WO2024012092A1 - 直流微电网中储能系统的下垂控制方法和装置 - Google Patents

直流微电网中储能系统的下垂控制方法和装置 Download PDF

Info

Publication number
WO2024012092A1
WO2024012092A1 PCT/CN2023/098385 CN2023098385W WO2024012092A1 WO 2024012092 A1 WO2024012092 A1 WO 2024012092A1 CN 2023098385 W CN2023098385 W CN 2023098385W WO 2024012092 A1 WO2024012092 A1 WO 2024012092A1
Authority
WO
WIPO (PCT)
Prior art keywords
droop
energy storage
storage system
discharge
curve
Prior art date
Application number
PCT/CN2023/098385
Other languages
English (en)
French (fr)
Inventor
朱选才
陈申
郭帅坡
程皓
王济菘
Original Assignee
万帮数字能源股份有限公司
万帮星星充电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万帮数字能源股份有限公司, 万帮星星充电科技有限公司 filed Critical 万帮数字能源股份有限公司
Publication of WO2024012092A1 publication Critical patent/WO2024012092A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources

Definitions

  • the invention relates to the technical field of DC microgrid control, and specifically relates to a droop control method for an energy storage system in a DC microgrid and a droop control device for an energy storage system in a DC microgrid.
  • energy storage inverters In DC microgrids, energy storage inverters generally use droop control to regulate battery power. Specifically, the energy management system (EMS) in the energy storage inverter generates battery ports based on the expected battery power and the droop curve. The voltage is a given value, and the energy storage inverter is controlled to control the port voltage to a given value. The bidirectional DC/DC converter then samples the current port voltage and regulates battery power based on the same droop control curve. With this design, the inverter's port voltage control and battery power control are decoupled, thereby achieving rapid adjustment of battery power.
  • EMS energy management system
  • the present invention provides a droop control method and device for an energy storage system in a DC microgrid, which can improve the power conversion efficiency of the energy storage system and improve the economy and life of the energy storage system and even the entire DC microgrid. .
  • a droop control method for an energy storage system in a DC microgrid including the following steps: obtaining an initial droop curve; determining the boundary conditions of the droop control parameters in the droop curve; targeting the highest cycle efficiency of the energy storage system at full discharge. Establish an objective function; establish a droop curve optimization model according to the objective function and the boundary conditions; solve the droop curve optimization model to obtain the optimal solution of the droop control parameters to update the initial droop curve; use the updated droop curve The droop curve controls the energy storage system.
  • the droop control parameters in the droop curve include discharge starting voltage, charging starting voltage, discharge droop coefficient and charge droop coefficient.
  • the charge starting voltage is not less than the discharge starting voltage.
  • eta cycle is the cycle efficiency of the energy storage system after it is fully charged and discharged
  • eta charge is the efficiency of full power charging of the energy storage system
  • eta discharge is the efficiency of full power discharge of the energy storage system
  • K 1 and K 2 are respectively the discharge starting voltage, the charging starting voltage, the discharge droop coefficient and the charging droop coefficient.
  • Pac_max is the AC energy storage inverter in the DC microgrid.
  • the maximum power of the side, f() represents the functional relationship between efficiency and independent variables.
  • the sagging curve optimization model is solved using the composite shape method.
  • a droop control device for an energy storage system in a DC microgrid including: an acquisition module used to obtain an initial droop curve; a determination module used to determine the boundary conditions of the droop control parameters in the droop curve ;
  • the first establishment module the first establishment module is used to establish the objective function with the highest cycle efficiency of the energy storage system being fully charged and discharged as the target;
  • the second establishment module the second establishment module is used to establish the objective function according to the target
  • the function and the boundary conditions establish a droop curve optimization model;
  • the update module is used to solve the droop curve optimization model and obtain the optimal solution of the droop control parameters to update the initial droop curve;
  • the control module The control module is used to control the energy storage system with the updated droop curve.
  • the droop control parameters in the droop curve include discharge starting voltage, charging starting voltage, discharge droop coefficient and charging droop coefficient.
  • the charge starting voltage is not less than the discharge starting voltage.
  • eta cycle is the cycle efficiency of the energy storage system after it is fully charged and discharged
  • eta charge is the efficiency of full power charging of the energy storage system
  • eta discharge is the efficiency of full power discharge of the energy storage system
  • K 1 and K 2 are respectively the discharge starting voltage, the charging starting voltage, the discharge droop coefficient and the charging droop coefficient.
  • Pac_max is the AC energy storage inverter in the DC microgrid.
  • the maximum power of the side, f() represents the functional relationship between efficiency and independent variables.
  • the update module uses the composite shape method to solve the droop curve optimization model.
  • the present invention establishes an objective function with the highest cycle efficiency of the energy storage system being fully charged and discharged, and solves the optimal droop control parameters based on the objective function to obtain the optimal droop curve, thereby improving the performance of the energy storage system.
  • Power conversion efficiency improves the economy and life of the energy storage system and even the entire DC microgrid.
  • Figure 1 is a schematic structural diagram of a DC microgrid according to an embodiment of the present invention.
  • Figure 2 is a flow chart of the droop control method of the energy storage system in the DC microgrid according to the embodiment of the present invention
  • Figure 3 is a schematic diagram of a droop curve according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a droop curve update according to an embodiment of the present invention.
  • Figure 5 is a block diagram of a droop control device of an energy storage system in a DC microgrid according to an embodiment of the present invention.
  • a DC microgrid includes an energy storage inverter 1, a battery 2, and a photovoltaic panel 3.
  • the battery 2 and the energy storage inverter 1 constitute an energy storage system.
  • the battery 2 and the photovoltaic panel 3 are connected to the DC side of the energy storage inverter 1, and the AC side of the energy storage inverter 1 is connected to the grid 5 and the load 6 respectively through the off-grid switching device 4.
  • Battery 2 includes a battery pack and a bidirectional DC/DC converter. Through the control of the EMS, inverter controller and other control components in the energy storage inverter 1, the battery can both store energy and supply energy to the grid and load. powered by.
  • the droop control method of the energy storage system in the DC microgrid includes the following steps:
