WO2024012742A1 - Verfahren und vorrichtung zum betrieb einer elektrischen mehrphasigen maschine mit einem winkelgeber in einem fahrzeug - Google Patents

Verfahren und vorrichtung zum betrieb einer elektrischen mehrphasigen maschine mit einem winkelgeber in einem fahrzeug Download PDF

Info

Publication number
WO2024012742A1
WO2024012742A1 PCT/EP2023/062250 EP2023062250W WO2024012742A1 WO 2024012742 A1 WO2024012742 A1 WO 2024012742A1 EP 2023062250 W EP2023062250 W EP 2023062250W WO 2024012742 A1 WO2024012742 A1 WO 2024012742A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
rotor position
control
rotor
machine
Prior art date
Application number
PCT/EP2023/062250
Other languages
English (en)
French (fr)
Inventor
Erick Falcon Alva
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2024012742A1 publication Critical patent/WO2024012742A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/02Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for optimising the efficiency at low load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current

Definitions

  • the invention relates to a method and a device for operating an electrical multi-phase machine with an angle sensor in a vehicle.
  • the invention further relates to a drive train with a corresponding device and a vehicle with a drive train as well as a computer program and a computer-readable medium.
  • permanent magnet synchronous motors are used in automotive applications, hybrid vehicles or battery electric vehicles. Permanent magnets are attached to the rotor, which create a constant magnetic field.
  • the stator preferably has a three-phase winding. When each of the phases is excited with a sinusoidal voltage with a 120° phase shift between them, this creates a rotating magnetic field. The constant magnetic field of the rotor will follow the rotating magnetic field and rotation of the rotor will result. Increasing the frequency of the applied voltage increases the speed of the rotor. Increasing the voltage amplitude increases the stator current. This increases the stator magnetic field and, as a result, the torque.
  • the motor speed and the torque are preferably regulated by means of field-oriented control.
  • Part of the field-oriented control is the Clark transformation.
  • the phase currents to be regulated are transferred to two current vectors in a two-axis coordinate system, where the resting coordinate system is equal to the resting stator is chosen.
  • the park transformation or d/q transformation converts the phase currents into two current vectors in a two-axis coordinate system with the axes d and q.
  • the d/q coordinate system rotates with the rotor and the current value pair id, iq then represent variables that are constant over time.
  • Iq the transverse current or also called the quadrature current
  • Id the longitudinal current or also called the direct current
  • Id is specifically used to weaken the rotor field at high speeds, thereby avoiding high induced voltage on the stator.
  • the rotor angle is not possible to use the d/q transformation as part of the control of the electrical machine.
  • a determined rotor angle is required so that the regulated current vector of the stator is always set perpendicular to the magnetic field of the permanent magnets of the rotor. This results in maximum torque efficiency.
  • the electrical machine rotates in the wrong direction if the electrical machine is operated using field-oriented control depending on the rotor angle, whereby the determined rotor angle deviates from the actual rotor angle by more than 180°.
  • the rotor angle is preferably determined by measuring the position of the stator current vector. However, this determination is only possible as long as the longitudinal current Id is large enough.
  • a method for operating an electrical multi-phase machine with an angle sensor in a vehicle includes the steps: determining the rotor position of the rotor of the electrical machine depending on the signal from the angle sensor; Controlling the electrical machine by means of a, preferably field-oriented, control depending on the detected rotor position; Determining the unavailability of the angle encoder signal; Controlling the electrical machine in a fault operating mode.
  • the method is characterized by the steps: Controlling the electrical machine using the control depending on the last detected rotor position; Specifying a minimum longitudinal current during further operation of the electrical machine; Determining the rotor position of the rotor of the electrical machine depending on the stator current vector; Controlling the electrical machine by means of the control depending on the rotor position detected as a function of the stator current vector.
  • a method for operating an electrical multi-phase machine with an angle sensor in a vehicle is provided: The rotor position is determined using a signal from an angle sensor.
  • the electrical machine is controlled by means of a control system, preferably a field-oriented control system.
  • the multi-phase electrical machine is preferably controlled by supplying the multi-phase electrical machine with a multi-phase alternating voltage, which is provided on the output side of the inverter by an inverter controlled by the control system.
  • the inverter is preferably connected on the input side to a DC voltage source, a battery or traction battery.
  • the input-side direct voltage is converted by means of the inverter, depending on the control, into a multi-phase alternating voltage provided on the output side.
  • the control takes place depending on the determined rotor position.
  • unavailability of the angle encoder signal is determined.
  • the electrical machine is controlled in an error operating mode.
  • the error operating mode includes the control of the electrical machine by means of the control depending on the last determined rotor position of the angle encoder.
  • the control preferably adopts the last available rotor position value angle encoder.
  • A, preferably minimal, longitudinal current is specified for further operation of the electrical machine.
  • a longitudinal current is thus specified for further operation, preferably permanently during the error operating mode.
  • the specified longitudinal current is not exceeded during further operation of the electrical machine. This ensures that a stator current vector can always be determined based on the measurable phase currents.
  • the rotor position of the electrical machine is determined depending on the, preferably current, stator current vector.
  • the phase currents are determined, preferably measured.
  • the stator-oriented currents (alpha, beta) are determined from the determined phase currents and the stator current vector is determined from this.
  • the direction of the stator current vector is a measure of the rotor position.
  • the electrical machine is controlled depending on the determined rotor position based on the stator current vector. Since a longitudinal current is always specified in the fault operating mode, phase currents and thus the stator current vector can be determined continuously in the fault operating mode. This makes it possible to continuously determine the rotor position in error operating mode, even when the rotor of the electrical machine is at a standstill.
  • a control of the electric machine for a torque to be set is determined depending on the rotor position determined in the error operating mode. This advantageously prevents unwanted acceleration.
  • An error operating mode is advantageously provided, which enables the electrical machine to be controlled even if the angle sensor is defective.
  • a requested change in a torque setpoint is limited to a gradient that is smaller than a predeterminable first gradient value, or a requested change in a setpoint current value is limited to one Gradient is limited, which is smaller than a predeterminable second gradient value.
  • the gradients of the setpoint changes for torque or setpoint current are limited using two independent threshold values. The dynamics of the control are advantageously reduced and thus a more stable control is provided. Safer operation of the electrical machine is advantageously made possible.
