WO2024013900A1 - Control device and drive control method - Google Patents

Control device and drive control method Download PDF

Info

Publication number
WO2024013900A1
WO2024013900A1 PCT/JP2022/027610 JP2022027610W WO2024013900A1 WO 2024013900 A1 WO2024013900 A1 WO 2024013900A1 JP 2022027610 W JP2022027610 W JP 2022027610W WO 2024013900 A1 WO2024013900 A1 WO 2024013900A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating machine
current
phase
voltage
component
Prior art date
Application number
PCT/JP2022/027610
Other languages
French (fr)
Japanese (ja)
Inventor
俊毅 鈴木
碧土 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/027610 priority Critical patent/WO2024013900A1/en
Publication of WO2024013900A1 publication Critical patent/WO2024013900A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Definitions

  • the present disclosure relates to a control device and a drive control method for controlling the drive of a rotating machine.
  • rotor position information is required.
  • the rotor position can be detected using a position sensor, the use of a position sensor causes problems such as increased system size, increased cost, and reduced environmental resistance.
  • Patent Document 1 discloses a method of estimating the rotor position without using a position sensor.
  • the rotor position is estimated by utilizing the fact that the amount of change in the rotating machine current during application of an effective voltage vector changes at an angle twice the rotor position.
  • the position estimation error may increase in the appearance pattern of the effective voltage vector in which the differential information of the rotating machine current becomes a fragmentary signal.
  • PWM Pulse Width Modulation
  • the present disclosure has been made in view of the above, and provides a control device that is capable of estimating the rotor position with high accuracy even under conditions where the amount of change in the rotating machine current with respect to the effective voltage vector is fragmentary.
  • the purpose is to obtain.
  • a control device of the present disclosure is a control device that performs drive control of a multi-phase rotating machine, and includes a current detection unit that detects a rotating machine current flowing through the rotating machine.
  • a drive voltage command calculation unit that generates a drive voltage command for driving the rotating machine based on the rotating machine current and an estimated value of the rotor position of the rotating machine; a voltage applier that applies a voltage to the rotor; and a position estimator that estimates the rotor position based on the rotating machine current;
  • the type of vector is determined, the amount of change in the rotating machine current is calculated for each type of voltage vector determined, and based on the amount of change in the rotating machine current that is the calculation result, the DC component is zero and the angle is twice the rotor position.
  • the present invention is characterized in that an alternating current signal is generated that changes in the alternating current signal, and the rotor position is estimated based on the alternating current signal.
  • a diagram showing an example of the circuit configuration of the voltage applicator shown in FIG. A diagram showing an example of the correspondence between the switching state of each phase of the voltage applicator shown in FIG. 1 and the definition of the voltage vector.
  • a diagram showing the eight switching states and voltage vectors shown in FIG. Diagram for explaining signal processing in the position estimator shown in FIG. 1 A diagram showing the detailed configuration of the current differential information calculation section shown in FIG. Diagram showing DC and AC components included in current differential information
  • Diagram to explain the classification performed by the classifier An explanatory diagram of the operation of the classifier shown in Figure 5
  • a block diagram showing the configuration of the phase synchronization calculation section shown in FIG. A diagram showing the output of each part of the position estimator shown in FIG.
  • FIG. 1 is a diagram showing the configuration of a control device for a rotating machine according to a first embodiment.
  • the "rotating machine control device” may be simply referred to as the "control device.”
  • the control device 100 shown in FIG. 1 includes a rotating machine 1, a current detector 2, a voltage applier 3, a position estimator 4, and a controller 5.
  • the controller 5 includes a current controller 6 , a rotating coordinate inverse converter 7 , a two-phase three-phase converter 8 , a three-phase two-phase converter 9 , and a rotating coordinate converter 10 .
  • the rotating machine 1 is a three-phase synchronous reluctance motor (SynRM) that generates torque by utilizing the saliency of the rotor.
  • a voltage applicator 3 is connected to the rotating machine 1, and a current detector 2 is provided between the rotating machine 1 and the voltage applicator 3.
  • the current detector 2 detects the alternating current supplied from the voltage applicator 3 to the rotating machine 1 and outputs the alternating current as rotating machine currents i u , iv , i w .
  • the rotating machine currents i u , i v , i w are supplied to the rotating machine 1 and are also output to each of the position estimator 4 and controller 5 .
  • the voltage applicator 3 supplies AC power to the rotating machine 1 according to rotating machine voltage commands v u *, v v *, v w * supplied from the controller 5 .
  • the position estimator 4 calculates the estimated rotor position using the rotating machine currents i u , i v , i w detected by the current detector 2 and a gate signal from the voltage applicator 3, which will be described later.
  • the rotor position will be expressed as " ⁇ ”
  • the estimated value of the rotor position ⁇ will be expressed by adding " ⁇ " above " ⁇ ”.
  • a symbol with " ⁇ ” added above “ ⁇ ” may also be expressed by adding " ⁇ ” after " ⁇ ”.
  • a symbol with " ⁇ ” added above or after a symbol representing a certain parameter represents the estimated value of that parameter.
  • the position estimator 4 outputs the estimated rotor position ⁇ to the controller 5.
  • the controller 5 controls the rotating machine 1 so that the rotating machine currents i d , i q on the rotating coordinates of the rotating machine 1 become values indicated by the rotating machine current commands i d *, i q * on the rotating coordinates.
  • the rotating machine voltage commands v u *, v v *, v w * that drive the rotating machine voltage commands v u *, v v *, v w * are calculated, and the calculated rotating machine voltage commands v u *, v v *, v w * are output to the voltage applicator 3.
  • FIG. 2 is a diagram showing an example of the circuit configuration of the voltage applicator 3 shown in FIG. 1.
  • FIG. 2 shows an example of a circuit configuration when the voltage applicator 3 is a three-phase PWM inverter.
  • the voltage applicator 3 includes a leg 30A in which a semiconductor element UP in the upper arm and a semiconductor element UN in the lower arm are connected in series, and a semiconductor element VP in the upper arm and a semiconductor element VN in the lower arm are connected in series. It has a leg 30B and a leg 30C in which an upper arm semiconductor element WP and a lower arm semiconductor element WN are connected in series.
  • Leg 30A, leg 30B, and leg 30C are connected in parallel to each other.
  • a bus voltage is applied to the voltage applicator 3 through the DC buses 35a and 35b.
  • the voltage applicator 3 converts the DC power of the power source 36 supplied through the DC buses 35a and 35b into AC power, and drives the rotating machine 1 by supplying the converted AC power to the rotating machine 1. Note that the current detector 2 is omitted in FIG. 2.
  • FIG. 2 illustrates a case where the semiconductor elements UP, UN, VP, VN, WP, and WN are metal-oxide-semiconductor field-effect transistors (MOSFETs).
  • MOSFETs metal-oxide-semiconductor field-effect transistors
  • Each of the semiconductor elements UP, UN, VP, VN, WP, and WN includes a transistor 30a and a diode 30b connected antiparallel to the transistor 30a.
  • Connected in antiparallel means that the anode side of the diode is connected to the first terminal corresponding to the source of the MOSFET, and the cathode side of the diode is connected to the second terminal corresponding to the drain of the MOSFET.
  • insulated gate bipolar transistors may be used instead of MOSFETs.
  • connection point 32 between the semiconductor element UP of the upper arm and the semiconductor element UN of the lower arm is connected to the first phase of the rotating machine 1, for example, the u phase.
  • a connection point 33 between the semiconductor element VP of the upper arm and the semiconductor element VN of the lower arm is connected to the second phase of the rotating machine 1, for example, the v phase.
  • a connection point 34 between the semiconductor element WP of the upper arm and the semiconductor element WN of the lower arm is connected to the third phase of the rotating machine 1, for example, the w phase.
  • the connection points 32, 33, and 34 constitute AC terminals.
  • the voltage applicator 3 is a three-phase PWM inverter as described above, and is a power converter that obtains a desired voltage by PWM-controlling the power source 36 supplied through the DC buses 35a and 35b.
  • a three-phase PWM inverter has two switching elements, upper and lower, for each phase, and the upper and lower switching elements operate so that one of them is in an on state. Therefore, in the three-phase triangular wave comparison inverter, there are 2 cubed types, that is, eight types of switching states.
  • the states of the upper arm gate signals of the u-phase, v-phase, and w-phase in the voltage applicator 3 are defined as Gu , Gv , and Gw, respectively.
  • the value of G u , G v , G w is 1, it means that the semiconductor element of the upper arm of the corresponding phase is in a conductive state, and when the value of G u , G v , G w is 0, the corresponding This means that the semiconductor element in the lower arm of the phase is in a conductive state.
  • FIG. 3 is a diagram showing an example of the correspondence between the switching state of each phase of the voltage applicator 3 shown in FIG. 1 and the definition of a voltage vector.
  • the applied voltage vector is defined as V 0
  • (G u , G v , G w ) (1, 0, 0)
  • the applied voltage vector is defined as V 1
  • the applied voltage vector is defined as V 2
  • the applied voltage vector is defined as V 4
  • (G u , G v , G w ) (0, 0, 1)
  • the applied voltage vector is defined as V 5
  • the applied voltage vector is defined as V 6
  • voltage vectors V 0 to V 7 are referred to as zero voltage vectors, and the others, that is, voltage vectors V 1 to V 6 are referred to as effective voltage vectors.
  • the voltage vectors V 0 to V 7 may be expressed as voltage vectors V 0 to 7 .
  • the effective voltage vectors V 1 to V 6 may be expressed as effective voltage vectors V 1 to V 6 .
  • FIG. 4 is a diagram showing the eight switching states and voltage vectors shown in FIG. 3.
  • FIG. 4 shows the voltage vector in each switching state and the conduction state of each semiconductor element of the voltage applicator 3.
  • FIG. 5 is a diagram for explaining signal processing in the position estimator 4 shown in FIG. 1.
  • the position estimator 4 uses the rotating machine currents i u , i v , i w detected by the current detector 2 and the gate signals G u , G v , G w of the voltage applicator 3 to detect the rotating machine 1 .
  • the estimated rotor position ⁇ which is the estimated value of the rotor position, is calculated.
  • the position estimator 4 includes a current differential information calculation section 40, a classifier 41, a DC component remover 42, a three-phase two-phase converter 43, and a phase synchronization calculation section 44.
  • the current differential information calculating section 40 calculates current differential information corresponding to each of the effective voltage vectors V 1 to V 6 .
  • the current differential information is also called the amount of change in rotating machine current.
  • the gate signals G u , G v , G w of the semiconductor elements of the upper arm of each phase of the voltage applicator 3 and the rotating machine currents i u , i v , i w are input to the current differential information calculation unit 40 . Ru.
  • FIG. 6 is a diagram showing a detailed configuration of the current differential information calculation section 40 shown in FIG. 5.
  • the current differential information calculation unit 40 includes a voltage vector determiner 400 that determines the type of voltage vector output by the voltage applicator 3, and a determination result of the voltage vector determiner 400 and rotating machine currents i u , i v , i w . It has a current differential calculator 401 that calculates current differential information of each phase corresponding to the effective voltage vector using .
  • the voltage vector determiner 400 determines which of the voltage vectors V 0 to V 7 the type of voltage vector is from the values of the gate signals G u , G v , and G w , and determines the voltage vector V 0 as the determination result. ⁇ 7 is output to the current differential calculator 401.
  • the current differential calculator 401 calculates each of the effective voltage vectors V 1 to 6 based on the voltage vectors V 0 to 7 , which are the determination results of the voltage vector determiner 400, and the rotating machine currents i u , i v , and i w . Calculate current differential information for each phase corresponding to .
  • the current differential calculator 401 stores the types of the current voltage vectors V 0 to V 7 and the type of the voltage vector one control period ago, and when the same effective voltage vector appears for two or more control periods, the effective Calculate current differential information for each phase corresponding to the type of voltage vector.
  • the control period is set to a value sufficiently short with respect to the period of the triangular wave carrier of the voltage applicator 3 in order to sample the current at two or more points while applying the effective voltage vector.
  • the current differential calculator 401 calculates the u-phase, v-phase, and w-phase when V N is applied.
  • the current differential information of is calculated as "di uVN /dt", “di vVN /dt”, and "di wVN /dt”, respectively.
  • N is an integer from 1 to 6.
  • the current differential calculator 401 calculates 18 types of current differential information "di uV1 to 6 /dt", "di divV1-6 /dt" and "di wV1-6 /dt" are output.
  • the current differential information includes a DC component and an AC component.
  • FIG. 7 is a diagram showing a DC component and an AC component included in current differential information.
  • a signal name, a formula representing a DC component, and a formula representing an AC component are associated with each other.
  • u, v, w indicate the corresponding phase of the rotating machine 1
  • V 1 to V 6 indicate the type of the corresponding effective voltage vector.
  • the "DC component” of the current differential information is generated in the phase in the direction of the effective voltage vector with a magnitude of "2/A", and It occurs with a magnitude of "1/A” with an opposite sign in a phase other than the phase in the direction. Therefore, the sum of the u-phase DC component, the v-phase DC component, and the w-phase DC component while applying the same effective voltage vector becomes zero.
  • V dc is the DC voltage of the power source 36 of the voltage applicator 3.
  • L 0 in the formula (1) is expressed by the following formula (2).
  • L 1 in the formula (1) is expressed by the following formula (3).
  • L d is the d-axis inductance of the rotating machine 1
  • L q is the q-axis inductance of the rotating machine 1.
  • the characteristics of the "AC component" of the current differential information will be explained.
  • the number of the effective voltage vector is N
  • the AC component of the current differential information of the u phase is expressed by equation (4)
  • the AC component of the current differential information of the v phase is expressed by equation (5)
  • w The alternating current component of the phase current differential information is expressed by equation (6).
  • the current differential information obtained by applying the effective voltage vector has information on the rotor position ⁇ .
  • the "AC component” column in FIG. 7 shows the expansion of the phases in equations (4) to (6).
  • the AC components of the current differential information during the application period of the same effective voltage vector have a phase difference of " ⁇ 2 ⁇ /3", and It has the characteristic that the phase of each reference shifts depending on the direction of application of the effective voltage vector.
  • the magnitude of the amplitude of the AC component is equal for all combinations of effective voltage vectors and phases, and is "(1/A) ⁇ (L 1 /L 0 )".
  • the cosine function coefficient "(1/A) x (L 1 /L 0 )" is a positive value for an embedded magnet type synchronous motor, and a negative value for a synchronous reluctance motor.
  • n is an integer from 1 to 3.
  • the combinations of voltage vectors in the magnetization and demagnetization directions are V1 and V4 for the u phase, V3 and V6 for the v phase, and V5 and V2 for the w phase.
  • FIG. 8 is a diagram showing the output of the current differential information calculation section 40 shown in FIG. 5.
  • Figure 8 shows the simulation results when current vector control is performed on a synchronous reluctance motor rotating at low speed. I am using it.
  • the voltage vector numbers are set to 0 for V0 and V7.
  • a correlation can be confirmed between the rotor position and the appearance pattern of the voltage vector.
  • current differential information corresponding to other effective voltage vectors cannot be obtained. In the appearance pattern, current differential information becomes fragmentary.
  • each current differential information has a characteristic that the timing at which it can be acquired differs, and the amount of delay varies depending on the signal. Due to this characteristic, if signal processing is performed without considering the appearance pattern of voltage vectors, position sensorless control will become unstable.
  • performing signal processing without considering the appearance pattern of voltage vectors means, for example, when the type of current differential information used to estimate the rotor position is fixed, regardless of the type of voltage vector that appears. is applicable.
  • the position estimator 4 performs signal processing to generate an AC component of continuous current differential information having rotor position information from the fragmentary current differential information.
  • the signal processing method performed by the position estimator 4 will be described below.
  • the current differential information has the characteristics shown in the above equations (4) to (9). By utilizing this feature, the same waveform shape appears in current differential information under different voltage vector and phase conditions. Therefore, the position estimator 4 uses waveform shapes that appear under different voltage vector and phase conditions to interpolate fragmentary current differential information to generate continuous AC components of current differential information.
  • the classifier 41 classifies the current differential information output by the current differential information calculation unit 40 into one of six types of signals based on the magnitude of the DC component and the reference phase.
  • the classifier 41 classifies groups (2/A, 0°), group (-1/A, 120°), group (-1/A, -120°), group (2/A, -120°), group (-1/A, 0°), group (2/A, 120°). Classify into.
  • FIG. 9 is a diagram for explaining the classification performed by the classifier 41.
  • FIG. 9 shows the "group”, “DC component”, “AC component”, and “symbol” of each of the six groups classified by the classifier 41.
  • group indicates the name of a group
  • a group written as group (X, Y°) means a group in which the DC component is X and the reference phase of the AC component is Y°.
  • symbols indicate signals having the same waveform shape.
  • the waveform of the u-phase current differential information when the effective voltage vector V1 is applied and the waveform of the u-phase current differential information when the effective voltage vector V4 is applied. This means that the waveform of the current differential information is the same.
  • FIG. 10 is an explanatory diagram of the operation of the classifier 41 shown in FIG. 5.
  • the classifier 41 classifies six types based on the classification shown in FIG. Generate a signal. Specifically, the classifier 41 prepares variables corresponding to each of the six types of groups, and substitutes the current differential information into the variable of the group into which the current differential information input to the classifier 41 is classified. , variables in other groups operate to retain their previous values.
  • the names of groups are used as variable names.
  • group (X, Y°) is a variable of a group in which the DC component is X and the reference phase of the AC component is Y°.
  • the classifier 41 assigns "di uV1 /dt" to group (2/A, 0°) under the condition that V1 is applied, and "-di uV4 /dt" under the condition that V4 is applied. , and under conditions where effective voltage vectors other than V1 and V4, that is, V2, V3, V5, and V6 are applied, the previous value is held.
  • the classifier 41 assigns " divV1 /dt” to group (-1/A, 120°) under the condition that V1 is applied, and assigns "-divV4 /dt” to group (-1/A, 120°) under the condition that V4 is applied.
  • dt "di uV3 /dt” under the condition that V3 is applied, "-di uV6 /dt” under the condition that V6 is applied, and under the condition that V2 and V5 are applied. , operates to hold the previous value.
  • the DC component remover 42 extracts the DC component from the output of the classifier 41 and generates a continuous AC component by subtracting the DC component from current differential information obtained by applying the latest effective voltage vector.
  • a DC component is extracted using a three-phase equilibrium condition.
  • the DC component remover 42 calculates the sum of signals of combinations whose phases are 0°, 120°, and -120° from the output of the classifier 41, and multiplies the DC component by a conversion coefficient to remove the DC component. Calculate.
  • five types of formulas (10) to (14) are shown here, the DC component remover 42 combines the latest effective voltage vector and the latest effective voltage vector with a different number from the latest effective voltage vector. Accordingly, the calculation may be performed using at least one appropriate formula.
