512, when the first valve 511 is opened, the flow rate of the high-pressure refrigerant flowing from the high-pressure pipe 100H side to the low-pressure pipe 100L side can be adjusted.
  • the refrigerator 1 according to the seventh aspect is the refrigerator 1 according to any one of (1) to (6), in which the low-pressure refrigerant supplied to the low-stage compressor 23 is replaced with a gas refrigerant.
  • the first circuit 510 includes an accumulator 21 that separates oil from liquid refrigerant, and an oil separator 27 that separates oil contained in the high-pressure refrigerant discharged from the high-stage compressor 26. , the oil separator 27 is connected to the downstream side in the direction of flow of the high-pressure refrigerant, and the accumulator 21 is connected to the downstream side in the direction of flow of the low-pressure refrigerant in the low-pressure pipe 100L.
  • the downstream side of the oil separator 27 in the flow direction of the high-pressure refrigerant is a position where the pressure of the high-pressure refrigerant compressed by the high-stage compressor 26 is highest.
  • the downstream side of the accumulator 21 in the flow direction of the low-pressure refrigerant is a position immediately before the low-stage compressor 23, where the pressure of the low-pressure refrigerant is lowest.
  • the first circuit 510 connects the downstream side of the oil separator 27 in the direction of flow of high-pressure refrigerant, and the downstream side of the accumulator 21 in the direction of flow of low-pressure refrigerant in the low-pressure pipe 100L.
  • the refrigerator 1 according to the eighth aspect is the refrigerator 1 according to any one of (1) to (7), in which the high stage compressor 26 and the low stage compressor 23 are each , is a two-stage compressor equipped with two compression sections 231, 232, 261, and 262 in series.
  • the high-stage compressor 26 and the low-stage compressor 23 each include two compression sections 231, 232, 261, and 262 in series. That is, the high-stage compressor 26 and the low-stage compressor 23 include a total of four stages of compression sections 231, 232, 261, and 262. In such a configuration, it is possible to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L.
  • the control device 300 for the refrigerator 1 includes a low-stage compressor 23 that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, and a high-stage compressor 26 that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant. , a low-pressure pipe 100L connected to the low-stage compressor 23 and through which the low-pressure refrigerant flows; and an intermediate-pressure pipe connected between the low-stage compressor 23 and the high-stage compressor 26 and through which the medium-pressure refrigerant flows.
  • a first circuit 510 that is capable of controlling the refrigerator 1 and extends to the high-pressure pipe 100H and the low-pressure pipe 100L.
  • a first valve control unit 313 that opens a first valve 511; and a pressure equalization valve control unit 314 that opens a pressure equalization valve 521 of a pressure equalization circuit 520 that can equalize the pressure between the first circuit 510 and the medium pressure pipe 100M. , is provided.
  • opening the first valve 511 provided in the first circuit 510 equalizes the pressure in the high-pressure pipe 100H and the low-pressure pipe 100L. Ru.
  • the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • the control method S10 for the refrigerator 1 includes a low-stage compressor 23 that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, and a high-stage compressor 26 that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant.
  • a low-pressure pipe 100L connected to the low-stage compressor 23 and through which the low-pressure refrigerant flows; and an intermediate-pressure pipe connected between the low-stage compressor 23 and the high-stage compressor 26 and through which the medium-pressure refrigerant flows.
  • 100M and a high-pressure pipe 100H connected to the high-stage compressor 26 and through which the high-pressure refrigerant flows.
  • opening the first valve 511 provided in the first circuit 510 equalizes the pressure in the high-pressure pipe 100H and the low-pressure pipe 100L. Ru.
  • the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • the program according to the eleventh aspect includes: a low-stage compressor 23 that compresses low-pressure refrigerant into medium-pressure refrigerant; a high-stage compressor 26 that compresses the medium-pressure refrigerant into high-pressure refrigerant; 23, through which the low-pressure refrigerant flows; an intermediate-pressure pipe 100M, which is connected between the low-stage compressor 23 and the high-stage compressor 26, through which the medium-pressure refrigerant flows;
  • the control device 300 of the refrigerator 1 includes a high-pressure pipe 100H connected to the compressor 26 and through which the high-pressure refrigerant flows.
  • a control including a step of opening the pressure equalizing valve 521 is executed.
  • the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
  • refrigerator control device According to the refrigerator, refrigerator control device, refrigerator control method, and program of the present disclosure, it is possible to provide a refrigerator that is easy to pressure equalize.
  • Expansion valve for supercooling heat exchanger 100L...Low pressure pipe 100M...Medium pressure pipe 100H...High pressure pipe 101...First pipe 102...Second pipe 103...Third pipe 104...Fourth pipe 105...Fifth pipe 106...Sixth pipe 107...Seventh pipe 108...Eighth pipe 109...Ninth pipe 110...Tenth pipe 111...Eleventh pipe 112...Twelfth pipe 120...Injection circuit 231...First rotary compression section (compression section) 232...First scroll compression section (compression section) 241...Intercooler main body 242...Fan 261...Second rotary compression section (compression section) 262...Second scroll compression section (compression section) 300...control device 310...CPU 311...Operation control section 312...Injection valve control section 313...First valve control section 314...Pressure equalization valve control section 320...Memory 330...Storage/reproduction device 340...IO I/F 350

Abstract

This refrigerator comprises a low-stage compressor for compressing a low-pressure refrigerant to a medium-pressure refrigerant, a high-stage compressor for compressing the medium-pressure refrigerant to a high-pressure refrigerant, a low-pressure pipeline which is connected to the low-stage compressor and through which the low-pressure refrigerant flows, a medium-pressure pipeline which is connected between the low-stage compressor and the high-stage compressor and through which the medium-pressure refrigerant flows, a high-pressure pipeline which is connected to the high-stage compressor and through which the high-pressure refrigerant flows, a first circuit extending from the high-pressure pipeline to the low-pressure pipeline, and a pressure equalizing circuit capable of performing pressure equalization between the first circuit and the medium-pressure pipeline, wherein: the first circuit is provided with a first valve for opening and closing a flow passage in the first circuit; and the pressure equalizing circuit is provided with a pressure equalizing valve for opening and closing a flow passage in the pressure equalizing circuit.

Description

冷凍機、冷凍機の制御装置、冷凍機の制御方法、及びプログラムRefrigerator, refrigerator control device, refrigerator control method, and program
 本開示は、冷凍機、冷凍機の制御装置、冷凍機の制御方法、及びプログラムに関する。
 本願は、2022年7月13日に日本に出願された特願2022-112320号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to a refrigerator, a refrigerator control device, a refrigerator control method, and a program.
This application claims priority to Japanese Patent Application No. 2022-112320 filed in Japan on July 13, 2022, the contents of which are incorporated herein.
 特許文献1には、圧縮機を備えた室外ユニットを複数並列に備える冷凍機において、複数の室外ユニット間で、冷媒とともに圧縮機に供給する油の圧力を、均油管により調整する構成が開示されている。 Patent Document 1 discloses a configuration in which, in a refrigerator including a plurality of outdoor units each equipped with a compressor arranged in parallel, the pressure of oil supplied to the compressor together with refrigerant is adjusted between the plurality of outdoor units by an oil equalizing pipe. ing.
日本国特開2000-146324号公報Japanese Patent Application Publication No. 2000-146324
 ところで、冷凍機において、複数の圧縮機が直列に設けられる場合がある。この場合、冷凍機は、低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、を備える。
 このような冷凍機では、低段圧縮機に対して冷媒の流通方向の上流側の配管には、低圧冷媒が流れる。低段圧縮機と高段圧縮機との間の配管には、低段圧縮機で圧縮された中圧冷媒が流れる。高段圧縮機に対して冷媒の流通方向の下流側の配管には、高圧冷媒が流れる。このため、冷凍機の運転中、低段圧縮機の上流側の低圧配管と、低段圧縮機と高段圧縮機との間の中圧配管と、高段圧縮機の下流側の高圧配管との間には、冷媒の圧力に差が生じている。冷凍機が運転を停止した場合、冷凍機を安定して停止させるため等に、低圧配管と、中圧配管と、高圧配管との間の均圧化が望まれることがある。
 しかしながら、複数の圧縮機を備えた構成において、低圧配管と、中圧配管と、高圧配管との間の均圧化を図るには、構成が複雑になりやすい。
By the way, in a refrigerator, a plurality of compressors may be provided in series. In this case, the refrigerator includes a low-stage compressor that compresses low-pressure refrigerant into intermediate-pressure refrigerant, and a high-stage compressor that compresses intermediate-pressure refrigerant into high-pressure refrigerant.
In such a refrigerator, a low-pressure refrigerant flows through a pipe on the upstream side of the refrigerant flow direction with respect to the low-stage compressor. Medium-pressure refrigerant compressed by the low-stage compressor flows through the pipe between the low-stage compressor and the high-stage compressor. High-pressure refrigerant flows through the piping on the downstream side of the refrigerant flow direction with respect to the high-stage compressor. Therefore, during operation of the refrigerator, the low-pressure piping upstream of the low-stage compressor, the intermediate-pressure piping between the low-stage compressor and the high-stage compressor, and the high-pressure piping downstream of the high-stage compressor are connected. There is a difference in refrigerant pressure between the two. When the refrigerator stops operating, it may be desirable to equalize the pressure between the low pressure piping, intermediate pressure piping, and high pressure piping in order to stably stop the refrigerator.
However, in a configuration including a plurality of compressors, the configuration tends to become complicated in order to equalize the pressures among the low pressure piping, intermediate pressure piping, and high pressure piping.
 本開示は、上記課題を解決するためになされたものであって、均圧しやすい冷凍機、冷凍機の制御装置、冷凍機の制御方法、及びプログラムを提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a refrigerator, a refrigerator control device, a refrigerator control method, and a program that can easily equalize the pressure.
 上記課題を解決するために、本開示に係る冷凍機は、低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、前記高圧配管から前記低圧配管へ延びる第一回路と、前記第一回路と前記中圧配管との間を均圧可能な均圧回路と、を備え、前記第一回路は、前記第一回路内の流路を開閉する第一弁を備え、前記均圧回路は、前記均圧回路内の流路を開閉する均圧弁を備える。 In order to solve the above problems, a refrigerator according to the present disclosure includes: a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant; a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant; a low-pressure pipe connected to the compressor and through which the low-pressure refrigerant flows; an intermediate-pressure pipe connected between the low-stage compressor and the high-stage compressor and through which the medium-pressure refrigerant flows; A high-pressure pipe connected to the high-pressure pipe through which the high-pressure refrigerant flows, a first circuit extending from the high-pressure pipe to the low-pressure pipe, and a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the medium-pressure pipe. , the first circuit includes a first valve that opens and closes a flow path in the first circuit, and the pressure equalization circuit includes a pressure equalization valve that opens and closes a flow path in the pressure equalization circuit.
 本開示に係る冷凍機の制御装置は、低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、を備える冷凍機を制御可能であって、前記高圧配管と前記低圧配管へ延びる第一回路の第一弁を開く第一弁制御部と、前記第一回路と前記中圧配管との間を均圧可能な均圧回路の均圧弁を開く均圧弁制御部と、を備える。 A refrigerator control device according to the present disclosure includes a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant, and a high-stage compressor that is connected to the low-stage compressor. , a low-pressure pipe through which the low-pressure refrigerant flows, an intermediate-pressure pipe connected between the low-stage compressor and the high-stage compressor, and an intermediate-pressure pipe through which the medium-pressure refrigerant flows, and a high-pressure pipe connected to the high-stage compressor; a high-pressure pipe through which a refrigerant flows; a first valve control unit that is capable of controlling a refrigerator and opens a first valve of a first circuit extending to the high-pressure pipe and the low-pressure pipe; A pressure equalizing valve control unit that opens a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the pressure piping and the pressure piping.
 本開示に係る冷凍機の制御方法は、低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、を備える冷凍機の制御方法であって、前記低段圧縮機、及び前記高段圧縮機の運転が停止された場合に、前記高圧配管と前記低圧配管へ延びる第一回路の第一弁を開くステップと、前記第一回路と前記中圧配管との間を均圧可能な均圧回路の均圧弁を開くステップと、を含む。 A method for controlling a refrigerator according to the present disclosure includes a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant, and a high-stage compressor that is connected to the low-stage compressor. , a low-pressure pipe through which the low-pressure refrigerant flows, an intermediate-pressure pipe connected between the low-stage compressor and the high-stage compressor, and an intermediate-pressure pipe through which the medium-pressure refrigerant flows, and a high-pressure pipe connected to the high-stage compressor; A method for controlling a refrigerator, comprising: a high-pressure pipe through which a refrigerant flows; The method includes the steps of opening a first valve of a circuit, and opening a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the intermediate pressure piping.
