WO2024010331A1 - 배터리 모듈 프레임 - Google Patents

배터리 모듈 프레임 Download PDF

Info

Publication number
WO2024010331A1
WO2024010331A1 PCT/KR2023/009402 KR2023009402W WO2024010331A1 WO 2024010331 A1 WO2024010331 A1 WO 2024010331A1 KR 2023009402 W KR2023009402 W KR 2023009402W WO 2024010331 A1 WO2024010331 A1 WO 2024010331A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
battery module
module frame
ventilation
reinforced plastic
Prior art date
Application number
PCT/KR2023/009402
Other languages
English (en)
French (fr)
Inventor
김기영
이형석
신주환
이재현
장병도
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP23835797.4A priority Critical patent/EP4383422A1/en
Priority to CN202380013587.7A priority patent/CN117941140A/zh
Publication of WO2024010331A1 publication Critical patent/WO2024010331A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module frame, which can suppress the spread of secondary damage such as external fire or explosion by preventing damage to the frame and structural collapse even if the battery cells mounted inside the frame overheat and catch fire. It's about the frame.
  • secondary batteries can be recharged and have been extensively researched and developed in recent years due to their small size and high capacity.
  • Secondary batteries are classified into coin-shaped batteries, cylindrical batteries, square-shaped batteries, and pouch-shaped batteries, depending on the shape of the battery case.
  • the electrode assembly mounted inside the battery case in a secondary battery is a power generating element capable of charging and discharging consisting of a stacked structure of electrodes and a separator.
  • thermal runaway occurring in one secondary battery causes a thermal propagation phenomenon in which other secondary batteries in the surrounding area are continuously overheated.
  • the frame of the battery module causes structural collapse due to a flame generated from an overheated secondary battery, a large amount of oxygen is supplied to the internal flame, which may spread to secondary damage such as a large fire or explosion. Preventive measures are needed.
  • Patent Document 1 Korean Patent Publication No. 2018-0060997 (published on June 7, 2018)
  • the purpose of the present invention is to provide a battery module frame that can suppress the spread of secondary damage such as external fire or explosion by preventing structural collapse of the frame even if the battery cell mounted inside overheats and catches fire. .
  • the present invention relates to a polyhedral battery module frame that accommodates a plurality of battery cells therein.
  • the battery module frame includes a first layer made of aluminum or an aluminum alloy material, and a first layer on the first layer. It includes a second layer laminated and made of a reinforced plastic material with a higher melting point than the first layer, and a third layer laminated on the second layer and made of an aluminum or aluminum alloy material.
  • the battery module frame may be molded together by press processing in a state in which the first to third layers are stacked.
  • a fastening portion is formed in the first layer or the third layer, and the fastening portion may be a welding portion or a bolting portion.
  • the reinforced plastic material forming the second layer may be a material combining aromatic nylon fibers and thermosetting resin.
  • the reinforced plastic material forming the second layer may be glass fiber reinforced plastic.
  • a ventilation portion exposing the second layer to a portion of the first layer and the third layer may be formed on at least one surface of the battery module frame.
  • the ventilation portion may be formed on the upper surface of the battery module frame.
  • a plurality of ventilation units may be formed in a diagonal direction.
  • the inner ventilation portion formed in the first layer and the outer ventilation portion formed in the third layer do not overlap each other.
  • outer vent portion formed in the third layer may be spaced diagonally apart from the inner vent portion formed in the first layer.
  • the outer ventilation part may include a plurality of ventilation holes with a larger ventilation area as the distance from the inner ventilation part increases.
  • the battery module frame of the present invention having the above configuration is made of a composite material in which a structural layer of aluminum and a heat-resistant reinforcing material such as glass fiber reinforced plastic are combined in a sandwich form between them, creating a lightweight frame structure.
  • a heat-resistant reinforcing material such as glass fiber reinforced plastic
  • the risk of fire can be further reduced by effectively suppressing the spread of flames generated internally.
  • FIG. 1 is a diagram showing an example of a battery module including a battery module frame of the present invention.
  • Figure 2 is a diagram showing the cross-sectional structure of the battery module frame before press forming.
  • Figure 3 is a diagram showing an example of forming a main frame through press molding.
  • Figure 4 is a view showing an embodiment in which ventilation holes are formed in the upper plate.
  • Figure 5 is a diagram showing an example of joining the main frame and the upper plate by welding.
  • Figure 6 is a diagram showing an example of connecting the main frame and the upper plate with bolts.
  • Figure 7 is a diagram showing the arrangement structure of the inner ventilation part and the outer ventilation part.
  • the present invention relates to a polyhedral battery module frame that accommodates a plurality of battery cells therein.
  • the battery module frame includes a first layer made of aluminum or an aluminum alloy material, and a first layer on the first layer. It includes a second layer laminated and made of a reinforced plastic material with a higher melting point than the first layer, and a third layer laminated on the second layer and made of an aluminum or aluminum alloy material.
  • the battery module frame of the present invention having the above configuration is made of a composite material in which a structural layer of aluminum and a heat-resistant reinforcing material such as glass fiber reinforced plastic are combined in a sandwich form between them, creating a lightweight frame structure.
  • a structural layer of aluminum and a heat-resistant reinforcing material such as glass fiber reinforced plastic are combined in a sandwich form between them, creating a lightweight frame structure.
  • the internal heat-resistant reinforced plastic material suppresses structural collapse, thereby preventing an accident in which the frame structure collapses and a large amount of oxygen is supplied to the internal flame.
  • FIG. 1 is a diagram showing an example of a battery module 10 including the battery module frame 100 of the present invention.
  • the battery module 10 refers to a battery assembly in which a certain number of battery cells are bundled into a frame to protect them from external shock, heat, vibration, etc.
  • the battery module 10 consists of a plurality of battery cells connected to each other in series and/or parallel, and the plurality of battery cells are embedded in a mechanical structure for protecting them, that is, the battery module frame 100.
  • Each battery cell plays a fundamental role in storing energy and supplying it to the outside when needed, but since the capacity of the battery cells alone is small, a module is made by combining them, and further, the modules are combined to create a battery pack.
  • the present invention relates to a battery module frame 100, which is a mechanical structure that protects a plurality of battery cells.
  • the battery module 10 shown as an example in FIG. 1 includes a battery cell assembly 400 in which a plurality of battery cells are connected in series and/or parallel to form one assembly. Additionally, structures are provided at both ends of the battery cell assembly 400 that are mechanically and electrically coupled to the end plate assembly 500.
  • the battery module frame 100 includes a main frame 102 that has a “U”-shaped cross section and forms a space to accommodate the battery cell assembly 400 therein, and an open upper surface of the main frame 102. It includes a covering top plate (104).
  • end plate assemblies 500 are coupled to both open sides of the battery module frame 100 to seal the battery module 10.
  • the end plate assemblies 500 are also included in the battery module frame 100. can do.
  • the battery module 10 has a polyhedral shape that accommodates a plurality of battery cells, and has a hexahedral shape in FIG. 1, and the cross-sectional structure of the battery module frame 100 is shown in FIG. 2. That is, FIG. 2 shows the cross-sectional structure of the main frame 102 and the upper plate 104, and further, the end plate assembly 500 may also have the cross-sectional structure of FIG. 2.
  • the battery module frame 100 includes a first layer 110 made of aluminum or an aluminum alloy material, and a second layer 120 made of a reinforced plastic material with a higher melting point than the first layer 110. ) and a third layer 130 laminated on the second layer 120 and made of aluminum or aluminum alloy material.
  • the battery module frame 100 of the present invention has a structural layer of the first layer 110 and the third layer 130 made of aluminum material, and a second layer 120 made of a heat-resistant reinforced plastic material between the structural layers. It is made up of composite materials combined in the form of a sandwich.