  • the droop curve in the embodiment of the present invention is a power-voltage curve, that is, a curve representing the relationship between battery input power and battery input port voltage.
  • the battery input port voltage is the voltage of its own port collected internally by the battery.
  • the droop control parameters in the droop curve include discharge starting voltage V 1 , charging starting voltage V 2 , discharge droop coefficient K 1 and charging droop coefficient K 2 .
  • the discharge starting voltage V 1 and the charging starting voltage V 2 may be the same or different.
  • the charging start voltage V 2 can be greater than the discharge starting voltage V 1 . That is to say, the droop curve in a preferred embodiment of the present invention can include a charging area, Non-charging and non-discharging areas and discharge areas.
  • the battery input power is less than or equal to 0, the battery input port voltage is less than or equal to the discharge starting voltage V 1 , and the droop coefficient is K 1 ; in the non-charging and non-discharging area, the battery input power is equal to 0, and the battery input port voltage is less than or equal to the discharge starting voltage V 1 Between the starting voltage V 1 and the charging starting voltage V 2 , the droop coefficient can be regarded as 0; in the charging area, the battery input power is greater than or equal to 0, the battery input port voltage is greater than or equal to the charging starting voltage V 2 , and the droop coefficient is K 2 .
  • the initial droop curve may be pre-designed and stored, or may be the droop curve used for droop control in the previous control cycle. This initial droop curve can only ensure that the energy storage system works normally, but it cannot guarantee that the cycle efficiency of the energy storage system reaches optimal levels.
  • the boundary conditions of the droop control parameters in the droop curve are the boundaries of the values of each droop control parameter.
  • the discharge start voltage V 1 and the charge start voltage V 2 have the same value boundaries.
  • the minimum values are both the allowable minimum value of the bus voltage V bus_min
  • the maximum values are both the allowable maximum value of the bus voltage V bus_max .
  • the minimum allowed value of the bus voltage is:
  • V n is the rated voltage of the AC side of the energy storage inverter
  • V margin is the preset voltage margin, which can be 30V, for example.
  • V bus_max k*V transistor -V overshoot_max
  • V transistor is the withstand voltage of the device
  • k is the safety factor
  • k is less than 1 to ensure the safety of the device, for example, it can be 0.8
  • V overshoot_max is the maximum overcharge voltage
  • the value boundaries of the discharge droop coefficient K 1 and the charge droop coefficient K 2 are also the same.
  • the maximum and minimum values can be comprehensively selected based on the accuracy of battery input port voltage collection and the maximum battery input power.
  • the charging and discharging efficiency of the energy storage system depends on the bus voltage and the AC side power of the energy storage inverter. That is to say, the independent variables of the efficiency curve of the energy storage system are the bus voltage and the AC side power of the energy storage inverter. .
  • eta is the working efficiency of the energy storage system
  • V bus is the bus voltage
  • Pac is the energy storage inverter AC Side power
  • f() represents the functional relationship between efficiency and independent variables.
  • the functional relationship between the operating efficiency ⁇ of the energy storage system, the bus voltage V bus and the AC side power Pac of the energy storage inverter is as follows:
  • k is the coefficient of the bus voltage V bus
  • is a constant term
  • a and b are the coefficients of the AC side power P ac of the energy storage inverter
  • c is a constant term
  • k, ⁇ , a, b, c can be simulated by Get together.
  • the efficiency of full power discharge of the energy storage system is:
  • eta cycle is the cycle efficiency of the energy storage system after it is fully charged and discharged
  • eta charge is the efficiency of full power charging of the energy storage system
  • eta discharge is the efficiency of full power discharge of the energy storage system
  • P ac_max is the energy storage inverter in the DC microgrid. The maximum power on the AC side of the inverter.
  • a global optimization search algorithm can be used, such as the composite shape method to solve the droop curve optimization model.
  • the optimal solution of the droop coefficient K 2 is used to update the droop curve with the optimal droop control parameters.
  • the droop control method of the energy storage system in the DC microgrid can calculate the optimal droop curve according to the efficiency curve, and realize the control of the energy storage system with the optimal droop curve.
  • the initial droop curve is shown as the dotted line in Figure 4, the discharge starting voltage V 1 is 400V, the charging starting voltage V 2 is 410V, the discharge droop coefficient K 1 and the charge droop coefficient K 2 are both 250W/V.
  • the updated droop curve is shown as a solid line in Figure 4. It is assumed that only the discharge starting voltage V 1 and the charging starting voltage are updated. V 2 is reduced by 5V, and the discharge droop coefficient K 1 and the charging droop coefficient K 2 remain unchanged. Then the efficiency comparison of the energy storage system under the control of the initial droop curve and the updated droop curve is shown in Table 1.
  • an objective function is established with the highest cycle efficiency of full and full discharge of the energy storage system as the goal, and the optimal droop control parameters are solved according to the objective function, thereby The optimal droop curve is obtained, which can improve the power conversion efficiency of the energy storage system and improve the economy and life of the energy storage system and even the entire DC microgrid.
  • the present invention also proposes a droop control device for the energy storage system in the DC microgrid.
  • the droop control device of the energy storage system in the DC microgrid includes an acquisition module 10, a determination module 20, a first establishment module 30, a second establishment module 40, an update module 50 and a control module 60 .
  • the acquisition module 10 is used to obtain the initial droop curve
  • the determination module 20 is used to determine the boundary conditions of the droop control parameters in the droop curve
  • the first establishment module 30 is used to establish the system with the highest cycle efficiency of full and full discharge of the energy storage system.
  • the second establishment module 40 is used to establish the droop curve optimization model according to the objective function and boundary conditions
  • the update module 50 is used to solve the droop curve optimization model and obtain the optimal solution of the droop control parameters to update the initial droop curve
  • the control module 60 is used to control the energy storage system with the updated droop curve.
  • the droop curve in the embodiment of the present invention is a power-voltage curve, that is, a curve representing the relationship between battery input power and battery input port voltage.
  • the battery input port voltage is the voltage of its own port collected internally by the battery.