 本開示に係るプログラムは、低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、を備える冷凍機の制御装置に、前記低段圧縮機、及び前記高段圧縮機の運転が停止された場合に、前記高圧配管と前記低圧配管へ延びる第一回路の第一弁を開くステップと、前記第一回路と前記中圧配管との間を均圧可能な均圧回路の均圧弁を開くステップと、を含む制御を実行させる。 A program according to the present disclosure includes: a low-stage compressor that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant; a high-stage compressor that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant; a low-pressure pipe connected between the low-stage compressor and the high-stage compressor and through which the medium-pressure refrigerant flows; and a high-pressure pipe connected to the high-stage compressor and through which the high-pressure refrigerant flows. A first valve of a first circuit extending to the high-pressure pipe and the low-pressure pipe when the operation of the low-stage compressor and the high-stage compressor is stopped. and opening a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the intermediate pressure pipe.
 本開示の冷凍機、冷凍機の制御装置、冷凍機の制御方法、及びプログラムによれば、均圧しやすい冷凍機を提供することができる。 According to the refrigerator, refrigerator control device, refrigerator control method, and program of the present disclosure, it is possible to provide a refrigerator that is easy to pressure equalize.
本開示の実施形態に係る冷凍機の構成を示す図である。FIG. 1 is a diagram showing the configuration of a refrigerator according to an embodiment of the present disclosure. 本開示の実施形態に係る冷凍機に備えられた第一回路、及び均圧回路の構成を示す図である。FIG. 2 is a diagram showing the configuration of a first circuit and a pressure equalization circuit provided in a refrigerator according to an embodiment of the present disclosure. 本開示の実施形態に係る冷凍機の制御装置の機能ブロック図である。FIG. 1 is a functional block diagram of a refrigerator control device according to an embodiment of the present disclosure. 本開示の実施形態に係る冷凍機の制御方法の手順を示すフローチャートである。1 is a flowchart illustrating a procedure of a method for controlling a refrigerator according to an embodiment of the present disclosure. 本開示の実施形態に係る冷凍機において、通常運転を行っている場合の冷媒の流れを示す図である。FIG. 2 is a diagram showing the flow of refrigerant during normal operation in the refrigerator according to the embodiment of the present disclosure. 本開示の実施形態に係る冷凍機において、運転を停止した場合の冷媒の流れを示す図である。FIG. 2 is a diagram showing the flow of refrigerant when operation is stopped in the refrigerator according to the embodiment of the present disclosure. 本開示の実施形態に係る冷凍機の制御装置のハードウェア構成を示す図である。FIG. 1 is a diagram showing a hardware configuration of a refrigerator control device according to an embodiment of the present disclosure.
 以下、本開示の実施形態に係る冷凍機、冷凍機の制御装置、冷凍機の制御方法、及びプログラムについて、図1~図7を参照して説明する。
(冷凍機の構成)
 図1に示すように、冷凍機1は、圧縮部2と、コンデンサ3と、膨張弁4と、レシーバ5と、を主に備えている。
 冷凍機1は、冷凍サイクルシステムを構成する室外機である。
 冷凍機1は、冷凍サイクルシステムを構成する室内機(図示無し)との間で、冷媒を循環する。
 冷凍機1は、冷媒を冷却し、液冷媒を生成する。
 冷凍機1は、生成した液冷媒を室内機(図示無し)に供給する。
 冷凍機1は、室内機から、室内機で熱交換を行うことで温度上昇した冷媒を吸入する。
 本実施形態において、冷媒は、例えば二酸化炭素(CO)である。
 冷媒は、二酸化炭素以外のものであってもよい。
Hereinafter, a refrigerator, a refrigerator control device, a refrigerator control method, and a program according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 7.
(Composition of refrigerator)
As shown in FIG. 1, the refrigerator 1 mainly includes a compression section 2, a condenser 3, an expansion valve 4, and a receiver 5.
Refrigerator 1 is an outdoor unit that constitutes a refrigeration cycle system.
The refrigerator 1 circulates refrigerant between it and an indoor unit (not shown) that constitutes a refrigeration cycle system.
Refrigerator 1 cools refrigerant and generates liquid refrigerant.
The refrigerator 1 supplies the generated liquid refrigerant to an indoor unit (not shown).
The refrigerator 1 sucks refrigerant whose temperature has increased by performing heat exchange with the indoor unit from the indoor unit.
In this embodiment, the refrigerant is, for example, carbon dioxide (CO 2 ).
The refrigerant may be other than carbon dioxide.
 圧縮部2は、室内機から循環される冷媒を圧縮する。
 圧縮部2は、入口アキュムレータ(アキュムレータ)21と、サブアキュムレータ22と、低段圧縮機23と、インタークーラ24と、中間アキュムレータ25と、高段圧縮機26と、オイルセパレータ27と、を主に備えている。
The compression section 2 compresses refrigerant circulated from the indoor unit.
The compression section 2 mainly includes an inlet accumulator (accumulator) 21, a sub-accumulator 22, a low-stage compressor 23, an intercooler 24, an intermediate accumulator 25, a high-stage compressor 26, and an oil separator 27. We are prepared.
 入口アキュムレータ21は、第一配管101を通して、室内機から冷媒を吸入する。
 入口アキュムレータ21は、室内機(図示無し)から吸入した冷媒を、ガス冷媒と液冷媒とに分離する。
 入口アキュムレータ21には、第一配管101を通して、室内機(図示無し)から排出された冷媒が流入される。
 入口アキュムレータ21は、入口アキュムレータ21内で分離されたガス冷媒を、第二配管102を通してサブアキュムレータ22に供給する。
 第二配管102は、入口アキュムレータ21と、サブアキュムレータ22と、を接続する。
The inlet accumulator 21 sucks refrigerant from the indoor unit through the first pipe 101.
The inlet accumulator 21 separates refrigerant sucked in from an indoor unit (not shown) into gas refrigerant and liquid refrigerant.
Refrigerant discharged from an indoor unit (not shown) flows into the inlet accumulator 21 through the first pipe 101.
The inlet accumulator 21 supplies the gas refrigerant separated within the inlet accumulator 21 to the sub-accumulator 22 through the second pipe 102.
The second pipe 102 connects the inlet accumulator 21 and the sub-accumulator 22.
 入口アキュムレータ21で分離された液冷媒に含まれる油は、第一油戻し管401を通して、サブアキュムレータ22に送られる。
 第一油戻し管401は、入口アキュムレータ21の底部と、第二配管102と、を接続する。
 第一油戻し管401を通して第二配管102内に供給される油は、第二配管102内を流れるガス冷媒に混入し、サブアキュムレータ22に送られる。
Oil contained in the liquid refrigerant separated at the inlet accumulator 21 is sent to the sub-accumulator 22 through the first oil return pipe 401.
The first oil return pipe 401 connects the bottom of the inlet accumulator 21 and the second pipe 102.
The oil supplied into the second pipe 102 through the first oil return pipe 401 mixes with the gas refrigerant flowing inside the second pipe 102 and is sent to the sub-accumulator 22.
 サブアキュムレータ22は、第二配管102を通して、入口アキュムレータ21で分離されたガス冷媒が流れ込む。
 サブアキュムレータ22は、ガス冷媒と液冷媒と、を分離する。
 サブアキュムレータ22は、入口アキュムレータ21で分離されたガス冷媒に含まれる、液冷媒を分離する。
 サブアキュムレータ22は、サブアキュムレータ22内で分離されたガス冷媒を、第三配管103を通して、低段圧縮機23に供給する。
 第三配管103は、サブアキュムレータ22と、低段圧縮機23と、を接続する。
The gas refrigerant separated at the inlet accumulator 21 flows into the sub-accumulator 22 through the second pipe 102 .
The sub-accumulator 22 separates gas refrigerant and liquid refrigerant.
The sub-accumulator 22 separates liquid refrigerant contained in the gas refrigerant separated by the inlet accumulator 21.
The sub-accumulator 22 supplies the gas refrigerant separated within the sub-accumulator 22 to the low stage compressor 23 through the third pipe 103.
The third pipe 103 connects the sub-accumulator 22 and the low-stage compressor 23.
 低段圧縮機23は、低段圧縮機23が作動することによって生じる負圧により、第三配管103を通して、サブアキュムレータ22で分離されたガス冷媒を吸い込む。
 低段圧縮機23は、吸い込んだガス冷媒を圧縮する。
 低段圧縮機23は、本実施形態において、第一ロータリー圧縮部(圧縮部)231と、第一スクロール圧縮部(圧縮部)232と、を直列に備えた二段圧縮機である。
 第一ロータリー圧縮部231は、第三配管103を通して吸い込んだガス冷媒を圧縮する。
 第一スクロール圧縮部232は、第一ロータリー圧縮部231で圧縮された冷媒をさらに圧縮する。
 第一スクロール圧縮部232で圧縮された冷媒は、第四配管104を通してインタークーラ24に吐出される。
 第四配管104は、低段圧縮機23とインタークーラ24とを接続する。
The low-stage compressor 23 sucks the gas refrigerant separated by the sub-accumulator 22 through the third pipe 103 due to the negative pressure generated by the operation of the low-stage compressor 23 .
The low stage compressor 23 compresses the sucked gas refrigerant.
In this embodiment, the low-stage compressor 23 is a two-stage compressor that includes a first rotary compression section (compression section) 231 and a first scroll compression section (compression section) 232 in series.
The first rotary compression section 231 compresses the gas refrigerant sucked through the third pipe 103.
The first scroll compression section 232 further compresses the refrigerant compressed by the first rotary compression section 231.
The refrigerant compressed in the first scroll compression section 232 is discharged to the intercooler 24 through the fourth pipe 104.
The fourth pipe 104 connects the low stage compressor 23 and the intercooler 24.
 インタークーラ24及び中間アキュムレータ25は、低段圧縮機23と高段圧縮機26との間に配置されている。
 インタークーラ24は、低段圧縮機23で圧縮された冷媒が、第四配管104を通して送り込まれる。
 インタークーラ24は、送り込まれた冷媒を冷却する。
 インタークーラ24は、本実施形態において、例えば、空冷式である。
 インタークーラ24は、インタークーラ本体241と、ファン242と、を備えている。
 インタークーラ本体241は、低段圧縮機23で圧縮された冷媒の流通路(図示無し)を有している。
 インタークーラ本体241は、流通管内を流れる冷媒と、流通管の外部の外気との間で熱交換を行う。
 ファン242は、インタークーラ本体241に風を送り、インタークーラ本体241における熱交換の効率化を図る。
 インタークーラ24で冷却された冷媒は、第五配管105を通して中間アキュムレータ25に送られる。
 第五配管105は、インタークーラ24と中間アキュムレータ25と、を接続する。
Intercooler 24 and intermediate accumulator 25 are arranged between low stage compressor 23 and high stage compressor 26.
The refrigerant compressed by the low-stage compressor 23 is sent to the intercooler 24 through the fourth pipe 104.
The intercooler 24 cools the refrigerant sent therein.
In this embodiment, the intercooler 24 is, for example, an air-cooled type.
Intercooler 24 includes an intercooler main body 241 and a fan 242.
The intercooler main body 241 has a flow path (not shown) for the refrigerant compressed by the low stage compressor 23.
The intercooler main body 241 exchanges heat between the refrigerant flowing inside the flow pipe and the outside air outside the flow pipe.
The fan 242 sends air to the intercooler body 241 to improve the efficiency of heat exchange in the intercooler body 241.
The refrigerant cooled by the intercooler 24 is sent to the intermediate accumulator 25 through the fifth pipe 105.
The fifth pipe 105 connects the intercooler 24 and the intermediate accumulator 25.
 中間アキュムレータ25は、インタークーラ24で冷却され、第五配管105を通して送り込まれた冷媒を、ガス冷媒と液冷媒とに分離する。
 中間アキュムレータ25内で分離されたガス冷媒は、第六配管106を通して高段圧縮機26に供給される。
 第六配管106は、中間アキュムレータ25と、高段圧縮機26と、を接続する。
The intermediate accumulator 25 is cooled by the intercooler 24 and separates the refrigerant sent through the fifth pipe 105 into a gas refrigerant and a liquid refrigerant.
The gas refrigerant separated in the intermediate accumulator 25 is supplied to the high stage compressor 26 through the sixth pipe 106.
The sixth pipe 106 connects the intermediate accumulator 25 and the high-stage compressor 26.
 中間アキュムレータ25で分離された液冷媒に含まれる油は、第二油戻し管402を通して、高段圧縮機26に送られる。
 第二油戻し管402は、中間アキュムレータ25の底部と、第六配管106と、を接続する。
 第二油戻し管402を通して第六配管106内に供給される油は、第六配管106内を流れる冷媒に混入し、高段圧縮機26に送られる。
The oil contained in the liquid refrigerant separated in the intermediate accumulator 25 is sent to the high stage compressor 26 through the second oil return pipe 402.
The second oil return pipe 402 connects the bottom of the intermediate accumulator 25 and the sixth pipe 106.
The oil supplied into the sixth pipe 106 through the second oil return pipe 402 mixes with the refrigerant flowing inside the sixth pipe 106 and is sent to the high stage compressor 26.