  • a requested braking takes place using a hydraulic brake, or a requested acceleration is limited to a value that is smaller than a predeterminable third limit value .
  • braking is implemented using a hydraulic brake. This advantageously ensures that braking is implemented in accordance with a desired braking torque.
  • the accuracy and dynamics of the control of the control of the electric machine are reduced, so that potentially safety-relevant braking is advantageously implemented by means of the hydraulic brake, which is independent of the electric machine and functions without problems.
  • an acceleration is requested, this is limited to a value that is smaller than a predeterminable third limit value.
  • the dynamics of the control are advantageously reduced and thus a more stable control is provided. Safer operation of the electrical machine is advantageously made possible.
  • control is a field-oriented control, a block commutation control or a space vector control.
  • determining unavailability includes at least one of the following steps: determining that the signal is faulty; Determine that the signal is not being transmitted; Determine that the angle encoder is faulty; Determine that the angle encoder is not present.
  • An angle encoder for example a resolver, preferably comprises two coils in which a sine or cosine-shaped voltage is induced when the rotor rotates.
  • the rotor position is preferably determined depending on the voltage amplitudes.
  • Monitoring software preferably carries out plausibility checks for the values of the voltage signals. This preferably also includes electrical diagnoses, such as a short circuit to the battery, to ground or an open line. If implausible signals occur, the unavailability of the angle encoder signal is detected.
  • Some method steps are advantageously provided which enable the unavailability of the angle encoder signal to be determined.
  • determining the rotor position of the rotor of the electrical machine as a function of the stator current vector includes at least one of the following steps: determining the phase currents of the electrical machine; Determining the stator current vector from the phase currents using the Clark transformation; Determining the rotor position as the direction of the stator current vector.
  • the invention further relates to a device for operating an electrical multi-phase machine with an angle sensor in a vehicle.
  • the device is set up to carry out the methods described above.
  • a device is advantageously provided which is set up to control the electrical machine in an error operating mode even if the angle encoder is defective
  • the invention further relates to a drive train with a described device and in particular with power electronics and/or an electric drive.
  • a drive train is used, for example, to drive an electric vehicle.
  • the method and the device enable safe operation of the drive train.
  • the invention further relates to a vehicle with a described drive train.
  • a vehicle is thus advantageously provided which comprises a device with which the electrical machine can be controlled in an error operating mode even if the angle sensor is defective.
  • the invention further relates to a computer program comprising commands which cause the device described to carry out the method steps described.
  • the invention further relates to a computer-readable medium comprising commands which, when executed by the device described, cause it to carry out the method steps described.
  • FIG. 1 shows a schematic representation of a device for operating an electrical multi-phase machine with an angle sensor in a vehicle
  • Figure 2 shows a schematically illustrated flow chart for a method for operating an electrical multi-phase machine with an angle sensor in a vehicle.
  • the device 100 is set up to determine the rotor position of the rotor of the electrical machine 110 as a function of the signal from the angle encoder 120; to control the electrical machine 110 by means of a control 130 depending on the detected rotor position; to determine the unavailability of the signal of the angle encoder 120 and then to control the electrical machine 110 in an error operating mode.
  • the device 100 is set up to control the electrical machine 110 by means of the control 130 depending on the last determined rotor position; to specify a minimum longitudinal current for further operation of the electrical machine 110; to determine the rotor position of the rotor of the electrical machine 110 as a function of the stator current vector; and to control the electrical machine 110 by means of the control 130 depending on the rotor position detected as a function of the stator current vector.
  • the multi-phase electrical machine 110 is preferably controlled by supplying the multi-phase electrical machine 110 with a multi-phase alternating voltage, which is provided on the output side of the inverter by an inverter controlled by the control 130.
  • the inverter is preferably connected on the input side to a DC voltage source 140, a battery or traction battery.
  • the control 130 is preferably integrated into the inverter.
  • the vehicle 300 includes a drive train 200.
  • the drive train 200 includes a device 100 and in particular the electric machine 110, an energy source 140 and/or an inverter.
  • the illustration shows an example of a vehicle with four wheels 302, whereby the invention can be used equally in any vehicle with any number of wheels on land, on water and in the air.
  • Figure 2 shows a schematically illustrated flow chart for a method for operating an electrical multi-phase machine with an angle sensor in a vehicle.
  • the method 400 begins with step 405.
  • step 410 the rotor position of the rotor of the electrical machine 110 is determined as a function of the signal from the angle sensor 120.
  • step 420 by controlling the electrical machine 110 by means of a control 130 depending on the detected rotor position.
  • step 430 the unavailability of the signal from the angle encoder 120 is determined.
  • the electrical machine 110 is then activated in a fault operating mode in step 440.
  • the electrical machine 110 is controlled by means of the control 130 depending on the last determined rotor position in step 450.
  • step 460 a minimum longitudinal current is specified for further operation of the electrical machine 110.
  • the determination of the rotor position of the rotor of the electrical machine 110 as a function of the stator current vector takes place in step 470.
  • step 480 the electrical machine 110 is controlled by means of the control 130 as a function of the rotor position detected as a function of the stator current vector.
  • the process ends with step 485.
  • the method preferably jumps back to step 410 if the unavailability of the signal from the angle encoder 120 is not determined in step 430.
  • determine 430 the unavailability of the signal from the angle encoder at least one of the steps can preferably: determine 432 that the signal is faulty; determining 434 that the signal is not being transmitted; Determine 436 that the angle encoder is faulty; or determining 438 that the angle encoder is not present.
  • At least one of the steps can preferably be: determining 472 the phase currents of the electrical machine, determining 474 the stator current vector using the Clark transformation from the phase currents and or determining 476 the rotor position as a direction of the stator current vector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Verfahren (400) zum Betrieb einer elektrischen mehrphasigen Maschine (110) mit einem Winkelgeber (120) in einem Fahrzeug (300), wobei ein Fehlerbetriebs- modus folgende Schritte umfasst: Ansteuern (450) der elektrischen Maschine (110) mittels der Regelung (130) in Abhängigkeit der zuletzt ermittelten Rotorlage; Vorgeben (460) eines minimalen Längsstrom (Id) bei dem weiteren Betrieb der elektrischen Maschine (110); Ermitteln (470) der Rotorlage des Rotors der elektrischen Maschine (110) in Abhängigkeit des Statorstromvektors; Ansteuern (480) der elektrischen Maschine (110) mittels der Regelung (130) in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage.