  • the droop control parameters in the droop curve include discharge starting voltage V 1 , charging starting voltage V 2 , discharge droop coefficient K 1 and charging droop coefficient K 2 .
  • the discharge starting voltage V 1 and the charging starting voltage V 2 may be the same or different.
  • the charging start voltage V 2 can be greater than the discharge starting voltage V 1 . That is to say, the droop curve in a preferred embodiment of the present invention can include a charging area, Non-charging and non-discharging areas and discharge areas.
  • the battery input power is less than or equal to 0, the battery input port voltage is less than or equal to the discharge starting voltage V 1 , and the droop coefficient is K 1 ; in the non-charging and non-discharging area, the battery input power is equal to 0, and the battery input port voltage is less than or equal to the discharge starting voltage V 1 Between the starting voltage V 1 and the charging starting voltage V 2 , the droop coefficient can be regarded as 0; during charging In the electric area, the battery input power is greater than or equal to 0, the battery input port voltage is greater than or equal to the charging starting voltage V 2 , and the droop coefficient is K 2 .
  • the initial droop curve may be pre-designed and stored, or may be the droop curve used for droop control in the previous control cycle. This initial droop curve can only ensure that the energy storage system works normally, but it cannot guarantee that the cycle efficiency of the energy storage system reaches optimal levels.
  • the boundary conditions of the droop control parameters in the droop curve are the boundaries of the values of each droop control parameter.
  • the discharge start voltage V 1 and the charge start voltage V 2 have the same value boundaries.
  • the minimum values are both the allowable minimum value of the bus voltage V bus_min
  • the maximum values are both the allowable maximum value of the bus voltage V bus_max .
  • the minimum allowed value of the bus voltage is:
  • V n is the rated voltage of the AC side of the energy storage inverter
  • V margin is the preset voltage margin, which can be 30V, for example.
  • V bus_max k*V transistor -V overshoot_max
  • V transistor is the withstand voltage of the device
  • k is the safety factor
  • k is less than 1 to ensure the safety of the device, for example, it can be 0.8
  • V overshoot_max is the maximum overcharge voltage
  • the value boundaries of the discharge droop coefficient K 1 and the charge droop coefficient K 2 are also the same.
  • the maximum and minimum values can be comprehensively selected based on the accuracy of battery input port voltage collection and the maximum battery input power.
  • the charging and discharging efficiency of the energy storage system depends on the bus voltage and the AC side power of the energy storage inverter. That is to say, the independent variables of the efficiency curve of the energy storage system are the bus voltage and the AC side power of the energy storage inverter. .
  • eta is the working efficiency of the energy storage system
  • V bus is the bus voltage
  • Pac is the AC side power of the energy storage inverter
  • f() represents the functional relationship between efficiency and independent variables.
  • the functional relationship between the operating efficiency ⁇ of the energy storage system, the bus voltage V bus and the AC side power Pac of the energy storage inverter is as follows:
  • k is the coefficient of the bus voltage V bus
  • is a constant term
  • a and b are the coefficients of the AC side power P ac of the energy storage inverter
  • c is a constant term
  • k, ⁇ , a, b, c can be simulated by Get together.
  • the efficiency of full power discharge of the energy storage system is:
  • eta cycle is the cycle efficiency of the energy storage system after it is fully charged and discharged
  • eta charge is the efficiency of full power charging of the energy storage system
  • eta discharge is the efficiency of full power discharge of the energy storage system
  • P ac_max is the energy storage inverter in the DC microgrid. The maximum power on the AC side of the inverter.
  • the update module 50 can use a global optimization search algorithm, such as the composite shape method to solve the droop curve optimization model, and obtain the discharge starting voltage V 1 , the charging starting voltage V 2 , and the discharge droop coefficient K 1 and the optimal solution of the charging droop coefficient K 2 , thereby updating the droop curve with the optimal droop control parameters.
  • a global optimization search algorithm such as the composite shape method to solve the droop curve optimization model, and obtain the discharge starting voltage V 1 , the charging starting voltage V 2 , and the discharge droop coefficient K 1 and the optimal solution of the charging droop coefficient K 2 , thereby updating the droop curve with the optimal droop control parameters.
  • the droop control device of the energy storage system in the DC microgrid can calculate the optimal droop curve based on the efficiency curve, and realize control of the energy storage system with the optimal droop curve.
  • the initial droop curve is shown as the dotted line in Figure 4, the discharge starting voltage V 1 is 400V, the charging starting voltage V 2 is 410V, the discharge droop coefficient K 1 and the charge droop coefficient K 2 are both 250W/V.
  • the updated droop curve is shown as a solid line in Figure 4. It is assumed that only the discharge starting voltage V 1 and the charging starting voltage are updated. V 2 is reduced by 5V, and the discharge droop coefficient K 1 and the charging droop coefficient K 2 remain unchanged. Then the efficiency comparison of the energy storage system under the control of the initial droop curve and the updated droop curve is shown in Table 1.
  • an objective function is established with the highest cycle efficiency of full and full discharge of the energy storage system as the goal, and the optimal droop control parameters are solved according to the objective function, thereby The optimal droop curve is obtained, which can improve the power conversion efficiency of the energy storage system and improve the economy and life of the energy storage system and even the entire DC microgrid.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “Plural” means two or more, unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • the terms “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • Two characteristics. "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: an electrical connection (electronic device) having one or more wires, a portable computer disk case (magnetic devices), random access memory (RAM), read only memory (ROM), erasable and programmable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
  • various parts of the present invention may be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal.
  • Discrete logic circuits application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • each functional unit in various embodiments of the present invention can be integrated into a processing module, or each unit can exist physically alone, or two or more units can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种直流微电网中储能系统的下垂控制方法和装置,所述方法包括以下步骤:获取初始的下垂曲线;确定下垂曲线中下垂控制参数的边界条件;以所述储能系统满充满放的循环效率最高为目标建立目标函数;根据所述目标函数和所述边界条件建立下垂曲线优化模型;求解所述下垂曲线优化模型,得到下垂控制参数的最优解,以对初始的下垂曲线进行更新;以更新后的下垂曲线对所述储能系统进行控制。本发明能够提高储能系统的功率变换效率,提升储能系统乃至整个直流微电网的经济性和寿命。