 高段圧縮機26は、高段圧縮機26が作動することによって生じる負圧により、第六配管106を通して、中間アキュムレータ25で分離されたガス冷媒を吸い込む。
 高段圧縮機26は、吸い込んだガス冷媒を圧縮する。
 高段圧縮機26は、本実施形態において、第二ロータリー圧縮部(圧縮部)261と、第二スクロール圧縮部(圧縮部)262と、を直列に備えた二段圧縮機である。
 第二ロータリー圧縮部261は、第六配管106を通して吸い込んだガス冷媒を圧縮する。
 第二スクロール圧縮部262は、第二ロータリー圧縮部261で圧縮された高温高圧の冷媒をさらに圧縮する。
 高段圧縮機26で圧縮された冷媒は、第七配管107を通してオイルセパレータ27に送られる。
 第七配管107は、高段圧縮機26とオイルセパレータ27と、を接続する。
The high-stage compressor 26 sucks the gas refrigerant separated by the intermediate accumulator 25 through the sixth pipe 106 due to the negative pressure generated by the operation of the high-stage compressor 26 .
The high stage compressor 26 compresses the sucked gas refrigerant.
In this embodiment, the high-stage compressor 26 is a two-stage compressor that includes a second rotary compression section (compression section) 261 and a second scroll compression section (compression section) 262 in series.
The second rotary compression section 261 compresses the gas refrigerant sucked through the sixth pipe 106.
The second scroll compression section 262 further compresses the high temperature and high pressure refrigerant compressed by the second rotary compression section 261.
The refrigerant compressed by the high-stage compressor 26 is sent to the oil separator 27 through the seventh pipe 107.
The seventh pipe 107 connects the high-stage compressor 26 and the oil separator 27.
 オイルセパレータ27は、高段圧縮機26で圧縮され、第七配管107を通して送り込まれた冷媒から、冷媒に含まれる油を分離する。
 オイルセパレータ27で油が分離された冷媒は、第八配管108を通してコンデンサ3に送られる。
 第八配管108は、オイルセパレータ27と、コンデンサ3と、を接続する。
The oil separator 27 separates oil contained in the refrigerant from the refrigerant compressed by the high-stage compressor 26 and sent through the seventh pipe 107.
The refrigerant from which oil has been separated by the oil separator 27 is sent to the condenser 3 through the eighth pipe 108.
The eighth pipe 108 connects the oil separator 27 and the capacitor 3.
 オイルセパレータ27で分離された油は、第三油戻し管403を通してオイルタンク28に排出される。
 第三油戻し管403は、オイルセパレータ27と、オイルタンク28と、を接続する。
 オイルタンク28は、第三油戻し管403を通してオイルセパレータ27から排出された油を貯留する。
The oil separated by the oil separator 27 is discharged into the oil tank 28 through the third oil return pipe 403.
The third oil return pipe 403 connects the oil separator 27 and the oil tank 28.
The oil tank 28 stores oil discharged from the oil separator 27 through the third oil return pipe 403.
 オイルタンク28に貯留された油は、第四油戻し管404、第五油戻し管405を通して、低段圧縮機23、高段圧縮機26に戻される。
 第四油戻し管404、第五油戻し管405の途中には、油冷却器29が備えられている。
 油冷却器29は、第四油戻し管404、第五油戻し管405を通る油を冷却する。
The oil stored in the oil tank 28 is returned to the low stage compressor 23 and the high stage compressor 26 through a fourth oil return pipe 404 and a fifth oil return pipe 405.
An oil cooler 29 is provided in the middle of the fourth oil return pipe 404 and the fifth oil return pipe 405.
The oil cooler 29 cools the oil passing through the fourth oil return pipe 404 and the fifth oil return pipe 405.
 コンデンサ3は、第八配管108を通して送られた冷媒を冷却し、凝縮させる。
 コンデンサ3は、本実施形態において、例えば、空冷式である。
 コンデンサ3は、コンデンサ本体31と、ファン32と、を備えている。
 コンデンサ本体31は、第八配管108を通して送り込まれた冷媒の流通路(図示無し)を有している。
 第八配管108を通しては、流通管内を流れる冷媒と、流通管の外部の外気との間で熱交換を行う。
 ファン32は、コンデンサ本体31に風を送り、コンデンサ本体31における熱交換の効率化を図る。
 コンデンサ3で冷却された冷媒は、第九配管109を通して膨張弁4に送られる。
 第九配管109は、コンデンサ3と、膨張弁4と、を接続する。
The condenser 3 cools and condenses the refrigerant sent through the eighth pipe 108.
In this embodiment, the capacitor 3 is, for example, an air-cooled type.
The capacitor 3 includes a capacitor body 31 and a fan 32.
The condenser body 31 has a flow path (not shown) for the refrigerant fed through the eighth pipe 108.
Through the eighth pipe 108, heat exchange is performed between the refrigerant flowing inside the flow pipe and the outside air outside the flow pipe.
The fan 32 sends air to the capacitor body 31 to improve the efficiency of heat exchange in the capacitor body 31.
The refrigerant cooled by the condenser 3 is sent to the expansion valve 4 through the ninth pipe 109.
The ninth pipe 109 connects the condenser 3 and the expansion valve 4.
 膨張弁4は、コンデンサ3で凝縮され、第九配管109を通して送り込まれた冷媒を膨張させる。
 膨張弁4は、膨張させた冷媒を、第十配管110を通してレシーバ5に送る。
 第十配管110は、膨張弁4と、レシーバ5と、を接続する。
The expansion valve 4 expands the refrigerant condensed in the condenser 3 and sent through the ninth pipe 109.
The expansion valve 4 sends the expanded refrigerant to the receiver 5 through the tenth pipe 110.
The tenth pipe 110 connects the expansion valve 4 and the receiver 5.
 レシーバ5は、膨張弁4で膨張され、第十配管110を通して送り込まれた冷媒を、ガス冷媒と液冷媒とに分離する。
 レシーバ5は、分離した液冷媒を、第十一配管111を通して、室内機(図示無し)へ供給する。
The receiver 5 separates the refrigerant expanded by the expansion valve 4 and sent through the tenth pipe 110 into a gas refrigerant and a liquid refrigerant.
The receiver 5 supplies the separated liquid refrigerant to an indoor unit (not shown) through the eleventh pipe 111.
 本実施形態において、第十一配管111の途中には、過冷却熱交換器6が備えられている。
 過冷却熱交換器6は、第十一配管111を通して室内機に供給される液冷媒を、さらに冷却(過冷却)する。
 過冷却熱交換器6は、第十一配管111を通して送り込まれた液冷媒の第一流通路(図示無し)と、第十二配管112を通して送り込まれた液冷媒の第二流通路(図示無し)と、を有している。
In this embodiment, a subcooling heat exchanger 6 is provided in the middle of the eleventh pipe 111.
The supercooling heat exchanger 6 further cools (supercools) the liquid refrigerant supplied to the indoor unit through the eleventh pipe 111.
The subcooling heat exchanger 6 includes a first flow path (not shown) for liquid refrigerant sent through the eleventh pipe 111 and a second flow path (not shown) for the liquid refrigerant sent through the twelfth pipe 112. ,have.
 第十二配管112は、第十一配管111から分岐している。
 第十二配管112の一端は、第十一配管111において、過冷却熱交換器6に対し、第十一配管111における冷媒の流通方向の上流側で、第十一配管111から分岐している。
 第十二配管112の他端は、過冷却熱交換器6の第二流通路に接続されている。
 第十二配管112には、インジェクション弁61と、過冷却熱交換器用膨張弁62と、が備えられている。
The twelfth pipe 112 branches from the eleventh pipe 111.
One end of the twelfth pipe 112 is branched from the eleventh pipe 111 on the upstream side of the subcooling heat exchanger 6 in the flow direction of the refrigerant in the eleventh pipe 111. .
The other end of the twelfth pipe 112 is connected to the second flow path of the subcooling heat exchanger 6.
The twelfth pipe 112 is equipped with an injection valve 61 and an expansion valve 62 for a supercooling heat exchanger.
 インジェクション弁61は、第十二配管112内の液冷媒の流路を開閉する。
 インジェクション弁61は、制御装置300により、その開閉動作が制御される。
 インジェクション弁61を開いた場合、第十二配管112を通して過冷却熱交換器6に液冷媒が供給される。
 インジェクション弁61を閉じた場合、第十二配管112を通した過冷却熱交換器6への液冷媒の供給は行われない。
The injection valve 61 opens and closes the liquid refrigerant flow path within the twelfth pipe 112 .
The opening and closing operations of the injection valve 61 are controlled by the control device 300.
When the injection valve 61 is opened, liquid refrigerant is supplied to the supercooling heat exchanger 6 through the twelfth pipe 112.
When the injection valve 61 is closed, the liquid refrigerant is not supplied to the subcooling heat exchanger 6 through the twelfth pipe 112.
 過冷却熱交換器用膨張弁62は、第十二配管112を通る液冷媒を膨張させる。
 過冷却熱交換器6は、第十一配管111を通して送り込まれた液冷媒の第一流通路(図示無し)と、第十二配管112を通して送り込まれた液冷媒の第二流通路とで、液冷媒の流通方向が互いに反対向きとなるように構成されている。
 過冷却熱交換器6は、互いに反対向きに流れる、第一流通路内の液冷媒と、第二流通路内の液冷媒とで熱交換を行う。
 過冷却熱交換器6において、第一流通路内の液冷媒は、過冷却熱交換器用膨張弁62で膨張された第二流通路内の液冷媒との熱交換により、冷却される。
 過冷却熱交換器6の第一流通路で冷却された液冷媒は、第十一配管111を通して室内機に供給される。
The subcooling heat exchanger expansion valve 62 expands the liquid refrigerant passing through the twelfth pipe 112.
The subcooling heat exchanger 6 has a first flow path (not shown) for the liquid refrigerant sent through the eleventh pipe 111 and a second flow path for the liquid refrigerant sent through the twelfth pipe 112. The flow directions of the two are opposite to each other.
The supercooling heat exchanger 6 exchanges heat between the liquid refrigerant in the first flow path and the liquid refrigerant in the second flow path, which flow in opposite directions.
In the subcooling heat exchanger 6, the liquid refrigerant in the first flow path is cooled by heat exchange with the liquid refrigerant in the second flow path expanded by the subcooling heat exchanger expansion valve 62.
The liquid refrigerant cooled in the first flow path of the supercooling heat exchanger 6 is supplied to the indoor unit through the eleventh pipe 111.
 過冷却熱交換器6において、第二流通路内の液冷媒は、第一流通路内の液冷媒との熱交換により、温度上昇する。
 過冷却熱交換器6の第二流通路で加熱された液冷媒は、インジェクション回路120を通して、高段圧縮機26に供給される。
In the supercooling heat exchanger 6, the temperature of the liquid refrigerant in the second flow path increases through heat exchange with the liquid refrigerant in the first flow path.
The liquid refrigerant heated in the second flow path of the subcooling heat exchanger 6 is supplied to the high stage compressor 26 through the injection circuit 120.
 インジェクション回路120は、過冷却熱交換器6と、第六配管106と、を接続する。
 インジェクション回路120は、中間アキュムレータ25に対して、冷媒の流通方向の下流側に配置された第六配管106に接続されている。
 インジェクション回路120は、インタークーラ24と高段圧縮機26との間で、第六配管106に接続されている。
 インジェクション回路120は、過冷却熱交換器6で加熱された液冷媒を、第六配管106を通して高段圧縮機26に送り込む。
 第六配管106は、第二ロータリー圧縮部261と、第二スクロール圧縮部262との間で、高段圧縮機26に接続されている。
 インジェクション回路120は、第二ロータリー圧縮部261の後段側で、液冷媒を高段圧縮機26に送り込む。
The injection circuit 120 connects the subcooling heat exchanger 6 and the sixth pipe 106.
The injection circuit 120 is connected to a sixth pipe 106 that is disposed on the downstream side of the intermediate accumulator 25 in the flow direction of the refrigerant.
The injection circuit 120 is connected to the sixth pipe 106 between the intercooler 24 and the high-stage compressor 26.
The injection circuit 120 sends the liquid refrigerant heated by the subcooling heat exchanger 6 to the high stage compressor 26 through the sixth pipe 106.
The sixth pipe 106 is connected to the high stage compressor 26 between the second rotary compression section 261 and the second scroll compression section 262.
The injection circuit 120 feeds the liquid refrigerant into the high-stage compressor 26 on the downstream side of the second rotary compression section 261 .
 インジェクション回路120は、制御装置300の制御によってインジェクション弁61が開いた場合、液冷媒を、第六配管106を通して高段圧縮機26に注入する。
 インジェクション回路120は、制御装置300の制御によってインジェクション弁61が閉じている場合、高段圧縮機26への液冷媒の注入を行わない。
The injection circuit 120 injects liquid refrigerant into the high-stage compressor 26 through the sixth pipe 106 when the injection valve 61 is opened under the control of the control device 300 .
The injection circuit 120 does not inject liquid refrigerant into the high-stage compressor 26 when the injection valve 61 is closed under the control of the control device 300 .
