WO2023171703A1 - Motor control device, motor module, motor control program, and motor control method - Google Patents

Motor control device, motor module, motor control program, and motor control method Download PDF

Info

Publication number
WO2023171703A1
WO2023171703A1 PCT/JP2023/008773 JP2023008773W WO2023171703A1 WO 2023171703 A1 WO2023171703 A1 WO 2023171703A1 JP 2023008773 W JP2023008773 W JP 2023008773W WO 2023171703 A1 WO2023171703 A1 WO 2023171703A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
motor
value
command
phase current
Prior art date
Application number
PCT/JP2023/008773
Other languages
French (fr)
Japanese (ja)
Inventor
英生 岸田
優斗 野村
豊 笠井
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023171703A1 publication Critical patent/WO2023171703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present disclosure relates to a motor control device, a motor module, a motor control program, and a motor control method.
  • the waveform of the current flowing through the motor can theoretically be made into a sine waveform, but in reality, the waveform of the current flowing through the motor may not be made into a sine waveform.
  • the current flowing through the motor may be affected by the induced voltage, the presence of harmonic components in the rotor magnetic flux, the presence of dead time to prevent short circuits in the inverter circuit, overmodulation drive, the number of voltage adjustments per current cycle, etc.
  • the current waveform cannot be made into a sine waveform.
  • Non-Patent Document 1 describes a current control system that performs current control according to the motor drive frequency, instead of a general current controller that uses proportional-integral control, etc., for motors in which harmonic components occur in the induced voltage.
  • a technique using a container has been proposed. With this technique, by suppressing high-order components of induced voltage that are difficult to suppress with a general current controller, it is possible to make the waveform of the current flowing through the motor closer to a sine waveform.
  • Non-Patent Document 1 has problems such as the inability to suppress harmonics of orders other than the order to be compensated by the current controller.
  • the present disclosure provides a new technique that can bring the waveform of the current flowing through the motor closer to a sine waveform.
  • a motor control device includes an acquisition section, a first conversion section, a generation section, a second conversion section, and an adjustment section.
  • the acquisition unit acquires a three-phase current value that is a detected value of three-phase current flowing through the motor.
  • the first converter converts the three-phase current values into dq-axis current values.
  • the generation unit generates a three-phase voltage command based on the difference between the dq-axis current value and the dq-axis current command.
  • the second converter converts the dq-axis current command into a three-phase current command.
  • the adjustment unit generates a three-phase voltage adjustment value that reduces the difference between the three-phase current command and the three-phase current value, and adjusts the three-phase voltage command based on the generated three-phase voltage adjustment value.
  • the waveform of the current flowing through the motor can be made closer to a sine waveform.
  • FIG. 1 is a diagram showing an example of the configuration of a motor module according to an embodiment.
  • FIG. 2 is a diagram showing another example of the configuration of the adjustment section in the motor control device according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the waveform of one phase current of the three phase currents flowing through the motor when the three phase voltage command is not adjusted by the adjustment unit of the motor control device according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of the waveform of one phase current of the three phase currents flowing through the motor when the three phase voltage command is adjusted by the adjustment unit of the motor control device according to the embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a motor module according to an embodiment.
  • FIG. 2 is a diagram showing another example of the configuration of the adjustment section in the motor control device according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the waveform of one phase current of the three phase currents flowing through the motor when the three phase voltage command is not adjusted by
  • FIG. 5 shows the content rates of 5th, 7th, 11th, 13th, 23rd, and 25th harmonics with and without adjustment of the three-phase voltage command by the adjustment unit of the motor control device according to the embodiment. It is a diagram.
  • FIG. 6 is a diagram illustrating an example of the hardware configuration of the control unit of the motor control device according to the embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a motor module according to an embodiment.
  • a motor module 100 according to the embodiment includes a motor control device 1, a motor 2 controlled by the motor control device 1, and a position detection device 3 that detects a position ⁇ e of a rotor of the motor 2. Equipped with. The position ⁇ e is the electrical angle position of the motor 2 .
  • Motor 2 is a three-phase motor.
  • the position detection device 3 detects the position ⁇ e of the rotor of the motor 2 and outputs the detected position ⁇ e to the motor control device 1 .
  • the position detection device 3 is, for example, a resolver, but is not limited to this example, and may be a magnetic encoder using a Hall element or the like. Furthermore, the position detection device 3 may be an optical encoder that detects the position ⁇ m of the rotor of the motor 2. The position ⁇ m is the mechanical angle position of the motor 2. Note that the resolver or magnetic encoder may be configured to detect the position ⁇ m of the rotor of the motor 2.
  • the motor control device 1 drives the motor 2 by vector control.
  • vector control the voltage applied to the motor 2 is adjusted so that the current of the motor 2 has a sinusoidal waveform of arbitrary frequency, amplitude, and phase.
  • the motor control device 1 includes an inverter circuit 10, a current sensor 20, and a control section 30.
  • the inverter circuit 10 is, for example, a two-level inverter circuit, but may also be a three-level inverter circuit or an inverter circuit with another configuration.
  • Each switching element provided in the inverter circuit 10 is, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor), but is not limited to such examples. Further, each switching element provided in the inverter circuit 10 is a switching element formed of a silicon-based material or a switching element formed of a wide bandgap semiconductor.
  • the wide bandgap semiconductor is, for example, silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or diamond.
  • the current sensor 20 detects a three-phase current value I UVW , which is an instantaneous value of the three-phase current flowing from the inverter circuit 10 to the motor 2, and outputs the detected three-phase current value I UVW to the control unit 30.
  • the 3-phase current value I UVW is an example of the detected value of the 3-phase current flowing through the motor 2
  • the U-phase current value I U is the instantaneous value of the U-phase current
  • the V-phase current is the instantaneous value of the V-phase current.
  • It includes a value IV and a W-phase current value IW , which is an instantaneous value of the W-phase current.
  • the current sensor 20 is, for example, a current sensor using a current transformer called CT (Current Transformer), but is not limited to this example, and may be a current sensor using a Hall element, or a current sensor using a shunt resistor. It may also be a current sensor.
  • CT Current Transformer
  • the control unit 30 includes an acquisition unit 31 , a first conversion unit 32 , a generation unit 33 , a second conversion unit 34 , an adjustment unit 35 , and a PWM (Pulse Width Modulation) control unit 36 .
  • the acquisition unit 31 acquires the three-phase current value I UVW output from the current sensor 20 and the position ⁇ e output from the position detection device 3.
  • the acquisition unit 31 acquires the three-phase current value I UVW output from the current sensor 20.
  • the current sensor 20 may be configured to output instantaneous values of currents of two phases among the three phases.
  • the acquisition unit 31 acquires the instantaneous values of the two-phase currents output from the current sensor 20, and calculates the current value of the remaining one-phase current from the acquired instantaneous values of the two-phase currents. , three-phase current value I UVW can be obtained.
  • the acquisition unit 31 also acquires the position ⁇ e from the position detection device 3 . Note that when the acquisition unit 31 acquires the position ⁇ m from the position detection device 3 that outputs the position ⁇ m, the acquisition unit 31 determines the rotor of the motor 2 from the position ⁇ m acquired from the position detection device 3 and the number of pole pairs P of the motor 2. Convert the position ⁇ e .
  • the acquisition unit 31 is configured to include a position estimator that estimates the position ⁇ e from the voltage of the motor 2, for example, instead of acquiring the position ⁇ e or the position ⁇ m from the position detection device 3. Good too.
  • Various techniques are known as techniques for estimating the position ⁇ e , and these techniques can be appropriately selected and applied to the acquisition unit 31.
  • the first conversion unit 32 converts the three-phase current value I UVW acquired by the acquisition unit 31 into a dq-axis current value I dq .
  • the dq-axis current value I dq includes a d-axis current value I d that is a d-axis component in the dq coordinate system, and a q-axis current value I q that is a q-axis component in the dq coordinate system.
  • the dq coordinate system is a rotating coordinate system that rotates in synchronization with the rotation of the motor 2, the d-axis component is an excitation component, and the q-axis component is a torque component.
  • the first conversion section 32 includes a three-phase to two-phase converter 40 and an ⁇ -dq converter 41.
  • the three-phase to two-phase converter 40 converts the three-phase current value I UVW into an ⁇ -axis current value I ⁇ , which is a value in the ⁇ coordinate system, by three-phase to two-phase conversion.
  • the ⁇ -axis current value I ⁇ includes the ⁇ -axis current value I ⁇ , which is the ⁇ -axis component in the ⁇ coordinate system, which is a two-phase stationary coordinate system, and the ⁇ -axis current value I ⁇ , which is the ⁇ -axis component in the ⁇ coordinate system. .
  • the ⁇ -dq converter 41 converts the ⁇ -axis current value I ⁇ into a dq-axis current value I dq , which is the value of the dq-axis of the dq coordinate system, based on the position ⁇ e of the motor 2 .
  • the dq-axis current value I dq is the d-axis current value I d that is the d-axis component in the dq coordinate system, which is a rotating coordinate system that rotates according to the position ⁇ e of the motor 2, and the q-axis component in the dq coordinate system.
  • q -axis current value Iq is the d-axis current value I d that is the d-axis component in the dq coordinate system.
  • the generation unit 33 generates a three-phase voltage command V UVW * based on the difference between the dq-axis current command I dq * and the dq-axis current value I dq .
  • the three-phase voltage command V UVW * includes a U-phase voltage command V U * , a V-phase voltage command V V * , and a W-phase voltage command V W * .
  • the control unit 30 includes, for example, a position control unit, a speed control unit, a torque control unit, etc., and generates a dq-axis current command I dq * based on control processing in these control units.
  • the generation unit 33 includes a subtracter 50, a current controller 51, a dq- ⁇ converter 52, and a two-phase to three-phase converter 53.
  • the subtracter 50 calculates the difference between the dq-axis current command I dq * and the dq-axis current value I dq .
  • the dq-axis current command I dq * includes a d-axis current command I d * that is a d-axis component in the dq coordinate system, and a q-axis current command I q * that is a q-axis component in the dq coordinate system.
  • the subtracter 50 calculates the difference ⁇ I d * between the d-axis current command I d * and the d-axis current value I d and the q-axis current command as the difference between the dq-axis current command I dq * and the dq -axis current value I dq .
  • a difference ⁇ I q * between I q * and the q-axis current value I q is calculated.
  • the current controller 51 generates the dq-axis voltage command V dq * so that the difference ⁇ I dq * between the dq-axis current command I dq * and the dq-axis current value I dq is reduced.
  • the dq-axis voltage command V dq * includes a d-axis voltage command V d * that is a d-axis component in the dq coordinate system, and a q-axis voltage command V q * that is a q-axis component in the dq coordinate system.
  • the current controller 51 generates the d-axis voltage command V d * so that the difference ⁇ I d * between the d-axis current command I d * and the d-axis current value I d is reduced, and the d-axis voltage command V d * and the q-axis current command I q * .
  • the q-axis voltage command V q * is generated so that the difference ⁇ I q * from the q-axis current value I q is reduced.
  • the current controller 51 includes a P (Proportional) controller that performs proportional control on the difference ⁇ I dq * or a PI (Proportional Integral) controller that performs proportional integral control on the difference ⁇ I dq * .
  • the current controller 51 is a P controller that performs proportional control on each of the difference ⁇ I d * and the difference ⁇ I q * , or a P controller that performs proportional integral control on each of the difference ⁇ I d * and the difference ⁇ I q * . Equipped with a PI controller.
  • the current controller 51 may be a PID (Proportional Integral Differential) controller that performs proportional-integral-differential control on each of the difference ⁇ I d * and the difference ⁇ I q * .
  • the dq- ⁇ converter 52 converts the dq-axis voltage command V dq * into the ⁇ -axis voltage command V ⁇ * , which is a value in the ⁇ coordinate system, based on the position ⁇ e of the motor 2.
  • the ⁇ -axis voltage command V ⁇ * includes an ⁇ -axis voltage command V ⁇ * which is an ⁇ -axis component in the ⁇ coordinate system, and a ⁇ -axis voltage command V ⁇ * which is a ⁇ -axis component in the ⁇ coordinate system.
  • the 2-phase to 3-phase converter 53 converts the ⁇ -axis voltage command V ⁇ * into a 3-phase voltage command V UVW * by 2-phase to 3-phase conversion.
  • the three-phase voltage command V UVW * includes the U-phase voltage command V U * , the V-phase voltage command V V * , and the W-phase voltage command V W * .
