WO2024010028A1 - 環状rna分子及びこれを用いた翻訳制御方法、翻訳活性化システム、並びに医薬組成物 - Google Patents

環状rna分子及びこれを用いた翻訳制御方法、翻訳活性化システム、並びに医薬組成物 Download PDF

Info

Publication number
WO2024010028A1
WO2024010028A1 PCT/JP2023/024911 JP2023024911W WO2024010028A1 WO 2024010028 A1 WO2024010028 A1 WO 2024010028A1 JP 2023024911 W JP2023024911 W JP 2023024911W WO 2024010028 A1 WO2024010028 A1 WO 2024010028A1
Authority
WO
WIPO (PCT)
Prior art keywords
ires
rna molecule
translation
circular rna
cells
Prior art date
Application number
PCT/JP2023/024911
Other languages
English (en)
French (fr)
Inventor
博英 齊藤
重賢 亀田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2024010028A1 publication Critical patent/WO2024010028A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • C12N15/68Stabilisation of the vector

Definitions

  • the present invention includes a circular RNA molecule that can control translation in response to miRNA or protein and has excellent stability and sustainability, a translation control method using the circular RNA molecule, and the circular RNA.
  • the present invention relates to a translation activation system and a pharmaceutical composition containing the circular RNA molecule.
  • mRNA Unlike DNA-based gene transfer techniques such as plasmid DNA and viral vectors that are currently widely used, gene transfer using mRNA avoids the risk of unwanted damage to genomic DNA. In addition, it is known that plasmid DNA is difficult to introduce into non-dividing cells, whereas mRNA can be easily introduced into non-dividing cells. Due to these characteristics, in recent years research has been progressing on genome editing using mRNA, establishment of iPS cells, and use as mRNA medicines such as mRNA vaccines.In the medical field, gene transfer technology using mRNA has been promoted. is attracting attention.
  • Non-Patent Documents 1 and 2 problems with gene transfer using mRNA include the persistence of gene expression and low expression level due to the instability of mRNA within cells (for example, see Non-Patent Documents 1 and 2). ).
  • specific proteins such as growth factors and modifying enzymes are often responsible for the pathology of multiple diseases, and when transducing genes at the biological level, off-target proteins may be expressed in organs and cell types other than the target. There are concerns about side effects caused by (for example, see Non-Patent Document 3).
  • Non-Patent Document 5 It has been reported that artificial circular mRNA exhibits higher gene expression levels and persistence than normal artificial mRNA (see, for example, Non-Patent Document 5). Because of its usefulness, it is attracting attention in terms of medical applications, with a venture company being established in the United States to treat diseases using artificial circular mRNA. Furthermore, circularization methods and translation methods are also being discussed (for example, see Non-Patent Documents 5 and 6).
  • Non-Patent Documents 5 and 6 research on the engineering of artificial circular mRNA to date has focused on discussions at the stages of ⁇ how to circularize'' and ⁇ how to translate.'' However, no translation control method has been developed.
  • the present inventors found that by providing a recognition site that recognizes miRNA or protein at a predetermined position of a circular mRNA molecule, it is possible to control the translation of the circular mRNA molecule, and to improve the sustainability of gene expression.
  • the inventors have discovered that the level can be improved and have completed the present invention.
  • the present invention includes the following aspects.
  • IRES Internal ribosome entry site
  • a translation region located on the 3' end side of the IRES and translated by the IRES
  • c A circular RNA molecule consisting of a nucleic acid sequence containing a recognition region consisting of a nucleic acid sequence that specifically recognizes miRNA or protein.
  • the circular RNA according to [1] wherein the recognition region consisting of a nucleic acid sequence that specifically recognizes the miRNA is located at the 3' end of the translated region and at the 5' end of the IRES. molecule.
  • the circular RNA molecule according to [1] further comprising a polyA sequence at the 3' end of the translated region.
  • the IRES is derived from Coxsackie virus B3, and contains a nucleic acid sequence that specifically recognizes the protein in Domain VI or VII of the IRES, or between Domain VII and the translated region of the IRES.
  • the circular RNA molecule according to [6] comprising a recognition region.
  • [9] further comprising a pair of circularization sequences sandwiching the linear nucleic acid sequence, the pair of circularization sequences comprising a 5' fragment of a group I intron and a 5' homolog provided at its 5'end;
  • a translation control method comprising the step of contacting the circular RNA molecule according to [1] with a cell, or the step of introducing the DNA construct according to [10] into a cell.
  • a translation control method for artificial circular RNA that utilizes interaction with intracellular molecules such as miRNA and proteins. Furthermore, they discovered that it is possible to control translation by introducing artificial mRNA created by in vitro transcription into cells.
  • the principle of this translational control approach is the inhibition of ribosome scanning via miRNA-induced degradation of artificial circular RNA or protein binding to IRES.
  • translation of artificial circular RNA can be controlled using any miRNA or protein.
  • Figure 1A is a schematic diagram showing the design of an miRNA-responsive circular RNA switch and a protein-responsive circular RNA switch. ), an miRNA-responsive circular RNA switch with a miRNA target site on the 5' end of the IRES (middle left), and a protein-responsive circular RNA switch with a protein target site inside the IRES (bottom left). . In both switches, the presence of the target miRNA/protein suppresses gene expression from circular RNA.
  • Figure 1B is a scheme of a miRNA-responsive circular RNA circuit, where the first output (protein) is encoded by a miRNA-responsive switch and the second input is designed as a protein-responsive switch.
  • FIG. 2A is a schematic diagram of permuted intron-exon (PIE) splicing, showing from the top a group I intron (self-splicing ribozyme), a precursor RNA molecule, and an autocatalytic circularization reaction.
  • Figure 2B is a denaturing PAGE gel image of circRNA after in vitro transcription, using DynaMarker RNA High (BioDynamics Laboratory) and Low Range ssRNA Ladder (NEB) as molecular weight markers.