 このような冷凍機1は、低圧配管100Lと、中圧配管100Mと、高圧配管100Hと、を有している。
 低圧配管100Lは、低段圧縮機23で圧縮される前の、低圧冷媒が流れる。
 低圧配管100Lを流れる低圧冷媒は、冷凍機1において最も圧力が低い。
 低圧配管100Lは、低段圧縮機23に接続されている。
 低圧配管100Lは、低段圧縮機23に対し、冷媒の流通方向の上流側に配置された、第一配管101、第二配管102、及び第三配管103を備えている。
Such a refrigerator 1 has a low pressure pipe 100L, a medium pressure pipe 100M, and a high pressure pipe 100H.
The low-pressure refrigerant before being compressed by the low-stage compressor 23 flows through the low-pressure pipe 100L.
The low pressure refrigerant flowing through the low pressure pipe 100L has the lowest pressure in the refrigerator 1.
The low pressure pipe 100L is connected to the low stage compressor 23.
The low-pressure pipe 100L includes a first pipe 101, a second pipe 102, and a third pipe 103, which are arranged on the upstream side of the low-stage compressor 23 in the flow direction of the refrigerant.
 低段圧縮機23は、低圧冷媒を中圧冷媒に圧縮する。
 中圧配管100Mは、低段圧縮機23で圧縮された、中圧冷媒が流れる。
 中圧配管100Mは、低段圧縮機23と高段圧縮機26との間に接続されている。
 中圧配管100Mは、第四配管104、及び第五配管105、及び第六配管106を備えている。
The low stage compressor 23 compresses low pressure refrigerant into medium pressure refrigerant.
Medium pressure refrigerant compressed by the low stage compressor 23 flows through the medium pressure pipe 100M.
The medium pressure pipe 100M is connected between the low stage compressor 23 and the high stage compressor 26.
The medium pressure pipe 100M includes a fourth pipe 104, a fifth pipe 105, and a sixth pipe 106.
 高段圧縮機26は、中圧冷媒を高圧冷媒に圧縮する。
 高圧配管100Hは、高段圧縮機26で圧縮された、高圧冷媒が流れる。
 高圧配管100Hを流れる高圧冷媒は、冷凍機1において最も圧力が高い。
 高圧配管100Hは、高段圧縮機26に接続されている。
 高圧配管100Hは、高段圧縮機26と、膨張弁4との間に配置されている。
 高圧配管100Hは、第七配管107、第八配管108、及び第九配管109を備えている。
The high-stage compressor 26 compresses medium-pressure refrigerant into high-pressure refrigerant.
A high-pressure refrigerant compressed by the high-stage compressor 26 flows through the high-pressure pipe 100H.
The high pressure refrigerant flowing through the high pressure pipe 100H has the highest pressure in the refrigerator 1.
High pressure piping 100H is connected to high stage compressor 26.
High pressure piping 100H is arranged between high stage compressor 26 and expansion valve 4.
The high pressure pipe 100H includes a seventh pipe 107, an eighth pipe 108, and a ninth pipe 109.
 冷凍機1は、均圧機構500を備えている。
 均圧機構500は、運転停止時に、低圧配管100Lと、中圧配管100Mと、高圧配管100Hとの間で均圧を図る。
 図1、図2に示すように、均圧機構500は、第一回路510と、均圧回路520と、を備えている。
The refrigerator 1 includes a pressure equalization mechanism 500.
The pressure equalization mechanism 500 attempts to equalize the pressure between the low pressure pipe 100L, the medium pressure pipe 100M, and the high pressure pipe 100H when the operation is stopped.
As shown in FIGS. 1 and 2, the pressure equalization mechanism 500 includes a first circuit 510 and a pressure equalization circuit 520.
 第一回路510は、高圧配管100Hから低圧配管100Lへ延びている。
 第一回路510は、高圧配管100Hにおいて、オイルセパレータ27に対して高圧冷媒の流通方向の下流側と、低圧配管100Lにおいて、入口アキュムレータ21に対して低圧冷媒の流通方向の下流側とを接続する。
 第一回路510の一端510aは、高圧配管100Hにおいて、オイルセパレータ27に対して高圧冷媒の流通方向の下流側で、第八配管108に接続されている。
 第一回路510の他端510bは、低圧配管100Lにおいて、入口アキュムレータ21に対して低圧冷媒の流通方向の下流側で、第二配管102に接続されている。
The first circuit 510 extends from the high pressure pipe 100H to the low pressure pipe 100L.
The first circuit 510 connects the downstream side of the high-pressure refrigerant flow direction with respect to the oil separator 27 in the high-pressure pipe 100H, and the downstream side of the low-pressure refrigerant flow direction with respect to the inlet accumulator 21 in the low-pressure pipe 100L. .
One end 510a of the first circuit 510 is connected to the eighth pipe 108 on the downstream side of the oil separator 27 in the high-pressure refrigerant flow direction in the high-pressure pipe 100H.
The other end 510b of the first circuit 510 is connected to the second pipe 102 on the downstream side of the inlet accumulator 21 in the low-pressure refrigerant flow direction in the low-pressure pipe 100L.
 第一回路510は、第一弁511と、流量調整機構512と、を備えている。
 第一弁511は、第一回路510内の流路を開閉する。
 第一回路510は、第一弁511を開いた場合、高圧配管100Hを流れ、低圧冷媒よりも圧力、及び温度が高い高圧冷媒を、低圧配管100Lに供給する。
 第一弁511は、制御装置300により、その開閉動作が制御される。
 第一弁511を開いた場合、第一回路510を通して、高圧配管100Hを通して、高圧冷媒が低圧配管100Lに供給される。これにより、高圧配管100Hと低圧配管100Lとの均圧が図られる。
 第一弁511を閉じた場合、第一回路510を通した均圧は行われない。
The first circuit 510 includes a first valve 511 and a flow rate adjustment mechanism 512.
The first valve 511 opens and closes the flow path within the first circuit 510.
When the first valve 511 is opened, the first circuit 510 supplies high-pressure refrigerant that flows through the high-pressure pipe 100H and has a higher pressure and temperature than the low-pressure refrigerant to the low-pressure pipe 100L.
The opening and closing operations of the first valve 511 are controlled by the control device 300.
When the first valve 511 is opened, high-pressure refrigerant is supplied to the low-pressure pipe 100L through the first circuit 510 and the high-pressure pipe 100H. Thereby, pressure equalization between the high pressure pipe 100H and the low pressure pipe 100L is achieved.
When the first valve 511 is closed, no pressure equalization through the first circuit 510 takes place.
 流量調整機構512は、第一回路510において、第一弁511に対して、第一回路510における冷媒の流通方向の下流側に配置されている。
 流量調整機構512は、例えば、キャピラリ配管である。
 第一回路510を流れる冷媒は、キャピラリ配管からなる流量調整機構512によって流路抵抗を受け、その流量が低減される。
 流量調整機構512は、キャピラリ配管以外の構成であってもよい。
The flow rate adjustment mechanism 512 is disposed in the first circuit 510 on the downstream side of the first valve 511 in the refrigerant flow direction in the first circuit 510 .
The flow rate adjustment mechanism 512 is, for example, a capillary pipe.
The refrigerant flowing through the first circuit 510 is subjected to flow path resistance by a flow rate adjustment mechanism 512 made of capillary piping, and its flow rate is reduced.
The flow rate adjustment mechanism 512 may have a configuration other than capillary piping.
 均圧回路520は、第一回路510とインジェクション回路120とを接続可能とされている。
 均圧回路520は、インジェクション回路120と、第一回路510において、第一回路510における高圧冷媒の流通方向の下流側の位置513とを接続している。
 均圧回路520の一端520aは、インジェクション回路120に接続されている。
 均圧回路520の一端520aは、過冷却熱交換器6と第六配管106との間で、インジェクション回路120に接続されている。
 均圧回路520の他端520bは、第一回路510に接続されている。
 均圧回路520の他端520bは、第一回路510において、第一弁511よりも高圧冷媒の流通方向の下流側の位置513に接続されている。
The pressure equalization circuit 520 is capable of connecting the first circuit 510 and the injection circuit 120.
The pressure equalization circuit 520 connects the injection circuit 120 and a position 513 on the downstream side of the first circuit 510 in the flow direction of the high-pressure refrigerant.
One end 520a of the pressure equalization circuit 520 is connected to the injection circuit 120.
One end 520a of the pressure equalization circuit 520 is connected to the injection circuit 120 between the subcooling heat exchanger 6 and the sixth pipe 106.
The other end 520b of the pressure equalizing circuit 520 is connected to the first circuit 510.
The other end 520b of the pressure equalizing circuit 520 is connected to a position 513 in the first circuit 510 on the downstream side of the first valve 511 in the flow direction of the high-pressure refrigerant.
 均圧回路520は、均圧弁521を備えている。
 均圧弁521は、均圧回路520内の流路を開閉する。
 均圧回路520は、均圧弁521を開いた場合、第一回路510とインジェクション回路120とを接続する。
 均圧弁521を開いた場合、均圧回路520を通して、第一回路510とインジェクション回路120とが連通する。
 均圧弁521を開いた場合、均圧回路520、及びインジェクション回路120を介して、第一回路510によって連通する高圧配管100H、及び低圧配管100Lと、中圧配管100Mとが連通する。
 均圧弁521を開いた場合、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。
 均圧弁521は、制御装置300により、その開閉動作が制御される。
The pressure equalization circuit 520 includes a pressure equalization valve 521.
The pressure equalization valve 521 opens and closes the flow path within the pressure equalization circuit 520.
The pressure equalization circuit 520 connects the first circuit 510 and the injection circuit 120 when the pressure equalization valve 521 is opened.
When the pressure equalization valve 521 is opened, the first circuit 510 and the injection circuit 120 communicate with each other through the pressure equalization circuit 520.
When the pressure equalization valve 521 is opened, the high pressure pipe 100H and the low pressure pipe 100L, which are communicated through the first circuit 510, communicate with the medium pressure pipe 100M via the pressure equalization circuit 520 and the injection circuit 120.
When the pressure equalization valve 521 is opened, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized.
The opening and closing operations of the pressure equalizing valve 521 are controlled by the control device 300.
(制御装置の構成)
 制御装置300は、冷凍機1を制御可能とされている。
 制御装置300は、少なくとも、低段圧縮機23、高段圧縮機26、インジェクション弁61、第一弁511、及び均圧弁521の開閉動作を制御する。
 図3に示すように、制御装置300は、Central Processing Unit(以下、「CPU」という。)310と、メモリ320と、を備える。
(Configuration of control device)
The control device 300 is capable of controlling the refrigerator 1.
The control device 300 controls the opening and closing operations of at least the low stage compressor 23, the high stage compressor 26, the injection valve 61, the first valve 511, and the pressure equalizing valve 521.
As shown in FIG. 3, the control device 300 includes a Central Processing Unit (hereinafter referred to as "CPU") 310 and a memory 320.
 CPU310は、運転制御部311と、インジェクション弁制御部312と、第一弁制御部313と、均圧弁制御部314と、を機能的に備える。
 すなわち、CPU310は、所定のプログラムに基づいて動作することで、運転制御部311、インジェクション弁制御部312、第一弁制御部313と、及び均圧弁制御部314としての機能を発揮する。
 メモリ320は、制御装置300が取得する各種データを格納する。
The CPU 310 functionally includes an operation control section 311, an injection valve control section 312, a first valve control section 313, and a pressure equalization valve control section 314.
That is, the CPU 310 functions as the operation control section 311, the injection valve control section 312, the first valve control section 313, and the pressure equalization valve control section 314 by operating based on a predetermined program.
Memory 320 stores various data acquired by control device 300.
 運転制御部311は、室内機側でなされた操作に応じて室内機から出力される制御指令に基づき、冷凍機1の運転を制御する。
 運転制御部311は、室内機から出力される制御指令に基づき、低段圧縮機23、高段圧縮機26を制御する。
 運転制御部311は、室内機から出力される制御指令に基づき、ファン242、32等、冷凍機1の各部の動作を制御する。
The operation control unit 311 controls the operation of the refrigerator 1 based on a control command output from the indoor unit in response to an operation performed on the indoor unit side.
The operation control unit 311 controls the low stage compressor 23 and the high stage compressor 26 based on control commands output from the indoor unit.
The operation control unit 311 controls the operation of each part of the refrigerator 1, such as the fans 242 and 32, based on control commands output from the indoor unit.
 インジェクション弁制御部312は、インジェクション回路120のインジェクション弁61の開閉動作を制御する。
 インジェクション弁制御部312は、例えば、温度センサ(図示無し)によって検出される高段圧縮機26内の温度が、予め定められた基準以上となった場合に、インジェクション弁61を開き、インジェクション回路120を通して高段圧縮機26への冷媒の注入を実行する。
The injection valve control unit 312 controls the opening/closing operation of the injection valve 61 of the injection circuit 120.