  • the second conversion unit 34 converts the dq-axis current command I dq * into a three-phase current command I UVW * .
  • the three-phase current command I UVW * includes a U-phase current command I U * , a V-phase current command I V * , and a W-phase current command I W * .
  • the second converter 34 includes a dq- ⁇ converter 60 and a two-phase to three-phase converter 61.
  • the dq- ⁇ converter 60 converts the dq-axis current command I dq * into the ⁇ -axis current command I ⁇ * based on the position ⁇ e of the motor 2.
  • the ⁇ -axis current command I ⁇ * includes an ⁇ -axis current command I ⁇ * that is an ⁇ -axis component in the ⁇ coordinate system, and a ⁇ -axis current command I ⁇ * that is a ⁇ -axis component in the ⁇ coordinate system.
  • the 2-phase to 3-phase converter 61 converts the ⁇ -axis current command I ⁇ * into a 3-phase current command I UVW * by 2-phase to 3-phase conversion.
  • the adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW that reduces the difference between the three-phase current command I UVW * and the three-phase current value I UVW , and based on the generated three-phase voltage adjustment value Vaj UVW , Adjust the phase voltage command V UVW * .
  • the three-phase voltage adjustment value Vaj UVW includes a U-phase voltage adjustment value Vaj U , a V-phase voltage adjustment value Vaj V , and a W-phase voltage adjustment value Vaj W.
  • the adjustment unit 35 adjusts the U-phase voltage command V U * using the U-phase voltage adjustment value Vaj U, adjusts the V-phase voltage command V V * using the V - phase voltage adjustment value Vaj V , and adjusts the W-phase voltage adjustment value Vaj W
  • the W-phase voltage command V W * is adjusted by.
  • Harmonics of orders other than the order to be compensated by the current controller cannot be suppressed. Harmonics are caused by, for example, the induced voltage in the motor 2, the presence of dead time to prevent short circuits in the inverter circuit, overmodulation driving, the number of voltage adjustments per current cycle, etc., and the harmonics flow to the motor 2. It may be difficult to make the waveform of the three-phase current close to a sine waveform.
  • the adjustment unit 35 adjusts the 3-phase voltage command V UVW * so as to reduce the difference between the 3-phase current command I UVW * and the 3-phase current value I UVW , so as to achieve the It acts not on a specific harmonic, but on a wide range of harmonic orders included in the three-phase current flowing through the motor 2. Therefore, the motor control device 1 can make the waveform of the three-phase current flowing through the motor 2 closer to a sine waveform than the technique described in Non-Patent Document 1.
  • the adjustment unit 35 includes a subtracter 70, a waveform shaping controller 71, and a calculator 72.
  • the subtracter 70 calculates the difference ⁇ I UVW * between the three-phase current command I UVW * and the three-phase current value I UVW .
  • the difference ⁇ I UVW * between the 3-phase current command I UVW * and the 3-phase current value I UVW is the difference ⁇ I U * between the U-phase current command I U * and the U -phase current value I U , and the difference between the V-phase current command I V * and the V-phase current value I V * , and the difference ⁇ I W * between the W-phase current command I W * and the W-phase current value I W .
  • the waveform shaping controller 71 generates the three-phase voltage adjustment value Vaj UVW so that the difference ⁇ I UVW * between the three-phase current command I UVW * and the three-phase current value I UVW is reduced.
  • the waveform shaping controller 71 includes a P controller that performs proportional control on the difference ⁇ I UVW * , or a PI controller that performs proportional-integral control on the difference ⁇ I UVW * .
  • the waveform shaping controller 71 may be a P controller that performs proportional control on each of the differences ⁇ I U * , ⁇ I V * , and ⁇ I W * , or a P controller that performs proportional control on each of the differences ⁇ I U * , ⁇ I V * , and the differences A PI controller is provided that performs proportional-integral control for each of ⁇ I W * .
  • the waveform shaping controller 71 may be a PID controller that performs proportional-integral-derivative control on each of the differences ⁇ I U * , ⁇ I V * , and ⁇ I W * .
  • Arithmetic unit 72 adjusts three-phase voltage command V UVW * based on three-phase voltage adjustment value Vaj UVW , and outputs adjusted three-phase voltage command V UVW ** .
  • the three-phase voltage command V UVW ** includes a U-phase voltage command V U ** , a V-phase voltage command V V ** , and a W-phase voltage command V W ** .
  • the computing unit 72 generates the U-phase voltage command V U ** by subtracting or adding the U-phase voltage adjustment value Vaj U to the U-phase voltage command V U * .
  • the arithmetic unit 72 subtracts or adds the V-phase voltage adjustment value Vaj V to the V-phase voltage command V V * to generate a V-phase voltage command V V ** .
  • the arithmetic unit 72 generates the W-phase voltage command V W ** by subtracting or adding the W-phase voltage adjustment value Vaj W to the W-phase voltage command V W * .
  • the configuration of the adjustment section 35 is not limited to the example shown in FIG. 1.
  • the adjustment unit 35 may include a disturbance observer instead of the subtracter 70 and the waveform shaping controller 71.
  • FIG. 2 is a diagram showing another example of the configuration of the adjustment section 35 in the motor control device 1 according to the embodiment.
  • the adjustment section 35 shown in FIG. 2 differs from the adjustment section 35 shown in FIG. 1 in that it includes a disturbance observer 73 instead of the subtracter 70 and the waveform shaping controller 71.
  • the disturbance observer 73 estimates the disturbance from the difference between the three-phase current command I UVW * and the three-phase current value I UVW .
  • the disturbance observer 73 outputs the estimated disturbance to the calculator 72 as a three-phase voltage adjustment value Vaj UVW .
  • the disturbance observer 73 estimates disturbances occurring in each of the U phase, V phase, and W phase as disturbances.
  • the disturbance observer 73 estimates the U-phase disturbance based on the U-phase current command I U * and the U-phase current value I U , and estimates the U-phase disturbance based on the V-phase current command I V * and the V-phase current value I V.
  • the V-phase disturbance is estimated
  • the W-phase disturbance is estimated based on the W-phase current command I W * and the W-phase current value I W .
  • the disturbance observer 73 is configured by, for example, an inverse model of the motor 2 that is the controlled object.
  • the PWM control section 36 performs PWM control on the inverter circuit 10 based on the three-phase voltage command V UVW ** after adjustment by the adjustment section 35 .
  • the PWM control unit 36 compares each of the U-phase voltage command V U ** , V-phase voltage command V V ** , and W-phase voltage command V W ** after adjustment by the adjustment unit 35 with the carrier wave. Based on this, U-phase, V-phase, and W-phase PWM signals are generated.
  • the PWM control unit 36 generates gate signals for each of the U-phase, V-phase, and W-phase based on the generated PWM signals for each of the U-phase, V-phase, and W-phase.
  • the PWM control unit 36 controls the inverter circuit 10 by outputting the generated gate signal to the inverter circuit 10.
  • the PWM control unit 36 outputs a gate signal whose pulse width is modulated to the inverter circuit 10.
  • FIG. 3 shows an example of the waveform of one of the three-phase currents flowing through the motor 2 when the three-phase voltage command V UVW * is not adjusted by the adjustment unit 35 of the motor control device 1 according to the embodiment.
  • FIG. 4 shows an example of the waveform of one phase current of the three phase currents flowing through the motor 2 when the three phase voltage command V UVW * is adjusted by the adjustment unit 35 of the motor control device 1 according to the embodiment.
  • FIG. 3 shows an example of the waveform of one of the three-phase currents flowing through the motor 2 when the three phase voltage command V UVW * is adjusted by the adjustment unit 35 of the motor control device 1 according to the embodiment.
  • the one-phase phase current shown in FIGS. 3 and 4 is, for example, a U-phase current, but the V-phase current and W-phase current also have similar waveforms.
  • 3 and 4 show results obtained by simulation using a motor model that generates 5th, 7th, 11th, 13th, 23rd, and 25th harmonics as induced voltage harmonics.
  • the fundamental wave component (first order) is the drive frequency (electrical angle) of the motor 2.
  • the waveform of the phase current flowing through the motor 2 is a harmonic of multiple orders, as shown in FIG.
  • the waveform contains many components and has large distortion. The larger the harmonic component contained in the phase current flowing through the motor 2, the greater the core loss of the motor 2, and the worse the efficiency.
  • FIG. 5 shows the 5th, 7th, 11th, 13th, 23rd, and 25th harmonics when the three-phase voltage command V UVW * is adjusted by the adjustment unit 35 of the motor control device 1 according to the embodiment. It is a figure showing the content rate of.
  • the waveform of each phase current can be made close to a sine waveform, and the iron loss of the motor 2 can be reduced and the efficiency can be improved.
  • control device 1 can similarly bring the waveform of each phase current close to a sine waveform for motors in which harmonics of other orders occur.
  • the motor control device 1 can also suppress harmonics caused by the presence of dead time to prevent short circuits in the inverter circuit 10, and the waveform of each phase current can be made sinusoidal. It can approximate the waveform. Furthermore, since the motor control device 1 can suppress harmonics caused by the presence of dead time, the waveform of each phase current can be changed to a sine waveform without adding dead time compensation processing in the PWM control unit 36. You can get close.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the control unit 30 of the motor control device 1 according to the embodiment.
  • the control unit 30 includes a computer including a processor 101, a memory 102, an input/output unit 103, and a bus 104.
  • the processor 101, memory 102, and input/output unit 103 can exchange information with each other via a bus 104.
  • the processor 101 executes the functions of the control unit 30 by reading and executing the motor control program stored in the memory 102.
  • the processor 101 is an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
  • the memory 102 includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). one or more of (emory) include.
  • the input/output unit 103 includes, for example, an AD converter, a DA converter, an input/output port, and the like.
  • the motor control device 1 may be configured to include a data reading unit that reads a motor control program from a recording medium on which a computer-readable motor control program is recorded.
  • the processor 101 can control the data reading section to obtain the motor control program recorded on the recording medium from the data reading section, and store the obtained motor control program in the memory 102 .
  • the recording medium includes, for example, one or more of a nonvolatile or volatile semiconductor memory, a magnetic disk, a flexible memory, an optical disk, a compact disk, and a DVD (Digital Versatile Disc).
  • the motor control device 1 may include a communication unit that receives a motor control program from a server via a network.
  • the processor 101 can acquire the motor control program from the server via the communication unit and store the acquired motor control program in the memory 102.
  • control unit 30 may include integrated circuits such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the motor control device 1 includes the acquisition section 31, the first conversion section 32, the generation section 33, the second conversion section 34, and the adjustment section 35.
  • the acquisition unit 31 acquires a three-phase current value I UVW that is a detected value of the three-phase current flowing through the motor 2 .
  • the first conversion unit 32 converts the three-phase current value I UVW into a dq-axis current value I dq .
  • the generation unit 33 generates a three-phase voltage command V UVW * based on the difference between the dq-axis current value I dq and the dq-axis current command I dq * .
  • the second conversion unit 34 converts the dq-axis current command I dq * into a three-phase current command I UVW * .
  • the adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW that reduces the difference between the three-phase current command I UVW * and the three-phase current value I UVW , and based on the generated three-phase voltage adjustment value Vaj UVW , Adjust the phase voltage command V UVW * .
  • the motor control device 1 can also suppress harmonic components of orders other than a specific order, and the waveform of the current flowing through the motor 2 can be made more sinusoidal than the technique described in Non-Patent Document 1. can be approached.
  • the adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW by performing proportional control or proportional-integral control on the difference between the three-phase current command I UVW * and the three-phase current value I UVW . Thereby, the motor control device 1 can accurately generate the three-phase voltage adjustment value Vaj UVW .
  • the adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW using a disturbance observer 73 that outputs a three-phase voltage adjustment value Vaj UVW based on the three-phase current command I UVW * and the three-phase current value I UVW . do. Thereby, the motor control device 1 can accurately generate the three-phase voltage adjustment value Vaj UVW .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A motor control device according to an aspect of the present disclosure comprises an acquisition unit, a first conversion unit, a generation unit, a second conversion unit, and an adjustment unit. The acquisition unit acquires three phase current values which are detected values of three phase currents flowing to a motor. The first conversion unit converts the three phase current values into d-q axis current values. The generation unit generates three-phase voltage commands on the basis of a difference between the d-q axis current values and a d-q axis current command. The second conversion unit converts the d-q axis current command into a three-phase current command. The adjustment unit generates three phase voltage adjustment values for reducing a difference between the three-phase current command and the three phase current values, and adjusts the three-phase voltage commands on the basis of the generated three phase voltage adjustment values.