Description

直流微电网中储能系统的下垂控制方法和装置 技术领域
本发明涉及直流微电网控制技术领域,具体涉及一种直流微电网中储能系统的下垂控制方法和一种直流微电网中储能系统的下垂控制装置。
背景技术
在直流微电网中,储能逆变器对电池功率的调节一般采用下垂控制,具体地,储能逆变器中的能源管理系统(EMS)会根据期望的电池功率,结合下垂曲线生成电池端口电压给定值,并控制储能逆变器将端口电压控制到给定值。然后双向DC/DC变换器采样当前端口电压,并基于相同的下垂控制曲线调节电池功率。如此设计,逆变器的端口电压控制与电池功率控制便实现了解耦,也就实现了电池功率的快速调节。
上述的下垂控制虽然实现了对电池功率的快速调节,但是所利用的下垂曲线往往只是一种可行的曲线,无法使系统的效率达到最高。
发明内容
本发明为解决上述技术问题,提供了一种直流微电网中储能系统的下垂控制方法和装置,能够提高储能系统的功率变换效率,提升储能系统乃至整个直流微电网的经济性和寿命。
本发明采用的技术方案如下:
一种直流微电网中储能系统的下垂控制方法,包括以下步骤:获取初始的下垂曲线;确定下垂曲线中下垂控制参数的边界条件;以所述储能系统满充满放的循环效率最高为目标建立目标函数;根据所述目标函数和所述边界条件建立下垂曲线优化模型;求解所述下垂曲线优化模型,得到下垂控制参数的最优解,以对初始的下垂曲线进行更新;以更新后的下垂曲线对所述储能系统进行控制。
下垂曲线中下垂控制参数包括放电起始电压、充电起始电压、放电下垂 系数和充电下垂系数。
所述充电起始电压不小于所述放电起始电压。
所述目标函数为:
maxηcycle=ηchargedischarge

其中,ηcycle为所述储能系统满充满放后的循环效率,ηcharge为所述储能系统满功率充电的效率,ηdischarge为所述储能系统满功率放电的效率,V1、V2、K1、K2分别为所述放电起始电压、所述充电起始电压、所述放电下垂系数、所述充电下垂系数,Pac_max为所述直流微电网中储能逆变器交流侧的最大功率,f()表示效率与自变量之间的函数关系。
以复合形法求解所述下垂曲线优化模型。
一种直流微电网中储能系统的下垂控制装置,包括:获取模块,所述获取模块用于获取初始的下垂曲线;确定模块,所述确定模块用于确定下垂曲线中下垂控制参数的边界条件;第一建立模块,所述第一建立模块用于以所述储能系统满充满放的循环效率最高为目标建立目标函数;第二建立模块,所述第二建立模块用于根据所述目标函数和所述边界条件建立下垂曲线优化模型;更新模块,所述更新模块用于求解所述下垂曲线优化模型,得到下垂控制参数的最优解,以对初始的下垂曲线进行更新;控制模块,所述控制模块用于以更新后的下垂曲线对所述储能系统进行控制。
下垂曲线中下垂控制参数包括放电起始电压、充电起始电压、放电下垂系数和充电下垂系数。
所述充电起始电压不小于所述放电起始电压。
所述目标函数为:
maxηcycle=ηchargedischarge

