WO2024023988A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2024023988A1
WO2024023988A1 PCT/JP2022/029005 JP2022029005W WO2024023988A1 WO 2024023988 A1 WO2024023988 A1 WO 2024023988A1 JP 2022029005 W JP2022029005 W JP 2022029005W WO 2024023988 A1 WO2024023988 A1 WO 2024023988A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressors
flow path
refrigeration cycle
condenser
Prior art date
Application number
PCT/JP2022/029005
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/029005 priority Critical patent/WO2024023988A1/en
Publication of WO2024023988A1 publication Critical patent/WO2024023988A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • This invention relates to a refrigeration cycle device.
  • Some refrigeration cycle devices are designed to reduce the compression ratio per single stage of the compressor by performing compression in two stages.
  • the compression power in the lower stage can be minimized, making it possible to improve efficiency compared to a single stage cycle. becomes.
  • the refrigeration cycle device disclosed in Japanese Patent Application Laid-Open No. 2020-24046 heats an intermediate pipe that supplies refrigerant discharged from an intermediate receiver to a suction port of a high-stage compressor, and a refrigerant flowing through the intermediate pipe.
  • the system includes an internal heat exchanger, a bypass pipe that supplies the liquid phase refrigerant separated by the gas-liquid separator to the intermediate pipe on the upstream side of the internal heat exchanger, and a control valve provided in the bypass pipe.
  • refrigeration cycle devices that use CO 2 refrigerant store refrigerant on intermediate piping (hereinafter also referred to as injection flow path) that supplies refrigerant to the suction port (intermediate pressure port) of the high-stage compressor. It is conceivable to place an intermediate pressure receiver below the critical pressure.
  • refrigeration cycle devices are required to have a variety of capacities, from small to large. For example, if a configuration is adopted in which multiple compressors are installed in parallel to increase capacity, multiple injection channels are also required.
  • the intermediate pressure receiver is located on the injection flow path, but since it is a container that requires pressure resistance, the manufacturing cost is high, and it is difficult to install multiple receivers due to the total cost and installation space.
  • An object of the present disclosure is to provide a refrigeration cycle device that solves such problems and can achieve large capacity while suppressing cost and size.
  • the refrigeration cycle device of the present disclosure includes a load device including a first expansion valve and an evaporator, and an outdoor unit having a refrigerant outlet port and a refrigerant inlet port for connection to the load device.
  • the outdoor unit includes a first flow path that is a flow path from a refrigerant inlet port to a refrigerant outlet port and forms a circulation flow path in which the refrigerant circulates together with the load device, and a condenser disposed in the first flow path.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle device according to Embodiment 1.
  • FIG. 7 is a flowchart for explaining control of the opening degree of the expansion valve 71.
  • FIG. It is a flow chart for explaining control of the opening degree of expansion valve 72A.
  • FIG. 2 is an overall configuration diagram of a refrigeration cycle device according to a second embodiment.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle device according to a first embodiment. Note that FIG. 1 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in a physical space.
  • the refrigeration cycle device 1 shown in FIG. 1 includes an outdoor unit 2 and a load device 3.
  • the outdoor unit 2 has a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connection to the load device 3.
  • the load device 3 has a refrigerant outlet port PO3 and a refrigerant inlet port PI3 for connection to the outdoor unit 2.
  • the outdoor unit 2 of the refrigeration cycle device 1 is configured so that it can be connected to a load device 3 via an extension pipe or the like.
  • the outdoor unit 2 includes an accumulator 60, compressors 10A and 10B, a condenser 20, and heat exchangers 30A and 30B.
  • Each of the compressors 10A and 10B is a single-stage compressor having a suction port, a discharge port, and an injection port.
  • Each of the heat exchangers 30A, 30B has a first passage and a second passage, and is configured to exchange heat between the refrigerant flowing through the first passage and the refrigerant flowing through the second passage.
  • the load device 3 includes a first expansion valve 40 and an evaporator 50.
  • Evaporator 50 is configured to exchange heat between air and refrigerant. In the refrigeration cycle device 1, the evaporator 50 evaporates the refrigerant by absorbing heat from the air in the space to be cooled.
  • the first expansion valve 40 is, for example, a temperature expansion valve that is controlled independently of the outdoor unit 2. Note that the first expansion valve 40 may be an electronic expansion valve that can reduce the pressure of the refrigerant.
  • the compressor 10A compresses the refrigerant sucked from the accumulator 60 via the pipe 86A and discharges it to the pipe 80A.
  • Compressor 10B compresses the refrigerant sucked from accumulator 60 via piping 86B and discharges it to piping 80B.
  • the pipes 80A and 80B join to form a pipe 80, which is connected to the condenser 20.
  • Each of the compressors 10A and 10B is configured so that its operating frequency can be changed within a predetermined range by inverter control. Further, each of the compressors 10A and 10B is provided with an injection port, and the refrigerant from the injection port can be made to flow into the middle part of the compression process.
  • Compressors 10A and 10B are configured to adjust their rotational speeds according to control signals from control device 100. By adjusting the rotational speeds of the compressors 10A and 10B, the amount of refrigerant circulated can be adjusted, and the capacity of the refrigeration cycle device 1 can be adjusted.
  • Various types of compressors can be used for the compressors 10A and 10B, and for example, a scroll type can be used.
  • the condenser 20 is configured so that the high temperature, high pressure gas refrigerant discharged from the compressors 10A and 10B exchanges heat (radiates heat) with the outside air. This heat exchange causes the refrigerant to condense and change into a liquid phase.
  • the refrigerant discharged from the compressors 10A and 10B into the pipe 80 is condensed and liquefied in the condenser 20 and flows out into the pipe 81.
  • a fan (not shown) is attached to the condenser 20 to send outside air to increase the efficiency of heat exchange.
  • the refrigerant used in the refrigerant circuit of the refrigeration cycle device 1 is CO 2 , but if a situation arises in which it is difficult to ensure the degree of supercooling, other refrigerants may be used.
  • the condenser 20 will also be referred to when cooling a refrigerant such as CO 2 in a supercritical state. Furthermore, in this specification, for ease of explanation, the amount of decrease from the reference temperature of the refrigerant in the supercritical state will also be referred to as the degree of supercooling.
  • the pipe 81 branches into pipes 81A and 81B.
  • the refrigerant that has passed through the pipes 81A and 81B flows out into the pipes 82A and 82B after passing through the first flow paths of the heat exchangers 30A and 30B, respectively.
  • the pipes 82A and 82B merge to form a pipe 82.
  • a first flow path F1 from the refrigerant inlet port PI2 to the refrigerant outlet port PO2 via each first path of the compressors 10A, 10B, the condenser 20, and the heat exchangers 30A, 30B is a first expansion path of the load device 3. Together with the flow path in which the valve 40 and the evaporator 50 are arranged, a circulation flow path through which the refrigerant circulates is formed. Hereinafter, this circulation flow path will also be referred to as the "main refrigerant circuit" of the refrigeration cycle.
  • the outdoor unit 2 further includes a second expansion valve 71, an intermediate receiver (liquid receiver) 73, on-off valves 70A, 70B, and third expansion valves 72A, 72B.
  • a pipe 91 branches from the boundary between the pipe 82 and the pipe 83 and is connected to the second expansion valve 71.
  • the second expansion valve 71 and the intermediate pressure receiver 73 are connected by a pipe 92.
  • Pipes 91 and 92 constitute a second flow path F2.
  • a pipe 93 for discharging liquid refrigerant is connected to the bottom of the intermediate pressure receiver 73.
  • the pipe 93 branches into pipes 93A and 93B.
  • the liquid refrigerant stored at the bottom of the intermediate pressure receiver 73 passes through the pipes 93A and 93B, respectively, and is depressurized at the third expansion valves 72A and 72B.
  • the refrigerant whose pressure has been reduced in the third expansion valves 72A, 72B passes through the pipes 94A, 94B, respectively, and is sent to the second passages of the heat exchangers 30A, 30B.
  • the refrigerant that has passed through each of the second passages of heat exchangers 30A and 30B further passes through piping 95A and 95B, respectively, and is sent to each injection port of compressor 10A and 10B.
  • the pipes 91 and 92 constitute a second flow path F2
  • the pipes 93A, 94A, and 95A constitute a third flow path F3A
  • the pipes 93B, 94B, and 95B constitute a third flow path F3B.
  • channels F2, F3A, and F3B that branch from the main refrigerant circuit and send refrigerant to the injection ports of the compressors 10A and 10B via the second channels of the heat exchangers 30A and 30B are referred to as "injection flows”. Also called "road”.
  • the intermediate pressure receiver 73 is disposed in common to the flow paths F3A and F3B and stores refrigerant.
  • the on-off valve 70A opens and closes a gas vent passage that communicates the gas exhaust port of the intermediate pressure receiver 73 with the connecting portion of the piping 94A and the piping 95A.
  • the on-off valve 70B opens and closes a gas vent passage that communicates the gas exhaust port of the intermediate pressure receiver 73 with the connecting portion of the piping 94B and the piping 95B.
  • the expansion valve 72A adjusts the refrigerant flow rate in the flow path F3A.
  • the expansion valve 72B adjusts the refrigerant flow rate in the flow path F3B.
  • the second expansion valve 71 is an electronic expansion valve that can reduce the refrigerant in the high pressure section of the main refrigerant circuit to an intermediate pressure.
  • the intermediate pressure receiver 73 is a container that separates the gas phase and liquid phase of the refrigerant that has been reduced in pressure into two phases within the container, stores the liquid refrigerant, and can adjust the amount of refrigerant circulation in the main refrigerant circuit. .
  • a gas venting pipe connected to the upper part of the intermediate pressure receiver 73 and a pipe 93 connected to the lower part of the intermediate pressure receiver 73 take out the refrigerant separated into gas refrigerant and liquid refrigerant in the intermediate pressure receiver 73 in a separated state. This is the piping for this purpose.
  • the amount of refrigerant in the intermediate pressure receiver 73 can be adjusted by adjusting the amount of liquid refrigerant discharged from the pipe 93 using the third expansion valves 72A and 72B.
  • the intermediate pressure receiver 73 By providing the intermediate pressure receiver 73 in the injection flow path in this way, it becomes easy to ensure the degree of supercooling of the refrigerant in the pipe 83, which is a liquid pipe. Generally, since gas refrigerant is present in the intermediate pressure receiver 73, the refrigerant temperature becomes the saturation temperature. Therefore, if the intermediate pressure receiver 73 is disposed in the pipes 82 and 83 without intervening the second expansion valve 71, the degree of subcooling of the refrigerant This is because it cannot be ensured.
  • intermediate pressure receiver 73 in the intermediate pressure section, even when the pressure in the high pressure section of the main refrigerant circuit is high and the refrigerant is in a supercritical state, intermediate pressure liquid refrigerant can be stored inside the intermediate pressure receiver 73. It becomes possible. Therefore, the design pressure of the container of the intermediate pressure receiver 73 can be lower than that of the high pressure section.
  • the outdoor unit 2 further includes a pressure sensor 111, temperature sensors 120A, 120B, 121, and a control device 100.