  • the DC component remover 42 uses the latest effective voltage vector and the latest effective voltage vector with a different number from the latest effective voltage vector from among equations (10) to (14).
  • group (2/A, 0°) is generated based on current differential information when effective voltage vector V1 or V4 is applied
  • group (2/A, 120°) is It is generated based on the current differential information when the effective voltage vector V5 or V2 is applied
  • group (2/A, -120°) is the current differential information when the effective voltage vector V3 or V6 is applied. It is generated based on. Therefore, formula (10) can be said to be a formula that uses effective voltage vectors V1 or V4, V5 or V2, and V3 or V6.
  • formula (11) is a formula that uses effective voltage vectors V2 or V5 and V1 or V3 or V4 or V6.
  • Equation (12) is an equation that uses effective voltage vectors V1 or V4 and V2 or V5.
  • Equation (13) is an equation that uses effective voltage vectors V1 or V4 and V3 or V6.
  • Equation (14) is an equation that uses effective voltage vectors V2 or V5 and V3 or V6.
  • the DC component remover 42 calculates the DC component "1/A” using at least one of Equation (11) and Equation (12).
  • the DC component remover 42 can calculate the DC component "1/A" using the average value of the calculation results of the multiple formulas.
  • the DC component remover 42 uses the extracted DC component to subtract the DC component from the current differential information obtained by applying the latest effective voltage vector. Calculate the components.
  • the DC component remover 42 can calculate the AC component of the latest current differential information using equations (15) to (17) shown below.
  • the DC component remover 42 selects a formula from among formulas (15) to (17) based on the type of the latest voltage vector.
  • the DC component remover 42 outputs the calculation results group (0, 0°), group (0, 120°), group (0, -120°) to the three-phase two-phase converter 43.
  • the outputs group (0, 0°), group (0, 120°), and group (0, -120°) of the DC component remover 42 become continuous AC components including rotor position information.
  • a method of calculating the rotor position using this AC component will be explained.
  • To calculate the rotor position from alternating current components that have a phase difference of ⁇ 2 ⁇ /3 from each other there is a method of converting these alternating current components into three-phase two-phase conversion, calculating arctangent, and performing phase synchronization on the three-phase two-phase conversion results.
  • a method of estimating the rotor position by phase synchronization calculation will be explained as an example.
  • the three-phase two-phase converter 43 calculates an ⁇ -axis AC component ⁇ and a ⁇ -axis AC component ⁇ , which are AC components of two orthogonal axes.
  • the three-phase two-phase converter 43 calculates the ⁇ -axis AC component ⁇ and the ⁇ -axis AC component ⁇ using the following formula (18), and phase synchronizes the calculated ⁇ -axis AC component ⁇ and ⁇ -axis AC component ⁇ . It is output to the calculation section 44.
  • the phase synchronization calculation unit 44 estimates the rotor position of the rotating machine 1 based on the ⁇ -axis AC component ⁇ and the ⁇ -axis AC component ⁇ output from the three-phase two-phase converter 43. Specifically, the phase synchronization calculation unit 44 estimates the rotor position of the rotating machine 1 by performing a phase synchronization calculation on the ⁇ -axis AC component ⁇ and the ⁇ -axis AC component ⁇ .
  • FIG. 11 is a block diagram showing the configuration of the phase synchronization calculation section 44 shown in FIG. 5.
  • the phase synchronization calculation unit 44 includes a phase error calculation unit 441, a PI (Proportional Integral) controller 442, an integrator 443, and proportional units 444 and 445.
  • PI Proportional Integral
  • the ⁇ -axis AC component ⁇ and the ⁇ -axis AC component ⁇ output from the three-phase two-phase converter 43 and the estimated rotor position 2 ⁇ output from the integrator 443 are input to the phase error calculation unit 441.
  • the phase error calculation unit 441 calculates the phase error ⁇ i AC * ⁇ 2 ⁇ according to the following equation (19).
  • the phase error calculation unit 441 outputs the calculated phase error ⁇ i AC * ⁇ 2 ⁇ to the PI controller 442.
  • phase error ⁇ i AC * ⁇ 2 ⁇ output from the phase error calculation unit 441 is input to the PI controller 442 .
  • the PI controller 442 outputs the estimated speed 2 ⁇ so that the phase error ⁇ i AC * ⁇ 2 ⁇ becomes zero.
  • the integrator 443 integrates the estimated speed 2 ⁇ output by the PI controller 442, and outputs the integrated value as the estimated rotor position 2 ⁇ .
  • the estimated rotor position 2 ⁇ output from the integrator 443 is fed back to the phase error calculation unit 441.
  • phase lock calculation section 44 takes the form of a phase locked loop (PLL).
  • the phase synchronization calculation unit 44 calculates the estimated rotor position ⁇ by inputting the estimated rotor position 2 ⁇ into the proportional device 444 and multiplying it by 0.5. Further, the phase synchronization calculating section 44 calculates the estimated speed ⁇ by inputting the estimated speed 2 ⁇ into the proportional device 445 and multiplying it by 0.5.
  • FIG. 12 is a diagram showing the output of each part of the position estimator 4 shown in FIG. 5.
  • the operating conditions are the same as those in FIG. 8, and the current differential information is fragmentary.
  • "Rotor position" in the first row from the top of FIG. 12 shows the true position of the rotor and the estimated position output by the phase synchronization calculation unit 44.
  • the second to fourth rows from the top of FIG. 12 show the output of the current differential information calculation section 40.
  • the fifth row from the top of FIG. 12 shows the output of the classifier 41.
  • the sixth row from the top of FIG. 12 shows the output of the DC component remover 42.
  • the seventh row from the top of FIG. 12 shows the output of the three-phase two-phase converter 43.
  • the eighth row from the top of FIG. 12 shows the numbers of the voltage vectors applied at each time point. Note that in FIG. 12, as in FIG. 8, the voltage vector numbers are 0 for V0 and V7 for the sake of explanation.
  • the classifier 41 generates six types of signals based on the classification shown in FIG. Further, the output of the DC component remover 42 becomes an AC component expressed on two orthogonal axes in which the DC component is zero and vibrates at an angle twice the rotor position.
  • the position estimator 4 estimates the rotor position by performing phase synchronization calculation on the output of the three-phase two-phase converter 43.
  • the rotating machine currents i u , i v , i w detected by the current detector 2 are input to the three-phase two-phase converter 9 of the controller 5 .
  • the three-phase two-phase converter 9 converts rotating machine currents i u , i v , i w on three-phase coordinates into rotating machine currents i ⁇ , i ⁇ on stationary two-phase coordinates.
  • the three-phase two-phase converter 9 outputs rotating machine currents i ⁇ and i ⁇ to the rotating coordinate converter 10 .
  • the rotating machine currents i ⁇ , i ⁇ output from the three-phase two-phase converter 9 and the estimated rotor position ⁇ output from the position estimator 4 are input to the rotating coordinate converter 10 .
  • the rotating coordinate converter 10 converts rotating machine currents i ⁇ , i ⁇ on stationary two-phase coordinates into rotating machine currents i d , i q on rotating coordinates using the estimated rotor position ⁇ .
  • the rotating coordinate converter 10 outputs rotating machine currents i d and i q to the current controller 6 .
  • Rotating machine current commands i d *, i q * and rotating machine currents i d , i q are input to the current controller 6 .
  • the rotating machine current command i d * is a command of the d-axis drive current that indicates the armature current component in the d-axis direction where the magnetic resistance of the rotor of the rotating machine 1 is the smallest.
  • the rotating machine current command i q * is a command for the q-axis drive current that indicates an armature current component in a uniaxial direction that is orthogonal to the d-axis.
  • the current controller 6 controls the current so that the rotating machine currents i d , i q output by the rotating coordinate converter 10 become the rotating machine current commands i d *, i q *, and changes the rotating machine voltage on the rotating coordinates. Compute commands v d *, v q *.
  • the current control in the current controller 6 is, for example, PI control.
  • the current controller 6 outputs rotating machine voltage commands v d *, v q *, which are the calculation results, to the rotating coordinate inverse converter 7 .
  • the rotating machine voltage commands v d *, v q * and the estimated rotor position ⁇ are input to the rotating coordinate inverse converter 7 .
  • the rotating coordinate inverse converter 7 uses the estimated rotor position ⁇ to convert the rotating machine voltage commands v d *, v q * on the rotating coordinates calculated by the current controller 6 into the rotating machine on the stationary two-phase coordinates. Convert to voltage commands v ⁇ *, v ⁇ *.
  • the rotating coordinate inverse converter 7 outputs rotating machine voltage commands v ⁇ *, v ⁇ * to the two-phase three-phase converter 8 .
  • Rotating machine voltage commands v ⁇ *, v ⁇ * are input to the two-phase three-phase converter 8 .
  • the two-phase three-phase converter 8 converts the rotating machine voltage commands v ⁇ *, v ⁇ * on the stationary two-phase coordinates into the rotating machine voltage commands v u *, v on the three-phase coordinates for driving the rotating machine 1. Convert to v *, v w *.
  • the control device 100 is a control device 100 that performs drive control of the multiphase rotating machine 1, and includes a current detection unit that detects the rotating machine current flowing through the rotating machine 1.
  • a controller 5 that is a drive voltage command calculation unit that generates a drive voltage command for driving the rotating machine 1 based on a certain current detector 2 and the rotating machine current and information on the rotor position of the rotating machine 1;
  • a voltage applicator 3 that applies voltage to the rotating machine 1 based on the generated drive voltage command, and a position estimator that is a position estimator that estimates the rotor position based on the rotating machine current detected by the current detector 2. 4.
  • the position estimator 4 determines the type of voltage vector output by the voltage applicator 3 based on the gate signals Gu , Gv , Gw of the voltage applicator 3, and calculates the rotation machine current for each determined type of voltage vector. Calculate the current differential information, which is the amount of change, and generate an AC signal in which the DC component is zero and changes at twice the angle of the rotor position from the calculation result, the amount of change in the rotating machine current, and based on the generated AC signal. Estimate rotor position. With such a configuration, the control device 100 can determine from the fragmented current differential information that the DC component is zero and the rotor position is correct even in the appearance pattern of the effective voltage vector in which the current differential information is fragmentary. By generating a continuous AC signal that vibrates at double angle, the rotor position can be estimated with high accuracy.
  • the position estimator 4 can estimate the rotor position, for example, by performing phase synchronization calculation on the generated AC signal. Further, the position estimator 4 continuously calculates current differential information based on a combination of a plurality of current differential information including the same waveform shape among a plurality of current differential information obtained under a plurality of conditions in which at least one of a voltage vector and a phase is different. Generates an AC signal with a waveform shape. More specifically, the position estimator 4 utilizes the feature that the two current differential information obtained under the condition that the voltage vectors are in opposite directions and in the same phase have opposite signs. Therefore, it is possible to generate a continuous AC signal by using the value obtained by multiplying one of the two current differential information obtained under the condition that the voltage vector directions are opposite to each other and are in the same phase. can.
  • the position estimator 4 can generate a continuous AC signal by utilizing the characteristic that the phase of the AC component of the current differential information shifts depending on the direction of the voltage vector.
  • the position estimator 4 has a phase difference of plus two-thirds ⁇ between the first current differential information and the first current differential information. Calculating the DC component of the current differential information by calculating the sum of the second current differential information and the third current differential information in which the phase difference between the first current differential information and the first current differential information is -2/3 ⁇ . I can do it.
  • the position estimator 4 also includes a phase error calculation unit 441 that calculates a phase error based on an AC signal whose DC component is zero and which changes at twice the angle of the rotor position and an estimated position of the rotor position; It has a PI controller 442 which is an estimated speed generating section that outputs an estimated speed based on an error, and an integrator 443 that outputs a value obtained by integrating the estimated speed as an estimated position.
  • a phase error calculation unit 441 that calculates a phase error based on an AC signal whose DC component is zero and which changes at twice the angle of the rotor position and an estimated position of the rotor position
  • It has a PI controller 442 which is an estimated speed generating section that outputs an estimated speed based on an error, and an integrator 443 that outputs a value obtained by integrating the estimated speed as an estimated position.
  • Control device 100 according to the second embodiment has the same configuration as the first embodiment.
  • the overall configuration of control device 100 is similar to that shown in FIG. 1, and the configuration of position estimator 4 is similar to that shown in FIG. 5. Therefore, the second embodiment will also be described using the same reference numerals as those in the first embodiment.
  • the processing content performed by the DC component remover 42 shown in FIG. 5 is different from the first embodiment. Below, parts that are different from Embodiment 1 will be mainly explained.
  • the DC component remover 42 calculates the DC component "1/A” using the following formulas (21) to (23) instead of the above formulas (10) to (14). do.
  • the DC component "1/A” is calculated by taking the difference between signals that have different DC components and the same reference phase of the AC components among the outputs of the classifier 41. .
  • the DC component remover 42 uses the latest effective voltage vector and the latest effective voltage vector with a different number from the latest effective voltage vector.
  • At least one mathematical formula may be used.
  • group (2/A, 0°) is generated based on current differential information when effective voltage vector V1 or V4 is applied
  • group (-1/A, 0°) is generated based on current differential information when effective voltage vector V1 or V4 is applied.
  • Equation (21) is an equation that uses the effective voltage vector V1 or V4 and V2 or V3 or V5 or V6.
  • formula (22) is a formula using effective voltage vectors V2 or V5 and V1 or V3 or V4 or V6.
  • Equation (23) is an equation that uses effective voltage vectors V3 or V6 and V1 or V2 or V4 or V5.
  • the DC component remover 42 can calculate the DC component "1/A" using the average value of the calculation results of the multiple formulas. .
  • the second embodiment differs from the first embodiment in the process of extracting the DC component, but the other processes are the same as in the first embodiment.
  • the control device 100 determines whether the DC component is zero or
  • the rotor position can be estimated with high accuracy.
  • formulas (10) to (14) used in the first embodiment require three signals among the outputs of the classifier 41, whereas formula (21) used in the second embodiment In (23), the DC component “1/A” can be calculated using two signals among the outputs of the classifier 41. Therefore, in the second embodiment, it is possible to obtain the effect that the calculation load is reduced more than in the first embodiment.
  • the method using equations (21) to (23) requires the application of two types of voltage vectors, whereas the method using equations (10) to (14) requires the application of two or three types of voltage vectors. Requires the application of a voltage vector. From the viewpoint of position estimation response, the fewer types of voltage vectors used for calculation, the better the response. Therefore, in the second embodiment, the DC component can be extracted with higher response than the method of the first embodiment.
  • Each function mentioned here refers to a function that the current detector 2, voltage applicator 3, position estimator 4, and controller 5 have.
  • FIG. 13 is a diagram showing a first example of a hardware configuration for realizing the functions of the control device 100 according to the first and second embodiments.
  • FIG. 14 is a diagram showing a second example of a hardware configuration for realizing the functions of control device 100 according to the first and second embodiments.
  • the control device 100 includes a dedicated processing circuit 1000, a current detector 2, and a voltage applicator 3.
  • the functions of the current detector 2 and the voltage applicator 3 are realized using dedicated hardware, and the functions of the position estimator 4 and the controller 5 are realized by a dedicated processing circuit 1000.
  • the control device 100 includes a processor 1001, a storage device 1002, a current detector 2, and a voltage applier 3.
  • Dedicated processing circuit 1000 and processor 1001 are also referred to as control circuits.
  • the dedicated processing circuit 1000 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • the control device 100 may implement each of the above functions using one dedicated processing circuit 1000, or may implement each of the above functions using a plurality of dedicated processing circuits 1000.
  • the processor 1001 can realize each function of the control device 100 by reading and executing programs stored in the storage device 1002. Note that, in the control device 100, a plurality of processors 1001 and a plurality of storage devices 1002 may cooperate to realize each of the functions described above.
  • each of the functions described above is realized by software, firmware, or a combination thereof.
  • Software or firmware is written as a program and stored in storage device 1002.
  • Processor 1001 reads and executes a program stored in storage device 1002. It can also be said that these programs cause a computer to execute procedures and methods for executing each function.
  • the processor 1001 is a CPU, and is also called a processing device, arithmetic device, microprocessor, microcomputer, DSP (Digital Signal Processor), or the like.
  • the storage device 1002 is, for example, a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), or EEPROM (registered trademark) (Electrically EPROM). , magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), etc.
  • the rotating machine 1 is a synchronous reluctance motor, but the type of the rotating machine 1 is not limited to this.
  • the rotating machine 1 may be a saliency motor such as an embedded magnet synchronous motor or a surface permanent magnet synchronous motor (SPMSM).
  • the controller 5 of the control device 100 controls the d-axis current and the q-axis current, but the controller 5 also controls torque, rotational speed, etc. It is also possible to have a configuration in which:
  • the current detector 2 detects the phase current of the rotating machine 1
  • the current detector 2 is an example of a current detection section, and the The example is not limited to.
  • the current detection section only needs to be able to detect the phase current, and may be a current sensor built into an inverter (not shown) that constitutes the voltage applicator 3.
  • Rotating machine 1 Rotating machine, 2 Current detector, 3 Voltage applicator, 4 Position estimator, 5 Controller, 6 Current controller, 7 Rotating coordinate inverse converter, 8 Two-phase three-phase converter, 9, 43 Three-phase two-phase Converter, 10 Rotating coordinate converter, 30a Transistor, 30b Diode, 30A, 30B, 30C Leg, 32, 33, 34 Connection point, 35a, 35b DC bus, 36 Power source, 40 Current differential information calculation unit, 41 Classifier , 42 DC component remover, 44 Phase synchronization calculation unit, 100 Control device, 400 Voltage vector determiner, 401 Current differential calculation unit, 441 Phase error calculation unit, 442 PI controller, 443 Integrator, 444, 445 Proportional unit, 1000 Dedicated processing circuit, 1001 Processor, 1002 Storage device, UP, UN, VP, VN, WP, WN semiconductor element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A control device (100) carries out drive control of a multi-phase rotating machine (1). The control device (100) is characterized by comprising: a current detector (2) which is a current detection unit that detects a rotating machine current flowing in the rotating machine (1); a controller (5) which is a drive voltage instruction computing unit that generates, on the basis of the rotating machine current and an estimated value of the rotor position of the rotating machine (1), a drive voltage instruction for driving the rotating machine (1); a voltage applicator (3) which applies a voltage to the rotating machine (1) on the basis of the generated drive voltage instruction; and a position estimator (4) which is a position estimation unit that estimates the rotor position on the basis of the rotating machine current, wherein the position estimator (4) determines, on the basis of a gate signal of the voltage applicator (3), the type of voltage vector output by the voltage applicator (3), computes the rotating machine current change amount per determined type of voltage vector, generates, on the basis of the rotating machine current change amount which is the computation result, an alternating current signal that has a direct current component of zero and that varies at twice the angle of the rotor position, and estimates the rotor position on the basis of the alternating current signal.