Description

Beschreibung
Titel
Verfahren und Vorrichtung zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug. Ferner betrifft die Erfindung einen Antriebsstrang mit einer entsprechenden Vorrichtung und ein Fahrzeug mit einem Antriebsstrang sowie ein Computerprogramm und ein computerlesbares Medium.
Stand der Technik
Aufgrund ihrer Effizienz und Leistungsdichte werden Permanentmagnet-Synchronmotoren (PSM) in Kraftfahrzeuganwendungen, Hybrid-Fahrzeuge oder Batterie elektrische Fahrzeuge, verwendet. Am Rotor sind Permanentmagnete angebracht, die ein konstantes Magnetfeld erzeugen. Der Stator weist bevorzugt eine dreiphasige Wicklung auf. Wenn jede der Phasen mit einer sinusförmigen Spannung mit 120° Phasenverschiebung zwischen ihnen angeregt wird, erzeugt dies ein rotierendes Magnetfeld. Das konstante Magnetfeld des Rotors wird dem rotierenden Magnetfeld folgen und eine Rotation des Rotors resultiert. Eine Erhöhung der Frequenz der angelegten Spannung erhöht die Drehzahl des Rotors. Eine Erhöhung der Spannungsamplitude erhöht den Statorstrom. Somit wird das Statormagnetfeld und resultierend damit das Drehmoment erhöht.
Bevorzugt werden mittels einer feldorientierten Regelung die Motordrehzahl und das Drehmoment geregelt. Ein Teil der feldorientierten Regelung ist die Clark- Transformation. Mittels der Clark-Transformation werden die zu regelnden Phasenströme auf zwei Stromvektoren in einem zweiachsigen Koordinatensystem überführt, wobei das ruhende Koordiantensystem gleich dem ruhenden Stator gewählt wird. Mittels eines ermittelten Rotorwinkels zwischen der Rotorlage und dem Stator, bevorzugt mittels eines Resolvers, überführt die Park-Transformation oder d/q Transformation die Phasenströme in zwei Stromvektoren in einem zweiachsigen Koordinatensystem mit den Achsen d und q. Das d/q-Koordinatensys- tem rotiert im stationären Fall mit dem Rotor und das Strom-Wertepaar id, iq stellt dann zeitlich konstante Größen dar. Diese Ströme werden iq/id genannt. Iq, der Querstrom oder auch der Quadraturstrom genannt, ist die Komponente des Stroms, der das Statorfeld senkrecht zum Radius des Rotors erzeugt und so das Drehmoment erzeugt. Id, der Längsstrom oder auch der Gleichstrom genannt, ist die Komponente des Stroms, die parallel zum Radius des Rotors oder der Richtung der Permanentmagnete wirkt. Id wird speziell dazu verwendet, das Rotorfeld bei hohen Drehzahlen zu schwächen, wodurch eine hohe induzierte Spannung am Stator vermieden wird.
Ist eine Ermittlung des Rotorwinkels nicht möglich, ist die Verwendung der d/q Transformation im Rahmen der Regelung der elektrischen Maschine nicht möglich. Zur feldorientierten Regelung wird ein ermittelter Rotorwinkel benötigt, damit der geregelte Stromvektor des Stators stets senkrecht zum Magnetfeld der Permanentmagnete des Rotors eingestellt wird. Dies führt zu einer maximalen Drehmomenteffizienz. Zusätzlich dreht die elektrische Maschine in die falsche Richtung, falls die elektrische Maschine mittels einer feldorientierten Regelung in Abhängigkeit des Rotorwinkels betrieben wird, wobei der ermittelte Rotorwinkel um mehr als 180° vom tatsächlichen Rotorwinkel abweicht. Bevorzugt wird der Rotorwinkel durch Messen der Position des Statorstromvektors ermittelt. Diese Ermittlung ist jedoch nur möglich, solange der Längstrom Id groß genug ist. In Arbeitspunkten der elektrischen Maschine, in denen beispielsweise zu wenig Drehmoment angefordert wird oder kein Drehmoment oder ein Drehmoment von 0 Nm, ist der Statorstrom minimal oder gleich null und die Ermittlung des Rotorwinkels in Abhängigkeit des Statorstromvektors nicht möglich. Daher werden Lösungen gesucht, die auch in den genannten Arbeitspunkten einer elektrischen Maschine eine Regelung bei Ausfall der Ermittlung des Rotorwinkels ermöglichen. Aus der Druckschrift WO 2020/001945 Al ist ein Verfahren zum Betrieb einer elektrischen mehrphasigen Maschine bekannt.
Offenbarung der Erfindung Es wird ein Verfahren zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug bereitgestellt. Das Verfahren umfasst die Schritte: Ermitteln der Rotorlage des Rotors der elektrischen Maschine in Abhängigkeit des Signals des Winkelgebers; Ansteuern der elektrischen Maschine mittels einer, bevorzugt feldorientierten, Regelung in Abhängigkeit der erfassten Rotorlage; Ermitteln der Nichtverfügbarkeit des Signals des Winkelgebers; Ansteuern der elektrischen Maschine in einem Fehlerbetriebsmodus. Das Verfahren kennzeichnet sich durch die Schritte: Ansteuern der elektrischen Maschine mittels der Regelung in Abhängigkeit der zuletzt erfassten Rotorlage; Vorgeben eines minimalen Längsstrom bei dem weiteren Betrieb der elektrischen Maschine; Ermitteln der Rotorlage des Rotors der elektrischen Maschine in Abhängigkeit des Statorstromvektors; Ansteuern der elektrischen Maschine mittels der Regelung in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage.