  • PIE permuted intron-exon
  • Figure 2C shows the results of Sanger sequencing of splice junctions by RT-PCR amplification.
  • Figure 2D is a denaturing PAGE gel image after RNase R treatment.
  • Figure 3A is an explanatory diagram of the structures of mRNAs used in Examples, including a linear mRNA with a Cap structure at the 5' end and an IRES, and a linear mRNA with an A-Cap and an IRES at the 5' end.
  • mRNA Linear EGFP
  • Cap-EGFP Native, m5C/ ⁇ , m1 ⁇
  • IRES Circular mRNA with no polyA sequence
  • Circular mRNA with neither IRES nor polyA sequence Circular EGFP ⁇ pA ⁇ IRES
  • Circular mRNA with IRES and polyA sequence Circular mRNA (Circular EGFP +pA) with All mRNAs encode EGFP as a reporter gene.
  • Figure 3D shows evaluation of immune response-related genes 24 hours after transfection in A549 cells.
  • FIG. 4A shows target sites of target miRNAs (hsa-miR-206, hsa-miR-302-5p, hsa-miR-21-5p, hsa-miR-339-5p) in 5' UTR or 3' UTR. These are the results of evaluating the transfection efficiency of circRNA, which was evaluated by co-transfecting miRNA mimic into HEK293FT cells. Translation efficiency was calculated by normalizing to the sample in which miRNA mimic was not co-introduced (miRNA mimic-).
  • FIG. 4B shows Fold Change between ON state and OFF state of each miRNA-responsive circRNA evaluated in FIG. 4A. Samples in which miRNA mimic was not co-introduced were considered to be in the ON state.
  • FIG. 4C shows the detection results of endogenous miRNA using miRNA-responsive circRNA in HEK293FT, HeLa, and A549. Translation efficiency was calculated by normalizing to the sample introduced with miRNA inhibitor.
  • FIG. 5A is a diagram showing variants due to differences in the insertion position of the U1A aptamer or MS2SL, which is a protein recognition region (motif), into the CVB3 IRES constituting the protein-responsive circRNA switch.
  • Figure 5B shows the MS2SL or MS2SL-responsive circRNA switch variant 4, in which MS2SL was inserted into Domain VII of the CVB3 IRES, and the U1A-responsive circRNA switch variant 4, in which the U1A aptamer was inserted into Domain VII of the CVB3 IRES, shown in Figure 5A. Fluorescence images in the presence (+) or absence (-) of U1A are shown.
  • Figure 5C shows a schematic diagram showing the insertion position of the protein recognition region (motif), and MS2SL responsiveness or The results of comparing the translation activity of the U1A-responsive circRNA switch variant with variant 4 in FIG. 5B are shown.
  • Figure 5D shows MS2SL-responsive circRNA switch without polyA sequence (Switch), mRNA without polyA sequence and no recognition region by MS2SL (No motif), and MS2SL-responsive circRNA switch with polyA sequence (Switch+pA).
  • Figure 6A is a diagram conceptually showing a miRNA-responsive ON circuit using an miRNA-responsive circRNA switch and a protein-responsive circRNA switch, and shows a miR-302-5p-responsive MS2CP switch or a miR-21-5p-responsive MS2CP switch.
  • the mechanism of translational activation of EGFP by the sexual U1A switch and the MS2CP or U1A-responsive EGFP switch, or the activation of MetLuc2 by the MS2CP or U1A-responsive MetLuc2 switch is shown.
  • FIG. 6B shows a fluorescence image when a miRNA-responsive ON circuit was introduced into HEK293FT cells, a flow cytometer scatter plot, and the titration results of the circRNA ON circuit using miR-302a-5p mimic. Scale bar indicates 200 ⁇ m.
  • FIG. 6C is a diagram showing the evaluation of the sustainability of the circRNA ON circuit using the miR-302a-5p mimic in HEK293FT cells.
  • Circular RNA molecule consists of a nucleic acid sequence comprising (a) to (c) below.
  • IRES Internal ribosome entry site
  • b A translation region located at the 3' end of the IRES and translated by the IRES
  • c A recognition region consisting of a nucleic acid sequence that specifically recognizes miRNA or protein
  • the circular RNA molecule according to the present embodiment refers to an RNA molecule that is composed of nucleic acid molecules linked in a circular manner, unlike a linear RNA molecule that has a 5' end and a 3' end.
  • a circular RNA molecule may be abbreviated as circRNA.
  • the circular RNA molecules according to this embodiment include circular RNA molecules that specifically recognize miRNA and circular RNA molecules that specifically recognize proteins.
  • miRNA and proteins recognized by circular RNA molecules may be collectively referred to as target substances.
  • the circular RNA molecule according to this embodiment is typically an mRNA whose translation of a protein encoded by a translated region is suppressed in the presence of a target substance.
  • the state in which the circular RNA molecule according to the present embodiment is in the absence of a target substance and in which the protein encoded by the translation region can be translated is referred to as ON state.
  • the ON state is when the target substance is not present or the target substance is not present in a form that allows it to bind to the RNA molecule.
  • the OFF state is the state in which a circular RNA molecule is unable to translate proteins.
  • an RNA molecule whose translation state changes between OFF and ON depending on the presence/absence of a target substance is referred to as a switch RNA.
  • Circular RNA molecules can include circular mRNAs synthesized in vitro as well as circular mRNAs that are artificially prepared as plasmids, transcribed in cells, and circularized.
  • RNA molecule is a nucleic acid molecule that includes (a) an IRES, (b) a translated region, and (c) a recognition region, and may optionally include a polyA sequence.
  • the internal ribosome entry site is preferably an IRES that has activity in the target cell or an IRES that can be used with in vitro transcribed mRNA.
  • IRES include viral-derived IRES, cellular mRNA-derived IRES, artificially obtained IRES, and aptamers for eukaryotic initiation factors (eIFs); Not limited.
  • IRES nucleic acid sequences can be obtained from databases (eg, http://www.iresite.org/).