Description

制御装置および駆動制御方法Control device and drive control method
 本開示は、回転機の駆動制御を行う制御装置および駆動制御方法に関する。 The present disclosure relates to a control device and a drive control method for controlling the drive of a rotating machine.
 回転機の駆動には、回転子の位置情報が必要である。位置センサを用いれば、回転子位置を検出することができるが、位置センサを使用することによって、システムの大型化、高コスト化、耐環境性の低下といった問題が生じる。 To drive a rotating machine, rotor position information is required. Although the rotor position can be detected using a position sensor, the use of a position sensor causes problems such as increased system size, increased cost, and reduced environmental resistance.
 これに対して、特許文献1では、位置センサを用いずに回転子位置を推定する方法が開示されている。特許文献1に開示された方法では、有効電圧ベクトル印加中の回転機電流の変化量が回転子位置の2倍角で変化することを利用して、回転子位置を推定する。 On the other hand, Patent Document 1 discloses a method of estimating the rotor position without using a position sensor. In the method disclosed in Patent Document 1, the rotor position is estimated by utilizing the fact that the amount of change in the rotating machine current during application of an effective voltage vector changes at an angle twice the rotor position.
特開2018-153027号公報Japanese Patent Application Publication No. 2018-153027
 しかしながら、上記従来の技術によれば、回転機電流の微分情報が断片的な信号となるような有効電圧ベクトルの出現パターンにおいては、位置推定誤差が増大する場合があるという問題があった。例えば、三相共通三角波キャリアPWM(Pulse Width Modulation:パルス幅変調)を用いて電流ベクトル制御を行う場合、電流ベクトル制御により出現する有効電圧ベクトルの種類と回転子位置とには相関があり、回転機が低速で駆動する場合には、特定の種類の有効電圧ベクトルが長時間にわたり出現する。このような条件において有効電圧ベクトルに対する回転機電流の変化量を取得した場合、回転機電流の変化量は断片的な信号となる。 However, according to the above-mentioned conventional technology, there is a problem in that the position estimation error may increase in the appearance pattern of the effective voltage vector in which the differential information of the rotating machine current becomes a fragmentary signal. For example, when performing current vector control using a three-phase common triangular wave carrier PWM (Pulse Width Modulation), there is a correlation between the type of effective voltage vector that appears due to current vector control and the rotor position. When the machine is driven at low speeds, a certain type of effective voltage vector appears for a long time. When the amount of change in the rotating machine current with respect to the effective voltage vector is obtained under such conditions, the amount of change in the rotating machine current becomes a fragmentary signal.
 本開示は、上記に鑑みてなされたものであって、有効電圧ベクトルに対する回転機電流の変化量が断片的となる条件においても、高精度に回転子位置を推定することが可能な制御装置を得ることを目的とする。 The present disclosure has been made in view of the above, and provides a control device that is capable of estimating the rotor position with high accuracy even under conditions where the amount of change in the rotating machine current with respect to the effective voltage vector is fragmentary. The purpose is to obtain.
 上述した課題を解決し、目的を達成するために、本開示の制御装置は、多相の回転機の駆動制御を行う制御装置であって、回転機に流れる回転機電流を検出する電流検出部と、回転機電流と回転機の回転子位置の推定値とに基づいて回転機を駆動するための駆動電圧指令を生成する駆動電圧指令演算部と、生成された駆動電圧指令に基づいて回転機に電圧を印加する電圧印加器と、回転機電流に基づいて回転子位置を推定する位置推定部と、を備え、位置推定部は、電圧印加器のゲート信号に基づき電圧印加器が出力する電圧ベクトルの種類を判定し、判定した電圧ベクトルの種類毎に回転機電流の変化量を演算し、演算結果である回転機電流変化量に基づいて直流成分がゼロ、且つ、回転子位置の2倍角で変化する交流信号を生成し、交流信号に基づいて回転子位置を推定することを特徴とする。 In order to solve the above-mentioned problems and achieve the purpose, a control device of the present disclosure is a control device that performs drive control of a multi-phase rotating machine, and includes a current detection unit that detects a rotating machine current flowing through the rotating machine. a drive voltage command calculation unit that generates a drive voltage command for driving the rotating machine based on the rotating machine current and an estimated value of the rotor position of the rotating machine; a voltage applier that applies a voltage to the rotor; and a position estimator that estimates the rotor position based on the rotating machine current; The type of vector is determined, the amount of change in the rotating machine current is calculated for each type of voltage vector determined, and based on the amount of change in the rotating machine current that is the calculation result, the DC component is zero and the angle is twice the rotor position. The present invention is characterized in that an alternating current signal is generated that changes in the alternating current signal, and the rotor position is estimated based on the alternating current signal.
 本開示によれば、有効電圧ベクトルに対する回転機電流の変化量が断片的となる条件においても、高精度に回転子位置を推定することが可能な制御装置を得ることができるという効果を奏する。 According to the present disclosure, it is possible to obtain a control device that can estimate the rotor position with high accuracy even under conditions where the amount of change in the rotating machine current with respect to the effective voltage vector is fragmentary.
実施の形態1にかかる回転機の制御装置の構成を示す図A diagram showing the configuration of a control device for a rotating machine according to Embodiment 1. 図1に示す電圧印加器の回路構成の一例を示す図A diagram showing an example of the circuit configuration of the voltage applicator shown in FIG. 図1に示す電圧印加器の各相のスイッチング状態と電圧ベクトルの定義との対応関係の一例を示す図A diagram showing an example of the correspondence between the switching state of each phase of the voltage applicator shown in FIG. 1 and the definition of the voltage vector. 図3に示す8通りのスイッチング状態と電圧ベクトルとを示す図A diagram showing the eight switching states and voltage vectors shown in FIG. 図1に示す位置推定器における信号処理を説明するための図Diagram for explaining signal processing in the position estimator shown in FIG. 1 図5に示す電流微分情報演算部の詳細な構成を示す図A diagram showing the detailed configuration of the current differential information calculation section shown in FIG. 電流微分情報が含む直流成分と交流成分とを示す図Diagram showing DC and AC components included in current differential information 図5に示す電流微分情報演算部の出力を示す図A diagram showing the output of the current differential information calculation section shown in FIG. 分類器の行う分類について説明するための図Diagram to explain the classification performed by the classifier 図5に示す分類器の動作についての説明図An explanatory diagram of the operation of the classifier shown in Figure 5 図5に示す位相同期演算部の構成を示すブロック図A block diagram showing the configuration of the phase synchronization calculation section shown in FIG. 図5に示す位置推定器の各部の出力を示す図A diagram showing the output of each part of the position estimator shown in FIG. 実施の形態1および実施の形態2にかかる制御装置の機能を実現するためのハードウェア構成の第1の例を示す図A diagram showing a first example of a hardware configuration for realizing the functions of the control device according to Embodiment 1 and Embodiment 2. 実施の形態1および実施の形態2にかかる制御装置の機能を実現するためのハードウェア構成の第2の例を示す図A diagram showing a second example of a hardware configuration for realizing the functions of the control device according to Embodiment 1 and Embodiment 2.
 以下に、本開示の実施の形態にかかる制御装置および駆動制御方法を図面に基づいて詳細に説明する。 Below, a control device and a drive control method according to an embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる回転機の制御装置の構成を示す図である。以下では、「回転機の制御装置」を単に「制御装置」と称する場合がある。図1に示す制御装置100は、回転機1と、電流検出器2と、電圧印加器3と、位置推定器4と、制御器5とを有する。制御器5は、電流制御器6と、回転座標逆変換器7と、二相三相変換器8と、三相二相変換器9と、回転座標変換器10とを有する。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a control device for a rotating machine according to a first embodiment. Hereinafter, the "rotating machine control device" may be simply referred to as the "control device." The control device 100 shown in FIG. 1 includes a rotating machine 1, a current detector 2, a voltage applier 3, a position estimator 4, and a controller 5. The controller 5 includes a current controller 6 , a rotating coordinate inverse converter 7 , a two-phase three-phase converter 8 , a three-phase two-phase converter 9 , and a rotating coordinate converter 10 .
 回転機1は、回転子の突極性を利用してトルクを発生する三相の同期リラクタンスモータ(SynRM:Synchronous Reluctance Motor)である。回転機1には電圧印加器3が接続され、回転機1と電圧印加器3との間には電流検出器2が設けられている。 The rotating machine 1 is a three-phase synchronous reluctance motor (SynRM) that generates torque by utilizing the saliency of the rotor. A voltage applicator 3 is connected to the rotating machine 1, and a current detector 2 is provided between the rotating machine 1 and the voltage applicator 3.
 電流検出器2は、電圧印加器3から回転機1に供給される交流電流を検出して、その交流電流を回転機電流iu,iv,iwとして出力する。回転機電流iu,iv,iwは、回転機1に供給されると共に、位置推定器4および制御器5のそれぞれにも出力される。 The current detector 2 detects the alternating current supplied from the voltage applicator 3 to the rotating machine 1 and outputs the alternating current as rotating machine currents i u , iv , i w . The rotating machine currents i u , i v , i w are supplied to the rotating machine 1 and are also output to each of the position estimator 4 and controller 5 .
 電圧印加器3は、制御器5から供給される回転機電圧指令vu*,vv*,vw*に従って交流電力を回転機1に供給する。 The voltage applicator 3 supplies AC power to the rotating machine 1 according to rotating machine voltage commands v u *, v v *, v w * supplied from the controller 5 .
 位置推定器4は、電流検出器2で検出された回転機電流iu,iv,iwと、電圧印加器3の後述するゲート信号とを用いて、推定回転子位置を演算する。以下の説明中において、回転子位置を「θ」とし、回転子位置θの推定値を「θ」の上に「^」を付けて表すこととする。なお、「θ」の上に「^」を付けた符号を、「θ」の後に「^」を付することによって表す場合もある。同様に、あるパラメータを表す記号の上または後に「^」を付した符号は、そのパラメータの推定値を表すこととする。位置推定器4は、推定回転子位置θ^を制御器5に出力する。 The position estimator 4 calculates the estimated rotor position using the rotating machine currents i u , i v , i w detected by the current detector 2 and a gate signal from the voltage applicator 3, which will be described later. In the following description, the rotor position will be expressed as "θ", and the estimated value of the rotor position θ will be expressed by adding "^" above "θ". Note that a symbol with "^" added above "θ" may also be expressed by adding "^" after "θ". Similarly, a symbol with "^" added above or after a symbol representing a certain parameter represents the estimated value of that parameter. The position estimator 4 outputs the estimated rotor position θ^ to the controller 5.
 制御器5は、回転機1の回転座標上の回転機電流id,iqが回転座標上の回転機電流指令id*,iq*で指示される値となるように、回転機1を駆動する回転機電圧指令vu*,vv*,vw*を演算し、演算した回転機電圧指令vu*,vv*,vw*を電圧印加器3に出力する。 The controller 5 controls the rotating machine 1 so that the rotating machine currents i d , i q on the rotating coordinates of the rotating machine 1 become values indicated by the rotating machine current commands i d *, i q * on the rotating coordinates. The rotating machine voltage commands v u *, v v *, v w * that drive the rotating machine voltage commands v u *, v v *, v w * are calculated, and the calculated rotating machine voltage commands v u *, v v *, v w * are output to the voltage applicator 3.
 図2は、図1に示す電圧印加器3の回路構成の一例を示す図である。図2は、電圧印加器3が三相PWMインバータである場合の回路構成の一例を示している。電圧印加器3は、上アームの半導体素子UPと下アームの半導体素子UNとが直列に接続されたレグ30Aと、上アームの半導体素子VPと下アームの半導体素子VNとが直列に接続されたレグ30Bと、上アームの半導体素子WPと下アームの半導体素子WNとが直列に接続されたレグ30Cとを有する。レグ30A、レグ30Bおよびレグ30Cは、互いに並列に接続されている。 FIG. 2 is a diagram showing an example of the circuit configuration of the voltage applicator 3 shown in FIG. 1. FIG. 2 shows an example of a circuit configuration when the voltage applicator 3 is a three-phase PWM inverter. The voltage applicator 3 includes a leg 30A in which a semiconductor element UP in the upper arm and a semiconductor element UN in the lower arm are connected in series, and a semiconductor element VP in the upper arm and a semiconductor element VN in the lower arm are connected in series. It has a leg 30B and a leg 30C in which an upper arm semiconductor element WP and a lower arm semiconductor element WN are connected in series. Leg 30A, leg 30B, and leg 30C are connected in parallel to each other.
 電圧印加器3には、直流母線35a,35bを通じて、母線電圧が印加される。電圧印加器3は、直流母線35a,35bを通じて供給される電力源36の直流電力を交流電力に変換し、変換した交流電力を回転機1に供給することで回転機1を駆動する。なお、図2では電流検出器2は省略されている。 A bus voltage is applied to the voltage applicator 3 through the DC buses 35a and 35b. The voltage applicator 3 converts the DC power of the power source 36 supplied through the DC buses 35a and 35b into AC power, and drives the rotating machine 1 by supplying the converted AC power to the rotating machine 1. Note that the current detector 2 is omitted in FIG. 2.
 図2では、半導体素子UP,UN,VP,VN,WP,WNが金属酸化膜半導体電界効果型トランジスタ(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor)である場合を例示している。半導体素子UP,UN,VP,VN,WP,WNのそれぞれは、トランジスタ30aと、トランジスタ30aに逆並列に接続されるダイオード30bとを含む。「逆並列に接続される」とは、MOSFETのソースに相当する第1端子にダイオードのアノード側が接続され、MOSFETのドレインに相当する第2端子にダイオードのカソード側が接続されることを意味する。 FIG. 2 illustrates a case where the semiconductor elements UP, UN, VP, VN, WP, and WN are metal-oxide-semiconductor field-effect transistors (MOSFETs). Each of the semiconductor elements UP, UN, VP, VN, WP, and WN includes a transistor 30a and a diode 30b connected antiparallel to the transistor 30a. "Connected in antiparallel" means that the anode side of the diode is connected to the first terminal corresponding to the source of the MOSFET, and the cathode side of the diode is connected to the second terminal corresponding to the drain of the MOSFET.
 なお、半導体素子UP,UN,VP,VN,WP,WNは、MOSFETに代えて、例えば絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)を用いてもよい。 Note that for the semiconductor elements UP, UN, VP, VN, WP, and WN, for example, insulated gate bipolar transistors (IGBT) may be used instead of MOSFETs.
 上アームの半導体素子UPと下アームの半導体素子UNとの接続点32は、回転機1の第1の相、例えばu相に接続されている。上アームの半導体素子VPと下アームの半導体素子VNとの接続点33は、回転機1の第2の相、例えばv相に接続されている。上アームの半導体素子WPと下アームの半導体素子WNとの接続点34は、回転機1の第3の相、例えばw相に接続されている。電圧印加器3において、接続点32,33,34は、交流端子を成す。 A connection point 32 between the semiconductor element UP of the upper arm and the semiconductor element UN of the lower arm is connected to the first phase of the rotating machine 1, for example, the u phase. A connection point 33 between the semiconductor element VP of the upper arm and the semiconductor element VN of the lower arm is connected to the second phase of the rotating machine 1, for example, the v phase. A connection point 34 between the semiconductor element WP of the upper arm and the semiconductor element WN of the lower arm is connected to the third phase of the rotating machine 1, for example, the w phase. In the voltage applicator 3, the connection points 32, 33, and 34 constitute AC terminals.
 ここで電圧印加器3が出力する電圧ベクトルについて説明する。電圧印加器3は、上述の通り三相PWMインバータであり、直流母線35a,35bを通じて供給される電力源36をPWM制御することにより所望の電圧を得る電力変換器である。三相PWMインバータには、一相につき上下に2つのスイッチング素子があり、上下のスイッチング素子はどちらか一方がオン状態となるように動作する。したがって、三相の三角波比較インバータでは、2の3乗通りつまり8通りのスイッチング状態が存在する。ここで、電圧印加器3におけるu相、v相、w相の上アームのゲート信号の状態をそれぞれGu,Gv,Gwと定義する。Gu,Gv,Gwの値が1の場合、対応する相の上アームの半導体素子が導通状態であることを意味し、Gu,Gv,Gwの値が0の場合、対応する相の下アームの半導体素子が導通状態であることを意味する。例えば、(Gu,Gv,Gw)=(1,0,0)の条件では、u相の上アームの半導体素子が導通し、v相およびw相の下アームの半導体素子が導通している状態を意味する。 Here, the voltage vector output by the voltage applicator 3 will be explained. The voltage applicator 3 is a three-phase PWM inverter as described above, and is a power converter that obtains a desired voltage by PWM-controlling the power source 36 supplied through the DC buses 35a and 35b. A three-phase PWM inverter has two switching elements, upper and lower, for each phase, and the upper and lower switching elements operate so that one of them is in an on state. Therefore, in the three-phase triangular wave comparison inverter, there are 2 cubed types, that is, eight types of switching states. Here, the states of the upper arm gate signals of the u-phase, v-phase, and w-phase in the voltage applicator 3 are defined as Gu , Gv , and Gw, respectively. When the value of G u , G v , G w is 1, it means that the semiconductor element of the upper arm of the corresponding phase is in a conductive state, and when the value of G u , G v , G w is 0, the corresponding This means that the semiconductor element in the lower arm of the phase is in a conductive state. For example, under the condition (G u , G v , G w ) = (1, 0, 0), the semiconductor element in the upper arm of the u phase is conductive, and the semiconductor element in the lower arm of the v phase and w phase is conductive. means the state of being
 ここで、電圧印加器3の8通りのスイッチング状態のそれぞれにおける電圧ベクトルを、V0~V7として定義する。図3は、図1に示す電圧印加器3の各相のスイッチング状態と電圧ベクトルの定義との対応関係の一例を示す図である。(Gu,Gv,Gw)=(0,0,0)の条件で、印加される電圧ベクトルをV0と定義し、(Gu,Gv,Gw)=(1,0,0)の条件で、印加される電圧ベクトルをV1と定義し、(Gu,Gv,Gw)=(1,1,0)の条件で、印加される電圧ベクトルをV2と定義し、(Gu,Gv,Gw)=(0,1,0)の条件で、印加される電圧ベクトルをV3と定義する。また、(Gu,Gv,Gw)=(0,1,1)の条件で、印加される電圧ベクトルをV4と定義し、(Gu,Gv,Gw)=(0,0,1)の条件で、印加される電圧ベクトルをV5と定義し、(Gu,Gv,Gw)=(1,0,1)の条件で、印加される電圧ベクトルをV6と定義し、(Gu,Gv,Gw)=(1,1,1)の条件で、印加される電圧ベクトルをV7と定義する。この8通りの電圧ベクトルV0~V7のうち電圧ベクトルV0,V7を零電圧ベクトルと称し、それ以外、つまり、電圧ベクトルV1~V6を有効電圧ベクトルと称する。なお、電圧ベクトルV0~V7を、電圧ベクトルV0~7と表記する場合がある。同様に、有効電圧ベクトルV1~V6を、有効電圧ベクトルV1~6と表記する場合がある。 Here, voltage vectors in each of the eight switching states of the voltage applicator 3 are defined as V 0 to V 7 . FIG. 3 is a diagram showing an example of the correspondence between the switching state of each phase of the voltage applicator 3 shown in FIG. 1 and the definition of a voltage vector. Under the condition of (G u , G v , G w ) = (0, 0, 0), the applied voltage vector is defined as V 0 , and (G u , G v , G w ) = (1, 0, 0), the applied voltage vector is defined as V 1 , and under the conditions (G u , G v , G w ) = (1, 1, 0), the applied voltage vector is defined as V 2 The applied voltage vector is defined as V 3 under the condition that (G u , G v , G w )=(0, 1, 0). Also, under the conditions of (G u , G v , G w )=(0, 1, 1), the applied voltage vector is defined as V 4 , and (G u , G v , G w )=(0, 0, 1), the applied voltage vector is defined as V 5 , and under the condition (G u , G v , G w ) = (1, 0, 1), the applied voltage vector is defined as V 6 The applied voltage vector is defined as V 7 under the condition of (G u , G v , G w )=(1, 1, 1). Among these eight voltage vectors V 0 to V 7 , voltage vectors V 0 and V 7 are referred to as zero voltage vectors, and the others, that is, voltage vectors V 1 to V 6 are referred to as effective voltage vectors. Note that the voltage vectors V 0 to V 7 may be expressed as voltage vectors V 0 to 7 . Similarly, the effective voltage vectors V 1 to V 6 may be expressed as effective voltage vectors V 1 to V 6 .