Description

モータ制御装置、モータモジュール、モータ制御プログラム、およびモータ制御方法Motor control device, motor module, motor control program, and motor control method
 本開示は、モータ制御装置、モータモジュール、モータ制御プログラム、およびモータ制御方法に関する。 The present disclosure relates to a motor control device, a motor module, a motor control program, and a motor control method.
 本出願は、2022年3月11日に提出された日本特許出願第2022-038543号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。 This application is based on Japanese Patent Application No. 2022-038543 filed on March 11, 2022. This application claims priority over that application. The entire contents are incorporated into this application by reference.
 従来、ベクトル制御によってモータを制御する技術が知られている。ベクトル制御では、理論上はモータに流れる電流の波形を正弦波形とすることができるが、現実にはモータに流れる電流の波形を正弦波形にできない場合がある。例えば、誘起電圧、回転子磁束などでの高調波成分の存在、インバータ回路の短絡防止のためのデッドタイムの存在、過変調駆動、電流1周期あたりの電圧調整回数などの影響によって、モータに流れる電流の波形を正弦波形にできない場合がある。 Conventionally, a technique for controlling a motor by vector control is known. In vector control, the waveform of the current flowing through the motor can theoretically be made into a sine waveform, but in reality, the waveform of the current flowing through the motor may not be made into a sine waveform. For example, the current flowing through the motor may be affected by the induced voltage, the presence of harmonic components in the rotor magnetic flux, the presence of dead time to prevent short circuits in the inverter circuit, overmodulation drive, the number of voltage adjustments per current cycle, etc. There are cases where the current waveform cannot be made into a sine waveform.
 非特許文献1には、誘起電圧に高調波成分が生じるモータに対して、比例積分制御などを用いた一般的な電流制御器に代えて、モータの駆動周波数に応じた電流制御を行う電流制御器を用いる技術が提案されている。かかる技術では、一般的な電流制御器では抑制が難しい誘起電圧の高次成分を抑制することで、モータに流れる電流の波形を正弦波形に近づけることができる。 Non-Patent Document 1 describes a current control system that performs current control according to the motor drive frequency, instead of a general current controller that uses proportional-integral control, etc., for motors in which harmonic components occur in the induced voltage. A technique using a container has been proposed. With this technique, by suppressing high-order components of induced voltage that are difficult to suppress with a general current controller, it is possible to make the waveform of the current flowing through the motor closer to a sine waveform.
 しかしながら、非特許文献1に記載の技術では、電流制御器による補償対象の次数以外の次数の高調波は抑制できないなどの課題がある。 However, the technique described in Non-Patent Document 1 has problems such as the inability to suppress harmonics of orders other than the order to be compensated by the current controller.
 本開示は、モータに流れる電流の波形を正弦波形に近づけることができる新たな技術を提供する。 The present disclosure provides a new technique that can bring the waveform of the current flowing through the motor closer to a sine waveform.
 本開示の一態様によるモータ制御装置は、取得部と、第1変換部と、生成部と、第2変換部と、調整部とを備える。取得部は、モータに流れる3相電流の検出値である3相電流値を取得する。第1変換部は、3相電流値をdq軸電流値に変換する。生成部は、dq軸電流値とdq軸電流指令との差に基づいて、3相電圧指令を生成する。第2変換部は、dq軸電流指令を3相電流指令に変換する。調整部は、3相電流指令と3相電流値との差を低減する3相電圧調整値を生成し、生成した3相電圧調整値に基づいて、3相電圧指令を調整する。 A motor control device according to one aspect of the present disclosure includes an acquisition section, a first conversion section, a generation section, a second conversion section, and an adjustment section. The acquisition unit acquires a three-phase current value that is a detected value of three-phase current flowing through the motor. The first converter converts the three-phase current values into dq-axis current values. The generation unit generates a three-phase voltage command based on the difference between the dq-axis current value and the dq-axis current command. The second converter converts the dq-axis current command into a three-phase current command. The adjustment unit generates a three-phase voltage adjustment value that reduces the difference between the three-phase current command and the three-phase current value, and adjusts the three-phase voltage command based on the generated three-phase voltage adjustment value.
 本開示によれば、モータに流れる電流の波形を正弦波形に近づけることができる。 According to the present disclosure, the waveform of the current flowing through the motor can be made closer to a sine waveform.
図1は、実施形態に係るモータモジュールの構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a motor module according to an embodiment. 図2は、実施形態に係るモータ制御装置における調整部の構成の他の例を示す図である。FIG. 2 is a diagram showing another example of the configuration of the adjustment section in the motor control device according to the embodiment. 図3は、実施形態に係るモータ制御装置の調整部による3相電圧指令の調整がない場合にモータに流れる3相電流のうちの1相の相電流の波形の一例を示す図である。FIG. 3 is a diagram illustrating an example of the waveform of one phase current of the three phase currents flowing through the motor when the three phase voltage command is not adjusted by the adjustment unit of the motor control device according to the embodiment. 図4は、実施形態に係るモータ制御装置の調整部による3相電圧指令の調整がある場合のモータに流れる3相電流のうちの1相の相電流の波形の一例を示す図である。FIG. 4 is a diagram illustrating an example of the waveform of one phase current of the three phase currents flowing through the motor when the three phase voltage command is adjusted by the adjustment unit of the motor control device according to the embodiment. 図5は、実施形態に係るモータ制御装置の調整部による3相電圧指令の調整の有無における5次、7次、11次、13次、23次、および25次の高調波の含有率を示す図である。FIG. 5 shows the content rates of 5th, 7th, 11th, 13th, 23rd, and 25th harmonics with and without adjustment of the three-phase voltage command by the adjustment unit of the motor control device according to the embodiment. It is a diagram. 図6は、実施形態にかかるモータ制御装置の制御部のハードウェア構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of the hardware configuration of the control unit of the motor control device according to the embodiment.
 以下に、本開示によるモータ制御装置、モータモジュール、モータ制御プログラム、およびモータ制御方法を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本開示が限定されるものではない。 Below, a motor control device, a motor module, a motor control program, and a form for implementing a motor control method (hereinafter referred to as "embodiment") according to the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to this embodiment.
 図1は、実施形態に係るモータモジュールの構成の一例を示す図である。図1に示すように、実施形態に係るモータモジュール100は、モータ制御装置1と、モータ制御装置1によって制御されるモータ2と、モータ2の回転子の位置θを検出する位置検出装置3とを備える。位置θは、モータ2の電気角の位置である。モータ2は、3相モータである。 FIG. 1 is a diagram showing an example of the configuration of a motor module according to an embodiment. As shown in FIG. 1, a motor module 100 according to the embodiment includes a motor control device 1, a motor 2 controlled by the motor control device 1, and a position detection device 3 that detects a position θ e of a rotor of the motor 2. Equipped with. The position θ e is the electrical angle position of the motor 2 . Motor 2 is a three-phase motor.
 位置検出装置3は、モータ2の回転子の位置θを検出し、検出した位置θをモータ制御装置1に出力する。位置検出装置3は、例えば、レゾルバであるが、かかる例に限定されず、ホール素子などを用いた磁気式エンコーダであってもよい。また、位置検出装置3は、モータ2の回転子の位置θを検出する光学式エンコーダであってもよい。位置θは、モータ2の機械角の位置である。なお、レゾルバまたは磁気式エンコーダは、モータ2の回転子の位置θを検出する構成であってもよい。 The position detection device 3 detects the position θ e of the rotor of the motor 2 and outputs the detected position θ e to the motor control device 1 . The position detection device 3 is, for example, a resolver, but is not limited to this example, and may be a magnetic encoder using a Hall element or the like. Furthermore, the position detection device 3 may be an optical encoder that detects the position θ m of the rotor of the motor 2. The position θ m is the mechanical angle position of the motor 2. Note that the resolver or magnetic encoder may be configured to detect the position θ m of the rotor of the motor 2.
 モータ制御装置1は、ベクトル制御によってモータ2を駆動する。ベクトル制御では、モータ2の電流が任意の周波数、振幅、および位相の正弦波形になるようにモータ2への印加電圧が調整される。 The motor control device 1 drives the motor 2 by vector control. In vector control, the voltage applied to the motor 2 is adjusted so that the current of the motor 2 has a sinusoidal waveform of arbitrary frequency, amplitude, and phase.
 モータ制御装置1は、インバータ回路10と、電流センサ20と、制御部30とを備える。インバータ回路10は、例えば、2レベルインバータ回路であるが、3レベルインバータ回路であってもよく、その他の構成のインバータ回路であってもよい。 The motor control device 1 includes an inverter circuit 10, a current sensor 20, and a control section 30. The inverter circuit 10 is, for example, a two-level inverter circuit, but may also be a three-level inverter circuit or an inverter circuit with another configuration.
 インバータ回路10に設けられる各スイッチング素子は、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはIGBT(Insulated Gate Bipolar Transistor)などであるが、かかる例に限定されない。また、インバータ回路10に設けられる各スイッチング素子は、シリコン系材料により形成されるスイッチング素子またはワイドバンドギャップ(Wide Bandgap)半導体により形成されるスイッチング素子である。ワイドバンドギャップ半導体は、例えば、炭化珪素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、またはダイヤモンドなどである。 Each switching element provided in the inverter circuit 10 is, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor), but is not limited to such examples. Further, each switching element provided in the inverter circuit 10 is a switching element formed of a silicon-based material or a switching element formed of a wide bandgap semiconductor. The wide bandgap semiconductor is, for example, silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), or diamond.
 電流センサ20は、インバータ回路10からモータ2に流れる3相電流の瞬時値である3相電流値IUVWを検出し、検出した3相電流値IUVWを制御部30に出力する。3相電流値IUVWは、モータ2に流れる3相電流の検出値の一例であり、U相電流の瞬時値であるU相電流値Iと、V相電流の瞬時値であるV相電流値Iと、W相電流の瞬時値であるW相電流値Iとを含む。 The current sensor 20 detects a three-phase current value I UVW , which is an instantaneous value of the three-phase current flowing from the inverter circuit 10 to the motor 2, and outputs the detected three-phase current value I UVW to the control unit 30. The 3-phase current value I UVW is an example of the detected value of the 3-phase current flowing through the motor 2, and the U-phase current value I U is the instantaneous value of the U-phase current, and the V-phase current is the instantaneous value of the V-phase current. It includes a value IV and a W-phase current value IW , which is an instantaneous value of the W-phase current.
 電流センサ20は、例えば、CT(Current Transformer)と呼ばれる変流器を用いた電流センサであるが、かかる例に限定されず、ホール素子を用いた電流センサであってもよく、シャント抵抗を用いた電流センサであってもよい。 The current sensor 20 is, for example, a current sensor using a current transformer called CT (Current Transformer), but is not limited to this example, and may be a current sensor using a Hall element, or a current sensor using a shunt resistor. It may also be a current sensor.
