WO2024012265A1 - 心脏瓣膜支架及心脏瓣膜假体 - Google Patents
心脏瓣膜支架及心脏瓣膜假体 Download PDFInfo
- Publication number
- WO2024012265A1 WO2024012265A1 PCT/CN2023/104741 CN2023104741W WO2024012265A1 WO 2024012265 A1 WO2024012265 A1 WO 2024012265A1 CN 2023104741 W CN2023104741 W CN 2023104741W WO 2024012265 A1 WO2024012265 A1 WO 2024012265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- support
- heart valve
- valve stent
- support body
- protruding
- Prior art date
Links
- 210000003709 heart valve Anatomy 0.000 title claims abstract description 502
- 239000008280 blood Substances 0.000 claims abstract description 106
- 210000004369 blood Anatomy 0.000 claims abstract description 106
- 210000005003 heart tissue Anatomy 0.000 claims abstract description 102
- 238000011144 upstream manufacturing Methods 0.000 claims description 78
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 74
- 239000000463 material Substances 0.000 claims description 67
- 238000007789 sealing Methods 0.000 claims description 61
- 230000002093 peripheral effect Effects 0.000 claims description 46
- 230000017531 blood circulation Effects 0.000 claims description 33
- 230000007704 transition Effects 0.000 claims description 22
- 238000009954 braiding Methods 0.000 claims description 15
- 210000001519 tissue Anatomy 0.000 claims description 12
- 239000004744 fabric Substances 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 7
- 239000002861 polymer material Substances 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 3
- 238000009958 sewing Methods 0.000 claims description 3
- 239000012943 hotmelt Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 25
- 210000004351 coronary vessel Anatomy 0.000 abstract description 6
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 46
- 238000010586 diagram Methods 0.000 description 39
- 230000008569 process Effects 0.000 description 35
- 210000001765 aortic valve Anatomy 0.000 description 30
- 238000003466 welding Methods 0.000 description 25
- 238000010992 reflux Methods 0.000 description 10
- 210000000709 aorta Anatomy 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- 210000003291 sinus of valsalva Anatomy 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910001000 nickel titanium Inorganic materials 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 4
- 210000003516 pericardium Anatomy 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000004217 heart function Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000002308 calcification Effects 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000011900 installation process Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003836 peripheral circulation Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000000591 tricuspid valve Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
Definitions
- the present disclosure relates to the technical field of medical devices, and specifically to a heart valve stent and a heart valve prosthesis.
- Heart valves grow between the atria and ventricles, and between the ventricles and the aorta, and function as one-way valves to help blood flow move in one direction.
- the four valves in the human body are called the mitral valve, tricuspid valve, aortic valve and pulmonic valve. If these valves become diseased (such as becoming narrow or insufficient), it will affect the movement of blood flow, causing abnormal heart function and eventually leading to heart failure.
- valve replacement is often used for treatment, that is, artificial mechanical valve or biological valve is replaced.
- the existing heart valve stent is easy to fall off under the influence of blood flow after implantation, and the fixed installation is stable. Poor performance affects the service life of artificial heart valves and increases the risk of patients having to replace the valve again.
- Some heart valve stents are prone to coronary artery blockage after installation.
- the present disclosure provides a heart valve stent, which is characterized in that it includes a support body and at least one protruding support body connected with the support body; the support body defines a flow channel for blood circulation; the protruding support body Extending from the support body to the outside of the flow channel, a protruding portion is formed that can contact the heart tissue, and a protruding portion that can accommodate the native heart valve leaflets is formed between the protruding support body and the support body. of gaps.
- the support body includes a plurality of support units, and a plurality of the support units surround the flow channel;
- Each of the support units includes two first support bodies for connecting different leaflets respectively, and a second support body for connecting the two first support bodies.
- the two first support bodies and the second support body A space is formed between the bodies that can be covered by the skirt connection.
- the present disclosure also provides a heart valve stent, which is characterized in that the heart valve stent is woven and shaped from at least one longitudinal material; the heart valve stent defines a flow channel for blood circulation; wherein, at least one The length of the length of material protrudes toward the outside of the flow channel to form a protruding portion that can abut against cardiac tissue.
- the heart valve stent includes a plurality of support units, and the plurality of support units surround and form the flow channel;
- Each of the support units includes two first support bodies for connecting different leaflets respectively, and a second support body for connecting the two first support bodies.
- the two first support bodies and the second support body There is a space that can be covered by the skirt connection.
- upstream and downstream directions are defined according to the direction in which blood passes through the flow channel, and the second support body is located in the upstream direction of the two first support bodies.
- the two first support bodies respectively extend from both ends of the second support body in the downstream direction, and the two first support bodies are merged and connected.
- the two first support bodies respectively extend from both ends of the second support body in the downstream direction, and the second ends of the two first support bodies are connected.
- each of the support units is connected to the protruding support body, and the protruding support body is located between two adjacent support units in the circumferential direction of the support body.
- each of the support units is connected to two protruding support bodies, and the two protruding support bodies between two adjacent support units are connected to each other.
- the two protruding branches between two adjacent support units are formed of one braided wire.
- a connecting ring is formed in the downstream direction of the first support body.
- each first support body is formed with the connecting ring.
- a first riveting knot is provided upstream of the connecting ring, and the first riveting knot makes the connecting ring form a closed loop.
- each support unit is connected to an adjacent support unit through a riveting structure to form a second riveting junction.
- the first support bodies of the two adjacent support units are Arranged in parallel with the second support body, the gap for accommodating the native heart valve leaflets is formed between the protruding support body and the first support body and the second support body located in the second riveting junction.
- the two first support bodies of each support unit are connected through a riveting structure and form a third riveting knot.
- the protruding support body includes continuous protruding sections and connecting sections;
- the protruding section is bent and extended in a direction away from the flow channel; one end of the connecting section is connected to the protruding section, and the other end is connected to the support body, and the protruding section is connected to the
- the angle between the axial directions of the flow channels is in the range of 1° to 150°.
- the horizontal distance a between one end of the connecting section connected to the protruding section and the supporting body located upstream of the flow channel is set in the range of 1 mm to 20 mm.
- the heart valve stent is formed by braiding at least one length of longitudinal material.
- each of the support units further includes a third support body, the third support body forming a connection ring located downstream of the heart valve stent.
- one end of the third support body is connected to the first support body, and the other end forms the protruding portion.
- the number of the third support bodies of each support unit is two, one end of the two third support bodies is connected to the two first support bodies respectively, and the other ends of the two third support bodies are connected to each other. One end is formed with the protruding portion.
- a connecting ring is formed at the most downstream position of each third support body.
- each support unit and the protruding portion of the adjacent support unit are formed by bending the same longitudinal material, and the two adjacent protruding portions are continuous.
- each of the support units is connected to the adjacent support unit through a riveting structure to form a first riveting junction.
- the longitudinal materials are arranged in parallel, and the two protrusions are The extension is in the middle.
- the two first support bodies of each support unit are connected through a riveting structure to form a second riveting knot, and the third support body is also connected to the Said second riveting knot.
- the angle between the protruding direction of the protruding portion and the direction perpendicular to the axial direction of the flow channel is in the range of 15° to 90°.
- the third support body includes continuous protruding sections, transition sections and connecting sections;
- the protruding section forms the protruding part; one end of the transition section is connected to the protruding section, and the other end is bent and extended in a direction away from the flow channel, and is connected with the axis of the flow channel.
- the angle between the perpendicular directions is in the range of 60° to 150°; one end of the connecting section is connected to the transition section, and the other end is connected to the first support body.
- the elongate material includes memory alloy wire.
- the second support body is woven with variable-diameter memory alloy wire; or,
- a memory alloy tube is partially embedded in the outer peripheral side of the second support body.
- the present disclosure also provides an implantable heart valve stent, which is characterized in that:
- the implantable heart valve stent includes a plurality of support units, and the plurality of support units are surrounded to form a flow channel for blood circulation;
- At least one of the support units includes a protruding support body, the protruding support body protrudes in a direction away from the flow channel to form a protruding portion that can abut with cardiac tissue, and the protruding support body extends toward The upstream direction of the flow channel extends to form a connecting body that can connect the skirt cloth.
- each of the support units includes two first support bodies connected to different leaflets respectively, and a first space that can be covered by a skirt connection is formed between the two first support bodies and the connecting body.
- upstream and downstream directions are defined according to the direction in which blood passes through the flow channel, and the connecting body is located in the upstream direction of the two first supporting bodies.
- the connecting body includes at least one sub-connecting body, and at least one of the sub-connecting bodies is superimposed or spaced apart from the connecting body.
- the two first support bodies respectively extend from both ends of the connecting body toward the downstream direction, and the two first support bodies are merged and connected.
- each of the support units includes the protruding support body, and the protruding support body is located between two adjacent support units along the circumferential direction of the flow channel.
- each of the support units includes two protruding support bodies, and the connecting bodies formed by the two protruding support bodies are connected to each other.
- a second space for medical devices to pass is formed between each protruding support body and the first support body.
- the protruding support body and the first support body are braided and formed by one braided wire.
- a connecting ring is formed on one end of the protruding support body located downstream of the flow channel.
- each of the support units is connected to the adjacent support unit through a riveting structure to form a first riveting knot.
- the first of the two adjacent support units is The support body and the connecting body are arranged in parallel.
- the two first support bodies of each support unit are connected through a riveting structure and form a second riveting knot.
- the protruding support body includes a first connecting section, an abutting section and a second connecting section connected in sequence, and the first connecting section is connected to the first riveting knot; the abutting section The first end is connected to the first connecting section, and the second end protrudes in a direction away from the flow channel; one end of the second connecting section is connected to the second end of the abutting section, and the other end is connected to the second end of the contact section.
- the first supporting body is connected to each other.
- the angle ⁇ between the abutment section and the axial direction of the flow channel is in the range of 10° to 150°.
- the distance b between the second end of the abutting section and the first connecting section is in the range of 1 mm to 20 mm.
- the implantable heart valve stent is braided from at least one braided wire.
- the braided wires include memory alloy wires.
- the connector is woven with variable-diameter memory alloy wire; or,
- a memory alloy tube is partially embedded in the outer peripheral side of the connecting body.
- the present disclosure also provides a heart valve prosthesis, including the heart valve stent described in any one of the above or the implantable heart valve stent described in any one of the above;
- Valve leaflets are provided in the flow channel and connected to the first support body of the heart valve stent or the implantable heart valve stent;
- the first sealing skirt is connected and covered in the space formed between the two first support bodies and the second support body of the heart valve stent or the implantable heart valve stent.
- a second sealing skirt is provided around the peripheral side of the heart valve stent or the implantable heart valve stent.
- the second sealing skirt is disk-shaped, and a peripheral side of the second sealing skirt is folded downstream of the heart valve stent to form a flange.
- the leaflets are made of at least one of polymer materials, biological tissue materials, and tissue engineering materials.
- connection method between the valve leaflet and the heart valve stent or the first support body of the implantable heart valve stent is one of suture sewing, bonding, hot melting, and polymer attachment. .
- the present disclosure also provides a heart valve stent, which is characterized in that it includes:
- the support body includes a plurality of support units; the plurality of support units are surrounded to form a channel for blood flow, and each of the support units includes two first support bodies for respectively connecting different leaflets, at least one of which
- the support unit includes a second support body, and the second support body is disposed on a side of the first support body close to the adjacent support unit;
- At least one protruding support body is relatively fixed to two adjacent support units and extends from the support body to the outside of the channel.
- the protruding support body is connected to the support body.
- a gap is formed between them for accommodating the native valve leaflets of the heart.
- each of the support units includes two second support bodies, and the two second support bodies in each support unit are respectively disposed on both sides of the two first support bodies. side.
- each of the support units includes a third support body that connects two of the first support bodies, and a space between the two first support bodies and the third support body that can be covered by the first skirt is formed. space.
- each of the first support bodies is relatively fixed to one of the protruding support bodies, and each of the protruding support bodies is connected to two adjacent first supports that respectively belong to two adjacent support units.
- the bodies are relatively fixedly connected; the middle part of the protruding support body forms a protruding portion for contacting with the heart tissue.
- two adjacent second support bodies respectively belonging to two adjacent support units are located between the protruding branches connecting the two support units along the circumferential direction of the heart valve stent.
- two adjacent second support bodies respectively belonging to two adjacent support units are located inside the protruding support body connecting the two support units along the radial direction of the heart valve stent.
- downstream locations of the two first support bodies of the support unit and the downstream locations of the two protruding support bodies are connected through a riveting structure to form a first riveting knot, and the two protruding support bodies are connected to each other through a riveting structure.
- the support body is two protruding support bodies fixed relative to the two first support bodies.
- each second support body is relatively fixed to one of the protruding branches, and the middle part of the protruding branches is formed for abutting with cardiac tissue.
- the protruding part is relatively fixed to one of the protruding branches, and the middle part of the protruding branches is formed for abutting with cardiac tissue.
- portions of two adjacent second support bodies respectively belonging to two adjacent support units are located along the circumferential direction of the heart valve stent between the protruding branches connecting the two support units.
- portions of two adjacent second support bodies respectively belonging to two adjacent support units are located inside the protruding support body connecting the two support units along the radial direction of the heart valve stent.
- downstream parts of the two first support bodies of the support unit are connected through a riveting structure to form a first riveting knot
- the downstream parts of the protruding support body and the second support body are connected through a riveting structure. Connect to form a second riveted knot.
- the upstream locations of two adjacent first support bodies, the upstream locations of two adjacent second support bodies, and the downstream locations of two adjacent third support bodies that respectively belong to two adjacent support units are riveted.
- each support unit is formed by braiding one braiding wire, and each protruding support body is formed by another braiding wire.
- the braided wire includes a reduced diameter portion, the diameter of the reduced diameter portion is larger than the diameter of other parts, and the reduced diameter portion is provided corresponding to the riveting structure.
- the braided wire is made of variable-diameter memory alloy wire to form the variable-diameter portion; or
- a memory alloy tube is embedded in the outer periphery of the braided wire, and the part where the memory alloy tube is embedded is the diameter reducing part.
- a connecting ring is formed in the downstream direction of each support unit.
- the present disclosure also provides a heart valve prosthesis, including the heart valve stent described in any one of the above;
- Valve leaflets are arranged in the channel and connected to the first support body of the heart valve stent;
- the first skirt connects the space formed between the two first support bodies and the third support body covering the support unit of the heart valve stent.
- the heart valve prosthesis further includes a second skirt, the second skirt is arranged around the outer peripheral side of the heart valve stent, and the upstream end of the second skirt is in contact with the first The skirt cloth is connected, and the circumference of the second skirt cloth gradually becomes larger from the upstream end to the downstream end, and then gradually becomes smaller.
- downstream end of the second skirt is formed with an annular first flange, and the first flange faces downstream of the heart valve stent.
- accommodating notches are formed on the first cuff and the second skirt, and the accommodating gaps are used to accommodate the support body.
- annular second flange is formed on the peripheral side of the second skirt, and the second flange faces downstream of the heart valve stent.
- the second cuff is provided on the circumferential side with the largest circumference of the second skirt fabric.
- Figure 1 is a schematic structural diagram of a heart valve stent provided by some embodiments of the present disclosure
- Figure 2 is a schematic structural diagram of a heart valve stent provided by some embodiments of the present disclosure from another perspective;
- FIG. 3 is an enlarged structural schematic diagram of part A in Figure 2;
- Figure 4 is a partial structural schematic diagram of a second support body provided by an embodiment of the present disclosure.
- Figure 5 is a partial structural schematic diagram of a second support body provided by another embodiment of the present disclosure.
- Figure 6 is a schematic structural diagram of a heart valve prosthesis provided by some embodiments of the present disclosure.
- Figure 7 is a perspective structural schematic diagram of a heart valve stent provided by another embodiment of the present disclosure.
- Figure 8 is a schematic structural diagram of a heart valve stent provided by another embodiment of the present disclosure from another perspective;
- Figure 9 is an enlarged structural schematic diagram of part A in Figure 8.
- Figure 10 is a schematic structural diagram of a heart valve prosthesis provided by another embodiment of the present disclosure.
- Figure 11 is a schematic structural diagram of an implantable heart valve stent provided by an embodiment of the disclosure.
- Figure 12 is a schematic structural diagram of the implantable heart valve stent provided by an embodiment of the present disclosure from another perspective;
- Figure 13 is an enlarged structural schematic diagram of part A in Figure 12;
- Figure 14 is a schematic diagram of a connection structure of the connector provided by the embodiment of the present disclosure.
- Figure 15 is a schematic diagram of another connection structure of the connector provided by the embodiment of the present disclosure.
- Figure 16 is a schematic structural diagram of a heart valve prosthesis provided by another embodiment of the present disclosure.
- Figure 17 is a schematic three-dimensional structural diagram of a heart valve stent provided by another embodiment of the present disclosure.
- Figure 18 is a schematic three-dimensional structural view of a heart valve stent from another perspective according to another embodiment of the present disclosure.
- Figure 19 is a schematic three-dimensional structural diagram of a heart valve stent, leaflets, and first skirt provided by an embodiment of the present disclosure
- Figure 20 is a schematic structural diagram of a braided wire of a heart valve stent provided by an embodiment of the present disclosure
- Figure 21 is a schematic structural diagram of another braided wire of a heart valve stent provided by an embodiment of the present disclosure.
- Figure 22 is a schematic three-dimensional structural diagram of another heart valve stent provided by an embodiment of the present disclosure.
- Figure 23 is a schematic three-dimensional structural diagram from another perspective of another heart valve stent provided by an embodiment of the present disclosure.
- Figure 24 is a schematic structural diagram of a heart valve prosthesis provided by an embodiment of the present disclosure.
- Figure 25 is a schematic three-dimensional structural diagram of the second skirt in a heart valve prosthesis provided by an embodiment of the present disclosure
- Figure 26 is a schematic three-dimensional structural diagram of the second skirt in another heart valve prosthesis provided by an embodiment of the present disclosure.
- Heart valve prosthesis 1 heart valve stent or (artificial) heart valve stent or implantable heart valve stent 10; support body 100; support unit 110; first support body 111; second support body 112; third support body 113 ; First riveting knot 114; Second riveting knot 115; Third riveting knot 116; Flow channel or channel 120; Braided wire 131; Reduced diameter portion 132; Braided wire 133; Reduced diameter portion 134;; Projecting support body 200; Projecting portion 210; projecting section 220; connecting section 230; transition section 240; connecting body 250; sub-connecting body 251; gap 300; connecting ring 400; memory alloy tube 500; first space 600-A; second space 600 -B; leaflets 20; first sealing skirt 30; second sealing skirt 40;
- Support body 800 support unit 810; first support body 811; second support body 812; third support body 813; first riveting knot 814; second riveting knot 815; third riveting knot 816; protruding support body 900;
- Figures 1 and 6 indicate the direction of blood circulation.
- the terms “mounted,” “set,” “provided,” “connected,” and “connected” are to be construed broadly. For example, it can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or a point connection; it can be directly connected, or indirectly connected through an intermediate medium, or between two devices, components or components. internal communication.
- the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
- first means two or more.
- an embodiment of the present disclosure provides a (artificial) heart valve stent 10, which includes a support body 100 and at least one protruding branch 200 connected to the support body 100; the support body 100 defines The flow channel 120 for blood circulation; the protruding support body 200 extends from the support body 100 to the outside of the flow channel 120 to form a protruding portion 210 that can contact the heart tissue, and the protruding portion 210 can contact the heart tissue.
- a gap 300 for accommodating the native heart valve leaflets 20 is formed between the support body 200 and the support body 100 .
- the (artificial) heart valve stent 10 includes a support body 100 and at least one protruding branch 200 connected to the support body 100 .
- the support body 100 is used to support the original aortic valve, and the middle part of the support body 100 defines a flow channel 120 for blood circulation.
- the protruding support body 200 extends from the support body 100 to the outside away from the flow channel 120 , and is formed with a protruding portion 210 for contacting the heart tissue (such as the aortic sinus), then when the (artificial) heart valve stent 10 is supported on the original aortic valve, the protruding portion 210 contacts the heart tissue.
- the native heart valve leaflets 20 can be accommodated in the gap, thereby preventing the native heart valve leaflets 20 and the (artificial) heart valve stent 10 from interfering with each other and causing coronary artery blockage. It helps to improve the safety when the (artificial) heart valve stent 10 is installed.
- the support body 100 includes a plurality of support units 110, and the plurality of support units 110 are surrounded to form the flow channel 120; wherein each of the support units 110 includes a plurality of support units 110 for respectively connecting different The two first support bodies 111 of the leaflets 20 and at least one second support body 112 connecting the two first support bodies 111 form an available skirt between the two first support bodies 111 and the second support body 112 The space covered by the connection.
- the (artificial) heart valve stent 10 includes a plurality of support units 110, which are connected to each other and surround a flow channel 120 for blood circulation.
- Each support unit 110 includes two first support bodies 111 and a second support body 112 respectively connected to one end of the two first support bodies 111 , and the second support body 112 is connected to the two first support bodies 111 A space is formed for the skirt to be connected and covered. When the skirt is connected and covered in this space, blood can only flow through the flow channel 120 to prevent blood from flowing from the peripheral side of the (artificial) heart valve stent 10 .
- the number of support units 110 is three, and the three support units 110 surround the support body 100 .
- upstream and downstream directions are defined according to the direction of blood passing through the flow channel 120 , and the second support body 112 is located in the upstream direction of the two first support bodies 111 .
- the second support body 112 is located in the upstream direction of the two first support bodies 111, that is, the direction of the second support body 112 forms the blood inflow end, and the direction of the two first support bodies 111 forms the blood outflow end.
- the blood first flows in through the direction of the second support body 112 and then flows out from the direction of the first support body 111 .
- the two first support bodies 111 respectively extend from both ends of the second support body 112 toward the downstream direction, and the two first support bodies 111 are merged and connected.
- first ends of the two first support bodies 111 are connected to the two ends of the second support body 112 respectively, and the second ends extend toward the downstream direction of the flow channel 120 and are merged and connected, so as to be connected with the second support body 112 .
- a closed loop space for connecting the covering skirt is formed between the supports 112 .
- the second ends of the two first support bodies 111 can be connected by riveting or welding using a rivet tube.
- each support unit 110 is connected to the protruding support body 200 , and the protruding support body 200 is located between two adjacent support units 110 in the circumferential direction of the support body 100 .
- the number of the protruding support bodies 200 is multiple, and each support unit 110 is connected to the protruding support body 200 .
- the plurality of protruding supports 200 are spaced apart and located between two adjacent support units 110 in the circumferential direction of the support body 100.
- each support unit 110 is connected to two protruding supports 200 , and the two protruding supports 200 between two adjacent support units 110 are mutually connected. connect.
- the two protruding supports 200 between the two adjacent support units 110 are connected at one end in the upstream direction of the flow channel 120 , that is, the two protruding portions 210 of the two protruding supports 200 interconnected, thus helping to improve the reliability and stability of the protruding portion 210 when it contacts the heart tissue.
- the two protruding supports 200 between two adjacent support units 110 are formed of one braided wire 131 .
- the two protruding supports 200 between the two adjacent support units 110 are integrally formed by one braided wire 131, without the need for secondary connection by welding or riveting, which helps to improve the product quality. production efficiency.
- a connecting ring 400 is formed in the downstream direction of the first support body 111 .
- the first support body 111 is formed with a connecting ring 400.
- the connecting ring 400 is located downstream of the flow channel 120 and is used to connect with the delivery system of the (artificial) heart valve stent 10 to realize the (artificial) heart valve stent 10 through the delivery system. ) Delivery and recovery of heart valve stent 10.
- each first support body 111 is formed with the connecting ring 400 .
- the multiple connecting rings 400 are located in the downstream direction of the flow channel 120 .
- the multiple connecting rings 400 are connected to the delivery system of the (artificial) heart valve stent 10 , which helps to improve the reliability of the (artificial) heart valve stent 10 during the delivery process.
- a first riveting knot 114 is provided upstream of the connecting ring 400 , and the first riveting knot 114 enables the connecting ring 400 to form a closed loop.
- the connecting ring 400 can form a closed-loop structure, which facilitates the connection of the connecting parts of the transportation system with the connecting ring 400, and helps to improve the transportation Reliability when connecting the connecting parts of the system to the connecting ring 400.
- each support unit 110 is connected to an adjacent support unit 110 through a riveting structure to form a second riveting knot 115.
- the second riveting knot 115 two adjacent supports The first support body 111 and the second support body 112 of the unit 110 are arranged in parallel, and the protruding support body 200 and the first support body 111 and the second support body 112 located in the second riveting knot 115
- the gap 300 for accommodating the native valve leaflets 20 of the heart is formed therebetween.
- each support unit 110 is connected to two adjacent support units 110 through a riveting structure, that is, the connection between the two first support bodies 111 and the second support body 112 of each support unit 110, and the connection between them.
- the connection points between the two first support bodies 111 and the second support body 112 of adjacent support units 110 are connected through a riveting structure and form a second riveting knot 115 .
- the first riveting knot 114 the first support body 111 and the second support body 112 of the two adjacent support units 110 are arranged in parallel, which helps to improve the reliability of the connection of each support unit 110 and improves the appearance of the product. degree, and the protruding support body 200 is spaced apart from the first support body 111 and the second support body 112 located in the second riveting knot 115, and defines a gap for accommodating the native heart valve leaflets 20.
- the two first support bodies 111 of each support unit 110 are connected through a riveting structure and form a third riveting knot 116 .
- connection between the two first support bodies 111 of each support unit 110 located downstream of the flow channel 120 is connected through a riveting structure such as a rivet pipe to form a third riveting knot 116, thereby effectively ensuring that each support unit 110 The reliability of the connection between the two first supports 111 at one end downstream of the flow channel 120 is ensured.
- the protruding support body 200 along the direction in which blood passes through the flow channel 120, includes a continuous protruding section 220 and a connecting section 230; wherein the protruding section 220 moves away from the flow channel 120.
- the direction of the channel 120 is bent and extended; one end of the connecting section 230 is connected to the protruding section 220, and the other end is connected to the support body 100.
- the protruding section 220 is connected to the axial direction of the flow channel 120. The angle between them is in the range of 1° to 150°.
- the protruding section 220 is located downstream of the flow channel 120 , one end of the connecting section 230 is connected to the protruding section 220 , and the other end extends toward the downstream direction of the flow channel 120 , and finally connects with the first support body of the supporting body 100 111 connected.
- the protruding section 220 can be facilitated to correspond to the position of the heart tissue (such as the aortic sinus). , so as to facilitate contact with the heart tissue and help improve the stability of the protruding section 220 when it contacts the heart tissue.
- an installation space is defined between the connecting section 230 and the first support body 111 for passage of medical devices such as coronary stents during installation.
- the horizontal distance a between one end of the connecting section 230 connected to the protruding section 220 and the support body 100 located upstream of the flow channel 120 is set in the range of 1 mm to 20 mm. .
- the protruding section is ensured.
- the segment 220 can contact with the heart tissue and prevent the protruding segment 220 from extending too long and damaging other heart tissues; on the other hand, it can facilitate the contact between the native heart valve leaflets 20 and the side of the protruding segment 220 close to the support body 100. It is placed in the gap between the protruding support body 200 and the supporting body 100, thereby improving the convenience when the native heart valve leaflets 20 are accommodated in the gap.
- the heart valve stent 10 is formed by braiding at least one length of material.
- the longitudinal material may be a memory alloy wire or a nickel-titanium alloy wire.
- the (artificial) heart valve stent 10 when the (artificial) heart valve stent 10 is formed by braiding a length of longitudinal material, the (artificial) heart valve stent 10 has higher integrity and is easy to process and form.
- the (artificial) heart valve stent 10 is made of multiple longitudinal materials, the two connected longitudinal materials can be fixedly connected by riveting or welding through riveting tubes. In addition, the connection between two connected longitudinal materials can also be fixedly connected through welding or threaded connection.
- an embodiment of the present disclosure also provides another heart valve stent 10 , the heart valve stent 10 is made of at least one length of longitudinal material braided and shaped; the heart valve stent 10 has a defined area for supplying blood.
- the flowing flow channel 120 wherein, at least one length of material protrudes toward the outside of the flow channel 120 to form a protruding portion 210 that can abut with the heart tissue.
- the heart valve stent 10 provided by the embodiment of the present disclosure is used to support the original aortic valve.
- the heart valve stent 10 is formed by weaving and shaping at least one length of longitudinal material, and the middle part of the heart valve stent 10 is defined with a space for supplying the valve.
- the flow channel 120 for blood circulation for example, the longitudinal material can be a memory alloy wire or a nickel-titanium alloy wire, etc., by locally protruding at least one longitudinal material to the outside away from the flow channel 120, thereby forming a connection with the flow channel 120.
- the protruding portion 210 is in contact with the heart tissue (such as the aortic sinus).
- the protruding portion 210 is in contact with the heart tissue to fix the heart valve stent 10
- the role of the valve leaflet 20 is to prevent the heart valve stent 10 from being displaced due to the pressure generated by the blood on the valve leaflets 20 when the valve leaflets 20 are closed, thereby improving the stability and reliability of the heart valve stent 10 supporting the original aortic valve, and extending the This increases the service life of the heart valve stent 10 and helps improve the stability of the heart valve stent 10 in non-calcified patients.
- the heart valve stent 10 includes a plurality of support units 110, and the plurality of support units 110 surround the flow channel 120; wherein each of the support units 110 includes a device for connecting respectively.
- the two first support bodies 111 of different leaflets 20 are connected to the second support body 112 of the two first support bodies 111.
- a space that can be covered by a skirt is formed between the two first support bodies 111 and the second support body 112. .
- the heart valve stent 10 includes a plurality of support units 110 that are connected to each other and surround the outflow channel 120 .
- each support unit 110 includes two first support bodies 111 and a second support body 112 respectively connected to one end of the two first support bodies 111, and the second support body 112 is connected to one of the two first support bodies 111.
- a space is formed for the skirt to be connected and covered. When the skirt is connected and covered in this space, blood can only flow from the flow channel 120 to prevent blood from flowing from the peripheral side of the heart valve stent 10 .
- the number of support units 110 is three.
- upstream and downstream directions are defined according to the direction of blood passing through the flow channel 120 , and the second support body 112 is located in the upstream direction of the two first support bodies 111 .
- the second support body 112 is located in the upstream direction of the two first support bodies 111, that is, the direction in which the second support body 112 is located forms a blood vessel.
- the two first support bodies 111 form the blood outflow end. The blood first flows in through the direction of the second support body 112, and then flows out from the direction of the first support body 111.
- the two first support bodies 111 respectively extend from both ends of the second support body 112 toward the downstream direction and are connected to the second ends of the two first support bodies 111 .
- first ends of the two first support bodies 111 are respectively connected to the two ends of the second support body 112 and extend in the downstream direction of the flow channel 120, and the second ends of the two first support bodies 111 The ends are connected, thereby forming a closed-loop space for connecting the covering skirt with the second support body 112 .
- the second ends of the two first support bodies 111 can be connected by riveting or welding using a rivet tube.
- each of the support units 110 further includes a third support body 113 forming a connecting ring 400 downstream of the heart valve stent 10 .