  • the control device 100 is configured to control the compressors 10A, 10B, the second expansion valve 71, and the third expansion valves 72A, 72B.
  • the pressure sensor 111 detects the pressure PH of the refrigerant in the pipe 80 discharged from the compressors 10A and 10B and merged together, and outputs the detected value to the control device 100.
  • the temperature sensor 120A detects the discharge temperature TdA of the compressor 10A and outputs the detected value to the control device 100.
  • Temperature sensor 120B detects the discharge temperature TdB of compressor 10B and outputs the detected value to control device 100.
  • the temperature sensor 121 detects the refrigerant temperature T1 of the pipe 81 at the outlet of the condenser 20 and outputs the detected value to the control device 100.
  • the flow path F2 controls the discharge temperatures TdA and TdB of the compressors 10A and 10B by causing the refrigerant that has been reduced in pressure to become two-phase to flow into the compressors 10A and 10B.
  • the amount of refrigerant in the main refrigerant circuit can be adjusted by the intermediate pressure receiver 73 installed on the flow path F2.
  • the second flow path F2 is also responsible for ensuring supercooling of the refrigerant in the main refrigerant circuit through heat exchange by the heat exchangers 30A and 30B.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown) for inputting and outputting various signals, etc. It consists of:
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is written.
  • the control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
  • FIG. 2 is a flowchart for explaining control of the opening degree of the expansion valve 71.
  • the control device 100 detects the degree of subcooling SC of the refrigerant by referring to a table prepared in advance based on the refrigerant temperature T1 at the outlet of the condenser 20 and the pressure (approximated by PH) of the condenser 20. do.
  • step S2 the control device 100 compares the degree of supercooling SC and the target degree of supercooling SC*.
  • the control device 100 reduces the opening degree of the expansion valve 71 (S3).
  • the amount of liquid refrigerant flowing into the intermediate pressure receiver 73 decreases, and the amount of liquid refrigerant inside the intermediate pressure receiver 73 decreases, so the amount of refrigerant circulating through the main refrigerant circuit increases.
  • the degree of supercooling SC decreases.
  • the control device 100 increases the opening degree of the expansion valve 71 (S4).
  • the amount of liquid refrigerant flowing into the intermediate pressure receiver 73 increases, the amount of liquid refrigerant stored in the intermediate pressure receiver 73 increases, and the amount of refrigerant circulating through the main refrigerant circuit decreases.
  • the degree of supercooling SC increases.
  • control device 100 controls the opening degree of the second expansion valve 72 so that the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 approaches the target degree of subcooling SC*.
  • FIG. 3 is a flowchart for explaining control of the opening degree of the expansion valve 72A.
  • the control device 100 detects the temperature TdA of the refrigerant discharged by the compressor 10A using the temperature sensor 120A.
  • step S12 the control device 100 compares the temperature TdA and the target temperature TdA*. If the temperature TdA is higher than the target temperature TdA* (YES in S12), the control device 100 increases the opening degree of the expansion valve 72A (S13). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100A increases, and the discharge temperature TdA of the compressor 100A decreases.
  • the control device 100 reduces the opening degree of the expansion valve 72A (S14). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100A decreases, and the discharge temperature TdA of the compressor 100A increases.
  • control device 100 controls the opening degree of the expansion valve 72A so that the discharge temperature TdA of the compressor 10A approaches the target temperature TdA*.
  • FIG. 4 is a flowchart for explaining control of the opening degree of the expansion valve 72B.
  • the control device 100 detects the temperature TdB of the refrigerant discharged by the compressor 10B using the temperature sensor 120B.
  • step S22 the control device 100 compares the temperature TdB and the target temperature TdB*. If the temperature TdB is higher than the target temperature TdB* (YES in S22), the control device 100 increases the opening degree of the expansion valve 72B (S23). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100B increases, and the discharge temperature TdB of the compressor 100B decreases.
  • the control device 100 reduces the opening degree of the expansion valve 72B (S24). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100B is reduced, and the discharge temperature TdB of the compressor 100B is increased.
  • control device 100 controls the opening degree of the expansion valve 72B so that the discharge temperature TdB of the compressor 10B approaches the target temperature TdB*.
  • the amount of refrigerant circulating in the main refrigerant circuit and the discharge temperatures TdA and TdB of the compressors 10A and 10B can be set to appropriate values.
  • the refrigeration cycle device 1 shown in FIG. 1 has a plurality of compressors connected in parallel to increase capacity.
  • the load is large, multiple compressors can be operated at the same time, but depending on the season, the load may drop and low-capacity operation may be necessary. In such a case, if multiple compressors are operated at the same time, the frequency of turning the compressors on and off will increase, so some of the compressors may be stopped and one compressor may be operated to reduce the capacity. and continuous operation.
  • FIG. 5 is a flowchart for explaining compressor stop control during low capacity operation.
  • the control device 100 determines whether to shift to low capacity operation. For example, in the case of a refrigeration system, the control device 100 determines to shift to low-capacity operation when the internal temperature falls too much below a set temperature.
  • step S31 If there is no transition to low capacity operation (NO in S31), the process exits from the control shown in the flowchart of FIG. On the other hand, when shifting to low capacity operation (YES in S31), the control device 100 reads out previous compressor stop history information from a nonvolatile memory or the like in step S32. For example, if there are two compressors as shown in Figure 1, remembering which compressor was stopped during the previous low-capacity operation can be used as a reference when deciding which compressor to stop this time. can do.
  • step S33 the control device 100 determines the compressor to be stopped. Specifically, the compressor that was stopped during the previous low capacity operation is operated this time, and the compressor that was operated during the previous low capacity operation is stopped this time. As a result, the total operating time of each of the two compressors is averaged because the stops are performed alternately.
  • the injection flow path is also shut off by closing the expansion valves 72A, 72B and on-off valves 70A, 70B that correspond to the stopped compressor.
  • step S34 the control device 100 updates the stop history information to reflect the result determined in step S33, and stores it in a nonvolatile memory or the like.
  • the compressor to be stopped is determined when transitioning to low capacity operation. In addition, when there are two compressors, they are stopped alternately, but when there are three or more compressors, the compressor with the least number of stops is stopped so that the number of stops is averaged. Just do it.
  • step S33 if the total operating time is also stored in the stop history information and the compressor with the longest total operating time is stopped in step S33, even if the operating time of low capacity operation is longer or shorter, , it is possible to accurately optimize the service life.
  • FIG. 6 is an overall configuration diagram of a refrigeration cycle device according to the second embodiment. Note that FIG. 6 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in a physical space.
  • a refrigeration cycle device 201 shown in FIG. 6 includes an outdoor unit 202 and a load device 3.
  • the outdoor unit 202 has a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connection to the load device 3.
  • the load device 3 has a refrigerant outlet port PO3 and a refrigerant inlet port PI3 for connection to the outdoor unit 2.
  • the configuration of the load device 3 is the same as the load device shown in FIG.
  • the outdoor unit 202 includes compressors 210A and 210B in place of the compressors 10A and 10B in the configuration of the outdoor unit 2 shown in FIG.
  • the configuration of other parts of the outdoor unit 202 is similar to the configuration of the outdoor unit 2, so the description will not be repeated here.
  • the compressors 10A and 10B were single-stage compressors with injection ports, but the compressors 210A and 210B were two-stage compressors with intermediate pressure ports.
  • the compressor 210A includes a first stage compressor 211A, an intercooler 121A, and a second stage compressor 213A.
  • Compressor 210B includes a first-stage compressor 211B, an intercooler 121B, and a second-stage compressor 213B.
  • compressors 210A and 210B can be used, such as scroll type, rotary type, screw type, etc.
  • the configuration in FIG. 6 is also similar to the configuration in FIG. 1 in that a plurality of compressors 210A and 210B operate in parallel in the flow path F1 of the main refrigerant circuit.
  • the refrigerant flows in the order of first-stage compressors 211A and 211B, intercoolers 212A and 212B, and second-stage compressors 213A and 213B.
  • the combined refrigerants flow through the condenser 20, heat exchangers 30A, 30B, expansion valve 40, evaporator 50, and accumulator 60 in this order, and return to the first-stage compressors 211A, 211B.
  • Intercoolers 212A and 212B may be integrated with condenser 20.
  • the refrigerant that has passed through the expansion valve 71 and the intermediate pressure receiver 73 is branched and the flow rate is adjusted by the expansion valves 72A and 72B. It is sucked into the compressors 213A and 213B in the first stage.
  • a large-capacity refrigeration cycle device can be realized by operating multiple existing compressors in parallel without increasing the number of intermediate pressure receivers 73, which are pressure-resistant containers. . Therefore, manufacturing costs and development man-hours can be reduced.
  • the refrigeration cycle device 1, 201 shown in FIGS. 1 and 6 includes a load device 3 including a first expansion valve 40 and an evaporator 50, and a refrigerant outlet port PO2 and a refrigerant inlet port for connecting to the load device 3. and an outdoor unit 2 having a PI2.
  • the outdoor unit 2 is arranged in a first flow path F1, which is a flow path from the refrigerant inlet port PI2 to the refrigerant outlet port PO2, and forms a circulation flow path in which the refrigerant circulates together with the load device 3.
  • a plurality of compressors 10A, 10B or 210A, 210B arranged in parallel between the refrigerant inlet port PI2 and the condenser 20 in the first flow path F1, an intermediate pressure receiver 73, A second flow path F2 that branches from a portion of the first flow path F1 between the condenser 20 and the refrigerant outlet port PO2 and is connected to the intermediate pressure receiver 73, and a second expansion valve disposed in the second flow path F2.
  • a plurality of third flow paths F3A, F3B that branch downstream of the intermediate pressure receiver 73 and send refrigerant to the plurality of compressors 10A, 10B or 210A, 210B, respectively, and a plurality of third flow paths F3A, F3B.
  • a plurality of third expansion valves 72A and 72B are provided.
  • the outdoor unit 2 is provided between the plurality of third expansion valves 72A, 72B and the plurality of compressors 10A, 10B or 210A, 210B in the plurality of third flow paths F3A, F3B, respectively. It further includes a plurality of heat exchangers 30A and 30B arranged. Each of the plurality of heat exchangers 30A, 30B connects the refrigerant flowing through the corresponding third flow path F3A, F3B to the branch point where the second flow path F2 branches after passing through the condenser 20 in the first flow path F1. It is configured to exchange heat with the oncoming refrigerant.
  • the outdoor unit 2 further includes a control device 100 configured to control the second expansion valve 71 and the plurality of third expansion valves 72A, 72B.
  • the control device 100 controls the opening degree of the second expansion valve 71 based on the degree of subcooling SC of the refrigerant at the outlet of the condenser 20, and controls the opening degree of each of the plurality of third expansion valves 72A, 72B based on the degree of subcooling SC of the refrigerant at the outlet of the condenser 20. It is configured to control based on the discharge temperature of the compressors 10A, 10B or 210A, 210B corresponding to each of the third expansion valves 72A, 72B.
  • each of the plurality of compressors 10A and 10B is a single-stage compressor with an injection port, and the plurality of third flow paths F3A and F3B are Each is connected to a corresponding injection port.