Es wird ein Verfahren zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug bereitgestellt: Mittels eines Signals eines Winkelgebers wird die Rotorlage ermittelt. Mittels einer Regelung, bevorzugt einer feldorientierten Regelung wird die elektrische Maschine angesteuert. Bevorzugt erfolgt die Ansteuerung der mehrphasigen elektrischen Maschine mittels Versorgung der mehrphasigen elektrischen Maschine mit einer mehrphasigen Wechselspannung, welche durch einen mittels der Regelung angesteuerten Wechselrichter ausgangsseitig des Wechselrichters bereitgestellt wird. Bevorzugt ist der Wechselrichter eingangsseitig mit einer Gleichspannungsquelle, einer Batterie oder Traktionsbatterie verbunden. Bevorzugt wird die eingangsseitige Gleichspannung mittels des Wechselrichters in Abhängigkeit der Regelung in eine ausgangsseitig bereitgestellte mehrphasige Wechselspannung gewandelt. Die Regelung erfolgt in Abhängigkeit der ermittelten Rotorlage. Weiter wird eine Nichtverfügbarkeit des Signals des Winkelgebers ermittelt. Im Anschluss an die Ermittlung der Nichtverfügbarkeit des Signals des Winkelgebers wird die elektrische Maschine in einem Fehlerbetriebsmodus angesteuert. Der Fehlerbetriebsmodus umfasst die Ansteuerung der elektrischen Maschine mittels der Regelung in Abhängigkeit der zuletzt noch ermittelten Rotorlage des Winkelgebers. Bevorzugt übernimmt dabei die Regelung den zuletzt verfügbaren Rotorlagewert des Winkelgebers. Es wird ein, bevorzugt minimaler, Längsstrom für den weiteren Betrieb der elektrischen Maschine vorgegeben. Somit wird für den weiteren Betrieb, bevorzugt dauerhaft während des Fehlerbetriebsmodus, ein Längsstrom vorgegeben. Der vorgegebene Längsstrom wird bei dem weiteren Betrieb der elektrischen Maschine nicht unterschritten. So wird sichergestellt, dass stets ein Statorstromvektor, basierend auf den messbaren Phasenströmen, ermittelt werden kann. In Abhängigkeit des, bevorzugt aktuellen, Statorstromvektors wird die Rotorlage der elektrischen Maschine ermittelt. Zur Ermittlung des Statorstromvektors werden die Phasenströme ermittelt, bevorzugt gemessen. Mittels der Clark-Transformation werden aus den ermittelten Phasenströme die statororien- tieren Ströme (alpha, beta) ermittelt und daraus der Statorstromvektor bestimmt. Die Richtung des Statorstromvektors ist ein Maß für die Rotorlage. In Abhängigkeit der ermittelten Rotorlage auf Basis des Statorstromvektors wird die elektrische Maschine angesteuert. Da im Fehlerbetriebsmodus stets ein Längsstrom vorgegeben wird, sind im Fehlerbetriebsmodus kontinuierlich Phasenströme und somit der Statorstromvektor ermittelbar. Dadurch ist im Fehlerbetriebsmodus eine kontinuierliche Bestimmung der Rotorlage, selbst bei Stillstand des Rotors der elektrischen Maschine, möglich. Mittels der kontinuierlichen Bestimmung der Rotorlage kann eine fehlerhafte Bestimmung der Rotorlage um 180 Grad bei Wiederanlauf des Rotors der elektrischen Maschine nach einem Stillstand zuverlässig vermieden werden. Eine Ansteuerung der elektrischen Maschine für ein zu stellendes Drehmoment wird in Abhängigkeit der im Fehlerbetriebsmodus ermittelten Rotorlage ermittelt. Vorteilhaft wird somit ein ungewolltes Beschleunigen vermieden.
Vorteilhaft wird ein Fehlerbetriebsmodus bereitgestellt, der eine Ansteuerung der elektrischen Maschine auch bei defektem Winkelgeber ermöglicht.
In einer Ausgestaltung wird beim Ansteuern der elektrischen Maschine mittels der Regelung in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage, eine angeforderte Änderung eines Drehmomentsollwerts auf einen Gradienten limitiert wird, der kleiner als ein vorgebbarer erster Gradientenwert ist, oder eine angeforderte Änderung eines Sollstromwertes auf einen Gradienten limitiert wird, der kleiner als ein vorgebbarer zweiter Gradientenwert ist. Bei der Ansteuerung im Fehlerbetriebsmodus werden die Gradienten der Sollwertänderungen für Drehmoment oder Sollstrom mittels zweier unabhängiger Schwellwerten begrenzt. Vorteilhaft wird die Dynamik der Regelung reduziert und damit eine stabilere Regelung bereitgestellt. Vorteilhaft wird ein sichererer Betrieb der elektrischen Maschine ermöglicht.
In einer anderen Ausgestaltung erfolgt, beim Ansteuern der elektrischen Maschine mittels der Regelung in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage, ein angefordertes Bremsen mittels einer hydraulischen Bremse, oder eine angeforderte Beschleunigung wird auf einen Wert limitiert, der kleiner als ein vorgebbarer dritter Grenzwert ist.