其中,ηcycle为所述储能系统满充满放后的循环效率,ηcharge为所述储能系统满功率充电的效率,ηdischarge为所述储能系统满功率放电的效率,V1、V2、K1、K2分别为所述放电起始电压、所述充电起始电压、所述放电下垂系数、所述充电下垂系数,Pac_max为所述直流微电网中储能逆变器交流侧的最大功率,f()表示效率与自变量之间的函数关系。
所述更新模块以复合形法求解所述下垂曲线优化模型。
本发明的有益效果:
本发明通过以储能系统满充满放的循环效率最高为目标建立目标函数,并根据该目标函数求解最优的下垂控制参数,从而得到最优的下垂曲线,由此,能够提高储能系统的功率变换效率,提升储能系统乃至整个直流微电网的经济性和寿命。
附图说明
图1为本发明实施例的直流微电网的结构示意图;
图2为本发明实施例的直流微电网中储能系统的下垂控制方法的流程图;
图3为本发明一个实施例的下垂曲线示意图;
图4为本发明一个实施例的下垂曲线更新示意图;
图5为本发明实施例的直流微电网中储能系统的下垂控制装置的方框示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而 不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例的本发明一个实施例的直流微电网包括储能逆变器1、电池2、光伏面板3,电池2与储能逆变器1构成储能系统,电池2和光伏面板3连接于储能逆变器1的直流侧,储能逆变器1的交流侧通过并离网切换装置4分别连接到电网5和负载6。电池2包括电池组和双向DC/DC变换器,通过储能逆变器1内的EMS、逆变器控制器等控制部件的控制,电池既可以实现储能,又可以实现向电网和负载的供电。
如图2所示,本发明实施例的直流微电网中储能系统的下垂控制方法包括以下步骤:
S1,获取初始的下垂曲线。
本发明实施例中的下垂曲线为功率-电压曲线,即表示电池输入功率与电池输入端口电压之间关系的曲线。其中,电池输入端口电压是由电池内部采集得到的自身端口的电压。
在本发明的一个实施例中,下垂曲线中下垂控制参数包括放电起始电压V1、充电起始电压V2、放电下垂系数K1和充电下垂系数K2。其中,放电起始电压V1与充电起始电压V2可以相同,也可以不同。在本发明的一个优选实施例中,如图3所示,充电起始电压V2可大于放电起始电压V1,也就是说,本发明一个优选实施例中的下垂曲线可包括充电区、不充不放区和放电区。在放电区,电池输入功率小于等于0、电池输入端口电压小于等于放电起始电压V1、下垂系数为K1;在不充不放区,电池输入功率等于0、电池输入端口电压在放电起始电压V1与充电起始电压V2之间、下垂系数可视作为0;在充电区,电池输入功率大于等于0、电池输入端口电压大于等于充电起始电压V2、下垂系数为K2。通过增设不充不放区,能够有效避免在临近电池额定的充放电状态切换电压值时,频繁地进行充放电状态切换。
在本发明的一个实施例中,初始的下垂曲线可以是预先设计并存储的,也可以是上一个控制周期进行下垂控制时所采用的下垂曲线。该初始的下垂曲线仅能够保证使储能系统正常工作,但无法保证储能系统的循环效率达到最优。
S2,确定下垂曲线中下垂控制参数的边界条件。
下垂曲线中下垂控制参数的边界条件即为各下垂控制参数取值的边界。在本发明的一个实施例中,放电起始电压V1、充电起始电压V2的取值边界相同,最小值均为母线电压允许最小值Vbus_min,最大值均为母线电压允许最大值Vbus_max
在本发明的一个实施例中,母线电压允许最小值为:
其中,Vn为储能逆变器交流侧额定电压,Vmargin为预设的电压裕量,例如可取为30V。
母线电压允许最大值为:
Vbus_max=k*Vtransistor-Vovershoot_max
其中,Vtransistor为器件耐压,k为安全系数,k小于1,以保证器件安全,例如可取为0.8,Vovershoot_max为最大过充电压。
放电下垂系数K1和充电下垂系数K2的取值边界也相同,最大值和最小值可根据对电池输入端口电压采集的精度和最大的电池输入功率来综合选取。
S3,以储能系统满充满放的循环效率最高为目标建立目标函数。
储能系统的充放电效率取决于母线电压的大小和储能逆变器交流侧功率的大小,也就是说,储能系统的效率曲线的自变量为母线电压和储能逆变器交流侧功率。具体关系如下:
η=f(Vbus,Pac)
其中,η为储能系统的工作效率,Vbus为母线电压,Pac为储能逆变器交流 侧功率,f()表示效率与自变量之间的函数关系。
在本发明的一个具体实施例中,储能系统的工作效率η与母线电压Vbus和储能逆变器交流侧功率Pac的函数关系如下:
其中,k为母线电压Vbus的系数,ω为常数项,a、b为储能逆变器交流侧功率Pac的系数,c为常数项,k、ω、a、b、c可通过拟合得到。
那么储能系统满功率充电的效率为:
储能系统满功率放电的效率为:
储能系统满充满放后的循环效率为:
ηcycle=ηchargedischarge
其中,ηcycle为储能系统满充满放后的循环效率,ηcharge为储能系统满功率充电的效率,ηdischarge为储能系统满功率放电的效率,Pac_max为直流微电网中储能逆变器交流侧的最大功率。
本发明实施例中所建立的目标函数即为:
maxηcycle=ηchargedischarge
S4,根据目标函数和边界条件建立下垂曲线优化模型。
S5,求解下垂曲线优化模型,得到下垂控制参数的最优解,以对初始的下垂曲线进行更新。
在本发明的一个实施例中,可采用全局寻优搜索算法,例如复合形法求解下垂曲线优化模型,得到的放电起始电压V1、充电起始电压V2、放电下垂系数K1和充电下垂系数K2最优解,从而以最优的下垂控制参数更新下垂曲线。
S6,以更新后的下垂曲线对储能系统进行控制。
本发明实施例的直流微电网中储能系统的下垂控制方法,能够根据效率曲线计算出最优的下垂曲线,并以最优的下垂曲线实现对储能系统的控制。
在本发明的一个具体实施例中,初始的下垂曲线如图4中虚线所示,放电起始电压V1为400V,充电起始电压V2为410V,放电下垂系数K1和充电下垂系数K2均为250W/V,在利用本发明实施例的方法更新后下垂曲线后,更新后的下垂曲线如图4中实线所示,假设更新后仅放电起始电压V1和充电起始电压V2降低5V,放电下垂系数K1和充电下垂系数K2均不变,那么初始下垂曲线和更新后的下垂曲线控制下的储能系统效率比较如表1所示。
表1
由表1可以看出更新后的下垂曲线控制下的储能系统效率有明显的提升。
根据本发明实施例的直流微电网中储能系统的下垂控制方法,通过以储能系统满充满放的循环效率最高为目标建立目标函数,并根据该目标函数求解最优的下垂控制参数,从而得到最优的下垂曲线,由此,能够提高储能系统的功率变换效率,提升储能系统乃至整个直流微电网的经济性和寿命。