  • the outdoor unit 2 further includes a control device 100 configured to control the plurality of compressors 10A, 10B or 210A, 210B.
  • the control device 100 stops a part of the plurality of compressors 10A, 10B or 210A, 210B, and is configured to perform low load operation.
  • the control device is configured to determine which compressor to stop each time low load operation occurs so that the operating times of the plurality of compressors 10A, 10B or 210A, 210B are not uneven (S33). .
  • the intermediate pressure receiver 73 is effective when the refrigerant uses supercriticality such as CO2 . Since the intermediate pressure receiver 73 is shared by a plurality of compressors, it is possible to realize an outdoor unit with a compact size. Furthermore, costs can be reduced if the receiver, which is a pressure vessel, is integrated into one.
  • heat exchangers 30A and 30B are installed to exchange heat between the refrigerant at the outlet of the condenser 20 and the refrigerant passing through the injection channels F3A and F3B, the performance of the refrigeration cycle device can be improved.
  • the suction portions of each compressor are branched at the common accumulator 60, the refrigerant liquid and refrigerating machine oil are preferably evenly distributed to the plurality of compressors 10A, 10B or 210A, 210B.
  • the refrigeration cycle device 1, 201 may also be used in an air conditioner or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This refrigeration cycle device (1) comprises a load device (3) and an outdoor unit (2). The outdoor unit (2) includes: a first flow path (F1) from a refrigerant inlet port (PI2) to a refrigerant outlet port (PO2); a condenser (20); a plurality of compressors (10A, 10B) disposed in parallel in the first flow path (F1) between the refrigerant inlet port (PI2) and the condenser (20); a liquid receiver (73); a second flow path (F2) that branches from a section of the first flow path (F1) between the condenser (20) and the refrigerant outlet port (PO2) and is connected to the liquid receiver (73); a second expansion valve (71) disposed in the second flow path (F2); a plurality of third flow paths (F3A, F3B) that branch downstream of the liquid receiver (73) and feed a refrigerant to the plurality of compressors (10A, 10B); and a plurality of third expansion valves (72A, 72B) respectively disposed in the plurality of third flow paths (F3A, F3B).

Description

冷凍サイクル装置Refrigeration cycle equipment
 この発明は、冷凍サイクル装置に関する。 This invention relates to a refrigeration cycle device.
 冷凍サイクル装置には、圧縮を二段階にすることで圧縮機単段当たりの圧縮比を低減するようにしたものがある。このような冷凍サイクル装置では、低段側サイクルの冷媒流量を必要最小限とすることで低段側の圧縮動力を最小化することができ、単段サイクルに比べて効率を向上することが可能となる。 Some refrigeration cycle devices are designed to reduce the compression ratio per single stage of the compressor by performing compression in two stages. In such refrigeration cycle equipment, by minimizing the refrigerant flow rate in the lower stage cycle, the compression power in the lower stage can be minimized, making it possible to improve efficiency compared to a single stage cycle. becomes.
 しかし、高段圧縮機に供給される冷媒の温度が上昇し、高段圧縮機から吐出される冷媒の過熱度が過剰となる場合がある。この対策として、特開2020-24046号公報に開示された冷凍サイクル装置は、中間レシーバから吐出された冷媒を高段圧縮機の吸入ポートに供給する中間配管と、中間配管を流通する冷媒を加熱する内部熱交換器と、気液分離器で分離された液相の冷媒を内部熱交換器よりも上流側において中間配管に供給するバイパス配管と、バイパス配管に設けられた調節弁とを備える。 However, the temperature of the refrigerant supplied to the high-stage compressor may rise, and the degree of superheat of the refrigerant discharged from the high-stage compressor may become excessive. As a countermeasure for this, the refrigeration cycle device disclosed in Japanese Patent Application Laid-Open No. 2020-24046 heats an intermediate pipe that supplies refrigerant discharged from an intermediate receiver to a suction port of a high-stage compressor, and a refrigerant flowing through the intermediate pipe. The system includes an internal heat exchanger, a bypass pipe that supplies the liquid phase refrigerant separated by the gas-liquid separator to the intermediate pipe on the upstream side of the internal heat exchanger, and a control valve provided in the bypass pipe.
 バイパス配管から冷媒を圧縮機にインジェクションすることにより、高段圧縮機から吐出される冷媒の過熱度が高すぎることに起因した高段圧縮機の問題を防止することが可能となる。 By injecting refrigerant into the compressor from the bypass pipe, it is possible to prevent problems with the high-stage compressor caused by the degree of superheat of the refrigerant discharged from the high-stage compressor being too high.
特開2020-24046号公報JP2020-24046A
 近年、地球温暖化の対策として、冷凍サイクル装置に自然冷媒を用いることが検討されている。自然冷媒のうち、CO冷媒を適用した冷凍サイクル装置は冷媒液貯留のため、冷媒を高段圧縮機の吸入ポート(中間圧ポート)に供給する中間配管(以下、インジェクション流路とも称する)上に臨界圧以下の中間圧レシーバを配置することが考えられる。 In recent years, the use of natural refrigerants in refrigeration cycle devices has been considered as a measure against global warming. Among natural refrigerants, refrigeration cycle devices that use CO 2 refrigerant store refrigerant on intermediate piping (hereinafter also referred to as injection flow path) that supplies refrigerant to the suction port (intermediate pressure port) of the high-stage compressor. It is conceivable to place an intermediate pressure receiver below the critical pressure.
 しかしながら、冷凍サイクル装置には、小容量から大容量まで様々な容量の需要がある。たとえば、容量を拡大するため圧縮機を複数並列設置する構成とした場合、インジェクション流路も複数必要となる。中間圧レシーバはインジェクション流路上にあるが、耐圧が必要な容器であるため製造コストも高く、トータルコストおよび配置スペースの関係から複数設置が困難となる。 However, refrigeration cycle devices are required to have a variety of capacities, from small to large. For example, if a configuration is adopted in which multiple compressors are installed in parallel to increase capacity, multiple injection channels are also required. The intermediate pressure receiver is located on the injection flow path, but since it is a container that requires pressure resistance, the manufacturing cost is high, and it is difficult to install multiple receivers due to the total cost and installation space.
 本開示は、このような課題を解決する冷凍サイクル装置であって、コストおよびサイズを抑制しつつ大容量を実現することができる冷凍サイクル装置を提供することを目的とする。 An object of the present disclosure is to provide a refrigeration cycle device that solves such problems and can achieve large capacity while suppressing cost and size.
 本開示の冷凍サイクル装置は、第1膨張弁および蒸発器を含む負荷装置と、負荷装置と接続するための冷媒出口ポートおよび冷媒入口ポートを有する室外ユニットとを備える。室外ユニットは、冷媒入口ポートから冷媒出口ポートに至る流路であって、負荷装置とともに冷媒が循環する循環流路を形成する第1流路と、第1流路に配置される凝縮器と、第1流路において冷媒入口ポートと凝縮器との間に並列に配置される複数の圧縮機と、受液器と、第1流路の凝縮器と冷媒出口ポートとの間の部分から分岐し、受液器に接続される第2流路と、第2流路に配置される第2膨張弁と、受液器の下流において分岐し、複数の圧縮機に冷媒をそれぞれ送る複数の第3流路と、複数の第3流路にそれぞれ配置される複数の第3膨張弁とを備える。 The refrigeration cycle device of the present disclosure includes a load device including a first expansion valve and an evaporator, and an outdoor unit having a refrigerant outlet port and a refrigerant inlet port for connection to the load device. The outdoor unit includes a first flow path that is a flow path from a refrigerant inlet port to a refrigerant outlet port and forms a circulation flow path in which the refrigerant circulates together with the load device, and a condenser disposed in the first flow path. A plurality of compressors arranged in parallel between the refrigerant inlet port and the condenser in the first flow path, a liquid receiver, and a plurality of compressors arranged in parallel between the refrigerant inlet port and the refrigerant outlet port in the first flow path; , a second flow path connected to the liquid receiver, a second expansion valve disposed in the second flow path, and a plurality of third expansion valves that branch downstream of the liquid receiver and send refrigerant to the plurality of compressors, respectively. It includes a flow path and a plurality of third expansion valves respectively arranged in the plurality of third flow paths.
 本開示の冷凍サイクル装置によれば、中間圧の受液器の数を増やさないので、コストおよびサイズを抑制しつつ大容量を実現することができる。 According to the refrigeration cycle device of the present disclosure, since the number of intermediate pressure liquid receivers is not increased, a large capacity can be achieved while suppressing cost and size.
実施の形態1に従う冷凍サイクル装置の全体構成図である。1 is an overall configuration diagram of a refrigeration cycle device according to Embodiment 1. FIG. 膨張弁71の開度の制御を説明するためのフローチャートである。7 is a flowchart for explaining control of the opening degree of the expansion valve 71. FIG. 膨張弁72Aの開度の制御を説明するためのフローチャートである。It is a flow chart for explaining control of the opening degree of expansion valve 72A. 膨張弁72Bの開度の制御を説明するためのフローチャートである。It is a flow chart for explaining control of the opening degree of expansion valve 72B. 低容量運転時の圧縮機の停止制御を説明するためのフローチャートである。It is a flow chart for explaining stop control of a compressor during low capacity operation. 実施の形態2に従う冷凍サイクル装置の全体構成図である。FIG. 2 is an overall configuration diagram of a refrigeration cycle device according to a second embodiment.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Although a plurality of embodiments will be described below, it has been planned from the beginning of the application to appropriately combine the configurations described in each embodiment. In addition, the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に従う冷凍サイクル装置の全体構成図である。なお、図1では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
Embodiment 1.
FIG. 1 is an overall configuration diagram of a refrigeration cycle device according to a first embodiment. Note that FIG. 1 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in a physical space.
 図1に示す冷凍サイクル装置1は、室外ユニット2と、負荷装置3とを備える。室外ユニット2は、負荷装置3と接続するための冷媒出口ポートPO2および冷媒入口ポートPI2を有する。負荷装置3は、室外ユニット2と接続するための冷媒出口ポートPO3および冷媒入口ポートPI3を有する。 The refrigeration cycle device 1 shown in FIG. 1 includes an outdoor unit 2 and a load device 3. The outdoor unit 2 has a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connection to the load device 3. The load device 3 has a refrigerant outlet port PO3 and a refrigerant inlet port PI3 for connection to the outdoor unit 2.
 冷凍サイクル装置1の室外ユニット2は、延長配管等によって負荷装置3に接続できるように構成される。室外ユニット2は、アキュムレータ60と、圧縮機10A,10Bと、凝縮器20と、熱交換器30A,30Bとを備える。 The outdoor unit 2 of the refrigeration cycle device 1 is configured so that it can be connected to a load device 3 via an extension pipe or the like. The outdoor unit 2 includes an accumulator 60, compressors 10A and 10B, a condenser 20, and heat exchangers 30A and 30B.