- the support unit 110 further includes a third support body 113 .
- the third support body 113 is formed with a connection ring 400 located downstream of the heart valve stent 10 .
- the connection ring 400 is used to connect with the delivery system of the heart valve stent 10 , used to realize the delivery and recovery of the heart valve stent 10 through the delivery system.
- each support unit 110 has two third support bodies 113.
- One end of the two third support bodies 113 located downstream of the heart valve stent 10 respectively connects with the two first support bodies 111 after forming the connecting ring 400. Connect the second end.
- one end of the third support body 113 located downstream of the heart valve stent 10 is connected to the first support body 111 after forming the connecting ring 400 , and the other end located upstream of the heart valve stent 10 is formed to abut with cardiac tissue.
- the third support body 113 may be integrally connected with the first support body 111, or may be fixedly connected by riveting or welding.
- the number of the third support bodies 113 of each support unit 110 is two, and one end of the two third support bodies 113 is connected to the two first support bodies 111 respectively.
- the protruding portions 210 are formed on the other ends of the third support body 113 .
- each support unit 110 includes two third support bodies 113 , the two third support bodies 113 are located on both sides of the two first support bodies 111 , and the first one of the two third support bodies 113 One end is respectively connected to one end of the two first supports 111 located downstream of the flow channel 120, and the other end is formed with a protruding portion 210 for contacting with cardiac tissue.
- the connecting ring 400 is formed at the most downstream position of each third support body 113 .
- connection ring 400 is formed at the most downstream of each third support body 113.
- the connection ring 400 is used to connect with the connection structure of the delivery system so as to deliver the heart valve stent 10 to the heart tissue through the delivery mechanism. , improving the stability and reliability of the conveying process.
- the protruding portion 210 of each support unit 110 and the protruding portion 210 of the adjacent support unit 110 are formed by bending the same longitudinal material, and the two adjacent ones are formed by bending.
- the protruding portion 210 is continuous.
- the two adjacent protruding portions 210 of the two adjacent support units 110 are formed by bending the same longitudinal material and are continuous, thereby preventing the protruding portions 210 from damaging the heart tissue due to stress concentration, and also preventing the protruding portions 210 from damaging the heart tissue due to stress concentration.
- the support strength of the protruding portion 210 can be improved, and the installation reliability of the heart valve stent 10 can be improved.
- each support unit 110 is connected to the adjacent support unit 110 through a riveting structure to form a first riveting junction 114.
- first riveting junction 114 the longitudinal materials are arranged in parallel.
- the two protruding portions 210 are located in the middle.
- each support unit 110 is connected to two adjacent support units 110 through a riveting structure, that is, the connection between the two first support bodies 111 and the second support body 112 of each support unit 110, and the connection between them.
- the connection points between the two first support bodies 111 and the second support body 112 of the adjacent support units 110 are connected through a riveting structure and form two first riveting knots 114, and the third support body 113 is also connected to the first riveting knot. 114 in.
- the longitudinal materials are arranged in parallel, which helps to improve the reliability of the connection of each support unit 110 and improve the aesthetics of the product, and the protruding portion 210 of each support unit 110 is located on the support unit.
- the middle part of 110 is easy to contact with the heart tissue.
- the two first support bodies 111 of each support unit 110 are connected through a riveting structure to form a second riveting knot 115
- the third support body 113 is also connected to the second riveting knot 115 .
- the two first support bodies 111 of each support unit 110 and the connection located downstream of the flow channel 120 are connected through a riveting structure such as a rivet pipe to form a second riveting knot 115, and the two first support bodies 111 of each support unit 110 are connected through a riveting structure such as a rivet pipe.
- the third support body 113 is also connected to the second riveting knot 115, thereby effectively ensuring the reliability of the connection between the two first support bodies 111 and the two third support bodies 113 in each support unit 110.
- the angle between the protruding direction of the protruding portion 210 and the direction perpendicular to the axial direction of the flow channel 120 is in the range of 15° to 90°.
- the protruding portion 210 can correspond to the position of the heart tissue, facilitate contact with the heart tissue, and help improve the stability of the protruding portion 210 in contact with the heart tissue.
- the third support body 113 includes a continuous protruding section 220, a transition section 240 and a connecting section 230; wherein the protruding section 220 forms The protruding portion 210; one end of the transition section 240 is connected to the protruding section 220, and the other end is bent and extended in a direction away from the flow channel 120, and is perpendicular to the axial direction of the flow channel 120.
- the included angle between the directions is in the range of 60° to 150°; one end of the connecting section 230 is connected to the transition section 240 , and the other end is connected to the first support body 111 .
- the third support body 113 includes a protruding section 220 , a transition section 240 and a connecting section 230 that are sequentially connected along the flow direction of the flow channel 120 , wherein the protruding section 220 protrudes toward the outside of the flow channel 120 to form a
- the protruding portion 210 is used to contact the heart tissue.
- One end of the transition section 240 is connected to the protruding section 220, and the other end is bent and extended in a direction away from the flow channel 120, and the transition section 240 is axially opposite to the flow channel 120.
- the angle between the vertical directions is set in the range of 60° to 150° to ensure that the heart valve stent 10 can open the original aortic valve, thereby ensuring that blood can circulate normally.
- One end of the connecting section 230 is connected to the transition section 240, and the other end is bent and extended in a direction close to the first support body 111, and is connected to the first support body 111 after forming a connecting ring 400 at the most downstream of the flow channel 120, so that it can
- a large space is defined between the third support body 113 and the leaflets 20, so that when the patient undergoes a coronary stent installation operation, the coronary stent can be installed through this space.
- an embodiment of the present disclosure provides an implantable heart valve stent 10.
- the heart valve stent 10 includes a plurality of support units 110, and the plurality of support units 110 are surrounded to form a flow channel for blood circulation. 120; wherein at least one of the support units 110 includes a protruding support body 200 that protrudes in a direction away from the flow channel 120 to form a protruding portion 210 that can abut with cardiac tissue, and The protruding support body 200 extends toward the upstream direction of the flow channel 120 to form a connecting body 250 that can connect the skirt.
- the heart valve stent 10 includes a plurality of support units 110 that are connected to each other and surround a flow channel 120 for blood circulation.
- at least one support unit 110 includes a protruding support body 200, and the protruding support body 200 protrudes in a direction away from the flow channel 120 to form a protruding portion 210, and the protruding portion 210 is used to abut with the heart tissue, then When the heart valve stent 10 is supported on the original aortic valve, the protruding portion 210 By contacting with the heart tissue, it plays the role of fixing the heart valve stent 10, preventing the heart valve stent 10 from being displaced due to the pressure generated by the blood on the valve leaflets 20 when the valve leaflets 20 are closed, thereby improving the stability of the heart valve stent.
- the stability and reliability of the supporting connection at the original aortic valve are improved, and the service life of the heart valve stent 10 is improved.
- the protruding portion 210 extends upstream of the flow channel 120 to form a connecting body 250 for connecting the sealing skirt. After the sealing skirt is connected to the connecting body 250, blood can be prevented from flowing from the peripheral side of the flow channel 120. , improving the fluidity of blood flowing along the axial direction of the flow channel 120 .
- the protruding portion 210 can directly contact the patient's calcified leaflets 20. Since the calcified leaflets 20 are harder, the protruding portion 210 can abut against the patient's calcified leaflets 20. It plays a good supporting role during the connection and ensures the reliability and stability of the heart valve when it is supported at the original heart valve.
- each of the support units 110 includes two first support bodies 111 that are connected to different leaflets 20 respectively.
- the two first support bodies 111 and the connecting body 250 can be covered by a skirt connection.
- the First Space 600-A The First Space 600-A.
- each support unit 110 includes two first support bodies 111, and a first space 600- for skirt connection and covering is formed between the two first support bodies 111 and the connecting body 250. A. When the skirt is connected and covered in this space, blood can only flow through the flow channel 120 to prevent blood from flowing from the peripheral side of the heart valve stent 10 .
- the upstream and downstream directions are defined according to the direction of blood passing through the flow channel 120 .
- the connecting body 250 is located in the upstream direction of the two first supporting bodies 111 and is located with the protruding support body 200 .
- One end of the flow channel 120 in the upstream direction is continuous to form the connecting body 250 .
- the connecting body 250 is located in the upstream direction of the two first supporting bodies 111, that is, the direction of the connecting body 250 forms the blood inflow end, and the direction of the two first supporting bodies 111 forms the blood outflow end.
- the blood first passes through the connection It flows in from the direction of the body 250 and then flows out from the direction of the first supporting body 111 .
- the connecting body 250 is configured as the connecting body 250.
- the connecting body 250 is continuous with one end of the protruding support body 200 located in the upstream direction of the flow channel 120, thereby forming the connecting body 250 for connecting and covering the skirt.
- the connecting body 250 includes at least one sub-connecting body 251, and the at least one sub-connecting body 251 is stacked or spaced apart from the connecting body 250.
- the support strength of the connector 250 when supported on the original heart valve can be improved to further improve Stability of the heart valve stent 10 when installed.
- the two first supporting bodies 111 respectively extend from both ends of the connecting body 250 toward the downstream direction, and the two first supporting bodies 111 are merged and connected.
- first ends of the two first support bodies 111 are connected to the two ends of the connecting body 250 respectively, and the second ends extend toward the downstream direction of the flow channel 120 and are connected together, so as to connect with the connecting body 250
- a closed loop space is formed for connecting the covering skirt fabric.
- the second ends of the two first support bodies 111 and the connection method between the two first support bodies 111 and the connecting body 250 can be connected by riveting or welding by riveting tubes.
- each of the support units 110 includes the protruding support body 200 , and the protruding support body 200 is located at two adjacent support units along the circumferential direction of the flow channel 120 . Between 110.
- the number of the protruding support bodies 200 is multiple, and each support unit 110 includes the protruding support body 200 .
- the plurality of protruding supports 200 are spaced apart and located between two adjacent support units 110 in the circumferential direction of the support body 100.
- the protruding portions 210 of the plurality of protruding supports 200 are in contact with the heart tissue, (such as calcified valve leaflets 20) are in contact with each other, which can effectively improve the reliability and stability of the heart valve stent 10 after installation.
- each of the support units 110 includes two protruding support bodies 200 , and the connecting bodies 250 formed by the two protruding support bodies 200 are connected to each other.
- the connecting body 250 formed by the two protruding branches 200 of each supporting unit 110 is connected to each other (such as integrally connected, welded or riveted, etc.), thereby helping to improve the connection of the sealing skirt covering the connecting body. 250 and the first support body 111, and helps to improve the integrity of the product, and improves the reliability and stability of the heart valve stent 10 when it is supported on the original heart valve.
- a second space 600-B for medical devices to pass is formed between each protruding support body 200 and the first support body 111 .
- a second space 600-B for medical devices such as coronary stents to pass is formed between each protruding support body 200 and the first support body 111 connected thereto, thereby facilitating the installation of the heart valve stent 10
- the convenience of installation of medical devices such as coronary stents is formed between each protruding support body 200 and the first support body 111 connected thereto, thereby facilitating the installation of the heart valve stent 10
- the protruding support body 200 and the first support body 111 are braided and formed by a braided wire 131 .
- the protruding support body 200 and the first support body 111 are braided from one braided wire 131. They are continuous and do not require secondary connection by welding or riveting, which helps to improve the quality of the product. production efficiency and helps improve product integrity.
- a connecting ring 400 is formed on one end of the protruding support body 200 downstream of the flow channel 120 .
- the protruding support body 200 is provided with a connecting ring 400.
- the connecting ring 400 is located downstream of the flow channel 120 and is used to connect with the delivery system of the (artificial) heart valve stent 10, so as to realize the heart function through the delivery system. Delivery and recovery of valve stent 10 .
- each support unit 110 is connected to the adjacent support unit 110 through a riveting structure to form a first riveting knot 114.
- first riveting knot 114 two adjacent ones The first support body 111 and the connecting body 250 of the support unit 110 are arranged in parallel, and one end of the protruding support body 200 located upstream of the flow channel 120 is located in the first riveting knot 114 .
- each support unit 110 is connected to two adjacent support units 110 through a riveting structure, that is, the connection between the two first support bodies 111 of each support unit 110 and the connecting body 250, and the adjacent ones.
- the connection points between the two first supporting bodies 111 of the supporting unit 110 and the connecting body 250 are connected together through a riveting structure and form a first riveting knot 114 .
- the first support body 111 and the connecting body 250 of two adjacent support units 110 are arranged in parallel, which helps to improve the reliability of the connection of each support unit 110 and improve the aesthetics of the product.
- the end of the protruding support body 200 located upstream of the flow channel 120 is also located in the second riveting knot 115 and is continuous with the connecting body 250 .
- the two first support bodies 111 of each support unit 110 are connected through a riveting structure and form a second riveting knot 115 .
- connection between the two first support bodies 111 of each support unit 110 located downstream of the flow channel 120 is connected through a riveting structure such as a rivet pipe to form a second riveting knot 115, thereby effectively ensuring that each support unit 110 The reliability of the connection between the two first supports 111 at one end downstream of the flow channel 120 is ensured.
- the protruding support body 200 includes a first connecting section 230 , an abutting section and a second connecting section 230 connected in sequence, and the first connecting section 230 is connected to the first riveting knot 114 ;
- the first end of the abutting section is connected to the first connecting section 230, and the second end protrudes in a direction away from the flow channel 120;
- One end of the second connecting section 230 is connected to the abutting section The second end is connected to the second end, and the other end is connected to the first support body 111 .
- the protruding support body 200 includes a first connecting section 230, an abutting section and a second connecting section 230 connected in sequence, wherein at least part of the first connecting section 230 is located in the first riveting knot 114, and It is continuous with the connecting body 250; the first end of the abutting section is connected to the first connecting section 230, and the second end protrudes toward the outside of the flow channel 120, thereby forming a protruding portion 210 that can abut with the heart tissue; the second One end of the connecting section 230 is connected to the abutting section, and the other end extends in a direction close to the flow channel 120 and is finally connected to the first support body 111 .
- the angle ⁇ between the abutment section and the axial direction of the flow channel 120 is in the range of 10° to 150°.
- the angle ⁇ between the abutting segment and the axial direction of the flow channel 120 in the range of 10° to 150°, it is possible to facilitate the contact between the abutting segment and the heart tissue (such as the calcified valve leaflets 20 ).
- the position is in contact with each other, and helps to improve the stability when the contact section is in contact with the heart tissue.
- the distance b between the second end of the abutting section and the first connecting section 230 is in the range of 1 mm to 20 mm.
- the first connecting section 230 is connected to the first riveting knot 114 along the axial direction of the flow channel 120 by setting the distance b between the second end of the abutting section and the first connecting section 230 to 1 mm.
- the distance b between the second end of the abutting section and the first connecting section 230 is 1 mm.
- it can ensure that the contact section can contact the heart tissue, and on the other hand, it can prevent the contact section from protruding too long to the outside of the flow channel 120, which may cause damage to the heart tissue.
- the implantable heart valve stent 10 is braided from at least one braided wire 131 .
- the braided wire 131 may be a memory alloy wire or a nickel-titanium alloy wire.
- the heart valve stent 10 when the heart valve stent 10 is formed by braiding a braided wire 131, the heart valve stent 10 has higher integrity and is easy to process and shape.
- the heart valve stent 10 is made of multiple longitudinal materials, the two connected longitudinal materials can be fixedly connected by riveting or welding through riveting tubes. In addition, the connection between two connected longitudinal materials can also be fixedly connected through welding or threaded connection.
- the connecting body 250 is braided using variable-diameter memory alloy wires; or, the outer peripheral side of the connecting body 250 is partially embedded with a memory alloy tube 500 .
- the connecting body 250 is braided with variable-diameter memory alloy wires, or the memory alloy tube 500 can be partially sleeved on the outer peripheral side of the connecting body 250 to locally increase the diameter of the connecting body 250, thereby improving the performance of the connecting body 250.
- the supporting force supported by the heart valve stent 10 thereby improves the stability of the support.
- the elongated material or braided wire 131 includes a memory alloy wire.
- the (artificial) heart valve stent 10 is woven with at least one memory alloy wire, and the memory alloy wire can be driven by external force. Deformed under the influence, and returns to its original shape after the external force is removed, which facilitates the artificial valve stent to be transported through the delivery system after the external force drives the memory alloy wire to deform, and when delivered to the original aortic valve, the memory alloy wire can quickly recover The original shape improves the reliability of installation of the heart valve stent 10 when supported on the aortic valve.
- the two connected memory alloy wires are fixedly connected by riveting or welding through riveting tubes.
- the heart valve stent 10 can also be fixedly connected by welding or threading.
- the second support body 112 is braided using at least one variable-diameter memory alloy wire; or, the second support body 112 is braided with at least one variable-diameter memory alloy wire;
- the memory alloy tube 500 is partially embedded in the outer peripheral side of the two supporting bodies 112 .
- the second support body 112 is braided with variable-diameter memory alloy wires, or can be formed on the outer periphery of the second support body 112
- the memory alloy tube 500 is partially set on the side to partially increase the diameter of the second support body 112, thereby improving the support force of the heart valve stent 10 and thereby improving the stability of the support.
- an embodiment of the present disclosure provides another heart valve prosthesis 1, including the heart valve stent 10 as described in the first or second aspect, or the implantable heart valve stent 10 as described in the third aspect.
- the (artificial) heart valve stent 10; the leaflets 20 are arranged in the flow channel 120 and are connected to the first support body 111 of the (artificial) heart valve stent 10; the first sealing skirt 30 is connected and covered In the space formed between the two first supports 111 and the second support 112 of the (artificial) heart valve stent 10; the second sealing skirt 40 is surrounded by the (artificial) heart valve stent 10 on the peripheral side.
- the second sealing skirt 40 is surrounding the outer peripheral side of the first sealing skirt 30 and is sealingly connected with the first sealing skirt 30 .
- valve leaflets 20 are located in the flow channel 120 and are connected to the first support body 111 of the heart valve stent 10.
- the opening or closing of the valve leaflets 20 can control whether blood flows. For example, when the heart contracts, the valve leaflets 20 Open, the blood in the heart flows to the whole body through the aorta. At the same time, when the heart relaxes, the valve leaflets 20 can be closed in time to prevent the blood in the aorta from returning to the ventricle.
- a first sealing skirt 30 is provided in the space formed between the two first support bodies 111 and the second support body 112 of each support unit 110 of the heart valve stent 10 , thereby preventing blood from flowing out of the heart valve stent 10 Peripheral circulation ensures that blood only flows in from the blood inflow end and flows out from the blood outflow end.
- a second sealing skirt 40 is also provided around the outer peripheral side of the (artificial) heart valve stent 10, and the second sealing skirt is used to prevent blood reflux and avoid paravalvular leakage.
- the second sealing skirt 40 is disk-shaped, and the peripheral side of the second sealing skirt 40 is folded downstream of the heart valve stent 10 to form a flange.
- the second sealing skirt 40 is disk-shaped, so that when the heart valve stent 10 is supported on the original aortic valve, the second sealing skirt 40 can contact the original heart valve tissue, and the second sealing skirt 40 can be in contact with the original heart valve tissue.
- the circumferential side of the sealing skirt 40 is folded toward the downstream direction of the heart valve stent 10 to form a flange.
- the material of the leaflets 20 is one of polymer materials, biological tissue materials, and tissue engineering materials.
- the material of the valve leaflets 20 is bovine pericardium, porcine pericardium, bovine/pig heart valve, and other materials.
- valve leaflets 20 and the first support body 111 of the (artificial) heart valve stent 10 are connected by one of bonding, hot melting, and polymer attachment.
- valve leaflets 20 can be fixedly connected to the first support body 111 of the (artificial) heart valve stent 10 through one of the methods of bonding, hot melting, or polymer attachment, so as to avoid the valve leaflets 20 from being damaged due to stress concentration. Damage and falling off will help extend the service life of the product.
- an embodiment of the present disclosure also provides another heart valve stent 10, including:
- the support body 100 includes a plurality of support units 110; the plurality of support units 110 are surrounded to form a channel 120 for blood flow, and each of the support units 110 includes two first support units 110 for respectively connecting different leaflets 20.
- Support body 111 at least one of the support units 110 includes a second support body 112, the second support body 112 is provided on the side of the first support body 111 close to the adjacent support unit 110;
- At least one protruding support body 200 is relatively fixed to the two adjacent support units 110 and extends from the support body 100 to the outside of the channel 120 .
- a gap for accommodating the native heart valve leaflets 20 is formed between 200 and the support body 100 300.
- the present disclosure can make the structure of the support body 100 more stable by arranging the first support body 111 and the second support body 112 to form the support body 100, and the channel 120 is not easily deformed.
- By arranging the protruding support body 200 it can be used to communicate with cardiac tissue.
- the contact makes the heart valve stent 10 less likely to fall off after being implanted in the heart and is more stable, which can extend the service life of the heart valve stent 10 and reduce the risk of the patient having to replace the valve again.
- each of the support units 110 includes two second support bodies 112 , and the two second support bodies 112 in each of the support units 110 are respectively disposed on two of the second support bodies 112 . both sides of the first support body 111 .
- the overall structure of the support body 100 can be made more stable.
- each of the support units 110 includes a third support body 113 connected with two of the first support bodies 111 , and the two first support bodies 111 and the third support body 113 A space that can be connected and covered by the first skirt cloth 50 is formed therebetween.
- a space covered by the first skirt 50 can be formed with the first support body 111, thereby preventing the backflow of blood.
- each first support body 111 is relatively fixed to one of the protruding support bodies 200 , and each of the protruding support bodies 200 is connected to two adjacent support units 110 respectively.
- the two adjacent first support bodies 111 are relatively fixedly connected; the middle part of the protruding support body 200 forms a protruding portion 210 for contacting the heart tissue.
- each protruding support body 200 by connecting each protruding support body 200 to two adjacent first supports 111, the overall structure of the heart valve stent 10 can be made more stable, and by making the middle part of the protruding support body 200 form The protruding portion 210 can contact the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located between the protruding branches 200 connecting the two support units 110 along the circumferential direction of the heart valve stent 10 .
- two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located between the protruding branches 200 connecting the two support units 110 along the circumferential direction of the heart valve stent 10 time, the second support body 112 can play a better supporting role, making the structure of the heart valve stent 10 more stable.
- two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located along the radial direction of the heart valve stent 10 between the protruding branches 200 connecting the two support units 110 . inside.
- two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located along the radial direction of the heart valve stent 10 between the protruding branches 200 connecting the two support units 110 .
- the second supporting body 112 can play a better supporting role, making the structure of the heart valve stent 10 more stable, and forming a space between the protruding support body 200 and the supporting body 100 for accommodating the native heart valve leaflets 20
- the gap 300 facilitates the protruding support body 200 to contact the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- downstream locations of the two first support bodies 111 of the support unit 110 and the downstream locations of the two protruding support bodies 200 are connected through a riveting structure to form a first riveting knot 114.
- the two protruding support bodies 200 are two protruding support bodies 200 that are fixed relative to the two first supporting bodies 111 .
- the first support body 111 and the protruding support body 200 are connected through a riveting structure, which can make the structures of the first support body 111 and the protruding support body 200 more stable and less likely to deform, thereby making the heart valve stent 10 more stable.
- the overall structure is more stable.
- each second support body 112 is relatively fixed to one of the protruding support bodies 200, and the middle part of the protruding support body 200 forms a protruding portion 210 for abutting with cardiac tissue. .
- each protruding support body 200 to a second support body 112 , the overall structure of the heart valve stent 10 can be made more stable, and by forming a protruding portion in the middle of the protruding support body 200 210, can achieve contact with the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- portions of two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located between the protruding branches 200 connecting the two support units 110 along the circumferential direction of the heart valve stent 10 between.
- parts of two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located along the circumferential direction of the heart valve stent 10 on the protruding branch connecting the two support units 110 200, the second support body 112 can play a better supporting role, making the structure of the heart valve stent 10 more stable.
- portions of two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located along the radial direction of the heart valve stent 10 on the protruding support body connecting the two support units 110 200 inside.
- parts of two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located along the radial direction of the heart valve stent 10 on the protruding branch connecting the two support units 110
- the inner side of 200 can make the second support body 112 play a better supporting role, make the structure of the heart valve stent 10 more stable, and make a formation between the protruding support body 200 and the support body 100 for accommodating the native heart valve.
- the gap 300 of the leaflet 20 facilitates the protruding support 200 to contact the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- downstream points of the two first support bodies 111 of the support unit 110 are connected through a riveting structure to form a first riveting knot 114
- the downstream points of the protruding support body 200 are connected to the third
- the two support bodies 112 are connected through a riveting structure to form a second riveting knot 115 .
- the two first support bodies 111, the protruding support body 200 and the second support body 112 of the support unit 110 are respectively connected through the riveting structure, so that the first support body 111, the protruding support body 200 and the second support body 112 can be connected.
- the structure of the two supporting bodies 112 is more stable and is not easily deformed, thereby making the overall structure of the heart valve stent 10 more stable.
- the upstream locations of two adjacent first support bodies 111 , the upstream locations of two adjacent second support bodies 112 , and the two adjacent third support bodies respectively belonging to two adjacent support units 110 The downstream parts of 113 are connected through a riveting structure to form a third riveting knot 116 .
- the first support body 111 , the second support body 112 and the third support body 113 are connected through a riveting structure, which can make the structures of the first support body 111 , the second support body 112 and the third support body 113 more precise. It is stable and not easily deformed, thereby making the overall structure of the heart valve stent 10 more stable.
- each support unit 110 is formed by one braided wire 131
- each protruding support body 200 is formed by another braided wire 131 .
- a braided wire 131 is woven to form a support unit 110, which can facilitate the preparation of the support unit 110 without the need for other connection structures, making the structure of the support unit 110 simpler, and the structure of the support unit 110 is stable.
- Another braided wire 131 forms the protruding support body 200, which can facilitate the formation of a gap 300 for accommodating the native heart valve leaflets 20 between the protruding support body 200 and the support body 100, thereby allowing the protruding support body 200 to be connected with the support body 100.
- Heart tissue abutment is woven to form a support unit 110, which can facilitate the preparation of the support unit 110 without the need for other connection structures, making the structure of the support unit 110 simpler, and the structure of the support unit 110 is stable.
- Another braided wire 131 forms the protruding support body 200, which can facilitate the formation of a gap 300 for accommodating the native heart valve leaflets 20 between the protruding support body 200 and the support body 100, thereby allowing the protruding support body
- the braided wire 131 includes a reduced diameter portion 134, the diameter of the reduced diameter portion 134 is larger than the diameter of other parts, and the reduced diameter portion 134 is provided corresponding to the riveting structure.
- the riveted connection of the braided wire 131 can be facilitated, so that the braided wire 131 is not easy to slide or even fall off in the riveted knot, and the riveted connection is more stable.
- the braided wire 131 is made of variable-diameter memory alloy wire to form the variable-diameter portion 134; or
- a memory alloy tube 500 is embedded in the outer periphery of the braided wire 131 , and the portion where the memory alloy tube 500 is embedded is the reducing portion 134 .
- variable-diameter memory alloy wire as the braided wire 131 and forming the reducing portion 134, the installation process of the riveting structure can be simplified.
- the memory alloy tube 500 is embedded in the outer periphery of the braided wire 131 to form a variable-diameter portion.
- the portion 134 can simplify the knitting preparation process of the support unit 110 or the protruding support body 200.
- a connecting ring 400 is formed in the downstream direction of each support unit 110 .
- the support unit 110 can be woven from a braided wire 131, and the structure of the support unit 110 is more stable.
- an embodiment of the present disclosure provides another heart valve prosthesis 1, including the heart valve stent 10 as described above;
- valve leaflets 20 are arranged in the channel 120 and connected to the first support body 111 of the heart valve stent 10;
- the first skirt 50 connects and covers the space formed between the two first support bodies 111 and the third support body 113 of the support unit 110 of the heart valve stent 10 .
- the structure of the support body 100 can be made more stable, and the channel 120 is not easily deformed.
- the protruding support body 200 it can be used Due to the contact with the heart tissue, the heart valve stent 10 is not easy to fall off after being implanted in the heart, and is more stable, which can extend the service life of the heart valve stent 10 and reduce the risk of patients having to replace the valve again.
- the cloth 50 enables blood to flow from upstream to downstream of the supporting body 100 without backflow.
- the heart valve prosthesis 1 further includes a second skirt 60 , the second skirt 60 is surrounding the peripheral side of the heart valve stent 10 , and the second skirt 60 has The upstream end is connected to the first skirt 50 , and the circumference of the second skirt 60 gradually increases from the upstream end to the downstream end, and then gradually decreases.
- the second skirt 60 can be in contact with the heart tissue, further avoiding blood reflux, and by allowing the second skirt 60 to flow from upstream From the end to the downstream end, the circumference gradually becomes larger, and then gradually becomes smaller, which can make the middle part of the periphery of the second skirt 60 contact the heart tissue, so that the effect of blocking blood reflux is better.
- downstream end of the second skirt 60 is formed with an annular first flange 601 , and the first flange 601 faces downstream of the heart valve stent 10 .
- accommodating notches 602 are formed on the first cuff 601 and the second skirt 60 , and the accommodating notches 602 are used to accommodate the support body 100 .
- the first flange 601 and the second skirt 60 can be connected with the support body 100.
- the main body 100 fits more closely, thereby preventing blood from flowing back between the first flange 601 and the second skirt 60 and the supporting main body 100 .
- annular second flange 703 is formed on the peripheral side of the second skirt 60 , and the second flange 703 faces downstream of the heart valve stent 10 .
- the second cuff 703 is disposed on the circumferential side with the largest circumference of the second skirt 60 .
- the second flange 703 can contact the heart tissue, and the effect of blocking blood reflux is better.
- the present disclosure provides at least one protruding support body connected to the support body.
- the protruding support body protrudes from the support body to the outside of the flow channel to form a protruding portion.
- the protruding portion can be easily connected by abutting against the heart tissue. It can effectively reduce the risk of heart valve stent displacement in patients with pure regurgitation.
- a gap is formed between the protruding portion and the supporting body of the present disclosure that can accommodate the native valve leaflets of the heart.
- the native valve leaflets of the heart are accommodated in the gap, thereby reducing the risk of coronary artery blockage after the installation of the heart valve stent. risk.
- the heart valve stent of the present disclosure is made of memory alloy wires and is formed with a connecting ring that can be used to connect with the delivery system, thereby enabling full recovery of the heart valve stent.
- the heart valve stent of the present disclosure has a longer service life.
- the leaflets of the present disclosure are made of polymer materials, which helps to increase the service life of the leaflets.
- the heart valve prosthesis of the present disclosure is smaller in size and has less tendency to produce biological incompatibility.
- valve leaflets of the present disclosure are evenly coated on the surface of the heart valve stent using polymer materials, which have greater adhesion and can avoid damage and falling off of the valve leaflets due to excessive stress when sewing with sutures.
- the embodiment of the present disclosure provides an (artificial) heart valve stent 10, which includes a support body 100 and at least one protruding branch 200 connected to the support body 100; the support body 100 defines There is a flow channel 120 for blood circulation; the protruding support body 200 extends from the support body 100 to the outside of the flow channel 120 to form a protruding portion 210 that can contact the heart tissue, and the protruding support body 200 and the support body 100 A gap 300 is formed therebetween which can accommodate the native valve leaflets of the heart.