  • IRESs derived from viruses include coxsackievirus group B type 3 (CVB3), encephalomyocarditis virus (EMCV), or 5'UTR sequences derived from viruses having sequences that can be presumed to be IRESs. It is not limited to these.
  • IRES derived from cellular mRNA include, but are not limited to, IRES present on mRNA such as RPL41, GATA1, and HMGA1.
  • the translation region is a region containing a nucleic acid sequence translated by an IRES, and typically a region containing a nucleic acid sequence encoding a protein. More specifically, the translated region includes, in order from the 5' side, a start codon, a nucleic acid sequence encoding a protein, and a stop codon.
  • the protein herein includes protein fragments, fusion proteins, and peptides.
  • the protein may be any protein, and its type and number are not limited. Depending on the use and purpose of the RNA molecule, desired proteins can be included.
  • the protein may include a detection protein, a therapeutic protein, an RNA binding protein capable of binding to other ON-switch or OFF-switch mRNAs.
  • a detection protein, therapeutic protein, or RNA-binding protein is not limited to a protein that performs a detection, treatment, or binding function alone, but may be used together with a substance other than the protein encoded by the RNA molecule to perform the detection, treatment, or binding function. It may also be a substance that exhibits a binding function.
  • Detection protein refers to any protein that can be translated and present detectable information.
  • the detection protein may be a protein that can be visualized and quantified, such as by fluorescence, luminescence, or coloration, or with the aid of fluorescence, luminescence, or coloration.
  • fluorescent proteins examples include blue fluorescent proteins such as Sirius, EBFP; cyan fluorescent proteins such as mTurquoise, TagCFP, AmCyan, mTFP1, MidoriishiCyan, CFP; TurboGFP, AcGFP, TagGFP, Azami-Green (e.g. hmAG1), ZsGreen, Green fluorescent proteins such as EmGFP, EGFP, GFP2, HyPer; Yellow fluorescent proteins such as TagYFP, EYFP, Venus, YFP, PhiYFP, PhiYFP-m, TurboYFP, ZsYellow, mBanana; Orange fluorescent proteins such as KusabiraOrange (e.g.
  • hmKO2 mOrange Proteins
  • Red fluorescent proteins such as TurboRFP, DsRed-Express, DsRed2, TagRFP, DsRed-Monomer, AsRed2, mStrawberry
  • Nearby proteins such as TurboFP602, mRFP1, JRed, KillerRed, mCherry, HcRed, KeimaRed (e.g. hdKeimaRed), mRasberry, mPlum, etc.
  • examples include, but are not limited to, infrared fluorescent proteins.
  • An example of a photoprotein includes, but is not limited to, aequorin.
  • proteins that assist in fluorescence, luminescence, or coloration include, but are not limited to, enzymes that decompose precursors of fluorescence, luminescence, or coloration, such as luciferase, phosphatase, peroxidase, and ⁇ -lactamase.
  • enzymes that decompose precursors of fluorescence, luminescence, or coloration such as luciferase, phosphatase, peroxidase, and ⁇ -lactamase.
  • the corresponding precursor can come into contact with the protein produced by translation into the circular RNA molecule. It must be used in a certain manner. For example, a precursor can be brought into contact with a cell into which the circular RNA molecule has been introduced, or a corresponding precursor can be introduced into a cell into which the circular RNA molecule has been introduced.
  • Therapeutic proteins refer to proteins that can be used to treat, prevent, or diagnose diseases and conditions by affecting cell function. Influencing a cell function includes increasing, decreasing, or maintaining a predetermined function of a cell within a certain range.
  • Therapeutic proteins include cell proliferation proteins, cell death proteins, cell signaling factors, drug resistance genes, transcription control factors, translation control factors, differentiation control factors, reprogramming induction factors, RNA binding protein factors, chromatin control factors, membrane proteins, or fragments or complexes thereof, but are not limited thereto. Note that these proteins can also be said to be able to present detectable information by influencing cell functions, and can be said to be both therapeutic proteins and detection proteins. Examples of other therapeutic proteins include enzymes, growth factors, antibodies, antigens, proteins constituting viruses or parts thereof, proteins that inhibit the production of viruses, genome editing proteins, or fragments or complexes thereof. However, it is not limited to these.
  • a cell proliferation protein functions as a marker by allowing only cells that express it to proliferate and identifying the proliferated cells.
  • Cell-killing proteins cause cell death in cells that express them, thereby killing the cells themselves that contain or do not contain a specific molecule (target substance), and function as markers that indicate cell life or death.
  • Cell signaling factors function as markers by emitting specific biological signals from cells that express them, and by specifying these signals.
  • RNA degrading enzymes such as barnase derived from Bacillus amyloliquefaciens, HokB, Fst, GhoT (membrane destruction), HipA (inhibition of nucleic acid elongation by phosphorylation), RelE, YafO, VapC, MazF, MqsR, PemKHicA ( These include toxins such as endonuclease), FicT (Adenylation), oc (Phosphorylation), CcdB, ParE (Gyrase inhibitor), Tact (Inhibitor of translation), cbtA (Inhibitor of cytoskeletal protein), and apoptosis-inducing proteins such as Bax and Bim.
  • barnase derived from Bacillus amyloliquefaciens
  • HokB Fst, GhoT (membrane destruction)
  • HipA inhibition of nucleic acid elongation by phosphorylation
  • a translation control factor functions as a marker by recognizing and binding to the tertiary structure of a specific RNA to control the translation of other mRNAs into proteins.
  • translation control factors 5R1, 5R2 (Nat Struct Biol. 1998 jul; 5(7):543-6), B2 (Nat Struct Mol Biol. 2005 Nov;12(11):952-7), Fox-1 ( EMBO J. 2006 Jan 11;25(1):163-73.), GLD-1 (J Mol Biol. 2005 Feb 11;346(1):91-104.), Hfq (EMBO J. 2004 Jan 28; 23(2):396-405), HuD (Nat Struct Biol.