 圧縮機10A,10Bの各々は、吸入ポート、吐出ポート、インジェクションポートを有する単段の圧縮機である。熱交換器30A,30Bの各々は、第1通路および第2通路を有し、第1通路を流れる冷媒と第2通路を流れる冷媒との間で熱交換を行なうように構成される。 Each of the compressors 10A and 10B is a single-stage compressor having a suction port, a discharge port, and an injection port. Each of the heat exchangers 30A, 30B has a first passage and a second passage, and is configured to exchange heat between the refrigerant flowing through the first passage and the refrigerant flowing through the second passage.
 負荷装置3は、第1膨張弁40と、蒸発器50とを含む。蒸発器50は空気と冷媒との間で熱交換を行なうように構成される。冷凍サイクル装置1では、蒸発器50は、冷却対象空間の空気からの吸熱によって冷媒を蒸発させる。第1膨張弁40は、たとえば、室外ユニット2と独立して制御される温度膨張弁である。なお、第1膨張弁40は冷媒を減圧することができる電子膨張弁であってもよい。 The load device 3 includes a first expansion valve 40 and an evaporator 50. Evaporator 50 is configured to exchange heat between air and refrigerant. In the refrigeration cycle device 1, the evaporator 50 evaporates the refrigerant by absorbing heat from the air in the space to be cooled. The first expansion valve 40 is, for example, a temperature expansion valve that is controlled independently of the outdoor unit 2. Note that the first expansion valve 40 may be an electronic expansion valve that can reduce the pressure of the refrigerant.
 圧縮機10Aは、配管86Aを経由してアキュムレータ60から吸入される冷媒を圧縮して配管80Aへ吐出する。圧縮機10Bは、配管86Bを経由してアキュムレータ60から吸入される冷媒を圧縮して配管80Bへ吐出する。配管80Aおよび80Bは合流して配管80となり、凝縮器20に接続される。圧縮機10A,10Bの各々は、インバータ制御により運転周波数を予め定められた範囲内で変更できるように構成されている。また、圧縮機10A,10Bの各々にはインジェクションポートが設けられており、インジェクションポートからの冷媒を圧縮工程の途中部分に流入させることができる。圧縮機10A,10Bは、制御装置100からの制御信号に従って回転速度を調整するように構成される。圧縮機10A,10Bの回転速度を調整することで冷媒の循環量が調整され、冷凍サイクル装置1の能力を調整することができる。圧縮機10A,10Bには種々のタイプのものを採用可能であり、たとえば、スクロールタイプを採用し得る。 The compressor 10A compresses the refrigerant sucked from the accumulator 60 via the pipe 86A and discharges it to the pipe 80A. Compressor 10B compresses the refrigerant sucked from accumulator 60 via piping 86B and discharges it to piping 80B. The pipes 80A and 80B join to form a pipe 80, which is connected to the condenser 20. Each of the compressors 10A and 10B is configured so that its operating frequency can be changed within a predetermined range by inverter control. Further, each of the compressors 10A and 10B is provided with an injection port, and the refrigerant from the injection port can be made to flow into the middle part of the compression process. Compressors 10A and 10B are configured to adjust their rotational speeds according to control signals from control device 100. By adjusting the rotational speeds of the compressors 10A and 10B, the amount of refrigerant circulated can be adjusted, and the capacity of the refrigeration cycle device 1 can be adjusted. Various types of compressors can be used for the compressors 10A and 10B, and for example, a scroll type can be used.
 凝縮器20は、圧縮機10Aおよび10Bから吐出された高温高圧のガス冷媒が外気と熱交換(放熱)を行なうように構成される。この熱交換により、冷媒は凝縮されて液相に変化する。圧縮機10Aおよび10Bから配管80に吐出された冷媒は、凝縮器20において凝縮および液化され配管81へ流出する。熱交換の効率を上げるため外気を送るファン(図示せず)が凝縮器20に取り付けられている。 The condenser 20 is configured so that the high temperature, high pressure gas refrigerant discharged from the compressors 10A and 10B exchanges heat (radiates heat) with the outside air. This heat exchange causes the refrigerant to condense and change into a liquid phase. The refrigerant discharged from the compressors 10A and 10B into the pipe 80 is condensed and liquefied in the condenser 20 and flows out into the pipe 81. A fan (not shown) is attached to the condenser 20 to send outside air to increase the efficiency of heat exchange.
 ここで、冷凍サイクル装置1の冷媒回路に使用する冷媒はCOとするが、過冷却度が確保しにくい状態が生じる場合は、他の冷媒を使用しても良い。 Here, the refrigerant used in the refrigerant circuit of the refrigeration cycle device 1 is CO 2 , but if a situation arises in which it is difficult to ensure the degree of supercooling, other refrigerants may be used.
 なお、本明細書では、説明の容易のため、超臨界状態のCOのような冷媒を冷却する場合も凝縮器20と呼ぶこととする。また、本明細書では、説明の容易のため、超臨界状態の冷媒の基準温度からの低下量も過冷却度と呼ぶこととする。 In this specification, for ease of explanation, the condenser 20 will also be referred to when cooling a refrigerant such as CO 2 in a supercritical state. Furthermore, in this specification, for ease of explanation, the amount of decrease from the reference temperature of the refrigerant in the supercritical state will also be referred to as the degree of supercooling.
 配管81は、配管81A,81Bに分岐する。配管81A,81Bを通過した冷媒は、それぞれ熱交換器30A,30Bの第1流路を通過した後に配管82A,82Bに流出する。配管82A,82Bは合流して配管82となる。 The pipe 81 branches into pipes 81A and 81B. The refrigerant that has passed through the pipes 81A and 81B flows out into the pipes 82A and 82B after passing through the first flow paths of the heat exchangers 30A and 30B, respectively. The pipes 82A and 82B merge to form a pipe 82.
 冷媒入口ポートPI2から圧縮機10A,10B、凝縮器20、熱交換器30A,30Bの各第1通路を経由して冷媒出口ポートPO2に至る第1流路F1は、負荷装置3の第1膨張弁40および蒸発器50が配置される流路とともに、冷媒が循環する循環流路を形成する。以下、この循環流路を冷凍サイクルの「主冷媒回路」とも言う。 A first flow path F1 from the refrigerant inlet port PI2 to the refrigerant outlet port PO2 via each first path of the compressors 10A, 10B, the condenser 20, and the heat exchangers 30A, 30B is a first expansion path of the load device 3. Together with the flow path in which the valve 40 and the evaporator 50 are arranged, a circulation flow path through which the refrigerant circulates is formed. Hereinafter, this circulation flow path will also be referred to as the "main refrigerant circuit" of the refrigeration cycle.
 室外ユニット2は、第2膨張弁71と、中間レシーバ(受液器)73と、開閉弁70A,70Bと、第3膨張弁72A,72Bとをさらに備える。 The outdoor unit 2 further includes a second expansion valve 71, an intermediate receiver (liquid receiver) 73, on-off valves 70A, 70B, and third expansion valves 72A, 72B.
 配管82と配管83の境界部分から配管91が分岐し第2膨張弁71に配管91が接続される。第2膨張弁71と中間圧レシーバ73とは、配管92によって接続される。配管91、92は第2流路F2を構成する。中間圧レシーバ73の底部には液冷媒を排出する配管93が接続される。配管93は分岐し配管93A,93Bに分かれる。中間圧レシーバ73の底部に貯留された液冷媒は、配管93A,93Bをそれぞれ通過して第3膨張弁72A,72Bにおいて減圧される。第3膨張弁72A,72Bにおいて減圧された冷媒は、配管94A,94Bをそれぞれ通過して熱交換器30A,30Bの各第2通路に送られる。熱交換器30A,30Bの各第2通路を通過した冷媒は、さらに、それぞれ配管95A,95Bを通過して、圧縮機10A,10Bの各インジェクションポートに送られる。 A pipe 91 branches from the boundary between the pipe 82 and the pipe 83 and is connected to the second expansion valve 71. The second expansion valve 71 and the intermediate pressure receiver 73 are connected by a pipe 92. Pipes 91 and 92 constitute a second flow path F2. A pipe 93 for discharging liquid refrigerant is connected to the bottom of the intermediate pressure receiver 73. The pipe 93 branches into pipes 93A and 93B. The liquid refrigerant stored at the bottom of the intermediate pressure receiver 73 passes through the pipes 93A and 93B, respectively, and is depressurized at the third expansion valves 72A and 72B. The refrigerant whose pressure has been reduced in the third expansion valves 72A, 72B passes through the pipes 94A, 94B, respectively, and is sent to the second passages of the heat exchangers 30A, 30B. The refrigerant that has passed through each of the second passages of heat exchangers 30A and 30B further passes through piping 95A and 95B, respectively, and is sent to each injection port of compressor 10A and 10B.
 配管91,92は、第2流路F2を構成し、配管93A,94A,95Aは、第3流路F3Aを構成し、配管93B,94B,95Bは、第3流路F3Bを構成する。 The pipes 91 and 92 constitute a second flow path F2, the pipes 93A, 94A, and 95A constitute a third flow path F3A, and the pipes 93B, 94B, and 95B constitute a third flow path F3B.
 以下において、主冷媒回路から分岐して熱交換器30A,30Bの各第2通路を経由して圧縮機10A,10Bの各インジェクションポートに冷媒を送る流路F2,F3A,F3Bを、「インジェクション流路」とも言う。 In the following, channels F2, F3A, and F3B that branch from the main refrigerant circuit and send refrigerant to the injection ports of the compressors 10A and 10B via the second channels of the heat exchangers 30A and 30B are referred to as "injection flows". Also called "road".
 中間圧レシーバ73は、流路F3A,F3Bに共通に配置され、冷媒を貯留する。開閉弁70Aは、中間圧レシーバ73のガス排出口と配管94Aと配管95Aの接続部とを連通させるガス抜き通路を開閉する。開閉弁70Bは、中間圧レシーバ73のガス排出口と配管94Bと配管95Bの接続部とを連通させるガス抜き通路を開閉する。膨張弁72Aは、流路F3Aの冷媒流量を調整する。膨張弁72Bは、流路F3Bの冷媒流量を調整する。 The intermediate pressure receiver 73 is disposed in common to the flow paths F3A and F3B and stores refrigerant. The on-off valve 70A opens and closes a gas vent passage that communicates the gas exhaust port of the intermediate pressure receiver 73 with the connecting portion of the piping 94A and the piping 95A. The on-off valve 70B opens and closes a gas vent passage that communicates the gas exhaust port of the intermediate pressure receiver 73 with the connecting portion of the piping 94B and the piping 95B. The expansion valve 72A adjusts the refrigerant flow rate in the flow path F3A. The expansion valve 72B adjusts the refrigerant flow rate in the flow path F3B.