对应上述实施例的直流微电网中储能系统的下垂控制方法,本发明还提出一种直流微电网中储能系统的下垂控制装置。
如图5所示,本发明实施例的直流微电网中储能系统的下垂控制装置包括获取模块10、确定模块20、第一建立模块30、第二建立模块40、更新模块50和控制模块60。其中,获取模块10用于获取初始的下垂曲线;确定模块20用于确定下垂曲线中下垂控制参数的边界条件;第一建立模块30用于以储能系统满充满放的循环效率最高为目标建立目标函数;第二建立模块40用于根据目标函数和边界条件建立下垂曲线优化模型;更新模块50用于求解下垂曲线优化模型,得到下垂控制参数的最优解,以对初始的下垂曲线进行更新;控制模块60用于以更新后的下垂曲线对储能系统进行控制。
本发明实施例中的下垂曲线为功率-电压曲线,即表示电池输入功率与电池输入端口电压之间关系的曲线。其中,电池输入端口电压是由电池内部采集得到的自身端口的电压。
在本发明的一个实施例中,下垂曲线中下垂控制参数包括放电起始电压V1、充电起始电压V2、放电下垂系数K1和充电下垂系数K2。其中,放电起始电压V1与充电起始电压V2可以相同,也可以不同。在本发明的一个优选实施例中,如图3所示,充电起始电压V2可大于放电起始电压V1,也就是说,本发明一个优选实施例中的下垂曲线可包括充电区、不充不放区和放电区。在放电区,电池输入功率小于等于0、电池输入端口电压小于等于放电起始电压V1、下垂系数为K1;在不充不放区,电池输入功率等于0、电池输入端口电压在放电起始电压V1与充电起始电压V2之间、下垂系数可视作为0;在充 电区,电池输入功率大于等于0、电池输入端口电压大于等于充电起始电压V2、下垂系数为K2。通过增设不充不放区,能够有效避免在临近电池额定的充放电状态切换电压值时,频繁地进行充放电状态切换。
在本发明的一个实施例中,初始的下垂曲线可以是预先设计并存储的,也可以是上一个控制周期进行下垂控制时所采用的下垂曲线。该初始的下垂曲线仅能够保证使储能系统正常工作,但无法保证储能系统的循环效率达到最优。
下垂曲线中下垂控制参数的边界条件即为各下垂控制参数取值的边界。在本发明的一个实施例中,放电起始电压V1、充电起始电压V2的取值边界相同,最小值均为母线电压允许最小值Vbus_min,最大值均为母线电压允许最大值Vbus_max
在本发明的一个实施例中,母线电压允许最小值为:
其中,Vn为储能逆变器交流侧额定电压,Vmargin为预设的电压裕量,例如可取为30V。
母线电压允许最大值为:
Vbus_max=k*Vtransistor-Vovershoot_max
其中,Vtransistor为器件耐压,k为安全系数,k小于1,以保证器件安全,例如可取为0.8,Vovershoot_max为最大过充电压。
放电下垂系数K1和充电下垂系数K2的取值边界也相同,最大值和最小值可根据对电池输入端口电压采集的精度和最大的电池输入功率来综合选取。
储能系统的充放电效率取决于母线电压的大小和储能逆变器交流侧功率的大小,也就是说,储能系统的效率曲线的自变量为母线电压和储能逆变器交流侧功率。具体关系如下:
η=f(Vbus,Pac)
其中,η为储能系统的工作效率,Vbus为母线电压,Pac为储能逆变器交流侧功率,f()表示效率与自变量之间的函数关系。
在本发明的一个具体实施例中,储能系统的工作效率η与母线电压Vbus和储能逆变器交流侧功率Pac的函数关系如下:
其中,k为母线电压Vbus的系数,ω为常数项,a、b为储能逆变器交流侧功率Pac的系数,c为常数项,k、ω、a、b、c可通过拟合得到。
那么储能系统满功率充电的效率为:
储能系统满功率放电的效率为:
储能系统满充满放后的循环效率为:
ηcycle=ηchargedischarge
其中,ηcycle为储能系统满充满放后的循环效率,ηcharge为储能系统满功率充电的效率,ηdischarge为储能系统满功率放电的效率,Pac_max为直流微电网中储能逆变器交流侧的最大功率。
第一建立模块30所建立的目标函数即为:
maxηcycle=ηchargedischarge
在本发明的一个实施例中,更新模块50可采用全局寻优搜索算法,例如复合形法求解下垂曲线优化模型,得到的放电起始电压V1、充电起始电压V2、放电下垂系数K1和充电下垂系数K2最优解,从而以最优的下垂控制参数更新下垂曲线。
本发明实施例的直流微电网中储能系统的下垂控制装置,能够根据效率曲线计算出最优的下垂曲线,并以最优的下垂曲线实现对储能系统的控制。
在本发明的一个具体实施例中,初始的下垂曲线如图4中虚线所示,放电起始电压V1为400V,充电起始电压V2为410V,放电下垂系数K1和充电下垂系数K2均为250W/V,在利用本发明实施例的装置更新后下垂曲线后,更新后的下垂曲线如图4中实线所示,假设更新后仅放电起始电压V1和充电起始电压V2降低5V,放电下垂系数K1和充电下垂系数K2均不变,那么初始下垂曲线和更新后的下垂曲线控制下的储能系统效率比较如表1所示。
由表1可以看出更新后的下垂曲线控制下的储能系统效率有明显的提升。
根据本发明实施例的直流微电网中储能系统的下垂控制装置,通过以储能系统满充满放的循环效率最高为目标建立目标函数,并根据该目标函数求解最优的下垂控制参数,从而得到最优的下垂曲线,由此,能够提高储能系统的功率变换效率,提升储能系统乃至整个直流微电网的经济性和寿命。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第 二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁 装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种直流微电网中储能系统的下垂控制方法,其特征在于,包括以下步骤:
    获取初始的下垂曲线;
    确定下垂曲线中下垂控制参数的边界条件;
    以所述储能系统满充满放的循环效率最高为目标建立目标函数;
    根据所述目标函数和所述边界条件建立下垂曲线优化模型;
    求解所述下垂曲线优化模型,得到下垂控制参数的最优解,以对初始的下垂曲线进行更新;
    以更新后的下垂曲线对所述储能系统进行控制。
  2. 根据权利要求1所述的直流微电网中储能系统的下垂控制方法,其特征在于,下垂曲线中下垂控制参数包括放电起始电压、充电起始电压、放电下垂系数和充电下垂系数。
  3. 根据权利要求2所述的直流微电网中储能系统的下垂控制方法,其特征在于,所述充电起始电压不小于所述放电起始电压。
  4. 根据权利要求3所述的直流微电网中储能系统的下垂控制方法,其特征在于,所述目标函数为:
    maxηcycle=ηchargedischarge