 制御部30は、取得部31と、第1変換部32と、生成部33と、第2変換部34と、調整部35と、PWM(Pulse Width Modulation)制御部36とを備える。取得部31は、電流センサ20から出力される3相電流値IUVWと、位置検出装置3から出力される位置θとを取得する。 The control unit 30 includes an acquisition unit 31 , a first conversion unit 32 , a generation unit 33 , a second conversion unit 34 , an adjustment unit 35 , and a PWM (Pulse Width Modulation) control unit 36 . The acquisition unit 31 acquires the three-phase current value I UVW output from the current sensor 20 and the position θ e output from the position detection device 3.
 取得部31は、電流センサ20から出力される3相電流値IUVWを取得する。なお、電流センサ20は、3相のうち2相の電流の瞬時値を出力する構成であってもよい。この場合、取得部31は、電流センサ20から出力される2相の電流の瞬時値を取得し、取得した2相の電流の瞬時値から残りの1相の電流の電流値を算出することで、3相電流値IUVWを取得することができる。 The acquisition unit 31 acquires the three-phase current value I UVW output from the current sensor 20. Note that the current sensor 20 may be configured to output instantaneous values of currents of two phases among the three phases. In this case, the acquisition unit 31 acquires the instantaneous values of the two-phase currents output from the current sensor 20, and calculates the current value of the remaining one-phase current from the acquired instantaneous values of the two-phase currents. , three-phase current value I UVW can be obtained.
 また、取得部31は、位置検出装置3から位置θを取得する。なお、取得部31は、位置θを出力する位置検出装置3から位置θを取得した場合、位置検出装置3から取得した位置θとモータ2の極対数Pとからモータ2の回転子の位置θを換算する。 The acquisition unit 31 also acquires the position θ e from the position detection device 3 . Note that when the acquisition unit 31 acquires the position θ m from the position detection device 3 that outputs the position θ m, the acquisition unit 31 determines the rotor of the motor 2 from the position θ m acquired from the position detection device 3 and the number of pole pairs P of the motor 2. Convert the position θ e .
 なお、取得部31は、位置検出装置3から位置θまたは位置θを取得することに代えて、例えば、モータ2の電圧などから位置θを推定する位置推定器を備える構成であってもよい。位置θを推定する技術として、種々の技術が知られており、これらの技術を適宜選択して取得部31に適用することができる。 Note that the acquisition unit 31 is configured to include a position estimator that estimates the position θ e from the voltage of the motor 2, for example, instead of acquiring the position θ e or the position θ m from the position detection device 3. Good too. Various techniques are known as techniques for estimating the position θ e , and these techniques can be appropriately selected and applied to the acquisition unit 31.
 第1変換部32は、取得部31によって取得された3相電流値IUVWをdq軸電流値Idqに変換する。dq軸電流値Idqは、dq座標系におけるd軸の成分であるd軸電流値Iと、dq座標系におけるq軸の成分であるq軸電流値Iとを含む。dq座標系は、モータ2の回転に同期して回転する回転座標系であり、d軸の成分は、励磁成分であり、q軸の成分は、トルク成分である。 The first conversion unit 32 converts the three-phase current value I UVW acquired by the acquisition unit 31 into a dq-axis current value I dq . The dq-axis current value I dq includes a d-axis current value I d that is a d-axis component in the dq coordinate system, and a q-axis current value I q that is a q-axis component in the dq coordinate system. The dq coordinate system is a rotating coordinate system that rotates in synchronization with the rotation of the motor 2, the d-axis component is an excitation component, and the q-axis component is a torque component.
 第1変換部32は、3相-2相変換器40と、αβ-dq変換器41とを備える。3相-2相変換器40は、3相-2相変換によって、3相電流値IUVWをαβ座標系の値であるαβ軸電流値Iαβに変換する。αβ軸電流値Iαβは、2相静止座標系であるαβ座標系におけるα軸成分であるα軸電流値Iαと、αβ座標系におけるβ軸成分であるβ軸電流値Iβとを含む。 The first conversion section 32 includes a three-phase to two-phase converter 40 and an αβ-dq converter 41. The three-phase to two-phase converter 40 converts the three-phase current value I UVW into an αβ-axis current value I αβ , which is a value in the αβ coordinate system, by three-phase to two-phase conversion. The αβ-axis current value I αβ includes the α-axis current value I α, which is the α-axis component in the αβ coordinate system, which is a two-phase stationary coordinate system, and the β-axis current value I β , which is the β-axis component in the αβ coordinate system. .
 αβ-dq変換器41は、モータ2の位置θに基づいて、αβ軸電流値Iαβをdq座標系のdq軸の値であるdq軸電流値Idqに変換する。dq軸電流値Idqは、モータ2の位置θに応じて回転する回転座標系であるdq座標系におけるd軸成分であるd軸電流値Iと、dq座標系におけるq軸成分であるq軸電流値Iとを含む。 The αβ-dq converter 41 converts the αβ-axis current value I αβ into a dq-axis current value I dq , which is the value of the dq-axis of the dq coordinate system, based on the position θ e of the motor 2 . The dq-axis current value I dq is the d-axis current value I d that is the d-axis component in the dq coordinate system, which is a rotating coordinate system that rotates according to the position θ e of the motor 2, and the q-axis component in the dq coordinate system. q -axis current value Iq.
 生成部33は、dq軸電流指令Idq とdq軸電流値Idqとの差に基づいて、3相電圧指令VUVW を生成する。3相電圧指令VUVW は、U相電圧指令V 、V相電圧指令V 、およびW相電圧指令V を含む。図示していないが、制御部30は、例えば、位置制御部、速度制御部、およびトルク制御部などを含み、これらの制御部における制御処理に基づいてdq軸電流指令Idq を生成する。 The generation unit 33 generates a three-phase voltage command V UVW * based on the difference between the dq-axis current command I dq * and the dq-axis current value I dq . The three-phase voltage command V UVW * includes a U-phase voltage command V U * , a V-phase voltage command V V * , and a W-phase voltage command V W * . Although not shown, the control unit 30 includes, for example, a position control unit, a speed control unit, a torque control unit, etc., and generates a dq-axis current command I dq * based on control processing in these control units.
 生成部33は、減算器50と、電流制御器51と、dq-αβ変換器52と、2相-3相変換器53とを備える。減算器50は、dq軸電流指令Idq とdq軸電流値Idqとの差を算出する。dq軸電流指令Idq は、dq座標系におけるd軸成分であるd軸電流指令I と、dq座標系におけるq軸成分であるq軸電流指令I とを含む。減算器50は、dq軸電流指令Idq とdq軸電流値Idqとの差として、d軸電流指令I とd軸電流値Iとの差ΔI と、q軸電流指令I とq軸電流値Iとの差ΔI とを算出する。 The generation unit 33 includes a subtracter 50, a current controller 51, a dq-αβ converter 52, and a two-phase to three-phase converter 53. The subtracter 50 calculates the difference between the dq-axis current command I dq * and the dq-axis current value I dq . The dq-axis current command I dq * includes a d-axis current command I d * that is a d-axis component in the dq coordinate system, and a q-axis current command I q * that is a q-axis component in the dq coordinate system. The subtracter 50 calculates the difference ΔI d * between the d-axis current command I d * and the d-axis current value I d and the q-axis current command as the difference between the dq-axis current command I dq * and the dq -axis current value I dq . A difference ΔI q * between I q * and the q-axis current value I q is calculated.
 電流制御器51は、dq軸電流指令Idq とdq軸電流値Idqとの差ΔIdq が低減するようにdq軸電圧指令Vdq を生成する。dq軸電圧指令Vdq は、dq座標系におけるd軸成分であるd軸電圧指令V と、dq座標系におけるq軸成分であるq軸電圧指令V とを含む。電流制御器51は、d軸電流指令I とd軸電流値Iとの差ΔI が低減するようにd軸電圧指令V を生成し、q軸電流指令I とq軸電流値Iとの差ΔI が低減するようにq軸電圧指令V を生成する。 The current controller 51 generates the dq-axis voltage command V dq * so that the difference ΔI dq * between the dq-axis current command I dq * and the dq-axis current value I dq is reduced. The dq-axis voltage command V dq * includes a d-axis voltage command V d * that is a d-axis component in the dq coordinate system, and a q-axis voltage command V q * that is a q-axis component in the dq coordinate system. The current controller 51 generates the d-axis voltage command V d * so that the difference ΔI d * between the d-axis current command I d * and the d-axis current value I d is reduced, and the d-axis voltage command V d * and the q-axis current command I q * . The q-axis voltage command V q * is generated so that the difference ΔI q * from the q-axis current value I q is reduced.
 電流制御器51は、差ΔIdq に対して比例制御を行うP(Proportional)制御器、または差ΔIdq に対して比例積分制御を行うPI(Proportional Integral)制御器を備える。例えば、電流制御器51は、差ΔI および差ΔI の各々に対して比例制御を行うP制御器、または差ΔI および差ΔI の各々に対して比例積分制御を行うPI制御器を備える。なお、電流制御器51は、差ΔI および差ΔI の各々に対して比例積分微分制御を行うPID(Proportional Integral Differential)制御器であってもよい。 The current controller 51 includes a P (Proportional) controller that performs proportional control on the difference ΔI dq * or a PI (Proportional Integral) controller that performs proportional integral control on the difference ΔI dq * . For example, the current controller 51 is a P controller that performs proportional control on each of the difference ΔI d * and the difference ΔI q * , or a P controller that performs proportional integral control on each of the difference ΔI d * and the difference ΔI q * . Equipped with a PI controller. Note that the current controller 51 may be a PID (Proportional Integral Differential) controller that performs proportional-integral-differential control on each of the difference ΔI d * and the difference ΔI q * .
 dq-αβ変換器52は、モータ2の位置θに基づいて、dq軸電圧指令Vdq をαβ座標系の値であるαβ軸電圧指令Vαβ に変換する。αβ軸電圧指令Vαβ は、αβ座標系におけるα軸成分であるα軸電圧指令Vα と、αβ座標系におけるβ軸成分であるβ軸電圧指令Vβ とを含む。 The dq-αβ converter 52 converts the dq-axis voltage command V dq * into the αβ-axis voltage command V αβ * , which is a value in the αβ coordinate system, based on the position θ e of the motor 2. The αβ-axis voltage command V αβ * includes an α-axis voltage command V α * which is an α-axis component in the αβ coordinate system, and a β-axis voltage command V β * which is a β-axis component in the αβ coordinate system.
 2相-3相変換器53は、2相-3相変換によって、αβ軸電圧指令Vαβ を3相電圧指令VUVW に変換する。3相電圧指令VUVW は、上述したように、U相電圧指令V 、V相電圧指令V 、およびW相電圧指令V を含む。 The 2-phase to 3-phase converter 53 converts the αβ-axis voltage command V αβ * into a 3-phase voltage command V UVW * by 2-phase to 3-phase conversion. As described above, the three-phase voltage command V UVW * includes the U-phase voltage command V U * , the V-phase voltage command V V * , and the W-phase voltage command V W * .
 第2変換部34は、dq軸電流指令Idq を3相電流指令IUVW に変換する。3相電流指令IUVW は、U相電流指令I 、V相電流指令I 、およびW相電流指令I を含む。 The second conversion unit 34 converts the dq-axis current command I dq * into a three-phase current command I UVW * . The three-phase current command I UVW * includes a U-phase current command I U * , a V-phase current command I V * , and a W-phase current command I W * .
 第2変換部34は、dq-αβ変換器60と、2相-3相変換器61とを含む。dq-αβ変換器60は、モータ2の位置θに基づいて、dq軸電流指令Idq をαβ軸電流指令Iαβ に変換する。αβ軸電流指令Iαβ は、αβ座標系におけるα軸成分であるα軸電流指令Iα と、αβ座標系におけるβ軸成分であるβ軸電流指令Iβ とを含む。2相-3相変換器61は、2相-3相変換によって、αβ軸電流指令Iαβ を3相電流指令IUVW に変換する。 The second converter 34 includes a dq-αβ converter 60 and a two-phase to three-phase converter 61. The dq-αβ converter 60 converts the dq-axis current command I dq * into the αβ-axis current command I αβ * based on the position θ e of the motor 2. The αβ-axis current command I αβ * includes an α-axis current command I α * that is an α-axis component in the αβ coordinate system, and a β-axis current command I β * that is a β-axis component in the αβ coordinate system. The 2-phase to 3-phase converter 61 converts the αβ-axis current command I αβ * into a 3-phase current command I UVW * by 2-phase to 3-phase conversion.