- the (artificial) heart valve stent 10 includes a support body 100 and at least one protruding branch 200 connected to the support body 100 .
- the support body 100 is used to support the original aortic valve, and the middle part of the support body 100 defines a flow channel 120 for blood circulation.
- the protruding support body 200 extends from the support body 100 to the outside away from the flow channel 120 , and is formed with a protruding portion 210 for contacting the heart tissue (such as the aortic sinus), then when the heart valve stent is supported at the original aortic valve, the protruding portion 210 is in contact with the heart tissue to play a role.
- the function of the heart valve stent is to prevent the heart valve stent from being displaced due to the pressure generated by the blood on the valve leaflets 20 when the valve leaflets 20 are closed, thereby improving the stability and reliability of the heart valve stent being supported at the original aortic valve.
- the native valve leaflets of the heart can be accommodated in the gap within, thereby preventing the native heart valve leaflets and the heart valve stent from interfering with each other and causing coronary artery blockage, thus helping to improve the safety during installation of the (artificial) heart valve stent 10 .
- the support body 100 includes a plurality of support units 110, and the multiple support units 110 are surrounded to form a flow channel 120; wherein each support unit 110 includes a component for connecting different leaflets 20 respectively.
- Two first support bodies 111 and at least one second support body 112 connecting the two first support bodies 111 form a space that can be covered by a skirt connection between the two first support bodies 111 and the second support body 112 .
- the heart valve stent includes a plurality of support units 110.
- the plurality of support units 110 are connected to each other and surround a flow channel 120 for blood circulation.
- Each support unit 110 includes two first support bodies 111 and a second support body 112 respectively connected to one end of the two first support bodies 111 , and the second support body 112 is connected to the two first support bodies 111 A space is formed for the skirt to be connected and covered. When the skirt is connected and covered in this space, blood can only flow through the flow channel 120 to prevent blood from flowing from the peripheral side of the heart valve stent.
- the first support body 111 and the second support body 112 can be braided from the same braided wire, and they are continuous, so they are called the first support body 111 and the second support body. 112 is for convenience of description.
- the support unit 110 and the plurality of support units 110 may also be formed by braiding the same braided yarn.
- the number of support units 110 is three, and the three support units 110 surround the support body 100 .
- upstream and downstream directions are defined according to the direction of blood passing through the flow channel 120 , and the second support body 112 is located in the upstream direction of the two first support bodies 111 .
- the second support body 112 is located in the upstream direction of the two first support bodies 111, that is, the direction of the second support body 112 forms the blood inflow end, and the direction of the two first support bodies 111 forms the blood outflow end.
- the blood first flows in through the direction of the second support body 112 and then flows out from the direction of the first support body 111 .
- the two first support bodies 111 respectively extend from both ends of the second support body 112 in the downstream direction, and the two first support bodies 111 are merged and connected.
- first ends of the two first support bodies 111 are connected to the two ends of the second support body 112 respectively, and the second ends extend toward the downstream direction of the flow channel 120 and are merged and connected, so as to be connected with the second support body 112 .
- a closed loop space for connecting the covering skirt is formed between the supports 112 .
- the second ends of the two first support bodies 111 can be connected by riveting or welding using a rivet tube.
- each support unit 110 is connected to a protruding support body 200, and the protruding support body 200 is located on two adjacent support units 110 in the circumferential direction of the support body 100. between.
- the number of the protruding support bodies 200 is multiple, and each support unit 110 is connected to the protruding support body 200 .
- the plurality of protruding supports 200 are spaced apart and located between two adjacent support units 110 in the circumferential direction of the support body 100.
- the protruding support body 200 and the support unit 110 may be braided from the same braided wire, and the protruding support body 200 and the support unit 110 may also be continuous.
- each support unit 110 is connected to two protruding supports 200, and the two protruding supports 200 between two adjacent support units 110 are mutually connected. connect.
- the two protruding supports 200 between the two adjacent support units 110 are connected at one end in the upstream direction of the flow channel 120 , that is, the two protruding portions 210 of the two protruding supports 200 interconnected, thus helping to improve the reliability and stability of the protruding portion 210 when it contacts the heart tissue.
- the two protruding branches 200 between two adjacent support units 110 are formed of one braided wire.
- the two protruding supports 200 between the two adjacent support units 110 are integrally formed by one braided wire. There is no need for secondary connection such as welding or riveting, which helps to improve the product's durability. Productivity.
- a connecting ring 400 is formed in the downstream direction of the first support body 111 .
- the first support body 111 is formed with a connecting ring 400.
- the connecting ring 400 is located downstream of the flow channel 120 and is used to connect with the delivery system of the (artificial) heart valve stent 10 to realize the heart valve through the delivery system. Transportation and recycling of stents.
- each first support body 111 is formed with a connecting ring 400 .
- the multiple connecting rings 400 are located in the downstream direction of the flow channel 120 .
- the multiple connecting rings 400 are connected to the delivery system of the (artificial) heart valve stent 10 , which helps to improve the reliability of the (artificial) heart valve stent 10 during the delivery process.
- a first riveting knot 114 is provided upstream of the connecting ring 400 .
- the first riveting knot 114 enables the connecting ring 400 to form a closed loop.
- the connecting ring 400 can form a closed-loop structure, which facilitates the connection of the connecting parts of the transportation system with the connecting ring 400, and helps to improve the transportation Reliability when connecting the connecting parts of the system to the connecting ring 400.
- each support unit 110 is connected to an adjacent support unit 110 through a riveting structure to form a second riveting junction 115.
- the second riveting junction 115 two adjacent support units 110 are connected to each other through a riveting structure.
- the first support body 111 and the second support body 112 of the support unit 110 are arranged in parallel, and a space between the protruding support body 200 and the first support body 111 and the second support body 112 located in the second riveting knot 115 is formed to accommodate the heart.
- the spacing of native leaflets is 300.
- each support unit 110 is connected to two adjacent support units 110 through a riveting structure, that is, the connection between the two first support bodies 111 and the second support body 112 of each support unit 110, and the connection between them.
- the connection points between the two first support bodies 111 and the second support body 112 of adjacent support units 110 are connected through a riveting structure and form a second riveting knot 115 .
- the first riveting knot 114 the first support body 111 and the second support body 112 of the two adjacent support units 110 are arranged in parallel, which helps to improve the reliability of the connection of each support unit 110 and improves the appearance of the product. degree, and the protruding support body is spaced apart from the first support body 111 and the second support body 112 located in the second riveting knot 115, and defines a gap for accommodating the native valve leaflets of the heart.
- each support unit 110 is connected through a riveting structure and form a third riveting knot 116 .
- connection between the two first support bodies 111 of each support unit 110 located downstream of the flow channel 120 is connected through a riveting structure such as a rivet pipe to form a third riveting knot 116, thereby effectively ensuring that each support unit 110
- the two first supporting bodies 111 are located at one end downstream of the flow channel 120 Connection reliability.
- the protruding support body 200 includes a continuous protruding section 220 and a connecting section 230 ; wherein the protruding section 220 moves away from the circulation.
- the direction of the channel 120 is bent and extended; one end of the connecting section 230 is connected to the protruding section 220, and the other end is connected to the support body 100.
- the angle between the protruding section 220 and the axial direction of the flow channel 120 is between 1° and 150°. In the range.
- the protruding section 220 is located downstream of the flow channel 120 , one end of the connecting section 230 is connected to the protruding section 220 , and the other end extends toward the downstream direction of the flow channel 120 , and finally connects with the first support body of the supporting body 100 111 connected.
- the protruding section 220 can be facilitated to correspond to the position of the heart tissue (such as the aortic sinus). , so as to facilitate contact with the heart tissue and help improve the stability of the protruding section 220 when it contacts the heart tissue.
- an installation space is defined between the connecting section 230 and the first support body 111 for passage of medical devices such as coronary stents during installation.
- the horizontal distance a between one end of the connecting section 230 connected to the protruding section 220 and the support body 100 located upstream of the flow channel 120 is set in the range of 1 mm to 20 mm. .
- the protruding section is ensured.
- the segment 220 can be in contact with the heart tissue.
- it can facilitate the native valve leaflets of the heart to contact the side of the protruding segment 220 close to the support body 100 and then be accommodated in the gap between the protruding support body 200 and the support body 100 , thereby improving the convenience when the heart's native valve leaflets are placed in the gap.
- a heart valve stent is formed from at least one lengthwise length of material.
- the longitudinal material may be a memory alloy wire or a nickel-titanium alloy wire.
- the (artificial) heart valve stent 10 when the (artificial) heart valve stent 10 is formed by braiding a length of longitudinal material, the (artificial) heart valve stent 10 has higher integrity and is easy to process and form.
- the two connected longitudinal materials can be fixedly connected by riveting or welding through riveting tubes.
- the connection between two connected longitudinal materials can also be fixedly connected through welding or threaded connection.
- the elongate material includes memory alloy wire.
- the (artificial) heart valve stent 10 is woven with at least one memory alloy wire.
- the memory alloy wire can be deformed by external force and return to its original shape after the external force is removed, which facilitates the artificial valve.
- the stent is delivered through the delivery system after the memory alloy wire is deformed by external force.
- the memory alloy wire can quickly restore its original shape, which improves the stability of the heart valve stent being installed at the aortic valve. reliability.
- the two connected memory alloy wires are fixedly connected by riveting or welding through riveting tubes.
- the (artificial) heart valve stent 10 can also be fixedly connected by welding or threading.
- FIG. 4 is a partial structural diagram of the second support body 112 provided by an embodiment of the present disclosure.
- the second support body 112 is braided using at least one variable-diameter memory alloy wire.
- FIG. 5 is a partial structural diagram of the second support body 112 provided by another embodiment of the present disclosure.
- the memory alloy tube 500 is partially embedded in the outer peripheral side of the second support body 112 .
- the second support body 112 is braided with variable-diameter memory alloy wires, or the memory alloy tube 500 can be partially placed on the outer peripheral side of the second support body 112 to partially increase the size of the second support body 112 diameter, thereby improving the supporting force of the heart valve stent, thereby improving the stability of the support.
- an embodiment of the present disclosure provides a heart valve prosthesis, including the (artificial) heart valve stent 10 as in any one of the embodiments of the first aspect; valve leaflets 20, located in the flow channel 120, and is connected to the first support body 111 of the (artificial) heart valve stent 10; the first sealing skirt 30 is connected to the two first support bodies 111 and the second support body covering the (artificial) heart valve stent 10 112; the second sealing skirt 40 is arranged around the outer peripheral side of the (artificial) heart valve stent 10.
- the valve leaflets 20 are located in the flow channel 120 and are connected to the first support body 111 of the heart valve stent.
- the opening or closing of the valve leaflets 20 can control whether the blood flows. For example, when the heart contracts, the valve leaflets 20 open , the blood in the heart flows to the whole body through the aorta, and at the same time, when the heart relaxes, the valve leaflets 20 can be closed in time to prevent the blood in the aorta from returning to the ventricle.
- a first sealing skirt 30 is provided in the space formed between the two first support bodies 111 and the second support body 112 of each support unit 110 of the heart valve stent, thereby preventing blood from flowing from the peripheral side of the heart valve stent.
- a second sealing skirt 40 is also provided around the outer peripheral side of the (artificial) heart valve stent 10, and the second sealing skirt is used to prevent blood reflux and avoid paravalvular leakage.
- the second sealing skirt 40 is disk-shaped, and the circumferential side of the second sealing skirt 40 is folded downstream of the heart valve stent to form a flange.
- Figure 7 is a schematic structural view of the heart valve stent 10 provided by some embodiments of the present disclosure
- Figure 8 is a schematic structural view of the heart valve stent 10 provided by some embodiments of the present disclosure from another angle
- Figure 9 This is an enlarged structural diagram of part A in Figure 8.
- the first embodiment of the present disclosure provides a heart valve stent 10.
- the heart valve stent 10 is woven and shaped from at least one longitudinal material; the heart valve stent 10 defines a flow channel 120 for blood circulation; wherein, at least A length of material protrudes toward the outside of the flow channel 120 to form a protruding portion 210 that can abut against cardiac tissue.
- the heart valve stent 10 provided by the embodiment of the present disclosure is used to support the original aortic valve.
- the heart valve stent 10 is formed by weaving and shaping at least one length of longitudinal material, and the middle part of the heart valve stent 10 is defined with a space for supplying the valve.
- the flow channel 120 for blood circulation for example, the longitudinal material can be a memory alloy wire or a nickel-titanium alloy wire, etc., by locally protruding at least one longitudinal material to the outside away from the flow channel 120, thereby forming a connection with the flow channel 120.
- the protruding portion 210 is in contact with the heart tissue (such as the aortic sinus).
- the protruding portion 210 is in contact with the heart tissue to fix the heart valve stent 10
- the role of the valve leaflet 20 is to prevent the heart valve stent 10 from being displaced due to the pressure generated by the blood on the valve leaflets 20 when the valve leaflets 20 are closed, thereby improving the stability and reliability of the heart valve stent 10 supporting the original aortic valve, and extending the This increases the service life of the heart valve stent 10 and helps improve the stability of the heart valve stent 10 in non-calcified patients.
- the heart valve stent 10 includes a plurality of support units 110, and the plurality of support units 110 are surrounded to form a flow channel 120; wherein, each support unit 110 includes a component for connecting respectively.
- the two first supporting bodies 111 of different leaflets 20 are connected to the second supporting body 112 of the two first supporting bodies 111.
- a space that can be covered by a skirt is formed between the two first supporting bodies 111 and the second supporting body 112.
- the number of support units is three.
- upstream and downstream directions are defined according to the direction of blood passing through the flow channel 120 , and the second support body 112 is located in the upstream direction of the two first support bodies 111 .
- the second support body 112 is located in the upstream direction of the two first support bodies 111, that is, the direction of the second support body 112 forms the blood inflow end, and the two first support bodies 111 form the blood outflow end. It flows in through the direction of the second support body 112, and then from the direction of the first support body 111. outflow in the direction.
- the two first support bodies 111 extend downstream from both ends of the second support body 112 and are connected to the second ends of the two first support bodies 111 .
- the first ends of the two first support bodies 111 are respectively connected to the two ends of the second support body 112 and extend in the downstream direction of the flow channel 120, and the second ends of the two first support bodies 111 The ends are connected, thereby forming a closed-loop space for connecting the covering skirt with the second support body 112 .
- the second ends of the two first support bodies 111 can be connected by riveting, welding or bonding with rivet tubes.
- the two first support bodies 111 and the second support body 112 may also be integrally connected, that is, they may be formed into different parts by using the same length of longitudinal material that is woven and shaped.
- each support unit 110 further includes a third support body 113 , and the third support body 113 forms a connecting ring 400 located downstream of the heart valve stent 10 .
- the support unit 110 further includes a third support body 113 .
- the third support body 113 is formed with a connection ring 400 located downstream of the heart valve stent 10 .
- the connection ring 400 is used to connect with the delivery system of the heart valve stent 10 , used to realize the delivery and recovery of the heart valve stent 10 through the delivery system.
- each support unit 110 has two third support bodies 113.
- One end of the two third support bodies 113 located downstream of the heart valve stent 10 respectively connects with the two first support bodies 111 after forming the connecting ring 400. Connect the second end.
- the connection here includes the mechanical connection between the two, such as welding, bonding, riveting, etc.; it also includes the fact that the two are extensions of the same object, that is, they are the same body, and different names refer to different parts.
- one end of the third support body 113 located downstream of the heart valve stent 10 is connected to the first support body 111 after forming the connecting ring 400, and the other end located upstream of the heart valve stent 10 A protruding portion 210 is formed for abutting with cardiac tissue.
- the third support body 113 may be integrally connected with the first support body 111, or may be fixedly connected by riveting or welding.
- the number of third support bodies 113 of each support unit 110 is two. One end of the two third support bodies 113 is connected to the two first support bodies 111 respectively. The other ends of the third support body 113 are formed with protruding portions 210 .
- each support unit 110 includes two third support bodies 113 , the two third support bodies 113 are located on both sides of the two first support bodies 111 , and the first one of the two third support bodies 113 One end is respectively connected to one end of the two first supports 111 located downstream of the flow channel 120, and the other end is formed with a protruding portion 210 for contacting with cardiac tissue.
- a connecting ring 400 is formed at the most downstream part of each third support body 113 .
- a connecting ring 400 is formed at the most downstream of each third support body 113.
- the connecting rings 400 are located at the most downstream side of the flow channel 120 and are used to connect with the connecting structure of the conveying system so as to facilitate transportation through
- the mechanism delivers the heart valve stent to the heart tissue, improving the stability and reliability of the delivery process.
- the protruding portion 210 of each support unit 110 and the protruding portion 210 of the adjacent support unit 110 are formed by bending the same longitudinal material, and the adjacent protruding portions 210 are formed by bending.
- the two protrusions 210 are continuous.
- the two adjacent protruding portions 210 of the two adjacent support units 110 are formed by bending the same longitudinal material and are continuous, thereby preventing the protruding portions 210 from damaging the heart tissue due to stress concentration, and also preventing the protruding portions 210 from damaging the heart tissue due to stress concentration.
- the support strength of the protruding portion 210 can be improved, and the reliability of installation of the heart valve stent can be improved.
- each support unit 110 is connected to an adjacent support unit 110 through a riveting structure to form a first riveting junction 114.
- first riveting junction 114 each longitudinal material They are arranged in parallel, with the two protruding portions 210 located in the middle.
- each support unit 110 is connected to two adjacent support units 110 through a riveting structure, that is, the connection between the two first support bodies 111 and the second support body 112 of each support unit 110, and the connection between them.
- the connection points between the two first support bodies 111 and the second support body 112 of the adjacent support units 110 are connected through a riveting structure and form two first riveting knots 114, and the third support body 113 is also connected to the first riveting knot. 114 in.
- the longitudinal materials are arranged in parallel, which helps to improve the reliability of the connection of each support unit 110 and improve the aesthetics of the product. It also facilitates the contraction and expansion of the heart valve stent 10, and each The protruding portion 210 of the support unit 110 is located in the middle of the support unit 110 to facilitate contact with cardiac tissue.
- each support unit 110 are connected through a riveting structure to form a second riveting node 115, and the third support body 113 is also connected to the second riveting node. 115 in.
- the two first support bodies 111 of each support unit 110 and the connection located downstream of the flow channel 120 are connected through a riveting structure such as a rivet pipe to form a second riveting knot 115, and the two first support bodies 111 of each support unit 110 are connected through a riveting structure such as a rivet pipe.
- the third support body 113 is also connected to the second riveting knot 115, thereby effectively ensuring the reliability of the connection between the two first support bodies 111 and the two third support bodies 113 in each support unit 110.
- the riveting described in any of the above embodiments includes a situation in which multiple components are bound together by a binding member (usually a metal member).
- the angle between the plane of the protruding portion 210 and the direction perpendicular to the axial direction of the flow channel 120 is in the range of 15° to 90°.
- the protruding portion 210 can correspond to the position of the heart tissue, facilitate contact with the heart tissue, and help improve the stability of the protruding portion 210 in contact with the heart tissue.
- the third support body 113 includes a continuous protruding section 220 , a transition section 240 and a connecting section 230 ; wherein the protruding section 220 forms a protruding section 220 .
- one end of the connecting section 230 is connected to the transition section 240, and the other end is connected to the first support body 111.
- the third support body 113 includes 10131, a transition section 240 and a connecting section 230 that are sequentially connected along the flow direction of the flow channel 120.
- the protruding section 220 protrudes toward the outside of the flow channel 120 to form a protruding portion 210 for contacting the heart tissue.
- One end of the transition section 240 is connected to the protruding section 220 and the other end is bent away from the flow channel 120 .
- the angle between the transition section 240 and the direction perpendicular to the axial direction of the flow channel 120 is set in the range of 60° to 150° to ensure that the heart valve stent 100 can expand the original aortic valve, thereby ensuring Blood can circulate normally.
- One end of the connecting section 230 is connected to the transition section 240, and the other end is bent and extended in a direction close to the first support body 111, and is connected to the first support body 111 after forming a connecting ring 400 at the most downstream of the flow channel 120, so that it can
- a large space is defined between the third support body 113 and the leaflets 20, so that when the patient undergoes a coronary stent installation operation, the coronary stent can be installed through this space.
- the protruding section 220, the transition section 240 and the connecting section 230 of the third support body 113 are integrally connected, that is, they are woven and shaped using the same longitudinal material.
- FIG. 10 is a schematic structural diagram of a heart valve prosthesis 100 provided by some embodiments of the present disclosure. Based on the description in Figure 6 above, the second sealing skirt 40 is surrounding the outer peripheral side of the first sealing skirt 30 and is sealingly connected with the first sealing skirt 30.
- the valve leaflets 20 are located in the flow channel 120 and are connected to the heart valve stent 10.
- the opening or closing of the valve leaflets 20 can control whether the blood flows. For example, when the heart contracts, the valve leaflets 20 open to open the heart valve stent 10. Blood flows to the whole body through the aorta. At the same time, when the heart relaxes, the valve leaflets 20 can be closed in time to prevent the blood in the aorta from returning to the ventricle.
- a first sealing skirt 30 is provided in the space formed between the two first support bodies 111 and the second support body 112 of each support unit 110 of the heart valve stent 10 , thereby preventing blood from flowing out of the heart valve stent 10 Peripheral circulation ensures that blood only flows in from the blood inflow end and flows out from the blood outflow end.
- the first sealing skirt 30 is also surrounded by a second sealing skirt 40 that is sealingly connected to the first sealing skirt 30 .
- the second sealing skirt is used to prevent blood reflux and avoid paravalvular leakage.
- the second sealing skirt 40 is disk-shaped, and the circumferential side of the second sealing skirt 40 is folded downstream of the heart valve stent to form a flange.
- a first embodiment of the present disclosure provides an implantable heart valve stent 10, which includes a plurality of support units 110.
- the plurality of support units 110 are surrounded to form a flow channel for blood circulation. 120; wherein, at least one support unit 110 includes a protruding support body 200 that protrudes in a direction away from the flow channel 120 to form a protruding portion 210 that can abut with cardiac tissue, and the protruding support body 200 extends toward The upstream direction of the flow channel 120 extends to form a connecting body 250 that can connect the skirt.
- the implantable heart valve stent 10 includes a plurality of support units 110 , and the plurality of support units 110 are connected to each other and surround a flow channel 120 for blood circulation.
- at least one support unit 110 includes a protruding support body 200, and the protruding support body 200 protrudes in a direction away from the flow channel 120 to form a protruding portion 210, and the protruding portion 210 is used to abut with the heart tissue, then When the heart valve stent is supported on the original aortic valve, the protruding portion 210 contacts the heart tissue, thereby fixing the heart valve stent and preventing the pressure generated by the blood on the valve leaflets 20 when the valve leaflets 20 are closed.
- the heart valve stent Under the action, the heart valve stent is displaced, thereby improving the stability and reliability of the support of the heart valve stent at the original aortic valve, and increasing the service life of the heart valve stent.
- the protruding portion 210 extends upstream of the flow channel 120 to form a connecting body 250 for connecting the sealing skirt. After the sealing skirt is connected to the connecting body 250, blood can be prevented from flowing from the peripheral side of the flow channel 120. , improving the fluidity of blood flowing along the axial direction of the flow channel 120 .
- the protruding portion 210 can directly contact the patient's calcified valve leaflets. Since the calcified valve leaflets 20 have a greater hardness, the protruding portion 210 can contact the patient's calcified valve leaflets. It plays a good supporting role and ensures the reliability and stability of the heart valve when it is supported at the original heart valve.
- the protruding support body 200 and the support unit 110 can be braided from the same braided wire, and they are continuous. The reason why they are called the protruding support body 200 and the support unit 110 is for convenience. Narrative.
- each support unit 110 and the plurality of support units 110 may also be formed by braiding the same braided wire.
- each support unit 110 includes two first support bodies 111 that connect different leaflets 20 respectively, and at least one connecting body 250 that connects the two first support bodies 111 .
- a first space 600-A that can be covered by a skirt connection is formed between the first support body 111 and the connecting body 250.
- each support unit 110 includes two first support bodies 111, and a first space 600-A for skirt connection and covering is formed between the two first support bodies 111 and the connecting body 250.
- first space 600-A for skirt connection and covering is formed between the two first support bodies 111 and the connecting body 250.
- the upstream and downstream directions are defined according to the direction of blood passing through the flow channel 120.
- the connecting body 250 is located in the upstream direction of the two first supporting bodies 111 and is located with the protruding support body 200.
- One end of the flow channel 120 in the upstream direction is continuous to form a connecting body 250 .
- the connecting body 250 is located in the upstream direction of the two first supporting bodies 111, that is, the direction of the connecting body 250 forms the blood inflow end, and the direction of the two first supporting bodies 111 forms the blood outflow end.
- the blood first passes through the connection It flows in from the direction of the body 250 and then flows out from the direction of the first supporting body 111 .
- the connecting body 250 is configured as the connecting body 250.
- the connecting body 250 is continuous with one end of the protruding support body 200 located in the upstream direction of the flow channel 120, thereby forming the connecting body 250 for connecting the skirt cloth.
- the connector 250 includes at least one sub-connector 251 , and the at least one sub-connector 251 is stacked or spaced apart from the connector 250 .
- the support of the connector 250 when supported on the original heart valve can be improved. Strength to further improve the stability of the heart valve stent during installation.
- the two first support bodies 111 respectively extend from both ends of the connecting body 250 in the downstream direction, and the two first support bodies 111 are merged and connected.
- first ends of the two first support bodies 111 are connected to the two ends of the connecting body 250 respectively, and the second ends extend toward the downstream direction of the flow channel 120 and are connected together, so as to connect with the connecting body 250
- a closed loop space is formed for connecting the covering skirt fabric.
- the second ends of the two first support bodies 111 and the connection method between the two first support bodies 111 and the connecting body 250 can be connected by riveting or welding by riveting tubes.
- each support unit 110 includes a protruding support body 200 , and the protruding support body 200 is located between two adjacent support units 110 along the circumferential direction of the flow channel 120 . between.
- the number of the protruding support bodies 200 is multiple, and each support unit 110 includes the protruding support body 200 .
- the plurality of protruding branches 200 are arranged at intervals and are located between two adjacent support units 110 in the circumferential direction of the support body.
- the protruding portions 210 of the plurality of protruding branches 200 are in contact with the heart tissue (such as calcified valve leaflets) are in contact with each other, which can effectively improve the reliability and stability of the heart valve stent after installation.
- each support unit 110 includes two connecting bodies 250 formed by two protruding branches 200 connected to each other.
- the connecting body 250 formed by the two protruding branches 200 of each supporting unit 110 is connected to each other (such as integrally connected, welded or riveted, etc.), thereby helping to improve the connection of the sealing skirt covering the connecting body. 250 and the first support body 111, and helps to improve the integrity of the product, and improves the reliability and stability of the heart valve stent when it is supported on the original heart valve.
- a second space 600 -B for medical devices to pass is formed between each protruding support body 200 and the first support body 111 .
- a second space 600-B for medical devices such as coronary stents to pass is formed between each protruding branch 200 and the first supporting body 111 connected thereto, thereby facilitating the installation of the heart valve stent. , the convenience of installation of medical devices such as coronary stents.
- the protruding support body 200 and the first support body 111 are braided and formed by one braided wire.
- the protruding support body 200 and the first support body 111 are made of one braided wire. They are continuous and do not require secondary connection by welding or riveting, which helps to improve product production. efficiency and helps improve product integrity.
- a connecting ring 400 is formed on an end of the protruding support body 200 located downstream of the flow channel 120 .
- the connecting ring 400 is provided on the protruding support body 200.
- the connecting ring 400 is located downstream of the flow channel 120 and is used to connect with the delivery system of the implantable heart valve stent 10 to achieve cardiac function through the delivery system. Delivery and recovery of valve stents.
- each support unit 110 is connected to an adjacent support unit 110 through a riveting structure to form a first riveting junction 114.
- first riveting junction 114 two adjacent support units 110 are connected to each other through a riveting structure.
- the first supporting body 111 and the connecting body 250 of the supporting unit 110 are arranged in parallel, and the end of the protruding support body 200 located upstream of the flow channel 120 is located in the first riveting knot 114 .
- each support unit 110 is connected to two adjacent support units 110 through a riveting structure, that is, the connection between the two first support bodies 111 of each support unit 110 and the connecting body 250, and the adjacent ones.
- the connection points between the two first supporting bodies 111 of the supporting unit 110 and the connecting body 250 are connected together through a riveting structure and form a first riveting knot 114 .
- the first support body 111 and the connecting body 250 of two adjacent support units 110 are arranged in parallel, which helps to improve the reliability of the connection of each support unit 110 and improve the aesthetics of the product.
- the end of the protruding support body 200 located upstream of the flow channel 120 is also located in the second riveting knot 115 and is continuous with the connecting body 250 .
- each support unit 110 is connected through a riveting structure and form a second riveting knot 115 .
- connection between the two first support bodies 111 of each support unit 110 located downstream of the flow channel 120 is connected through a riveting structure such as a rivet pipe to form a second riveting knot 115, thereby effectively ensuring that each support unit 110 The reliability of the connection between the two first supports 111 at one end downstream of the flow channel 120 is ensured.
- the protruding support body 200 includes a first connecting section, abutting section and a second connecting section connected in sequence.
- the first connecting section is connected to the first riveting node.
- the first end of the abutting section is connected to the first connecting section, and the second end protrudes in a direction away from the flow channel 120; one end of the second connecting section is connected to the second end of the abutting section, and the other end is connected to the second end of the abutting section.
- a support body 111 is connected.
- the protruding support body 200 includes a first connecting section, an abutting section and a second connecting section connected in sequence, wherein at least part of the first connecting section is located in the first riveting knot 114 and is connected with the connecting body. 250 is continuous; the first end of the abutting segment is connected to the first connecting segment, and the second end protrudes toward the outside of the flow channel 120, thereby forming a protruding portion 210 that can abut with the heart tissue; one end of the second connecting segment Connected to the abutting section, the other end extends in a direction close to the flow channel 120 and is finally connected to the first support body 111 .
- the angle ⁇ between the abutting section and the axial direction of the flow channel 120 is in the range of 10° to 150°.
- the contact between the abutting segment and cardiac tissue can be facilitated.
- the position is in contact with each other and helps to improve the stability of the contact section when it contacts the heart tissue.
- the distance b between the second end of the abutting section and the first connecting section is in the range of 1 mm to 20 mm.
- the first connecting section is connected to the first riveting knot 114 along the axial direction of the flow channel 120 by setting the distance b between the second end of the abutting section and the first connecting section to 1 mm to 20 mm.
- the distance b between the second end of the abutting section and the first connecting section is 1 mm to 20 mm.
- the implantable heart valve stent 10 is braided from at least one braided wire.
- the braided wire may be a memory alloy wire or a nickel-titanium alloy wire.
- the heart valve stent when the heart valve stent is formed from a braided wire, the heart valve stent has higher integrity and is easy to process and shape.