  • the structural layer means that the first layer 110 and the third layer 130 made of aluminum are the basic mechanical structure of the battery module frame 100, that is, the layer that serves to maintain the shape and rigidity.
  • the second layer 120 sandwiched between the first layer 110 and the third layer 130 made of aluminum is made of a reinforced plastic material whose melting point is higher than that of the aluminum material. That is, the second layer 120 is a heat-resistant reinforced plastic that can maintain its shape even in a high-temperature environment where the first layer 110 and the third layer 130 made of aluminum are melted by a flame generated from an overheated battery cell. It is composed of material.
  • the battery module frame 100 of the present invention uses an aluminum material as a structural layer and includes a second layer 120 of a plastic material in the middle, so it is lightweight through weight reduction by the aluminum material and weight reduction by the plastic layer. frame structure can be implemented.
  • the central second layer 120 made of a heat-resistant reinforced plastic material with a higher melting point prevents structural collapse. Since the structure of the battery module frame 100 collapses, a large amount of oxygen is supplied to the internal flame, thereby preventing an accident leading to a large fire.
  • the reinforced plastic material forming the second layer 120 may be made of a material combining aromatic nylon fibers and thermosetting resin.
  • aromatic nylon fibers that function as reinforcing materials include glass fiber, carbon fiber, and Kevlar (trade name of DuPont, USA), and thermosetting resins include unsaturated polyester and epoxy resin. .
  • Glass fiber reinforced plastic GFRP
  • Glass fiber reinforced plastic has the advantage of being lightweight, has excellent mechanical strength and heat resistance, and is easy to manufacture because it can be molded at room temperature and pressure.
  • the second layer 120 is formed of glass fiber reinforced plastic with excellent heat resistance, the flame generated by thermal runaway of the battery cell is easily blocked by the second layer 120 of the battery module frame 100 of the present invention. Since it cannot propagate, heat propagation phenomenon or external fire is effectively suppressed.
  • FIG. 3 is a diagram showing an example of forming the main frame 102 through press molding.
  • the battery module frame 100 of the present invention can be molded in one piece through press processing in a flat state in which the first to third layers 110 to 130 are all stacked.
  • the second layer 120 made of a heat-resistant reinforced plastic material, especially glass fiber reinforced plastic is in the form of a thin plate, so there is a glass fiber reinforced plastic material between the first layer 110 and the third layer 130 made of aluminum.
  • a flat battery module frame 100 is placed between the upper mold (UM) and the lower mold (BM) as shown in FIG. 3 and press processing is performed. By doing so, the main frame 102 with a “U”-shaped cross section can be created.
  • the first layer 110 and the third layer 130 are suitable for press processing because they are aluminum materials that are easy to plastic process, and the glass fiber reinforced plastic that makes up the second layer 120 can be molded even at room temperature, so it is suitable for press processing.
  • the battery module frame 100 can be formed in a variety of shapes.
  • the battery module frame 100 of the present invention is a flat preliminary frame in which the second layer 120 of heat-resistant reinforced plastic material is laminated between the first layer 110 and the third layer 130 of aluminum material. Since it is possible to transform into various forms through press processing, in terms of productivity, it can be maintained at the same level as existing frames without heat-resistant reinforced plastic.
  • a ventilation portion 300 may be formed in the upper plate 104 forming the battery module frame 100.
  • Figure 4 shows an exemplary embodiment in which a ventilation portion 300 is formed in the upper plate 104.
  • a ventilation hole is formed in the upper plate 104 of the battery module frame 100.
  • the location of the ventilation hole needs to be selected in consideration of secondary damage to surrounding components or external fire caused by high-temperature gas or partial flame ejected through the ventilation hole.
  • the upper plate 104 forming the upper surface of the battery module frame 100 has an outer ventilation portion 320 formed in a portion of the third layer 130, and the outer ventilation portion 320 is formed.
  • the second layer 120 is exposed to the outside.
  • an inner ventilation portion 310 exposing the second layer 120 is formed in the first layer 110 of the upper plate 104.
  • the ventilation portion 300 is a portion of the first layer 110 and the third layer 130 of the battery module frame 100, and the second layer 120 is exposed by the ventilation portion 300. do.
  • a flame occurs within the battery module 10 and the temperature and pressure rise, portions of the first layer 110 and the third layer 130 made of aluminum with a relatively low melting point in the battery module frame 100 are separated. As it melts, high-temperature gas and flame erupt outward.
  • the area where the flame erupts may be determined by the point of origin of the fire or the local strength of the battery module frame 100, but it is difficult to predict such area.
  • a ventilation portion 300 is formed by intentionally cutting a portion of the first layer 110 and the third layer 130, respectively, and through this, the high temperature gas and flame are directed to a predetermined point. That is, the position is limited so that it is ejected from the ventilation unit 300. Therefore, by appropriately designing the location of the ventilation unit 300, the risk of secondary damage such as external fire can be greatly reduced.
  • a plurality of ventilation portions 300 may be formed on one surface, in the drawing as an example, in a diagonal direction on the upper surface of the battery module frame 100.
  • the ventilation portion 300 is an area where flame is ejected out of the third layer 130 via the second layer 120 made of heat-resistant reinforced plastic material, so when forming a plurality of ventilation portions 300, the distance between them is By ensuring the distance, the flame gradually loses heat as it passes through the second layer 120 for a sufficient distance and time.
  • the inner ventilation portion 310 formed in the first layer 110 and the outer ventilation portion 320 formed in the third layer 130 do not overlap each other. This is also because if the inner ventilation part 310 and the outer ventilation part 320 are directly connected, it is difficult to secure a flame path sufficient to exert the anti-inflammatory effect of the second layer 120.
  • the outer ventilation portion 320 formed in the third layer 130 is spaced diagonally apart from the inner ventilation portion 310 formed in the first layer 110. You can. By arranging the inner ventilation part 310 and the outer ventilation part 320, the inner ventilation part 310 and the outer ventilation part 320 do not overlap each other and the distance between the outer ventilation part 320 is made large. You can.
  • the outer ventilation portion 320 may be composed of a plurality of ventilation holes forming a group.
  • the outer ventilation portion 320 has a long distance (d) from the inner ventilation portion 310. It may be desirable to have a stepwise size arrangement so that the ventilation area of the ventilation holes becomes larger. This is because the flame path passing through the reinforced plastic layer of the second layer 120 is long, so that more of the flame that has lost enough heat is discharged through the outer ventilation hole at a distance (d) from the inner ventilation portion 310. This is because it is advantageous in terms of anti-inflammatory.
  • a fastening portion 200 may be formed in the first layer 110 or the third layer 130 made of aluminum, and this fastening portion 200 may be a welding portion 210 or a bolting portion 220.
  • FIG. 5 shows an example in which the fastening part 200 is formed by the welding part 210
  • FIG. 6 shows an example in which the bolting part 220 forms the fastening part 200.
  • the battery module frame 100 of the present invention includes a second layer 120 of heat-resistant reinforced plastic that prevents structural collapse even in high-temperature flames and also has an anti-flammability function, and although the second layer 120 has a mechanical fastening structure Although it is difficult to construct, since the second layer 120 is embedded between the first layer 110 and the third layer 130 made of aluminum, the aluminum layer surrounding the inside and outside of the battery module frame 100 This allows fastening structures such as welding and bolting to be easily implemented.
  • FIGS. 5 and 6 each show an example in which the welding portion 210 and the bolting portion 220 constitute the fastening portion 200, in which one battery module frame 100 serves as the fastening portion 200.
  • the welding portion 210 and the bolting portion 220 may be included in a complex manner.
  • Battery module 100 Battery module frame
  • main frame 104 upper plate
  • welding part 220 bolting part
  • ventilation part 310 inner ventilation part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