  • the translation region may include a nucleic acid sequence encoding a fusion protein consisting of a combination of two or more of the proteins listed above. Furthermore, a self-cleavage sequence may be included between two or more proteins, whereby the translated protein may be configured to function as a separate protein molecule.
  • RNA molecule is a region containing a nucleic acid sequence that specifically recognizes miRNA or protein.
  • the recognition region forms a specific bond with the miRNA or protein in the presence of the target substance, resulting in degradation of circular RNA by the miRNA or inhibition of ribosome scanning via protein binding to the IRES.
  • Nucleic acid sequences that specifically recognize miRNA include miRNA complementary sequences (including partially complementary sequences).
  • Nucleic acid sequences that specifically recognize proteins include protein-binding RNA sequences such as Cas family protein-binding RNA, aptamers, and aptazymes.
  • a region containing a nucleic acid sequence that specifically recognizes miRNA is referred to herein as an miRNA recognition region.
  • a region containing a nucleic acid sequence that specifically recognizes a protein is referred to herein as a protein recognition region.
  • nucleic acid sequence that specifically recognizes RNA which is an example of a miRNA recognition region, includes a nucleic acid sequence that is a target of miRNA that constitutes an RNA induced silencing complex (RISC). Nucleic acid sequences that are targets of miRNAs that constitute RISC are also referred to as miRNA target sequences.
  • the miRNA target sequence is preferably a sequence complementary to miRNA, for example. Alternatively, the miRNA target sequence may have a mismatch with a completely complementary sequence, as long as it can be recognized by the miRNA.
  • a mismatch from a sequence that is completely complementary to the miRNA in question should be a mismatch that can be normally recognized by the miRNA in the desired cell, and a mismatch of about 40 to 50% in the original function of the cell in vivo. It is considered okay to have one.
  • Such mismatches include, but are not limited to, 1 base, 2 bases, 3 bases, 4 bases, 5 bases, 6 bases, 7 bases, 8 bases, 9 bases, or 10 bases, or 1%, 5 bases of the total recognition sequence. %, 10%, 20%, 30%, or 40% mismatch.
  • the 5' side of the target sequence which corresponds to about 16 bases on the 3' side of the miRNA, in a part other than the seed region, such as the miRNA target sequence of mRNA provided in the cell.
  • a region may contain multiple mismatches, and portions of the seed region may contain no mismatches, or 1, 2, or 3 base mismatches.
  • the miRNA recognition region may include one repeat of a nucleic acid sequence recognized by one type of miRNA, or may include two or more repeats. Alternatively, the miRNA recognition region may include two or more different nucleic acid sequences, each recognized by a different miRNA.
  • An aptamer which is an example of a protein recognition region, refers to a nucleic acid selected to specifically recognize a target substance.
  • Target substances for aptamers include, but are not limited to, proteins, peptides, small organic molecules, cells, tissues, nucleic acids, viruses, metal ions, and the like.
  • an aptamer can be selected and designed by, for example, the SELEX (Systematic Evolution of Ligands By EXponential enrichment) method.
  • the aptamer is an aptamer that recognizes a specific target substance or is capable of specifically recognizing a target substance, as known from literature or databases (e.g. https://www.aptagen.com/apta-index/).
  • RNA binding proteins and their binding sequences may be used.
  • the nucleic acid sequence constituting the protein recognition region also preferably has a dissociation constant Kd of a complex between the nucleic acid sequence contained in the protein recognition region and the target substance of 8.0x10 -6 M or less, preferably 1.0x10 -9 M or less, more preferably is 1.0x10 -12 M or less, the complex between the nucleic acid sequence contained in the protein recognition region and the target substance is maintained on the RNA molecule, and the complex of the target substance is maintained on the RNA molecule, and the ribosome scanning is inhibited through binding of the protein to the IRES. It is preferable that the structure is such that it can be generated.
  • the circular RNA molecule has the above (a) IRES, (b) translation region, and (c) recognition region as essential components, and further includes the following optional components: (d) polyA sequence, and (e) connecting sequence. , (f) may include a spacer array.
  • the circular RNA molecule can contain a polyA sequence at the 3' end of the above (b) translated region.
  • the polyA sequence may be a nucleic acid sequence in which the total length of adenine bases A is 15 mer or more, and may contain nucleic acid bases other than A at a rate of about 50% or less in the middle.
  • the total length of adenine bases A may be about 15 to 200 mer, or about 100 to 150 mer.
  • the polyA sequence is not an essential component for translation control, it is preferably included in the circular RNA molecule because it can improve translation efficiency and reduce immune responsiveness.
  • the polyA sequence is usually provided at the 3' end of the (b) translated region, and (c) an miRNA recognition region may be provided between the (b) translated region and the (d) polyA sequence.
  • the circular RNA molecule is provided with a connecting sequence derived from the circularized sequence.
  • the connecting sequence is composed of a self-splicing intron and part of the exon sequence surrounding it, and has a splice junction at the junction between the 3' splice site and the 5' splice site.
  • the connecting sequence is located at the 5' end of the IRES.
  • the circular RNA molecule has these spaces between (a) the IRES, (b) the translation region, (c) the recognition region, and optionally the (d) polyA sequence and (e) the connecting sequence. It may also include a spacer arrangement that does not fall under any of the above.
  • the spacer sequence is preferably a sequence that does not inhibit the function of IRES, sequences used for circularization of group I introns, and polyA sequences.
  • the above (a) IRES, (b) translation region, and (c) recognition region are operably linked.
  • the protein encoded by the translated region is translated, and in response to binding of the target molecule to the recognition sequence, translation of the protein encoded by the translated region is suppressed.
  • Circular RNA molecule with miRNA recognition region In circular RNA molecule with miRNA recognition region, (a) IRES, (b) translation region, and (c) recognition region are activated in order from 5' to 3' direction. It is preferable that (a) IRES is linked to the 3' end of (c) recognition region.