 図4は、図3に示す8通りのスイッチング状態と電圧ベクトルとを示す図である。図4には、各スイッチング状態における電圧ベクトルと、電圧印加器3の各半導体素子の導通状態とが示されている。 FIG. 4 is a diagram showing the eight switching states and voltage vectors shown in FIG. 3. FIG. 4 shows the voltage vector in each switching state and the conduction state of each semiconductor element of the voltage applicator 3.
 図5は、図1に示す位置推定器4における信号処理を説明するための図である。位置推定器4は、電流検出器2で検出される回転機電流iu,iv,iwと、電圧印加器3のゲート信号Gu,Gv,Gwとを用いて、回転機1の回転子の位置の推定値である推定回転子位置θ^を演算する。具体的には、位置推定器4は、電流微分情報演算部40と、分類器41と、直流成分除去器42と、三相二相変換器43と、位相同期演算部44とを有する。 FIG. 5 is a diagram for explaining signal processing in the position estimator 4 shown in FIG. 1. The position estimator 4 uses the rotating machine currents i u , i v , i w detected by the current detector 2 and the gate signals G u , G v , G w of the voltage applicator 3 to detect the rotating machine 1 . The estimated rotor position θ^, which is the estimated value of the rotor position, is calculated. Specifically, the position estimator 4 includes a current differential information calculation section 40, a classifier 41, a DC component remover 42, a three-phase two-phase converter 43, and a phase synchronization calculation section 44.
 電流微分情報演算部40は、有効電圧ベクトルV1~V6のそれぞれに対応する電流微分情報を演算する。電流微分情報演算部40は、u相、v相、w相の回転機電流iu,iv,iwのそれぞれついて、有効電圧ベクトルV1~V6のそれぞれに対応する電流微分情報を演算する。このため、電流微分情報演算部40が出力する電流微分情報は、3×6=18種類となる。電流微分情報は、回転機電流変化量とも呼ばれる。電流微分情報演算部40には、電圧印加器3の各相の上アームの半導体素子のゲート信号Gu,Gv,Gwと、回転機電流iu,iv,iwとが入力される。 The current differential information calculating section 40 calculates current differential information corresponding to each of the effective voltage vectors V 1 to V 6 . The current differential information calculation unit 40 calculates current differential information corresponding to each of the effective voltage vectors V 1 to V 6 for each of the u-phase, v-phase, and w-phase rotating machine currents i u , i v , i w . do. Therefore, the current differential information outputted by the current differential information calculation section 40 is 3×6=18 types. The current differential information is also called the amount of change in rotating machine current. The gate signals G u , G v , G w of the semiconductor elements of the upper arm of each phase of the voltage applicator 3 and the rotating machine currents i u , i v , i w are input to the current differential information calculation unit 40 . Ru.
 図6は、図5に示す電流微分情報演算部40の詳細な構成を示す図である。電流微分情報演算部40は、電圧印加器3が出力する電圧ベクトルの種類を判定する電圧ベクトル判定器400と、電圧ベクトル判定器400の判定結果と回転機電流iu,iv,iwとを用いて、有効電圧ベクトルに対応する各相の電流微分情報を演算する電流微分演算器401とを有する。 FIG. 6 is a diagram showing a detailed configuration of the current differential information calculation section 40 shown in FIG. 5. As shown in FIG. The current differential information calculation unit 40 includes a voltage vector determiner 400 that determines the type of voltage vector output by the voltage applicator 3, and a determination result of the voltage vector determiner 400 and rotating machine currents i u , i v , i w . It has a current differential calculator 401 that calculates current differential information of each phase corresponding to the effective voltage vector using .
 電圧ベクトル判定器400は、図3に示した定義に基づいて、電圧印加器3の各相の上アームの半導体素子のゲート信号Gu,Gv,Gwから電圧印加器3が出力する電圧ベクトルの種類を判定する。電圧ベクトル判定器400は、ゲート信号Gu,Gv,Gwの値から電圧ベクトルの種類が電圧ベクトルV0~7のうちのいずれであるかを判定し、判定結果である電圧ベクトルV0~7を電流微分演算器401に出力する。 Based on the definition shown in FIG. Determine the type of vector. The voltage vector determiner 400 determines which of the voltage vectors V 0 to V 7 the type of voltage vector is from the values of the gate signals G u , G v , and G w , and determines the voltage vector V 0 as the determination result. ~7 is output to the current differential calculator 401.
 電流微分演算器401は、電圧ベクトル判定器400の判定結果である電圧ベクトルV0~7と、回転機電流iu,iv,iwとに基づいて、有効電圧ベクトルV1~6のそれぞれに対応する各相の電流微分情報を演算する。電流微分演算器401は、現在の電圧ベクトルV0~7の種類と、1制御周期前の電圧ベクトルの種類とを記憶し、同一の有効電圧ベクトルが2制御周期以上にわたって出現した場合、その有効電圧ベクトルの種類に対応した各相の電流微分情報を演算する。制御周期は、有効電圧ベクトルを印加中の電流を2点以上サンプリングするため、電圧印加器3の三角波キャリアの周期に対して、十分短い値に設定する。現在の電圧ベクトルの種類がVNであって、1制御周期前の電圧ベクトルの種類がVNであった場合、電流微分演算器401は、VN印加時におけるu相、v相、w相の電流微分情報を、それぞれ「diuVN/dt」、「divVN/dt」、「diwVN/dt」として演算する。Nは1から6の整数である。電流微分演算器401は、V1~6の6種類の有効電圧ベクトルと三相の電流微分情報とを区別して演算することで、18種類の電流微分情報「diuV1~6/dt」、「divV1~6/dt」、「diwV1~6/dt」を出力する。 The current differential calculator 401 calculates each of the effective voltage vectors V 1 to 6 based on the voltage vectors V 0 to 7 , which are the determination results of the voltage vector determiner 400, and the rotating machine currents i u , i v , and i w . Calculate current differential information for each phase corresponding to . The current differential calculator 401 stores the types of the current voltage vectors V 0 to V 7 and the type of the voltage vector one control period ago, and when the same effective voltage vector appears for two or more control periods, the effective Calculate current differential information for each phase corresponding to the type of voltage vector. The control period is set to a value sufficiently short with respect to the period of the triangular wave carrier of the voltage applicator 3 in order to sample the current at two or more points while applying the effective voltage vector. If the current voltage vector type is V N and the voltage vector type one control period ago is V N , the current differential calculator 401 calculates the u-phase, v-phase, and w-phase when V N is applied. The current differential information of is calculated as "di uVN /dt", "di vVN /dt", and "di wVN /dt", respectively. N is an integer from 1 to 6. The current differential calculator 401 calculates 18 types of current differential information "di uV1 to 6 /dt", "di divV1-6 /dt" and "di wV1-6 /dt" are output.
 ここで、電流微分演算器401が出力する合計18種類の電流微分情報について説明する。電流微分情報は、直流成分と交流成分とを含む。図7は、電流微分情報が含む直流成分と交流成分とを示す図である。図7には、18種類の電流微分情報のそれぞれについて、信号名と、直流成分を示す数式と、交流成分を示す数式とが対応づけられている。「信号名」において、u,v,wは対応する回転機1の相を示しており、V1~V6は、対応する有効電圧ベクトルの種類を示している。 Here, a total of 18 types of current differential information output by the current differential calculator 401 will be explained. The current differential information includes a DC component and an AC component. FIG. 7 is a diagram showing a DC component and an AC component included in current differential information. In FIG. 7, for each of the 18 types of current differential information, a signal name, a formula representing a DC component, and a formula representing an AC component are associated with each other. In the "signal name", u, v, w indicate the corresponding phase of the rotating machine 1, and V 1 to V 6 indicate the type of the corresponding effective voltage vector.
 図7に示す電流微分情報の「直流成分」の特徴について説明する。ここで、Aを以下の数式(1)で定義した場合、電流微分情報の「直流成分」は、有効電圧ベクトルの方向の相に「2/A」の大きさで発生し、有効電圧ベクトルの方向の相以外の相に逆符号で「1/A」の大きさで発生する。したがって、同一の有効電圧ベクトル印加中のu相の直流成分と、v相の直流成分と、w相の直流成分との和はゼロとなる。ここで、Vdcは、電圧印加器3の電力源36の直流電圧である。 The characteristics of the "DC component" of the current differential information shown in FIG. 7 will be explained. Here, when A is defined by the following formula (1), the "DC component" of the current differential information is generated in the phase in the direction of the effective voltage vector with a magnitude of "2/A", and It occurs with a magnitude of "1/A" with an opposite sign in a phase other than the phase in the direction. Therefore, the sum of the u-phase DC component, the v-phase DC component, and the w-phase DC component while applying the same effective voltage vector becomes zero. Here, V dc is the DC voltage of the power source 36 of the voltage applicator 3.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)のL0は、以下の数式(2)で表される。また、数式(1)のL1は、以下の数式(3)で表される。ここで、Ldは回転機1のd軸インダクタンスであり、Lqは回転機1のq軸インダクタンスである。 L 0 in the formula (1) is expressed by the following formula (2). Further, L 1 in the formula (1) is expressed by the following formula (3). Here, L d is the d-axis inductance of the rotating machine 1, and L q is the q-axis inductance of the rotating machine 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 続いて、電流微分情報の「交流成分」の特徴について説明する。ここで、有効電圧ベクトルの番号をNとすると、u相の電流微分情報の交流成分は数式(4)で表され、v相の電流微分情報の交流成分は数式(5)で表され、w相の電流微分情報の交流成分は数式(6)で表される。 Next, the characteristics of the "AC component" of the current differential information will be explained. Here, if the number of the effective voltage vector is N, the AC component of the current differential information of the u phase is expressed by equation (4), the AC component of the current differential information of the v phase is expressed by equation (5), and w The alternating current component of the phase current differential information is expressed by equation (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 数式(4)~(6)に示すように、有効電圧ベクトルを印加することにより得られる電流微分情報は、回転子位置θの情報を持つ。図7の「交流成分」の列には、数式(4)~(6)における位相について展開したものが示されている。図7および数式(4)~(6)から明らかなように、同一の有効電圧ベクトルを印加期間中の電流微分情報の交流成分は、互いに「±2π/3」の位相差をもち、また、有効電圧ベクトルの印加方向により、それぞれの基準の位相がシフトする特徴がある。交流成分の振幅の大きさは、全ての有効電圧ベクトルおよび相の組み合わせで等しく、「(1/A)×(L1/L0)」となる。なお、埋込磁石型同期モータ(IPMSM:Interior Permanent Magnet Synchronous Motor)と同期リラクタンスモータとでは、d軸およびq軸インダクタンスの大小関係が異なるため、余弦関数の係数「(1/A)×(L1/L0)」の値は、埋込磁石型同期モータでは正の値となり、同期リラクタンスモータでは負の値となる。 As shown in equations (4) to (6), the current differential information obtained by applying the effective voltage vector has information on the rotor position θ. The "AC component" column in FIG. 7 shows the expansion of the phases in equations (4) to (6). As is clear from FIG. 7 and equations (4) to (6), the AC components of the current differential information during the application period of the same effective voltage vector have a phase difference of "±2π/3", and It has the characteristic that the phase of each reference shifts depending on the direction of application of the effective voltage vector. The magnitude of the amplitude of the AC component is equal for all combinations of effective voltage vectors and phases, and is "(1/A)×(L 1 /L 0 )". In addition, since the magnitude relationship of the d-axis and q-axis inductances is different between an interior permanent magnet synchronous motor (IPMSM) and a synchronous reluctance motor, the cosine function coefficient "(1/A) x (L 1 /L 0 )" is a positive value for an embedded magnet type synchronous motor, and a negative value for a synchronous reluctance motor.
 各相において、有効電圧ベクトルの増磁および減磁方向の関係にある組み合わせで得られる電流微分情報は、以下の数式(7)~(9)で表されるように、互いに逆符号の関係にある。数式(7)~(9)において、nは1から3の整数である。増磁および減磁方向の関係にある電圧ベクトルの組み合わせは、u相ではV1とV4、v相ではV3とV6、w相ではV5とV2である。 In each phase, the current differential information obtained from combinations of effective voltage vectors in the magnetization and demagnetization directions are in a relationship with opposite signs, as expressed by the following equations (7) to (9). be. In formulas (7) to (9), n is an integer from 1 to 3. The combinations of voltage vectors in the magnetization and demagnetization directions are V1 and V4 for the u phase, V3 and V6 for the v phase, and V5 and V2 for the w phase.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図8は、図5に示す電流微分情報演算部40の出力を示す図である。図8は、低速で回転する同期リラクタンスモータに対して、電流ベクトル制御を行った場合のシミュレーション結果であり、電圧印加器3のPWMには、一般的に用いられる三相共通の三角波キャリア比較を用いている。電圧ベクトルの番号は、説明のために、V0およびV7は0番としている。ここで、回転子位置と印加されている電圧ベクトルの番号とに着目すると、回転子位置と電圧ベクトルの出現パターンとには、相関が確認できる。特定の有効電圧ベクトルが出現する期間においては、他の有効電圧ベクトルに対応する電流微分情報は取得することができないため、特定の有効電圧ベクトルが長時間に渡って発生するような有効電圧ベクトルの出現パターンでは、電流微分情報は断片的となる。さらに、各電流微分情報は取得することができるタイミングが異なり、信号により遅れ量が異なるという特徴がある。この特徴から、電圧ベクトルの出現パターンを考慮せずに信号処理を行うと、位置センサレス制御が不安定となってしまう。ここで、「電圧ベクトルの出現パターンを考慮せずに信号処理を行う」とは、例えば、出現する電圧ベクトルの種類によらず、回転子位置の推定に用いる電流微分情報の種類を固定する場合が該当する。 FIG. 8 is a diagram showing the output of the current differential information calculation section 40 shown in FIG. 5. Figure 8 shows the simulation results when current vector control is performed on a synchronous reluctance motor rotating at low speed. I am using it. For the sake of explanation, the voltage vector numbers are set to 0 for V0 and V7. Here, when focusing on the rotor position and the number of the applied voltage vector, a correlation can be confirmed between the rotor position and the appearance pattern of the voltage vector. During the period in which a specific effective voltage vector appears, current differential information corresponding to other effective voltage vectors cannot be obtained. In the appearance pattern, current differential information becomes fragmentary. Furthermore, each current differential information has a characteristic that the timing at which it can be acquired differs, and the amount of delay varies depending on the signal. Due to this characteristic, if signal processing is performed without considering the appearance pattern of voltage vectors, position sensorless control will become unstable. Here, "performing signal processing without considering the appearance pattern of voltage vectors" means, for example, when the type of current differential information used to estimate the rotor position is fixed, regardless of the type of voltage vector that appears. is applicable.
 このため、位置推定器4は、断片的な電流微分情報から、回転子位置情報をもつ連続な電流微分情報の交流成分を生成する信号処理を行う。以下、位置推定器4が行う信号処理方法について説明する。電流微分情報は、上記の数式(4)~(9)に示した特徴を有する。この特徴を利用すると、異なる電圧ベクトルおよび相の条件において、電流微分情報には、同一の波形形状が出現する。このため、位置推定器4は、異なる電圧ベクトルおよび相の条件において出現する波形形状を利用して、断片的となる電流微分情報を補間して連続な電流微分情報の交流成分を生成する。 Therefore, the position estimator 4 performs signal processing to generate an AC component of continuous current differential information having rotor position information from the fragmentary current differential information. The signal processing method performed by the position estimator 4 will be described below. The current differential information has the characteristics shown in the above equations (4) to (9). By utilizing this feature, the same waveform shape appears in current differential information under different voltage vector and phase conditions. Therefore, the position estimator 4 uses waveform shapes that appear under different voltage vector and phase conditions to interpolate fragmentary current differential information to generate continuous AC components of current differential information.
 図5の説明に戻る。分類器41は、電流微分情報演算部40が出力する電流微分情報を、直流成分の大きさおよび基準位相で6種類の信号のいずれかに分類する。分類器41は、上記の数式(4)~(9)の特徴に基づいて、直流成分の大きさおよび交流成分の位相により、group(2/A,0°)、group(-1/A,120°)、group(-1/A,-120°)、group(2/A,-120°)、group(-1/A,0°)、group(2/A,120°)の6種類に分類する。 Returning to the explanation of FIG. 5. The classifier 41 classifies the current differential information output by the current differential information calculation unit 40 into one of six types of signals based on the magnitude of the DC component and the reference phase. The classifier 41 classifies groups (2/A, 0°), group (-1/A, 120°), group (-1/A, -120°), group (2/A, -120°), group (-1/A, 0°), group (2/A, 120°). Classify into.
 図9は、分類器41の行う分類について説明するための図である。図9には、分類器41が分類する6つのグループそれぞれの「グループ」、「直流成分」、「交流成分」および「記号」が示されている。ここで「グループ」はグループの名称を示し、group(X,Y°)と記載したグループは、直流成分がXであって交流成分の基準位相がY°のグループを意味する。例えば、図9における交流成分の余弦成分「cos(2θ+2π/3)」における基準位相Yは、2π/3[rad]=120[°]である。「記号」は、同一の波形形状となる信号を示している。例えば、group(2/A,0°)のグループでは、有効電圧ベクトルV1を印加しているときのu相の電流微分情報の波形と、有効電圧ベクトルV4を印加しているときのu相の電流微分情報の波形とが同一となることを意味している。 FIG. 9 is a diagram for explaining the classification performed by the classifier 41. FIG. 9 shows the "group", "DC component", "AC component", and "symbol" of each of the six groups classified by the classifier 41. Here, "group" indicates the name of a group, and a group written as group (X, Y°) means a group in which the DC component is X and the reference phase of the AC component is Y°. For example, the reference phase Y in the cosine component "cos (2θ+2π/3)" of the AC component in FIG. 9 is 2π/3 [rad] = 120 [°]. "Symbols" indicate signals having the same waveform shape. For example, in the group group (2/A, 0°), the waveform of the u-phase current differential information when the effective voltage vector V1 is applied, and the waveform of the u-phase current differential information when the effective voltage vector V4 is applied. This means that the waveform of the current differential information is the same.
 図10は、図5に示す分類器41の動作についての説明図である。分類器41は、電流微分情報「diuV1~6/dt」、「divV1~6/dt」、「diwV1~6/dt」が入力されると、図9に示す分類に基づき6種類の信号を生成する。具体的には、分類器41は、6種類のグループのそれぞれに対応する変数を準備し、分類器41に入力される電流微分情報が分類されるグループの変数には、電流微分情報を代入し、それ以外のグループの変数は前回の値を保持するように動作する。ここで、説明のため、グループの名称を変数名として使用する。group(X,Y°)は、直流成分がXであって交流成分の基準位相がY°のグループの変数とする。例えば、分類器41は、group(2/A,0°)には、V1が印加された条件で「diuV1/dt」を代入し、V4が印加された条件で「-diuV4/dt」を代入し、V1およびV4以外の有効電圧ベクトル、つまりV2,V3,V5,V6が印加された条件では、前回値を保持するように動作する。同様に、分類器41は、group(-1/A,120°)には、V1が印加された条件で「divV1/dt」を代入し、V4が印加された条件で「-divV4/dt」を代入し、V3が印加された条件で「diuV3/dt」を代入し、V6が印加された条件で「-diuV6/dt」を代入し、V2,V5が印加された条件では、前回値を保持するように動作する。 FIG. 10 is an explanatory diagram of the operation of the classifier 41 shown in FIG. 5. When the current differential information "di uV1~6 /dt", " divV1~6 /dt", and "di wV1~6 /dt" are input, the classifier 41 classifies six types based on the classification shown in FIG. Generate a signal. Specifically, the classifier 41 prepares variables corresponding to each of the six types of groups, and substitutes the current differential information into the variable of the group into which the current differential information input to the classifier 41 is classified. , variables in other groups operate to retain their previous values. Here, for the sake of explanation, the names of groups are used as variable names. group (X, Y°) is a variable of a group in which the DC component is X and the reference phase of the AC component is Y°. For example, the classifier 41 assigns "di uV1 /dt" to group (2/A, 0°) under the condition that V1 is applied, and "-di uV4 /dt" under the condition that V4 is applied. , and under conditions where effective voltage vectors other than V1 and V4, that is, V2, V3, V5, and V6 are applied, the previous value is held. Similarly, the classifier 41 assigns " divV1 /dt" to group (-1/A, 120°) under the condition that V1 is applied, and assigns "-divV4 /dt" to group (-1/A, 120°) under the condition that V4 is applied. dt", "di uV3 /dt" under the condition that V3 is applied, "-di uV6 /dt" under the condition that V6 is applied, and under the condition that V2 and V5 are applied. , operates to hold the previous value.