개시되는 발명은 내부에 복수의 배터리 셀을 수용하는 다면체 형태의 배터리 모듈 프레임에 관한 것으로서, 하나의 예에서, 상기 배터리 모듈 프레임은, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제1 층과, 상기 제1 층 위에 적층되고, 상기 제1 층보다 녹는 점이 높은 강화 플라스틱 소재로 이루어진 제2 층 및 상기 제2 층 위에 적층되고, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제3 층을 포함한다.

Description

배터리 모듈 프레임
본 발명은 배터리 모듈 프레임에 관한 것으로서, 프레임 내부에 탑재된 배터리 셀이 과열되어 화염이 발생하더라도 프레임의 파손 및 구조붕괴를 방지함으로써 외부화재나 폭발 등의 2차 피해 확산을 억제할 수 있는 배터리 모듈 프레임에 관한 것이다.
본 출원은 2022. 07. 07일자 대한민국 특허출원 제10-2022-0083855호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
이차전지는 일차전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가하고, 또한 환경보호의 시대적 요구에 맞춰 부각되는 전기 차량과 에너지 저장 시스템 등으로 인해 에너지원으로서의 이차전지의 수요는 더욱 급격하게 증가하고 있다.
이차전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다.
이차전지는 장기간 동안 연속적인 사용이 요구되므로, 충방전 과정 중에 발생하는 열을 효과적으로 제어할 필요가 있다. 이차전지의 냉각이 원활히 이루어지지 못할 경우에는 온도상승이 전류의 증가를 야기하고, 전류의 증가가 또다시 온도상승의 원인이 되는 정귀환의 연쇄반응이 일어나, 결국 열 폭주(Thermal Runaway)의 파국상태에 이르게 된다.
또한, 이차전지가 모듈이나 팩의 형태로서 집단을 이루고 있는 경우에는 어느 하나의 이차전지에 발생한 열 폭주에 의해 주변의 다른 이차전지가 연속적으로 과열되는 열 전파(Thermal Propagation) 현상이 일어나게 된다.
나아가 과열된 이차전지에서 발생한 화염에 의해 배터리 모듈의 프레임이 구조붕괴를 일으키게 되면 내부 화염에 대량의 산소가 공급됨으로써 대형 화재나 폭발 등의 2차 피해로 확산될 수 있으므로, 이러한 프레임의 구조붕괴를 방지할 수 있는 대책을 필요로 한다.
[선행기술문헌]
(특허문헌 1) 한국공개특허 제2018-0060997호 (2018.06.07 공개)
본 발명은 내부에 탑재된 배터리 셀이 과열되어 화염이 발생하더라도 프레임의 구조붕괴를 방지함으로써 외부의 화재나 폭발 등의 2차 피해 확산을 억제할 수 있는 배터리 모듈 프레임을 제공하는 것에 그 목적이 있다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명은 내부에 복수의 배터리 셀을 수용하는 다면체 형태의 배터리 모듈 프레임에 관한 것으로서, 하나의 예에서, 상기 배터리 모듈 프레임은, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제1 층과, 상기 제1 층 위에 적층되고, 상기 제1 층보다 녹는 점이 높은 강화 플라스틱 소재로 이루어진 제2 층 및 상기 제2 층 위에 적층되고, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제3 층을 포함한다.
본 발명의 일 실시형태에서, 상기 배터리 모듈 프레임은, 상기 제1 층 내지 제3 층이 적층된 상태에서 프레스 가공으로 함께 성형될 수 있다.
그리고, 상기 제1 층 또는 제3 층에 체결부가 형성되며, 상기 체결부는 용접부 또는 볼팅부일 수 있다.
본 발명의 일 실시형태에서, 상기 제2 층을 이루는 강화 플라스틱 소재는, 방향족 나일론 섬유와 열경화성 수지가 결합한 소재일 수 있다.
바람직하게는, 상기 제2 층을 이루는 강화 플라스틱 소재는 유리섬유 강화 플라스틱일 수 있다.
한편, 본 발명의 실시형태에 따라서는, 상기 배터리 모듈 프레임의 적어도 어느 일면에는 상기 제1 층 및 제3 층의 일부에 상기 제2 층을 노출시키는 통기부가 형성될 수 있다.
예를 들어, 상기 통기부는 상기 배터리 모듈 프레임의 상면에 형성될 수 있다.
상기 통기부는 대각 방향으로 복수 개가 형성될 수 있다.
그리고, 상기 제1 층에 형성된 내측 통기부와, 상기 제3 층에 형성된 외측 통기부는 서로 중첩되지 않는 것이 바람직할 수 있다.
또한, 상기 제1 층에 형성된 내측 통기부를 중심으로 하여 상기 제3 층에 형성된 외측 통기부는 대각방향으로 이격되어 있을 수 있다.
그리고, 상기 외측 통기부는, 상기 내측 통기부로부터의 거리가 멀수록 통기면적이 큰 복수 개의 통기공을 포함할 수 있다.
상기와 같은 구성을 구비한 본 발명의 배터리 모듈 프레임은, 알루미늄 소재의 구조층과 그 사이에 유리섬유 강화 플라스틱과 같은 내열성 보강재가 샌드위치 형태로 합체한 복합 소재로 이루어져 있음으로써, 경량의 프레임 구조를 이루는 동시에 내부에 화염이 발생하더라도 내열성 보강재가 구조붕괴를 억제하게 되고, 이를 통해 프레임 내부의 화염에 대량의 산소가 공급되지 않게 된다.