For example, when the temperature inside the high-stage compressor 26 detected by a temperature sensor (not shown) exceeds a predetermined standard, the injection valve control unit 312 opens the injection valve 61 and controls the injection circuit 120. Injection of refrigerant into the high-stage compressor 26 is performed through the high-stage compressor 26.
 第一弁制御部313は、第一回路510の第一弁511の開閉動作を制御する。
 第一弁制御部313は、第一弁511を開くことで、第一回路510を介して高圧配管100Hと低圧配管100Lとを均圧させる。
 均圧弁制御部314は、均圧回路520の均圧弁521の開閉動作を制御する。
 均圧弁制御部314は、均圧弁521を開くことで、均圧回路520を介して第一回路510と中圧配管100Mとの間を均圧する。
The first valve control unit 313 controls the opening/closing operation of the first valve 511 of the first circuit 510.
The first valve control unit 313 opens the first valve 511 to equalize the pressures of the high pressure pipe 100H and the low pressure pipe 100L via the first circuit 510.
The pressure equalization valve control unit 314 controls the opening and closing operations of the pressure equalization valve 521 of the pressure equalization circuit 520.
The pressure equalization valve control unit 314 equalizes the pressure between the first circuit 510 and the intermediate pressure pipe 100M via the pressure equalization circuit 520 by opening the pressure equalization valve 521.
(冷凍機の制御方法の手順)
 図4に示すように、本開示の実施形態に係る冷凍機1の制御方法S10は、第一回路510の第一弁511を開くステップS11と、均圧回路520の均圧弁521を開くステップS12と、を含む。
 図5に示すように、冷凍機1は、通常運転時、冷媒は、低圧配管100Lから低段圧縮機23、中圧配管100M、高段圧縮機26、高圧配管100Hを経て、第十一配管111を通して室内機へと送られる。
 本実施形態において、冷凍機1の制御方法S10は、低段圧縮機23、及び高段圧縮機26の運転が停止された場合に、自動的に実行される。
 第一回路510の第一弁511を開くステップS11では、第一弁制御部313の制御により、第一回路510の第一弁511を開く。すると、図6に示すように、高圧配管100Hから低圧配管100Lへ延びる第一回路510により、高圧配管100Hと低圧配管100Lとが連通する。これにより、高圧配管100Hと低圧配管100Lとが均圧される。
 均圧回路520の均圧弁521を開くステップS12では、均圧弁制御部314の制御により、均圧回路520の均圧弁521を開く。このとき、インジェクション弁61が開いていなければ、インジェクション弁制御部312の制御により、インジェクション弁61を開く。これにより、均圧回路520を介して、第一回路510と中圧配管100Mとが連通する。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。
(Steps for controlling the refrigerator)
As shown in FIG. 4, the method S10 for controlling the refrigerator 1 according to the embodiment of the present disclosure includes step S11 of opening the first valve 511 of the first circuit 510, and step S12 of opening the pressure equalizing valve 521 of the pressure equalizing circuit 520. and, including.
As shown in FIG. 5, during normal operation of the refrigerator 1, refrigerant flows from the low-pressure pipe 100L to the low-stage compressor 23, the medium-pressure pipe 100M, the high-stage compressor 26, and the high-pressure pipe 100H to the eleventh pipe. It is sent to the indoor unit through 111.
In this embodiment, the method S10 for controlling the refrigerator 1 is automatically executed when the operation of the low stage compressor 23 and the high stage compressor 26 is stopped.
In step S11 of opening the first valve 511 of the first circuit 510, the first valve 511 of the first circuit 510 is opened under the control of the first valve control section 313. Then, as shown in FIG. 6, the high-pressure pipe 100H and the low-pressure pipe 100L communicate with each other through the first circuit 510 extending from the high-pressure pipe 100H to the low-pressure pipe 100L. Thereby, the pressures of the high pressure pipe 100H and the low pressure pipe 100L are equalized.
In step S12 of opening the pressure equalizing valve 521 of the pressure equalizing circuit 520, the pressure equalizing valve 521 of the pressure equalizing circuit 520 is opened under the control of the pressure equalizing valve control section 314. At this time, if the injection valve 61 is not open, the injection valve 61 is opened under the control of the injection valve control section 312. Thereby, the first circuit 510 and the medium pressure pipe 100M communicate with each other via the pressure equalization circuit 520. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized.
(作用効果)
 本実施形態では、冷凍機1は、高圧配管100Hから低圧配管100Lへ延びる第一回路510と、中圧配管100Mとの間を均圧可能な均圧回路520、を備えている。低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。
(effect)
In this embodiment, the refrigerator 1 includes a first circuit 510 extending from the high pressure pipe 100H to the low pressure pipe 100L, and a pressure equalizing circuit 520 that can equalize the pressure between the medium pressure pipe 100M. When the operation of the low-stage compressor 23 and the high-stage compressor 26 is stopped, when the first valve 511 provided in the first circuit 510 is opened, the pressures of the high-pressure pipe 100H and the low-pressure pipe 100L are equalized. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
 また、冷凍機1は、第一回路510を開いた場合、第一回路510は、低圧冷媒よりも温度が高い高圧冷媒を低圧配管100Lに供給する。これにより、低圧配管100Lから低段圧縮機23に供給される冷媒の温度が下がりすぎた場合等に、冷媒の温度を高めることができる。したがって、低段圧縮機23で冷媒を圧縮する際の効率を高めることができる。 Furthermore, when the first circuit 510 of the refrigerator 1 is opened, the first circuit 510 supplies high-pressure refrigerant having a higher temperature than the low-pressure refrigerant to the low-pressure pipe 100L. Thereby, when the temperature of the refrigerant supplied from the low-pressure pipe 100L to the low-stage compressor 23 drops too much, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the low stage compressor 23 can be increased.
 また、冷凍機1は、高段圧縮機26にインジェクション回路120を介して温度が低い冷媒を注入することで、高段圧縮機26で冷媒を圧縮する際の効率が高められる。均圧回路520は、第一回路510とインジェクション回路120とを接続することによって、インジェクション回路120を介して、高圧配管100Hと低圧配管100Lとを均圧する第一回路510と、中圧配管100Mとを均圧させることができる。このように、インジェクション回路120を、均圧のためにも用いることで、新たに設置する配管が少なくて済む。 Further, in the refrigerator 1, by injecting a refrigerant with a low temperature into the high-stage compressor 26 via the injection circuit 120, the efficiency when compressing the refrigerant with the high-stage compressor 26 is increased. The pressure equalization circuit 520 connects the first circuit 510 and the injection circuit 120, so that the first circuit 510 equalizes the pressure of the high pressure pipe 100H and the low pressure pipe 100L, and the medium pressure pipe 100M through the injection circuit 120. The pressure can be equalized. In this way, by using the injection circuit 120 also for pressure equalization, the number of newly installed piping can be reduced.
 また、均圧回路520が、インジェクション回路120と、第一回路510における高圧冷媒の流通方向の下流側の位置513とを接続している。第一回路510における高圧冷媒の流通方向の下流側の位置513とは、低圧配管100Lに近い位置である。したがって、第一回路510において低圧配管100Lに近い位置で、インジェクション回路120を介して、中圧配管100Mと、低圧配管100Lとを均圧することができる。 Further, a pressure equalization circuit 520 connects the injection circuit 120 and a position 513 on the downstream side in the flow direction of the high-pressure refrigerant in the first circuit 510. The downstream position 513 in the flow direction of the high-pressure refrigerant in the first circuit 510 is a position close to the low-pressure pipe 100L. Therefore, at a position close to the low pressure pipe 100L in the first circuit 510, the pressures of the medium pressure pipe 100M and the low pressure pipe 100L can be equalized via the injection circuit 120.
 また、冷凍機1は、中圧配管100Mに備えられたインタークーラ24で冷却された冷媒に対し、インジェクション回路120を介して冷媒を送り込むことで、例えばインタークーラ24で冷却されることで冷媒の温度が下がりすぎた場合に、冷媒の温度を高めることができる。したがって、高段圧縮機26で冷媒を圧縮する際の効率が高められる。 In addition, the refrigerator 1 supplies the refrigerant through the injection circuit 120 to the refrigerant cooled by the intercooler 24 provided in the medium pressure pipe 100M. If the temperature drops too much, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the high-stage compressor 26 is increased.
 また、冷凍機1は、第一回路510が流量調整機構512を備えることで、第一弁511を開いた場合に、高圧配管100H側から低圧配管100L側に流れ込む高圧冷媒の流量を調整することができる。 Furthermore, in the refrigerator 1, the first circuit 510 includes a flow rate adjustment mechanism 512, so that when the first valve 511 is opened, the flow rate of high-pressure refrigerant flowing from the high-pressure pipe 100H side to the low-pressure pipe 100L side can be adjusted. I can do it.
 また、冷凍機1は、高圧配管100Hにおいて、オイルセパレータ27に対して高圧冷媒の流通方向の下流側は、高段圧縮機26で圧縮された高圧冷媒の圧力が、最も高い位置である。低圧配管100Lにおいて、入口アキュムレータ21に対して低圧冷媒の流通方向の下流側は、低段圧縮機23の直前において、低圧冷媒の圧力が最も低い位置である。第一回路510が、オイルセパレータ27に対して高圧冷媒の流通方向の下流側と、低圧配管100Lにおいて、入口アキュムレータ21に対して低圧冷媒の流通方向の下流側とを接続する。これにより、高圧配管100Hにおいて高圧冷媒の圧力が最も高い位置と、低圧配管100Lにおいて低圧冷媒の圧力が最も低い位置との間で、第一回路510を介して、効率良く均圧を図ることができる。 Further, in the refrigerator 1, in the high-pressure pipe 100H, the downstream side of the oil separator 27 in the flow direction of the high-pressure refrigerant is a position where the pressure of the high-pressure refrigerant compressed by the high-stage compressor 26 is highest. In the low-pressure pipe 100L, the downstream side of the inlet accumulator 21 in the flow direction of the low-pressure refrigerant is a position immediately before the low-stage compressor 23, where the pressure of the low-pressure refrigerant is lowest. The first circuit 510 connects the downstream side of the oil separator 27 in the direction of flow of the high-pressure refrigerant, and the downstream side of the inlet accumulator 21 in the direction of flow of the low-pressure refrigerant in the low-pressure pipe 100L. Thereby, it is possible to efficiently equalize the pressure via the first circuit 510 between the position where the pressure of the high-pressure refrigerant is highest in the high-pressure pipe 100H and the position where the pressure of the low-pressure refrigerant is the lowest in the low-pressure pipe 100L. can.
 また、高段圧縮機26、及び低段圧縮機23は、それぞれ、二つの圧縮部231、232、261、262を直列に備えている。つまり、高段圧縮機26、及び低段圧縮機23は、計4段の圧縮部231、232、261、262を備えている。このような構成において、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させることが可能となる。 Furthermore, the high-stage compressor 26 and the low-stage compressor 23 each include two compression sections 231, 232, 261, and 262 in series. That is, the high-stage compressor 26 and the low-stage compressor 23 include a total of four stages of compression sections 231, 232, 261, and 262. In such a configuration, it is possible to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L.
 また、冷凍機1の制御装置300は、低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。 Furthermore, when the operation of the low-stage compressor 23 and the high-stage compressor 26 is stopped, the control device 300 of the refrigerator 1 opens the first valve 511 provided in the first circuit 510, and the high-pressure pipe 100H is opened. The pressure of the low pressure pipe 100L is equalized. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the medium pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
 また、冷凍機1の制御方法S10は、低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。 Furthermore, in the control method S10 of the refrigerator 1, when the operation of the low stage compressor 23 and the high stage compressor 26 is stopped, when the first valve 511 provided in the first circuit 510 is opened, the high pressure pipe 100H is opened. The pressure of the low pressure pipe 100L is equalized. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
 また、プログラムは、低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。 In addition, in the program, when the operation of the low-stage compressor 23 and the high-stage compressor 26 is stopped, when the first valve 511 provided in the first circuit 510 is opened, the high-pressure pipe 100H and the low-pressure pipe 100L are equalized. be pressured. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
 なお、上述の実施形態においては、制御装置300の各種機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをマイコンといったコンピュータシステムに読み込ませ、実行することにより各種処理を行うものとしている。ここで、コンピュータシステムのCPUの各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 In the above-described embodiment, programs for realizing various functions of the control device 300 are recorded on a computer-readable recording medium, and the programs recorded on the recording medium are read into a computer system such as a microcomputer. , various processes are performed by executing. Here, various processes of the CPU of the computer system are stored in a computer-readable recording medium in the form of a program, and the various processes described above are performed by reading and executing this program by the computer. Further, the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like. Alternatively, this computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
 上述の実施形態において、制御装置300の各種機能を実現するためのプログラムを実行させるコンピュータのハードウェア構成の例について説明する。 In the above-described embodiment, an example of the hardware configuration of a computer that executes programs for realizing various functions of the control device 300 will be described.