Bei der Ansteuerung im Fehlerbetriebsmodus wird ein Bremsen mittels einer hydraulischen Bremse umgesetzt. Vorteilhaft wird somit sichergestellt, dass ein Bremsen entsprechend einem gewünschten Bremsmoment umgesetzt wird. Im Fehlerbetriebsmodus ist die Genauigkeit und die Dynamik der Regelung der Ansteuerung der elektrischen Maschine reduziert, sodass vorteilhaft ein potentiell sicherheitsrelevantes Bremsen mittels der von der elektrischen Maschine unabhängigen und problemlos funktionierenden hydraulischen Bremse umgesetzt wird. Bei einer angeforderten Beschleunigung wird diese auf einen Wert limitiert, der kleiner als ein vorgebbarer dritter Grenzwert ist. Vorteilhaft wird die Dynamik der Regelung reduziert und damit eine stabilere Regelung bereitgestellt. Vorteilhaft wird ein sichererer Betrieb der elektrischen Maschine ermöglicht.
In einer anderen Ausgestaltung ist die Regelung eine feldorientierte Regelung, eine Blockkommutierung-Regelung oder eine Raumzeigervektor-Regelung.
Unabhängig davon, ob die elektrische Maschine in Abhängigkeit einer Rotorlage, die in Abhängigkeit des Signals des Winkelgebers oder in Abhängigkeit einer Rotorlage, die in Abhängigkeit Statorstromvektors ermittelt wurde, geregelt wird, wird die Maschine mittels einer feldorientierten-Regelung, einer Blockkommutierung-Regelung oder einer Raumzeigervektorregelung-Regelung geregelt. Vorteilhaft werden unterschiedliche Regelungsverfahren zur Regelung der Ansteuerung der elektrischen Maschine bereitgestellt. In einer anderen Ausgestaltung umfasst das Ermitteln der Nichtverfügbarkeit mindestens einen der folgenden Schritte: Ermitteln, dass das Signal fehlerhaft ist; Ermitteln, dass das Signal nicht übertragen wird; Ermitteln, dass der Winkelgeber fehlerhaft ist; Ermitteln, dass der Winkelgeber nicht vorhanden ist.
Bevorzugt umfasst ein Winkelgeber, beispw. ein Resolver, zwei Spulen, in denen bei drehendem Rotor eine sinus- bzw. cosinus-förmige Spannung induziert wird. Bevorzugt wird in Abhängigkeit der Spannungsamplituden die Rotorlage bestimmt. Bevorzugt führt eine Überwachungssoftware Plausibilitätsprüfungen für die Werte der Spannungssignale durch. Bevorzugt umfassen dieses auch elektrische Diagnosen, wie beispw. ein Kurzschluss zur Batterie, zur Masse oder eine offene Leitung. Bei Auftreten nicht plausibler Signale wird die Nichtverfügbarkeit des Signals des Winkelgebers erkannt.
Vorteilhaft werden einige Verfahrensschritte bereitgestellt, die das Ermitteln der Nichtverfügbarkeit des Signals des Winkelgebers ermöglichen.
In einer anderen Ausgestaltung umfasst das Ermitteln der Rotorlage des Rotors der elektrischen Maschine in Abhängigkeit des Statorstromvektors mindestens einen der folgenden Schritte umfasst: Ermitteln der Phasenströme der elektrischen Maschine; Ermitteln des Statorstromvektors mittels der Clark-Transforma- tion aus den Phasenströmen; Ermitteln der Rotorlage als Richtung des Statorstromvektors.
Vorteilhaft werden Verfahrensschritte zur Ermittlung der Rotorlage des Rotors der elektrischen Maschine in Abhängigkeit des Statorstromvektors bereitgestellt.
Ferner betrifft die Erfindung eine Vorrichtung zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug. Die Vorrichtung ist dazu eingerichtet, die oben beschriebenen Verfahren auszuführen.
Vorteilhaft wird eine Vorrichtung bereitgestellt, die dazu eingerichtet ist, auch bei einem defekten Winkelgeber, eine Ansteuerung der elektrischen Maschine in einem Fehlerbetriebsmodus auszuführen Ferner betrifft die Erfindung einen Antriebsstrang mit einer beschriebenen Vorrichtung und insbesondere mit einer Leistungselektronik und/ oder einem elektrischen Antrieb. Ein derartiger Antriebsstrang dient beispielsweise dem Antrieb eines elektrischen Fahrzeugs. Mittels des Verfahrens und der Vorrichtung wird ein sicherer Betrieb des Antriebstrangs ermöglicht.
Ferner betrifft die Erfindung ein Fahrzeug, mit einem beschriebenen Antriebsstrang. Vorteilhaft wird somit ein Fahrzeug bereitgestellt, welches eine Vorrichtung umfasst, mit der auch bei einem defekten Winkelgeber, eine Ansteuerung der elektrischen Maschine in einem Fehlerbetriebsmodus ausgeführt wird.
Ferner betrifft die Erfindung ein Computerprogramm, umfassend Befehle, die bewirken, dass die beschriebene Vorrichtung die beschriebenen Verfahrensschritte ausführt.
Ferner betrifft die Erfindung ein computerlesbares Medium, umfassend Befehle, die bei der Ausführung durch die beschriebene Vorrichtung diese veranlassen, die beschriebenen Verfahrensschritte auszuführen.