 第2膨張弁71は主冷媒回路の高圧部の冷媒を中間圧力まで低下させることができる電子膨張弁である。中間圧レシーバ73は、減圧され二相となった冷媒の気相と液相の分離を容器内で行ない、液冷媒を貯蔵し主冷媒回路の冷媒の循環量を調整することができる容器である。中間圧レシーバ73の上部に接続されるガス抜き配管と中間圧レシーバ73の下部に接続される配管93は、中間圧レシーバ73の中でガス冷媒と液冷媒に分離した冷媒を分離した状態で取り出すための配管である。第3膨張弁72A,72Bによって、配管93から排出される液冷媒の量を調整することで中間圧レシーバ73の冷媒量を調整することができる。 The second expansion valve 71 is an electronic expansion valve that can reduce the refrigerant in the high pressure section of the main refrigerant circuit to an intermediate pressure. The intermediate pressure receiver 73 is a container that separates the gas phase and liquid phase of the refrigerant that has been reduced in pressure into two phases within the container, stores the liquid refrigerant, and can adjust the amount of refrigerant circulation in the main refrigerant circuit. . A gas venting pipe connected to the upper part of the intermediate pressure receiver 73 and a pipe 93 connected to the lower part of the intermediate pressure receiver 73 take out the refrigerant separated into gas refrigerant and liquid refrigerant in the intermediate pressure receiver 73 in a separated state. This is the piping for this purpose. The amount of refrigerant in the intermediate pressure receiver 73 can be adjusted by adjusting the amount of liquid refrigerant discharged from the pipe 93 using the third expansion valves 72A and 72B.
 このようにインジェクション流路に中間圧レシーバ73を設けることにより、液管である配管83における冷媒の過冷却度を確保することが容易となる。一般に中間圧レシーバ73にはガス冷媒が存在するため、冷媒温度は飽和温度となるので、配管82,83に第2膨張弁71を介在させずに中間圧レシーバ73を配置すると冷媒の過冷却度を確保できないからである。 By providing the intermediate pressure receiver 73 in the injection flow path in this way, it becomes easy to ensure the degree of supercooling of the refrigerant in the pipe 83, which is a liquid pipe. Generally, since gas refrigerant is present in the intermediate pressure receiver 73, the refrigerant temperature becomes the saturation temperature. Therefore, if the intermediate pressure receiver 73 is disposed in the pipes 82 and 83 without intervening the second expansion valve 71, the degree of subcooling of the refrigerant This is because it cannot be ensured.
 また、中間圧部分に中間圧レシーバ73を設けると、主冷媒回路の高圧部の圧力が高く冷媒が超臨界状態である場合でも中間圧レシーバ73の内部に中間圧の液冷媒を貯留することが可能となる。このため、中間圧レシーバ73の容器の設計圧を高圧部よりも低くすることができる。 Furthermore, by providing the intermediate pressure receiver 73 in the intermediate pressure section, even when the pressure in the high pressure section of the main refrigerant circuit is high and the refrigerant is in a supercritical state, intermediate pressure liquid refrigerant can be stored inside the intermediate pressure receiver 73. It becomes possible. Therefore, the design pressure of the container of the intermediate pressure receiver 73 can be lower than that of the high pressure section.
 室外ユニット2は、さらに、圧力センサ111と、温度センサ120A,120B,121と、制御装置100とを備える。制御装置100は、圧縮機10A,10B、第2膨張弁71、および第3膨張弁72A,72Bを制御するように構成される。 The outdoor unit 2 further includes a pressure sensor 111, temperature sensors 120A, 120B, 121, and a control device 100. The control device 100 is configured to control the compressors 10A, 10B, the second expansion valve 71, and the third expansion valves 72A, 72B.
 圧力センサ111は、圧縮機10A,10Bから吐出され合流した配管80中の冷媒の圧力PHを検出し、その検出値を制御装置100へ出力する。 The pressure sensor 111 detects the pressure PH of the refrigerant in the pipe 80 discharged from the compressors 10A and 10B and merged together, and outputs the detected value to the control device 100.
 温度センサ120Aは、圧縮機10Aの吐出温度TdAを検出し、その検出値を制御装置100へ出力する。温度センサ120Bは、圧縮機10Bの吐出温度TdBを検出し、その検出値を制御装置100へ出力する。温度センサ121は、凝縮器20の出口の配管81の冷媒温度T1を検出し、その検出値を制御装置100へ出力する。 The temperature sensor 120A detects the discharge temperature TdA of the compressor 10A and outputs the detected value to the control device 100. Temperature sensor 120B detects the discharge temperature TdB of compressor 10B and outputs the detected value to control device 100. The temperature sensor 121 detects the refrigerant temperature T1 of the pipe 81 at the outlet of the condenser 20 and outputs the detected value to the control device 100.
 本実施の形態では流路F2は、減圧して二相となった冷媒を圧縮機10A,10Bへ流入させることによって圧縮機10A,10Bの吐出温度TdA,TdBを制御するものである。加えて流路F2上に設置した中間圧レシーバ73によって主冷媒回路の冷媒量を調整することができる。さらに、第2流路F2は、熱交換器30A,30Bによる熱交換による主冷媒回路の冷媒の過冷却の確保も担っている。 In the present embodiment, the flow path F2 controls the discharge temperatures TdA and TdB of the compressors 10A and 10B by causing the refrigerant that has been reduced in pressure to become two-phase to flow into the compressors 10A and 10B. In addition, the amount of refrigerant in the main refrigerant circuit can be adjusted by the intermediate pressure receiver 73 installed on the flow path F2. Furthermore, the second flow path F2 is also responsible for ensuring supercooling of the refrigerant in the main refrigerant circuit through heat exchange by the heat exchangers 30A and 30B.
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown) for inputting and outputting various signals, etc. It consists of: The CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 100 is written. The control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
 図1の構成に示すように、中間圧レシーバ73をインジェクション流路に設置し、圧縮機10A,10Bを並列構成にした冷凍サイクル装置1において、共通に設けた中間圧レシーバ73で気液分離された液冷媒を分岐し、圧縮機10A,10Bそれぞれの流路F3A,F3Bに流通させる。このような構成とすることによって,各圧縮機へのインジェクション流路F3A,F3Bへの分岐部は確実に液単相となるため、液冷媒/ガス冷媒の分配偏りを回避できる。 As shown in the configuration of FIG. 1, in a refrigeration cycle device 1 in which an intermediate pressure receiver 73 is installed in the injection flow path and compressors 10A and 10B are configured in parallel, gas and liquid are separated by the intermediate pressure receiver 73 provided in common. The liquid refrigerant is branched and distributed through flow paths F3A and F3B of the compressors 10A and 10B, respectively. With such a configuration, the branching portions to the injection channels F3A and F3B to each compressor are reliably liquid single-phase, so it is possible to avoid uneven distribution of liquid refrigerant/gas refrigerant.
 次に、制御装置100が実行する制御について、フローチャートを用いて説明する。
 図2は、膨張弁71の開度の制御を説明するためのフローチャートである。まずステップS1において、制御装置100は、凝縮器20の出口の冷媒温度T1と凝縮器20の圧力(PHで近似)とによって予め用意されたテーブルを参照して、冷媒の過冷却度SCを検出する。
Next, the control executed by the control device 100 will be explained using a flowchart.
FIG. 2 is a flowchart for explaining control of the opening degree of the expansion valve 71. First, in step S1, the control device 100 detects the degree of subcooling SC of the refrigerant by referring to a table prepared in advance based on the refrigerant temperature T1 at the outlet of the condenser 20 and the pressure (approximated by PH) of the condenser 20. do.
 続いて、ステップS2において、制御装置100は、過冷却度SCと目標過冷却度SC*とを比較する。過冷却度SCが目標過冷却度SC*より大きい場合には(S2でYES)、制御装置100は、膨張弁71の開度を減少させる(S3)。これによって、中間圧レシーバ73に流入する液冷媒の量が減少し、中間圧レシーバ73内の液冷媒量が減少するため、主冷媒回路を循環する冷媒量が増加する。これにより、凝縮器20の放熱量が一定の場合は過冷却度SCが減少する。 Subsequently, in step S2, the control device 100 compares the degree of supercooling SC and the target degree of supercooling SC*. When the degree of supercooling SC is larger than the target degree of supercooling SC* (YES in S2), the control device 100 reduces the opening degree of the expansion valve 71 (S3). As a result, the amount of liquid refrigerant flowing into the intermediate pressure receiver 73 decreases, and the amount of liquid refrigerant inside the intermediate pressure receiver 73 decreases, so the amount of refrigerant circulating through the main refrigerant circuit increases. Thereby, when the amount of heat dissipated from the condenser 20 is constant, the degree of supercooling SC decreases.
 一方、過冷却度SCが目標過冷却度SC*以下である場合には(S2でNO)、制御装置100は、膨張弁71の開度を増加させる(S4)。これによって、中間圧レシーバ73に流入する液冷媒の量が増加し、中間圧レシーバ73に貯留される液冷媒量が増加するとともに、主冷媒回路を循環する冷媒量が減少する。これにより、凝縮器20の放熱量が一定の場合は過冷却度SCが増加する。 On the other hand, if the degree of supercooling SC is equal to or less than the target degree of supercooling SC* (NO in S2), the control device 100 increases the opening degree of the expansion valve 71 (S4). As a result, the amount of liquid refrigerant flowing into the intermediate pressure receiver 73 increases, the amount of liquid refrigerant stored in the intermediate pressure receiver 73 increases, and the amount of refrigerant circulating through the main refrigerant circuit decreases. Thereby, when the amount of heat dissipated from the condenser 20 is constant, the degree of supercooling SC increases.
 このように、制御装置100は、凝縮器20の出口の冷媒の過冷却度SCが目標過冷却度SC*に近づくように第2膨張弁72の開度を制御する。 In this way, the control device 100 controls the opening degree of the second expansion valve 72 so that the degree of subcooling SC of the refrigerant at the outlet of the condenser 20 approaches the target degree of subcooling SC*.
 図3は、膨張弁72Aの開度の制御を説明するためのフローチャートである。まずステップS11において、制御装置100は、圧縮機10Aが吐出する冷媒の温度TdAを、温度センサ120Aを用いて検出する。 FIG. 3 is a flowchart for explaining control of the opening degree of the expansion valve 72A. First, in step S11, the control device 100 detects the temperature TdA of the refrigerant discharged by the compressor 10A using the temperature sensor 120A.
 続いて、ステップS12において、制御装置100は、温度TdAと目標温度TdA*とを比較する。温度TdAが目標温度TdA*より高い場合には(S12でYES)、制御装置100は、膨張弁72Aの開度を増加させる(S13)。これによって、圧縮機100Aに導入される中間圧の冷媒の量が増加し、圧縮機100Aの吐出温度TdAが低下する。 Subsequently, in step S12, the control device 100 compares the temperature TdA and the target temperature TdA*. If the temperature TdA is higher than the target temperature TdA* (YES in S12), the control device 100 increases the opening degree of the expansion valve 72A (S13). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100A increases, and the discharge temperature TdA of the compressor 100A decreases.
 一方、温度TdAが目標温度TdA*より以下である場合には(S12でNO)、制御装置100は、膨張弁72Aの開度を減少させる(S14)。これによって、圧縮機100Aに導入される中間圧の冷媒の量が減少し、圧縮機100Aの吐出温度TdAが上昇する。 On the other hand, if the temperature TdA is lower than the target temperature TdA* (NO in S12), the control device 100 reduces the opening degree of the expansion valve 72A (S14). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100A decreases, and the discharge temperature TdA of the compressor 100A increases.