- the two connected longitudinal materials can be fixedly connected by riveting or welding through riveting tubes.
- the connection between two connected longitudinal materials can also be fixedly connected through welding or threaded connection.
- the braided wires include memory alloy wires.
- the heart valve stent is made of at least one memory alloy wire.
- the memory alloy wire can be deformed by external force and return to its original shape after the external force is removed, which facilitates the implantation of the heart valve stent. 10 Driven by external forces, the memory alloy wire is deformed and transported through the delivery system. When delivered to the original aortic valve, the memory alloy wire can quickly restore its original shape, which improves the ability of the heart valve stent to be supported at the aortic valve. Installation reliability.
- the connecting body 250 is braided using variable-diameter memory alloy wires; or the outer peripheral side of the connecting body 250 is partially embedded with a memory alloy tube.
- the connecting body 250 is braided with variable-diameter memory alloy wires, or a memory alloy tube can be partially placed on the outer peripheral side of the connecting body 250 to locally increase the diameter of the connecting body 250, thereby improving the heart rate.
- the support force of the valve stent supports, thereby improving the stability of the support.
- a second embodiment of the present disclosure provides a heart valve prosthesis, including the implantable heart valve stent 10 as in any one of the first embodiments; the valve leaflets 20 are provided in the flow channel 120 inside and connected to the first support body 111 of the implantable heart valve stent 10; the first sealing skirt 30 is connected and covered in the space formed between the two first support bodies 111 and the connecting body 250 of the heart valve stent 10 ; The second sealing skirt 40 is provided around the peripheral side of the implantable heart valve stent 10.
- the valve leaflets 20 are located in the flow channel 120 and are connected to the first support body 111 of the heart valve stent.
- the opening or closing of the valve leaflets 20 can control whether the blood flows. For example, when the heart contracts, the valve leaflets 20 open , the blood in the heart flows to the whole body through the aorta, and at the same time, when the heart relaxes, the valve leaflets 20 can be closed in time to prevent the blood in the aorta from returning to the ventricle.
- a first sealing skirt 30 is provided in the space formed between the two first support bodies 111 and the connecting body 250 of each support unit 110 of the heart valve stent, thereby preventing blood from flowing from the peripheral side of the heart valve stent.
- a second sealing skirt 40 is also provided around the outer peripheral side of the heart valve stent 10. The second sealing skirt 40 is used to prevent blood reflux and avoid paravalvular leakage.
- connection between the valve leaflets 20 and the first support body 111 of the heart valve stent is one of bonding, hot melting, and polymer attachment.
- the second sealing skirt 40 is disk-shaped, so that when the heart valve stent is supported on the original aortic valve, the second sealing skirt 40 can contact the original heart valve tissue, and the second sealing skirt 40 can be in contact with the original heart valve tissue.
- the peripheral side of the skirt 40 is folded toward the downstream direction of the heart valve stent to form a flange.
- the material of the leaflets 20 is one of polymer materials, biological tissue materials, and tissue engineering materials.
- the material of the valve leaflets 20 is bovine pericardium, porcine pericardium, bovine/pig heart valve, and other materials.
- connection method between the valve leaflets 20 and the first support body 111 of the (artificial) heart valve stent 10 is one of bonding, hot melting, and polymer attachment.
- valve leaflets 20 can be fixedly connected to the first support body 111 of the (artificial) heart valve stent 10 through one of the methods of bonding, hot melting, or polymer attachment, so as to avoid the valve leaflets 20 from being damaged due to stress concentration. Damage and falling off will help extend the service life of the product.
- Figure 17 is a schematic three-dimensional structural diagram of a heart valve stent provided by an embodiment of the present disclosure.
- Figure 18 is a schematic three-dimensional structural diagram of a heart valve stent provided by an embodiment of the present disclosure from another perspective.
- Figure 19 is a schematic three-dimensional structural diagram of a heart valve stent, valve leaflets, and first skirt provided by an embodiment of the present disclosure.
- the heart valve stent 10 includes a support body 100 and at least one protruding support body 200.
- the support body 100 includes a plurality of support units 110.
- the multiple support units 110 surround a channel 101 for blood flow.
- Each support unit 110 includes Two first support bodies 111 are used to connect different leaflets 20 respectively.
- At least one support unit 110 includes a second support body 112.
- the second support body 112 is provided on the side of the first support body 111 close to the adjacent support unit 110.
- the protruding support body 200 is relatively fixed to the two adjacent support units 110 and extends from the support body 100 to the outside of the channel 101.
- a space for accommodating the native heart valve leaflets is formed between the protruding support body 200 and the support body 100. Gaps (not marked in the picture).
- the support body 100 has more support parts in the circumferential direction, thereby making the structure of the support body 100 more stable, the channel 101 not easily deformed, and the blood can It passes through the channel 101 more smoothly and is less likely to affect the flow rate of blood.
- the protruding support body 200 it can be used to contact the heart tissue, and the native valve leaflets of the heart are accommodated between the protruding support body 200 and the supporting body 100. , so that the heart valve stent 10 is not easy to fall off after being implanted in the heart, and is more stable, which can extend the service life of the heart valve stent 10 and reduce the risk of the patient having to replace the valve again.
- the support body 100 may include three support units 110 , and the three support units 110 are enclosed to form the support body 100 .
- the structure of the support body 100 is simple, easy to prepare, and relatively stable.
- the support body 100 may also be composed of two support units 110 or more than three support units 110, which is not limited here.
- each support unit 110 includes two second support bodies 112 , and the two second support bodies 112 in each support unit 110 are respectively disposed on both sides of the two first support bodies 111 .
- the overall structure of the support body 100 can be made more stable.
- each support unit 110 includes a third support body 113 connecting two first support bodies 111 , and the two first support bodies 111 and the third support body 113 can be connected by the first skirt 50 space covered.
- a space can be formed with the first support body 111 for the first skirt 50 to cover, thereby preventing the backflow of blood.
- each first support body 111 is relatively fixed to a protruding support body 200, and each protruding support body 200 is connected to two adjacent first supports that respectively belong to two adjacent support units 110.
- the body 111 is relatively fixedly connected; the middle part of the protruding support body 200 forms a protruding portion 210 for contacting the heart tissue.
- each protruding support body 200 By connecting each protruding support body 200 to two adjacent first support bodies 111, it can play a role in connecting and fixing two adjacent support units 110, thereby making the overall structure of the support body 100 more stable, and through Forming the protruding portion 210 in the middle of the protruding support body 200 can contact the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located between the protruding branches 200 connecting the two support units 110 along the circumferential direction of the heart valve stent 10 .
- the second The support body 112 plays a better supporting role and reduces the problem of easy deformation caused by the large distance between the two adjacent first support bodies 111 of the two adjacent support units 110, making the structure of the heart valve stent 10 more stable. .
- two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 are located inside the protruding support body 200 connecting the two support units 110 along the radial direction of the heart valve stent 10 .
- the second support body 112 By arranging two adjacent second support bodies 112 respectively belonging to two adjacent support units 110 to be located inside the protruding support body 200 connecting the two support units 110 along the radial direction of the heart valve stent 10 , the second support body 112 can be made
- the support body 112 plays a better supporting role, making the structure of the heart valve stent 10 more stable, and allowing a gap for accommodating the native heart valve leaflets to be formed between the protruding support body 200 and the supporting body 100 to facilitate protrusion.
- the support 200 is in contact with the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- downstream parts of the two first support bodies 111 of the support unit 110 and the downstream parts of the two protruding support bodies 200 are connected through a riveting structure to form a first riveting knot 114.
- the two protruding support bodies 200 are connected through a riveting structure.
- 200 denotes two protruding support bodies 200 fixed relative to the two first support bodies 112 .
- Connecting the first support body 111 and the protruding support body 200 through a riveting structure can make the structure of the first support body 111 and the protruding support body 200 more stable and less likely to deform, thereby making the overall structure of the heart valve stent 10 more stable.
- the upstream locations of two adjacent first support bodies 111 , the upstream locations of two adjacent second support bodies 112 , and the two adjacent third support bodies respectively belonging to two adjacent support units 110 The downstream parts of 113 are connected through a riveting structure to form a third riveting knot 115 .
- the structures of the first support body 111 , the second support body 112 and the third support body 113 can be made more stable and less likely to deform. This makes the overall structure of the heart valve stent 10 more stable.
- each support unit 110 may be woven from one braided wire 131 , and each protruding support body 200 may be formed from another braided wire 131 .
- One braided wire 131 is woven to form a support unit 110, which can facilitate the preparation of the support unit 110 without the need for other connection structures, making the structure of the support unit 110 simpler, and the structure of the support unit 110 is stable.
- Forming the protruding support body 200 is simpler to prepare and can facilitate the formation of a gap between the protruding support body 200 and the support body 100 for accommodating the native valve leaflets of the heart, thereby enabling the protruding support body 200 to contact the heart tissue. .
- the braided wire 131 may include a reduced diameter portion, the diameter of the reduced diameter portion is larger than the diameter of other parts, and the reduced diameter portion is arranged corresponding to the riveting structure.
- the riveted connection of the braided wire 131 can be facilitated, so that the braided wire 131 is not easy to slide or even fall off in the riveted knot, and the riveted connection is more stable.
- FIG. 20 is a schematic structural diagram of a braided wire of a heart valve stent provided by an embodiment of the present disclosure.
- the braided wire 131 may be made of variable-diameter memory alloy wire to form the variable-diameter portion 132 .
- variable diameter memory alloy wire as the braided wire 131 and forming the variable diameter portion 132
- the reduced diameter portion directly corresponds to the riveting position, and then By connecting the reducing portion 132 with rivets, the installation process of the riveted structure can be simplified.
- FIG. 21 is a schematic structural diagram of another braided wire of a heart valve stent provided by an embodiment of the present disclosure.
- the outer periphery of the braided wire 133 may be embedded with a memory alloy tube, and the portion embedded with the memory alloy tube is the reducing portion 134 .
- the memory alloy tube is embedded in the outer periphery of the braided wire 133 to form the reducing portion 134, so that when the braided wire 133 is braided to form the support unit 110 or the protruding support body 200, the position of the reducing portion 134 does not need to be considered.
- a memory alloy tube is set at the riveting point to form a reducing portion 134 for riveting, which can simplify the braiding preparation process of the support unit 110 .
- a connecting ring 400 is formed in the downstream direction of each support unit 110 .
- the supporting unit 110 can be braided by a braided wire 131, and the connecting ring 400 is not easily deformed, so that the first supporting body 111 and the second supporting body 112 are also It is not easy to deform, and the structure of the support unit 110 is more stable.
- Figure 22 is a schematic three-dimensional structural diagram of another heart valve stent provided by an embodiment of the present disclosure.
- Figure 23 is a three-dimensional structure of another heart valve stent provided by an embodiment of the present disclosure from another perspective.
- the heart valve stent 10 includes a support body 800 and at least one protruding branch 900 .
- the structure of the support body 800 is similar to the structure of the support body 100 in the above-mentioned heart valve stent 10 , and will not be described again here.
- each second support body 812 is relatively fixed to a protruding support body 900, and the middle part of the protruding support body 900 forms a protruding portion for contacting with cardiac tissue. 910.
- each protruding support body 900 By connecting each protruding support body 900 to a second support body 812, it can play the role of connecting and fixing two adjacent support units 810, thereby making the overall structure of the support body 800 more stable, and by making the protruding A protruding portion 910 is formed in the middle of the support body 900, which can contact the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- portions of two adjacent second support bodies 812 respectively belonging to two adjacent support units 810 are located between the protruding branches 900 connecting the two support units 810 along the circumferential direction of the heart valve stent 10 between.
- the second support body 812 plays a better supporting role and reduces the problem of easy deformation caused by the large internal spacing of the protruding support body 900, making the structure of the heart valve stent 10 more stable.
- portions of two adjacent second support bodies 812 respectively belonging to two adjacent support units 810 are located along the radial direction of the heart valve stent 10 on the protruding support body 900 connecting the two support units 810 . inside.
- the second support body 812 plays a better supporting role, making the structure of the heart valve stent 10 more stable, and forming a gap for accommodating the native heart valve leaflets between the protruding support body 900 and the support body 800 to facilitate protrusion.