 図7に示すように、制御装置300が備えるコンピュータは、CPU310と、メモリ320と、記憶/再生装置330と、Input Output Interface(以下、「IO I/F」という。)340と、通信Interface(以下、「通信I/F」という。)350と、を備える。 As shown in FIG. 7, the computer included in the control device 300 includes a CPU 310, a memory 320, a storage/playback device 330, an input/output interface (hereinafter referred to as "IO I/F") 340, and a communication interface ( (hereinafter referred to as "communication I/F") 350.
 メモリ320は、制御装置300で実行されるプログラムで使用されるデータ等を一時的に記憶するRandom Access Memory(以下、「RAM」という。)等の媒体である。
 記憶/再生装置330は、CD-ROM、DVD、フラッシュメモリ等の外部メディアへデータ等を記憶したり、外部メディアのデータ等を再生したりするための装置である。
 IO I/F340は、制御装置300と他の装置との間で情報等の入出力を行うためのインタフェースである。
 通信I/F350は、インターネット、専用通信回線等の通信回線を介して、他の装置との間で通信を行うインタフェースである。
The memory 320 is a medium such as Random Access Memory (hereinafter referred to as "RAM") that temporarily stores data and the like used in programs executed by the control device 300.
The storage/reproduction device 330 is a device for storing data and the like in external media such as CD-ROM, DVD, and flash memory, and for reproducing data and the like from the external media.
The IO I/F 340 is an interface for inputting/outputting information between the control device 300 and other devices.
The communication I/F 350 is an interface that communicates with other devices via a communication line such as the Internet or a dedicated communication line.
(その他の実施形態)
 以上、本開示の実施形態を説明したが、この実施形態は、例として示したものであり、本開示の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、本開示の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、本開示の範囲や要旨に含まれると同様に、本開示の範囲とその均等の範囲に含まれるものとする。
(Other embodiments)
Although the embodiment of the present disclosure has been described above, this embodiment is shown as an example and is not intended to limit the scope of the present disclosure. This embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the present disclosure. This embodiment and its modifications are included within the scope and gist of the present disclosure, as well as within the scope of the present disclosure and its equivalents.
<付記>
 実施形態に記載の冷凍機1、冷凍機1の制御装置300、冷凍機1の制御方法S10、及びプログラムは、例えば以下のように把握される。
<Additional notes>
The refrigerator 1, the controller 300 for the refrigerator 1, the control method S10 for the refrigerator 1, and the program described in the embodiment are understood as follows, for example.
(1)第1の態様に係る冷凍機1は、低圧冷媒を中圧冷媒に圧縮する低段圧縮機23と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機26と、前記低段圧縮機23に接続され、前記低圧冷媒が流れる低圧配管100Lと、前記低段圧縮機23と前記高段圧縮機26との間に接続され、前記中圧冷媒が流れる中圧配管100Mと、前記高段圧縮機26に接続され、前記高圧冷媒が流れる高圧配管100Hと、前記高圧配管100Hから前記低圧配管100Lへ延びる第一回路510と、前記第一回路510と前記中圧配管100Mとの間を均圧可能な均圧回路520と、を備え、前記第一回路510は、前記第一回路510内の流路を開閉する第一弁511を備え、前記均圧回路520は、前記均圧回路520内の流路を開閉する均圧弁521を備える。 (1) The refrigerator 1 according to the first aspect includes a low-stage compressor 23 that compresses low-pressure refrigerant into medium-pressure refrigerant, a high-stage compressor 26 that compresses the medium-pressure refrigerant into high-pressure refrigerant, and the low-stage compressor 26 that compresses the medium-pressure refrigerant into high-pressure refrigerant. A low-pressure pipe 100L connected to the compressor 23 and through which the low-pressure refrigerant flows; an intermediate-pressure pipe 100M connected between the low-stage compressor 23 and the high-stage compressor 26 through which the medium-pressure refrigerant flows; A high-pressure pipe 100H connected to the high-stage compressor 26 and through which the high-pressure refrigerant flows, a first circuit 510 extending from the high-pressure pipe 100H to the low-pressure pipe 100L, and between the first circuit 510 and the medium-pressure pipe 100M. a pressure equalizing circuit 520 capable of equalizing the pressure, the first circuit 510 includes a first valve 511 that opens and closes a flow path in the first circuit 510, and the pressure equalizing circuit 520 A pressure equalizing valve 521 that opens and closes a flow path in the circuit 520 is provided.
 この冷凍機1は、高圧配管100Hから低圧配管100Lへ延びる第一回路510と、中圧配管100Mとの間を均圧可能な均圧回路520、を備えている。低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。 This refrigerator 1 includes a first circuit 510 extending from the high pressure pipe 100H to the low pressure pipe 100L, and a pressure equalizing circuit 520 that can equalize the pressure between the medium pressure pipe 100M. When the operation of the low-stage compressor 23 and the high-stage compressor 26 is stopped, when the first valve 511 provided in the first circuit 510 is opened, the pressures of the high-pressure pipe 100H and the low-pressure pipe 100L are equalized. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
(2)第2の態様に係る冷凍機1は、(1)の冷凍機1であって、前記第一回路510は、前記第一弁511を開いた場合、前記高圧配管100Hを流れ、前記低圧冷媒よりも温度が高い前記高圧冷媒を、前記低圧配管100Lに供給する。 (2) The refrigerator 1 according to the second aspect is the refrigerator 1 of (1), in which when the first circuit 510 opens the first valve 511, the flow flows through the high pressure pipe 100H, and the The high-pressure refrigerant, which has a higher temperature than the low-pressure refrigerant, is supplied to the low-pressure pipe 100L.
 これにより、第一回路510を開いた場合、第一回路510は、低圧冷媒よりも温度が高い高圧冷媒を低圧配管100Lに供給する。これにより、低圧配管100Lから低段圧縮機23に供給される冷媒の温度が下がりすぎた場合等に、冷媒の温度を高めることができる。したがって、低段圧縮機23で冷媒を圧縮する際の効率を高めることができる。 As a result, when the first circuit 510 is opened, the first circuit 510 supplies high-pressure refrigerant, which has a higher temperature than the low-pressure refrigerant, to the low-pressure pipe 100L. Thereby, when the temperature of the refrigerant supplied from the low-pressure pipe 100L to the low-stage compressor 23 drops too much, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the low stage compressor 23 can be increased.
(3)第3の態様に係る冷凍機1は、(1)又は(2)の冷凍機1であって、前記中圧配管100Mに接続され、前記高段圧縮機26に前記高段圧縮機26内の冷媒よりも温度が低い冷媒を注入するインジェクション回路120を備え、前記均圧回路520が、前記第一回路510と前記インジェクション回路120とを接続可能とされている。 (3) The refrigerator 1 according to the third aspect is the refrigerator 1 of (1) or (2), which is connected to the medium pressure pipe 100M, and is connected to the high stage compressor 26. The pressure equalizing circuit 520 is capable of connecting the first circuit 510 and the injection circuit 120.
 これにより、高段圧縮機26にインジェクション回路120を介して温度が低い冷媒を注入することで、高段圧縮機26で冷媒を圧縮する際の効率が高められる。均圧回路520は、第一回路510とインジェクション回路120とを接続することによって、インジェクション回路120を介して、高圧配管100Hと低圧配管100Lとを均圧する第一回路510と、中圧配管100Mとを均圧させることができる。このように、インジェクション回路120を、均圧のためにも用いることで、新たに設置する配管が少なくて済む。 Thereby, by injecting the refrigerant with a low temperature into the high-stage compressor 26 via the injection circuit 120, the efficiency when compressing the refrigerant in the high-stage compressor 26 is increased. The pressure equalization circuit 520 connects the first circuit 510 and the injection circuit 120, so that the first circuit 510 equalizes the pressure of the high pressure pipe 100H and the low pressure pipe 100L, and the medium pressure pipe 100M through the injection circuit 120. The pressure can be equalized. In this way, by using the injection circuit 120 also for pressure equalization, the number of newly installed piping can be reduced.
(4)第4の態様に係る冷凍機1は、(3)の冷凍機1であって、前記均圧回路520が、前記インジェクション回路120と、前記第一回路510において、前記第一回路510における前記高圧冷媒の流通方向の下流側の位置513とを接続している。 (4) The refrigerator 1 according to the fourth aspect is the refrigerator 1 according to (3), in which the pressure equalization circuit 520 is connected to the injection circuit 120 and the first circuit 510. 513 on the downstream side in the flow direction of the high-pressure refrigerant.
 このように、均圧回路520が、インジェクション回路120と、第一回路510における高圧冷媒の流通方向の下流側の位置513とを接続している。第一回路510における高圧冷媒の流通方向の下流側の位置513とは、低圧配管100Lに近い位置である。したがって、第一回路510において低圧配管100Lに近い位置で、インジェクション回路120を介して、中圧配管100Mと、低圧配管100Lとを均圧することができる。 In this way, the pressure equalization circuit 520 connects the injection circuit 120 and the position 513 on the downstream side in the flow direction of the high-pressure refrigerant in the first circuit 510. The downstream position 513 in the flow direction of the high-pressure refrigerant in the first circuit 510 is a position close to the low-pressure pipe 100L. Therefore, at a position close to the low pressure pipe 100L in the first circuit 510, the pressures of the medium pressure pipe 100M and the low pressure pipe 100L can be equalized via the injection circuit 120.
(5)第5の態様に係る冷凍機1は、(3)又は(4)の冷凍機1であって、前記中圧配管100Mの途中に配置され、前記低段圧縮機23で圧縮された前記中圧冷媒を冷却するインタークーラ24を備え、前記インジェクション回路120は、前記中圧配管100Mに対し、前記インタークーラ24と前記高段圧縮機26との間に接続されている。 (5) The refrigerator 1 according to the fifth aspect is the refrigerator 1 of (3) or (4), which is disposed in the middle of the medium pressure pipe 100M and compressed by the low stage compressor 23. The injection circuit 120 includes an intercooler 24 that cools the medium-pressure refrigerant, and the injection circuit 120 is connected between the intercooler 24 and the high-stage compressor 26 with respect to the medium-pressure pipe 100M.
 これにより、中圧配管100Mに備えられたインタークーラ24で冷却された冷媒に対し、インジェクション回路120を介して冷媒を送り込むことで、例えばインタークーラ24で冷却されることで冷媒の温度が下がりすぎた場合に、冷媒の温度を高めることができる。したがって、高段圧縮機26で冷媒を圧縮する際の効率が高められる。 As a result, by sending the refrigerant through the injection circuit 120 to the refrigerant cooled by the intercooler 24 provided in the medium pressure pipe 100M, the temperature of the refrigerant decreases too much by being cooled by the intercooler 24, for example. In this case, the temperature of the refrigerant can be increased. Therefore, the efficiency when compressing the refrigerant in the high-stage compressor 26 is increased.
(6)第6の態様に係る冷凍機1は、(1)から(5)の何れか一つの冷凍機1であって、前記第一回路510が、前記第一弁511を開いた場合、前記高圧冷媒の流量を調整する流量調整機構512を備える。 (6) The refrigerator 1 according to the sixth aspect is the refrigerator 1 according to any one of (1) to (5), and when the first circuit 510 opens the first valve 511, A flow rate adjustment mechanism 512 that adjusts the flow rate of the high-pressure refrigerant is provided.
 これにより、第一回路510が流量調整機構512を備えることで、第一弁511を開いた場合に、高圧配管100H側から低圧配管100L側に流れ込む高圧冷媒の流量を調整することができる。 Accordingly, since the first circuit 510 includes the flow rate adjustment mechanism 512, when the first valve 511 is opened, the flow rate of the high-pressure refrigerant flowing from the high-pressure pipe 100H side to the low-pressure pipe 100L side can be adjusted.
(7)第7の態様に係る冷凍機1は、(1)から(6)の何れか一つの冷凍機1であって、前記低段圧縮機23に供給される低圧冷媒を、ガス冷媒と液冷媒とに分離するアキュムレータ21と、前記高段圧縮機26から吐出された前記高圧冷媒に含まれる油を分離するオイルセパレータ27と、を備え、前記第一回路510が、前記高圧配管100Hにおいて、前記オイルセパレータ27に対して前記高圧冷媒の流通方向の下流側と、前記低圧配管100Lにおいて、前記アキュムレータ21に対して前記低圧冷媒の流通方向の下流側とを接続する。 (7) The refrigerator 1 according to the seventh aspect is the refrigerator 1 according to any one of (1) to (6), in which the low-pressure refrigerant supplied to the low-stage compressor 23 is replaced with a gas refrigerant. The first circuit 510 includes an accumulator 21 that separates oil from liquid refrigerant, and an oil separator 27 that separates oil contained in the high-pressure refrigerant discharged from the high-stage compressor 26. , the oil separator 27 is connected to the downstream side in the direction of flow of the high-pressure refrigerant, and the accumulator 21 is connected to the downstream side in the direction of flow of the low-pressure refrigerant in the low-pressure pipe 100L.