 調整部35は、3相電流指令IUVW と3相電流値IUVWとの差を低減する3相電圧調整値VajUVWを生成し、生成した3相電圧調整値VajUVWに基づいて、3相電圧指令VUVW を調整する。3相電圧調整値VajUVWは、U相電圧調整値Vaj、V相電圧調整値Vaj、およびW相電圧調整値Vajを含む。調整部35は、U相電圧調整値VajによってU相電圧指令V を調整し、V相電圧調整値VajによってV相電圧指令V を調整し、W相電圧調整値VajによってW相電圧指令V を調整する。 The adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW that reduces the difference between the three-phase current command I UVW * and the three-phase current value I UVW , and based on the generated three-phase voltage adjustment value Vaj UVW , Adjust the phase voltage command V UVW * . The three-phase voltage adjustment value Vaj UVW includes a U-phase voltage adjustment value Vaj U , a V-phase voltage adjustment value Vaj V , and a W-phase voltage adjustment value Vaj W. The adjustment unit 35 adjusts the U-phase voltage command V U * using the U-phase voltage adjustment value Vaj U, adjusts the V-phase voltage command V V * using the V - phase voltage adjustment value Vaj V , and adjusts the W-phase voltage adjustment value Vaj W The W-phase voltage command V W * is adjusted by.
 上述した非特許文献1に記載の技術では、電流制御器による補償対象の次数以外の次数の高調波は抑制できない。高調波は、例えば、モータ2の誘起電圧などに加え、例えば、インバータ回路の短絡防止のためのデッドタイムの存在、過変調駆動、電流1周期あたりの電圧調整回数などによって生じ、モータ2に流れる3相電流の波形を正弦波形に近づけることが難しい場合がある。 With the technique described in Non-Patent Document 1 mentioned above, harmonics of orders other than the order to be compensated by the current controller cannot be suppressed. Harmonics are caused by, for example, the induced voltage in the motor 2, the presence of dead time to prevent short circuits in the inverter circuit, overmodulation driving, the number of voltage adjustments per current cycle, etc., and the harmonics flow to the motor 2. It may be difficult to make the waveform of the three-phase current close to a sine waveform.
 調整部35は、3相電流指令IUVW と3相電流値IUVWとの差を低減するように3相電圧指令VUVW を調整することで、非特許文献1に記載の技術のように特定の高調波ではなく、モータ2に流れる3相電流に含まれる複数の高調波次数に対して広く作用する。そのため、モータ制御装置1は、非特許文献1に記載の技術に比べて、モータ2に流れる3相電流の波形をより正弦波形に近づけることができる。 The adjustment unit 35 adjusts the 3-phase voltage command V UVW * so as to reduce the difference between the 3-phase current command I UVW * and the 3-phase current value I UVW , so as to achieve the It acts not on a specific harmonic, but on a wide range of harmonic orders included in the three-phase current flowing through the motor 2. Therefore, the motor control device 1 can make the waveform of the three-phase current flowing through the motor 2 closer to a sine waveform than the technique described in Non-Patent Document 1.
 調整部35は、減算器70と、波形成形制御器71と、演算器72とを備える。減算器70は、3相電流指令IUVW と3相電流値IUVWとの差ΔIUVW を算出する。
3相電流指令IUVW と3相電流値IUVWとの差ΔIUVW は、U相電流指令I とU相電流値Iとの差ΔI と、V相電流指令I とV相電流値Iとの差ΔI と、W相電流指令I とW相電流値Iとの差ΔI とを含む。
The adjustment unit 35 includes a subtracter 70, a waveform shaping controller 71, and a calculator 72. The subtracter 70 calculates the difference ΔI UVW * between the three-phase current command I UVW * and the three-phase current value I UVW .
The difference ΔI UVW * between the 3-phase current command I UVW * and the 3-phase current value I UVW is the difference ΔI U * between the U-phase current command I U * and the U -phase current value I U , and the difference between the V-phase current command I V * and the V-phase current value I V * , and the difference ΔI W * between the W-phase current command I W * and the W-phase current value I W .
 波形成形制御器71は、3相電流指令IUVW と3相電流値IUVWとの差ΔIUVW が低減するように3相電圧調整値VajUVWを生成する。波形成形制御器71は、差ΔIUVW に対して比例制御を行うP制御器、または差ΔIUVW に対して比例積分制御を行うPI制御器を備える。例えば、波形成形制御器71は、差ΔI 、差ΔI 、および差ΔI の各々に対して比例制御を行うP制御器、または差ΔI 、差ΔI 、および差ΔI の各々に対して比例積分制御を行うPI制御器を備える。なお、波形成形制御器71は、差ΔI 、差ΔI 、および差ΔI の各々に対して比例積分微分制御を行うPID制御器であってもよい。 The waveform shaping controller 71 generates the three-phase voltage adjustment value Vaj UVW so that the difference ΔI UVW * between the three-phase current command I UVW * and the three-phase current value I UVW is reduced. The waveform shaping controller 71 includes a P controller that performs proportional control on the difference ΔI UVW * , or a PI controller that performs proportional-integral control on the difference ΔI UVW * . For example, the waveform shaping controller 71 may be a P controller that performs proportional control on each of the differences ΔI U * , ΔI V * , and ΔI W * , or a P controller that performs proportional control on each of the differences ΔI U * , ΔI V * , and the differences A PI controller is provided that performs proportional-integral control for each of ΔI W * . Note that the waveform shaping controller 71 may be a PID controller that performs proportional-integral-derivative control on each of the differences ΔI U * , ΔI V * , and ΔI W * .
 演算器72は、3相電圧調整値VajUVWに基づいて、3相電圧指令VUVW を調整し、調整後の3相電圧指令VUVW **を出力する。3相電圧指令VUVW **は、U相電圧指令V **、V相電圧指令V **、およびW相電圧指令V **を含む。例えば、演算器72は、U相電圧指令V にU相電圧調整値Vajを減算または加算してU相電圧指令V **を生成する。また、演算器72はV相電圧指令V にV相電圧調整値Vajを減算または加算してV相電圧指令V **を生成する。また、演算器72は、W相電圧指令V にW相電圧調整値Vajを減算または加算することによって、W相電圧指令V **を生成する。 Arithmetic unit 72 adjusts three-phase voltage command V UVW * based on three-phase voltage adjustment value Vaj UVW , and outputs adjusted three-phase voltage command V UVW ** . The three-phase voltage command V UVW ** includes a U-phase voltage command V U ** , a V-phase voltage command V V ** , and a W-phase voltage command V W ** . For example, the computing unit 72 generates the U-phase voltage command V U ** by subtracting or adding the U-phase voltage adjustment value Vaj U to the U-phase voltage command V U * . Further, the arithmetic unit 72 subtracts or adds the V-phase voltage adjustment value Vaj V to the V-phase voltage command V V * to generate a V-phase voltage command V V ** . Further, the arithmetic unit 72 generates the W-phase voltage command V W ** by subtracting or adding the W-phase voltage adjustment value Vaj W to the W-phase voltage command V W * .
 調整部35の構成は、図1に示す例に限定されない。例えば、調整部35は、減算器70および波形成形制御器71に代えて、外乱オブザーバを有する構成であってもよい。図2は、実施形態に係るモータ制御装置1における調整部35の構成の他の例を示す図である。 The configuration of the adjustment section 35 is not limited to the example shown in FIG. 1. For example, the adjustment unit 35 may include a disturbance observer instead of the subtracter 70 and the waveform shaping controller 71. FIG. 2 is a diagram showing another example of the configuration of the adjustment section 35 in the motor control device 1 according to the embodiment.
 図2に示す調整部35は、減算器70および波形成形制御器71に代えて、外乱オブザーバ73を備える点で、図1に示す調整部35と異なる。外乱オブザーバ73は、3相電流指令IUVW と3相電流値IUVWとの差分から外乱を推定する。外乱オブザーバ73は、推定した外乱を3相電圧調整値VajUVWとして演算器72に出力する。 The adjustment section 35 shown in FIG. 2 differs from the adjustment section 35 shown in FIG. 1 in that it includes a disturbance observer 73 instead of the subtracter 70 and the waveform shaping controller 71. The disturbance observer 73 estimates the disturbance from the difference between the three-phase current command I UVW * and the three-phase current value I UVW . The disturbance observer 73 outputs the estimated disturbance to the calculator 72 as a three-phase voltage adjustment value Vaj UVW .
 外乱オブザーバ73は、外乱として、U相、V相、およびW相の各々に生じる外乱を推定する。外乱オブザーバ73は、U相電流指令I とU相電流値Iとに基づいて、U相の外乱を推定し、V相電流指令I とV相電流値Iとに基づいて、V相の外乱を推定し、W相電流指令I とW相電流値Iとに基づいて、W相の外乱を推定する。外乱オブザーバ73は、例えば、制御対象であるモータ2の逆モデルによって構成される。 The disturbance observer 73 estimates disturbances occurring in each of the U phase, V phase, and W phase as disturbances. The disturbance observer 73 estimates the U-phase disturbance based on the U-phase current command I U * and the U-phase current value I U , and estimates the U-phase disturbance based on the V-phase current command I V * and the V-phase current value I V. , the V-phase disturbance is estimated, and the W-phase disturbance is estimated based on the W-phase current command I W * and the W-phase current value I W . The disturbance observer 73 is configured by, for example, an inverse model of the motor 2 that is the controlled object.
 PWM制御部36は、調整部35による調整後の3相電圧指令VUVW **に基づいて、インバータ回路10をPWM制御する。例えば、PWM制御部36は、調整部35による調整後のU相電圧指令V **、V相電圧指令V **、W相電圧指令V **の各々と搬送波との比較結果に基づいて、U相、V相、およびW相の各々のPWM信号を生成する。 The PWM control section 36 performs PWM control on the inverter circuit 10 based on the three-phase voltage command V UVW ** after adjustment by the adjustment section 35 . For example, the PWM control unit 36 compares each of the U-phase voltage command V U ** , V-phase voltage command V V ** , and W-phase voltage command V W ** after adjustment by the adjustment unit 35 with the carrier wave. Based on this, U-phase, V-phase, and W-phase PWM signals are generated.
 PWM制御部36は、生成したU相、V相、およびW相の各々のPWM信号に基づいて、U相、V相、およびW相の各々のゲート信号を生成する。PWM制御部36は、生成したゲート信号をインバータ回路10に出力することで、インバータ回路10を制御する。
PWM制御部36は、パルス幅が変調されたゲート信号をインバータ回路10に出力する。
The PWM control unit 36 generates gate signals for each of the U-phase, V-phase, and W-phase based on the generated PWM signals for each of the U-phase, V-phase, and W-phase. The PWM control unit 36 controls the inverter circuit 10 by outputting the generated gate signal to the inverter circuit 10.
The PWM control unit 36 outputs a gate signal whose pulse width is modulated to the inverter circuit 10.
 ここで、調整部35による3相電圧指令VUVW の調整の効果について図3および図4を参照して説明する。図3は、実施形態に係るモータ制御装置1の調整部35による3相電圧指令VUVW の調整がない場合にモータ2に流れる3相電流のうちの1相の相電流の波形の一例を示す図である。図4は、実施形態に係るモータ制御装置1の調整部35による3相電圧指令VUVW の調整がある場合のモータ2に流れる3相電流のうちの1相の相電流の波形の一例を示す図である。 Here, the effect of adjusting the three-phase voltage command V UVW * by the adjusting section 35 will be explained with reference to FIGS. 3 and 4. FIG. 3 shows an example of the waveform of one of the three-phase currents flowing through the motor 2 when the three-phase voltage command V UVW * is not adjusted by the adjustment unit 35 of the motor control device 1 according to the embodiment. FIG. FIG. 4 shows an example of the waveform of one phase current of the three phase currents flowing through the motor 2 when the three phase voltage command V UVW * is adjusted by the adjustment unit 35 of the motor control device 1 according to the embodiment. FIG.