- the extension body 900 is in contact with the heart tissue, making the position of the heart valve stent 10 in the heart more stable.
- downstream portions of the two first support bodies 811 of the support unit 810 are connected through a riveting structure to form a first riveting knot 814
- the downstream portion of the protruding support body 900 is connected to the second support body 400 through a riveting structure. , forming the second riveting knot 815.
- the two first support bodies 811 , the protruding support body 900 and the second support body 812 of the support unit 810 are respectively connected through a riveting structure, so that the structure of the first support body 811 , the protruding support body 900 and the second support body 812 can be improved. It is more stable and difficult to deform, thereby making the overall structure of the heart valve stent 10 more stable.
- the upstream locations of two adjacent first support bodies 811 , the upstream locations of two adjacent second support bodies 812 , and the two adjacent third support bodies respectively belonging to two adjacent support units 810 The downstream parts of 813 are connected through a riveting structure to form a third riveting knot 816.
- Connecting the first support body 811 , the second support body 812 and the third support body 813 through a riveting structure can make the structure of the first support body 811 , the second support body 812 and the third support body 313 more stable and less likely to deform, thereby This makes the overall structure of the heart valve stent 10 more stable.
- Figure 24 is a schematic structural diagram of a heart valve prosthesis provided by an embodiment of the present disclosure.
- the heart valve prosthesis includes a heart valve stent 10, a valve leaflet 20 and a first skirt 50.
- the valve leaflet 20 is arranged in the channel 101 and is connected to the first support 111 of the heart valve stent 10.
- the first skirt 50 is connected to the heart valve stent 10. Covering the space formed between the two first support bodies 111 and the third support body 113 of the support unit 110 of the heart valve stent 10 .
- the structure of the support body 100 can be made more stable, and the channel 101 is not easily deformed.
- the protruding support body 200 it can be used to contact the heart tissue. , so that the heart valve stent 10 is not easy to fall off after being implanted in the heart, and is more stable, which can extend the service life of the heart valve stent 10 and reduce the risk of the patient replacing the valve again.
- the valve leaflets 20 and the first skirt 50 the blood can be It flows from upstream to downstream of the supporting body 100 and does not flow back.
- FIG. 25 is a schematic three-dimensional structural diagram of a second skirt in a heart valve prosthesis provided by an embodiment of the present disclosure.
- the heart valve prosthesis may further include a second skirt 60 , the second skirt 60 is surrounding the peripheral side of the heart valve stent 10 , and the upstream end of the second skirt 60 is in contact with the first skirt 50 connection, the circumference of the second skirt 60 gradually becomes larger from the upstream end to the downstream end, and then gradually becomes smaller.
- the second skirt 60 By arranging the second skirt 60 on the outer peripheral side of the heart valve stent 10, the second skirt 60 can be in contact with the heart tissue to further avoid blood backflow, and by making the second skirt 60 move from the upstream end to the downstream end, the surrounding The length gradually increases, and then gradually decreases, so that the peripheral middle part of the second skirt 60 can contact the heart tissue, so that the effect of blocking blood reflux is better.
- downstream end of the second skirt 60 may be formed with an annular first flange 601 , and the first flange 601 faces downstream of the heart valve stent 10 .
- first flange 601 at the downstream end of the second skirt 60, the effect of blocking blood backflow can be further improved.
- accommodating gaps 602 are formed on the first cuff 601 and the second skirt 60 , and the accommodating gaps 602 are used to accommodate the support body 100 .
- the first cuff 601 and the second skirt 60 can fit more closely with the support body 100. This can prevent blood from flowing back between the first cuff 601 and the second skirt 60 and the support body 100 .
- FIG. 26 is a schematic three-dimensional structural diagram of the second skirt in another heart valve prosthesis according to an embodiment of the present disclosure.
- a first flange 701 may be provided at the downstream end of the second skirt 70 , and an accommodating gap 702 may be formed on the first flange 701 and the second skirt 70 .
- An annular second flange 703 may also be formed on the side, and the second flange 703 faces downstream of the heart valve stent 10 .
- the second flange 703 By providing the second flange 703 on the peripheral side of the second skirt 70, the second flange 703 can contact the heart tissue, thereby further improving the effect of blocking blood backflow.
- the second cuff 703 is disposed on the circumferential side with the largest circumference of the second skirt 70 .
- the second flange 703 By arranging the second flange 703 on the side with the largest circumference of the second skirt 70, the second flange 703 can better contact with the heart tissue and prevent the second flange 703 from being in contact with the heart tissue. It has a better effect of blocking blood backflow.
- the second cuff 703 can also be disposed between the downstream end of the second skirt 70 and the circumferential side with the largest circumference of the second skirt 70 , which is not limited here.
- references throughout this specification to "in this embodiment,” “in an embodiment of the disclosure,” or “in one of the embodiments” mean that a particular structure, structure, or characteristic related to the embodiment is included in this disclosure. In at least one disclosed embodiment. Therefore, appearances of “in this embodiment,” “in an embodiment of the disclosure,” or “in one of the embodiments” in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, these specific structures, structures or characteristics may be combined in any suitable manner in one or both embodiments. Those skilled in the art should also know that the implementations described in the specification are all optional implementations, and the actions and modules involved are not necessarily necessary for the present disclosure.
- the present disclosure relates to the technical field of medical devices and provides (implantable) heart valve stents and heart valve prostheses.
- the stability and reliability of the installation and fixation of the heart valve stent can be improved, the service life of the heart valve stent can be improved, the risk of patients having to replace the valve again can be reduced, and the patient's risk of using the heart valve can be reduced.
- Coronary artery blockage occurs during stent placement.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
本公开涉及医疗器械技术领域,提供一种人工/植入型心脏瓣膜支架及心脏瓣膜假体,其中,心脏瓣膜支架包括支撑单元和凸伸支体;支撑单元限定有供血液流通的流通道;凸伸支体自支撑单元向流通道的外侧延伸,形成有可与心脏组织抵接的凸伸部,且凸伸支体与支撑主体之间形成有可容置心脏原生瓣叶的空隙。通过本公开的技术方案,能够提高心脏瓣膜支架安装固定的稳定性和可靠性,并提高了心脏瓣膜支架的使用寿命,降低了患者再次置换瓣膜的风险,并有助于降低患者在使用心脏瓣膜支架时发生冠脉堵塞的情况。
Description
相关申请的交叉引用
本公开要求于2022年07月12日提交中国专利局的申请号为CN202210820044.3、名称为“植入型心脏瓣膜支架及心脏瓣膜假体”,于2022年07月12日提交中国专利局的申请号为CN202210820049.6、名称为“心脏瓣膜支架及心脏瓣膜假体”,于2022年07月12日提交中国专利局的申请号为CN202210822410.9、名称为“人工心脏瓣膜支架及心脏瓣膜假体”以及于2023年03月03日提交中国专利局的申请号为CN2023102038996、名称为“心脏瓣膜支架及心脏瓣膜假体”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开涉及医疗器械技术领域,具体而言,涉及一种心脏瓣膜支架及心脏瓣膜假体。
心脏瓣膜生长在心房和心室之间、心室和大动脉之间,起到单向阀门的作用,用于帮助血流单方向运动。人体的四个瓣膜分别称为二尖瓣、三尖瓣、主动脉瓣和肺动脉瓣。这些瓣膜如果出现了病变(如变得狭窄或关闭不全),就会影响血流的运动,从而造成心脏功能异常,最终导致心功能衰竭。
目前,当瓣膜出现病变时,多采用瓣膜置换术来进行治疗,即人工机械瓣或生物瓣进行替换,但现有的心脏瓣膜支架植入后在血液流动的影响下容易脱落,安装固定的稳定性较差,影响了人工心脏瓣膜的使用寿命,增加了患者再次置换瓣膜的风险,且部分心脏瓣膜支架在安装后容易出现冠脉堵塞的现象。
发明内容
本公开提供一种心脏瓣膜支架,其特征在于,包括支撑主体和与所述支撑主体相连的至少一个凸伸支体;所述支撑主体限定有供血液流通的流通道;所述凸伸支体自所述支撑主体向所述流通道的外侧延伸,形成有可与心脏组织抵接的凸伸部,且所述凸伸支体与所述支撑主体之间形成有可容置心脏原生瓣叶的空隙。
可选地,所述支撑主体包括多个支撑单元,多个所述支撑单元围设形成所述流通道;
其中,每个所述支撑单元均包括用于分别连接不同瓣叶的两第一支撑体,以及连接所述两第一支撑体的第二支撑体,所述两第一支撑体及第二支撑体之间形成可用裙布连接覆盖的空间。
本公开还提供一种心脏瓣膜支架,其特征在于,所述心脏瓣膜支架由至少一根纵长材料编织定型而成;所述心脏瓣膜支架限定有用于供血液流通的流通道;其中,至少一根所述纵长材料向所述流通道的外侧凸伸形成可与心脏组织抵接的凸伸部。
可选地,所述心脏瓣膜支架包括多个支撑单元,多个所述支撑单元围设形成所述流通道;
其中,每个所述支撑单元均包括用于分别连接不同瓣叶的两第一支撑体,连接所述两第一支撑体的第二支撑体,所述两第一支撑体及第二支撑体之间形成可用裙布连接覆盖的空间。
可选地,根据血液通过所述流通道的方向界定上、下游方向,所述第二支撑体位于所述两第一支撑体的上游方向。
可选地,所述两第一支撑体分别自所述第二支撑体的两端向所述下游方向延伸,且所述两第一支撑体相汇合连接。
可选地,所述两第一支撑体分别自所述第二支撑体的两端向所述下游方向延伸且所述两第一支撑体的第二端相连接。
可选地,每个所述支撑单元均连接有所述凸伸支体,且所述凸伸支体在所述支撑主体的周向上位于相邻的两个所述支撑单元之间。
可选地,每个所述支撑单元均连接有两个所述凸伸支体,且相邻的两个所述支撑单元之间的两个所述凸伸支体相互连接。
可选地,相邻的两个所述支撑单元之间的两个所述凸伸支体为一根编织丝形成。
可选地,所述第一支撑体的下游方向上形成有连接环。
可选地,每一所述第一支撑体均形成有所述连接环。
可选地,所述连接环的上游处设有第一铆接结,所述第一铆接结使所述连接环形成闭环。
可选地,每一所述支撑单元与相邻的支撑单元通过铆接结构连接,形成第二铆接结,在所述第二铆接结中,相邻的两个所述支撑单元的第一支撑体和第二支撑体并行排列,所述凸伸支体与位于所述第二铆接结中的所述第一支撑体和所述第二支撑体之间形成容置心脏原生瓣叶的所述空隙。
可选地,每一支撑单元的所述两第一支撑体通过铆接结构连接,并形成第三铆接结。
可选地,沿血液通过所述流通道的方向,所述凸伸支体包括相连续的凸伸段和连接段;
其中,所述凸伸段向远离所述流通道的方向弯折延伸;所述连接段的一端与所述凸伸段相连,另一端与所述支撑主体相连,所述凸伸段与所述流通道的轴向之间的夹角在1°~150°的范围内。
可选地,所述连接段与所述凸伸段相连的一端与位于所述流通道的上游的所述支撑主体之间的水平距离a设置在1mm~20mm的范围内。
可选地,所述心脏瓣膜支架采用至少一根纵长材料编制形成。
可选地,每个所述支撑单元还包括第三支撑体,所述第三支撑体形成位于所述心脏瓣膜支架下游的连接环。
可选地,所述第三支撑体的一端与所述第一支撑体连接,另一端形成所述凸伸部。
可选地,每个所述支撑单元的所述第三支撑体的数量为两个,两第三支撑体的一端分别与所述两第一支撑体连接,所述两第三支撑体的另一端均形成所述凸伸部。
可选地,每一所述第三支撑体的最下游处均形成一所述连接环。
可选地,每一所述支撑单元的凸伸部与相邻的所述支撑单元的凸伸部为同一根纵长材料弯折形成,且相邻的两个所述凸伸部连续。
可选地,每一所述支撑单元与相邻的所述支撑单元通过铆接结构连接,形成第一铆接结,在所述第一铆接结中,各纵长材料并行排列,且两所述凸伸部位于中间。
可选地,每一支撑单元的所述两第一支撑体通过铆接结构连接,形成第二铆接结,所述第三支撑体也连接于所
述第二铆接结中。
可选地,所述凸伸部的凸伸方向与所述流通道的轴向相垂直的方向之间的夹角在15°~90°的范围内。
可选地,沿血液通过所述流通道的方向,所述第三支撑体包括相连续的凸伸段、过渡段和连接段;
其中,所述凸伸段形成所述凸伸部;所述过渡段的一端与所述凸伸段相连,另一端向远离所述流通道的方向弯折延伸,并与所述流通道的轴向相垂直的方向之间的夹角在60°~150°的范围内;所述连接段的一端与所述过渡段相连,另一端与所述第一支撑体相连。
可选地,所述纵长材料包括记忆合金丝。
可选地,所述第二支撑体采用变径式记忆合金丝编织而成;或者,
所述第二支撑体的外周侧局部嵌设有记忆合金管。
本公开还提供一种植入型心脏瓣膜支架,其特征在于,
所述植入型心脏瓣膜支架包括多个支撑单元,多个所述支撑单元围设形成供血液流通的流通道;
其中,至少一个所述支撑单元包括凸伸支体,所述凸伸支体向远离所述流通道的方向凸伸形成可与心脏组织相抵接的凸伸部,且所述凸伸支体向所述流通道的上游方向延伸形成可连接裙布的连接体。
可选地,每个所述支撑单元包括分别连接不同瓣叶的两第一支撑体,所述两第一支撑体及所述连接体之间形成可用裙布连接覆盖的第一空间。
可选地,根据血液通过所述流通道的方向界定上、下游方向,所述连接体位于所述两第一支撑体的上游方向。
可选地,所述连接体包括至少一个子连接体,至少一个所述子连接体与所述连接体叠加设置或间隔设置。
可选地,所述两第一支撑体分别自所述连接体的两端向所述下游方向延伸,且所述两第一支撑体相汇合连接。
可选地,每个所述支撑单元均包括所述凸伸支体,且所述凸伸支体沿所述流通道的周向位于相邻的两个所述支撑单元之间。
可选地,每个所述支撑单元均包括两个所述凸伸支体,两个所述凸伸支体形成的连接体相互连接。
可选地,每个所述凸伸支体与所述第一支撑体之间形成有供医疗器件通过的第二空间。
可选地,所述凸伸支体与所述第一支撑体为一根编织丝编制形成。
可选地,所述凸伸支体位于所述流通道下游的一端形成有连接环。
可选地,每一所述支撑单元与相邻的所述支撑单元通过铆接结构连接,形成第一铆接结,在所述第一铆接结中,相邻的两个所述支撑单元的第一支撑体和所述连接体并行排列。
可选地,每一支撑单元的两个所述第一支撑体通过铆接结构连接,并形成第二铆接结。
可选地,所述凸伸支体包括依次连接的第一连接段、抵接段和第二连接段,所述第一连接段连接于所述第一铆接结中;所述抵接段的第一端与所述第一连接段相连,第二端向远离所述流通道的方向凸伸;所述第二连接段的一端与所述抵接段的第二端相连,另一端与所述第一支撑体相连。
可选地,所述抵接段与所述流通道的轴线方向的夹角α在10°~150°的范围内。
可选地,所述抵接段的第二端与所述第一连接段之间的距离b在1mm~20mm的范围内。
可选地,所述植入型心脏瓣膜支架由至少一根编织丝编制形成。
可选地,所述编织丝包括记忆合金丝。
可选地,所述连接体采用变径式记忆合金丝编织而成;或者,
所述连接体的外周侧局部嵌设有记忆合金管。
本公开还提供一种心脏瓣膜假体,包括上文任一项所述的心脏瓣膜支架或上文任一项所述的植入型心脏瓣膜支架;
瓣叶,设于所述流通道内,并与所述心脏瓣膜支架或所述植入型心脏瓣膜支架的第一支撑体相连接;
第一密封裙布,连接覆盖于所述心脏瓣膜支架或所述植入型心脏瓣膜支架的两第一支撑体与所述第二支撑体之间形成的空间内。
可选地,第二密封裙布,围设于所述心脏瓣膜支架或所述植入型心脏瓣膜支架的外周侧。
可选地,所述第二密封裙布呈圆盘状,且所述第二密封裙布的周侧向所述心脏瓣膜支架的下游翻折形成有翻边。
可选地,所述瓣叶的材料为高分子材料、生物组织材料和组织工程材料中的至少一种。
可选地,所述瓣叶与所述心脏瓣膜支架或所述植入型心脏瓣膜支架的第一支撑体的连接方式为缝线缝制、粘接、热熔、高分子附着中的一种。
本公开还提供一种心脏瓣膜支架,其特征在于,包括:
支撑主体,包括多个支撑单元;多个所述支撑单元围设形成供血液流动的通道,每个所述支撑单元均包括用于分别连接不同瓣叶的两个第一支撑体,至少一个所述支撑单元包括第二支撑体,所述第二支撑体设置于所述第一支撑体靠近相邻支撑单元的一侧;
至少一个凸伸支体,所述凸伸支体与相邻的两个所述支撑单元相对固定且自所述支撑主体向所述通道的外侧延伸,所述凸伸支体与所述支撑主体之间形成有用于容置心脏原生瓣叶的空隙。
可选地,每个所述支撑单元均包括两个所述第二支撑体,每个所述支撑单元中的两个所述第二支撑体分别设置于两个所述第一支撑体的两侧。
可选地,每个所述支撑单元包括连接两个所述第一支撑体的第三支撑体,两个所述第一支撑体及第三支撑体之间形成可用第一裙布连接覆盖的空间。
可选地,每个所述第一支撑体均与一个所述凸伸支体相对固定,并且每一所述凸伸支体与分别属于相邻两个支撑单元的相邻两个第一支撑体相对固定连接;所述凸伸支体的中部形成用于与心脏组织抵接的凸伸部。
可选地,分别属于相邻两个支撑单元的相邻两个第二支撑体沿心脏瓣膜支架的周向位于连接该两个支撑单元的凸伸支体之间。
可选地,分别属于相邻两个支撑单元的相邻两个第二支撑体沿心脏瓣膜支架的径向位于连接该两个支撑单元的所述凸伸支体的内侧。
可选地,所述支撑单元的两个所述第一支撑体的下游处和两个所述凸伸支体的下游处通过铆接结构连接,形成第一铆接结,该两个所述凸伸支体为与该两个第一支撑体相对固定的两个凸伸支体。
可选地,每个所述第二支撑体均与一个所述凸伸支体相对固定,所述凸伸支体的中部形成用于与心脏组织抵接
的凸伸部。
可选地,分别属于相邻两个支撑单元的相邻两个第二支撑体的部分沿心脏瓣膜支架的周向位于连接该两个支撑单元的凸伸支体之间。
可选地,分别属于相邻两个支撑单元的相邻两个第二支撑体的部分沿心脏瓣膜支架的径向位于连接该两个支撑单元的所述凸伸支体的内侧。
可选地,所述支撑单元的两个所述第一支撑体的下游处通过铆接结构连接,形成第一铆接结,所述凸伸支体的下游处与所述第二支撑体通过铆接结构连接,形成第二铆接结。
可选地,分别属于相邻两个支撑单元的相邻两个第一支撑体的上游处、相邻两个第二支撑体的上游处、相邻两个第三支撑体的下游处通过铆接结构连接,形成第三铆接结。
可选地,所述每一支撑单元由一根编织丝编织形成,每一凸伸支体为另一根编织丝形成。
可选地,所述编织丝包括变径部,所述变径部的直径大于其他部分的直径,所述变径部对应所述铆接结构设置。
可选地,所述编织丝采用变径记忆合金丝制成,以形成所述变径部;或
所述编织丝的外周嵌设有记忆合金管,嵌设有所述记忆合金管的部分为所述变径部。
可选地,每一所述支撑单元的下游方向上均形成有连接环。
本公开还提供一种心脏瓣膜假体,包括上文任意一项所述的心脏瓣膜支架;
瓣叶,设置于所述通道内,并与所述心脏瓣膜支架的第一支撑体连接;
第一裙布,连接覆盖于所述心脏瓣膜支架的支撑单元的两个第一支撑体和第三支撑体之间形成的空间。
可选地,所述心脏瓣膜假体还包括第二裙布,所述第二裙布围设于所述心脏瓣膜支架的外周侧,且所述第二裙布的上游端与所述第一裙布连接,所述第二裙布自上游端至下游端,周长逐渐变大,再逐渐变小。
可选地,所述第二裙布的下游端形成有环形的第一翻边,所述第一翻边朝向所述心脏瓣膜支架的下游。
可选地,所述第一翻边和所述第二裙布上形成有容置缺口,所述容置缺口用于容置所述支撑主体。
可选地,所述第二裙布的周侧形成有环形的第二翻边,所述第二翻边朝向所述心脏瓣膜支架的下游。
可选地,所述第二翻边设置于所述第二裙布的周长最大的周侧。
为了更清楚地说明本公开实施方式的技术方案,下面将对本公开实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施方式,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开一些实施方式提供的心脏瓣膜支架的一个视角的结构示意图;
图2为本公开一些实施方式提供的心脏瓣膜支架的另一视角的结构示意图;
图3为图2中A部的放大结构示意图;
图4为本公开一实施方式提供的第二支撑体的局部结构示意图;
图5为本公开另一实施方式提供的第二支撑体的局部结构示意图;
图6为本公开一些实施方式提供的心脏瓣膜假体的结构示意图;
图7为本公开另一实施方式提供的心脏瓣膜支架的一个视角结构示意图;
图8为本公开另一实施方式提供的心脏瓣膜支架的另一视角的结构示意图;
图9为图8中A部的放大结构示意图;
图10为本公开另一实施方式提供的心脏瓣膜假体的结构示意图;
图11为本公开实施方式提供的植入型心脏瓣膜支架的一个视角的结构示意图;
图12为本公开实施方式提供的植入型心脏瓣膜支架的另一视角的结构示意图;
图13为图12中A部的放大结构示意图;
图14为本公开实施方式提供的连接体的一种连接结构示意图;
图15为本公开实施方式提供的连接体的另一种连接结构示意图;
图16为本公开另一实施方式提供的心脏瓣膜假体的结构示意图;
图17为本公开另一实施方式提供的一种心脏瓣膜支架的立体结构示意图;
图18为本公开另一实施方式提供的一种心脏瓣膜支架的另一视角的立体结构示意图;
图19为本公开实施方式提供的一种心脏瓣膜支架和瓣叶、第一裙布的立体结构示意图;
图20为本公开实施方式提供的一种心脏瓣膜支架的编织丝的结构示意图;
图21为本公开实施方式提供的另一种心脏瓣膜支架的编织丝的结构示意图;
图22为本公开实施方式提供的另一种心脏瓣膜支架的立体结构示意图;
图23为本公开实施方式提供的另一种心脏瓣膜支架的另一视角的立体结构示意图;
图24为本公开实施方式提供的一种心脏瓣膜假体的结构示意图;
图25为本公开实施方式提供的一种心脏瓣膜假体中第二裙布的立体结构示意图;
图26为本公开实施方式提供的另一种心脏瓣膜假体中第二裙布的立体结构示意图。
附图标记:
心脏瓣膜假体1;心脏瓣膜支架或(人工)心脏瓣膜支架或植入型心脏瓣膜支架10;支撑主体100;支撑单元110;第一支撑体111;第二支撑体112;第三支撑体113;第一铆接结114;第二铆接结115;第三铆接结116;流通道或通道120;编织丝131;变径部132;编织丝133;变径部134;;凸伸支体200;凸伸部210;凸伸段220;连接段230;过渡段240;连接体250;子连接体251;空隙300;连接环400;记忆合金管500;第一空间600-A;第二空间600-B;瓣叶20;第一密封裙布30;第二密封裙布40;
支撑主体800;支撑单元810;第一支撑体811;第二支撑体812;第三支撑体813;第一铆接结814;第二铆接结815;第三铆接结816;凸伸支体900;凸伸部910;瓣叶20;第一裙布50;第二裙布60;第一翻边601;容置缺口602;第二裙布70;第一翻边701;容置缺口702;第二翻边703;
其中,图1和图6中箭头方向表示血液流通的方向。
下面将结合本公开实施方式中的附图,对本公开实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本公开一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本公开实施方式的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施方式的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施方式。基于本公开的实施方式,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都属于本公开保护的范围。
在本公开中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开及其实施方式,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或点连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的联通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“两个”的含义为两个或两个以上。
在第一方面,本公开一实施方式提供了一种(人工)心脏瓣膜支架10,包括支撑主体100和与所述支撑主体100相连的至少一个凸伸支体200;所述支撑主体100限定有供血液流通的流通道120;所述凸伸支体200自所述支撑主体100向所述流通道120的外侧延伸,形成有可与心脏组织抵接的凸伸部210,且所述凸伸支体200与所述支撑主体100之间形成有可容置心脏原生瓣叶20的空隙300。
在上述实施方式中,(人工)心脏瓣膜支架10包括支撑主体100和与支撑主体100相连的至少一个凸伸支体200。其中,支撑主体100用于撑接在原主动脉瓣膜处,且支撑主体100的中部限定有用于供血液流通的流通道120,凸伸支体200自支撑主体100向远离流通道120的外侧延伸设置,并形成有用于与心脏组织(如主动脉窦)相抵接的凸伸部210,则当(人工)心脏瓣膜支架10撑接于原主动脉瓣膜处时,凸伸部210通过与心脏组织相抵接,以起到固定(人工)心脏瓣膜支架10的作用,防止瓣叶20闭合时因血液在瓣叶20上产生的压力作用下导致(人工)心脏瓣膜支架10发生位移,从而提高心脏了瓣膜支架在原主动脉瓣膜处撑接的稳定性和可靠性,并提高了(人工)心脏瓣膜支架10的使用寿命;同时,凸伸支体200与支撑主体100之间具有间隙,则当(人工)心脏瓣膜支架10安装于原主动脉瓣膜处时,心脏原生瓣叶20可容置于该间隙内,从而防止心脏原生瓣叶20与(人工)心脏瓣膜支架10相互干涉造成冠脉堵塞的情况发生,从而有助于提高(人工)心脏瓣膜支架10安装时的安全性。
在一些实施方式中,所述支撑主体100包括多个支撑单元110,多个所述支撑单元110围设形成所述流通道120;其中,每个所述支撑单元110均包括用于分别连接不同瓣叶20的两第一支撑体111,以及连接所述两第一支撑体111的至少一个第二支撑体112,所述两第一支撑体111及第二支撑体112之间形成可用裙布连接覆盖的空间。
在上述实施方式中,(人工)心脏瓣膜支架10包括多个支撑单元110,多个支撑单元110相互连接并围设出供血液流通的流通道120。其中,每个支撑单元110均包括两个第一支撑体111和分别与两个第一支撑体111的一端相连的第二支撑体112,且第二支撑体112与两个第一支撑体111之间形成有用于裙布连接覆盖的空间,裙布连接覆盖于该空间内时,使得血液仅能够从流通道120进行流通,以避免血液从(人工)心脏瓣膜支架10的周侧流通。
示例性的,支撑单元110的数量为三个,三个支撑单元110围设形成支撑主体100。
在一些实施方式中,根据血液通过所述流通道120的方向界定上、下游方向,所述第二支撑体112位于所述两第一支撑体111的上游方向。
在上述实施方式中,第二支撑体112位于两个第一支撑体111的上游方向,即第二支撑体112所在方向形成血液流入端,两个第一支撑体111所在方向形成血液流出端,血液先经第二支撑体112所在方向流入,再从第一支撑体111所在方向流出。