또한, 유리섬유 강화 플라스틱을 내장하면서 그 외부를 알루미늄 소재의 구조층이 감쌈으로써 용접이나 볼팅 등의 조립 구조를 손쉽게 구현할 수 있다.
그리고, 통기부의 배치와 형태를 최적화함으로써 내부에서 발생한 화염의 전파를 효과적으로 억제함으로써 화재의 위험을 더욱 낮출 수도 있다.
다만, 본 발명을 통해 얻을 수 있는 기술적 효과는 상술한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래에 기재된 발명의 설명으로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 배터리 모듈 프레임을 포함하는 배터리 모듈의 일례를 도시한 도면.
도 2는 프레스 성형 전의 배터리 모듈 프레임의 단면 구조를 도시한 도면.
도 3은 프레스 성형을 통해 메인 프레임을 형성하는 일례를 도시한 도면.
도 4는 상부 플레이트에 통기공이 형성된 실시형태를 도시한 도면.
도 5는 메인 프레임과 상부 플레이트를 용접으로 결합하는 일례를 도시한 도면.
도 6은 메인 프레임과 상부 플레이트를 볼트로 결합하는 일례를 도시한 도면.
도 7은 내측 통기부와 외측 통기부의 배치 구조를 도시한 도면.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 이하에서 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
본 발명은 내부에 복수의 배터리 셀을 수용하는 다면체 형태의 배터리 모듈 프레임에 관한 것으로서, 하나의 예에서, 상기 배터리 모듈 프레임은, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제1 층과, 상기 제1 층 위에 적층되고, 상기 제1 층보다 녹는 점이 높은 강화 플라스틱 소재로 이루어진 제2 층 및 상기 제2 층 위에 적층되고, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제3 층을 포함한다.
상기와 같은 구성을 구비한 본 발명의 배터리 모듈 프레임은, 알루미늄 소재의 구조층과 그 사이에 유리섬유 강화 플라스틱과 같은 내열성 보강재가 샌드위치 형태로 합체한 복합 소재로 이루어져 있음으로써, 경량의 프레임 구조를 이루는 동시에 내부에 화염이 발생하더라도 내부의 내열성 강화 플라스틱 소재가 구조붕괴를 억제하게 되고, 이를 통해 프레임의 구조가 무너져 내부의 화염에 대량의 산소가 공급되는 사고를 방지하게 된다.
또한, 내열성 강화 플라스틱 소재를 내장하면서 그 외부를 알루미늄 소재의 구조층이 감쌈으로써 용접이나 볼팅 등의 조립 구조를 손쉽게 구현할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 배터리 모듈 프레임에 대한 구체적인 실시형태에 대해 상세히 설명한다. 참고로, 이하의 설명에서 사용되는 상대적인 위치를 지정하는 전후나 상하좌우의 방향은 발명의 이해를 돕기 위한 것으로서, 특별한 정의가 없는 한 도면에 도시된 방향을 기준으로 삼는다.
[제1 실시형태]
도 1은 본 발명의 배터리 모듈 프레임(100)을 포함하는 배터리 모듈(10)의 일례를 시한 도면이다. 배터리 모듈(10)은 배터리 셀을 외부 충격과 열, 진동 등으로부터 보호하기 위해 일정한 개수로 묶어 프레임에 넣은 배터리 조립체를 지칭하는 것이다. 배터리 모듈(10)은 서로 직렬 및/또는 병렬로 연결된 다수의 배터리 셀들로 이루어져 있으며, 다수의 배터리 셀은 이를 보호하기 위한 기계적 구조물, 즉 배터리 모듈 프레임(100) 안에 매입된다.
배터리 셀은 각각이 에너지를 저장했다 필요할 때 외부로 공급하는 원천적인 역할을 하지만, 배터리 셀만으로는 용량이 작기 때문에 이를 한데 묶은 모듈을 만들고, 더 나아가 모듈을 크게 합쳐 배터리 팩을 만들게 된다.
본 발명은 다수의 배터리 셀을 보호하는 기계적 구조물인 배터리 모듈 프레임(100)에 관한 것이다. 도 1에 하나의 예로서 도시된 배터리 모듈(10)은 복수의 배터리 셀이 직렬 및/또는 병렬로 연결되어 하나의 조립체를 이루는 배터리 셀 어셈블리(400)를 포함하고 있다. 그리고, 배터리 셀 어셈블리(400)의 양단에는 엔드 플레이트 어셈블리(500)와 기계적, 전기적으로 결합하는 구조체가 구비되어 있다.
그리고, 배터리 모듈 프레임(100)은, "U" 자형 단면을 이루어 그 내부에 배터리 셀 어셈블리(400)를 수용할 공간을 형성하는 메인 프레임(102)과, 메인 프레임(102)의 개방된 상면을 덮는 상부 플레이트(104)를 포함한다. 여기서, 배터리 모듈 프레임(100)의 개방된 양 측면에는 엔드 플레이트 어셈블리(500)가 결합하여 배터리 모듈(10)을 밀봉하는데, 크게 볼 때 엔드 플레이트 어셈블리(500)도 배터리 모듈 프레임(100)에 포함할 수 있다.
배터리 모듈(10)은 복수의 배터리 셀을 수용하는 다면체 형태, 도 1에서는 육면체 형태를 이루고 있는데, 배터리 모듈 프레임(100)의 단면 구조는 도 2에 도시되어 있다. 즉, 도 2는 메인 프레임(102)과 상부 플레이트(104)의 단면 구조를 도시하고 있으며, 더 나아가 엔드 플레이트 어셈블리(500) 역시 도 2의 단면 구조를 이룰 수 있다.