Es versteht sich, dass die Merkmale, Eigenschaften und Vorteile des erfindungsgemäßen Verfahrens entsprechend auf die Vorrichtung bzw. den Antriebsstrang und das Fahrzeug und umgekehrt zutreffen bzw. anwendbar sind.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Zeichnungen.
Kurze Beschreibung der Zeichnung
Im Folgenden soll die Erfindung anhand einiger Figuren näher erläutert werden, dazu zeigen:
Figur 1 eine schematische Darstellung einer Vorrichtung zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug, Figur 2 ein schematisch dargestelltes Ablaufdiagramm für ein Verfahren zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug.
Ausführungsformen der Erfindung
Die Figur 1 zeigt eine Vorrichtung 100 zum Betrieb einer elektrischen mehrphasigen Maschine 110 mit einem Winkelgeber 120 in einem Fahrzeug 300. Die Vorrichtung 100 ist dazu eingerichtet, die Rotorlage des Rotors der elektrischen Maschine 110 in Abhängigkeit des Signals des Winkelgebers 120 zu ermitteln; die elektrische Maschine 110 mittels einer Regelung 130 in Abhängigkeit der erfassten Rotorlage anzusteuern; die Nichtverfügbarkeit des Signals des Winkelgebers 120 zu ermitteln und anschließend die elektrische Maschine 110 in einem Fehlerbetriebsmodus anzusteuern. Bevorzugt in einem Fehlerbetriebsmodus ist die Vorrichtung 100 dazu eingerichtet, die elektrische Maschine 110 mittels der Regelung 130 in Abhängigkeit der zuletzt ermittelten Rotorlage anzusteuern; einen minimalen Längsstrom für den weiteren Betrieb der elektrischen Maschine 110 vorzugeben; die Rotorlage des Rotors der elektrischen Maschine 110 in Abhängigkeit des Statorstromvektors zu ermitteln; und die elektrische Maschine 110 mittels der Regelung 130 in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage anzusteuern. Bevorzugt erfolgt die Ansteuerung der mehrphasigen elektrischen Maschine 110 mittels Versorgung der mehrphasigen elektrischen Maschine 110 mit einer mehrphasigen Wechselspannung, welche durch einen mittels der Regelung 130 angesteuerten Wechselrichter ausgangsseitig des Wechselrichters bereitgestellt wird. Bevorzugt ist der Wechselrichter eingangsseitig mit einer Gleichspannungsquelle 140, einer Batterie oder Traktionsbatterie verbunden. Bevorzugt ist die Regelung 130 in den Wechselrichter integriert. Das Fahrzeug 300 umfasst einen Antriebsstrang 200. Der Antriebsstrang 200 umfasst eine Vorrichtung 100 und insbesondere die elektrische Maschine 110, eine Energiequelle 140 und oder einen Wechselrichter. Die Darstellung zeigt beispielhaft ein Fahrzeug mit vier Rädern 302, wobei die Erfindung gleichermaßen in beliebigen Fahrzeugen mit einer beliebigen Anzahl an Rädern zu Lande, zu Wasser und in der Luft einsetzbar ist. Figur 2 zeigt ein schematisch dargestelltes Ablaufdiagramm für ein Verfahren zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug. Das Verfahren 400 beginnt mit Schritt 405. In Schritt 410 wird die Rotorlage des Rotors der elektrischen Maschine 110 in Abhängigkeit des Signals des Winkelgebers 120 ermittelt. Es folgt in Schritt 420 das Ansteuern der elektrischen Maschine 110 mittels einer Regelung 130 in Abhängigkeit der erfassten Rotorlage. In Schritt 430 wird die Nichtverfügbarkeit des Signals des Winkelgebers 120 ermittelt. Darauf erfolgt in Schritt 440 das Ansteuern der elektrischen Maschine 110 in einem Fehlerbetriebsmodus. Das Ansteuern der elektrischen Maschine 110 mittels der Regelung 130 in Abhängigkeit der zuletzt ermittelten Rotorlage erfolgt in Schritt 450. In Schritt 460 wird ein minimaler Längs- strom für den weiteren Betrieb der elektrischen Maschine 110 vorgegeben. Das Ermitteln der Rotorlage des Rotors der elektrischen Maschine 110 in Abhängigkeit des Statorstromvektors erfolgt in Schritt 470. In Schritt 480 wird die elektrische Maschine 110 mittels der Regelung 130 in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage angesteuert. Mit Schritt 485 endet das Verfahren. Bevorzugt springt das Verfahren zurück zu Schritt 410, falls in Schritt 430 nicht die Nichtverfügbarkeit des Signals des Winkelgebers 120 ermittelt wird. Zur Ermittlung 430 der Nichtverfügbarkeit des Signals des Winkelgebers kann bevorzugt mindestens einer der Schritte: Ermitteln 432, dass das Signal fehlerhaft ist; Ermitteln 434, dass das Signal nicht übertragen wird; Ermitteln 436, dass der Winkelgeber fehlerhaft ist; oder Ermitteln 438, dass der Winkelgeber nicht vorhanden ist, ausgeführt werden. Zur Ermittlung 470 der Rotorlage des Rotors der elektrischen Maschine 110 in Abhängigkeit des Statorstromvektors kann bevorzugt mindestens einer der Schritte: Ermitteln 472 der Phasenströme der elektrischen Maschine, Ermitteln 474 des Statorstromvektors mittels der Clark-Transformation aus den Phasenströmen und oder Ermitteln 476 der Rotorlage als Richtung des Statorstromvektors, ausgeführt werden.