在一些实施方式中,所述两第一支撑体111分别自所述第二支撑体112的两端向所述下游方向延伸,且所述两第一支撑体111相汇合连接。
在上述实施方式中,两个第一支撑体111的第一端分别通过与第二支撑体112的两端相连,第二端向流通道120的下游方向延伸后并汇合连接,从而与第二支撑体112之间形成用于连接覆盖裙布的闭环空间。其中,两第一支撑体111的第二端可采用铆接管铆接或焊接的方式连接。
在一些实施方式中,每个所述支撑单元110均连接有所述凸伸支体200,且凸伸支体200在支撑主体100的周向上位于相邻的两个所述支撑单元110之间。
在上述实施方式中,凸伸支体200的数量为多个,每个支撑单元110均连接有凸伸支体200。具体地,多个凸伸支体200间隔设置,且在支撑主体100的周向上位于相邻的两个支撑单元110之间,则当多个凸伸支体200的凸伸部210与心脏组织(如主动脉窦)相抵接后,可有效提高(人工)心脏瓣膜支架10安装后的可靠性和稳定性。
在一些实施方式中,每个所述支撑单元110均连接有两个所述凸伸支体200,且相邻的两个所述支撑单元110之间的两个所述凸伸支体200相互连接。
在上述实施方式中,相邻的两个支撑单元110之间的两个凸伸支体200位于流通道120上游方向的一端相连接,即两个凸伸支体200的两个凸伸部210相互连接,从而有助于提高凸伸部210与心脏组织相抵接时的可靠性和稳定性。
在一些实施方式中,相邻的两个所述支撑单元110之间的两个所述凸伸支体200为一根编织丝131形成。
在上述实施方式中,即相邻的两个支撑单元110之间的两个凸伸支体200采用一根编织丝131一体形成,无需进行焊接或铆接等方式二次连接,有助于提高产品的生产效率。
在一些实施方式中,所述第一支撑体111的下游方向上形成有连接环400。
在上述实施方式中,第一支撑体111形成有连接环400,连接环400位于流通道120的下游,用于与(人工)心脏瓣膜支架10的输送系统相连接,以通过输送系统实现(人工)心脏瓣膜支架10的输送及回收。
在一些实施方式中,每一所述第一支撑体111均形成有所述连接环400。
在上述实施方式中,即连接环400的数量为多个,且多个连接环400均位于流通道120下游方向,当多个连接环400均与(人工)心脏瓣膜支架10的输送系统连接时,有助于提高(人工)心脏瓣膜支架10在输送过程中的可靠性。
在一些实施方式中,所述连接环400的上游处设有第一铆接结114,所述第一铆接结114使所述连接环400形成闭环。
在上述实施方式中,通过在连接环400的上游处设置第一铆接结114,从而可使连接环400形成闭环结构,便于输送系统的连接件与连接环400相连接,且有助于提高输送系统的连接件与连接环400连接时的可靠性。
在一些实施方式中,每一所述支撑单元110与相邻的支撑单元110通过铆接结构连接,形成第二铆接结115,在所述第二铆接结115中,相邻的两个所述支撑单元110的第一支撑体111和第二支撑体112并行排列,所述凸伸支体200与位于所述第二铆接结115中的所述第一支撑体111和所述第二支撑体112之间形成容置心脏原生瓣叶20的所述空隙300。
在上述实施方式中,每个支撑单元110与相邻的两个支撑单元110通过铆接结构连接,即每个支撑单元110的两第一支撑体111与第二支撑体112的连接处,以及与其相邻的支撑单元110的两第一支撑体111与第二支撑体112的连接处通过铆接结构连接,并形成第二铆接结115。在第一铆接结114中,相邻的两个支撑单元110的第一支撑体111和第二支撑体112并行排列,有助于提高每个支撑单元110连接的可靠性,并提高产品的美观度,且凸伸支体200与位于第二铆接结115中的第一支撑体111和第二支撑体112之间间隔设置,并限定出用于容置心脏原生瓣叶20的间隙。
在一些实施方式中,每一支撑单元110的所述两第一支撑体111通过铆接结构连接,并形成第三铆接结116。
在上述实施方式中,每个支撑单元110的两第一支撑体111位于流通道120下游的连接处通过铆接管等铆接结构连接并形成第三铆接结116,从而有效保证了每个支撑单元110中两第一支撑体111位于流通道120下游的一端连接的可靠性。
在一些实施方式中,沿血液通过所述流通道120的方向,所述凸伸支体200包括相连续的凸伸段220和连接段230;其中,所述凸伸段220向远离所述流通道120的方向弯折延伸;所述连接段230的一端与所述凸伸段220相连,另一端与所述支撑主体100相连,所述凸伸段220与所述流通道120的轴向之间的夹角在1°~150°的范围内。
在上述实施方式中,凸伸段220位于流通道120的下游,连接段230的一端与凸伸段220相连,另一端向流通道120的下游方向延伸,最终与支撑主体100的第一支撑体111相连。通过将凸伸段220与流通道120的轴线方向之间的夹角设置在1°~150°的范围内,从而可便于凸伸段220能够与心脏组织(如主动脉窦)的位置相对应,以便于与心脏组织相抵接,并有助于提高凸伸段220与心脏组织抵接时的稳定性。
具体地,连接段230与第一支撑体111之间限定有安装空间,用于供冠脉支架等医疗器件安装时通过。
在一些实施方式中,所述连接段230与所述凸伸段220相连的一端与位于所述流通道120的上游的所述支撑主体100之间的水平距离a设置在1mm~20mm的范围内。
在上述实施方式中,通过将连接段230与凸伸段220相连的一端与位于流通道120的上游的支撑主体100之间的距离a设置在1mm~20mm的范围内,一方面是保证凸伸段220能够与心脏组织相抵接,并防止凸伸段220凸伸过长损伤心脏其他组织;另一方面可便于心脏原生瓣叶20与凸伸段220靠近支撑主体100的一侧相抵接后容置于凸伸支体200与支撑主体100之间的间隙内,从而提高心脏原生瓣叶20容置于该间隙内时的便捷性。
在一些实施方式中,所述心脏瓣膜支架10采用至少一根纵长材料编制形成。
在上述实施方式中,示例性的,纵长材料可以是记忆合金丝或镍钛合金丝等。其中,当(人工)心脏瓣膜支架10采用一根纵长材料编制形成时,(人工)心脏瓣膜支架10整体性较高,且便于加工成型。当(人工)心脏瓣膜支架10采用多根纵长材料编制时,相连的两根纵长材料可通过铆接管铆接或焊接的方式固定连接。此外,相连的两根纵长材料的连接处也可以通过焊接、螺纹连接进行固定连接。
在第二方面,本公开一实施方式还提供了另一种心脏瓣膜支架10,所述心脏瓣膜支架10由至少一根纵长材料编织定型而成;所述心脏瓣膜支架10限定有用于供血液流通的流通道120;其中,至少一根纵长材料向所述流通道120的外侧凸伸形成可与心脏组织相抵接的凸伸部210。
本公开实施方式提供的心脏瓣膜支架10,用于撑接在原主动脉瓣膜处,其中,心脏瓣膜支架10采用至少一根纵长材料编织定型后形成,且心脏瓣膜支架10的中部限定有用于供血液流通的流通道120,示例性的,纵长材料可以是记忆合金丝或镍钛合金丝等,通过将至少一根纵长材料局部向远离流通道120的外侧凸伸,从而形成用于与心脏组织(如主动脉窦)相抵接的凸伸部210,则当心脏瓣膜支架10撑接于原主动脉瓣膜处时,凸伸部210通过与心脏组织相抵接,以起到固定心脏瓣膜支架10的作用,防止瓣叶20闭合时因血液在瓣叶20上产生的压力作用下导致心脏瓣膜支架10发生位移,从而提高心脏瓣膜支架10在原主动脉瓣膜处撑接的稳定性和可靠性,延长了心脏瓣膜支架10的使用寿命,且有助于提高心脏瓣膜支架10在非钙化的患者中使用的稳定性。
在一些实施方式中,所述心脏瓣膜支架10包括多个支撑单元110,多个所述支撑单元110围设形成所述流通道120;其中,每个所述支撑单元110均包括用于分别连接不同瓣叶20的两第一支撑体111,连接两第一支撑体111的第二支撑体112,所述两第一支撑体111及第二支撑体112之间形成可用裙布连接覆盖的空间。
在一些实施方式中,心脏瓣膜支架10包括多个支撑单元110,多个支撑单元110相互连接并围设出流通道120。且每个支撑单元110均包括两个第一支撑体111和分别与两个第一支撑体111的一端相连的第二支撑体112,且第二支撑体112与两个第一支撑体111之间形成有用于裙布连接覆盖的空间,裙布连接覆盖于该空间内时,使得血液仅能够从流通道120进行流通,以避免血液从心脏瓣膜支架10的周侧流通。
示例性的,支撑单元110的数量为三个。
在一些实施方式中,根据血液通过所述流通道120的方向界定上、下游方向,所述第二支撑体112位于所述两第一支撑体111的上游方向。
在上述实施方式中,第二支撑体112位于两个第一支撑体111的上游方向,即第二支撑体112所在方向形成血
液流入端,两个第一支撑体111形成血液流出端,血液先经第二支撑体112所在方向流入,再从第一支撑体111所在方向流出。
在一些实施方式中,所述两第一支撑体111分别自所述第二支撑体112的两端向所述下游方向延伸且与两第一支撑体111的第二端相连接。
在上述实施方式中,两个第一支撑体111的第一端分别通过与第二支撑体112的两端相连,并向流通道120的下游方向延伸,且两第一支撑体111的第二端相连接,从而与第二支撑体112之间形成用于连接覆盖裙布的闭环空间。其中,两第一支撑体111的第二端可采用铆接管铆接或焊接的方式连接。
在一些实施方式中,每个所述支撑单元110还包括第三支撑体113,所述第三支撑体113形成位于所述心脏瓣膜支架10下游的连接环400。
在上述实施方式中,支撑单元110还包括第三支撑体113,第三支撑体113形成有位于心脏瓣膜支架10下游的连接环400,连接环400用于与心脏瓣膜支架10的输送系统相连接,用于通过输送系统实现心脏瓣膜支架10的输送及回收。
可以理解的,每个支撑单元110具有两个第三支撑体113,两个第三支撑体113分别位于心脏瓣膜支架10下游的一端在形成连接环400后分别与两个第一支撑体111的第二端相连接。
在一些实施方式中,第三支撑体113位于心脏瓣膜支架10下游的一端在形成连接环400后与第一支撑体111相连,位于心脏瓣膜支架10上游的另一端形成用于与心脏组织相抵接的凸伸部210。其中,第三支撑体113可与第一支撑体111一体相连,或采用铆接或焊接的方式固定连接。
在一些实施方式中,每个所述支撑单元110的所述第三支撑体113的数量为两个,两第三支撑体113的一端分别与所述两第一支撑体111连接,所述两第三支撑体113的另一端均形成所述凸伸部210。
在上述实施方式中,每个支撑单元110均包括两个第三支撑体113,两个第三支撑体113位于两第一支撑体111的两侧,且两个第三支撑体113的第一端分别与两个第一支撑体111位于流通道120的下游的一端连接,另一端均形成用于与心脏组织相抵接的凸伸部210。
在一些实施方式中,每一所述第三支撑体113的最下游处均形成一所述连接环400。
在上述实施方式中,每个第三支撑体113的最下游处均形成一连接环400,连接环400用于与输送系统的连接结构相连,以便通过输送机构将心脏瓣膜支架10输送至心脏组织,提高了输送过程的稳定性和可靠性。
在一些实施方式中,每一所述支撑单元110的凸伸部210与相邻的所述支撑单元110的凸伸部210为同一根纵长材料弯折形成,且相邻的两个所述凸伸部210连续。
在上述实施方式中,相邻的两个支撑单元110中相邻的两个凸伸部210为同一根纵长材料弯折形成并且连续,避免凸伸部210因应力集中导致损伤心脏组织,还可提高凸伸部210的支撑强度,提高心脏瓣膜支架10安装的可靠性。
在一些实施方式中,每一所述支撑单元110与相邻的所述支撑单元110通过铆接结构连接,形成第一铆接结114,在所述第一铆接结114中,各纵长材料并行排列,且两所述凸伸部210位于中间。
在上述实施方式中,每个支撑单元110与相邻的两个支撑单元110通过铆接结构连接,即每个支撑单元110的两第一支撑体111与第二支撑体112的连接处,以及与其相邻的支撑单元110的两第一支撑体111与第二支撑体112的连接处通过铆接结构连接,并形成两个第一铆接结114,且第三支撑体113也连接于第一铆接结114中。在第一铆接结114中,各纵长材料并行排列,有助于提高每个支撑单元110连接的可靠性,并提高产品的美观度,且每个支撑单元110的凸伸部210位于支撑单元110的中部,便于与心脏组织相抵接。
在一些实施方式中,每一支撑单元110的所述两第一支撑体111通过铆接结构连接,形成第二铆接结115,所述第三支撑体113也连接于所述第二铆接结115中。
在上述实施方式中,每个支撑单元110的两第一支撑体111和位于流通道120下游的连接处通过铆接管等铆接结构连接并形成第二铆接结115,且每个支撑单元110的两第三支撑体113也连接于第二铆接结115中,从而有效保证了每个支撑单元110中两第一支撑体111和两第三支撑体113连接的可靠性。
在一些实施方式中,所述凸伸部210的凸伸方向与所述流通道120的轴向相垂直的方向之间的夹角在15°~90°的范围内。
在上述实施方式中,通过将凸伸部210所在平面与流通道120的轴向相垂直的方向之间的夹角在15°~90°的范围内,则当心脏瓣膜支架10撑接于原主动脉瓣膜处时,使得凸伸部210能够与心脏组织位置相对应,便于与心脏组织相抵接,并有助于提高凸伸部210与心脏组织抵接的稳定性。
在一些实施方式中,沿血液通过所述流通道120的方向,所述第三支撑体113包括相连续的凸伸段220、过渡段240和连接段230;其中,所述凸伸段220形成所述凸伸部210;所述过渡段240的一端与所述凸伸段220相连,另一端向远离所述流通道120的方向弯折延伸,并与所述流通道120的轴向相垂直的方向之间的夹角在60°~150°的范围内;所述连接段230的一端与所述过渡段240相连,另一端与所述第一支撑体111相连。
在上述实施方式中,第三支撑体113包括沿流通道120的流动方向依次相连的凸伸段220、过渡段240和连接段230,其中,凸伸段220向流通道120外侧凸伸以形成用于与心脏组织相抵接的凸伸部210,过渡段240的一端与凸伸段220相连,另一端向远离流通道120的方向弯折延伸,且过渡段240与流通道120的轴向相垂直的方向之间的夹角设置在60°~150°的范围内,以保证心脏瓣膜支架10能够撑开原主动脉瓣膜处,进而保证血液能够正常流通。连接段230的一端与过渡段240相连,另一端向靠近第一支撑体111的方向弯折延伸,并在流通道120的最下游处形成连接环400后与第一支撑体111相连,因此能够使第三支撑体113与瓣叶20之间限定出较大空间,从而当患者进行冠脉支架安装手术时,冠脉支架能够通过该空间进行安装。
在第三方面,本公开一实施方式提供了一种植入型心脏瓣膜支架10,所述心脏瓣膜支架10包括多个支撑单元110,多个所述支撑单元110围设形成供血液流通的流通道120;其中,至少一个所述支撑单元110包括凸伸支体200,所述凸伸支体200向远离所述流通道120的方向凸伸形成可与心脏组织相抵接的凸伸部210,且所述凸伸支体200向所述流通道120的上游方向延伸形成可连接裙布的连接体250。
在上述实施方式中,心脏瓣膜支架10包括多个支撑单元110,多个支撑单元110相互连接并围设出供血液流通的流通道120。其中,至少一个支撑单元110包括有凸伸支体200,且凸伸支体200向远离流通道120的方向凸伸形成有凸伸部210,凸伸部210用于与心脏组织相抵接,则当心脏瓣膜支架10撑接于原主动脉瓣膜处时,凸伸部210
通过与心脏组织相抵接,从而起到固定心脏瓣膜支架10的作用,防止瓣叶20闭合时因血液在瓣叶20上产生的压力作用下导致心脏瓣膜支架10发生位移,从而提高心脏了瓣膜支架在原主动脉瓣膜处撑接的稳定性和可靠性,并提高了心脏瓣膜支架10的使用寿命。同时,凸伸部210支体向流通道120的上游沿伸形成有用于连接密封裙布的连接体250,密封裙布与连接体250连接后,可防止血液从流通道120的周侧进行流通,提高了血液沿流通道120的轴向流通时的流畅性。
可选地,对于瓣叶20钙化较严重的患者,凸伸部210可直接与患者钙化的瓣叶20相抵接,由于钙化后的瓣叶20硬度较大,从而可在凸伸部210与其抵接时起到良好的支撑作用,并保证了心脏瓣膜在原心脏瓣膜处撑接时的可靠性和稳定性。
在一些实施方式中,每个所述支撑单元110包括分别连接不同瓣叶20的两第一支撑体111,所述两第一支撑体111及所述连接体250之间形成可用裙布连接覆盖的第一空间600-A。
在上述实施方式中,每个支撑单元110均包括两个第一支撑体111,且两个第一支撑体111与所述连接体250之间形成有用于裙布连接覆盖的第一空间600-A,裙布连接覆盖于该空间内时,使得血液仅能够从流通道120进行流通,以避免血液从心脏瓣膜支架10的周侧流通。
在一些实施方式中,根据血液通过所述流通道120的方向界定上、下游方向,所述连接体250位于所述两第一支撑体111的上游方向,并与所述凸伸支体200位于流通道120上游方向的一端连续,以形成所述连接体250。
在上述实施方式中,连接体250位于两个第一支撑体111的上游方向,即连接体250所在方向形成血液流入端,两个第一支撑体111所在方向形成血液流出端,血液先经连接体250所在方向流入,再从第一支撑体111所在方向流出。且连接体250被配置为连接体250,连接体250通过与凸伸支体200位于流通道120上游方向的一端相连续,从而形成用于供裙布连接覆盖的连接体250。
在一些实施方式中,所述连接体250包括至少一个子连接体251,至少一个所述子连接体251与所述连接体250叠加设置或间隔设置。
在上述实施方式中,通过在连接体250上连接至少一个子连接体251,至少两个支撑体叠加设置或间隔设置,均可提高连接体250支撑在原心脏瓣膜处时的支撑强度,以进一步提高心脏瓣膜支架10安装时的稳定性。
在一些实施方式中,所述两第一支撑体111分别自所述连接体250的两端向所述下游方向延伸,且所述两第一支撑体111相汇合连接。
在上述实施方式中,两个第一支撑体111的第一端分别与连接体250的两端相连,第二端向流通道120的下游方向延伸后并汇合连接,从而与连接体250之间形成用于连接覆盖裙布的闭环空间。
示例性的,两第一支撑体111的第二端、以及两第一支撑体111与连接体250的连接方式均可采用铆接管铆接或焊接的方式连接。
在一些实施方式中,每个所述支撑单元110均包括所述凸伸支体200,且所述凸伸支体200沿所述流通道120的周向位于相邻的两个所述支撑单元110之间。
在上述实施方式中,凸伸支体200的数量为多个,每个支撑单元110均包括凸伸支体200。具体地,多个凸伸支体200间隔设置,且在支撑主体100的周向上位于相邻的两个支撑单元110之间,则当多个凸伸支体200的凸伸部210与心脏组织(如钙化的瓣叶20)相抵接后,可有效提高心脏瓣膜支架10安装后的可靠性和稳定性。
在一些实施方式中,每个所述支撑单元110均包括两个所述凸伸支体200,两个所述凸伸支体200形成的连接体250相互连接。
在上述实施方式中,每个支撑单元110的两个凸伸支体200形成的连接体250相互连接(如一体相连、焊接或铆接等),从而有助于提高密封裙布连接覆盖于连接体250与第一支撑体111之间形成的空间内时的稳定性,且有助于提高产品的整体性,并提高心脏瓣膜支架10撑接于原心脏瓣膜处时的可靠性和稳定性。
在一些实施方式中,每个所述凸伸支体200与所述第一支撑体111之间形成有供医疗器件通过的第二空间600-B。
在上述实施方式中,每个凸伸支体200和与其相连的第一支撑体111之间形成有供冠脉支架等医疗器件通过的第二空间600-B,从而便于在安装心脏瓣膜支架10后,冠脉支架等医疗器件安装时的便捷性。
在一些实施方式中,所述凸伸支体200与所述第一支撑体111为一根编织丝131编制形成。
在上述实施方式中,凸伸支体200与第一支撑体111为一根编织丝131编制而成,两者是连续的,无需进行焊接或铆接等方式二次连接,有助于提高产品的生产效率,并有助于提高产品的整体性。
在一些实施方式中,所述凸伸支体200位于所述流通道120下游的一端形成有连接环400。
在上述实施方式中,凸伸支体200上设有连接环400,连接环400位于流通道120的下游,用于与(人工)心脏瓣膜支架10的输送系统相连接,以通过输送系统实现心脏瓣膜支架10的输送及回收。
在一些实施方式中,每一所述支撑单元110与相邻的所述支撑单元110通过铆接结构连接,形成第一铆接结114,在所述第一铆接结114中,相邻的两个所述支撑单元110的第一支撑体111和连接体250并行排列,且所述凸伸支体200位于所述流通道120的上游的一端位于所述第一铆接结114中。
在上述实施方式中,每个支撑单元110与相邻的两个支撑单元110通过铆接结构连接,即每个支撑单元110的两第一支撑体111与连接体250的连接处,以及与其相邻的支撑单元110的两第一支撑体111与连接体250的连接处通过铆接结构连接于一起,并形成第一铆接结114。在第一铆接结114中,相邻的两个支撑单元110的第一支撑体111和连接体250并行排列,有助于提高每个支撑单元110连接的可靠性,并提高产品的美观度,且凸伸支体200位于流通道120上游的一端也位于第二铆接结115中,并与连接体250相连续。
在一些实施方式中,每一支撑单元110的两个所述第一支撑体111通过铆接结构连接,并形成第二铆接结115。
在上述实施方式中,每个支撑单元110的两第一支撑体111位于流通道120下游的连接处通过铆接管等铆接结构连接并形成第二铆接结115,从而有效保证了每个支撑单元110中两第一支撑体111位于流通道120下游的一端连接的可靠性。
在一些实施方式中,所述凸伸支体200包括依次连接的第一连接段230、抵接段和第二连接段230,所述第一连接段230连接于所述第一铆接结114中;所述抵接段的第一端与所述第一连接段230相连,第二端向远离所述流通道120的方向凸伸;所述第二连接段230的一端与所述抵接段的第二端相连,另一端与所述第一支撑体111相连。
在上述实施方式中,凸伸支体200包括依次连接的第一连接段230、抵接段和第二连接段230,其中,第一连接段230的至少部分位于第一铆接结114中,并与连接体250相连续;抵接段的第一端与第一连接段230相连,第二端向流通道120的外侧凸伸,从而形成可与心脏组织相抵接的凸伸部210;第二连接段230的一端与抵接段相连,另一端向靠近流通道120的方向沿伸,最终与第一支撑体111相连。
在一些实施方式中,所述抵接段与流通道120的轴线方向的夹角α在10°~150°的范围内。
在上述实施方式中,通过将抵接段与流通道120的轴线方向的夹角α设置在10°~150°的范围内,从而可便于抵接段与心脏组织(如钙化的瓣叶20)的位置相抵接,并有助于提高抵接段与心脏组织抵接时的稳定性。
在一些实施方式中,所述抵接段的第二端与所述第一连接段230之间的距离b在1mm~20mm的范围内。
在上述实施方式中,第一连接段230沿流通道120的轴线方向连接于第一铆接结114中,通过将抵接段的第二端与第一连接段230之间的距离b设置在1mm~20mm的范围内,一方面可保证抵接段能够与心脏组织相抵接,另一方面可防止抵接段向流通道120的外侧凸伸距离过长,导致损伤心脏组织。
在一些实施方式中,所述植入型心脏瓣膜支架10由至少一根编织丝131编制形成。
在上述实施方式中,示例性的,编织丝131可以是记忆合金丝或镍钛合金丝等。其中,当心脏瓣膜支架10采用一根编织丝131编制形成时,心脏瓣膜支架10整体性较高,且便于加工成型。当心脏瓣膜支架10采用多根纵长材料编制时,相连的两根纵长材料可通过铆接管铆接或焊接的方式固定连接。此外,相连的两根纵长材料的连接处也可以通过焊接、螺纹连接进行固定连接。
在一些实施方式中,所述连接体250采用变径式记忆合金丝编织而成;或者,所述连接体250的外周侧局部嵌设有记忆合金管500。
在上述实施方式中,连接体250采用变径式记忆合金丝编织而成,或者可在连接体250的外周侧局部套设记忆合金管500,以局部增大连接体250的直径,从而可提高心脏瓣膜支架10支撑的支撑力,进而提高支撑的稳定性。
基于上述第一方面和/或第二方面和/或第三方面描述的心脏瓣膜支架10,在一些实施方式中,纵长材料或编织丝131包括记忆合金丝。
基于上述第一方面和/或第二方面描述的心脏瓣膜支架10,在上述实施方式中,即(人工)心脏瓣膜支架10采用至少一根记忆合金丝编织而成,记忆合金丝能够在外力驱使下发生变形,且在外力撤销后恢复至原来的形状,便于人工瓣膜支架在外力驱使记忆合金丝发生变形后通过输送系统进行输送,且当输送至原主动脉瓣膜处时,记忆合金丝能够迅速恢复原有形状,提高了心脏瓣膜支架10撑接在主动脉瓣膜处安装的可靠性。其中,当心脏瓣膜支架10采用多根记忆合金丝编织时,相连的两根记忆合金丝通过铆接管铆接或焊接的方式固定连接。此外,心脏瓣膜支架10也可以通过焊接、螺纹连接进行固定连接。
基于上述第一方面和/或第二方面描述的心脏瓣膜支架10,在一些实施方式中,所述第二支撑体112采用至少一根变径式记忆合金丝编织而成;或者,所述第二支撑体112的外周侧局部嵌设有记忆合金管500。
基于上述第一方面和/或第二方面描述的心脏瓣膜支架10,在上述实施方式中,第二支撑体112采用变径式记忆合金丝编织而成,或者可在第二支撑体112的外周侧局部套设记忆合金管500,以局部增大第二支撑体112的直径,从而可提高心脏瓣膜支架10支撑的支撑力,进而提高支撑的稳定性。
在第四方面,本公开实施方式提供了另一种心脏瓣膜假体1,包括如第一方面或第二方面描述的心脏瓣膜支架10,或第三方面描述的植入型心脏瓣膜支架10的(人工)心脏瓣膜支架10;瓣叶20,设于所述流通道120内,并与所述(人工)心脏瓣膜支架10的第一支撑体111相连接;第一密封裙布30,连接覆盖于所述(人工)心脏瓣膜支架10的两第一支撑体111与所述第二支撑体112之间形成的空间内;第二密封裙布40,围设于所述(人工)心脏瓣膜支架10的外周侧。一些实施方式中,第二密封裙布40,围设于所述第一密封裙布30的外周侧,并与所述第一密封裙布30密封连接。
在上述实施方式中,瓣叶20位于流通道120内,并与心脏瓣膜支架10的第一支撑体111相连接,瓣叶20打开或关闭能够控制血液是否流通,如心脏收缩时,瓣叶20打开,将心脏内的血液通过主动脉流向全身,同时,在心脏舒张时,瓣叶20能够及时关闭,以避免主动脉内的血液返回流入心室。在心脏瓣膜支架10的每个支撑单元110的两第一支撑体111与第二支撑体112之间形成的空间内均设有第一密封裙布30,从而能够避免血液从心脏瓣膜支架10的周侧流通,保证血液仅从血液流入端流入,并从血液流出端流出。在(人工)心脏瓣膜支架10的外周侧还围设有第二密封裙布40,第二密封群边用于阻止血液返流,避免发生瓣周漏。
在一些实施方式中,所述第二密封裙布40呈圆盘状,且所述第二密封裙布40的周侧向所述心脏瓣膜支架10的下游翻折形成有翻边。
在上述实施方式中,第二密封裙布40呈圆盘状,从而可在心脏瓣膜支架10撑接在原主动脉瓣膜处时,第二密封裙布40与原心脏瓣膜组织相抵接,且第二密封裙布40的周侧向心脏瓣膜支架10的下游方向翻折形成有翻边,则瓣叶20关闭时,血液仅能从瓣叶20处会流向第二密封裙布40上方,并从第二密封裙布40上方流通,从而可有效防止血液反流,避免发生瓣周漏。
在一些实施方式中,所述瓣叶20的材料为高分子材料、生物组织材料和组织工程材料中的一种。
在上述实施方式中,示例性的,瓣叶20的材料为牛心包、猪心包、牛/猪心脏瓣膜等材料。
在一些实施方式中,所述瓣叶20与(人工)心脏瓣膜支架10的第一支撑体111的连接方式为粘接、热熔、高分子附着中的一种。
在上述实施方式中,瓣叶20可通过粘接、热熔、高分子附着中的一种方式与(人工)心脏瓣膜支架10的第一支撑体111固定连接,避免瓣叶20因应力集中导致损坏、脱落,有助于提高产品的使用寿命。
在第五方面,本公开一实施方式还提供另一种心脏瓣膜支架10,包括:
支撑主体100,包括多个支撑单元110;多个所述支撑单元110围设形成供血液流动的通道120,每个所述支撑单元110均包括用于分别连接不同瓣叶20的两个第一支撑体111,至少一个所述支撑单元110包括第二支撑体112,所述第二支撑体112设置于所述第一支撑体111靠近相邻支撑单元110的一侧;
至少一个凸伸支体200,所述凸伸支体200与相邻的两个所述支撑单元110相对固定且自所述支撑主体100向所述通道120的外侧延伸,所述凸伸支体200与所述支撑主体100之间形成有用于容置心脏原生瓣叶20的空隙
300。
本公开通过设置第一支撑体111和第二支撑体112以形成支撑主体100,能够使得支撑主体100的结构更加稳固,通道120不易变形,通过设置凸伸支体200,能够用于与心脏组织抵接,使得心脏瓣膜支架10在植入心脏后不易脱落,更加稳固,能够延长心脏瓣膜支架10的使用寿命,减少患者再次置换瓣膜的风险。
在一些实施方式中,每个所述支撑单元110均包括两个所述第二支撑体112,每个所述支撑单元110中的两个所述第二支撑体112分别设置于两个所述第一支撑体111的两侧。
在上述实现过程中,通过设置两个第一支撑体111,并在两个第一支撑体111的两侧分别设置两个第二支撑体112,能够使得支撑主体100的整体结构更加稳固。
在一些实施方式中,其特征在于,每个所述支撑单元110包括连接两个所述第一支撑体111的第三支撑体113,两个所述第一支撑体111及第三支撑体113之间形成可用第一裙布50连接覆盖的空间。
在上述实现过程中,通过设置第三支撑体113能够与第一支撑体111形成用于第一裙布50覆盖的空间,进而能够防止血液的回流。
在一些实施方式中,每个所述第一支撑体111均与一个所述凸伸支体200相对固定,并且每一所述凸伸支体200与分别属于相邻两个支撑单元110的相邻两个第一支撑体111相对固定连接;所述凸伸支体200的中部形成用于与心脏组织抵接的凸伸部210。
在上述实现过程中,通过使得每个凸伸支体200与相邻两个第一支撑体111连接,能够使得心脏瓣膜支架10的整体结构更加稳定,且通过使得凸伸支体200的中部形成凸伸部210,能够实现与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的周向位于连接该两个支撑单元110的凸伸支体200之间。
在上述实现过程中,通过使得分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的周向位于连接该两个支撑单元110的凸伸支体200之间,能够使得第二支撑体112起到更好的支撑作用,使得心脏瓣膜支架10的结构更加稳固。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的径向位于连接该两个支撑单元110的所述凸伸支体200的内侧。
在上述实现过程中,通过使得分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的径向位于连接该两个支撑单元110的凸伸支体200的内侧,能够使得第二支撑体112起到更好的支撑作用,使得心脏瓣膜支架10的结构更加稳固,并且使得凸伸支体200与支撑主体100之间形成用于容置心脏原生瓣叶20的空隙300,便于凸伸支体200与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,所述支撑单元110的两个所述第一支撑体111的下游处和两个所述凸伸支体200的下游处通过铆接结构连接,形成第一铆接结114,该两个所述凸伸支体200为与该两个第一支撑体111相对固定的两个凸伸支体200。
在上述实现过程中,通过铆接结构连接第一支撑体111和凸伸支体200,能够使得第一支撑体111和凸伸支体200的结构更加稳固,不易变形,从而使得心脏瓣膜支架10的整体结构更加稳固。
在一些实施方式中,每个所述第二支撑体112均与一个所述凸伸支体200相对固定,所述凸伸支体200的中部形成用于与心脏组织抵接的凸伸部210。
在上述实现过程中,通过使得每个凸伸支体200与一个第二支撑体112连接,能够使得心脏瓣膜支架10的整体结构更加稳定,且通过使得凸伸支体200的中部形成凸伸部210,能够实现与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第二支撑体112的部分沿心脏瓣膜支架10的周向位于连接该两个支撑单元110的凸伸支体200之间。
在上述实现过程中,通过使得分别属于相邻两个支撑单元110的相邻两个第二支撑体112的部分沿心脏瓣膜支架10的周向位于连接该两个支撑单元110的凸伸支体200之间,能够使得第二支撑体112起到更好的支撑作用,使得心脏瓣膜支架10的结构更加稳固。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第二支撑体112的部分沿心脏瓣膜支架10的径向位于连接该两个支撑单元110的所述凸伸支体200的内侧。
在上述实现过程中,通过使得分别属于相邻两个支撑单元110的相邻两个第二支撑体112的部分沿心脏瓣膜支架10的径向位于连接该两个支撑单元110的凸伸支体200的内侧,能够使得第二支撑体112起到更好的支撑作用,使得心脏瓣膜支架10的结构更加稳固,并且使得凸伸支体200与支撑主体100之间形成用于容置心脏原生瓣叶20的空隙300,便于凸伸支体200与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,所述支撑单元110的两个所述第一支撑体111的下游处通过铆接结构连接,形成第一铆接结114,所述凸伸支体200的下游处与所述第二支撑体112通过铆接结构连接,形成第二铆接结115。
在上述实现过程中,通过铆接结构分别连接支撑单元110的两个第一支撑体111、凸伸支体200和第二支撑体112,能够使得第一支撑体111、凸伸支体200和第二支撑体112的结构更加稳固,不易变形,从而使得心脏瓣膜支架10的整体结构更加稳固。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第一支撑体111的上游处、相邻两个第二支撑体112的上游处、相邻两个第三支撑体113的下游处通过铆接结构连接,形成第三铆接结116。
在上述实现过程中,通过铆接结构连接第一支撑体111、第二支撑体112以及第三支撑体113,能够使得第一支撑体111、第二支撑体112以及第三支撑体113的结构更加稳固,不易变形,从而使得心脏瓣膜支架10的整体结构更加稳固。
在一些实施方式中,所述每一支撑单元110由一根编织丝131编织形成,每一凸伸支体200为另一根编织丝131形成。
在上述实现过程中,通过一根编织丝131编织形成一个支撑单元110,能够便于支撑单元110的制备,无需其他连接结构,使得支撑单元110的结构更加简单,且支撑单元110的结构稳固,通过另一根编织丝131形成凸伸支体200,能够便于使得凸伸支体200和支撑主体100之间形成用于容置心脏原生瓣叶20的空隙300,进而使得凸伸支体200能够与心脏组织抵接。
在一些实施方式中,所述编织丝131包括变径部134,所述变径部134的直径大于其他部分的直径,所述变径部134对应所述铆接结构设置。
在上述实现过程中,通过使得编织丝131的变径部134对应铆接结构,能够便于编织丝131的铆接连接,使得编织丝131不易在铆接结内滑动甚至脱落,铆接连接更加稳固。
在一些实施方式中,所述编织丝131采用变径记忆合金丝制成,以形成所述变径部134;或
所述编织丝131的外周嵌设有记忆合金管500,嵌设有所述记忆合金管500的部分为所述变径部134。
在上述实现过程中,通过采用变径记忆合金丝作为编织丝131,并形成变径部134,能够简化铆接结构的安装过程,通过在编织丝131的外周嵌设记忆合金管500以形成变径部134,能够简化支撑单元110或凸伸支体200的编织制备过程。
在一些实施方式中,每一所述支撑单元110的下游方向上均形成有连接环400。
在上述实现过程中,通过在支撑单元110的下游方向上形成有连接环400,使得支撑单元110能够由一根编织丝131编织形成,且支撑单元110的结构更加稳固。
在第六方面,本公开一实施方式提供了另一种心脏瓣膜假体1,包括如上述的心脏瓣膜支架10;
瓣叶20,设置于所述通道120内,并与所述心脏瓣膜支架10的第一支撑体111连接;
第一裙布50,连接覆盖于所述心脏瓣膜支架10的支撑单元110的两个第一支撑体111和第三支撑体113之间形成的空间。
在上述实现过程中,通过设置第一支撑体111和第二支撑体112以形成支撑主体100,能够使得支撑主体100的结构更加稳固,通道120不易变形,通过设置凸伸支体200,能够用于与心脏组织抵接,使得心脏瓣膜支架10在植入心脏后不易脱落,更加稳固,能够延长心脏瓣膜支架10的使用寿命,减少患者再次置换瓣膜的风险,通过设置瓣叶20和第一裙布50,能够使得血液自支撑主体100的上游至下游流动,不会回流。
在一些实施方式中,所述心脏瓣膜假体1还包括第二裙布60,所述第二裙布60围设于所述心脏瓣膜支架10的外周侧,且所述第二裙布60的上游端与所述第一裙布50连接,所述第二裙布60自上游端至下游端,周长逐渐变大,再逐渐变小。
在上述实现过程中,通过在心脏瓣膜支架10的外周侧设置第二裙布60,使得第二裙布60能够与心脏组织抵接,进一步避免血液回流,并且通过使得第二裙布60自上游端至下游端,周长逐渐变大,再逐渐变小,能够使得第二裙布60的外周中部与心脏组织抵接,使得阻挡血液回流的效果更好。
在一些实施方式中,所述第二裙布60的下游端形成有环形的第一翻边601,所述第一翻边601朝向所述心脏瓣膜支架10的下游。
在上述实现过程中,通过在第二裙布60的下游端设置第一翻边601,能够进一步提高阻挡血液回流的效果。
在一些实施方式中,所述第一翻边601和所述第二裙布60上形成有容置缺口602,所述容置缺口602用于容置所述支撑主体100。