 図5の説明に戻る。直流成分除去器42は、分類器41の出力から直流成分を抽出し、最新の有効電圧ベクトルを印加することにより得られる電流微分情報から直流成分を減算することで、連続な交流成分を生成する。実施の形態1では、三相平衡条件を用いて直流成分を抽出する例について説明する。三相平衡条件を用いて直流成分「1/A」を抽出するには、以下に示す数式(10)~(14)を用いる。つまり、直流成分除去器42は、分類器41の出力より、位相が0°、120°、-120°となる組み合わせの信号の和を演算し、直流成分への変換係数を乗じることで直流成分を演算する。ここでは5種類の数式(10)~(14)を示したが、直流成分除去器42は、最新の有効電圧ベクトルと、最新の有効電圧ベクトルとは異なる番号の直近の有効電圧ベクトルとの組み合わせにより、適切な数式を少なくとも1つ用いて、演算を行えばよい。 Returning to the explanation of FIG. 5. The DC component remover 42 extracts the DC component from the output of the classifier 41 and generates a continuous AC component by subtracting the DC component from current differential information obtained by applying the latest effective voltage vector. . In Embodiment 1, an example will be described in which a DC component is extracted using a three-phase equilibrium condition. To extract the DC component "1/A" using the three-phase equilibrium condition, the following formulas (10) to (14) are used. In other words, the DC component remover 42 calculates the sum of signals of combinations whose phases are 0°, 120°, and -120° from the output of the classifier 41, and multiplies the DC component by a conversion coefficient to remove the DC component. Calculate. Although five types of formulas (10) to (14) are shown here, the DC component remover 42 combines the latest effective voltage vector and the latest effective voltage vector with a different number from the latest effective voltage vector. Accordingly, the calculation may be performed using at least one appropriate formula.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 具体的には、直流成分除去器42は、数式(10)~(14)の中から、最新の有効電圧ベクトルと、最新の有効電圧ベクトルとは異なる番号の直近の有効電圧ベクトルとを使用する数式を使用する。ここで、例えば、group(2/A,0°)は、有効電圧ベクトルV1またはV4が印加されたときの電流微分情報に基づいて生成されており、group(2/A,120°)は、有効電圧ベクトルV5またはV2が印加されたときの電流微分情報に基づいて生成されており、group(2/A,-120°)は、有効電圧ベクトルV3またはV6が印加されたときの電流微分情報に基づいて生成されている。このため、数式(10)は、有効電圧ベクトルV1またはV4と、V5またはV2と、V3またはV6とを使用する数式であると言える。同様に、数式(11)は、有効電圧ベクトルV2またはV5と、V1またはV3またはV4またはV6とを使用する数式である。数式(12)は、有効電圧ベクトルV1またはV4と、V2またはV5とを使用する数式である。数式(13)は、有効電圧ベクトルV1またはV4と、V3またはV6とを使用する数式である。数式(14)は、有効電圧ベクトルV2またはV5と、V3またはV6とを使用する数式である。 Specifically, the DC component remover 42 uses the latest effective voltage vector and the latest effective voltage vector with a different number from the latest effective voltage vector from among equations (10) to (14). Use formulas. Here, for example, group (2/A, 0°) is generated based on current differential information when effective voltage vector V1 or V4 is applied, and group (2/A, 120°) is It is generated based on the current differential information when the effective voltage vector V5 or V2 is applied, and group (2/A, -120°) is the current differential information when the effective voltage vector V3 or V6 is applied. It is generated based on. Therefore, formula (10) can be said to be a formula that uses effective voltage vectors V1 or V4, V5 or V2, and V3 or V6. Similarly, formula (11) is a formula that uses effective voltage vectors V2 or V5 and V1 or V3 or V4 or V6. Equation (12) is an equation that uses effective voltage vectors V1 or V4 and V2 or V5. Equation (13) is an equation that uses effective voltage vectors V1 or V4 and V3 or V6. Equation (14) is an equation that uses effective voltage vectors V2 or V5 and V3 or V6.
 例えば、最新の有効電圧ベクトルと、最新の有効電圧ベクトルとは異なる番号の直近の有効電圧ベクトルとの組み合わせが、V1およびV2であった場合、これらの電圧ベクトルを使用する数式を数式(10)~(14)の中から少なくとも1つ選べばよい。有効電圧ベクトルV1およびV2を使用する数式は、数式(11)および数式(12)である。このため、直流成分除去器42は、数式(11)および数式(12)のうち少なくとも1つを用いて、直流成分「1/A」を演算する。複数の数式を用いる場合、直流成分除去器42は、複数の数式のそれぞれの演算結果の平均値を用いて、直流成分「1/A」を演算することができる。 For example, if the combination of the latest effective voltage vector and the latest effective voltage vector with a different number than the latest effective voltage vector is V1 and V2, the formula using these voltage vectors is expressed as formula (10). You only have to choose at least one from ~(14). The formulas using effective voltage vectors V1 and V2 are formula (11) and formula (12). Therefore, the DC component remover 42 calculates the DC component "1/A" using at least one of Equation (11) and Equation (12). When using multiple formulas, the DC component remover 42 can calculate the DC component "1/A" using the average value of the calculation results of the multiple formulas.
 続いて、直流成分除去器42は、抽出した直流成分を使用して、最新の有効電圧ベクトルを印加することにより得られる電流微分情報から直流成分を減算することで、最新の電流微分情報の交流成分を演算する。直流成分除去器42は、以下に示す数式(15)~(17)を用いて、最新の電流微分情報の交流成分を演算することができる。直流成分除去器42は、数式(15)~(17)のうち、最新の電圧ベクトルの種類に基づいて数式を選択する。 Next, the DC component remover 42 uses the extracted DC component to subtract the DC component from the current differential information obtained by applying the latest effective voltage vector. Calculate the components. The DC component remover 42 can calculate the AC component of the latest current differential information using equations (15) to (17) shown below. The DC component remover 42 selects a formula from among formulas (15) to (17) based on the type of the latest voltage vector.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 直流成分除去器42は、演算結果であるgroup(0,0°)、group(0,120°)、group(0,-120°)を三相二相変換器43に出力する。直流成分除去器42の出力group(0,0°)、group(0,120°)、group(0,-120°)は、回転子位置情報を含む連続な交流成分となる。以下、この交流成分を用いた回転子位置の演算方法について説明する。互いに±2π/3の位相差をもつ交流成分より回転子位置を演算するには、これらの交流成分を三相二相変換し、逆正接演算する方法、三相二相変換結果に対し位相同期演算をして回転子位置を推定する方法などがある。ここでは、位相同期演算により回転子位置を推定する方法を例にして説明する。 The DC component remover 42 outputs the calculation results group (0, 0°), group (0, 120°), group (0, -120°) to the three-phase two-phase converter 43. The outputs group (0, 0°), group (0, 120°), and group (0, -120°) of the DC component remover 42 become continuous AC components including rotor position information. Hereinafter, a method of calculating the rotor position using this AC component will be explained. To calculate the rotor position from alternating current components that have a phase difference of ±2π/3 from each other, there is a method of converting these alternating current components into three-phase two-phase conversion, calculating arctangent, and performing phase synchronization on the three-phase two-phase conversion results. There are methods of estimating the rotor position by performing calculations. Here, a method of estimating the rotor position by phase synchronization calculation will be explained as an example.
 三相二相変換器43は、直交二軸の交流成分であるα軸交流成分α,β軸交流成分βを演算する。三相二相変換器43は、以下の数式(18)を用いて、α軸交流成分α,β軸交流成分βを演算し、演算したα軸交流成分αおよびβ軸交流成分βを位相同期演算部44に出力する。 The three-phase two-phase converter 43 calculates an α-axis AC component α and a β-axis AC component β, which are AC components of two orthogonal axes. The three-phase two-phase converter 43 calculates the α-axis AC component α and the β-axis AC component β using the following formula (18), and phase synchronizes the calculated α-axis AC component α and β-axis AC component β. It is output to the calculation section 44.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 位相同期演算部44は、三相二相変換器43が出力するα軸交流成分αおよびβ軸交流成分βに基づいて、回転機1の回転子位置を推定する。具体的には、位相同期演算部44は、α軸交流成分αおよびβ軸交流成分βに対して、位相同期演算を行うことにより、回転機1の回転子位置を推定する。 The phase synchronization calculation unit 44 estimates the rotor position of the rotating machine 1 based on the α-axis AC component α and the β-axis AC component β output from the three-phase two-phase converter 43. Specifically, the phase synchronization calculation unit 44 estimates the rotor position of the rotating machine 1 by performing a phase synchronization calculation on the α-axis AC component α and the β-axis AC component β.
 図11は、図5に示す位相同期演算部44の構成を示すブロック図である。位相同期演算部44は、位相誤差演算部441と、PI(Proportional Integral)制御器442と、積分器443と、比例器444,445とを有する。 FIG. 11 is a block diagram showing the configuration of the phase synchronization calculation section 44 shown in FIG. 5. The phase synchronization calculation unit 44 includes a phase error calculation unit 441, a PI (Proportional Integral) controller 442, an integrator 443, and proportional units 444 and 445.
 位相誤差演算部441には、三相二相変換器43が出力するα軸交流成分αおよびβ軸交流成分βと、積分器443が出力する推定回転子位置2θ^とが入力される。位相誤差演算部441は、以下の数式(19)に従って、位相誤差ΔiAC*Δ2θを演算する。位相誤差演算部441は、演算した位相誤差ΔiAC*Δ2θをPI制御器442に出力する。 The α-axis AC component α and the β-axis AC component β output from the three-phase two-phase converter 43 and the estimated rotor position 2θ^ output from the integrator 443 are input to the phase error calculation unit 441. The phase error calculation unit 441 calculates the phase error Δi AC *Δ2θ according to the following equation (19). The phase error calculation unit 441 outputs the calculated phase error Δi AC *Δ2θ to the PI controller 442.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 ここで、数式(19)の「ΔiAC」は、以下の数式(20)で表される。 Here, "Δi AC " in the formula (19) is expressed by the following formula (20).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 PI制御器442には、位相誤差演算部441が出力した位相誤差ΔiAC*Δ2θが入力される。PI制御器442は、位相誤差ΔiAC*Δ2θがゼロになるように推定速度2ω^を出力する。 The phase error Δi AC *Δ2θ output from the phase error calculation unit 441 is input to the PI controller 442 . The PI controller 442 outputs the estimated speed 2ω^ so that the phase error Δi AC *Δ2θ becomes zero.
 積分器443は、PI制御器442が出力する推定速度2ω^を積分して、積分値を推定回転子位置2θ^として出力する。積分器443が出力する推定回転子位置2θ^は、位相誤差演算部441へとフィードバックされる。 The integrator 443 integrates the estimated speed 2ω^ output by the PI controller 442, and outputs the integrated value as the estimated rotor position 2θ^. The estimated rotor position 2θ^ output from the integrator 443 is fed back to the phase error calculation unit 441.
 上記の数式(19)において、「2θ>2θ^」のとき、位相誤差ΔiAC*Δ2θは正の値となるため、推定速度2ω^および推定回転子位置2θ^は、増加する方向へ修正される。また、「2θ<2θ^」のとき、位相誤差ΔiAC*Δ2θは負の値となるため、推定速度2ω^および推定回転子位置2θ^は、減少する方向へ修正される。最終的には、「2θ=2θ^」となり、回転機1の電流微分情報の交流成分の位相および周波数が推定される。このように、位相同期演算部44は、位相同期ループ(Phase Locked Loop:PLL)の形態をとる。 In the above formula (19), when “2θ>2θ^”, the phase error Δi AC *Δ2θ is a positive value, so the estimated speed 2ω^ and the estimated rotor position 2θ^ are corrected in the direction of increase. Ru. Furthermore, when "2θ<2θ^", the phase error Δi AC *Δ2θ takes a negative value, so the estimated speed 2ω^ and the estimated rotor position 2θ^ are corrected in the direction of decreasing. Finally, "2θ=2θ^" is established, and the phase and frequency of the AC component of the current differential information of the rotating machine 1 are estimated. In this way, the phase lock calculation section 44 takes the form of a phase locked loop (PLL).
 位相同期演算部44は、推定回転子位置2θ^を比例器444に入力し、0.5倍することで、推定回転子位置θ^を演算する。また、位相同期演算部44は、推定速度2ω^を比例器445に入力し、0.5倍することで、推定速度ω^を演算する。 The phase synchronization calculation unit 44 calculates the estimated rotor position θ^ by inputting the estimated rotor position 2θ^ into the proportional device 444 and multiplying it by 0.5. Further, the phase synchronization calculating section 44 calculates the estimated speed ω^ by inputting the estimated speed 2ω^ into the proportional device 445 and multiplying it by 0.5.
 図12は、図5に示す位置推定器4の各部の出力を示す図である。図12において、動作条件は図8と同様であり、電流微分情報が断片的となる条件である。図12の上から1段目の「回転子位置」には、回転子の真の位置と、位相同期演算部44が出力する推定位置とが示されている。図12の上から2段目から4段目には、電流微分情報演算部40の出力が示されている。図12の上から5段目には、分類器41の出力が示されている。図12の上から6段目には、直流成分除去器42の出力が示されている。図12の上から7段目には、三相二相変換器43の出力が示されている。図12の上から8段目には、各時点で印加されている電圧ベクトルの番号が示されている。なお、図12では、図8と同様に、電圧ベクトルの番号は、説明のために、V0およびV7は0番としている。 FIG. 12 is a diagram showing the output of each part of the position estimator 4 shown in FIG. 5. In FIG. 12, the operating conditions are the same as those in FIG. 8, and the current differential information is fragmentary. "Rotor position" in the first row from the top of FIG. 12 shows the true position of the rotor and the estimated position output by the phase synchronization calculation unit 44. The second to fourth rows from the top of FIG. 12 show the output of the current differential information calculation section 40. The fifth row from the top of FIG. 12 shows the output of the classifier 41. The sixth row from the top of FIG. 12 shows the output of the DC component remover 42. The seventh row from the top of FIG. 12 shows the output of the three-phase two-phase converter 43. The eighth row from the top of FIG. 12 shows the numbers of the voltage vectors applied at each time point. Note that in FIG. 12, as in FIG. 8, the voltage vector numbers are 0 for V0 and V7 for the sake of explanation.
 図12より、分類器41は、図9に示す分類に基づいて6種類の信号を生成していることが分かる。また、直流成分除去器42の出力は、直流成分がゼロかつ回転子位置の2倍角で振動する直交二軸上で表現された交流成分となる。位置推定器4は、三相二相変換器43の出力を位相同期演算することで回転子位置を推定する。 From FIG. 12, it can be seen that the classifier 41 generates six types of signals based on the classification shown in FIG. Further, the output of the DC component remover 42 becomes an AC component expressed on two orthogonal axes in which the DC component is zero and vibrates at an angle twice the rotor position. The position estimator 4 estimates the rotor position by performing phase synchronization calculation on the output of the three-phase two-phase converter 43.
 図1の説明に戻る。制御器5の三相二相変換器9には、電流検出器2で検出された回転機電流iu,iv,iwが入力される。三相二相変換器9は、三相座標上の回転機電流iu,iv,iwを静止二相座標上の回転機電流iα,iβへ変換する。三相二相変換器9は、回転機電流iα,iβを回転座標変換器10へ出力する。 Returning to the explanation of FIG. The rotating machine currents i u , i v , i w detected by the current detector 2 are input to the three-phase two-phase converter 9 of the controller 5 . The three-phase two-phase converter 9 converts rotating machine currents i u , i v , i w on three-phase coordinates into rotating machine currents i α , i β on stationary two-phase coordinates. The three-phase two-phase converter 9 outputs rotating machine currents i α and i β to the rotating coordinate converter 10 .
 回転座標変換器10には、三相二相変換器9が出力する回転機電流iα,iβと、位置推定器4が出力する推定回転子位置θ^とが入力される。回転座標変換器10は、推定回転子位置θ^を用いて、静止二相座標上の回転機電流iα,iβを回転座標上の回転機電流id,iqに変換する。回転座標変換器10は、回転機電流id,iqを電流制御器6に出力する。 The rotating machine currents i α , i β output from the three-phase two-phase converter 9 and the estimated rotor position θ^ output from the position estimator 4 are input to the rotating coordinate converter 10 . The rotating coordinate converter 10 converts rotating machine currents i α , i β on stationary two-phase coordinates into rotating machine currents i d , i q on rotating coordinates using the estimated rotor position θ^. The rotating coordinate converter 10 outputs rotating machine currents i d and i q to the current controller 6 .
 電流制御器6には、回転機電流指令id*,iq*と、回転機電流id,iqとが入力される。回転機電流指令id*は、回転機1の回転子の磁気抵抗が最も小さくなるd軸方向の電気子電流成分を示すd軸駆動電流の指令である。回転機電流指令iq*は、d軸に直交する方向となる1軸方向の電気子電流成分を示すq軸駆動電流の指令である。電流制御器6は、回転座標変換器10が出力する回転機電流id,iqが回転機電流指令id*,iq*となるように電流制御を行い、回転座標上の回転機電圧指令vd*,vq*を演算する。電流制御器6における電流制御は、例えばPI制御である。電流制御器6は、演算結果である回転機電圧指令vd*,vq*を回転座標逆変換器7に出力する。 Rotating machine current commands i d *, i q * and rotating machine currents i d , i q are input to the current controller 6 . The rotating machine current command i d * is a command of the d-axis drive current that indicates the armature current component in the d-axis direction where the magnetic resistance of the rotor of the rotating machine 1 is the smallest. The rotating machine current command i q * is a command for the q-axis drive current that indicates an armature current component in a uniaxial direction that is orthogonal to the d-axis. The current controller 6 controls the current so that the rotating machine currents i d , i q output by the rotating coordinate converter 10 become the rotating machine current commands i d *, i q *, and changes the rotating machine voltage on the rotating coordinates. Compute commands v d *, v q *. The current control in the current controller 6 is, for example, PI control. The current controller 6 outputs rotating machine voltage commands v d *, v q *, which are the calculation results, to the rotating coordinate inverse converter 7 .
 回転座標逆変換器7には、回転機電圧指令vd*,vq*と、推定回転子位置θ^とが入力される。回転座標逆変換器7は、推定回転子位置θ^を用いて、電流制御器6で演算された回転座標上の回転機電圧指令vd*,vq*を静止二相座標上の回転機電圧指令vα*,vβ*へ変換する。回転座標逆変換器7は、回転機電圧指令vα*,vβ*を二相三相変換器8に出力する。 The rotating machine voltage commands v d *, v q * and the estimated rotor position θ^ are input to the rotating coordinate inverse converter 7 . The rotating coordinate inverse converter 7 uses the estimated rotor position θ^ to convert the rotating machine voltage commands v d *, v q * on the rotating coordinates calculated by the current controller 6 into the rotating machine on the stationary two-phase coordinates. Convert to voltage commands v α *, v β *. The rotating coordinate inverse converter 7 outputs rotating machine voltage commands v α *, v β * to the two-phase three-phase converter 8 .
 二相三相変換器8には、回転機電圧指令vα*,vβ*が入力される。二相三相変換器8は、静止二相座標上の回転機電圧指令vα*,vβ*を、回転機1を駆動するための三相座標上の回転機電圧指令vu*,vv*,vw*に変換する。 Rotating machine voltage commands v α *, v β * are input to the two-phase three-phase converter 8 . The two-phase three-phase converter 8 converts the rotating machine voltage commands v α *, v β * on the stationary two-phase coordinates into the rotating machine voltage commands v u *, v on the three-phase coordinates for driving the rotating machine 1. Convert to v *, v w *.