    其中,ηcycle为所述储能系统满充满放后的循环效率,ηcharge为所述储能系统满功率充电的效率,ηdischarge为所述储能系统满功率放电的效率,V1、V2、K1、K2分别为所述放电起始电压、所述充电起始电压、所述放电下垂系数、所述充电下垂系数,Pac_max为所述直流微电网中储能逆变器交流侧的最大功率,f()表示效率与自变量之间的函数关系。
  5. 根据权利要求4所述的直流微电网中储能系统的下垂控制方法,其特征在于,以复合形法求解所述下垂曲线优化模型。
  6. 一种直流微电网中储能系统的下垂控制装置,其特征在于,包括:
    获取模块,所述获取模块用于获取初始的下垂曲线;
    确定模块,所述确定模块用于确定下垂曲线中下垂控制参数的边界条件;
    第一建立模块,所述第一建立模块用于以所述储能系统满充满放的循环效率最高为目标建立目标函数;
    第二建立模块,所述第二建立模块用于根据所述目标函数和所述边界条件建立下垂曲线优化模型;
    更新模块,所述更新模块用于求解所述下垂曲线优化模型,得到下垂控制参数的最优解,以对初始的下垂曲线进行更新;
    控制模块,所述控制模块用于以更新后的下垂曲线对所述储能系统进行控制。
  7. 根据权利要求6所述的直流微电网中储能系统的下垂控制装置,其特征在于,下垂曲线中下垂控制参数包括放电起始电压、充电起始电压、放电下垂系数和充电下垂系数。
  8. 根据权利要求7所述的直流微电网中储能系统的下垂控制装置,其特征在于,所述充电起始电压不小于所述放电起始电压。
  9. 根据权利要求8所述的直流微电网中储能系统的下垂控制装置,其特征在于,所述目标函数为:
    maxηcycle=ηchargedischarge