Claims

Ansprüche
1. Verfahren (400) zum Betrieb einer elektrischen mehrphasigen Maschine (110) mit einem Winkelgeber (120) in einem Fahrzeug (300), mit den Schritten:
Ermitteln (410) der Rotorlage des Rotors der elektrischen Maschine (110) in Abhängigkeit des Signals des Winkelgebers (120);
Ansteuern (420) der elektrischen Maschine (110) mittels einer Regelung (130) in Abhängigkeit der erfassten Rotorlage;
Ermitteln (430) der Nichtverfügbarkeit des Signals des Winkelgebers (120);
Ansteuern (440) der elektrischen Maschine (110) in einem Fehlerbetriebsmodus dadurch gekennzeichnet, dass der Fehlerbetriebsmodus folgende Schritte umfasst:
Ansteuern (450) der elektrischen Maschine (110) mittels der Regelung (130) in Abhängigkeit der zuletzt ermittelten Rotorlage;
Vorgeben (460) eines minimalen Längsstrom (Id) bei dem weiteren Betrieb der elektrischen Maschine (110);
Ermitteln (470) der Rotorlage des Rotors der elektrischen Maschine (110) in Abhängigkeit des Statorstromvektors;
Ansteuern (480) der elektrischen Maschine (110) mittels der Regelung (130) in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage.
2. Verfahren nach einem der vorhergehenden Ansprüche, wobei, beim Ansteuern (480) der elektrischen Maschine (110) mittels der Regelung (130) in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage, eine angeforderte Änderung eines Drehmomentsollwerts auf einen Gradienten limitiert wird, der kleiner als ein vorgebbarer erster Gradientenwert ist, oder eine angeforderte Änderung eines Sollstromwertes auf einen Gradienten limitiert wird, der kleiner als ein vorgebbarer zweiter Gradientenwert ist. Verfahren nach einem der vorhergehenden Ansprüche, wobei, beim Ansteuern (480) der elektrischen Maschine (110) mittels der Regelung (130) in Abhängigkeit der in Abhängigkeit des Statorstromvektors erfassten Rotorlage, ein angefordertes Bremsen mittels einer hydraulischen Bremse erfolgt, oder eine angeforderte Beschleunigung auf einen Wert limitiert wird, der kleiner als ein vorgebbarer dritter Grenzwert ist. Verfahren nach Anspruch 1, wobei die Regelung (130) eine feldorientierte Regelung, eine Blockkommutierung-Regelung oder eine Raumzeigervektor-Regelung ist. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ermitteln (430) der Nichtverfügbarkeit mindestens einen der folgenden Schritte umfasst:
Ermitteln (432), dass das Signal fehlerhaft ist,
Ermitteln (434), dass das Signal nicht übertragen wird,
Ermitteln (436), dass der Winkelgeber fehlerhaft ist, Ermitteln (438), dass der Winkelgeber nicht vorhanden ist. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ermitteln (470) der Rotorlage des Rotors der elektrischen Maschine (110) in Abhängigkeit des Statorstromvektors mindestens einen der folgenden Schritte umfasst:
Ermitteln (472) der Phasenströme der elektrischen Maschine,
Ermitteln (474) des Statorstromvektors mittels der Clark-Transformation aus den Phasenströmen, Ermitteln (476) der Rotorlage als Richtung des Statorstromvektors. Vorrichtung (100) zum Betrieb einer elektrischen mehrphasigen Maschine (110) mit einem Winkelgeber (120) in einem Fahrzeug (300), wobei die Vorrichtung dazu eingerichtet ist, ein Verfahren gemäß einem der Ansprüche 1- 6 auszuführen. Antriebsstrang (200) zum Betrieb einer elektrischen mehrphasigen Maschine (110), wobei der Antriebsstrang (200) eine Vorrichtung (100) gemäß Anspruch 7 und insbesondere die elektrische Maschine (110), eine Energiequelle (140) und oder einen Wechselrichter umfasst. Fahrzeug (300) mit einer elektrischen mehrphasigen Maschine (110) mit einem Antriebsstrang (200) gemäß Anspruch 8. Computerprogramm, umfassend Befehle, die bewirken, dass die Vorrichtung (100) nach Anspruchs 7 die Verfahrensschritte des Verfahrens (400) nach einem der Ansprüche 1 bis 6 ausführt. Computerlesbares Medium, umfassend Befehle, die bei der Ausführung durch die Vorrichtung (100) nach Anspruch 7 diese veranlassen, die Verfahrensschritte des Verfahrens (400) nach einem der Ansprüche 1 bis 6 auszuführen.
PCT/EP2023/062250 2022-07-11 2023-05-09 Verfahren und vorrichtung zum betrieb einer elektrischen mehrphasigen maschine mit einem winkelgeber in einem fahrzeug WO2024012742A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022207067.4A DE102022207067A1 (de) 2022-07-11 2022-07-11 Verfahren und Vorrichtung zum Betrieb einer elektrischen mehrphasigen Maschine mit einem Winkelgeber in einem Fahrzeug
DE102022207067.4 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024012742A1 true WO2024012742A1 (de) 2024-01-18