 以上説明したように、実施の形態1にかかる制御装置100は、多相の回転機1の駆動制御を行う制御装置100であって、回転機1に流れる回転機電流を検出する電流検出部である電流検出器2と、回転機電流と回転機1の回転子位置の情報とに基づいて回転機1を駆動するための駆動電圧指令を生成する駆動電圧指令演算部である制御器5と、生成された駆動電圧指令に基づいて回転機1に電圧を印加する電圧印加器3と、電流検出器2が検出した回転機電流に基づいて回転子位置を推定する位置推定部である位置推定器4とを有する。位置推定器4は、電圧印加器3のゲート信号Gu,Gv,Gwに基づき電圧印加器3が出力する電圧ベクトルの種類を判定し、判定した電圧ベクトルの種類毎に回転機電流の変化量である電流微分情報を演算し、演算結果である回転機電流変化量から直流成分がゼロ、且つ、回転子位置の2倍角で変化する交流信号を生成し、生成した交流信号に基づいて回転子位置を推定する。このような構成を有することにより、制御装置100は、電流微分情報が断片的となる有効電圧ベクトルの出現パターンにおいても、断片的な電流微分情報から、直流成分がゼロ、且つ、回転子位置の2倍角で振動する連続な交流信号を生成することで、高精度に回転子位置を推定することができる。 As described above, the control device 100 according to the first embodiment is a control device 100 that performs drive control of the multiphase rotating machine 1, and includes a current detection unit that detects the rotating machine current flowing through the rotating machine 1. A controller 5 that is a drive voltage command calculation unit that generates a drive voltage command for driving the rotating machine 1 based on a certain current detector 2 and the rotating machine current and information on the rotor position of the rotating machine 1; A voltage applicator 3 that applies voltage to the rotating machine 1 based on the generated drive voltage command, and a position estimator that is a position estimator that estimates the rotor position based on the rotating machine current detected by the current detector 2. 4. The position estimator 4 determines the type of voltage vector output by the voltage applicator 3 based on the gate signals Gu , Gv , Gw of the voltage applicator 3, and calculates the rotation machine current for each determined type of voltage vector. Calculate the current differential information, which is the amount of change, and generate an AC signal in which the DC component is zero and changes at twice the angle of the rotor position from the calculation result, the amount of change in the rotating machine current, and based on the generated AC signal. Estimate rotor position. With such a configuration, the control device 100 can determine from the fragmented current differential information that the DC component is zero and the rotor position is correct even in the appearance pattern of the effective voltage vector in which the current differential information is fragmentary. By generating a continuous AC signal that vibrates at double angle, the rotor position can be estimated with high accuracy.
 位置推定器4は、例えば、上記の生成した交流信号を位相同期演算することで、回転子位置を推定することができる。また、位置推定器4は、電圧ベクトルおよび相の少なくとも1つが異なる複数の条件で得られる複数の電流微分情報のうち、同一の波形形状を含む複数の電流微分情報の組み合わせに基づいて、連続な波形形状の交流信号を生成する。より具体的には、位置推定器4は、電圧ベクトルの方向が互いに逆方向の関係にあって同一相の条件で得られる2つの電流微分情報が、互いに逆符号の関係にある特徴を利用して、電圧ベクトルの方向が互いに逆方向の関係にあって同一相の条件で得られる2つの電流微分情報のうちの一方をマイナス1倍した値を用いて、連続な交流信号を生成することができる。 The position estimator 4 can estimate the rotor position, for example, by performing phase synchronization calculation on the generated AC signal. Further, the position estimator 4 continuously calculates current differential information based on a combination of a plurality of current differential information including the same waveform shape among a plurality of current differential information obtained under a plurality of conditions in which at least one of a voltage vector and a phase is different. Generates an AC signal with a waveform shape. More specifically, the position estimator 4 utilizes the feature that the two current differential information obtained under the condition that the voltage vectors are in opposite directions and in the same phase have opposite signs. Therefore, it is possible to generate a continuous AC signal by using the value obtained by multiplying one of the two current differential information obtained under the condition that the voltage vector directions are opposite to each other and are in the same phase. can.
 位置推定器4は、電圧ベクトルの方向に応じて電流微分情報の交流成分の位相がシフトする特徴を利用して、連続な交流信号を生成することができる。 The position estimator 4 can generate a continuous AC signal by utilizing the characteristic that the phase of the AC component of the current differential information shifts depending on the direction of the voltage vector.
 また、上記の数式(10)~(14)に示したように、位置推定器4は、第1の電流微分情報と、第1の電流微分情報との位相差がプラス3分の2πである第2の電流微分情報と、第1の電流微分情報との位相差がマイナス3分の2πである第3の電流微分情報との和をとることによって、電流微分情報の直流成分を演算することができる。 Further, as shown in the above formulas (10) to (14), the position estimator 4 has a phase difference of plus two-thirds π between the first current differential information and the first current differential information. Calculating the DC component of the current differential information by calculating the sum of the second current differential information and the third current differential information in which the phase difference between the first current differential information and the first current differential information is -2/3π. I can do it.
 また、位置推定器4は、直流成分がゼロ、且つ、回転子位置の2倍角で変化する交流信号と回転子位置の推定位置とに基づいて位相誤差を演算する位相誤差演算部441と、位相誤差に基づいて推定速度を出力する推定速度生成部であるPI制御器442と、推定速度を積分した値を推定位置として出力する積分器443とを有する。 The position estimator 4 also includes a phase error calculation unit 441 that calculates a phase error based on an AC signal whose DC component is zero and which changes at twice the angle of the rotor position and an estimated position of the rotor position; It has a PI controller 442 which is an estimated speed generating section that outputs an estimated speed based on an error, and an integrator 443 that outputs a value obtained by integrating the estimated speed as an estimated position.
実施の形態2.
 実施の形態2にかかる制御装置100は、実施の形態1と同様の構成を有する。実施の形態2において、制御装置100の全体構成は図1に示す構成と同様であり、位置推定器4の構成は図5に示す構成と同様である。このため、実施の形態2においても、実施の形態1と同様の符号を用いて説明を行う。ただし、実施の形態2では、図5に示した直流成分除去器42の行う処理内容が実施の形態1と異なる。以下では、実施の形態1と異なる部分について主に説明する。
Embodiment 2.
Control device 100 according to the second embodiment has the same configuration as the first embodiment. In the second embodiment, the overall configuration of control device 100 is similar to that shown in FIG. 1, and the configuration of position estimator 4 is similar to that shown in FIG. 5. Therefore, the second embodiment will also be described using the same reference numerals as those in the first embodiment. However, in the second embodiment, the processing content performed by the DC component remover 42 shown in FIG. 5 is different from the first embodiment. Below, parts that are different from Embodiment 1 will be mainly explained.
 実施の形態2において、直流成分除去器42は、上記の数式(10)~(14)の代わりに、下記の数式(21)~(23)を用いて、直流成分「1/A」を演算する。 In the second embodiment, the DC component remover 42 calculates the DC component "1/A" using the following formulas (21) to (23) instead of the above formulas (10) to (14). do.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 数式(21)~(23)では、分類器41の出力のうち、直流成分が異なり、且つ、交流成分の基準位相が等しい信号の差分をとることで、直流成分「1/A」を演算する。ここでは、3つの数式(21)~(23)を示したが、直流成分除去器42は、最新の有効電圧ベクトルと最新の有効電圧ベクトルとは異なる番号の直近の有効電圧ベクトルとを使用する数式を少なくとも1つ用いればよい。ここで、例えば、group(2/A,0°)は、有効電圧ベクトルV1またはV4が印加されたときの電流微分情報に基づいて生成されており、group(-1/A,0°)は、有効電圧ベクトルV2またはV3またはV5またはV6が印加されたときの電流微分情報に基づいて生成されている。このため、数式(21)は、有効電圧ベクトルV1またはV4と、V2またはV3またはV5またはV6とを使用する数式であると言える。同様に、数式(22)は、有効電圧ベクトルV2またはV5と、V1またはV3またはV4またはV6とを使用する数式である。数式(23)は、有効電圧ベクトルV3またはV6と、V1またはV2またはV4またはV5とを使用する数式である。 In formulas (21) to (23), the DC component "1/A" is calculated by taking the difference between signals that have different DC components and the same reference phase of the AC components among the outputs of the classifier 41. . Although three formulas (21) to (23) are shown here, the DC component remover 42 uses the latest effective voltage vector and the latest effective voltage vector with a different number from the latest effective voltage vector. At least one mathematical formula may be used. Here, for example, group (2/A, 0°) is generated based on current differential information when effective voltage vector V1 or V4 is applied, and group (-1/A, 0°) is generated based on current differential information when effective voltage vector V1 or V4 is applied. , is generated based on current differential information when effective voltage vector V2, V3, V5, or V6 is applied. Therefore, it can be said that Equation (21) is an equation that uses the effective voltage vector V1 or V4 and V2 or V3 or V5 or V6. Similarly, formula (22) is a formula using effective voltage vectors V2 or V5 and V1 or V3 or V4 or V6. Equation (23) is an equation that uses effective voltage vectors V3 or V6 and V1 or V2 or V4 or V5.
 例えば、最新の有効電圧ベクトルと最新の有効電圧ベクトルとは異なる番号の直近の有効電圧ベクトルとが有効電圧ベクトルV1およびV2であった場合、有効電圧ベクトルV1およびV2を使用する数式(21)および数式(22)のうち少なくとも1つを使用して演算を行う。実施の形態1と同様に、複数の数式を用いる場合、直流成分除去器42は、複数の数式のそれぞれの演算結果の平均値を用いて、直流成分「1/A」を演算することができる。このように実施の形態2では、直流成分を抽出する処理が実施の形態1と異なり、その他の処理は実施の形態1と同様である。実施の形態2においても、実施の形態1と同様に、制御装置100は、電流微分情報が断片的となる有効電圧ベクトルの出現パターンにおいても、断片的な電流微分情報から、直流成分がゼロ、且つ、回転子位置の2倍角で振動する連続な交流信号を生成することで、高精度に回転子位置を推定することができる。 For example, if the latest effective voltage vector and the nearest effective voltage vectors with different numbers than the latest effective voltage vector are effective voltage vectors V1 and V2, then equation (21) using effective voltage vectors V1 and V2 and Calculation is performed using at least one of formulas (22). Similarly to Embodiment 1, when using multiple formulas, the DC component remover 42 can calculate the DC component "1/A" using the average value of the calculation results of the multiple formulas. . In this way, the second embodiment differs from the first embodiment in the process of extracting the DC component, but the other processes are the same as in the first embodiment. In the second embodiment, as in the first embodiment, the control device 100 determines whether the DC component is zero or In addition, by generating a continuous AC signal that vibrates at twice the angle of the rotor position, the rotor position can be estimated with high accuracy.
 また、実施の形態1で用いた、数式(10)~(14)では、分類器41の出力のうち、3つの信号を必要とするのに対して、実施の形態2で用いる数式(21)~(23)では、分類器41の出力のうち2つの信号を用いて直流成分「1/A」を演算することができる。このため実施の形態2では、実施の形態1よりも演算負荷が低減されるという効果を得ることができる。さらに、数式(21)~(23)を用いる方法では、2種類の電圧ベクトルの印加を必要とするのに対して、数式(10)~(14)を用いる方法では、2種類または3種類の電圧ベクトルの印加を必要とする。位置推定応答の観点では、演算に用いる電圧ベクトルの種類は少ない方が応答性がよい。したがって、実施の形態2では、実施の形態1の方法と比較して、高応答に直流成分を抽出することができる。 Further, formulas (10) to (14) used in the first embodiment require three signals among the outputs of the classifier 41, whereas formula (21) used in the second embodiment In (23), the DC component “1/A” can be calculated using two signals among the outputs of the classifier 41. Therefore, in the second embodiment, it is possible to obtain the effect that the calculation load is reduced more than in the first embodiment. Furthermore, the method using equations (21) to (23) requires the application of two types of voltage vectors, whereas the method using equations (10) to (14) requires the application of two or three types of voltage vectors. Requires the application of a voltage vector. From the viewpoint of position estimation response, the fewer types of voltage vectors used for calculation, the better the response. Therefore, in the second embodiment, the DC component can be extracted with higher response than the method of the first embodiment.
 続いて、実施の形態1および実施の形態2にかかる制御装置100が備える各機能を実現するためのハードウェア構成について説明する。ここで言う各機能とは、電流検出器2、電圧印加器3、位置推定器4および制御器5が有する機能のことを指す。 Next, a hardware configuration for realizing each function of the control device 100 according to the first and second embodiments will be described. Each function mentioned here refers to a function that the current detector 2, voltage applicator 3, position estimator 4, and controller 5 have.
 図13は、実施の形態1および実施の形態2にかかる制御装置100の機能を実現するためのハードウェア構成の第1の例を示す図である。図14は、実施の形態1および実施の形態2にかかる制御装置100の機能を実現するためのハードウェア構成の第2の例を示す図である。図13に示す第1の例では、制御装置100は、専用処理回路1000と、電流検出器2と、電圧印加器3とを有する。ここで電流検出器2および電圧印加器3のそれぞれは、専用のハードウェアを用いてその機能が実現され、位置推定器4および制御器5の機能は、専用処理回路1000により実現される。また、図14に示す第2の例では、制御装置100は、プロセッサ1001と、記憶装置1002と、電流検出器2と、電圧印加器3とを有する。ここで電流検出器2および電圧印加器3のそれぞれは、専用のハードウェアを用いてその機能が実現され、位置推定器4および制御器5の機能は、プロセッサ1001および記憶装置1002を用いて実現される。専用処理回路1000およびプロセッサ1001は、制御回路とも呼ばれる。 FIG. 13 is a diagram showing a first example of a hardware configuration for realizing the functions of the control device 100 according to the first and second embodiments. FIG. 14 is a diagram showing a second example of a hardware configuration for realizing the functions of control device 100 according to the first and second embodiments. In the first example shown in FIG. 13, the control device 100 includes a dedicated processing circuit 1000, a current detector 2, and a voltage applicator 3. Here, the functions of the current detector 2 and the voltage applicator 3 are realized using dedicated hardware, and the functions of the position estimator 4 and the controller 5 are realized by a dedicated processing circuit 1000. Furthermore, in the second example shown in FIG. 14, the control device 100 includes a processor 1001, a storage device 1002, a current detector 2, and a voltage applier 3. Here, the functions of the current detector 2 and voltage applicator 3 are realized using dedicated hardware, and the functions of the position estimator 4 and controller 5 are realized using a processor 1001 and a storage device 1002. be done. Dedicated processing circuit 1000 and processor 1001 are also referred to as control circuits.
 専用処理回路1000は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置100は、1つの専用処理回路1000でまとめて上記の各機能を実現してもよいし、複数の専用処理回路1000を用いて上記の機能のそれぞれを実現してもよい。 The dedicated processing circuit 1000 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. The control device 100 may implement each of the above functions using one dedicated processing circuit 1000, or may implement each of the above functions using a plurality of dedicated processing circuits 1000.
 プロセッサ1001は、記憶装置1002に記憶されたプログラムを読みだして実行することによって、制御装置100の各機能を実現することができる。なお、制御装置100は、複数のプロセッサ1001と複数の記憶装置1002とが連携して、上述した各機能を実現してもよい。 The processor 1001 can realize each function of the control device 100 by reading and executing programs stored in the storage device 1002. Note that, in the control device 100, a plurality of processors 1001 and a plurality of storage devices 1002 may cooperate to realize each of the functions described above.
 プロセッサ1001および記憶装置1002を用いる場合、上述した各機能は、ソフトウェア、ファームウェア、またはこれらの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、記憶装置1002に記憶される。プロセッサ1001は、記憶装置1002に記憶されたプログラムを読みだして実行する。また、これらのプログラムは、各機能が実行される手順および方法をコンピュータに実行させるものであるともいえる。 When using the processor 1001 and the storage device 1002, each of the functions described above is realized by software, firmware, or a combination thereof. Software or firmware is written as a program and stored in storage device 1002. Processor 1001 reads and executes a program stored in storage device 1002. It can also be said that these programs cause a computer to execute procedures and methods for executing each function.
 プロセッサ1001は、CPUであり、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などとも呼ばれる。記憶装置1002は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)などである。 The processor 1001 is a CPU, and is also called a processing device, arithmetic device, microprocessor, microcomputer, DSP (Digital Signal Processor), or the like. The storage device 1002 is, for example, a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), or EEPROM (registered trademark) (Electrically EPROM). , magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), etc.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 例えば、上記の実施の形態1および実施の形態2では、回転機1は、同期リラクタンスモータであることとしたが、回転機1の種類はこれに限定されない。回転機1は、埋込磁石型同期モータまたは表面磁石型同期モータ(SPMSM:Surface Permanent Magnet Synchronous Motor)といった突極性を持つモータであってもよい。 For example, in the first and second embodiments described above, the rotating machine 1 is a synchronous reluctance motor, but the type of the rotating machine 1 is not limited to this. The rotating machine 1 may be a saliency motor such as an embedded magnet synchronous motor or a surface permanent magnet synchronous motor (SPMSM).
 また、上記の実施の形態1および実施の形態2では、制御装置100の制御器5は、d軸電流およびq軸電流を制御するものとしたが、制御器5はトルク、回転速度などを制御する構成とすることもできる。 Furthermore, in the first and second embodiments described above, the controller 5 of the control device 100 controls the d-axis current and the q-axis current, but the controller 5 also controls torque, rotational speed, etc. It is also possible to have a configuration in which:
 また、上記の実施の形態1および実施の形態2では、電流検出器2が回転機1の相電流を検出する構成について説明したが、電流検出器2は電流検出部の一例であって、上記の例に限定されない。電流検出部は、相電流を検出することができればよく、電圧印加器3を構成する図示しないインバータに内蔵された電流センサであってもよい。 Further, in the first and second embodiments described above, the configuration in which the current detector 2 detects the phase current of the rotating machine 1 has been described, but the current detector 2 is an example of a current detection section, and the The example is not limited to. The current detection section only needs to be able to detect the phase current, and may be a current sensor built into an inverter (not shown) that constitutes the voltage applicator 3.
 1 回転機、2 電流検出器、3 電圧印加器、4 位置推定器、5 制御器、6 電流制御器、7 回転座標逆変換器、8 二相三相変換器、9,43 三相二相変換器、10 回転座標変換器、30a トランジスタ、30b ダイオード、30A,30B,30C レグ、32,33,34 接続点、35a,35b 直流母線、36 電力源、40 電流微分情報演算部、41 分類器、42 直流成分除去器、44 位相同期演算部、100 制御装置、400 電圧ベクトル判定器、401 電流微分演算器、441 位相誤差演算部、442 PI制御器、443 積分器、444,445 比例器、1000 専用処理回路、1001 プロセッサ、1002 記憶装置、UP,UN,VP,VN,WP,WN 半導体素子。 1 Rotating machine, 2 Current detector, 3 Voltage applicator, 4 Position estimator, 5 Controller, 6 Current controller, 7 Rotating coordinate inverse converter, 8 Two-phase three-phase converter, 9, 43 Three-phase two-phase Converter, 10 Rotating coordinate converter, 30a Transistor, 30b Diode, 30A, 30B, 30C Leg, 32, 33, 34 Connection point, 35a, 35b DC bus, 36 Power source, 40 Current differential information calculation unit, 41 Classifier , 42 DC component remover, 44 Phase synchronization calculation unit, 100 Control device, 400 Voltage vector determiner, 401 Current differential calculation unit, 441 Phase error calculation unit, 442 PI controller, 443 Integrator, 444, 445 Proportional unit, 1000 Dedicated processing circuit, 1001 Processor, 1002 Storage device, UP, UN, VP, VN, WP, WN semiconductor element.