    其中,ηcycle为所述储能系统满充满放后的循环效率,ηcharge为所述储能系 统满功率充电的效率,ηdischarge为所述储能系统满功率放电的效率,V1、V2、K1、K2分别为所述放电起始电压、所述充电起始电压、所述放电下垂系数、所述充电下垂系数,Pac_max为所述直流微电网中储能逆变器交流侧的最大功率,f()表示效率与自变量之间的函数关系。
  10. 根据权利要求9所述的直流微电网中储能系统的下垂控制装置,其特征在于,所述更新模块以复合形法求解所述下垂曲线优化模型。
PCT/CN2023/098385 2022-07-15 2023-06-05 直流微电网中储能系统的下垂控制方法和装置 WO2024012092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210835027.7A CN115313351A (zh) 2022-07-15 2022-07-15 直流微电网中储能系统的下垂控制方法和装置
CN202210835027.7 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024012092A1 true WO2024012092A1 (zh) 2024-01-18

Family

ID=83857675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098385 WO2024012092A1 (zh) 2022-07-15 2023-06-05 直流微电网中储能系统的下垂控制方法和装置

Country Status (2)

Country Link
CN (1) CN115313351A (zh)
WO (1) WO2024012092A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313351A (zh) * 2022-07-15 2022-11-08 万帮数字能源股份有限公司 直流微电网中储能系统的下垂控制方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790315A (zh) * 2016-04-26 2016-07-20 安徽工程大学 一种基于粒子群算法的储能变流下垂控制方法
US20160268818A1 (en) * 2015-03-10 2016-09-15 Lsis Co., Ltd. Electricity providing system including battery energy storage system
CN108565887A (zh) * 2018-01-31 2018-09-21 湖北工业大学 储能环节维持微电网母线电压分区曲线动态下垂控制方法
CN108599194A (zh) * 2018-04-27 2018-09-28 东南大学 一种计及储能浅充浅放需求的调频控制方法
CN110365052A (zh) * 2019-08-08 2019-10-22 东北大学 基于功率优化调度的微网储能系统状态一致性控制方法
CN115313351A (zh) * 2022-07-15 2022-11-08 万帮数字能源股份有限公司 直流微电网中储能系统的下垂控制方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268818A1 (en) * 2015-03-10 2016-09-15 Lsis Co., Ltd. Electricity providing system including battery energy storage system
CN105790315A (zh) * 2016-04-26 2016-07-20 安徽工程大学 一种基于粒子群算法的储能变流下垂控制方法
CN108565887A (zh) * 2018-01-31 2018-09-21 湖北工业大学 储能环节维持微电网母线电压分区曲线动态下垂控制方法
CN108599194A (zh) * 2018-04-27 2018-09-28 东南大学 一种计及储能浅充浅放需求的调频控制方法
CN110365052A (zh) * 2019-08-08 2019-10-22 东北大学 基于功率优化调度的微网储能系统状态一致性控制方法
CN115313351A (zh) * 2022-07-15 2022-11-08 万帮数字能源股份有限公司 直流微电网中储能系统的下垂控制方法和装置

Also Published As

Publication number Publication date
CN115313351A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN108565887B (zh) 储能环节维持微电网母线电压分区曲线动态下垂控制方法
JP6031759B2 (ja) 太陽電池発電システム
CN103840487B (zh) 黑启动方法、能量管理系统和共交流母线离网型光储微网
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
CN110299717B (zh) 一种基于模型预测控制的分布式混合储能系统能量均衡控制策略
WO2024012092A1 (zh) 直流微电网中储能系统的下垂控制方法和装置
WO2020026502A1 (ja) 電池管理装置、電池管理方法、電力貯蔵システム
JP7244635B2 (ja) 並列接続電池セットの充放電管理方法、電子装置及び電気システム
CN112952862B (zh) 平抑风电功率波动的混合储能分频协调控制器及实现方法
CN103545878A (zh) 一种mmc电池储能系统相间soc均衡方法
CN112550086A (zh) 一种车辆能量管理方法、装置、车辆及存储介质
JP2010231456A (ja) 電源システム
CN109888845B (zh) 一种交直流混合微电网
CN110120679B (zh) 一种与光伏逆变器直流侧耦合的户用光伏储能变换器
AU2022337487A1 (en) Energy storage system control method and apparatus, energy storage system, and energy storage device
CN114156912B (zh) 一种混合储能用于一次调频的能量管理方法及系统
CN114362288B (zh) 电池簇间均衡调节方法、系统及存储介质
WO2023241393A1 (zh) 直流微电网中并联储能单元的控制方法和装置
WO2022110824A1 (zh) 能量调度方法、装置及系统
CN115885446A (zh) 一种能源系统及充放电控制方法
CN107994678A (zh) 电梯系统的供电装置、控制方法、装置、设备及存储介质
CN111244932B (zh) 一种能量路由器用储能多工况运行控制方法及装置
CN108808712B (zh) 一种混合储能系统功率互补控制方法及系统
CN115513980A (zh) 并联储能系统的功率分配方法和装置
CN112260291B (zh) 基于增量成本的交直流混合微电网多模式经济运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838586

Country of ref document: EP

Kind code of ref document: A1