 高圧配管100Hにおいて、オイルセパレータ27に対して高圧冷媒の流通方向の下流側は、高段圧縮機26で圧縮された高圧冷媒の圧力が、最も高い位置である。低圧配管100Lにおいて、アキュムレータ21に対して低圧冷媒の流通方向の下流側は、低段圧縮機23の直前において、低圧冷媒の圧力が最も低い位置である。第一回路510が、オイルセパレータ27に対して高圧冷媒の流通方向の下流側と、低圧配管100Lにおいて、アキュムレータ21に対して低圧冷媒の流通方向の下流側とを接続する。これにより、高圧配管100Hにおいて高圧冷媒の圧力が最も高い位置と、低圧配管100Lにおいて低圧冷媒の圧力が最も低い位置との間で、第一回路510を介して、効率良く均圧を図ることができる。 In the high-pressure pipe 100H, the downstream side of the oil separator 27 in the flow direction of the high-pressure refrigerant is a position where the pressure of the high-pressure refrigerant compressed by the high-stage compressor 26 is highest. In the low-pressure pipe 100L, the downstream side of the accumulator 21 in the flow direction of the low-pressure refrigerant is a position immediately before the low-stage compressor 23, where the pressure of the low-pressure refrigerant is lowest. The first circuit 510 connects the downstream side of the oil separator 27 in the direction of flow of high-pressure refrigerant, and the downstream side of the accumulator 21 in the direction of flow of low-pressure refrigerant in the low-pressure pipe 100L. This makes it possible to efficiently equalize the pressure via the first circuit 510 between the position where the pressure of the high-pressure refrigerant is highest in the high-pressure pipe 100H and the position where the pressure of the low-pressure refrigerant is the lowest in the low-pressure pipe 100L. can.
(8)第8の態様に係る冷凍機1は、(1)から(7)の何れか一つの冷凍機1であって、前記高段圧縮機26、及び前記低段圧縮機23は、それぞれ、二つの圧縮部231、232、261、262を直列に備える二段圧縮機である。 (8) The refrigerator 1 according to the eighth aspect is the refrigerator 1 according to any one of (1) to (7), in which the high stage compressor 26 and the low stage compressor 23 are each , is a two-stage compressor equipped with two compression sections 231, 232, 261, and 262 in series.
 これにより、高段圧縮機26、及び低段圧縮機23は、それぞれ、二つの圧縮部231、232、261、262を直列に備えている。つまり、高段圧縮機26、及び低段圧縮機23は、計4段の圧縮部231、232、261、262を備えている。このような構成において、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させることが可能となる。 Thereby, the high-stage compressor 26 and the low-stage compressor 23 each include two compression sections 231, 232, 261, and 262 in series. That is, the high-stage compressor 26 and the low-stage compressor 23 include a total of four stages of compression sections 231, 232, 261, and 262. In such a configuration, it is possible to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L.
(9)第9の態様に係る冷凍機1の制御装置300は、低圧冷媒を中圧冷媒に圧縮する低段圧縮機23と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機26と、前記低段圧縮機23に接続され、前記低圧冷媒が流れる低圧配管100Lと、前記低段圧縮機23と前記高段圧縮機26との間に接続され、前記中圧冷媒が流れる中圧配管100Mと、前記高段圧縮機26に接続され、前記高圧冷媒が流れる高圧配管100Hと、を備える冷凍機1を制御可能であって、前記高圧配管100Hと前記低圧配管100Lへ延びる第一回路510の第一弁511を開く第一弁制御部313と、前記第一回路510と前記中圧配管100Mとの間を均圧可能な均圧回路520の均圧弁521を開く均圧弁制御部314と、を備える。 (9) The control device 300 for the refrigerator 1 according to the ninth aspect includes a low-stage compressor 23 that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, and a high-stage compressor 26 that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant. , a low-pressure pipe 100L connected to the low-stage compressor 23 and through which the low-pressure refrigerant flows; and an intermediate-pressure pipe connected between the low-stage compressor 23 and the high-stage compressor 26 and through which the medium-pressure refrigerant flows. 100M, and a high-pressure pipe 100H connected to the high-stage compressor 26 and through which the high-pressure refrigerant flows, a first circuit 510 that is capable of controlling the refrigerator 1 and extends to the high-pressure pipe 100H and the low-pressure pipe 100L. a first valve control unit 313 that opens a first valve 511; and a pressure equalization valve control unit 314 that opens a pressure equalization valve 521 of a pressure equalization circuit 520 that can equalize the pressure between the first circuit 510 and the medium pressure pipe 100M. , is provided.
 これにより、低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。 As a result, when the operation of the low-stage compressor 23 and the high-stage compressor 26 is stopped, opening the first valve 511 provided in the first circuit 510 equalizes the pressure in the high-pressure pipe 100H and the low-pressure pipe 100L. Ru. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
(10)第10の態様に係る冷凍機1の制御方法S10は、低圧冷媒を中圧冷媒に圧縮する低段圧縮機23と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機26と、前記低段圧縮機23に接続され、前記低圧冷媒が流れる低圧配管100Lと、前記低段圧縮機23と前記高段圧縮機26との間に接続され、前記中圧冷媒が流れる中圧配管100Mと、前記高段圧縮機26に接続され、前記高圧冷媒が流れる高圧配管100Hと、を備える冷凍機1の制御方法S10であって、前記低段圧縮機23、及び前記高段圧縮機26の運転が停止された場合に、前記高圧配管100Hと前記低圧配管100Lへ延びる第一回路510の第一弁511を開くステップS11と、前記第一回路510と前記中圧配管100Mとの間を均圧可能な均圧回路520の均圧弁521を開くステップS12と、を含む。 (10) The control method S10 for the refrigerator 1 according to the tenth aspect includes a low-stage compressor 23 that compresses a low-pressure refrigerant into an intermediate-pressure refrigerant, and a high-stage compressor 26 that compresses the intermediate-pressure refrigerant into a high-pressure refrigerant. , a low-pressure pipe 100L connected to the low-stage compressor 23 and through which the low-pressure refrigerant flows; and an intermediate-pressure pipe connected between the low-stage compressor 23 and the high-stage compressor 26 and through which the medium-pressure refrigerant flows. 100M, and a high-pressure pipe 100H connected to the high-stage compressor 26 and through which the high-pressure refrigerant flows. a step S11 of opening the first valve 511 of the first circuit 510 extending to the high-pressure pipe 100H and the low-pressure pipe 100L, and opening the first valve 511 between the first circuit 510 and the medium-pressure pipe 100M when the operation of Step S12 of opening the pressure equalizing valve 521 of the pressure equalizing circuit 520 capable of equalizing the pressure.
 これにより、低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。 As a result, when the operation of the low-stage compressor 23 and the high-stage compressor 26 is stopped, opening the first valve 511 provided in the first circuit 510 equalizes the pressure in the high-pressure pipe 100H and the low-pressure pipe 100L. Ru. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
(11)第11の態様に係るプログラムは、低圧冷媒を中圧冷媒に圧縮する低段圧縮機23と、前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機26と、前記低段圧縮機23に接続され、前記低圧冷媒が流れる低圧配管100Lと、前記低段圧縮機23と前記高段圧縮機26との間に接続され、前記中圧冷媒が流れる中圧配管100Mと、前記高段圧縮機26に接続され、前記高圧冷媒が流れる高圧配管100Hと、を備える冷凍機1の制御装置300に、前記低段圧縮機23、及び前記高段圧縮機26の運転が停止された場合に、前記高圧配管100Hと前記低圧配管100Lへ延びる第一回路510の第一弁511を開くステップと、前記第一回路510と前記中圧配管100Mとの間を均圧可能な均圧回路520の均圧弁521を開くステップと、を含む制御を実行させる。 (11) The program according to the eleventh aspect includes: a low-stage compressor 23 that compresses low-pressure refrigerant into medium-pressure refrigerant; a high-stage compressor 26 that compresses the medium-pressure refrigerant into high-pressure refrigerant; 23, through which the low-pressure refrigerant flows; an intermediate-pressure pipe 100M, which is connected between the low-stage compressor 23 and the high-stage compressor 26, through which the medium-pressure refrigerant flows; When the operation of the low-stage compressor 23 and the high-stage compressor 26 is stopped, the control device 300 of the refrigerator 1 includes a high-pressure pipe 100H connected to the compressor 26 and through which the high-pressure refrigerant flows. , opening a first valve 511 of a first circuit 510 extending to the high pressure pipe 100H and the low pressure pipe 100L; and a pressure equalizing circuit 520 capable of equalizing the pressure between the first circuit 510 and the medium pressure pipe 100M. A control including a step of opening the pressure equalizing valve 521 is executed.
 このプログラムは、低段圧縮機23、及び高段圧縮機26の運転が停止された場合、第一回路510に備えた第一弁511を開くと、高圧配管100Hと低圧配管100Lとが均圧される。また、均圧回路520に備えた均圧弁521を開くと、第一回路510と中圧配管100Mとが均圧される。これにより、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとが均圧される。このように、高圧配管100Hと、中圧配管100Mと、低圧配管100Lとを均圧させるには、第一弁511を備えた第一回路510と、均圧弁521を備えた均圧回路520とを備えればよい。したがって、簡易な構成で、均圧しやすい冷凍機1を提供することが可能となる。 In this program, when the operation of the low stage compressor 23 and the high stage compressor 26 is stopped, when the first valve 511 provided in the first circuit 510 is opened, the high pressure pipe 100H and the low pressure pipe 100L are equalized in pressure. be done. Moreover, when the pressure equalization valve 521 provided in the pressure equalization circuit 520 is opened, the pressures of the first circuit 510 and the intermediate pressure pipe 100M are equalized. Thereby, the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L are equalized. In this way, in order to equalize the pressures of the high pressure pipe 100H, the medium pressure pipe 100M, and the low pressure pipe 100L, the first circuit 510 including the first valve 511, the pressure equalizing circuit 520 including the pressure equalizing valve 521, All you have to do is prepare. Therefore, it is possible to provide the refrigerator 1 with a simple configuration and easy pressure equalization.
 本開示の冷凍機、冷凍機の制御装置、冷凍機の制御方法、及びプログラムによれば、均圧しやすい冷凍機を提供することができる。 According to the refrigerator, refrigerator control device, refrigerator control method, and program of the present disclosure, it is possible to provide a refrigerator that is easy to pressure equalize.
1…冷凍機
2…圧縮部
3…コンデンサ
4…膨張弁
5…レシーバ
6…過冷却熱交換器
21…入口アキュムレータ(アキュムレータ)
22…サブアキュムレータ
23…低段圧縮機
24…インタークーラ
25…中間アキュムレータ
26…高段圧縮機
27…オイルセパレータ
28…オイルタンク
29…油冷却器
31…コンデンサ本体
32…ファン
61…インジェクション弁
62…過冷却熱交換器用膨張弁
100L…低圧配管
100M…中圧配管
100H…高圧配管
101…第一配管
102…第二配管
103…第三配管
104…第四配管
105…第五配管
106…第六配管
107…第七配管
108…第八配管
109…第九配管
110…第十配管
111…第十一配管
112…第十二配管
120…インジェクション回路
231…第一ロータリー圧縮部(圧縮部)
232…第一スクロール圧縮部(圧縮部)
241…インタークーラ本体
242…ファン
261…第二ロータリー圧縮部(圧縮部)
262…第二スクロール圧縮部(圧縮部)
300…制御装置
310…CPU
311…運転制御部
312…インジェクション弁制御部
313…第一弁制御部
314…均圧弁制御部
320…メモリ
330…記憶/再生装置
340…IO I/F
350…通信I/F
401…第一油戻し管
402…第二油戻し管
403…第三油戻し管
404…第四油戻し管
405…第五油戻し管
500…均圧機構
510…第一回路
510a…一端
510b…他端
511…第一弁
512…流量調整機構
520…均圧回路
520a…一端
520b…他端
521…均圧弁
S10…冷凍機の制御方法
S11…第一回路の第一弁を開くステップ
S12…均圧回路の均圧弁を開くステップ
1... Refrigerator 2... Compression section 3... Condenser 4... Expansion valve 5... Receiver 6... Supercooling heat exchanger 21... Inlet accumulator (accumulator)
22...Subaccumulator 23...Low stage compressor 24...Intercooler 25...Intermediate accumulator 26...High stage compressor 27...Oil separator 28...Oil tank 29...Oil cooler 31...Condenser body 32...Fan 61...Injection valve 62... Expansion valve for supercooling heat exchanger 100L...Low pressure pipe 100M...Medium pressure pipe 100H...High pressure pipe 101...First pipe 102...Second pipe 103...Third pipe 104...Fourth pipe 105...Fifth pipe 106...Sixth pipe 107...Seventh pipe 108...Eighth pipe 109...Ninth pipe 110...Tenth pipe 111...Eleventh pipe 112...Twelfth pipe 120...Injection circuit 231...First rotary compression section (compression section)
232...First scroll compression section (compression section)
241...Intercooler main body 242...Fan 261...Second rotary compression section (compression section)
262...Second scroll compression section (compression section)
300...control device 310...CPU
311...Operation control section 312...Injection valve control section 313...First valve control section 314...Pressure equalization valve control section 320...Memory 330...Storage/reproduction device 340...IO I/F
350...Communication I/F
401...First oil return pipe 402...Second oil return pipe 403...Third oil return pipe 404...Fourth oil return pipe 405...Fifth oil return pipe 500...Pressure equalization mechanism 510...First circuit 510a...One end 510b... Other end 511...First valve 512...Flow rate adjustment mechanism 520...Pressure equalization circuit 520a...One end 520b...Other end 521...Pressure equalization valve S10...Refrigerating machine control method S11...Step of opening the first valve of the first circuit S12...Equilibrium Step of opening the pressure equalization valve in the pressure circuit

Claims (11)

  1.  低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、
     前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、
     前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、
     前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、
     前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、
     前記高圧配管から前記低圧配管へ延びる第一回路と、
     前記第一回路と前記中圧配管との間を均圧可能な均圧回路と、を備え、
     前記第一回路は、前記第一回路内の流路を開閉する第一弁を備え、
     前記均圧回路は、前記均圧回路内の流路を開閉する均圧弁を備える
     冷凍機。
    a low-stage compressor that compresses low-pressure refrigerant into medium-pressure refrigerant;
    a high-stage compressor that compresses the medium-pressure refrigerant into high-pressure refrigerant;
    a low-pressure pipe connected to the low-stage compressor and through which the low-pressure refrigerant flows;
    an intermediate pressure pipe connected between the low stage compressor and the high stage compressor, through which the intermediate pressure refrigerant flows;
    a high-pressure pipe connected to the high-stage compressor and through which the high-pressure refrigerant flows;
    a first circuit extending from the high pressure piping to the low pressure piping;
    a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the medium pressure piping;
    The first circuit includes a first valve that opens and closes a flow path in the first circuit,
    The said pressure equalization circuit is equipped with the pressure equalization valve which opens and closes the flow path in the said pressure equalization circuit. Refrigerator.