도 2를 참조하면, 배터리 모듈 프레임(100)은, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제1 층(110)과, 상기 제1 층(110)보다 녹는 점이 높은 강화 플라스틱 소재로 이루어진 제2 층(120)과, 상기 제2 층(120) 위에 적층되고 알루미늄 또는 알루미늄 합금 소재로 이루어진 제3 층(130)을 포함한다.
즉, 본 발명의 배터리 모듈 프레임(100)은 알루미늄 소재로 이루어진 제1 층(110) 및 제3 층(130)의 구조층과, 구조층 사이에 내열성 강화 플라스틱 소재로 이루어진 제2 층(120)이 샌드위치 형태로 합체한 복합 소재로 이루어져 있다. 여기서 구조층이라 함은 알루미늄 소재로 이루어진 제1 층(110) 및 제3 층(130)이 배터리 모듈 프레임(100)의 기본적인 기계적 구조, 즉 형태와 강성을 유지하는 역할을 하는 층임을 의미한다.
알루미늄 소재의 제1 층(110) 및 제3 층(130) 사이에 끼어 있는 제2 층(120)은 알루미늄 소재보다 그 녹는 점이 더 높은 강화 플라스틱 소재로 이루어져 있다. 즉, 제2 층(120)은, 알루미늄 소재의 제1 층(110) 및 제3 층(130)이 과열된 배터리 셀에서 발생한 화염에 의해 녹는 고온 환경에서도 그 형태를 유지할 수 있는 내열성의 강화 플라스틱 소재로 구성되어 있다.
이러한 본 발명의 배터리 모듈 프레임(100)은 구조층으로서 알루미늄 소재를 적용하면서 중간에 플라스틱 소재의 제2 층(120)을 포함하고 있으므로, 알루미늄 소재에 의한 경량화와 플라스틱 층에 의한 중량 절감을 통해 경량의 프레임 구조를 구현할 수 있게 된다.
또한, 고온의 화염에 의해 알루미늄 소재의 제1 층(110) 및 제3 층(130)이 국부적으로 녹더라도 녹는 점이 더 높은 내열성 강화 플라스틱 소재로 이루어진 중앙의 제2 층(120)이 구조붕괴를 억제하게 되므로, 이를 통해 배터리 모듈 프레임(100)의 구조가 무너져 내부의 화염에 대량의 산소가 공급되어 대형 화재로 이어지는 사고를 방지하게 된다.
그리고, 본 발명의 일 실시형태에서, 제2 층(120)을 이루는 강화 플라스틱 소재는 방향족 나일론 섬유와 열경화성 수지가 결합한 소재로 이루어질 수 있다. 예를 들어, 방향족 나일론 섬유로는 보강재의 기능을 하는 것으로서 유리섬유, 탄소섬유, 케블라(Kevlar: 미국 뒤퐁사의 상품명) 등이 이에 해당하며, 열경화성 수지는 불포화 폴리에스터나 에폭시 수지 등이 사용될 수 있다.
기계적 강도와 내열성을 고려한다면, 유리섬유가 포함된 유리섬유 강화 플라스틱(GFRP)을 제2 층(120)의 소재로 사용하는 것이 바람직할 수 있다. 유리섬유 강화 플라스틱은 경량이면서 기계적 강도와 내열성이 매우 우수하고, 상온·상압에서의 성형이 가능하기 때문에 제조하기도 쉽다는 장점이 있다.
따라서, 내열성이 우수한 유리섬유 강화 플라스틱으로 제2 층(120)을 형성허면, 배터리 셀의 열폭주에 의해 발생한 화염은 본 발명의 배터리 모듈 프레임(100)의 제2 층(120)에 가로막혀 쉽게 전파되지 못하므로, 이로써 열전파 현상이나 외부 화재가 효과적으로 억제된다.
한편, 도 3은 프레스 성형을 통해 메인 프레임(102)을 형성하는 일례를 도시한 도면이다. 도 3을 참조하면, 본 발명의 배터리 모듈 프레임(100)은, 제1 층(110) 내지 제3 층(130)이 모두 적층된 평판 상태에서 프레스 가공을 통해 일괄적으로 성형될 수 있다.
이는 내열성 강화 플라스틱 소재, 특히 유리섬유 강화 플라스틱으로 이루어진 제2 층(120)은 얇은 판형을 이루고 있으므로, 알루미늄 소재의 제1 층(110) 및 제3 층(130) 사이에 유리섬유 강화 플라스틱 소재의 제2 층(120)을 합지한 평판 형태(도 2 참조)로 제조한 후, 도 3과 같이 상형(UM)과 하형(BM) 사이에 평판 형태의 배터리 모듈 프레임(100)을 놓고 프레스 가공을 함으로써 "U" 자형 단면의 메인 프레임(102)을 만들 수 있다.
즉, 제1 층(110) 및 제3 층(130)은 소성 가공이 용이한 알루미늄 소재이기에 프레스 가공에 적합하고, 또한 제2 층(120)을 이루는 유리섬유 강화 플라스틱는 상온에서도 성형이 가능하므로 프레스 가공을 통해 다량한 형태의 배터리 모듈 프레임(100)으로 성형할 수 있는 것이다.
이와 같이, 본 발명의 배터리 모듈 프레임(100)은 알루미늄 소재의 제1 층(110) 및 제3 층(130) 사이에 내열성 강화 플라스틱 소재의 제2 층(120)을 합지한 평판 형태의 예비 프레임을 프레스 가공을 통해 다양한 형태로 변형하는 것이 가능하므로, 생산성 측면에서 내열성 강화 플라스틱이 개재되지 않은 기존의 프레임과 동등 수준을 유지할 수 있다.
[제2 실시형태]
한편, 본 발명의 제2 실시형태에서, 배터리 모듈 프레임(100)을 이루는 상부 플레이트(104)에는 통기부(300)가 형성될 수 있다. 도 4는 상부 플레이트(104)에 통기부(300)가 형성된 예시적인 실시형태를 도시하고 있다.
참고로, 제2 실시형태에서는 배터리 모듈 프레임(100) 중의 상부 플레이트(104)에 통기공이 형성되는 것을 예로서 설명하고 있다. 이는 화염이 상방으로 전파되는 성질을 고려한 것으로서, 메인 프레임(102)에도 통기공이 형성될 수 있음은 물론이다. 여기서, 통기공의 위치는, 통기공으로 분출되는 고온 가스나 일부 화염에 의한 외부 화재나 주변 부품에 대한 2차 피해를 고려하여 선정될 필요가 있다.