在上述实现过程中,通过在第一翻边601和第二裙布60上形成容置缺口602,以用于容置支撑主体100,能够使得第一翻边601和第二裙布60与支撑主体100更加贴合,进而能够避免血液从第一翻边601和第二裙布60与支撑主体100之间回流。
在一些实施方式中,所述第二裙布60的周侧形成有环形的第二翻边703,所述第二翻边703朝向所述心脏瓣膜支架10的下游。
在上述实现过程中,通过在第二裙布60的周侧设置第二翻边703,能够进一步提高阻挡血液回流的效果。
在一些实施方式中,所述第二翻边703设置于所述第二裙布60的周长最大的周侧。
在上述实现过程中,通过将第二翻边703设置于第二裙布60的周长最大的周侧,使得第二翻边703能够与心脏组织抵接,阻挡血液回流的效果更好。
本公开的技术方案具有以下效果:
1、本公开通过设置与支撑主体相连的至少一个凸伸支体,凸伸支体自支撑主体向流通道的外侧凸伸形成凸伸部,凸伸部通过抵接于心脏组织处,能够很好的降低纯反流患者发生心脏瓣膜支架位移的风险。
2、本公开的凸伸部与支撑主体之间形成有可容置心脏原生瓣叶的空隙,心脏原生瓣叶容置于该空隙内,从而可既降低心脏瓣膜支架安装后造成冠脉堵塞的风险。
3、本公开的心脏瓣膜支架采用记忆合金丝编制而成,并形成有能够用于与输送系统连接的连接环,能够实现心脏瓣膜支架的全回收。
4、本公开的心脏瓣膜支架使用寿命更长。
5、本公开的瓣叶采用高分子材料,有助于提高瓣叶的使用寿命。
6、本公开的心脏瓣膜假体体积较小,产生生物不相融的倾向更小。
7、本公开的瓣叶采用高分子材料均匀的涂敷在心脏瓣膜支架的表面,附着力更大,可避免因采用缝线缝制时应力过大导致瓣叶损坏、脱落的情况发生。
本公开的其他结构和优点将在随后的说明书中阐述,或者,部分结构和优点可以从说明书推知或毫无疑义地确定,或者通过实施本公开的上述技术即可得知。
为使本公开的上述目的、结构和优点能更明显易懂,下文特举较佳实施方式,并配合所附附图,作详细说明如下。
请参考图1、图2和图6,本公开实施方式提供了一种(人工)心脏瓣膜支架10,包括支撑主体100和与支撑主体100相连的至少一个凸伸支体200;支撑主体100限定有供血液流通的流通道120;凸伸支体200自支撑主体100向流通道120的外侧延伸,形成有可与心脏组织抵接的凸伸部210,且凸伸支体200与支撑主体100之间形成有可容置心脏原生瓣叶的空隙300。
在上述实施方式中,(人工)心脏瓣膜支架10包括支撑主体100和与支撑主体100相连的至少一个凸伸支体200。其中,支撑主体100用于撑接在原主动脉瓣膜处,且支撑主体100的中部限定有用于供血液流通的流通道120,凸伸支体200自支撑主体100向远离流通道120的外侧延伸设置,并形成有用于与心脏组织(如主动脉窦)相抵接的凸伸部210,则当心脏瓣膜支架撑接于原主动脉瓣膜处时,凸伸部210通过与心脏组织相抵接,以起到固定
心脏瓣膜支架的作用,防止瓣叶20闭合时因血液在瓣叶20上产生的压力作用下导致心脏瓣膜支架发生位移,从而提高心脏了瓣膜支架在原主动脉瓣膜处撑接的稳定性和可靠性,并提高了心脏瓣膜支架的使用寿命;同时,凸伸支体200与支撑主体100之间具有间隙,则当心脏瓣膜支架安装于原主动脉瓣膜处时,心脏原生瓣叶可容置于该间隙内,从而防止心脏原生瓣叶与心脏瓣膜支架相互干涉造成冠脉堵塞的情况发生,从而有助于提高(人工)心脏瓣膜支架10安装时的安全性。
请参考图2,在一些实施方式中,支撑主体100包括多个支撑单元110,多个支撑单元110围设形成流通道120;其中,每个支撑单元110均包括用于分别连接不同瓣叶20的两第一支撑体111,以及连接两第一支撑体111的至少一个第二支撑体112,两第一支撑体111及第二支撑体112之间形成可用裙布连接覆盖的空间。
在上述实施方式中,心脏瓣膜支架包括多个支撑单元110,多个支撑单元110相互连接并围设出供血液流通的流通道120。其中,每个支撑单元110均包括两个第一支撑体111和分别与两个第一支撑体111的一端相连的第二支撑体112,且第二支撑体112与两个第一支撑体111之间形成有用于裙布连接覆盖的空间,裙布连接覆盖于该空间内时,使得血液仅能够从流通道120进行流通,以避免血液从心脏瓣膜支架的周侧流通。
具体地,在一种实施方式中,第一支撑体111和第二支撑体112可以为同一根编织丝编制形成,两者是连续的,之所以称为第一支撑体111、第二支撑体112是为了方便叙述。此外,支撑单元110以及多个支撑单元110也可以是同一根编织丝编制形成。
示例性的,支撑单元110的数量为三个,三个支撑单元110围设形成支撑主体100。
请参考图1和图2,在一些实施方式中,根据血液通过流通道120的方向界定上、下游方向,第二支撑体112位于两第一支撑体111的上游方向。
在上述实施方式中,第二支撑体112位于两个第一支撑体111的上游方向,即第二支撑体112所在方向形成血液流入端,两个第一支撑体111所在方向形成血液流出端,血液先经第二支撑体112所在方向流入,再从第一支撑体111所在方向流出。
请参考图1和图2,在一些实施方式中,两第一支撑体111分别自第二支撑体112的两端向下游方向延伸,且两第一支撑体111相汇合连接。
在上述实施方式中,两个第一支撑体111的第一端分别通过与第二支撑体112的两端相连,第二端向流通道120的下游方向延伸后并汇合连接,从而与第二支撑体112之间形成用于连接覆盖裙布的闭环空间。其中,两第一支撑体111的第二端可采用铆接管铆接或焊接的方式连接。
请参考图1和图2,在一些实施方式中,每个支撑单元110均连接有凸伸支体200,且凸伸支体200在支撑主体100的周向上位于相邻的两个支撑单元110之间。
在上述实施方式中,凸伸支体200的数量为多个,每个支撑单元110均连接有凸伸支体200。具体地,多个凸伸支体200间隔设置,且在支撑主体100的周向上位于相邻的两个支撑单元110之间,则当多个凸伸支体200的凸伸部210与心脏组织(如主动脉窦)相抵接后,可有效提高(人工)心脏瓣膜支架10安装后的可靠性和稳定性。
具体地,在一种实施方式中,凸伸支体200与支撑单元110可以为同一根编织丝编制形成,凸伸支体200与支撑单元110之间也是连续的。
请参考图1和图2,在一些实施方式中,每个支撑单元110均连接有两个凸伸支体200,且相邻的两个支撑单元110之间的两个凸伸支体200相互连接。
在上述实施方式中,相邻的两个支撑单元110之间的两个凸伸支体200位于流通道120上游方向的一端相连接,即两个凸伸支体200的两个凸伸部210相互连接,从而有助于提高凸伸部210与心脏组织相抵接时的可靠性和稳定性。
请参考图1和图2,在一些实施方式中,相邻的两个支撑单元110之间的两个凸伸支体200为一根编织丝形成。
在上述实施方式中,即相邻的两个支撑单元110之间的两个凸伸支体200采用一根编织丝一体形成,无需进行焊接或铆接等方式二次连接,有助于提高产品的生产效率。
请参考图1和图2,在一些实施方式中,第一支撑体111的下游方向上形成有连接环400。
在上述实施方式中,第一支撑体111形成有连接环400,连接环400位于流通道120的下游,用于与(人工)心脏瓣膜支架10的输送系统相连接,以通过输送系统实现心脏瓣膜支架的输送及回收。
请参考图1和图2,在一些实施方式中,每一第一支撑体111均形成有连接环400。
在上述实施方式中,即连接环400的数量为多个,且多个连接环400均位于流通道120下游方向,当多个连接环400均与(人工)心脏瓣膜支架10的输送系统连接时,有助于提高(人工)心脏瓣膜支架10在输送过程中的可靠性。
请参考图1和图2,在一些实施方式中,连接环400的上游处设有第一铆接结114,第一铆接结114使连接环400形成闭环。
在上述实施方式中,通过在连接环400的上游处设置第一铆接结114,从而可使连接环400形成闭环结构,便于输送系统的连接件与连接环400相连接,且有助于提高输送系统的连接件与连接环400连接时的可靠性。
请参考图1和图2,在一些实施方式中,每一支撑单元110与相邻的支撑单元110通过铆接结构连接,形成第二铆接结115,在第二铆接结115中,相邻的两个支撑单元110的第一支撑体111和第二支撑体112并行排列,凸伸支体200与位于第二铆接结115中的第一支撑体111和第二支撑体112之间形成容置心脏原生瓣叶的空隙300。
在上述实施方式中,每个支撑单元110与相邻的两个支撑单元110通过铆接结构连接,即每个支撑单元110的两第一支撑体111与第二支撑体112的连接处,以及与其相邻的支撑单元110的两第一支撑体111与第二支撑体112的连接处通过铆接结构连接,并形成第二铆接结115。在第一铆接结114中,相邻的两个支撑单元110的第一支撑体111和第二支撑体112并行排列,有助于提高每个支撑单元110连接的可靠性,并提高产品的美观度,且凸伸支体与位于第二铆接结115中的第一支撑体111和第二支撑体112之间间隔设置,并限定出用于容置心脏原生瓣叶的间隙。
请参考图1和图2,在一些实施方式中,每一支撑单元110的两第一支撑体111通过铆接结构连接,并形成第三铆接结116。
在上述实施方式中,每个支撑单元110的两第一支撑体111位于流通道120下游的连接处通过铆接管等铆接结构连接并形成第三铆接结116,从而有效保证了每个支撑单元110中两第一支撑体111位于流通道120下游的一端
连接的可靠性。
请参考图1至图3,在一些实施方式中,沿血液通过流通道120的方向,凸伸支体200包括相连续的凸伸段220和连接段230;其中,凸伸段220向远离流通道120的方向弯折延伸;连接段230的一端与凸伸段220相连,另一端与支撑主体100相连,凸伸段220与流通道120的轴向之间的夹角在1°~150°的范围内。
在上述实施方式中,凸伸段220位于流通道120的下游,连接段230的一端与凸伸段220相连,另一端向流通道120的下游方向延伸,最终与支撑主体100的第一支撑体111相连。通过将凸伸段220与流通道120的轴线方向之间的夹角设置在1°~150°的范围内,从而可便于凸伸段220能够与心脏组织(如主动脉窦)的位置相对应,以便于与心脏组织相抵接,并有助于提高凸伸段220与心脏组织抵接时的稳定性。
具体地,连接段230与第一支撑体111之间限定有安装空间,用于供冠脉支架等医疗器件安装时通过。
请参考图1至图3,在一些实施方式中,连接段230与凸伸段220相连的一端与位于流通道120的上游的支撑主体100之间的水平距离a设置在1mm~20mm的范围内。
在上述实施方式中,通过将连接段230与凸伸段220相连的一端与位于流通道120的上游的支撑主体100之间的距离a设置在1mm~20mm的范围内,一方面是保证凸伸段220能够与心脏组织相抵接,另一方面可便于心脏原生瓣叶与凸伸段220靠近支撑主体100的一侧相抵接后容置于凸伸支体200与支撑主体100之间的间隙内,从而提高心脏原生瓣叶容置于该间隙内时的便捷性。
在一些实施方式中,心脏瓣膜支架采用至少一根纵长材料编制形成。
在上述实施方式中,示例性的,纵长材料可以是记忆合金丝或镍钛合金丝等。其中,当(人工)心脏瓣膜支架10采用一根纵长材料编制形成时,(人工)心脏瓣膜支架10整体性较高,且便于加工成型。当心脏瓣膜支架采用多根纵长材料编制时,相连的两根纵长材料可通过铆接管铆接或焊接的方式固定连接。此外,相连的两根纵长材料的连接处也可以通过焊接、螺纹连接进行固定连接。
在一些实施方式中,纵长材料包括记忆合金丝。
在上述实施方式中,即(人工)心脏瓣膜支架10采用至少一根记忆合金丝编织而成,记忆合金丝能够在外力驱使下发生变形,且在外力撤销后恢复至原来的形状,便于人工瓣膜支架在外力驱使记忆合金丝发生变形后通过输送系统进行输送,且当输送至原主动脉瓣膜处时,记忆合金丝能够迅速恢复原有形状,提高了心脏瓣膜支架撑接在主动脉瓣膜处安装的可靠性。其中,当(人工)心脏瓣膜支架10采用多根记忆合金丝编织时,相连的两根记忆合金丝通过铆接管铆接或焊接的方式固定连接。此外,(人工)心脏瓣膜支架10也可以通过焊接、螺纹连接进行固定连接。
请参考图4,图4为本公开一实施方式提供的第二支撑体112的局部结构示意图。在一些实施方式中,第二支撑体112采用至少一根变径式记忆合金丝编织而成。
请参考图5,图5为本公开另一实施方式提供的第二支撑体112的局部结构示意图。在一些实施方式中,第二支撑体112的外周侧局部嵌设有记忆合金管500。
在上述实施方式中,第二支撑体112采用变径式记忆合金丝编织而成,或者可在第二支撑体112的外周侧局部套设记忆合金管500,以局部增大第二支撑体112的直径,从而可提高心脏瓣膜支架支撑的支撑力,进而提高支撑的稳定性。
请参考图6,第二方面,本公开实施方式提供了一种心脏瓣膜假体,包括如第一方面实施方式中任一项的(人工)心脏瓣膜支架10;瓣叶20,设于流通道120内,并与(人工)心脏瓣膜支架10的第一支撑体111相连接;第一密封裙布30,连接覆盖于(人工)心脏瓣膜支架10的两第一支撑体111与第二支撑体112之间形成的空间内;第二密封裙布40,围设于(人工)心脏瓣膜支架10的外周侧。
在上述实施方式中,瓣叶20位于流通道120内,并与心脏瓣膜支架的第一支撑体111相连接,瓣叶20打开或关闭能够控制血液是否流通,如心脏收缩时,瓣叶20打开,将心脏内的血液通过主动脉流向全身,同时,在心脏舒张时,瓣叶20能够及时关闭,以避免主动脉内的血液返回流入心室。在心脏瓣膜支架的每个支撑单元110的两第一支撑体111与第二支撑体112之间形成的空间内均设有第一密封裙布30,从而能够避免血液从心脏瓣膜支架的周侧流通,保证血液仅从血液流入端流入,并从血液流出端流出。在(人工)心脏瓣膜支架10的外周侧还围设有第二密封裙布40,第二密封群边用于阻止血液返流,避免发生瓣周漏。
请参考图6,在一些实施方式中,第二密封裙布40呈圆盘状,且第二密封裙布40的周侧向心脏瓣膜支架的下游翻折形成有翻边。
请参考图7至图9,图7为本公开一些实施方式提供的心脏瓣膜支架10的结构示意图;图8为本公开一些实施方式提供的心脏瓣膜支架10的另一角度的结构示意图;图9为图8中A部的放大结构示意图。本公开第一方面实施方式提供了一种心脏瓣膜支架10,心脏瓣膜支架10由至少一根纵长材料编织定型而成;心脏瓣膜支架10限定有用于供血液流通的流通道120;其中,至少一根纵长材料向流通道120的外侧凸伸形成可与心脏组织相抵接的凸伸部210。
本公开实施方式提供的心脏瓣膜支架10,用于撑接在原主动脉瓣膜处,其中,心脏瓣膜支架10采用至少一根纵长材料编织定型后形成,且心脏瓣膜支架10的中部限定有用于供血液流通的流通道120,示例性的,纵长材料可以是记忆合金丝或镍钛合金丝等,通过将至少一根纵长材料局部向远离流通道120的外侧凸伸,从而形成用于与心脏组织(如主动脉窦)相抵接的凸伸部210,则当心脏瓣膜支架10撑接于原主动脉瓣膜处时,凸伸部210通过与心脏组织相抵接,以起到固定心脏瓣膜支架10的作用,防止瓣叶20闭合时因血液在瓣叶20上产生的压力作用下导致心脏瓣膜支架10发生位移,从而提高心脏瓣膜支架10在原主动脉瓣膜处撑接的稳定性和可靠性,延长了心脏瓣膜支架10的使用寿命,且有助于提高心脏瓣膜支架10在非钙化的患者中使用的稳定性。
请参考图7和图8,在一些实施方式中,心脏瓣膜支架10包括多个支撑单元110,多个支撑单元110围设形成流通道120;其中,每个支撑单元110均包括用于分别连接不同瓣叶20的两第一支撑体111,连接两第一支撑体111的第二支撑体112,两第一支撑体111及第二支撑体112之间形成可用裙布连接覆盖的空间。
示例性的,支撑单元的数量为三个。
请参考图7和图8,在一些实施方式中,根据血液通过流通道120的方向界定上、下游方向,第二支撑体112位于两第一支撑体111的上游方向。
在上述实施方式中,第二支撑体112位于两个第一支撑体111的上游方向,即第二支撑体112所在方向形成血液流入端,两个第一支撑体111形成血液流出端,血液先经第二支撑体112所在方向流入,再从第一支撑体111所
在方向流出。
请参考图7和图8,在一些实施方式中,两第一支撑体111分别自第二支撑体112的两端向下游方向延伸且与两第一支撑体111的第二端相连接。
在上述实施方式中,两个第一支撑体111的第一端分别通过与第二支撑体112的两端相连,并向流通道120的下游方向延伸,且两第一支撑体111的第二端相连接,从而与第二支撑体112之间形成用于连接覆盖裙布的闭环空间。其中,两第一支撑体111的第二端可采用铆接管铆接、焊接或粘接等方式连接。此外,两第一支撑体111和第二支撑体112也可以是一体相连,即采用同一根纵长材料编织定型后形成的不同部位。
请参考图7和图8,在一些实施方式中,每个支撑单元110还包括第三支撑体113,第三支撑体113形成位于心脏瓣膜支架10下游的连接环400。
在上述实施方式中,支撑单元110还包括第三支撑体113,第三支撑体113形成有位于心脏瓣膜支架10下游的连接环400,连接环400用于与心脏瓣膜支架10的输送系统相连接,用于通过输送系统实现心脏瓣膜支架10的输送及回收。
可以理解的,每个支撑单元110具有两个第三支撑体113,两个第三支撑体113分别位于心脏瓣膜支架10下游的一端在形成连接环400后分别与两个第一支撑体111的第二端相连接。此处的连接包括两者之间的机械连接,例如焊接、粘接、铆接等;也包括两者是同一物体的延伸,即两者是同一体,不同的名称指代不同的部位。
请参考图7和图8,在一些实施方式中,第三支撑体113位于心脏瓣膜支架10下游的一端在形成连接环400后与第一支撑体111相连,位于心脏瓣膜支架10上游的另一端形成用于与心脏组织相抵接的凸伸部210。其中,第三支撑体113可与第一支撑体111一体相连,或采用铆接或焊接的方式固定连接。
请参考图7和图8,在一些实施方式中,每个支撑单元110的第三支撑体113的数量为两个,两第三支撑体113的一端分别与两第一支撑体111连接,两第三支撑体113的另一端均形成凸伸部210。
在上述实施方式中,每个支撑单元110均包括两个第三支撑体113,两个第三支撑体113位于两第一支撑体111的两侧,且两个第三支撑体113的第一端分别与两个第一支撑体111位于流通道120的下游的一端连接,另一端均形成用于与心脏组织相抵接的凸伸部210。
请参考图7和图10,在一些实施方式中,每一第三支撑体113的最下游处均形成一连接环400。
在上述实施方式中,每个第三支撑体113的最下游处均形成一连接环400,连接环400均位于流通道120的最下游侧,用于与输送系统的连接结构相连,以便通过输送机构将心脏瓣膜支架输送至心脏组织,提高了输送过程的稳定性和可靠性。
请参考图7和图8,在一些实施方式中,每一支撑单元110的凸伸部210与相邻的支撑单元110的凸伸部210为同一根纵长材料弯折形成,且相邻的两个凸伸部210连续。
在上述实施方式中,相邻的两个支撑单元110中相邻的两个凸伸部210为同一根纵长材料弯折形成并且连续,避免凸伸部210因应力集中导致损伤心脏组织,还可提高凸伸部210的支撑强度,提高心脏瓣膜支架安装的可靠性。
请参考图7和图8,在一些实施方式中,每一支撑单元110与相邻的支撑单元110通过铆接结构连接,形成第一铆接结114,在第一铆接结114中,各纵长材料并行排列,且两凸伸部210位于中间。
在上述实施方式中,每个支撑单元110与相邻的两个支撑单元110通过铆接结构连接,即每个支撑单元110的两第一支撑体111与第二支撑体112的连接处,以及与其相邻的支撑单元110的两第一支撑体111与第二支撑体112的连接处通过铆接结构连接,并形成两个第一铆接结114,且第三支撑体113也连接于第一铆接结114中。在第一铆接结114中,各纵长材料并行排列,有助于提高每个支撑单元110连接的可靠性,并提高产品的美观度,也便于心脏瓣膜支架10的收缩与展开,且每个支撑单元110的凸伸部210位于支撑单元110的中部,便于与心脏组织相抵接。
请参考图7和图8,在一些实施方式中,每一支撑单元110的两第一支撑体111通过铆接结构连接,形成第二铆接结115,第三支撑体113也连接于第二铆接结115中。
在上述实施方式中,每个支撑单元110的两第一支撑体111和位于流通道120下游的连接处通过铆接管等铆接结构连接并形成第二铆接结115,且每个支撑单元110的两第三支撑体113也连接于第二铆接结115中,从而有效保证了每个支撑单元110中两第一支撑体111和两第三支撑体113连接的可靠性。
可以理解的,在上述任一实施方式中所述的铆接包括通过一束缚件(通常是金属件)将多个元件束缚在一起的情况。
请参考图9,在一些实施方式中,凸伸部210所在平面与流通道120的轴向相垂直的方向之间的夹角在15°~90°的范围内。
在上述实施方式中,通过将凸伸部210所在平面与流通道120的轴向相垂直的方向之间的夹角设置在15°~90°的范围内,则当心脏瓣膜支架10撑接于原主动脉瓣膜处时,使得凸伸部210能够与心脏组织位置相对应,便于与心脏组织相抵接,并有助于提高凸伸部210与心脏组织抵接的稳定性。
请参考图9,在一些实施方式中,沿血液通过流通道120的方向,第三支撑体113包括相连续的凸伸段220、过渡段240和连接段230;其中,凸伸段220形成凸伸部210;过渡段240的一端与凸伸段相连,另一端向远离流通道120的方向弯折延伸,并与流通道120的轴向相垂直的方向之间的夹角在60°~150°的范围内;连接段230的一端与过渡段240相连,另一端与第一支撑体111相连。
在上述实施方式中,第三支撑体113包括沿流通道120的流动方向依次相连的10131、过渡段240和连接段230。其中,凸伸段220向流通道120外侧凸伸以形成用于与心脏组织相抵接的凸伸部210,过渡段240的一端与凸伸段220相连,另一端向远离流通道120的方向弯折延伸,且过渡段240与流通道120的轴向相垂直的方向之间的夹角设置在60°~150°的范围内,以保证心脏瓣膜支架100能够撑开原主动脉瓣膜处,进而保证血液能够正常流通。连接段230的一端与过渡段240相连,另一端向靠近第一支撑体111的方向弯折延伸,并在流通道120的最下游处形成连接环400后与第一支撑体111相连,因此能够使第三支撑体113与瓣叶20之间限定出较大空间,从而当患者进行冠脉支架安装手术时,冠脉支架能够通过该空间进行安装。
示例性的,第三支撑体113的凸伸段220、过渡段240和连接段230一体相连,即采用同一根纵长材料编织定型而成。
请参考图6和图10,图10为本公开一些实施方式提供的心脏瓣膜假体100的结构示意图。基于上述图6描述
的心脏瓣膜假体100的结构外;第二密封裙布40,围设于第一密封裙布30的外周侧,并与第一密封裙布30密封连接。
在上述实施方式中,瓣叶20位于流通道120内,并与心脏瓣膜支架10相连接,瓣叶20打开或关闭能够控制血液是否流通,如心脏收缩时,瓣叶20打开,将心脏内的血液通过主动脉流向全身,同时,在心脏舒张时,瓣叶20能够及时关闭,以避免主动脉内的血液返回流入心室。在心脏瓣膜支架10的每个支撑单元110的两第一支撑体111与第二支撑体112之间形成的空间内均设有第一密封裙布30,从而能够避免血液从心脏瓣膜支架10的周侧流通,保证血液仅从血液流入端流入,并从血液流出端流出。在第一密封裙布30的外周侧还围设有与第一密封裙布30密封连接的第二密封裙布40,第二密封群边用于阻止血液返流,避免发生瓣周漏。
请参考图10,在一些实施方式中,第二密封裙布40呈圆盘状,且第二密封裙布40的周侧向心脏瓣膜支架的下游翻折形成有翻边。
请参考图11、图12和图16,本公开第一方面实施方式提供了一种植入型心脏瓣膜支架10,包括多个支撑单元110,多个支撑单元110围设形成供血液流通的流通道120;其中,至少一个支撑单元110包括凸伸支体200,凸伸支体200向远离流通道120的方向凸伸形成可与心脏组织相抵接的凸伸部210,且凸伸支体200向流通道120的上游方向延伸形成可连接裙布的连接体250。
在上述实施方式中,植入型心脏瓣膜支架10包括多个支撑单元110,多个支撑单元110相互连接并围设出供血液流通的流通道120。其中,至少一个支撑单元110包括有凸伸支体200,且凸伸支体200向远离流通道120的方向凸伸形成有凸伸部210,凸伸部210用于与心脏组织相抵接,则当心脏瓣膜支架撑接于原主动脉瓣膜处时,凸伸部210通过与心脏组织相抵接,从而起到固定心脏瓣膜支架的作用,防止瓣叶20闭合时因血液在瓣叶20上产生的压力作用下导致心脏瓣膜支架发生位移,从而提高心脏了瓣膜支架在原主动脉瓣膜处撑接的稳定性和可靠性,并提高了心脏瓣膜支架的使用寿命。同时,凸伸部210支体向流通道120的上游沿伸形成有用于连接密封裙布的连接体250,密封裙布与连接体250连接后,可防止血液从流通道120的周侧进行流通,提高了血液沿流通道120的轴向流通时的流畅性。
具体地,对于瓣叶20钙化较严重的患者,凸伸部210可直接与患者钙化的瓣叶相抵接,由于钙化后的瓣叶20硬度较大,从而可在凸伸部210与其抵接时起到良好的支撑作用,并保证了心脏瓣膜在原心脏瓣膜处撑接时的可靠性和稳定性。
具体地,在一种实施方式中,凸伸支体200与支撑单元110可以为同一根编织丝编制形成,两者是连续的,之所以称为凸伸支体200、支撑单元110是为了方便叙述。此外,每个支撑单元110以及多个支撑单元110之间也可以是同一根编织丝编制形成。
请参考图11和图12,在一些实施方式中,每个支撑单元110包括分别连接不同瓣叶20的两第一支撑体111,以及连接两第一支撑体111的至少一个连接体250,两第一支撑体111及连接体250之间形成可用裙布连接覆盖的第一空间600-A。
在上述实施方式中,每个支撑单元110均包括两个第一支撑体111,且两个第一支撑体111与连接体250之间形成有用于裙布连接覆盖的第一空间600-A,裙布连接覆盖于该空间内时,使得血液仅能够从流通道120进行流通,以避免血液从心脏瓣膜支架的周侧流通。
请参考图11和图12,在一些实施方式中,根据血液通过流通道120的方向界定上、下游方向,连接体250位于两第一支撑体111的上游方向,并与凸伸支体200位于流通道120上游方向的一端连续,以形成连接体250。
在上述实施方式中,连接体250位于两个第一支撑体111的上游方向,即连接体250所在方向形成血液流入端,两个第一支撑体111所在方向形成血液流出端,血液先经连接体250所在方向流入,再从第一支撑体111所在方向流出。且连接体250被配置为连接体250,连接体250通过与凸伸支体200位于流通道120上游方向的一端相连续,从而形成用于供裙布连接的连接体250。
请参考图14和图15,在一些实施方式中,连接体250包括至少一个子连接体251,至少一个子连接体251与所述连接体250叠加设置或间隔设置。
在上述实施方式中,通过在连接体250上连接至少一个子连接体251,至少一个子连接体251与连接体250叠加设置或间隔设置,均可提高连接体250支撑在原心脏瓣膜处时的支撑强度,以进一步提高心脏瓣膜支架安装时的稳定性。
请参考图11和图12,在一些实施方式中,两第一支撑体111分别自连接体250的两端向下游方向延伸,且两第一支撑体111相汇合连接。
在上述实施方式中,两个第一支撑体111的第一端分别与连接体250的两端相连,第二端向流通道120的下游方向延伸后并汇合连接,从而与连接体250之间形成用于连接覆盖裙布的闭环空间。
示例性的,两第一支撑体111的第二端、以及两第一支撑体111与连接体250的连接方式均可采用铆接管铆接或焊接的方式连接。
请参考图11和图12,在一些实施方式中,每个支撑单元110均包括凸伸支体200,且凸伸支体200沿流通道120的周向位于相邻的两个支撑单元110之间。
在上述实施方式中,凸伸支体200的数量为多个,每个支撑单元110均包括凸伸支体200。具体地,多个凸伸支体200间隔设置,且在支撑主体的周向上位于相邻的两个支撑单元110之间,则当多个凸伸支体200的凸伸部210与心脏组织(如钙化的瓣叶)相抵接后,可有效提高心脏瓣膜支架安装后的可靠性和稳定性。
请参考图11和图12,在一些实施方式中,每个支撑单元110均包括两个凸伸支体200形成的连接体250相互连接。
在上述实施方式中,每个支撑单元110的两个凸伸支体200形成的连接体250相互连接(如一体相连、焊接或铆接等),从而有助于提高密封裙布连接覆盖于连接体250与第一支撑体111之间形成的空间内时的稳定性,且有助于提高产品的整体性,并提高心脏瓣膜支架撑接于原心脏瓣膜处时的可靠性和稳定性。
请参考图11和图12,在一些实施方式中,每个凸伸支体200与第一支撑体111之间形成有供医疗器件通过的第二空间600-B。
在上述实施方式中,每个凸伸支体200和与其相连的第一支撑体111之间形成有供冠脉支架等医疗器件通过的第二空间600-B,从而便于在安装心脏瓣膜支架后,冠脉支架等医疗器件安装时的便捷性。
在一些实施方式中,凸伸支体200与第一支撑体111为一根编织丝编制形成。
在上述实施方式中,凸伸支体200与第一支撑体111为一根编织丝编制而成,两者是连续的,无需进行焊接或铆接等方式二次连接,有助于提高产品的生产效率,并有助于提高产品的整体性。
请参考图11、图12和图16,在一些实施方式中,凸伸支体200位于流通道120下游的一端形成有连接环400。
在上述实施方式中,凸伸支体200上设有连接环400,连接环400位于流通道120的下游,用于与植入型心脏瓣膜支架10的输送系统相连接,以通过输送系统实现心脏瓣膜支架的输送及回收。
请参考图11和图12,在一些实施方式中,每一支撑单元110与相邻的支撑单元110通过铆接结构连接,形成第一铆接结114,在第一铆接结114中,相邻的两个支撑单元110的第一支撑体111和连接体250并行排列,且凸伸支体200位于流通道120的上游的一端位于第一铆接结114中。
在上述实施方式中,每个支撑单元110与相邻的两个支撑单元110通过铆接结构连接,即每个支撑单元110的两第一支撑体111与连接体250的连接处,以及与其相邻的支撑单元110的两第一支撑体111与连接体250的连接处通过铆接结构连接于一起,并形成第一铆接结114。在第一铆接结114中,相邻的两个支撑单元110的第一支撑体111和连接体250并行排列,有助于提高每个支撑单元110连接的可靠性,并提高产品的美观度,且凸伸支体200位于流通道120上游的一端也位于第二铆接结115中,并与连接体250相连续。
请参考图11和图12,在一些实施方式中,每一支撑单元110的两个第一支撑体111通过铆接结构连接,并形成第二铆接结115。
在上述实施方式中,每个支撑单元110的两第一支撑体111位于流通道120下游的连接处通过铆接管等铆接结构连接并形成第二铆接结115,从而有效保证了每个支撑单元110中两第一支撑体111位于流通道120下游的一端连接的可靠性。
请参考图11、图12和图13,在一些实施方式中,凸伸支体200包括依次连接的第一连接段、抵接段和第二连接段,第一连接段连接于第一铆接结114中;抵接段的第一端与第一连接段相连,第二端向远离流通道120的方向凸伸;第二连接段的一端与抵接段的第二端相连,另一端与第一支撑体111相连。
在上述实施方式中,凸伸支体200包括依次连接的第一连接段、抵接段和第二连接段,其中,第一连接段的至少部分位于第一铆接结114中,并与连接体250相连续;抵接段的第一端与第一连接段相连,第二端向流通道120的外侧凸伸,从而形成可与心脏组织相抵接的凸伸部210;第二连接段的一端与抵接段相连,另一端向靠近流通道120的方向沿伸,最终与第一支撑体111相连。
请参考图13,在一些实施方式中,抵接段与流通道120的轴线方向的夹角α在10°~150°的范围内。
在上述实施方式中,通过将抵接段与流通道120的轴线方向的夹角α设置在10°~150°的范围内,从而可便于抵接段与心脏组织(如钙化的瓣叶)的位置相抵接,并有助于提高抵接段与心脏组织抵接时的稳定性。
请参考图13,在一些实施方式中,抵接段的第二端与第一连接段之间的距离b在1mm~20mm的范围内。
在上述实施方式中,第一连接段沿流通道120的轴线方向连接于第一铆接结114中,通过将抵接段的第二端与第一连接段之间的距离b设置在1mm~20mm的范围内,一方面可保证抵接段能够与心脏组织相抵接,另一方面可防止抵接段向流通道120的外侧凸伸距离过长,导致损伤心脏组织。
在一些实施方式中,植入型心脏瓣膜支架10由至少一根编织丝编制形成。
在上述实施方式中,示例性的,编织丝可以是记忆合金丝或镍钛合金丝等。其中,当心脏瓣膜支架采用一根编织丝编制形成时,心脏瓣膜支架整体性较高,且便于加工成型。当心脏瓣膜支架采用多根纵长材料编制时,相连的两根纵长材料可通过铆接管铆接或焊接的方式固定连接。此外,相连的两根纵长材料的连接处也可以通过焊接、螺纹连接进行固定连接。
在一些实施方式中,编织丝包括记忆合金丝。
在上述实施方式中,即心脏瓣膜支架采用至少一根记忆合金丝编制而成,记忆合金丝能够在外力驱使下发生变形,且在外力撤销后恢复至原来的形状,便于植入型心脏瓣膜支架10在外力驱使下,记忆合金丝发生变形后通过输送系统进行输送,且当输送至原主动脉瓣膜处时,记忆合金丝能够迅速恢复原有形状,提高了心脏瓣膜支架撑接在主动脉瓣膜处安装的可靠性。
在一些实施方式中,连接体250采用变径式记忆合金丝编织而成;或者,连接体250的外周侧局部嵌设有记忆合金管。
在上述实施方式中,连接体250采用变径式记忆合金丝编织而成,或者可在连接体250的外周侧局部套设记忆合金管,以局部增大连接体250的直径,从而可提高心脏瓣膜支架支撑的支撑力,进而提高支撑的稳定性。
请参考图16,本公开第二方面实施方式提供了一种心脏瓣膜假体,包括如第一方面实施方式中任一项的植入型心脏瓣膜支架10;瓣叶20,设于流通道120内,并与植入型心脏瓣膜支架10的第一支撑体111相连接;第一密封裙布30,连接覆盖于心脏瓣膜支架的两第一支撑体111与连接体250之间形成的空间内;第二密封裙布40,围设于植入型心脏瓣膜支架10的外周侧。
在上述实施方式中,瓣叶20位于流通道120内,并与心脏瓣膜支架的第一支撑体111相连接,瓣叶20打开或关闭能够控制血液是否流通,如心脏收缩时,瓣叶20打开,将心脏内的血液通过主动脉流向全身,同时,在心脏舒张时,瓣叶20能够及时关闭,以避免主动脉内的血液返回流入心室。在心脏瓣膜支架的每个支撑单元110的两第一支撑体111与连接体250之间形成的空间内均设有第一密封裙布30,从而能够避免血液从心脏瓣膜支架的周侧流通,保证血液仅从血液流入端流入,并从血液流出端流出。在心脏瓣膜支架10的外周侧还围设有第二密封裙布40,第二密封裙布40用于阻止血液返流,避免发生瓣周漏。
在一些实施方式中,瓣叶20与心脏瓣膜支架的第一支撑体111的连接方式为粘接、热熔、高分子附着中的一种。
在上述实施方式中,第二密封裙布40呈圆盘状,从而可在心脏瓣膜支架撑接在原主动脉瓣膜处时,第二密封裙布40与原心脏瓣膜组织相抵接,且第二密封裙布40的周侧向心脏瓣膜支架的下游方向翻折形成有翻边,则瓣叶20关闭时,血液仅能从瓣叶20处会流向第二密封裙布40上方,并从第二密封裙布40上方流通,从而可有效防止血液反流,避免发生瓣周漏。
在一些实施方式中,瓣叶20的材料为高分子材料、生物组织材料和组织工程材料中的一种。
在上述实施方式中,示例性的,瓣叶20的材料为牛心包、猪心包、牛/猪心脏瓣膜等材料。
在一些实施方式中,瓣叶20与(人工)心脏瓣膜支架10的第一支撑体111的连接方式为粘接、热熔、高分子附着中的一种。
在上述实施方式中,瓣叶20可通过粘接、热熔、高分子附着中的一种方式与(人工)心脏瓣膜支架10的第一支撑体111固定连接,避免瓣叶20因应力集中导致损坏、脱落,有助于提高产品的使用寿命。
请参看图17至图19,图17为本公开实施方式提供的一种心脏瓣膜支架的立体结构示意图,图18为本公开实施方式提供的一种心脏瓣膜支架的另一视角的立体结构示意图,图19为本公开实施方式提供的一种心脏瓣膜支架和瓣叶、第一裙布的立体结构示意图。该心脏瓣膜支架10包括支撑主体100和至少一个凸伸支体200,支撑主体100包括多个支撑单元110,多个支撑单元110围设形成供血液流动的通道101,每个支撑单元110均包括用于分别连接不同瓣叶20的两个第一支撑体111,至少一个支撑单元110包括第二支撑体112,第二支撑体112设置于第一支撑体111靠近相邻支撑单元110的一侧,凸伸支体200与相邻的两个支撑单元110相对固定且自支撑主体100向通道101的外侧延伸,凸伸支体200与支撑主体100之间形成有用于容置心脏原生瓣叶的空隙(图中未标出)。
通过设置第一支撑体111和第二支撑体112以形成支撑主体100,使得支撑主体100在周向上具有更多支撑部分,进而能够使得支撑主体100的结构更加稳固,通道101不易变形,血液能够更加顺畅地通过通道101,不易影响血液的流速,通过设置凸伸支体200,能够用于与心脏组织抵接,并且使得心脏原生瓣叶容置于凸伸支体200和支撑主体100之间,使得心脏瓣膜支架10在植入心脏后不易脱落,更加稳固,能够延长心脏瓣膜支架10的使用寿命,减少患者再次置换瓣膜的风险。
在一些实施方式中,支撑主体100可以包括三个支撑单元110,三个支撑单元110围合形成支撑主体100,支撑主体100的结构简单、易于制备且较稳固。
在其他实施方式中,支撑主体100也可以由两个支撑单元110或多于三个支撑单元110组成,在此不做限制。
在一些实施方式中,每个支撑单元110均包括两个第二支撑体112,每个支撑单元110中的两个第二支撑体112分别设置于两个第一支撑体111的两侧。
通过设置两个第一支撑体111,并在两个第一支撑体111的两侧分别设置两个第二支撑体112,能够使得支撑主体100的整体结构更加稳固。