  2.  前記第一回路は、前記第一弁を開いた場合、前記高圧配管を流れ、前記低圧冷媒よりも温度が高い前記高圧冷媒を、前記低圧配管に供給する
     請求項1に記載の冷凍機。
    The refrigerator according to claim 1, wherein the first circuit supplies the high-pressure refrigerant, which flows through the high-pressure pipe and has a higher temperature than the low-pressure refrigerant, to the low-pressure pipe when the first valve is opened.
  3.  前記中圧配管に接続され、前記高段圧縮機に前記高段圧縮機内の冷媒よりも温度が低い冷媒を注入するインジェクション回路を備え、
     前記均圧回路が、前記第一回路と前記インジェクション回路とを接続可能とされている
     請求項1又は2に記載の冷凍機。
    an injection circuit connected to the intermediate pressure piping and injecting refrigerant having a temperature lower than that of the refrigerant in the high-stage compressor into the high-stage compressor;
    The refrigerator according to claim 1 or 2, wherein the pressure equalization circuit is capable of connecting the first circuit and the injection circuit.
  4.  前記均圧回路が、前記インジェクション回路と、前記第一回路において、前記第一回路における前記高圧冷媒の流通方向の下流側の位置と、を接続している
     請求項3に記載の冷凍機。
    The refrigerator according to claim 3, wherein the pressure equalization circuit connects the injection circuit to a downstream position in the first circuit in the flow direction of the high-pressure refrigerant.
  5.  前記中圧配管の途中に配置され、前記低段圧縮機で圧縮された前記中圧冷媒を冷却するインタークーラを備え、
     前記インジェクション回路は、前記中圧配管に対し、前記インタークーラと前記高段圧縮機との間に接続されている
     請求項3に記載の冷凍機。
    an intercooler disposed in the middle of the medium pressure piping and cooling the medium pressure refrigerant compressed by the low stage compressor;
    The refrigerator according to claim 3, wherein the injection circuit is connected to the intermediate pressure pipe between the intercooler and the high-stage compressor.
  6.  前記第一回路が、前記第一弁を開いた場合、前記高圧冷媒の流量を調整する流量調整機構を備える
     請求項1又は2に記載の冷凍機。
    The refrigerator according to claim 1 or 2, wherein the first circuit includes a flow rate adjustment mechanism that adjusts the flow rate of the high-pressure refrigerant when the first valve is opened.
  7.  前記低段圧縮機に供給される低圧冷媒を、ガス冷媒と液冷媒とに分離するアキュムレータと、
     前記高段圧縮機から吐出された前記高圧冷媒に含まれる油を分離するオイルセパレータと、を備え、
     前記第一回路が、前記高圧配管において、前記オイルセパレータに対して前記高圧冷媒の流通方向の下流側と、前記低圧配管において、前記アキュムレータに対して前記低圧冷媒の流通方向の下流側とを接続する
     請求項1又は2に記載の冷凍機。
    an accumulator that separates the low-pressure refrigerant supplied to the low-stage compressor into a gas refrigerant and a liquid refrigerant;
    an oil separator that separates oil contained in the high-pressure refrigerant discharged from the high-stage compressor,
    The first circuit connects a downstream side of the high-pressure refrigerant in the flow direction of the high-pressure refrigerant to the oil separator in the high-pressure piping, and a downstream side of the low-pressure refrigerant in the flow direction of the accumulator in the low-pressure piping. The refrigerator according to claim 1 or 2.
  8.  前記高段圧縮機、及び前記低段圧縮機は、それぞれ、二つの圧縮部を直列に備える二段圧縮機である
     請求項1又は2に記載の冷凍機。
    The refrigerator according to claim 1 or 2, wherein the high-stage compressor and the low-stage compressor are each two-stage compressors including two compression sections in series.
  9.  低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、
     前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、
     前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、
     前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、
     前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、
     を備える冷凍機を制御可能であって、
     前記高圧配管と前記低圧配管へ延びる第一回路の第一弁を開く第一弁制御部と、
     前記第一回路と前記中圧配管との間を均圧可能な均圧回路の均圧弁を開く均圧弁制御部と、
     を備える
     冷凍機の制御装置。
    a low-stage compressor that compresses low-pressure refrigerant into medium-pressure refrigerant;
    a high-stage compressor that compresses the medium-pressure refrigerant into high-pressure refrigerant;
    a low-pressure pipe connected to the low-stage compressor and through which the low-pressure refrigerant flows;
    an intermediate pressure pipe connected between the low stage compressor and the high stage compressor, through which the intermediate pressure refrigerant flows;
    a high-pressure pipe connected to the high-stage compressor and through which the high-pressure refrigerant flows;
    A refrigerator comprising:
    a first valve control unit that opens a first valve of a first circuit extending to the high pressure pipe and the low pressure pipe;
    a pressure equalizing valve control unit that opens a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the medium pressure pipe;
    A refrigerator control device.
  10.  低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、
     前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、
     前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、
     前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、
     前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、
     を備える冷凍機の制御方法であって、
     前記低段圧縮機、及び前記高段圧縮機の運転が停止された場合に、前記高圧配管と前記低圧配管へ延びる第一回路の第一弁を開くステップと、
     前記第一回路と前記中圧配管との間を均圧可能な均圧回路の均圧弁を開くステップと、
     を含む
     冷凍機の制御方法。
    a low-stage compressor that compresses low-pressure refrigerant into medium-pressure refrigerant;
    a high-stage compressor that compresses the medium-pressure refrigerant into high-pressure refrigerant;
    a low-pressure pipe connected to the low-stage compressor and through which the low-pressure refrigerant flows;
    an intermediate pressure pipe connected between the low stage compressor and the high stage compressor, through which the intermediate pressure refrigerant flows;
    a high-pressure pipe connected to the high-stage compressor and through which the high-pressure refrigerant flows;
    A method for controlling a refrigerator, comprising:
    opening a first valve of a first circuit extending to the high pressure pipe and the low pressure pipe when the operation of the low stage compressor and the high stage compressor is stopped;
    opening a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the medium pressure pipe;
    Including how to control a refrigerator.
  11.  低圧冷媒を中圧冷媒に圧縮する低段圧縮機と、
     前記中圧冷媒を高圧冷媒に圧縮する高段圧縮機と、
     前記低段圧縮機に接続され、前記低圧冷媒が流れる低圧配管と、
     前記低段圧縮機と前記高段圧縮機との間に接続され、前記中圧冷媒が流れる中圧配管と、
     前記高段圧縮機に接続され、前記高圧冷媒が流れる高圧配管と、
     を備える冷凍機の制御装置に、
     前記低段圧縮機、及び前記高段圧縮機の運転が停止された場合に、前記高圧配管と前記低圧配管へ延びる第一回路の第一弁を開くステップと、
     前記第一回路と前記中圧配管との間を均圧可能な均圧回路の均圧弁を開くステップと、
     を含む制御を実行させる
     プログラム。
    a low-stage compressor that compresses low-pressure refrigerant into medium-pressure refrigerant;
    a high-stage compressor that compresses the medium-pressure refrigerant into high-pressure refrigerant;
    a low-pressure pipe connected to the low-stage compressor and through which the low-pressure refrigerant flows;
    an intermediate pressure pipe connected between the low stage compressor and the high stage compressor, through which the intermediate pressure refrigerant flows;
    a high-pressure pipe connected to the high-stage compressor and through which the high-pressure refrigerant flows;
    A refrigerator control device equipped with
    opening a first valve of a first circuit extending to the high pressure pipe and the low pressure pipe when the operation of the low stage compressor and the high stage compressor is stopped;
    opening a pressure equalizing valve of a pressure equalizing circuit capable of equalizing the pressure between the first circuit and the medium pressure pipe;
    A program that executes control including.
PCT/JP2023/005771 2022-07-13 2023-02-17 Refrigerator, refrigerator control device, refrigerator control method, and program WO2024014026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112320A JP2024010808A (en) 2022-07-13 2022-07-13 Refrigerator, control device for refrigerator, control method for refrigerator, and program
JP2022-112320 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014026A1 true WO2024014026A1 (en) 2024-01-18

Family

ID=89536337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005771 WO2024014026A1 (en) 2022-07-13 2023-02-17 Refrigerator, refrigerator control device, refrigerator control method, and program

Country Status (2)

Country Link
JP (1) JP2024010808A (en)
WO (1) WO2024014026A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612959A (en) * 1979-07-12 1981-02-07 Matsushita Electric Ind Co Ltd Refrigeration cycle for airconditioning equipment
JP2004028492A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Cooling medium circuit using co2 cooling medium
JP2010117072A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Refrigerating device
WO2018025935A1 (en) * 2016-08-05 2018-02-08 三菱重工サーマルシステムズ株式会社 Heat pump device and control method therefor
WO2019186647A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Refrigerating apparatus
WO2021039087A1 (en) * 2019-08-27 2021-03-04 ダイキン工業株式会社 Heat source unit and refrigeration device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612959A (en) * 1979-07-12 1981-02-07 Matsushita Electric Ind Co Ltd Refrigeration cycle for airconditioning equipment
JP2004028492A (en) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Cooling medium circuit using co2 cooling medium
JP2010117072A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Refrigerating device
WO2018025935A1 (en) * 2016-08-05 2018-02-08 三菱重工サーマルシステムズ株式会社 Heat pump device and control method therefor
WO2019186647A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Refrigerating apparatus
WO2021039087A1 (en) * 2019-08-27 2021-03-04 ダイキン工業株式会社 Heat source unit and refrigeration device

Also Published As

Publication number Publication date
JP2024010808A (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US7251947B2 (en) Refrigerant system with suction line restrictor for capacity correction
JP5264874B2 (en) Refrigeration equipment
JPH11193967A (en) Refrigerating cycle
WO2020164212A1 (en) Refrigerant circulation system and control method thereof, and air conditioner
US11384961B2 (en) Cooling system
JP2015148406A (en) Refrigeration device
JP2015148407A (en) Refrigeration device
JP7224480B2 (en) Outdoor unit and refrigeration cycle equipment
JP2000146322A (en) Refrigerating cycle
JP7150148B2 (en) Outdoor unit, refrigeration cycle device and refrigerator
WO2024014026A1 (en) Refrigerator, refrigerator control device, refrigerator control method, and program
JP6253370B2 (en) Refrigeration cycle equipment
JP7378561B2 (en) Outdoor unit and refrigeration cycle equipment
JP3458058B2 (en) Refrigeration equipment
JP2012207844A (en) Heat pump apparatus
JP7195449B2 (en) Outdoor unit and refrigeration cycle equipment
WO2024047900A1 (en) Control device, refrigerator, control method of condenser unit, and program
JP2019184231A (en) Refrigerating device
JP7466645B2 (en) Refrigeration Cycle Equipment
WO2024023988A1 (en) Refrigeration cycle device
JP7438363B2 (en) Cold heat source unit and refrigeration cycle equipment
CN110312902B (en) Turbo refrigerator and method for operating turbo refrigerator
WO2022013982A1 (en) Refrigeration cycle device
KR20170111345A (en) Refrigeration system
JP2022013259A (en) Cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839206

Country of ref document: EP

Kind code of ref document: A1