도 4를 참조하면, 배터리 모듈 프레임(100)의 상면을 이루는 상부 플레이트(104)에는 제3 층(130)의 일부에 외측 통기부(320)가 형성되어 있으며, 외측 통기부(320)를 통해 제2 층(120)이 외부로 노출되어 있다. 그리고, 도 5 내지 도 7을 참조하면, 상부 플레이트(104)의 제1 층(110)에도 제2 층(120)을 노출하는 내측 통기부(310)가 형성되어 있다.
통기부(300)는 배터리 모듈 프레임(100)의 제1 층(110) 및 제3 층(130)의 일부를 각각 절개한 부분으로서, 통기부(300)에 의해 제2 층(120)이 노출된다. 배터리 모듈(10) 내에서 화염이 발생하여 온도와 압력이 상승하게 되면, 배터리 모듈 프레임(100)에서 녹는 점이 상대적으로 낮은 알루미늄 소재의 제1 층(110) 및 제3 층(130)의 일부분이 용융되면서 고온 가스와 화염이 외부로 분출하게 된다. 이러한 화염의 분출 부위는 화재의 발생지점이나 배터리 모듈 프레임(100)의 국부적 강도 등에 의해 결정될 수 있는데, 이러한 부위는 예측하기가 어렵다.
따라서, 본 발명의 제2 실시형태에서는, 의도적으로 제1 층(110) 및 제3 층(130)의 일부를 각각 절개한 통기부(300)를 형성하고, 이를 통해 고온 가스와 화염이 정해진 지점, 즉 통기부(300)에서 분출되도록 그 위치를 제한하고 있다. 따라서, 통기부(300)의 위치를 적절히 설계함으로써 외부 화재 등 2차 피해의 위험을 크게 낮출 수 있다.
본 발명의 일 실시형태에서, 통기부(300)는 하나의 면, 도면을 예로 하면 배터리 모듈 프레임(100)의 상면에 대각 방향으로 복수 개가 형성될 수 있다. 통기부(300)는 내열성 강화 플라스틱 소재로 이루어진 제2 층(120)을 경유하여 제3 층(130) 바깥으로 화염이 분출되는 영역이므로, 복수의 통기부(300)를 형성할 경우 서로의 거리를 멀리 확보함으로써 화염이 충분한 거리와 시간동안 제2 층(120)을 거치면서 점차로 열을 상실하게 된다.
그리고, 제1 층(110)에 형성된 내측 통기부(310)와, 제3 층(130)에 형성된 외측 통기부(320)는 서로 중첩되지 않는 것이 바람직할 수 있다. 이 역시 내측 통기부(310)와 외측 통기부(320)가 바로 연결되면 제2 층(120)에 의한 소염 작용이 발휘될 정도의 충분한 화염 경로를 확보하기 어렵기 때문이다.
예를 들어, 도 7에 도시된 것처럼, 제1 층(110)에 형성된 내측 통기부(310)를 중심으로 하여 제3 층(130)에 형성된 외측 통기부(320)는 대각방향으로 이격되어 있을 수 있다. 이러한 내측 통기부(310)와 외측 통기부(320)의 배치에 의해, 내측 통기부(310)와 외측 통기부(320)는 서로 중첩되지 않으면서 외측 통기부(320) 사이의 거리를 멀게 만들 수 있다.
그리고, 외측 통기부(320)는 복수 개의 통기공이 하나의 군을 이루는 형태로 구성될 수 있는데, 이러한 경우에 외측 통기부(320)는 내측 통기부(310)로부터의 거리(d)가 멀수록 통기공의 통기면적이 크도록 단계적인 크기 배열을 갖도록 하는 것이 바람직할 수 있다. 이는 제2 층(120)의 강화 플라스틱 층을 통과하는 화염 경로가 길어서 충분히 열을 뺏긴 화염이 내측 통기부(310)로부터의 거리(d)가 먼 바깥쪽의 통기공으로 좀 더 많이 배출되도록 하는 것이 소염 측면에서 유리하기 때문이다.
그리고, 알루미늄 소재인 제1 층(110) 또는 제3 층(130)에는 체결부(200)가 형성될 수 있으며, 이러한 체결부(200)는 용접부(210) 또는 볼팅부(220)일 수 있다. 도 5는 체결부(200)가 용접부(210)로 형성되는 일례를, 그리고 도 6은 볼팅부(220)가 체결부(200)를 형성하는 예를 각각 도시하고 있다.
본 발명의 배터리 모듈 프레임(100)은 고온의 화염에서도 구조붕괴를 방지하고 소염 기능도 갖춘 내열성 강화 플라스틱의 제2 층(120)을 포함하고 있으며, 비록 제2 층(120)으로는 기계적 체결구조를 구성하기는 어렵지만, 제2 층(120)이 알루미늄 소재인 제1 층(110)과 제3 층(130) 사이에 매립되어 있음에 따라, 배터리 모듈 프레임(100)의 내외부를 감싸는 알루미늄 층에 의해 용접이나 볼팅 등의 체결구조를 손쉽게 구현할 수 있다.
참고로, 도 5 및 도 6은 각각 용접부(210) 및 볼팅부(220)가 체결부(200)를 구성하는 일례를 도시하고 있는데, 하나의 배터리 모듈 프레임(100)이 체결부(200)로서 용접부(210)와 볼팅부(220)를 복합적으로 포함할 수 있음은 물론이다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
[부호의 설명]
10: 배터리 모듈 100: 배터리 모듈 프레임
102: 메인 프레임 104: 상부 플레이트
110: 제1 층 120: 제2 층
130: 제3 층 200: 체결부
210: 용접부 220: 볼팅부
300: 통기부 310: 내측 통기부
320: 외측 통기부 400: 배터리 셀 어셈블리
500: 엔드 플레이트 어셈블리
UM: 상형 BM: 하형