在一些实施方式中,每个支撑单元110包括连接两个第一支撑体111的第三支撑体113,两个第一支撑体111及第三支撑体113之间形成可用第一裙布50连接覆盖的空间。
通过设置第三支撑体113能够与第一支撑体111形成用于第一裙布50覆盖的空间,进而能够防止血液的回流。
在一些实施方式中,每个第一支撑体111均与一个凸伸支体200相对固定,并且每一凸伸支体200与分别属于相邻两个支撑单元110的相邻两个第一支撑体111相对固定连接;凸伸支体200的中部形成用于与心脏组织抵接的凸伸部210。
通过使得每个凸伸支体200与相邻两个第一支撑体111连接,能够起到连接固定相邻两个支撑单元110的作用,进而能够使得支撑主体100的整体结构更加稳定,且通过使得凸伸支体200的中部形成凸伸部210,能够实现与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的周向位于连接该两个支撑单元110的凸伸支体200之间。
通过使得分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的周向位于连接该两个支撑单元110的凸伸支体200之间,能够使得第二支撑体112起到更好的支撑作用,减少相邻两个支撑单元110的相邻两个第一支撑体111之间间隔较大造成的容易变形的问题,使得心脏瓣膜支架10的结构更加稳固。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的径向位于连接该两个支撑单元110的凸伸支体200的内侧。
通过使得分别属于相邻两个支撑单元110的相邻两个第二支撑体112沿心脏瓣膜支架10的径向位于连接该两个支撑单元110的凸伸支体200的内侧,能够使得第二支撑体112起到更好的支撑作用,使得心脏瓣膜支架10的结构更加稳固,并且使得凸伸支体200与支撑主体100之间能够形成用于容置心脏原生瓣叶的空隙,便于凸伸支体200与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,支撑单元110的两个第一支撑体111的下游处和两个凸伸支体200的下游处通过铆接结构连接,形成第一铆接结114,该两个凸伸支体200为与该两个第一支撑体112相对固定的两个凸伸支体200。
通过铆接结构连接第一支撑体111和凸伸支体200,能够使得第一支撑体111和凸伸支体200的结构更加稳固,不易变形,从而使得心脏瓣膜支架10的整体结构更加稳固。
在一些实施方式中,分别属于相邻两个支撑单元110的相邻两个第一支撑体111的上游处、相邻两个第二支撑体112的上游处、相邻两个第三支撑体113的下游处通过铆接结构连接,形成第三铆接结115。
通过铆接结构连接第一支撑体111、第二支撑体112以及第三支撑体113,能够使得第一支撑体111、第二支撑体112以及第三支撑体113的结构更加稳固,不易变形,从而使得心脏瓣膜支架10的整体结构更加稳固。
在一些实施方式中,每一支撑单元110可以由一根编织丝131编织形成,每一凸伸支体200可以为另一根编织丝131形成。
通过一根编织丝131编织形成一个支撑单元110,能够便于支撑单元110的制备,无需其他连接结构,使得支撑单元110的结构更加简单,且支撑单元110的结构稳固,通过另一根编织丝131形成凸伸支体200,制备更加简单,能够便于使得凸伸支体200和支撑主体100之间形成用于容置心脏原生瓣叶的空隙,进而使得凸伸支体200能够与心脏组织抵接。
在一些实施方式中,编织丝131可以包括变径部,变径部的直径大于其他部分的直径,变径部对应铆接结构设置。
通过使得编织丝131的变径部对应铆接结构,能够便于编织丝131的铆接连接,使得编织丝131不易在铆接结内滑动甚至脱落,铆接连接更加稳固。
请一并参看图20,图20为本公开实施方式提供的一种心脏瓣膜支架的编织丝的结构示意图。在一些实施方式中,编织丝131可以采用变径记忆合金丝制成,以形成变径部132。
通过采用变径记忆合金丝作为编织丝131,并形成变径部132,使得变径记忆合金丝在编织形成支撑单元110或凸伸支体200时,直接使得变径部对应铆接的位置,再通过铆接件连接变径部132,能够简化铆接结构的安装过程。
请一并参看图21,图21为本公开实施方式提供的另一种心脏瓣膜支架的编织丝的结构示意图。在其他实施方式中,编织丝133的外周可以嵌设有记忆合金管,嵌设有记忆合金管的部分为变径部134。
通过在编织丝133的外周嵌设记忆合金管以形成变径部134,使得编织丝133在编织形成支撑单元110或凸伸支体200时,可以不用考虑变径部134的位置,在支撑单元110或凸伸支体200编织完成后,再在铆接处设置记忆合金管以形成变径部134,用于铆接,能够简化支撑单元110的编织制备过程。
请参看图17至图19,在一些实施方式中,每一支撑单元110的下游方向上均形成有连接环400。
通过在支撑单元110的下游方向上形成有连接环400,使得支撑单元110能够由一根编织丝131编织形成,且连接环400不易变形,进而使得第一支撑体111和第二支撑体112也不易变形,支撑单元110的结构更加稳固。
请参看图22和图23,图22为本公开实施方式提供的另一种心脏瓣膜支架的立体结构示意图,图23为本公开实施方式提供的另一种心脏瓣膜支架的另一视角的立体结构示意图。该心脏瓣膜支架10包括支撑主体800和至少一个凸伸支体900,其中,支撑主体800的结构与上述心脏瓣膜支架10中支撑主体100的结构类似,在此不再赘述。
本实施方式与上述实施方式的不同之处在于,每个第二支撑体812均与一个凸伸支体900相对固定,凸伸支体900的中部形成用于与心脏组织抵接的凸伸部910。
通过使得每个凸伸支体900与一个第二支撑体812连接,能够起到连接固定相邻两个支撑单元810的作用,进而能够使得支撑主体800的整体结构更加稳定,且通过使得凸伸支体900的中部形成凸伸部910,能够实现与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,分别属于相邻两个支撑单元810的相邻两个第二支撑体812的部分沿心脏瓣膜支架10的周向位于连接该两个支撑单元810的凸伸支体900之间。
通过使得分别属于相邻两个支撑单元810的相邻两个第二支撑体812的部分沿心脏瓣膜支架10的周向位于连接该两个支撑单元810的凸伸支体900之间,能够使得第二支撑体812起到更好的支撑作用,减少凸伸支体900的内部间隔较大造成的容易变形的问题,使得心脏瓣膜支架10的结构更加稳固。
在一些实施方式中,分别属于相邻两个支撑单元810的相邻两个第二支撑体812的部分沿心脏瓣膜支架10的径向位于连接该两个支撑单元810的凸伸支体900的内侧。
通过使得分别属于相邻两个支撑单元810的相邻两个第二支撑体812的部分沿心脏瓣膜支架10的径向位于连接该两个支撑单元810的凸伸支体900的内侧,能够使得第二支撑体812起到更好的支撑作用,使得心脏瓣膜支架10的结构更加稳固,并且使得凸伸支体900与支撑主体800之间形成用于容置心脏原生瓣叶的空隙,便于凸伸支体900与心脏组织抵接,使得心脏瓣膜支架10在心脏中的位置更加稳定。
在一些实施方式中,支撑单元810的两个第一支撑体811的下游处通过铆接结构连接,形成第一铆接结814,凸伸支体900的下游处与第二支撑体400通过铆接结构连接,形成第二铆接结815。
通过铆接结构分别连接支撑单元810的两个第一支撑体811、凸伸支体900和第二支撑体812,能够使得第一支撑体811、凸伸支体900和第二支撑体812的结构更加稳固,不易变形,从而使得心脏瓣膜支架10的整体结构更加稳固。
在一些实施方式中,分别属于相邻两个支撑单元810的相邻两个第一支撑体811的上游处、相邻两个第二支撑体812的上游处、相邻两个第三支撑体813的下游处通过铆接结构连接,形成第三铆接结816。
通过铆接结构连接第一支撑体811、第二支撑体812以及第三支撑体813,能够使得第一支撑体811、第二支撑体812以及第三支撑313体的结构更加稳固,不易变形,从而使得心脏瓣膜支架10的整体结构更加稳固。
请参看图24和图19,图24为本公开实施方式提供的一种心脏瓣膜假体的结构示意图。该心脏瓣膜假体包括心脏瓣膜支架10、瓣叶20以及第一裙布50,瓣叶20设置于通道101内,并与心脏瓣膜支架10的第一支撑体111连接,第一裙布50连接覆盖于心脏瓣膜支架10的支撑单元110的两个第一支撑体111和第三支撑体113之间形成的空间。
通过设置第一支撑体111和第二支撑体112以形成支撑主体100,能够使得支撑主体100的结构更加稳固,通道101不易变形,通过设置凸伸支体200,能够用于与心脏组织抵接,使得心脏瓣膜支架10在植入心脏后不易脱落,更加稳固,能够延长心脏瓣膜支架10的使用寿命,减少患者再次置换瓣膜的风险,通过设置瓣叶20和第一裙布50,能够使得血液自支撑主体100的上游至下游流动,不会回流。
请一并参看图25,图25为本公开实施方式提供的一种心脏瓣膜假体中第二裙布的立体结构示意图。在一些实施方式中,心脏瓣膜假体还可以包括第二裙布60,第二裙布60围设于心脏瓣膜支架10的外周侧,且第二裙布60的上游端与第一裙布50连接,第二裙布60自上游端至下游端,周长逐渐变大,再逐渐变小。
通过在心脏瓣膜支架10的外周侧设置第二裙布60,使得第二裙布60能够与心脏组织抵接,进一步避免血液回流,并且通过使得第二裙布60自上游端至下游端,周长逐渐变大,再逐渐变小,能够使得第二裙布60的外周中部与心脏组织抵接,使得阻挡血液回流的效果更好。
在一些实施方式中,第二裙布60的下游端可以形成有环形的第一翻边601,第一翻边601朝向心脏瓣膜支架10的下游。
通过在第二裙布60的下游端设置第一翻边601,能够进一步提高阻挡血液回流的效果。
在一些实施方式中,第一翻边601和第二裙布60上形成有容置缺口602,容置缺口602用于容置支撑主体100。
通过在第一翻边601和第二裙布60上形成容置缺口602,以用于容置支撑主体100,能够使得第一翻边601和第二裙布60与支撑主体100更加贴合,进而能够避免血液从第一翻边601和第二裙布60与支撑主体100之间回流。
请一并参看图26,图26为本公开实施方式提供的另一种心脏瓣膜假体中第二裙布的立体结构示意图。在一些实施方式中,第二裙布70的下游端可以设置有第一翻边701,第一翻边701和第二裙布70上可以形成有容置缺口702,第二裙布70的周侧还可以形成有环形的第二翻边703,第二翻边703朝向心脏瓣膜支架10的下游。
通过在第二裙布70的周侧设置第二翻边703,使得第二翻边703能够与心脏组织抵接,进而能够进一步提高阻挡血液回流的效果。
在一些实施方式中,第二翻边703设置于第二裙布70的周长最大的周侧。
通过将第二翻边703设置于第二裙布70的周长最大的周侧,使得第二翻边703能够更好地与心脏组织抵接,阻
挡血液回流的效果更好。
在其他实施方式中,第二翻边703也可以设置于第二裙布70的下游端和第二裙布70的周长最大的周侧之间,在此不做限制。
在本公开所有实施方式中,“大”、“小”是相对而言的,“多”、“少”是相对而言的,“上”、“下”是相对而言的,对此类相对用语的表述方式,本公开实施方式不再多加赘述。
应理解,说明书通篇中提到的“在本实施方式中”、“本公开实施方式中”或“在其中一个实施方式中”意味着与实施方式有关的特定结构、结构或特性包括在本公开的至少一个实施方式中。因此,在整个说明书各处出现的“在本实施方式中”、“本公开实施方式中”或“在其中一个实施方式中”未必一定指相同的实施方式。此外,这些特定结构、结构或特性可以以任意适合的方式结合在一个或两个实施方式中。本领域技术人员也应该知悉,说明书中所描述的实施方式均属于可选实施方式,所涉及的动作和模块并不一定是本公开所必须的。
在本公开的各种实施方式中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施方式的实施过程构成任何限定。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本公开涉及医疗器械技术领域,提供(植入型)心脏瓣膜支架及心脏瓣膜假体。通过本公开的技术方案,能够提高心脏瓣膜支架安装固定的稳定性和可靠性,并提高了心脏瓣膜支架的使用寿命,降低了患者再次置换瓣膜的风险,并有助于降低患者在使用心脏瓣膜支架时发生冠脉堵塞的情况。
Claims (72)
- 一种心脏瓣膜支架,其特征在于,包括支撑主体和与所述支撑主体相连的至少一个凸伸支体;所述支撑主体限定有供血液流通的流通道;所述凸伸支体自所述支撑主体向所述流通道的外侧延伸,形成有可与心脏组织抵接的凸伸部,且所述凸伸支体与所述支撑主体之间形成有可容置心脏原生瓣叶的空隙。
- 根据权利要求1所述的心脏瓣膜支架,其特征在于,所述支撑主体包括多个支撑单元,多个所述支撑单元围设形成所述流通道;其中,每个所述支撑单元均包括用于分别连接不同瓣叶的两第一支撑体,以及连接所述两第一支撑体的第二支撑体,所述两第一支撑体及第二支撑体之间形成可用裙布连接覆盖的空间。
- 一种心脏瓣膜支架,其特征在于,所述心脏瓣膜支架由至少一根纵长材料编织定型而成;所述心脏瓣膜支架限定有用于供血液流通的流通道;其中,至少一根所述纵长材料向所述流通道的外侧凸伸形成可与心脏组织抵接的凸伸部。
- 根据权利要求3所述的心脏瓣膜支架,其特征在于,所述心脏瓣膜支架包括多个支撑单元,多个所述支撑单元围设形成所述流通道;其中,每个所述支撑单元均包括用于分别连接不同瓣叶的两第一支撑体,连接所述两第一支撑体的第二支撑体,所述两第一支撑体及第二支撑体之间形成可用裙布连接覆盖的空间。
- 根据权利要求2或4所述的心脏瓣膜支架,其特征在于,根据血液通过所述流通道的方向界定上、下游方向,所述第二支撑体位于所述两第一支撑体的上游方向。
- 根据权利要求5所述的心脏瓣膜支架,其特征在于,所述两第一支撑体分别自所述第二支撑体的两端向所述下游方向延伸,且所述两第一支撑体相汇合连接;可选地,所述两第一支撑体分别自所述第二支撑体的两端向所述下游方向延伸且所述两第一支撑体的第二端相连接。
- 根据权利要求2、5-6中任一项所述的心脏瓣膜支架,其特征在于,每个所述支撑单元均连接有所述凸伸支体,且所述凸伸支体在所述支撑主体的周向上位于相邻的两个所述支撑单元之间。
- 根据权利要求7所述的心脏瓣膜支架,其特征在于,每个所述支撑单元均连接有两个所述凸伸支体,且相邻的两个所述支撑单元之间的两个所述凸伸支体相互连接。
- 根据权利要求8所述的心脏瓣膜支架,其特征在于,相邻的两个所述支撑单元之间的两个所述凸伸支体为一根编织丝形成。
- 根据权利要求2、5-6中任一项所述的心脏瓣膜支架,其特征在于,所述第一支撑体的下游方向上形成有连接环。
- 根据权利要求10所述的心脏瓣膜支架,其特征在于,每一所述第一支撑体均形成有所述连接环。
- 根据权利要求10所述的心脏瓣膜支架,其特征在于,所述连接环的上游处设有第一铆接结,所述第一铆接结使所述连接环形成闭环。
- 根据权利要求2、5-6中任一项所述的心脏瓣膜支架,其特征在于,每一所述支撑单元与相邻的支撑单元通过铆接结构连接,形成第二铆接结,在所述第二铆接结中,相邻的两个所述支撑单元的第一支撑体和第二支撑体并行排列,所述凸伸支体与位于所述第二铆接结中的所述第一支撑体和所述第二支撑体之间形成容置心脏原生瓣叶的所述空隙。
- 根据权利要求2、5-6中任一项所述的心脏瓣膜支架,其特征在于,每一支撑单元的所述两第一支撑体通过铆接结构连接,并形成第三铆接结。
- 根据权利要求1-2、5-6中任一项所述的心脏瓣膜支架,其特征在于,沿血液通过所述流通道的方向,所述凸伸支体包括相连续的凸伸段和连接段;其中,所述凸伸段向远离所述流通道的方向弯折延伸;所述连接段的一端与所述凸伸段相连,另一端与所述支撑主体相连,所述凸伸段与所述流通道的轴向之间的夹角在1°~150°的范围内。
- 根据权利要求15所述的心脏瓣膜支架,其特征在于,所述连接段与所述凸伸段相连的一端与位于所述流通道的上游的所述支撑主体之间的水平距离a设置在1mm~20mm的范围内。
- 根据权利要求1-2、5-6中任一项所述的心脏瓣膜支架,其特征在于,所述心脏瓣膜支架采用至少一根纵长材料编制形成。
- 根据权利要求4或6所述的心脏瓣膜支架,其特征在于,每个所述支撑单元还包括第三支撑体,所述第三支撑体形成位于所述心脏瓣膜支架下游的连接环。
- 根据权利要求18所述的心脏瓣膜支架,其特征在于,所述第三支撑体的一端与所述第一支撑体连接,另一端形成所述凸伸部。
- 根据权利要求19所述的心脏瓣膜支架,其特征在于,每个所述支撑单元的所述第三支撑体的数量为两个,两第三支撑体的一端分别与所述两第一支撑体连接,所述两第三支撑体的另一端均形成所述凸伸部。
- 根据权利要求20所述的心脏瓣膜支架,其特征在于,每一所述第三支撑体的最下游处均形成一所述连接环。
- 根据权利要求4-6、18-21中任一项所述的心脏瓣膜支架,其特征在于,每一所述支撑单元的凸伸部与相邻的所述支撑单元的凸伸部为同一根纵长材料弯折形成,且相邻的两个所述凸伸部连续。
- 根据权利要求4-6、18-21中任一项所述的心脏瓣膜支架,其特征在于,每一所述支撑单元与相邻的所述支撑单元通过铆接结构连接,形成第一铆接结,在所述第一铆接结中,各纵长材料并行排列,且两所述凸伸部位于中间。
- 根据权利要求18-21中任一项所述的心脏瓣膜支架,其特征在于,每一支撑单元的所述两第一支撑体通过铆接结构连接,形成第二铆接结,所述第三支撑体也连接于所述第二铆接结中。
- 根据权利要求3-6、18-21中任一项所述的心脏瓣膜支架,其特征在于,所述凸伸部的凸伸方向与所述流通道的轴向相垂直的方向之间的夹角在15°~90°的范围内。
- 根据权利要求18-21中任一项所述的心脏瓣膜支架,其特征在于,沿血液通过所述流通道的方向,所述第三支撑体包括相连续的凸伸段、过渡段和连接段;其中,所述凸伸段形成所述凸伸部;所述过渡段的一端与所述凸伸段相连,另一端向远离所述流通道的方向弯 折延伸,并与所述流通道的轴向相垂直的方向之间的夹角在60°~150°的范围内;所述连接段的一端与所述过渡段相连,另一端与所述第一支撑体相连。
- 根据权利要求3-4、17-26所述的心脏瓣膜支架,其特征在于,所述纵长材料包括记忆合金丝。
- 根据权利要求2、5-6、18-26中任一项所述的心脏瓣膜支架,其特征在于,所述第二支撑体采用变径式记忆合金丝编织而成;或者,所述第二支撑体的外周侧局部嵌设有记忆合金管。
- 一种植入型心脏瓣膜支架,其特征在于,所述植入型心脏瓣膜支架包括多个支撑单元,多个所述支撑单元围设形成供血液流通的流通道;其中,至少一个所述支撑单元包括凸伸支体,所述凸伸支体向远离所述流通道的方向凸伸形成可与心脏组织相抵接的凸伸部,且所述凸伸支体向所述流通道的上游方向延伸形成可连接裙布的连接体。
- 根据权利要求29所述的植入型心脏瓣膜支架,其特征在于,每个所述支撑单元包括分别连接不同瓣叶的两第一支撑体,所述两第一支撑体及所述连接体之间形成可用裙布连接覆盖的第一空间。
- 根据权利要求30所述的植入型心脏瓣膜支架,其特征在于,根据血液通过所述流通道的方向界定上、下游方向,所述连接体位于所述两第一支撑体的上游方向。
- 根据权利要求30所述的植入型心脏瓣膜支架,其特征在于,所述连接体包括至少一个子连接体,至少一个所述子连接体与所述连接体叠加设置或间隔设置。
- 根据权利要求30-32中任一项所述的植入型心脏瓣膜支架,其特征在于,所述两第一支撑体分别自所述连接体的两端向所述下游方向延伸,且所述两第一支撑体相汇合连接。
- 根据权利要求29-32中任一项所述的植入型心脏瓣膜支架,其特征在于,每个所述支撑单元均包括所述凸伸支体,且所述凸伸支体沿所述流通道的周向位于相邻的两个所述支撑单元之间。
- 根据权利要求34所述的植入型心脏瓣膜支架,其特征在于,每个所述支撑单元均包括两个所述凸伸支体,两个所述凸伸支体形成的连接体相互连接。
- 根据权利要求35所述的植入型心脏瓣膜支架,其特征在于,每个所述凸伸支体与所述第一支撑体之间形成有供医疗器件通过的第二空间。
- 根据权利要求30-32中任一项所述的植入型心脏瓣膜支架,其特征在于,所述凸伸支体与所述第一支撑体为一根编织丝编制形成。
- 根据权利要求29-32中任一项所述的植入型心脏瓣膜支架,其特征在于,所述凸伸支体位于所述流通道下游的一端形成有连接环。
- 根据权利要求30-32中任一项所述的植入型心脏瓣膜支架,其特征在于,每一所述支撑单元与相邻的所述支撑单元通过铆接结构连接,形成第一铆接结,在所述第一铆接结中,相邻的两个所述支撑单元的第一支撑体和所述连接体并行排列。
- 根据权利要求30-32中任一项所述的植入型心脏瓣膜支架,其特征在于,每一支撑单元的两个所述第一支撑体通过铆接结构连接,并形成第二铆接结。
- 根据权利要求30-32中任一项所述的植入型心脏瓣膜支架,其特征在于,所述凸伸支体包括依次连接的第一连接段、抵接段和第二连接段,所述第一连接段连接于所述第一铆接结中;所述抵接段的第一端与所述第一连接段相连,第二端向远离所述流通道的方向凸伸;所述第二连接段的一端与所述抵接段的第二端相连,另一端与所述第一支撑体相连。
- 根据权利要求41所述的植入型心脏瓣膜支架,其特征在于,所述抵接段与所述流通道的轴线方向的夹角α在10°~150°的范围内。
- 根据权利要求41所述的植入型心脏瓣膜支架,其特征在于,所述抵接段的第二端与所述第一连接段之间的距离b在1mm~20mm的范围内。
- 根据权利要求29-32中任一项所述的植入型心脏瓣膜支架,其特征在于,所述植入型心脏瓣膜支架由至少一根编织丝编制形成。
- 根据权利要求42所述的植入型心脏瓣膜支架,其特征在于,所述编织丝包括记忆合金丝。
- 根据权利要求30-32中任一项所述的植入型心脏瓣膜支架,其特征在于,所述连接体采用变径式记忆合金丝编织而成;或者,所述连接体的外周侧局部嵌设有记忆合金管。
- 一种心脏瓣膜假体,其特征在于,包括如权利要求1-28中任一项所述的心脏瓣膜支架或权利要求29-46中任一项所述的植入型心脏瓣膜支架;瓣叶,设于所述流通道内,并与所述心脏瓣膜支架或所述植入型心脏瓣膜支架的第一支撑体相连接;第一密封裙布,连接覆盖于所述心脏瓣膜支架或所述植入型心脏瓣膜支架的两第一支撑体与所述第二支撑体之间形成的空间内;可选地,第二密封裙布,围设于所述心脏瓣膜支架或所述植入型心脏瓣膜支架的外周侧。
- 根据权利要求47所述的心脏瓣膜假体,其特征在于,所述第二密封裙布呈圆盘状,且所述第二密封裙布的周侧向所述心脏瓣膜支架的下游翻折形成有翻边。
- 根据权利要求47或48所述的心脏瓣膜假体,其特征在于,所述瓣叶的材料为高分子材料、生物组织材料和组织工程材料中的至少一种。
- 根据权利要求47或48所述的心脏瓣膜假体,其特征在于,所述瓣叶与所述心脏瓣膜支架或所述植入型心脏瓣膜支架的第一支撑体的连接方式为缝线缝制、粘接、热熔、高分子附着中的一种。
- 一种心脏瓣膜支架,其特征在于,包括:支撑主体,包括多个支撑单元;多个所述支撑单元围设形成供血液流动的通道,每个所述支撑单元均包括用于分别连接不同瓣叶的两个第一支撑体,至少一个所述支撑单元包括第二支撑体,所述第二支撑体设置于所述第一支撑体靠近相邻支撑单元的一侧;至少一个凸伸支体,所述凸伸支体与相邻的两个所述支撑单元相对固定且自所述支撑主体向所述通道的外侧延伸,所述凸伸支体与所述支撑主体之间形成有用于容置心脏原生瓣叶的空隙。
- 根据权利要求51所述的心脏瓣膜支架,其特征在于,每个所述支撑单元均包括两个所述第二支撑体,每 个所述支撑单元中的两个所述第二支撑体分别设置于两个所述第一支撑体的两侧。
- 根据权利要求52所述的心脏瓣膜支架,其特征在于,每个所述支撑单元包括连接两个所述第一支撑体的第三支撑体,两个所述第一支撑体及第三支撑体之间形成可用第一裙布连接覆盖的空间。
- 根据权利要求53所述的心脏瓣膜支架,其特征在于,每个所述第一支撑体均与一个所述凸伸支体相对固定,并且每一所述凸伸支体与分别属于相邻两个支撑单元的相邻两个第一支撑体相对固定连接;所述凸伸支体的中部形成用于与心脏组织抵接的凸伸部。
- 根据权利要求54所述的心脏瓣膜支架,其特征在于,分别属于相邻两个支撑单元的相邻两个第二支撑体沿心脏瓣膜支架的周向位于连接该两个支撑单元的凸伸支体之间。
- 根据权利要求54所述的心脏瓣膜支架,其特征在于,分别属于相邻两个支撑单元的相邻两个第二支撑体沿心脏瓣膜支架的径向位于连接该两个支撑单元的所述凸伸支体的内侧。
- 根据权利要求54至56中任一项所述的心脏瓣膜支架,其特征在于,所述支撑单元的两个所述第一支撑体的下游处和两个所述凸伸支体的下游处通过铆接结构连接,形成第一铆接结,该两个所述凸伸支体为与该两个第一支撑体相对固定的两个凸伸支体。
- 根据权利要求53所述的心脏瓣膜支架,其特征在于,每个所述第二支撑体均与一个所述凸伸支体相对固定,所述凸伸支体的中部形成用于与心脏组织抵接的凸伸部。
- 根据权利要求58所述的心脏瓣膜支架,其特征在于,分别属于相邻两个支撑单元的相邻两个第二支撑体的部分沿心脏瓣膜支架的周向位于连接该两个支撑单元的凸伸支体之间。
- 根据权利要求58所述的心脏瓣膜支架,其特征在于,分别属于相邻两个支撑单元的相邻两个第二支撑体的部分沿心脏瓣膜支架的径向位于连接该两个支撑单元的所述凸伸支体的内侧。
- 根据权利要求58至60中任一项所述的心脏瓣膜支架,其特征在于,所述支撑单元的两个所述第一支撑体的下游处通过铆接结构连接,形成第一铆接结,所述凸伸支体的下游处与所述第二支撑体通过铆接结构连接,形成第二铆接结。
- 根据权利要求53所述的心脏瓣膜支架,其特征在于,分别属于相邻两个支撑单元的相邻两个第一支撑体的上游处、相邻两个第二支撑体的上游处、相邻两个第三支撑体的下游处通过铆接结构连接,形成第三铆接结。
- 根据权利要求57、61或62所述的心脏瓣膜支架,其特征在于,所述每一支撑单元由一根编织丝编织形成,每一凸伸支体为另一根编织丝形成。
- 根据权利要求63所述的心脏瓣膜支架,其特征在于,所述编织丝包括变径部,所述变径部的直径大于其他部分的直径,所述变径部对应所述铆接结构设置。
- 根据权利要求64所述的心脏瓣膜支架,其特征在于,所述编织丝采用变径记忆合金丝制成,以形成所述变径部;或所述编织丝的外周嵌设有记忆合金管,嵌设有所述记忆合金管的部分为所述变径部。
- 根据权利要求53至65中任一项所述的心脏瓣膜支架,其特征在于,每一所述支撑单元的下游方向上均形成有连接环。
- 一种心脏瓣膜假体,其特征在于,包括如权利要求51至66任意一项所述的心脏瓣膜支架;瓣叶,设置于所述通道内,并与所述心脏瓣膜支架的第一支撑体连接;第一裙布,连接覆盖于所述心脏瓣膜支架的支撑单元的两个第一支撑体和第三支撑体之间形成的空间。
- 根据权利要求67所述的心脏瓣膜假体,其特征在于,所述心脏瓣膜假体还包括第二裙布,所述第二裙布围设于所述心脏瓣膜支架的外周侧,且所述第二裙布的上游端与所述第一裙布连接,所述第二裙布自上游端至下游端,周长逐渐变大,再逐渐变小。
- 根据权利要求68所述的心脏瓣膜假体,其特征在于,所述第二裙布的下游端形成有环形的第一翻边,所述第一翻边朝向所述心脏瓣膜支架的下游。
- 根据权利要求69所述的心脏瓣膜假体,其特征在于,所述第一翻边和所述第二裙布上形成有容置缺口,所述容置缺口用于容置所述支撑主体。
- 根据权利要求68所述的心脏瓣膜假体,其特征在于,所述第二裙布的周侧形成有环形的第二翻边,所述第二翻边朝向所述心脏瓣膜支架的下游。
- 根据权利要求71所述的心脏瓣膜假体,其特征在于,所述第二翻边设置于所述第二裙布的周长最大的周侧。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210820049.6A CN115252224A (zh) | 2022-07-12 | 2022-07-12 | 心脏瓣膜支架及心脏瓣膜假体 |
CN202210820044.3A CN115177409A (zh) | 2022-07-12 | 2022-07-12 | 植入型心脏瓣膜支架及心脏瓣膜假体 |
CN202210820044.3 | 2022-07-12 | ||
CN202210822410.9A CN115068172B (zh) | 2022-07-12 | 2022-07-12 | 人工心脏瓣膜支架及心脏瓣膜假体 |
CN202210820049.6 | 2022-07-12 | ||
CN202210822410.9 | 2022-07-12 | ||
CN202310203899.6A CN116158890A (zh) | 2023-03-03 | 2023-03-03 | 心脏瓣膜支架及心脏瓣膜假体 |
CN202310203899.6 | 2023-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024012265A1 true WO2024012265A1 (zh) | 2024-01-18 |
Family
ID=89535481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/104741 WO2024012265A1 (zh) | 2022-07-12 | 2023-06-30 | 心脏瓣膜支架及心脏瓣膜假体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024012265A1 (zh) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120165929A1 (en) * | 2009-03-30 | 2012-06-28 | Ulc Business Plc | Heart valve prosthesis |
CN202801864U (zh) * | 2012-09-21 | 2013-03-20 | 沛嘉医疗科技(上海)有限公司 | 人工心脏瓣膜 |
US20180161155A1 (en) * | 2015-06-16 | 2018-06-14 | Ucl Business Plc | Prosthetic Heart Valve |
US20200113683A1 (en) * | 2018-10-15 | 2020-04-16 | St. Jude Medical, Cardiology Division, Inc. | Braid Connections For Prosthetic Heart Valves |
CN212395132U (zh) * | 2020-07-15 | 2021-01-26 | 上海臻亿医疗科技有限公司 | 一种心脏瓣膜假体 |
US20210346153A1 (en) * | 2020-05-11 | 2021-11-11 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter Mitral Valve Fixation Concepts |
CN115068172A (zh) * | 2022-07-12 | 2022-09-20 | 上海以心医疗器械有限公司 | 人工心脏瓣膜支架及心脏瓣膜假体 |
CN115177409A (zh) * | 2022-07-12 | 2022-10-14 | 上海以心医疗器械有限公司 | 植入型心脏瓣膜支架及心脏瓣膜假体 |
CN115252224A (zh) * | 2022-07-12 | 2022-11-01 | 上海以心医疗器械有限公司 | 心脏瓣膜支架及心脏瓣膜假体 |
CN116158890A (zh) * | 2023-03-03 | 2023-05-26 | 上海以心医疗器械有限公司 | 心脏瓣膜支架及心脏瓣膜假体 |
-
2023
- 2023-06-30 WO PCT/CN2023/104741 patent/WO2024012265A1/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120165929A1 (en) * | 2009-03-30 | 2012-06-28 | Ulc Business Plc | Heart valve prosthesis |
CN202801864U (zh) * | 2012-09-21 | 2013-03-20 | 沛嘉医疗科技(上海)有限公司 | 人工心脏瓣膜 |
US20180161155A1 (en) * | 2015-06-16 | 2018-06-14 | Ucl Business Plc | Prosthetic Heart Valve |
US20200113683A1 (en) * | 2018-10-15 | 2020-04-16 | St. Jude Medical, Cardiology Division, Inc. | Braid Connections For Prosthetic Heart Valves |
US20210346153A1 (en) * | 2020-05-11 | 2021-11-11 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter Mitral Valve Fixation Concepts |
CN212395132U (zh) * | 2020-07-15 | 2021-01-26 | 上海臻亿医疗科技有限公司 | 一种心脏瓣膜假体 |
CN115068172A (zh) * | 2022-07-12 | 2022-09-20 | 上海以心医疗器械有限公司 | 人工心脏瓣膜支架及心脏瓣膜假体 |
CN115177409A (zh) * | 2022-07-12 | 2022-10-14 | 上海以心医疗器械有限公司 | 植入型心脏瓣膜支架及心脏瓣膜假体 |
CN115252224A (zh) * | 2022-07-12 | 2022-11-01 | 上海以心医疗器械有限公司 | 心脏瓣膜支架及心脏瓣膜假体 |
CN116158890A (zh) * | 2023-03-03 | 2023-05-26 | 上海以心医疗器械有限公司 | 心脏瓣膜支架及心脏瓣膜假体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11872125B2 (en) | Prosthetic heart valve | |
US12048623B2 (en) | Devices and methods of commissure formation for prosthetic heart valve | |
US10869757B2 (en) | Valve prosthesis and method for delivery | |
US11382750B2 (en) | Prosthetic mitral valve | |
EP3046512B1 (en) | Heart valves with increased effective orifice area | |
EP1143882B1 (en) | Flexible heart valve | |
JP2015516217A (ja) | 心臓弁補綴物 | |
US20220023036A1 (en) | Method of assembling a prosthetic heart valve | |
WO2019128583A1 (zh) | 心脏瓣膜假体及其支架 | |
CN112089506A (zh) | 瓣膜支架及具有该瓣膜支架的心脏瓣膜 | |
CN218338568U (zh) | 人工心脏瓣膜支架及心脏瓣膜假体 | |
CN115068172B (zh) | 人工心脏瓣膜支架及心脏瓣膜假体 | |
WO2024012265A1 (zh) | 心脏瓣膜支架及心脏瓣膜假体 | |
CN218338567U (zh) | 植入型心脏瓣膜支架及心脏瓣膜假体 | |
CN115252224A (zh) | 心脏瓣膜支架及心脏瓣膜假体 | |
CN115177409A (zh) | 植入型心脏瓣膜支架及心脏瓣膜假体 | |
CN111195166A (zh) | 一种可编织的心脏瓣膜装置及其制作方法、使用方法 | |
CN219354275U (zh) | 一种瓣膜修复装置及系统 | |
US20240173128A1 (en) | Prosthetic Heart Valve with Atrial Drain | |
US20240268955A1 (en) | Prosthetic Heart Valve Frame with Double-Arm Connection | |
US20230404750A1 (en) | Fabric Suture Valve Suspension System | |
CN218338569U (zh) | 心脏瓣膜支架及心脏瓣膜假体 | |
US11717402B2 (en) | Leaflet/cuff attachment compliance for improved durability | |
US20220110746A1 (en) | Stent of aortic valve | |
CN117982269A (zh) | 一种心脏瓣膜支架及心脏瓣膜假体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23838757 Country of ref document: EP Kind code of ref document: A1 |