 図3および図4で示される1相の相電流は、例えば、U相電流であるが、V相電流およびW相電流についても同様の波形になる。図3および図4では、誘導電圧高調波として、5次、7次、11次、13次、23次、および25次の高調波が生じるモータモデルを用いたシミュレーションによって得られる結果が示される。なお、基本波成分(1次)は、モータ2の駆動周波数(電気角)である。 The one-phase phase current shown in FIGS. 3 and 4 is, for example, a U-phase current, but the V-phase current and W-phase current also have similar waveforms. 3 and 4 show results obtained by simulation using a motor model that generates 5th, 7th, 11th, 13th, 23rd, and 25th harmonics as induced voltage harmonics. Note that the fundamental wave component (first order) is the drive frequency (electrical angle) of the motor 2.
 調整部35による3相電圧指令VUVW の調整を行わない単純なベクトル制御でモータ2を制御した場合、図3に示すように、モータ2に流れる相電流の波形は、複数次数の高調波の成分を多く含んでおり、歪みが大きい波形である。モータ2に流れる相電流に含まれる高調波の成分が大きいほどモータ2の鉄損が増えて効率が悪化する。 When the motor 2 is controlled by simple vector control without adjusting the three-phase voltage command V UVW * by the adjustment unit 35, the waveform of the phase current flowing through the motor 2 is a harmonic of multiple orders, as shown in FIG. The waveform contains many components and has large distortion. The larger the harmonic component contained in the phase current flowing through the motor 2, the greater the core loss of the motor 2, and the worse the efficiency.
 一方、調整部35によって3相電圧指令VUVW の調整を行ったベクトル制御でモータ2を制御した場合、図4に示すように、図3に示す相電流の波形に比べて、正弦波形に近づいている。 On the other hand, when the motor 2 is controlled by vector control in which the three-phase voltage command V UVW * is adjusted by the adjustment unit 35, as shown in FIG. It is approaching.
 図5は、実施形態に係るモータ制御装置1の調整部35による3相電圧指令VUVW の調整の有無における5次、7次、11次、13次、23次、および25次の高調波の含有率を示す図である。図5に示すように、調整部35による3相電圧指令VUVW の調整がある場合、調整部35による3相電圧指令VUVW の調整がない場合に比べて、5次、7次、11次、13次、23次、および25次の全ての次数の高調波の成分が大幅に低減されている。そのため、モータ制御装置1では、各相電流の波形を正弦波形に近づけることができ、モータ2の鉄損を低減し効率を向上させることができる。 FIG. 5 shows the 5th, 7th, 11th, 13th, 23rd, and 25th harmonics when the three-phase voltage command V UVW * is adjusted by the adjustment unit 35 of the motor control device 1 according to the embodiment. It is a figure showing the content rate of. As shown in FIG. 5, when the three-phase voltage command V UVW * is adjusted by the adjustment unit 35, the fifth-order , seventh-order, seventh- order , All harmonic components of the 11th, 13th, 23rd, and 25th orders are significantly reduced. Therefore, in the motor control device 1, the waveform of each phase current can be made close to a sine waveform, and the iron loss of the motor 2 can be reduced and the efficiency can be improved.
 なお、上述した例では、5次、7次、11次、13次、23次、および25次の高調波が生じるモータモデルを用いたシミュレーションによって得られる結果を例に挙げて説明したが、モータ制御装置1は、他の次数の高調波が生じるモータについても同様に各相電流の波形を正弦波形に近づけることができる。 In addition, in the above example, the results obtained by simulation using a motor model that generates harmonics of the 5th, 7th, 11th, 13th, 23rd, and 25th order were explained as an example. The control device 1 can similarly bring the waveform of each phase current close to a sine waveform for motors in which harmonics of other orders occur.
 また、モータ制御装置1は、抑制する高調波の次数が限定されないことから、インバータ回路10の短絡防止のためのデッドタイムの存在に起因する高調波についても抑制でき、各相電流の波形を正弦波形に近づけることができる。また、モータ制御装置1では、デッドタイムの存在に起因する高調波を抑制することができることから、PWM制御部36においてデットタイム補償の処理を追加することなく、各相電流の波形を正弦波形に近づけることができる。 Furthermore, since the order of the harmonics to be suppressed is not limited, the motor control device 1 can also suppress harmonics caused by the presence of dead time to prevent short circuits in the inverter circuit 10, and the waveform of each phase current can be made sinusoidal. It can approximate the waveform. Furthermore, since the motor control device 1 can suppress harmonics caused by the presence of dead time, the waveform of each phase current can be changed to a sine waveform without adding dead time compensation processing in the PWM control unit 36. You can get close.
 図6は、実施形態にかかるモータ制御装置1の制御部30のハードウェア構成の一例を示す図である。図6に示すように、制御部30は、プロセッサ101と、メモリ102と、入出力部103と、バス104とを備えるコンピュータを含む。プロセッサ101、メモリ102、および入出力部103は、バス104によって互いに情報の送受信が可能である。 FIG. 6 is a diagram showing an example of the hardware configuration of the control unit 30 of the motor control device 1 according to the embodiment. As shown in FIG. 6, the control unit 30 includes a computer including a processor 101, a memory 102, an input/output unit 103, and a bus 104. The processor 101, memory 102, and input/output unit 103 can exchange information with each other via a bus 104.
 プロセッサ101は、メモリ102に記憶されたモータ制御プログラムを読み出して実行することによって、制御部30の機能を実行する。プロセッサ101は、例えば、処理回路の一例であり、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、およびシステムLSI(Large Scale Integration)のうち1つ以上を含む。 The processor 101 executes the functions of the control unit 30 by reading and executing the motor control program stored in the memory 102. The processor 101 is an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
 メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、およびEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)のうち1つ以上を含む。入出力部103は、例えば、AD変換器、DA変換器、および入出力ポートなどを含む。 The memory 102 includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). one or more of (emory) include. The input/output unit 103 includes, for example, an AD converter, a DA converter, an input/output port, and the like.
 なお、モータ制御装置1は、コンピュータが読み取り可能なモータ制御プログラムが記録された記録媒体からモータ制御プログラムを読み出すデータ読出部を備える構成であってもよい。プロセッサ101は、データ読出部を制御して記録媒体に記録されたモータ制御プログラムをデータ読出部から取得し、取得したモータ制御プログラムをメモリ102に記憶させることができる。記録媒体は、例えば、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルメモリ、光ディスク、コンパクトディスク、およびDVD(Digital Versatile Disc)のうち1つ以上を含む。 Note that the motor control device 1 may be configured to include a data reading unit that reads a motor control program from a recording medium on which a computer-readable motor control program is recorded. The processor 101 can control the data reading section to obtain the motor control program recorded on the recording medium from the data reading section, and store the obtained motor control program in the memory 102 . The recording medium includes, for example, one or more of a nonvolatile or volatile semiconductor memory, a magnetic disk, a flexible memory, an optical disk, a compact disk, and a DVD (Digital Versatile Disc).
 また、モータ制御装置1は、ネットワークを介してサーバからモータ制御プログラムを受信する通信部を備えていてもよい。この場合、プロセッサ101は、通信部を介してサーバからモータ制御プログラムを取得し、取得したモータ制御プログラムをメモリ102に記憶させることができる。 Additionally, the motor control device 1 may include a communication unit that receives a motor control program from a server via a network. In this case, the processor 101 can acquire the motor control program from the server via the communication unit and store the acquired motor control program in the memory 102.
 また、制御部30は、ASIC(Application Specific Integrated Circuit)およびFPGA(Field Programmable Gate Array)などの集積回路を含んでいてもよい。 Furthermore, the control unit 30 may include integrated circuits such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array).
 上述してきたように、実施形態に係るモータ制御装置1は、取得部31と、第1変換部32と、生成部33と、第2変換部34と、調整部35とを備える。取得部31は、モータ2に流れる3相電流の検出値である3相電流値IUVWを取得する。第1変換部32は、3相電流値IUVWをdq軸電流値Idqに変換する。生成部33は、dq軸電流値Idqとdq軸電流指令Idq との差に基づいて、3相電圧指令VUVW を生成する。
第2変換部34は、dq軸電流指令Idq を3相電流指令IUVW に変換する。調整部35は、3相電流指令IUVW と3相電流値IUVWとの差を低減する3相電圧調整値VajUVWを生成し、生成した3相電圧調整値VajUVWに基づいて、3相電圧指令VUVW を調整する。これにより、モータ制御装置1は、特定の次数以外の次数の高調波の成分も抑制することができ、非特許文献1に記載の技術に比べて、モータ2に流れる電流の波形をより正弦波形に近づけることができる。
As described above, the motor control device 1 according to the embodiment includes the acquisition section 31, the first conversion section 32, the generation section 33, the second conversion section 34, and the adjustment section 35. The acquisition unit 31 acquires a three-phase current value I UVW that is a detected value of the three-phase current flowing through the motor 2 . The first conversion unit 32 converts the three-phase current value I UVW into a dq-axis current value I dq . The generation unit 33 generates a three-phase voltage command V UVW * based on the difference between the dq-axis current value I dq and the dq-axis current command I dq * .
The second conversion unit 34 converts the dq-axis current command I dq * into a three-phase current command I UVW * . The adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW that reduces the difference between the three-phase current command I UVW * and the three-phase current value I UVW , and based on the generated three-phase voltage adjustment value Vaj UVW , Adjust the phase voltage command V UVW * . As a result, the motor control device 1 can also suppress harmonic components of orders other than a specific order, and the waveform of the current flowing through the motor 2 can be made more sinusoidal than the technique described in Non-Patent Document 1. can be approached.
 また、調整部35は、3相電流指令IUVW と3相電流値IUVWとの差に対して比例制御または比例積分制御を行って3相電圧調整値VajUVWを生成する。これにより、モータ制御装置1は、3相電圧調整値VajUVWを精度よく生成することができる。 Further, the adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW by performing proportional control or proportional-integral control on the difference between the three-phase current command I UVW * and the three-phase current value I UVW . Thereby, the motor control device 1 can accurately generate the three-phase voltage adjustment value Vaj UVW .
 また、調整部35は、3相電流指令IUVW と3相電流値IUVWとに基づいて3相電圧調整値VajUVWを出力する外乱オブザーバ73を用いて3相電圧調整値VajUVWを生成する。これにより、モータ制御装置1は、3相電圧調整値VajUVWを精度よく生成することができる。 Further, the adjustment unit 35 generates a three-phase voltage adjustment value Vaj UVW using a disturbance observer 73 that outputs a three-phase voltage adjustment value Vaj UVW based on the three-phase current command I UVW * and the three-phase current value I UVW . do. Thereby, the motor control device 1 can accurately generate the three-phase voltage adjustment value Vaj UVW .
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の特許請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Indeed, the embodiments described above may be implemented in various forms. Moreover, the above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
 1 モータ制御装置、2 モータ、3 位置検出装置、10 インバータ回路、20 電流センサ、30 制御部、31 取得部、32 第1変換部、33 生成部、34 第2変換部、35 調整部、36 PWM制御部、40 3相-2相変換器、41 αβ-dq変換器、50,70 減算器、51 電流制御器、52,60 dq-αβ変換器、53,61 2相-3相変換器、71 波形成形制御器、72 演算器、73 外乱オブザーバ、100 モータモジュール 1 Motor control device, 2 Motor, 3 Position detection device, 10 Inverter circuit, 20 Current sensor, 30 Control unit, 31 Acquisition unit, 32 First conversion unit, 33 Generation unit, 34 Second conversion unit, 35 Adjustment unit, 36 PWM control unit, 40 3-phase to 2-phase converter, 41 αβ-dq converter, 50, 70 subtractor, 51 current controller, 52, 60 dq-αβ converter, 53, 61 2-phase to 3-phase converter , 71 Waveform shaping controller, 72 Arithmetic unit, 73 Disturbance observer, 100 Motor module