Claims (12)

  1. 내부에 복수의 배터리 셀을 수용하는 다면체 형태의 배터리 모듈 프레임에 있어서,
    상기 배터리 모듈 프레임은,
    알루미늄 또는 알루미늄 합금 소재로 이루어진 제1 층;
    상기 제1 층 위에 적층되고, 상기 제1 층보다 녹는 점이 높은 강화 플라스틱 소재로 이루어진 제2 층; 및
    상기 제2 층 위에 적층되고, 알루미늄 또는 알루미늄 합금 소재로 이루어진 제3 층;
    을 포함하는 배터리 모듈 프레임.
  2. 제1항에 있어서,
    상기 배터리 모듈 프레임은,
    상기 제1 층 내지 제3 층이 적층된 상태에서 프레스 가공으로 함께 성형되는 것을 특징으로 하는 배터리 모듈 프레임.
  3. 제2항에 있어서,
    상기 제1 층 또는 제3 층에 체결부가 형성되는 것을 특징으로 하는 배터리 모듈 프레임.
  4. 제3항에 있어서,
    상기 체결부는,
    용접부 또는 볼팅부인 것을 특징으로 하는 배터리 모듈 프레임.
  5. 제1항에 있어서,
    상기 제2 층을 이루는 강화 플라스틱 소재는,
    방향족 나일론 섬유와 열경화성 수지가 결합한 소재인 것을 특징으로 하는 배터리 모듈 프레임.
  6. 제5항에 있어서,
    상기 제2 층을 이루는 강화 플라스틱 소재는,
    유리섬유 강화 플라스틱인 것을 특징으로 하는 배터리 모듈 프레임.
  7. 제1항에 있어서,
    상기 배터리 모듈 프레임의 적어도 어느 일면에는,
    상기 제1 층 및 제3 층의 일부에 상기 제2 층을 노출시키는 통기부가 형성된 것을 특징으로 하는 배터리 모듈 프레임.
  8. 제7항에 있어서,
    상기 통기부는,
    상기 배터리 모듈 프레임의 상면에 형성되는 것을 특징으로 하는 배터리 모듈 프레임.
  9. 제8항에 있어서,
    상기 통기부는,
    대각 방향으로 복수 개가 형성되는 것을 특징으로 하는 배터리 모듈 프레임.
  10. 제8항에 있어서,
    상기 제1 층에 형성된 내측 통기부와, 상기 제3 층에 형성된 외측 통기부는 서로 중첩되지 않는 것을 특징으로 하는 배터리 모듈 프레임.
  11. 제10항에 있어서,
    상기 제1 층에 형성된 내측 통기부를 중심으로 하여 상기 제3 층에 형성된 외측 통기부는 대각방향으로 이격되어 있는 것을 특징으로 하는 배터리 모듈 프레임.
  12. 제11항에 있어서,
    상기 외측 통기부는,
    상기 내측 통기부로부터의 거리가 멀수록 통기면적이 큰 복수 개의 통기공을 포함하는 것을 특징으로 하는 배터리 모듈 프레임.
PCT/KR2023/009402 2022-07-07 2023-07-04 배터리 모듈 프레임 WO2024010331A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23835797.4A EP4383422A1 (en) 2022-07-07 2023-07-04 Battery module frame
CN202380013587.7A CN117941140A (zh) 2022-07-07 2023-07-04 电池模块框架