  • IRES is linked to the 3' end of (c) recognition region.
  • a circular RNA molecule having an miRNA recognition region preferably includes the following in order from 5' to 3', considering [(a) IRES] as the starting point. [(a) IRES] - [(b) Translated region] - [(c) miRNA recognition region] - [(d) polyA sequence] - [(e) Connecting sequence] Here, the 3' end of [connecting sequence] is connected to the 5' end of [(a) IRES].
  • [(c) miRNA recognition region] is preferably directly linked to [(b) translation region]
  • the 5' end of [(c) miRNA recognition region] is linked directly to [(b) translation region].
  • it is linked to the start and end codons.
  • a circular RNA molecule having an miRNA recognition region preferably includes the following in order from 5' to 3', considering [(a) IRES] as the starting point. [(a) IRES] - [(b) Translated region] - [(d) polyA sequence] - [(e) Connecting sequence] - [(c) miRNA recognition region] where, [(c) miRNA recognition region] The 3' end of is connected to the 5' end of [(a) IRES].
  • Circular RNA molecule having a protein recognition region has (a) an IRES and (b) a translation region operably linked in order from 5' to 3', and (c )
  • the protein recognition sequence is preferably (a) linked within the sequence of the IRES, or (a) linked to the 3' end of the IRES.
  • the protein recognition region binds to the translation initiation factor binding site of (a) IRES and the antisense region for 18S rRNA. Preferably, it is coupled downstream. This is because such a structure inhibits ribosome scanning and makes it possible to suppress translation. More preferable embodiments include the following.
  • a circular RNA molecule having a protein recognition region preferably includes the following in order from 5' to 3', considering [(a) IRES] as the starting point. [(a) IRES ⁇ (c) Protein recognition region]-[(b) Translation region]-[polyA sequence]-[Connecting sequence]
  • the 3' end of the [connecting sequence] is connected to the 5' end of [(a) IRES/(c) protein recognition region]
  • [(a) IRES/(c) protein recognition region] is This means that the IRES sequence includes a protein recognition region. Therefore, the 5' end and 3' end of [(a) IRES/(c) protein recognition region] are sequences derived from IRES.
  • the IRES is an IRES derived from coxsackievirus B3 (CVB3) comprising Domains I, II, III, IV, V, VI, and VII, in which case Domain VI or VII may comprise a protein recognition region. preferable.
  • SEQ ID NOs: 1 and 2 Examples of preferred sequences comprising a protein recognition region in the CVB3 IRES sequence are shown in SEQ ID NOs: 1 and 2.
  • SEQ ID NO: 1 is an example of a sequence that has a sequence that recognizes MS2CP protein in IRES
  • SEQ ID NO: 2 is an example of a sequence that has a sequence that recognizes U1A protein in IRES. Sequences that recognize proteins are underlined.
  • the circular RNA molecule of aspect iiB which is a modified form of aspect iiA, preferably includes the following in order from 5' to 3', considering [(a) IRES] as the starting point. [(a) IRES] - [(f) Spacer sequence] - [(c) Protein recognition region] - [(b) Translation region] - [(d) PolyA sequence] - [(e) Connecting sequence] The 3' end of [(e) connecting sequence] is connected to the 5' end of [(a) IRES].
  • the preferred embodiment in which IRES is CVB3 is similar to embodiment iiA.
  • the protein recognition region is a sequence that recognizes MS2CP or U1A
  • [(f) spacer sequence] is preferably 1 to 100 bases long, and preferably 20 to 80 bases long. It is more preferable that
  • [(f) spacer sequence] is provided between the 3' end of [(e) connecting sequence] and the 5' end of [(a) IRES]. It is preferable to provide one.
  • [(f) Spacer sequence] may be about 10 to about 100 bases long, preferably about 20 to about 50 bases long.
  • the circular RNA molecule according to this embodiment is produced from a precursor RNA molecule containing a linear nucleic acid sequence corresponding to the constituent elements of the circular RNA molecule and a circularization sequence, once the molecular structure and nucleic acid sequence are determined according to the above. be able to.
  • Methods for producing artificial circular RNA molecules in vitro include the following. (1) obtaining a linear RNA molecule comprising a linear nucleic acid sequence determined according to the above and including at least (a) an IRES, (b) a translation region, and (c) a recognition region; and (2) the linear RNA. a step of inserting the molecule into a circularization sequence to obtain a precursor RNA molecule; and (3) a step of circularizing the precursor RNA molecule obtained in step (2).
  • a linear RNA molecule is designed that includes a nucleic acid sequence containing at least (a), (b), and (c), which are the constituent elements of a circular RNA molecule. It is preferable to arrange the miRNA recognition region at the 5' end of the linear RNA molecule in the case of embodiment iB, and to arrange the IRES in the cases of embodiments iA, iiA, and iiB.
  • a linear RNA molecule comprising a nucleic acid sequence comprising (a), (b) and (c) can be obtained by an in vitro synthesis method using a template DNA comprising a promoter sequence as a template.
  • Circularization sequences can use self-splicing introns.
  • a self-splicing intron for example, a group I intron or a group II intron can be used.
  • the group I intron it is preferable to use a group I intron derived from Anabaena pre-tRNA Anabaena pre-tRNA. More specifically, the circularization sequences include a 5' fragment of a group I intron and a 5' homology arm provided at its 5' end, and a 3' fragment of a group I intron and a 5' homology arm provided at its 3' end. can be formed from a pair of 3' homology arms.
  • the 5' homology arm and the 3' homology arm may each have a sequence of about 5 to 50 bases, and the 5' homology arm and the 3' homology arm are designed to be complementary to each other. Can be done. Furthermore, it is desirable that these homology arms have sequences that do not inhibit the function of the adjacent group I intron.
  • a linear RNA molecule is inserted between the 5' fragment of the group I intron and the 3' fragment of the group I intron. The inserted linear RNA is located downstream of the 3' splice site contained in the 5' fragment of the group I intron and upstream of the 5' splice site contained in the 3' fragment of the group I intron. do.