Claims (6)

  1.  モータに流れる3相電流の検出値である3相電流値を取得する取得部と、
     前記3相電流値をdq軸電流値に変換する第1変換部と、
     前記dq軸電流値とdq軸電流指令との差に基づいて、3相電圧指令を生成する生成部と、
     前記dq軸電流指令を3相電流指令に変換する第2変換部と、
     前記3相電流指令と前記3相電流値との差を低減する3相電圧調整値を生成し、生成した前記3相電圧調整値に基づいて、前記3相電圧指令を調整する調整部と、を備える
     ことを特徴とするモータ制御装置。
    an acquisition unit that acquires a three-phase current value that is a detected value of the three-phase current flowing through the motor;
    a first conversion unit that converts the three-phase current value into a dq-axis current value;
    a generation unit that generates a three-phase voltage command based on the difference between the dq-axis current value and the dq-axis current command;
    a second conversion unit that converts the dq-axis current command into a three-phase current command;
    an adjustment unit that generates a three-phase voltage adjustment value that reduces a difference between the three-phase current command and the three-phase current value, and adjusts the three-phase voltage command based on the generated three-phase voltage adjustment value; A motor control device comprising:
  2.  前記調整部は、
     前記3相電流指令と前記3相電流値との差に対して比例制御または比例積分制御を行って前記3相電圧調整値を生成する
     ことを特徴とする請求項1に記載のモータ制御装置。
    The adjustment section is
    The motor control device according to claim 1, wherein the three-phase voltage adjustment value is generated by performing proportional control or proportional-integral control on the difference between the three-phase current command and the three-phase current value.
  3.  前記調整部は、
     前記3相電流指令と前記3相電流値とに基づいて前記3相電圧調整値を出力する外乱オブザーバを用いて前記3相電圧調整値を生成する
     ことを特徴とする請求項1に記載のモータ制御装置。
    The adjustment section is
    The motor according to claim 1, wherein the three-phase voltage adjustment value is generated using a disturbance observer that outputs the three-phase voltage adjustment value based on the three-phase current command and the three-phase current value. Control device.
  4.  請求項1~3のいずれか1つに記載のモータ制御装置と、前記モータとを備える
     ことを特徴とするモータモジュール。
    A motor module comprising the motor control device according to claim 1 and the motor.
  5.  モータに流れる3相電流の検出値である3相電流値を取得する取得手順と、
     前記3相電流値をdq軸電流値に変換する第1変換手順と、
     前記dq軸電流値とdq軸電流指令との差に基づいて、3相電圧指令を生成する生成手順と、
     前記dq軸電流指令を3相電流指令に変換する第2変換手順と、
     前記3相電流指令と前記3相電流値との差を低減する3相電圧調整値を生成し、生成した前記3相電圧調整値に基づいて、前記3相電圧指令を調整する調整手順と、をコンピュータに実行させる
     ことを特徴とするモータ制御プログラム。
    an acquisition procedure for acquiring a three-phase current value that is a detected value of the three-phase current flowing through the motor;
    a first conversion procedure of converting the three-phase current value into a dq-axis current value;
    a generation procedure for generating a three-phase voltage command based on the difference between the dq-axis current value and the dq-axis current command;
    a second conversion procedure of converting the dq-axis current command into a three-phase current command;
    An adjustment procedure of generating a three-phase voltage adjustment value that reduces a difference between the three-phase current command and the three-phase current value, and adjusting the three-phase voltage command based on the generated three-phase voltage adjustment value; A motor control program that causes a computer to execute the following.
  6.  モータに流れる3相電流の検出値である3相電流値を取得する取得工程と、
     前記3相電流値をdq軸電流値に変換する第1変換工程と、
     前記dq軸電流値とdq軸電流指令との差に基づいて、3相電圧指令を生成する生成工程と、
     前記dq軸電流指令を3相電流指令に変換する第2変換工程と、
     前記3相電流指令と前記3相電流値との差を低減する3相電圧調整値を生成し、生成した前記3相電圧調整値に基づいて、前記3相電圧指令を調整する調整工程と、を含む
     ことを特徴とするモータ制御方法。
    an acquisition step of acquiring a three-phase current value that is a detected value of the three-phase current flowing through the motor;
    a first conversion step of converting the three-phase current value into a dq-axis current value;
    a generation step of generating a three-phase voltage command based on the difference between the dq-axis current value and the dq-axis current command;
    a second conversion step of converting the dq-axis current command into a three-phase current command;
    an adjustment step of generating a three-phase voltage adjustment value that reduces a difference between the three-phase current command and the three-phase current value, and adjusting the three-phase voltage command based on the generated three-phase voltage adjustment value; A motor control method characterized by comprising:
PCT/JP2023/008773 2022-03-11 2023-03-08 Motor control device, motor module, motor control program, and motor control method WO2023171703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022038543 2022-03-11
JP2022-038543 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171703A1 true WO2023171703A1 (en) 2023-09-14