 このように、制御装置100は、圧縮機10Aの吐出温度TdAが目標温度TdA*に近づくように膨張弁72Aの開度を制御する。 In this way, the control device 100 controls the opening degree of the expansion valve 72A so that the discharge temperature TdA of the compressor 10A approaches the target temperature TdA*.
 図4は、膨張弁72Bの開度の制御を説明するためのフローチャートである。まずステップS21において、制御装置100は、圧縮機10Bが吐出する冷媒の温度TdBを、温度センサ120Bを用いて検出する。 FIG. 4 is a flowchart for explaining control of the opening degree of the expansion valve 72B. First, in step S21, the control device 100 detects the temperature TdB of the refrigerant discharged by the compressor 10B using the temperature sensor 120B.
 続いて、ステップS22において、制御装置100は、温度TdBと目標温度TdB*とを比較する。温度TdBが目標温度TdB*より高い場合には(S22でYES)、制御装置100は、膨張弁72Bの開度を増加させる(S23)。これによって、圧縮機100Bに導入される中間圧の冷媒の量が増加し、圧縮機100Bの吐出温度TdBが低下する。 Subsequently, in step S22, the control device 100 compares the temperature TdB and the target temperature TdB*. If the temperature TdB is higher than the target temperature TdB* (YES in S22), the control device 100 increases the opening degree of the expansion valve 72B (S23). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100B increases, and the discharge temperature TdB of the compressor 100B decreases.
 一方、温度TdBが目標温度TdB*より以下である場合には(S22でNO)、制御装置100は、膨張弁72Bの開度を減少させる(S24)。これによって、圧縮機100Bに導入される中間圧の冷媒の量が減少し、圧縮機100Bの吐出温度TdBが上昇する。 On the other hand, if the temperature TdB is lower than the target temperature TdB* (NO in S22), the control device 100 reduces the opening degree of the expansion valve 72B (S24). As a result, the amount of intermediate pressure refrigerant introduced into the compressor 100B is reduced, and the discharge temperature TdB of the compressor 100B is increased.
 このように、制御装置100は、圧縮機10Bの吐出温度TdBが目標温度TdB*に近づくように膨張弁72Bの開度を制御する。 In this way, the control device 100 controls the opening degree of the expansion valve 72B so that the discharge temperature TdB of the compressor 10B approaches the target temperature TdB*.
 図2~図4の処理を繰り返して実行することにより、主冷媒回路を循環する冷媒量と、圧縮機10A,10Bの吐出温度TdA,TdBを適正な値とすることができる。 By repeatedly performing the processes in FIGS. 2 to 4, the amount of refrigerant circulating in the main refrigerant circuit and the discharge temperatures TdA and TdB of the compressors 10A and 10B can be set to appropriate values.
 (低容量運転時の制御)
 図1に示した冷凍サイクル装置1は、容量を増加させるために圧縮機を複数台並列接続している。
(Control during low capacity operation)
The refrigeration cycle device 1 shown in FIG. 1 has a plurality of compressors connected in parallel to increase capacity.
 負荷が大きい場合には複数台の圧縮機を同時に運転させれば良いが、季節によっては負荷が低下し低容量の運転が必要となるときがある。このような場合には、圧縮機を複数台同時に動かすと圧縮機のオン・オフの頻度が増えてしまうので、複数の圧縮機のうちの一部を停止させ、圧縮機1台運転によって低容量とし連続運転とする。 If the load is large, multiple compressors can be operated at the same time, but depending on the season, the load may drop and low-capacity operation may be necessary. In such a case, if multiple compressors are operated at the same time, the frequency of turning the compressors on and off will increase, so some of the compressors may be stopped and one compressor may be operated to reduce the capacity. and continuous operation.
 しかし、このような運転をする場合に、停止させる圧縮機をいつも同じ圧縮機にしてしまうと、運転時間が偏るので、全体的な製品寿命が短くなってしまう。したがって、低容量運転に移行する場合には、複数の圧縮機のうちの停止させる圧縮機を固定しないように停止履歴をみて運転時間を平均化させる。 However, when operating in this way, if the same compressor is always stopped, the operating time will be uneven and the overall product life will be shortened. Therefore, when shifting to low capacity operation, the stop history is checked and the operating time is averaged so as not to fix the compressor to be stopped among the plurality of compressors.
 図5は、低容量運転時の圧縮機の停止制御を説明するためのフローチャートである。まずステップS31において、制御装置100は、低容量運転に移行するか否かを判断する。たとえば、冷凍装置の場合には、制御装置100は、庫内温度が設定温度よりも下がりすぎた場合などに低容量運転に移行すると判断する。 FIG. 5 is a flowchart for explaining compressor stop control during low capacity operation. First, in step S31, the control device 100 determines whether to shift to low capacity operation. For example, in the case of a refrigeration system, the control device 100 determines to shift to low-capacity operation when the internal temperature falls too much below a set temperature.
 低容量運転に移行しない場合(S31でNO)は、図5のフローチャートの制御から抜ける。一方、低容量運転に移行する場合(S31でYES)は、制御装置100は、ステップS32において、前回の圧縮機の停止履歴情報を不揮発メモリなどから読み出す。たとえば、圧縮機が図1のように2台である場合には、前回の低容量運転時にどちらの圧縮機を停止させたかを記憶しておくことにより、今回停止させる圧縮機を決定する参考とすることができる。 If there is no transition to low capacity operation (NO in S31), the process exits from the control shown in the flowchart of FIG. On the other hand, when shifting to low capacity operation (YES in S31), the control device 100 reads out previous compressor stop history information from a nonvolatile memory or the like in step S32. For example, if there are two compressors as shown in Figure 1, remembering which compressor was stopped during the previous low-capacity operation can be used as a reference when deciding which compressor to stop this time. can do.
 続いて、ステップS33において、制御装置100は、停止させる圧縮機を決定する。具体的には、前回の低容量運転時に停止させた圧縮機は、今回は運転させ、前回の低容量運転時に運転させていた圧縮機を今回停止させるようにする。これにより、停止が交互に行なわれるため、2台の圧縮機の各々の延べ運転時間が平均化される。そして圧縮機を停止させた場合には、膨張弁72A,72B、開閉弁70A,70Bのうちから停止させた圧縮機に対応する弁を閉止することによって、インジェクション流路も遮断する。 Subsequently, in step S33, the control device 100 determines the compressor to be stopped. Specifically, the compressor that was stopped during the previous low capacity operation is operated this time, and the compressor that was operated during the previous low capacity operation is stopped this time. As a result, the total operating time of each of the two compressors is averaged because the stops are performed alternately. When the compressor is stopped, the injection flow path is also shut off by closing the expansion valves 72A, 72B and on-off valves 70A, 70B that correspond to the stopped compressor.
 そして、ステップS34において、制御装置100は、ステップS33で決定した結果を反映させて、停止履歴情報を更新し不揮発メモリなどに記憶させる。 Then, in step S34, the control device 100 updates the stop history information to reflect the result determined in step S33, and stores it in a nonvolatile memory or the like.
 以上のようにして、低容量運転に移行する場合に、停止させる圧縮機が決定される。
 なお、圧縮機が2台の場合には交互に停止させることとしたが、3台以上の場合には、停止回数が平均化されるように、停止回数が一番少ない圧縮機を停止させるようにすればよい。
As described above, the compressor to be stopped is determined when transitioning to low capacity operation.
In addition, when there are two compressors, they are stopped alternately, but when there are three or more compressors, the compressor with the least number of stops is stopped so that the number of stops is averaged. Just do it.
 また、停止履歴情報に延べ運転時間も記憶するようにし、ステップS33で延べ運転時間が一番長い圧縮機を停止させるようにすれば、低容量運転の運転時間に長短が生じる場合であっても、正確に、寿命の最適化を図ることができる。 In addition, if the total operating time is also stored in the stop history information and the compressor with the longest total operating time is stopped in step S33, even if the operating time of low capacity operation is longer or shorter, , it is possible to accurately optimize the service life.
 実施の形態2.
 図6は、実施の形態2に従う冷凍サイクル装置の全体構成図である。なお、図6では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
Embodiment 2.
FIG. 6 is an overall configuration diagram of a refrigeration cycle device according to the second embodiment. Note that FIG. 6 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in a physical space.
 図6に示す冷凍サイクル装置201は、室外ユニット202と、負荷装置3とを備える。室外ユニット202は、負荷装置3と接続するための冷媒出口ポートPO2および冷媒入口ポートPI2を有する。負荷装置3は、室外ユニット2と接続するための冷媒出口ポートPO3および冷媒入口ポートPI3を有する。負荷装置3の構成は、図1に示した負荷装置と同じである。 A refrigeration cycle device 201 shown in FIG. 6 includes an outdoor unit 202 and a load device 3. The outdoor unit 202 has a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connection to the load device 3. The load device 3 has a refrigerant outlet port PO3 and a refrigerant inlet port PI3 for connection to the outdoor unit 2. The configuration of the load device 3 is the same as the load device shown in FIG.
 室外ユニット202は、図1に示した室外ユニット2の構成において、圧縮機10A,10Bに代えて圧縮機210A,210Bを含む。他の部分の室外ユニット202の構成は、室外ユニット2の構成と同様であるので、ここでは説明は繰り返さない。 The outdoor unit 202 includes compressors 210A and 210B in place of the compressors 10A and 10B in the configuration of the outdoor unit 2 shown in FIG. The configuration of other parts of the outdoor unit 202 is similar to the configuration of the outdoor unit 2, so the description will not be repeated here.
 圧縮機10A,10Bは、インジェクションポートを有する単段圧縮機であったが、圧縮機210A,210Bは、中間圧ポートを有する二段圧縮機である。 The compressors 10A and 10B were single-stage compressors with injection ports, but the compressors 210A and 210B were two-stage compressors with intermediate pressure ports.
 圧縮機210Aは、初段の圧縮機211Aと、中間冷却器121Aと、二段目の圧縮機213Aとを含む。圧縮機210Bは、初段の圧縮機211Bと、中間冷却器121Bと、二段目の圧縮機213Bとを含む。 The compressor 210A includes a first stage compressor 211A, an intercooler 121A, and a second stage compressor 213A. Compressor 210B includes a first-stage compressor 211B, an intercooler 121B, and a second-stage compressor 213B.
 実施の形態2では、圧縮機210A,210Bには種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 In the second embodiment, various types of compressors 210A and 210B can be used, such as scroll type, rotary type, screw type, etc.
 図6においても主冷媒回路の流路F1において、複数の圧縮機210A、210Bが並列運転する点は、図1の構成と共通である。流路F1では、初段の圧縮機211A,211B、中間冷却器212A,212B、二段目の圧縮機213A,213Bの順に冷媒が流れる。その後合流した冷媒は、凝縮器20、熱交換器30A,30B、膨張弁40、蒸発器50、アキュムレータ60を順に流れて、初段の圧縮機211A,211Bに戻る。 The configuration in FIG. 6 is also similar to the configuration in FIG. 1 in that a plurality of compressors 210A and 210B operate in parallel in the flow path F1 of the main refrigerant circuit. In the flow path F1, the refrigerant flows in the order of first- stage compressors 211A and 211B, intercoolers 212A and 212B, and second- stage compressors 213A and 213B. Thereafter, the combined refrigerants flow through the condenser 20, heat exchangers 30A, 30B, expansion valve 40, evaporator 50, and accumulator 60 in this order, and return to the first- stage compressors 211A, 211B.