  • RNA molecule in which a linear nucleic acid sequence containing (a) an IRES, (b) a translation region, and (c) a recognition region is sandwiched between circularization sequences.
  • the precursor RNA molecules prepared in the second step are reacted in the presence of a splicing buffer to circularize them.
  • This reaction produces a mixture of circular RNA molecules and linear RNA molecules containing introns, which can be purified by gel or HPLC to obtain circular RNA molecules.
  • a method for synthesizing circular RNA molecules within cells is to introduce into cells an expression vector, which is a DNA construct encoding the nucleic acid sequence of the precursor RNA molecule obtained in the previous step (2), and allow biosynthesis within the cells. You can also do it.
  • Expression vectors that encode the sequence of RNA molecules can be those commonly known in the art, such as viral vectors, artificial chromosome vectors, plasmid vectors, and expression systems using transposons (sometimes called transposon vectors). ) etc.
  • viral vectors include retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, Sendai virus vectors, and the like.
  • artificial chromosome vectors include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC).
  • plasmid vector all mammalian plasmids can be used, and for example, episomal vectors may be used.
  • transposon vectors include expression vectors using the piggyBac transposon.
  • the above method for producing a circular RNA molecule can be carried out with reference to, for example, Non-Patent Document 5 and Japanese Patent Application Publication No. 2021-526792.
  • Another method is to use T4 RNA ligase to link the 3'- and 5'-OH groups of a linear RNA molecule, or by chemical ligation.
  • Circularization of linear RNA can be carried out by circularization via the functional group at the 3' end and/or 5' end of RNA.
  • circular permuted group II introns can be used to perform circularization of linear RNA.
  • the circular mRNA molecule according to the first embodiment can be produced by any method capable of circularizing an RNA molecule.
  • the present invention relates to a translation control method and system.
  • the present invention relates to a translation control method using the RNA molecule or DNA construct according to the first embodiment.
  • the translation control method according to the second embodiment includes the step of contacting the RNA molecule according to the first embodiment with a cell, or the step of introducing the DNA construct according to the first embodiment into the cell.
  • the cell is not particularly limited and may be any cell.
  • a cell may be a single cell or a cell population, which is a collection of two or more cells. There is no theoretical upper limit to the number of cell populations, and it refers to a population consisting of any number of cells.
  • a cell population may include a plurality of different cell types. In particular, it may be a cell population that can contain cells that can contain a target substance that specifically recognizes the recognition region of an RNA molecule.
  • the cells may be cells collected from unicellular or multicellular organisms, or may be cells that have been artificially manipulated (including cell lines). For example, yeast, insect cells, animal cells, etc. are used, and among them, animal cells are preferred. Examples of animal cells include cells derived from mammals (eg, mouse, rat, hamster, guinea pig, dog, monkey, orangutan, chimpanzee, human, etc.). Examples of cells derived from mammals include monkey COS-7 cells, monkey Vero cells, Chinese hamster ovary (CHO) cells, dhfr gene-deficient CHO cells, mouse L cells, mouse AtT-20 cells, mouse myeloma cells, and rat cells.
  • mammals eg, mouse, rat, hamster, guinea pig, dog, monkey, orangutan, chimpanzee, human, etc.
  • Examples of cells derived from mammals include monkey COS-7 cells, monkey Vero cells, Chinese hamster ovary (CHO) cells, dhf
  • GH3 cells may be cell lines such as GH3 cells, human fetal kidney-derived cells (e.g. HEK293 cells), human liver cancer-derived cells (e.g. HepG2), human FL cells, and primary cells prepared from human and other mammalian tissues. Cultured cells are used. Furthermore, zebrafish embryos, Xenopus oocytes, etc. can also be used.
  • stem cells include, but are not limited to, embryonic stem (ES) cells, embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transfer, and spermatogonial stem cells (“GS cells”). , embryonic germ cells (“EG cells”), and induced pluripotent stem (iPS) cells.
  • ES embryonic stem
  • ntES embryonic stem
  • GS cells spermatogonial stem cells
  • EG cells embryonic germ cells
  • iPS induced pluripotent stem
  • progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • Somatic cells include, for example, keratinizing epithelial cells (e.g., keratinized epidermal cells), mucosal epithelial cells (e.g., tongue surface epithelial cells), exocrine gland epithelial cells (e.g., mammary gland cells), and hormone-secreting epithelial cells.
  • keratinizing epithelial cells e.g., keratinized epidermal cells
  • mucosal epithelial cells e.g., tongue surface epithelial cells
  • exocrine gland epithelial cells e.g., mammary gland cells
  • hormone-secreting epithelial cells e.g., hormone-secreting epithelial cells.
  • cells e.g., adrenal medullary cells
  • cells for metabolism and storage e.g., hepatocytes
  • luminal epithelial cells that constitute the interface e.g., type I alveolar cells
  • luminal epithelial cells of the internal chain duct e.g., vascular endothelial cells
  • ciliated cells with transport capacity e.g., airway epithelial cells
  • extracellular matrix-secreting cells e.g., fibroblasts
  • contractile cells e.g., smooth muscle cells
  • blood and Cells of the immune system e.g., T lymphocytes
  • sensory cells e.g., rod cells
  • nerve cells and glial cells of the central and peripheral nervous system e.g., astroglial cells
  • pigment cells e.g., retinal pigment epithelium
  • progenitor cells tissue progenitor cells
  • Other cells include, for example, cells that have undergone differentiation induction, and also include progenitor cells and somatic cells that have been induced to differentiate from pluripotent stem cells.
  • cells may be induced by so-called “direct conversion (also referred to as direct reprogramming, trans-differentiation)" in which somatic cells or progenitor cells are directly differentiated into desired cells without going through an undifferentiated state.
  • the step of contacting the circular RNA molecule with the cell can be carried out by a conventional method known to those skilled in the art, and the circular RNA molecule can be brought into contact with the cell, thereby introducing the circular RNA molecule into the cell.