Claims (10)

  1.  多相の回転機の駆動制御を行う制御装置であって、
     前記回転機に流れる回転機電流を検出する電流検出部と、
     前記回転機電流と前記回転機の回転子位置の推定値とに基づいて前記回転機を駆動するための駆動電圧指令を生成する駆動電圧指令演算部と、
     生成された前記駆動電圧指令に基づいて前記回転機に電圧を印加する電圧印加器と、
     前記回転機電流に基づいて前記回転子位置を推定する位置推定部と、
     を備え、
     前記位置推定部は、前記電圧印加器のゲート信号に基づき前記電圧印加器が出力する電圧ベクトルの種類を判定し、判定した前記電圧ベクトルの種類毎に前記回転機電流の変化量を演算し、演算結果である回転機電流変化量に基づいて直流成分がゼロ、且つ、回転子位置の2倍角で変化する交流信号を生成し、前記交流信号に基づいて回転子位置を推定する
     ことを特徴とする制御装置。
    A control device that performs drive control of a multiphase rotating machine,
    a current detection unit that detects a rotating machine current flowing through the rotating machine;
    a drive voltage command calculation unit that generates a drive voltage command for driving the rotating machine based on the rotating machine current and an estimated value of the rotor position of the rotating machine;
    a voltage applicator that applies voltage to the rotating machine based on the generated drive voltage command;
    a position estimation unit that estimates the rotor position based on the rotating machine current;
    Equipped with
    The position estimation unit determines a type of voltage vector output by the voltage applicator based on a gate signal of the voltage applicator, and calculates an amount of change in the rotating machine current for each determined type of voltage vector, It is characterized by generating an AC signal in which the DC component is zero and changes at twice the angle of the rotor position based on the rotating machine current change amount which is the calculation result, and estimating the rotor position based on the AC signal. control device.
  2.  前記位置推定部は、前記交流信号を位相同期演算することで前記回転子位置を推定する
     ことを特徴とする請求項1に記載の制御装置。
    The control device according to claim 1, wherein the position estimation unit estimates the rotor position by performing phase synchronization calculation on the alternating current signal.
  3.  前記位置推定部は、電圧ベクトルおよび相の少なくとも1つが異なる複数の条件で得られる複数の前記回転機電流変化量のうち、同一の波形形状を含む複数の前記回転機電流変化量の組み合わせに基づいて、連続な波形形状の前記交流信号を生成する
     ことを特徴とする請求項1または2に記載の制御装置。
    The position estimating unit is based on a combination of a plurality of rotating machine current variations having the same waveform shape, among the plurality of rotating machine current variations obtained under a plurality of conditions in which at least one of a voltage vector and a phase is different. The control device according to claim 1 or 2, wherein the alternating current signal has a continuous waveform.
  4.  前記位置推定部は、電圧ベクトルの方向が互いに逆方向の関係にあって同一相の条件で得られる2つの前記回転機電流変化量が、互いに逆符号の関係にある特徴を利用して、電圧ベクトルの方向が互いに逆方向の関係にあって同一相の条件で得られる2つの前記回転機電流変化量のうちの一方をマイナス1倍した値を用いて、前記交流信号を生成する
     ことを特徴とする請求項3に記載の制御装置。
    The position estimating unit calculates the voltage by utilizing the characteristic that the two rotating machine current changes obtained under the same phase condition with the directions of the voltage vectors being opposite to each other and having opposite signs to each other. The alternating current signal is generated using a value obtained by multiplying one of the two rotating machine current changes obtained under the condition that the vector directions are opposite to each other and the same phase is applied. The control device according to claim 3.
  5.  前記位置推定部は、電圧ベクトルの方向に応じて前記回転機電流変化量の交流成分の位相がシフトする特徴を利用して、前記交流信号を生成する
     ことを特徴とする請求項3または4に記載の制御装置。
    According to claim 3 or 4, the position estimation unit generates the alternating current signal by utilizing a characteristic that the phase of the alternating current component of the rotating machine current change is shifted depending on the direction of the voltage vector. Control device as described.
  6.  前記位置推定部は、前記回転機電流変化量の直流成分を演算し、演算した前記直流成分を前記回転機電流変化量から減算することで前記回転機電流変化量の交流成分を演算し、前記交流成分に基づいて前記交流信号を生成する
     ことを特徴とする請求項3から5のいずれか1項に記載の制御装置。
    The position estimating unit calculates a DC component of the rotating machine current change amount, and calculates an AC component of the rotating machine current change amount by subtracting the calculated DC component from the rotating machine current change amount. The control device according to any one of claims 3 to 5, wherein the AC signal is generated based on an AC component.
  7.  前記位置推定部は、前記回転機電流変化量のうち、第1の回転機電流変化量と、前記第1の回転機電流変化量との位相差がプラス3分の2πである第2の回転機電流変化量と、前記第1の回転機電流変化量との位相差がマイナス3分の2πである第3の回転機電流変化量との和をとることによって、前記直流成分を演算する
     ことを特徴とする請求項6に記載の制御装置。
    The position estimating unit is configured to detect a second rotation in which a phase difference between a first rotating machine current variation and the first rotating machine current variation among the rotating machine current variations is +2/3π. Calculating the DC component by calculating the sum of the machine current change amount and a third rotating machine current change amount whose phase difference with the first rotating machine current change amount is -2/3π. The control device according to claim 6, characterized in that:
  8.  前記位置推定部は、前記回転機電流変化量のうち、交流成分の位相が等しく、且つ、直流成分の大きさが異なる2つの前記回転機電流変化量の差をとることによって、前記直流成分を演算する
     ことを特徴とする請求項6に記載の制御装置。
    The position estimating unit calculates the DC component by calculating the difference between two rotating machine current changes in which the alternating current component has the same phase and the DC component has different magnitudes. The control device according to claim 6, wherein the control device performs a calculation.
  9.  前記位置推定部は、
     前記直流成分がゼロ、且つ、回転子位置の2倍角で変化する交流信号と前記回転子位置の推定位置とに基づいて位相誤差を演算する位相誤差演算部と、
     前記位相誤差に基づいて推定速度を出力する推定速度生成部と、
     前記推定速度を積分した値を前記推定位置として出力する積分器と、
     を有する
     ことを特徴とする請求項1から8のいずれか1項に記載の制御装置。
    The position estimating unit is
    a phase error calculation unit that calculates a phase error based on the AC signal in which the DC component is zero and changes at an angle twice the rotor position and the estimated rotor position;
    an estimated speed generation unit that outputs an estimated speed based on the phase error;
    an integrator that outputs a value obtained by integrating the estimated speed as the estimated position;
    The control device according to any one of claims 1 to 8, characterized in that it has the following.
  10.  多相の回転機の駆動制御方法であって、
     前記回転機に流れる回転機電流を検出するステップと、
     前記回転機電流と前記回転機の回転子位置の推定値とに基づいて前記回転機を駆動するための駆動電圧指令を生成するステップと、
     生成された前記駆動電圧指令に基づいて前記回転機に電圧を印加するステップと、
     前記回転機電流に基づいて前記回転子位置を推定するステップと、
     を備え、
     前記回転子位置を推定するステップでは、前記回転機に電圧を印加する電圧印加器のゲート信号に基づき前記電圧印加器が出力する電圧ベクトルの種類を判定し、判定した前記電圧ベクトルの種類毎に前記回転機電流の変化量を演算し、演算結果である回転機電流変化量に基づいて直流成分がゼロ、且つ、回転子位置の2倍角で変化する交流信号を生成し、前記交流信号に基づいて回転子位置を推定する
     ことを特徴とする駆動制御方法。
    A drive control method for a multiphase rotating machine, the method comprising:
    detecting a rotating machine current flowing through the rotating machine;
    generating a drive voltage command for driving the rotating machine based on the rotating machine current and an estimated value of the rotor position of the rotating machine;
    applying a voltage to the rotating machine based on the generated drive voltage command;
    estimating the rotor position based on the rotating machine current;
    Equipped with
    In the step of estimating the rotor position, the type of voltage vector output by the voltage applicator is determined based on the gate signal of the voltage applicator that applies voltage to the rotating machine, and for each type of the determined voltage vector, The amount of change in the rotating machine current is calculated, and based on the amount of change in the rotating machine current that is the calculation result, an AC signal in which the DC component is zero and changes at twice the angle of the rotor position is generated, and based on the AC signal, A drive control method characterized by estimating a rotor position using
PCT/JP2022/027610 2022-07-13 2022-07-13 Control device and drive control method WO2024013900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027610 WO2024013900A1 (en) 2022-07-13 2022-07-13 Control device and drive control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027610 WO2024013900A1 (en) 2022-07-13 2022-07-13 Control device and drive control method