 中間冷却器212A,212Bで冷媒を冷却し、そこにインジェクション流路を合流させることにより、後段の圧縮機213A,213Bの圧縮動力を下げることができ、省エネルギー効果がある。中間冷却器212A,212Bは、凝縮器20と一体化されていても良い。 By cooling the refrigerant in the intercoolers 212A and 212B and merging the injection flow paths therewith, the compression power of the downstream compressors 213A and 213B can be lowered, resulting in an energy saving effect. Intercoolers 212A and 212B may be integrated with condenser 20.
 インジェクション流路F2では、膨張弁71、中間圧レシーバ73を通過した冷媒が分岐して膨張弁72A,72Bで流量が調整され、熱交換器30A,30Bの各第2流路を流れた後に二段目の圧縮機213A,213Bに吸入される。 In the injection flow path F2, the refrigerant that has passed through the expansion valve 71 and the intermediate pressure receiver 73 is branched and the flow rate is adjusted by the expansion valves 72A and 72B. It is sucked into the compressors 213A and 213B in the first stage.
 実施の形態2においても、実施の形態1と同様に、耐圧容器である中間圧レシーバ73の数を増やさずに、既存の圧縮機を複数台並列運転させて大容量の冷凍サイクル装置を実現できる。このため、製造コスト、開発工数を抑えることができる。 In the second embodiment, as in the first embodiment, a large-capacity refrigeration cycle device can be realized by operating multiple existing compressors in parallel without increasing the number of intermediate pressure receivers 73, which are pressure-resistant containers. . Therefore, manufacturing costs and development man-hours can be reduced.
 (まとめ)
 以下に、再び図面を参照して実施の形態1、2について総括する。
(summary)
Embodiments 1 and 2 will be summarized below with reference to the drawings again.
 (1) 図1、図6に示す冷凍サイクル装置1,201は、第1膨張弁40および蒸発器50を含む負荷装置3と、負荷装置3と接続するための冷媒出口ポートPO2および冷媒入口ポートPI2を有する室外ユニット2とを備える。室外ユニット2は、冷媒入口ポートPI2から冷媒出口ポートPO2に至る流路であって、負荷装置3とともに冷媒が循環する循環流路を形成する第1流路F1と、第1流路F1に配置される凝縮器20と、第1流路F1において冷媒入口ポートPI2と凝縮器20との間に並列に配置される複数の圧縮機10A,10Bまたは210A,210Bと、中間圧レシーバ73と、第1流路F1の凝縮器20と冷媒出口ポートPO2との間の部分から分岐し、中間圧レシーバ73に接続される第2流路F2と、第2流路F2に配置される第2膨張弁71と、中間圧レシーバ73の下流において分岐し、複数の圧縮機10A,10Bまたは210A,210Bに冷媒をそれぞれ送る複数の第3流路F3A,F3Bと、複数の第3流路F3A,F3Bにそれぞれ配置される複数の第3膨張弁72A,72Bとを備える。 (1) The refrigeration cycle device 1, 201 shown in FIGS. 1 and 6 includes a load device 3 including a first expansion valve 40 and an evaporator 50, and a refrigerant outlet port PO2 and a refrigerant inlet port for connecting to the load device 3. and an outdoor unit 2 having a PI2. The outdoor unit 2 is arranged in a first flow path F1, which is a flow path from the refrigerant inlet port PI2 to the refrigerant outlet port PO2, and forms a circulation flow path in which the refrigerant circulates together with the load device 3. a plurality of compressors 10A, 10B or 210A, 210B arranged in parallel between the refrigerant inlet port PI2 and the condenser 20 in the first flow path F1, an intermediate pressure receiver 73, A second flow path F2 that branches from a portion of the first flow path F1 between the condenser 20 and the refrigerant outlet port PO2 and is connected to the intermediate pressure receiver 73, and a second expansion valve disposed in the second flow path F2. 71, a plurality of third flow paths F3A, F3B that branch downstream of the intermediate pressure receiver 73 and send refrigerant to the plurality of compressors 10A, 10B or 210A, 210B, respectively, and a plurality of third flow paths F3A, F3B. A plurality of third expansion valves 72A and 72B are provided.
 (2) (1)項において、室外ユニット2は、複数の第3流路F3A,F3Bにおいて複数の第3膨張弁72A,72Bと複数の圧縮機10A,10Bまたは210A,210Bとの間にそれぞれ配置される複数の熱交換器30A,30Bをさらに備える。複数の熱交換器30A,30Bの各々は、対応する第3流路F3A,F3Bを流れる冷媒と、第1流路F1において凝縮器20を通過した後に第2流路F2が分岐する分岐点に向かう冷媒との間で熱交換するように構成される。 (2) In item (1), the outdoor unit 2 is provided between the plurality of third expansion valves 72A, 72B and the plurality of compressors 10A, 10B or 210A, 210B in the plurality of third flow paths F3A, F3B, respectively. It further includes a plurality of heat exchangers 30A and 30B arranged. Each of the plurality of heat exchangers 30A, 30B connects the refrigerant flowing through the corresponding third flow path F3A, F3B to the branch point where the second flow path F2 branches after passing through the condenser 20 in the first flow path F1. It is configured to exchange heat with the oncoming refrigerant.
 (3) (1)または(2)項において、室外ユニット2は、第2膨張弁71および複数の第3膨張弁72A,72Bを制御するように構成される制御装置100をさらに備える。制御装置100は、第2膨張弁71の開度を凝縮器20の出口部の冷媒の過冷却度SCに基づいて制御し、複数の第3膨張弁72A,72Bの各々の開度を複数の第3膨張弁72A,72Bの各々に対応する圧縮機10A,10Bまたは210A,210Bの吐出温度に基づいて制御するように構成される。 (3) In (1) or (2), the outdoor unit 2 further includes a control device 100 configured to control the second expansion valve 71 and the plurality of third expansion valves 72A, 72B. The control device 100 controls the opening degree of the second expansion valve 71 based on the degree of subcooling SC of the refrigerant at the outlet of the condenser 20, and controls the opening degree of each of the plurality of third expansion valves 72A, 72B based on the degree of subcooling SC of the refrigerant at the outlet of the condenser 20. It is configured to control based on the discharge temperature of the compressors 10A, 10B or 210A, 210B corresponding to each of the third expansion valves 72A, 72B.
 (4) (1)項において、図1に示すように、複数の圧縮機10A,10Bの各々は、インジェクションポートを有する単段型の圧縮機であり、複数の第3流路F3A,F3Bの各々は、対応するインジェクションポートに接続される。 (4) In item (1), as shown in FIG. 1, each of the plurality of compressors 10A and 10B is a single-stage compressor with an injection port, and the plurality of third flow paths F3A and F3B are Each is connected to a corresponding injection port.
 (5) (1)項において、図6に示すように、複数の圧縮機210A,210Bの各々は、直列接続された2段の圧縮機211Aおよび213A,211Bおよび213Bと、2段の圧縮機211Aおよび213A,211Bおよび213Bの中間部に連通する中間圧ポートとを有し、複数の第3流路F3A,F3Bの各々は、対応する中間圧ポートに接続される。 (5) In item (1), as shown in FIG. 211A and an intermediate pressure port that communicates with intermediate portions of 213A, 211B, and 213B, and each of the plurality of third flow paths F3A and F3B is connected to the corresponding intermediate pressure port.
 (6) (1)項において、室外ユニット2は、複数の圧縮機10A,10Bまたは210A,210Bを制御するように構成される制御装置100をさらに備える。図5に示すように、制御装置100は、冷凍負荷が判定値よりも低い場合(S31でYES)に、複数の圧縮機10A,10Bまたは210A,210Bの一部を停止させ、残余の圧縮機を運転する低負荷運転を実行するように構成される。制御装置は、複数の圧縮機10A,10Bまたは210A,210Bの運転時間に偏りが生じないように、低負荷運転が発生する毎に、停止させる圧縮機を決定するように構成される(S33)。 (6) In item (1), the outdoor unit 2 further includes a control device 100 configured to control the plurality of compressors 10A, 10B or 210A, 210B. As shown in FIG. 5, when the refrigeration load is lower than the determination value (YES in S31), the control device 100 stops a part of the plurality of compressors 10A, 10B or 210A, 210B, and is configured to perform low load operation. The control device is configured to determine which compressor to stop each time low load operation occurs so that the operating times of the plurality of compressors 10A, 10B or 210A, 210B are not uneven (S33). .
 以上説明した実施の形態1、2の冷凍サイクル装置においては、以下の効果が得られる。 In the refrigeration cycle apparatuses of Embodiments 1 and 2 described above, the following effects can be obtained.
 1つの圧縮機の容量アップは、新規開発が必要になり新規部品も必要となり多くの工数と費用を要する。これに対して実施の形態1、2の冷凍サイクル装置では、既存の圧縮機の個数の追加で自由に容量を拡大可能であり、圧縮機について新規部品は不要となる。 Increasing the capacity of one compressor requires new development and new parts, which requires a lot of man-hours and costs. On the other hand, in the refrigeration cycle apparatuses of Embodiments 1 and 2, the capacity can be freely expanded by adding the number of existing compressors, and new parts for the compressors are not required.
 なお、冷媒はCOのような超臨界を利用するものである場合に、中間圧レシーバ73が有効である。中間圧レシーバ73については、複数の圧縮機で共通化したので、サイズがコンパクトな室外ユニットを実現できる。また圧力容器であるレシーバが1つにまとまっているとコストも削減できる。 Note that the intermediate pressure receiver 73 is effective when the refrigerant uses supercriticality such as CO2 . Since the intermediate pressure receiver 73 is shared by a plurality of compressors, it is possible to realize an outdoor unit with a compact size. Furthermore, costs can be reduced if the receiver, which is a pressure vessel, is integrated into one.
 また、凝縮器20の出口部の冷媒とインジェクション流路F3A,F3Bを通過する冷媒との間で熱交換する熱交換器30A,30Bを設置したので、冷凍サイクル装置の性能を向上させることができる。 Furthermore, since heat exchangers 30A and 30B are installed to exchange heat between the refrigerant at the outlet of the condenser 20 and the refrigerant passing through the injection channels F3A and F3B, the performance of the refrigeration cycle device can be improved. .
 また、中間圧レシーバ73で貯留した液単相から2系統のインジェクション流路F3A,F3Bに分岐することにより、二相で分岐した場合に懸念される液/ガス分配の偏りを回避することができる。これにより、熱交換器30A,30Bの各熱交換量を確実に得ることができ、各圧縮機における吐出温度の制御性が安定する。 Furthermore, by branching the single-phase liquid stored in the intermediate pressure receiver 73 into the two injection channels F3A and F3B, it is possible to avoid imbalance in liquid/gas distribution, which would be a concern if branching into two phases. . Thereby, the heat exchange amount of each of the heat exchangers 30A and 30B can be reliably obtained, and the controllability of the discharge temperature in each compressor is stabilized.