Family

ID=86382983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/062250 WO2024012742A1 (de) 2022-07-11 2023-05-09 Verfahren und vorrichtung zum betrieb einer elektrischen mehrphasigen maschine mit einem winkelgeber in einem fahrzeug

Country Status (2)

Country Link
DE (1) DE102022207067A1 (de)
WO (1) WO2024012742A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170072924A1 (en) * 2014-05-21 2017-03-16 Continental Teves Ag & Co. Ohg Method for Controlling a Brake System
US9912274B2 (en) * 2014-04-29 2018-03-06 Mitsubishi Electric Corporation AC rotating machine control device and electric power steering device equipped with same
US20180076748A1 (en) * 2016-09-12 2018-03-15 Renesas Electronics Corporation Control device
WO2020001945A1 (de) 2018-06-29 2020-01-02 Robert Bosch Gmbh Verfahren und vorrichtung zur bestimmung einer lage und drehzahl eines rotors einer elektrischen maschine
JP7086505B1 (ja) * 2021-03-29 2022-06-20 三菱電機株式会社 交流回転電機の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9912274B2 (en) * 2014-04-29 2018-03-06 Mitsubishi Electric Corporation AC rotating machine control device and electric power steering device equipped with same
US20170072924A1 (en) * 2014-05-21 2017-03-16 Continental Teves Ag & Co. Ohg Method for Controlling a Brake System
US20180076748A1 (en) * 2016-09-12 2018-03-15 Renesas Electronics Corporation Control device
WO2020001945A1 (de) 2018-06-29 2020-01-02 Robert Bosch Gmbh Verfahren und vorrichtung zur bestimmung einer lage und drehzahl eines rotors einer elektrischen maschine
JP7086505B1 (ja) * 2021-03-29 2022-06-20 三菱電機株式会社 交流回転電機の制御装置

Also Published As

Publication number Publication date
DE102022207067A1 (de) 2024-01-11

Similar Documents

Publication Publication Date Title
DE10344914B4 (de) Steuerungsalgorithmus für eine AC-Maschine ohne Positionssensor
EP2499737B1 (de) Verfahren zum plausibilisieren des drehmomentes einer elektrischen maschine und maschinenregler zur regelung einer elektrischen maschine und zur durchführung des verfahrens
DE102011080324A1 (de) Verfahren und Systeme für das Diagnostizieren von Fehlern für Rotore von elektrischen Motoren
DE102012215042A1 (de) Steuervorrichtung von elektrischer Rotationsmaschine
DE102011002444A1 (de) Steuerungssysteme und -verfahren für einen Induktionsmotor
WO2023208272A1 (de) Verfahren zur bestimmung einer initialen rotorlage eines rotors, computerprogrammprodukt, steuereinheit, elektrische maschine, prüf- und/oder testverfahren und prüfstand
EP3411948A1 (de) Verfahren, winkelbestimmungsvorrichtung und steuervorrichtung
DE102017007422A1 (de) Verfahren zum Ermitteln von Fertigungstoleranzen einer elektrischen Maschine
DE102007033791B4 (de) Motorsteuervorrichtung und Motorsteuerverfahren
DE102018102069A1 (de) Drive System with Limited Slip Electric Differential Drive Unit
WO2013149921A2 (de) Verfahren und vorrichtung zur sensorlosen regelung einer fremderregten synchronmaschine
DE102013019852B4 (de) Detektor für eine Magnetpolposition in einem Synchronmotor
DE102010053098A1 (de) Verfahren zur Überwachung eines Rotorlagegebers
DE19960289A1 (de) Vorrichtung und Verfharen für eine Fehlererfassung bei einem elektrischen Motor
DE102019202464A1 (de) Verfahren und Steuervorrichtung zum Ermitteln zumindest eines Kennwerts eines Antriebsstrangs, der sich im eingebauten Zustand in einem elektrisch antreibbaren Kraftfahrzeug befindet, sowie Kraftfahrzeug
DE102019118871A1 (de) Auf hochfrequenz-spannungseinspeisung basierende kabelaustauschdetektion
DE102018117589A1 (de) Antriebsvorrichtung
DE102018117779A1 (de) Systeme und Verfahren zum Betreiben von Motoren mit einem einzelnen Motorpositionssignal
DE102017012027A1 (de) Verfahren zur drehgeberlosen Rotorlagebestimmung einer Drehfeldmaschine und Vorrichtung zur drehgeberlosen Regelung eines Drehstrommotors
EP3903116A1 (de) Verfahren zum ermitteln eines verstärkungsfehlers einer strommesseinrichtung
WO2024012742A1 (de) Verfahren und vorrichtung zum betrieb einer elektrischen mehrphasigen maschine mit einem winkelgeber in einem fahrzeug
EP1985006A2 (de) Verfahren und vorrichtung zum bestimmen des drehmoments einer elektrischen maschine
EP3529890B1 (de) Regelsystem für eine synchronmaschine und verfahren zum betreiben einer synchronmaschine
EP3676952B1 (de) Verfahren zur feldorientierten regelung einer permanenterregten synchronmaschine mit reluktanzmoment und reglerstruktur damit
EP3406027B1 (de) Vorrichtung und verfahren zum steuern einer elektrischen maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23723956

Country of ref document: EP

Kind code of ref document: A1