  • the method of directly introducing a circular RNA molecule into a cell may be a method of introducing the RNA molecule into a cell in vitro or in vivo.
  • methods for introducing circular RNA molecules in vitro include lipofection, liposome, electroporation, calcium phosphate coprecipitation, DEAE dextran, microinjection, and gene gun methods. Not limited.
  • RNA molecules introduction methods for mammals include, but are not limited to, intramuscular injection, subcutaneous injection, intravenous injection, and intraarticular injection.
  • the process of introducing DNA constructs into cells mainly includes methods similar to in vitro introduction of RNA molecules. Furthermore, DNA constructs such as episomal vectors in which the gene to be introduced is not integrated into the genome of the cell to be introduced can also be introduced into cells using a method similar to the in vivo introduction of RNA molecules.
  • the circular RNA molecule according to the first embodiment or the DNA construct encoding the same When the circular RNA molecule according to the first embodiment or the DNA construct encoding the same is introduced into cells, translation of the protein encoded by the translated region is suppressed in response to the target substance. That is, when the target substance exists in a cell in a manner capable of binding to the recognition region of the circular RNA molecule, the target substance binds to the circular RNA molecule. This causes degradation of circular RNA by miRNA or inhibition of ribosome scanning through protein binding to IRES, thereby suppressing translation of the protein encoded by the translated region.
  • the target substance is not present in the cell, or if the target substance is not present in a form that allows it to bind to the recognition region of the RNA molecule, the protein encoded by the translation region of the circular RNA molecule is translated.
  • the recognition region is selected to recognize miRNA or protein, which is a target molecule that can be specifically present in a specific cell, thereby controlling translation in a cell-specific manner. It can be realized.
  • miRNAs that are expressed in a cell-specific manner include miR-302a-3p, miR-302a-5p, miR-302c-3p, miR-302c-5p, miR-302b-3p, miR-302d-3p (human iPS/ES cells), miR-1-3p, miR-208a-3p (cardiomyocytes), miR-9a-5p, miR-218a-5p, etc.
  • miR-520c-3p neurotrophic cells
  • miR-520f miR -520g
  • miR-520a-5p miR-520d-5p
  • miR-520h miR526a etc.
  • human naive iPS cells miR-122 etc.
  • miR-375 etc. hepatocytes
  • miR-375 etc. insulin producing cells
  • miR-21, etc. cancer cells
  • the circular RNA molecule or DNA construct according to the first embodiment is brought into contact with and introduced into a cell or cell population, and the circular RNA molecule or DNA construct according to the first embodiment is It becomes possible to control the translation of proteins encoded by the translated regions of .
  • translation control method and translation control system is a protein translation activation method using two or more different circular RNA molecules, and two or more that can be used for this method. combinations of different circular RNA molecules.
  • the translation control system includes the following (i) and (ii).
  • RNA a first circular RNA molecule, (ai) an internal ribosome entry site (IRES); (bi) a translation region located at the 3' end of the IRES and translated by the IRES; (ci) a circular RNA molecule comprising a recognition region consisting of a nucleic acid sequence that specifically recognizes miRNA located on the 3' end side of the translated region and on the 5' end side of the IRES; (ii) a second A circular RNA molecule of (aii) an internal ribosome entry site (IRES); (bii) a translation region located on the 3' end side of the IRES and translated by the IRES; (cii) A circular RNA comprising a recognition region consisting of a nucleic acid sequence that specifically recognizes the protein encoded by the translated region of (bi), the recognition region being located inside or on the 3' end side of the IRES. molecule
  • Both the first circular RNA molecule and the second circular RNA molecule are circular RNA molecules according to the first embodiment, wherein the first circular RNA molecule is an miRNA-responsive circular RNA molecule, and the second circular RNA molecule is a miRNA-responsive circular RNA molecule. It is a protein-responsive circular RNA molecule.
  • the recognition region (ci) of the first circular RNA molecule may be any miRNA recognition region and can be selected depending on the purpose of translation control.
  • the protein encoded by the translation region (bi) of the first circular RNA molecule includes a protein recognized by the recognition region of the second circular RNA molecule.
  • the recognition region (cii) of the second circular RNA molecule is a region that recognizes the protein encoded by the translated region (bi) of the first circular RNA molecule. Therefore, the recognition region (cii) may be an aptamer sequence that specifically recognizes the protein encoded by (bi).
  • the translated region (bii) of the second circular RNA molecule may be a region encoding any protein, and can be selected depending on the purpose of translation control.
  • the second circular RNA molecule can be selected from proteins encoded by the translated regions exemplified in the first embodiment, but is not limited thereto.
  • translation of a protein encoded by the translation region (bii) of the second circular RNA molecule is activated in response to miRNA recognized by the recognition region (ci) of the first circular RNA molecule.
  • the system according to this embodiment may also be referred to herein as a miRNA-responsive ON circuit.
  • either the first circular RNA molecule or the second circular RNA molecule, or both are injected into cells in the form of the DNA construct described in the first embodiment. may be introduced within.
  • either the first circular RNA molecule or the second circular RNA molecule may be a linear switch RNA according to the prior art. That is, instead of the first circular RNA molecule, any linear mRNA whose protein translation is suppressed in response to miRNA can be used. Linear mRNA, which suppresses protein translation in response to miRNA, can also be referred to as a linear miRNA response switch.
  • a linear miRNA response switch contains a 5'Cap structure, a 5'UTR, a translation region, and a 3'UTR in the order of 5' to 3', and has an miRNA recognition region in at least one of the 5'UTR or 3'UTR.
  • 5'Cap structure is 7 methylguanosine 5' phosphate (Cap structure), Anti-Reverse Cap Analog (ARCA) manufactured by Ambion, m7G(5')ppp(5')G RNA Cap manufactured by New England Biolabs. It may be Structure Analog, CleanCap manufactured by TriLink, but is not limited to these.