 また、中間圧レシーバ73にガス抜き管を設置したので、冷媒貯留量の制御性が向上している。 Furthermore, since a gas vent pipe is installed in the intermediate pressure receiver 73, controllability of the amount of refrigerant stored is improved.
 さらに、各圧縮機の吸入部は共通のアキュムレータ60において分岐しているので、冷媒液、冷凍機油が均等に複数の圧縮機10A,10Bまたは210A,210Bに分配されるので好ましい。 Further, since the suction portions of each compressor are branched at the common accumulator 60, the refrigerant liquid and refrigerating machine oil are preferably evenly distributed to the plurality of compressors 10A, 10B or 210A, 210B.
 以上、冷凍サイクル装置1,201は、主として冷凍機に適用される場合を例示して本実施の形態を説明したが、冷凍サイクル装置1,201は、空気調和機などに利用されても良い。 Although the present embodiment has been described above by exemplifying the case where the refrigeration cycle device 1, 201 is mainly applied to a refrigerator, the refrigeration cycle device 1, 201 may also be used in an air conditioner or the like.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the description of the embodiments described above, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 1,201 冷凍サイクル装置、2,202 室外ユニット、3 負荷装置、10A,10B,100A,100B,210A,210B,211A,211B,213A,213B 圧縮機、20 凝縮器、30A,30B 熱交換器、40,71,72A,72B 膨張弁、50 蒸発器、60 アキュムレータ、70A,70B 開閉弁、73 中間圧レシーバ、100 制御装置、102 CPU、104 メモリ、111 圧力センサ、120A,120B,121 温度センサ、121A,121B,212A,212B 中間冷却器、F1,F2,F3B,F3A 流路、PI2,PI3 冷媒入口ポート、PO2,PO3 冷媒出口ポート。 1,201 Refrigeration cycle device, 2,202 Outdoor unit, 3 Load device, 10A, 10B, 100A, 100B, 210A, 210B, 211A, 211B, 213A, 213B Compressor, 20 Condenser, 30A, 30B Heat exchanger, 40, 71, 72A, 72B expansion valve, 50 evaporator, 60 accumulator, 70A, 70B on-off valve, 73 intermediate pressure receiver, 100 control device, 102 CPU, 104 memory, 111 pressure sensor, 120A, 120B, 121 temperature sensor, 121A, 121B, 212A, 212B intercooler, F1, F2, F3B, F3A flow path, PI2, PI3 refrigerant inlet port, PO2, PO3 refrigerant outlet port.

Claims (6)

  1.  第1膨張弁および蒸発器を含む負荷装置と、
     前記負荷装置と接続するための冷媒出口ポートおよび冷媒入口ポートを有する室外ユニットとを備え、前記室外ユニットは、
     前記冷媒入口ポートから前記冷媒出口ポートに至る流路であって、前記負荷装置とともに冷媒が循環する循環流路を形成する第1流路と、
     前記第1流路に配置される凝縮器と、
     前記第1流路において前記冷媒入口ポートと前記凝縮器との間に並列に配置される複数の圧縮機と、
     受液器と、
     前記第1流路の前記凝縮器と前記冷媒出口ポートとの間の部分から分岐し、前記受液器に接続される第2流路と、
     前記第2流路に配置される第2膨張弁と、
     前記受液器の下流において分岐し、前記複数の圧縮機に冷媒をそれぞれ送る複数の第3流路と、
     前記複数の第3流路にそれぞれ配置される複数の第3膨張弁とを備える、冷凍サイクル装置。
    a load device including a first expansion valve and an evaporator;
    an outdoor unit having a refrigerant outlet port and a refrigerant inlet port for connection with the load device, the outdoor unit comprising:
    a first flow path that extends from the refrigerant inlet port to the refrigerant outlet port and forms a circulation flow path in which the refrigerant circulates together with the load device;
    a condenser disposed in the first flow path;
    a plurality of compressors arranged in parallel between the refrigerant inlet port and the condenser in the first flow path;
    a liquid receiver;
    a second flow path branching from a portion of the first flow path between the condenser and the refrigerant outlet port and connected to the liquid receiver;
    a second expansion valve disposed in the second flow path;
    a plurality of third flow paths that branch downstream of the liquid receiver and send refrigerant to the plurality of compressors, respectively;
    A refrigeration cycle device comprising: a plurality of third expansion valves respectively arranged in the plurality of third flow paths.
  2.  前記室外ユニットは、前記複数の第3流路において前記複数の第3膨張弁と前記複数の圧縮機との間にそれぞれ配置される複数の熱交換器をさらに備え、
     前記複数の熱交換器の各々は、対応する第3流路を流れる冷媒と、前記第1流路において前記凝縮器を通過した後に前記第2流路が分岐する分岐点に向かう冷媒との間で熱交換するように構成される、請求項1に記載の冷凍サイクル装置。
    The outdoor unit further includes a plurality of heat exchangers arranged between the plurality of third expansion valves and the plurality of compressors in the plurality of third flow paths,
    Each of the plurality of heat exchangers is arranged between the refrigerant flowing through the corresponding third flow path and the refrigerant passing through the condenser in the first flow path and heading toward a branch point where the second flow path branches. The refrigeration cycle device according to claim 1, configured to exchange heat with.
  3.  前記室外ユニットは、前記第2膨張弁および前記複数の第3膨張弁を制御するように構成される制御装置をさらに備え、
     前記制御装置は、前記第2膨張弁の開度を前記凝縮器の出口部の冷媒の過冷却度に基づいて制御し、前記複数の第3膨張弁の各々の開度を前記複数の第3膨張弁の各々に対応する圧縮機の吐出温度に基づいて制御するように構成される、請求項1または2に記載の冷凍サイクル装置。
    The outdoor unit further includes a control device configured to control the second expansion valve and the plurality of third expansion valves,
    The control device controls the opening degree of the second expansion valve based on the degree of subcooling of the refrigerant at the outlet of the condenser, and controls the opening degree of each of the plurality of third expansion valves based on the degree of subcooling of the refrigerant at the outlet of the condenser. The refrigeration cycle device according to claim 1 or 2, wherein the refrigeration cycle device is configured to perform control based on the discharge temperature of the compressor corresponding to each of the expansion valves.
  4.  前記複数の圧縮機の各々は、インジェクションポートを有する単段型の圧縮機であり、
     前記複数の第3流路の各々は、対応するインジェクションポートに接続される、請求項1に記載の冷凍サイクル装置。
    Each of the plurality of compressors is a single-stage compressor having an injection port,
    The refrigeration cycle device according to claim 1, wherein each of the plurality of third flow paths is connected to a corresponding injection port.
  5.  前記複数の圧縮機の各々は、
     直列接続された2段の圧縮機と、
     前記2段の圧縮機の中間部に連通する中間圧ポートとを有し、
     前記複数の第3流路の各々は、対応する中間圧ポートに接続される、請求項1に記載の冷凍サイクル装置。
    Each of the plurality of compressors is
    A two-stage compressor connected in series,
    an intermediate pressure port communicating with an intermediate portion of the two-stage compressor;
    The refrigeration cycle apparatus according to claim 1, wherein each of the plurality of third flow paths is connected to a corresponding intermediate pressure port.
  6.  前記室外ユニットは、前記複数の圧縮機を制御するように構成される制御装置をさらに備え、
     前記制御装置は、冷凍負荷が判定値よりも低い場合に、前記複数の圧縮機の一部を停止させ、残余の圧縮機を運転する低負荷運転を実行するように構成され、
     前記制御装置は、前記低負荷運転が発生する毎に、前記複数の圧縮機の運転時間に偏りが生じないように、停止させる圧縮機を決定するように構成される、請求項1に記載の冷凍サイクル装置。
    The outdoor unit further includes a control device configured to control the plurality of compressors,
    The control device is configured to execute a low-load operation in which a part of the plurality of compressors is stopped and the remaining compressors are operated when the refrigeration load is lower than a determination value,
    The controller according to claim 1, wherein the control device is configured to determine which compressor to stop each time the low-load operation occurs so that the operating times of the plurality of compressors are not uneven. Refrigeration cycle equipment.
PCT/JP2022/029005 2022-07-27 2022-07-27 Refrigeration cycle device WO2024023988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029005 WO2024023988A1 (en) 2022-07-27 2022-07-27 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029005 WO2024023988A1 (en) 2022-07-27 2022-07-27 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024023988A1 true WO2024023988A1 (en) 2024-02-01

Family

ID=89705670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029005 WO2024023988A1 (en) 2022-07-27 2022-07-27 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2024023988A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044875A (en) * 2002-07-10 2004-02-12 Mitsubishi Electric Corp Refrigerator and method for operating and controlling the same
WO2013001688A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Refrigeration-cycle device
WO2021048900A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2021065156A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
WO2021210064A1 (en) * 2020-04-14 2021-10-21 三菱電機株式会社 Heat source unit, refrigeration cycle device, and refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044875A (en) * 2002-07-10 2004-02-12 Mitsubishi Electric Corp Refrigerator and method for operating and controlling the same
WO2013001688A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Refrigeration-cycle device
WO2021048900A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2021065156A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
WO2021210064A1 (en) * 2020-04-14 2021-10-21 三菱電機株式会社 Heat source unit, refrigeration cycle device, and refrigerator

Similar Documents

Publication Publication Date Title
DK2661591T3 (en) EJEKTOR CYCLE
US9612042B2 (en) Method of operating a refrigeration system in a null cycle
US7228707B2 (en) Hybrid tandem compressor system with multiple evaporators and economizer circuit
KR101492115B1 (en) Economized refrigeration system
US7325414B2 (en) Hybrid tandem compressor system with economizer circuit and reheat function for multi-level cooling
US8316657B2 (en) Refrigerant system and control method
US20080098758A1 (en) Refrigeration Apparatus
KR101288681B1 (en) Air conditioner
US20190017730A1 (en) Refrigerating machine and control method thereof
US11112140B2 (en) Air conditioning apparatus
CN111928419B (en) Control method and system for multi-split air conditioning unit
EP2587177A2 (en) Air conditioner
JP7150148B2 (en) Outdoor unit, refrigeration cycle device and refrigerator
WO2005024313A1 (en) Freezer device
JP7224480B2 (en) Outdoor unit and refrigeration cycle equipment
WO2024023988A1 (en) Refrigeration cycle device
KR20120053381A (en) Refrigerant cycle apparatus
JP7378561B2 (en) Outdoor unit and refrigeration cycle equipment
US10168060B2 (en) Air-conditioning apparatus
EP4030117B1 (en) Outdoor unit and refrigeration cycle device
JP2009293887A (en) Refrigerating device
KR20090069694A (en) Centrifugal chiller having multi way throttle apparatus
WO2022113166A1 (en) Refrigeration cycle device
WO2024023993A1 (en) Refrigeration cycle device
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953082

Country of ref document: EP

Kind code of ref document: A1