Publications (1)

Publication Number Publication Date
WO2024013900A1 true WO2024013900A1 (en) 2024-01-18

Family

ID=89536202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027610 WO2024013900A1 (en) 2022-07-13 2022-07-13 Control device and drive control method

Country Status (1)

Country Link
WO (1) WO2024013900A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179620A1 (en) * 2017-03-27 2018-10-04 三菱電機株式会社 Rotating electric machine control device
WO2020230339A1 (en) * 2019-05-16 2020-11-19 三菱電機株式会社 Rotating electrical machine control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179620A1 (en) * 2017-03-27 2018-10-04 三菱電機株式会社 Rotating electric machine control device
WO2020230339A1 (en) * 2019-05-16 2020-11-19 三菱電機株式会社 Rotating electrical machine control device

Similar Documents

Publication Publication Date Title
JP5155344B2 (en) Electric motor magnetic pole position estimation device
US8143838B2 (en) Phase current estimation apparatus for motor and magnetic pole position estimation apparatus for motor
JP6617500B2 (en) Electric power steering control method, electric power steering control device, electric power steering device and vehicle
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP5271409B2 (en) Control device for rotating electrical machine
JP5045541B2 (en) Control device for multi-phase rotating machine
CN109804545B (en) Inverter control device and driver system
JP2004289926A (en) Motor controller
JP2018523462A (en) Motor controller and motor system
JP2011211818A (en) Power conversion equipment, method of converting power, and motor drive system
JP6953763B2 (en) Motor control device
JP5165545B2 (en) Electric motor magnetic pole position estimation device
CN113826317B (en) Control device for rotating electrical machine
US20220123676A1 (en) Motor drive control device and motor drive control method
JP4722002B2 (en) PWM inverter control device, PWM inverter control method, and refrigeration air conditioner
WO2024013900A1 (en) Control device and drive control method
JP5314989B2 (en) Motor phase current estimation device
JP2010088262A (en) Apparatus for estimating phase current in motor
US11146190B2 (en) Multiphase synchronous motor controller with angle tracking
JP5186352B2 (en) Electric motor magnetic pole position estimation device
CN114270695A (en) Estimation device and driving device of AC motor
JP4479371B2 (en) Rotational position angle estimation method, rotational position angle estimation device, inverter control method, and inverter control device
WO2023171703A1 (en) Motor control device, motor module, motor control program, and motor control method
JP2010136586A (en) Magnetic pole position estimator for electric motor
US20240030850A1 (en) Power conversion device, estimation device, and estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951114

Country of ref document: EP

Kind code of ref document: A1