Family

ID=87935161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008773 WO2023171703A1 (en) 2022-03-11 2023-03-08 Motor control device, motor module, motor control program, and motor control method

Country Status (1)

Country Link
WO (1) WO2023171703A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100478A1 (en) * 2018-11-15 2020-05-22 澤藤電機株式会社 Motor control device and motor control method
JP2020096425A (en) * 2018-12-11 2020-06-18 株式会社東芝 Controller of permanent magnet synchronous motor, microcomputer, motor system, and operating method of permanent magnet synchronous motor
JP2022014382A (en) * 2020-07-06 2022-01-19 株式会社Soken Electric power conversion device and electric power conversion control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100478A1 (en) * 2018-11-15 2020-05-22 澤藤電機株式会社 Motor control device and motor control method
JP2020096425A (en) * 2018-12-11 2020-06-18 株式会社東芝 Controller of permanent magnet synchronous motor, microcomputer, motor system, and operating method of permanent magnet synchronous motor
JP2022014382A (en) * 2020-07-06 2022-01-19 株式会社Soken Electric power conversion device and electric power conversion control device

Similar Documents

Publication Publication Date Title
Park et al. A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity
CN108123653B (en) Adaptive pulse width modulation for motor control systems
Wang et al. DSP-based control of sensorless IPMSM drives for wide-speed-range operation
Hoang et al. Online control of IPMSM drives for traction applications considering machine parameter and inverter nonlinearities
US11139771B2 (en) Control device and control method for AC motor and AC motor drive system
JP6617500B2 (en) Electric power steering control method, electric power steering control device, electric power steering device and vehicle
Arias et al. Use of a matrix converter to enhance the sensorless control of a surface-mount permanent-magnet AC motor at zero and low frequency
JP5485232B2 (en) Switching circuit control device
Lu et al. Analysis and compensation of sampling errors in TPFS IPMSM drives with single current sensor
JP2018523462A (en) Motor controller and motor system
JP7158573B2 (en) POWER CONVERSION DEVICE AND ELECTRIC VEHICLE SYSTEM INCLUDING THE SAME
JP2011211818A (en) Power conversion equipment, method of converting power, and motor drive system
Mink et al. Feedback control of high-speed PMSM with synchronous optimal PWM
WO2023171703A1 (en) Motor control device, motor module, motor control program, and motor control method
JP3939481B2 (en) AC motor control device
JP5573580B2 (en) Rotating machine control device and rotating machine control system
CN114270695B (en) Estimation device and drive device for ac motor
JP5954120B2 (en) Motor control device, motor control method, and control program
JP2018126021A (en) Motor controller
JPWO2017010142A1 (en) Power converter
Pai et al. Dead-time effects compensation for PMSM drives-An adaptive linear neuron approach
Al-Badrani Flux Observation of Induction Machine Based on the Enhanced Sensorless Voltage Model
JP7413926B2 (en) Control equipment and power conversion equipment
JP7357112B2 (en) Rotating machine control device
JP7362003B2 (en) Rotating machine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766879

Country of ref document: EP

Kind code of ref document: A1