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220083855A KR20240006943A (ko) 2022-07-07 2022-07-07 배터리 모듈 프레임
KR10-2022-0083855 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024010331A1 true WO2024010331A1 (ko) 2024-01-11

Family

ID=89453708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009402 WO2024010331A1 (ko) 2022-07-07 2023-07-04 배터리 모듈 프레임

Country Status (4)

Country Link
EP (1) EP4383422A1 (ko)
KR (1) KR20240006943A (ko)
CN (1) CN117941140A (ko)
WO (1) WO2024010331A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11115056A (ja) * 1997-10-20 1999-04-27 Showa Alum Corp 複合材の接合方法
KR20180060997A (ko) 2016-11-29 2018-06-07 삼성에스디아이 주식회사 전지 셀, 전지 서브모듈, 전지 모듈 또는 전지 시스템의 벽 구조
KR20210042152A (ko) * 2018-10-19 2021-04-16 재팬 콤퍼짓 가부시키가이샤 불포화 폴리에스터 수지 조성물, 성형 재료, 성형품, 및 전동 차량의 배터리 팩 하우징
CN214068833U (zh) * 2020-10-27 2021-08-27 恒大新能源汽车投资控股集团有限公司 一种电池箱盖、电池箱及电动汽车
KR20220021143A (ko) * 2020-08-13 2022-02-22 에스케이온 주식회사 배터리 모듈
KR20220083855A (ko) 2016-08-15 2022-06-20 닛토덴코 가부시키가이샤 플렉시블 화상 표시 장치용 점착제층, 플렉시블 화상 표시 장치용 적층체, 및 플렉시블 화상 표시 장치
CN216872184U (zh) * 2021-12-16 2022-07-01 宁德时代新能源科技股份有限公司 排气装置、电池单体、电池及用电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11115056A (ja) * 1997-10-20 1999-04-27 Showa Alum Corp 複合材の接合方法
KR20220083855A (ko) 2016-08-15 2022-06-20 닛토덴코 가부시키가이샤 플렉시블 화상 표시 장치용 점착제층, 플렉시블 화상 표시 장치용 적층체, 및 플렉시블 화상 표시 장치
KR20180060997A (ko) 2016-11-29 2018-06-07 삼성에스디아이 주식회사 전지 셀, 전지 서브모듈, 전지 모듈 또는 전지 시스템의 벽 구조
KR20210042152A (ko) * 2018-10-19 2021-04-16 재팬 콤퍼짓 가부시키가이샤 불포화 폴리에스터 수지 조성물, 성형 재료, 성형품, 및 전동 차량의 배터리 팩 하우징
KR20220021143A (ko) * 2020-08-13 2022-02-22 에스케이온 주식회사 배터리 모듈
CN214068833U (zh) * 2020-10-27 2021-08-27 恒大新能源汽车投资控股集团有限公司 一种电池箱盖、电池箱及电动汽车
CN216872184U (zh) * 2021-12-16 2022-07-01 宁德时代新能源科技股份有限公司 排气装置、电池单体、电池及用电装置

Also Published As

Publication number Publication date
KR20240006943A (ko) 2024-01-16
EP4383422A1 (en) 2024-06-12
CN117941140A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2018105878A1 (en) Battery system
WO2010114318A2 (ko) 모듈의 구조 설계에 유연성을 가진 전지모듈 및 이를 포함하는 중대형 전지팩
WO2014027783A1 (ko) 벤팅 유도부를 포함하는 전지모듈
WO2021201421A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022045591A1 (ko) 대형 배터리 모듈 및 이를 포함하는 배터리 팩
WO2020231095A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022039394A1 (ko) 리무버블 퓨즈 어셈블리를 구비한 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018080242A1 (ko) 배터리 팩
WO2022203278A1 (ko) 냉각수를 활용한 배터리 셀의 열확산 방지 구조를 갖춘 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021210805A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2021210806A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2022055088A1 (ko) 배터리 모듈들 간의 열확산 방지구조를 적용한 배터리 팩
WO2021235716A1 (ko) 케이스 외부에 냉각부를 구비한 배터리 팩
WO2024010331A1 (ko) 배터리 모듈 프레임
WO2018160012A2 (ko) 카트리지 및 이를 포함하는 배터리 모듈
WO2022055130A1 (ko) 배터리 모듈들 간의 열확산 방지구조를 적용한 배터리 팩
WO2022102910A1 (ko) 레이저 용접법으로 회로기판과 전극 리드를 직접 접합한 배터리 팩
WO2021221284A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023249299A1 (ko) 배터리 모듈 프레임
CN115000639A (zh) 电池系统和包括电池系统的车辆
WO2024010332A1 (ko) 배터리 모듈 부품
WO2024071883A1 (ko) 열 전파 방지구조가 개선된 팩 케이스
WO2024019529A1 (ko) 배터리 셀 유닛, 이를 포함하는 배터리 팩 및 자동차
WO2024019430A1 (ko) 배터리 셀 블럭 및, 이를 포함하는 배터리 팩 및 자동차
WO2023022412A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380013587.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023835797

Country of ref document: EP

Effective date: 20240308