  • any linear mRNA whose protein translation is suppressed in response to the protein encoded by the first circular RNA molecule can be used.
  • the linear mRNA whose protein translation is suppressed in response to the protein encoded by the first circular RNA molecule can also be referred to as a linear protein response switch.
  • the linear protein response switch includes a 5'Cap structure, a 5'UTR, a translation region, and a 3'UTR in the order of 5' to 3', and may have a protein recognition region in the 5'UTR.
  • the invention relates to a pharmaceutical composition.
  • a pharmaceutical composition comprising the circular RNA molecule according to the first embodiment or the translation control system according to the second embodiment.
  • the pharmaceutical composition according to the present embodiment treats and prevents a specific disease in a multicellular organism by specifically activating protein translation in cells in which a target substance is present, and It may be a pharmaceutical composition used for diagnosis.
  • the multicellular organism is preferably a mammal (eg, human, mouse, monkey, pig, rat, etc.), more preferably a human.
  • the pharmaceutical composition according to this embodiment can be widely applied to diseases for which therapeutic effects are expected by imparting changes in specific functions to specific cells.
  • specific cells are referred to as target cells.
  • target cells include cells that have undergone degeneration, and more specifically, cells that have lost their original function (loss of function) and/or have acquired harmful function to other cells (gain of toxic function).
  • Preferred specific examples include cancer cells, virus-infected cells, and the like. Among these, cancer cells are particularly preferred.
  • cancer cells include the lesions of solid cancers such as breast cancer, liver cancer, pancreatic cancer, prostate cancer, ovarian cancer, colorectal cancer, colon cancer, stomach cancer, cervical cancer, and lung cancer.
  • the target substance that can specifically exist in cancer cells, virus-infected cells, etc. may be any target substance known from literature or databases.
  • Circular RNA molecules included in pharmaceutical compositions for cancer treatment include, for example, RNA molecules that have a recognition region that targets proteins and miRNAs that are specifically present in cancer cells, and encode proteins that kill cells.
  • a circular RNA molecule comprising a translated region can be used.
  • Such a pharmaceutical composition is expected to have a therapeutic effect when administered to a subject suffering from cancer, and is expected to have a recurrence prevention effect when administered to a subject after cancer treatment. Therefore, the pharmaceutical composition according to this embodiment can be suitably used as a cancer therapeutic agent or recurrence prevention agent.
  • Circular RNA molecules included in the pharmaceutical composition for virus-infected cells include, for example, a translation region that includes a recognition region that targets a virus protein or its fragment, and encodes a protein useful for killing or removing the virus.
  • a circular RNA molecule comprising the following can be used.
  • the pharmaceutical composition according to this embodiment can include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier refers to a substance that is commonly used in the field of formulation technology and that facilitates the formulation and application of pharmaceutical compositions to living organisms, and that is added to the extent that it does not inhibit or suppress its action.
  • Carriers include, for example, excipients, binders, disintegrants, fillers, emulsifiers, rheology modifiers, lubricants, or stabilizers.
  • RNA molecules can be directly introduced into cells using methods such as intramuscular injection, subcutaneous injection, intravenous injection, and intraarticular injection.
  • RNA molecules can also be introduced by being supported on a drug delivery carrier known per se in the art.
  • drug delivery carrier include polymer nanoparticles, polymer micelles, dendrimers, liposomes, virus nanoparticles, carbon nanotubes, etc.
  • the pharmaceutical composition according to this embodiment contains a circular RNA molecule as an active ingredient, it has high stability and durability, and low immunogenicity. Therefore, it is very advantageous in delivering it to desired cells where translational control is expected.
  • RNA template plasmids To prepare RNA template plasmids, the PCR products were cloned into PCR linearized pUC19 vectors by Gibson assembly using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) and transformed into DynaCompetent Cells JetGiga Escherichia coli DH5 ⁇ (BioDynamics Laboratory). Converted. After culturing E. coli in 3 ml of LB/Ampicillin (Amp) medium at 37°C for 8 to 16 hours, the plasmid was purified using NucleoSpin Plasmid EasyPure (TaKaRa). In the case of a template plasmid for internal PolyA-containing circRNA, transformed E.
  • coli was cultured in 50 ml LB/Amp medium, and the plasmid was purified using the PureYield Plasmid midiprep System (Promega). All plasmid sequences were confirmed by typical Sanger sequencing methods using a BygDye terminator v3.1 Cycle Sequencing Kit (Thermo Fisher scientific) and a 3500xL Genetic Analyzer (Thermo Fisher scientific).
  • a DNA template for in vitro transcription was amplified from the template plasmid using PrimeSTAR MAX DNA polymerase (TaKaRa). After digesting the template plasmid with DpnI (TOYOBO) at 37°C for 30 minutes, the PCR product was purified using a QIAquick PCR purification kit (QIAGEN).
  • QIAGEN QIAquick PCR purification kit
  • template plasmids were linearized with EcoRI-HF (New England Biolabs) or BamHI-HF (New England Biolabs) and purified with Monarch PCR & DNA Cleanup Kit (New England Biolabs). .
  • RNA was synthesized using MEGAscript T7 Kit (Thermo Fisher Scientific). For synthesis of capped mRNA, use 75 mM Anti-reverse cap analog (TriLink BioTechnologies) or G(5')ppp(5')A RNA Cap Structure Analog (A-cap) (New England Biolabs Japan). Transfer was performed in a GTP 4:1 solution using .
  • pseudouridine-5'-triphosphate ( ⁇ ) and 5-methylcytidine-5' are used instead of uridine triphosphate (U) and cytosine triphosphate (C).
  • m5C m5C
  • m1 ⁇ N1-methylpseudouridine-5'-triphosphate
  • the IVT reaction mixture was incubated at 37°C for up to 6 h, then mixed with TURBO DNase (Thermo Fisher Scientific) and further incubated at 37°C for 30 min to remove template DNA.
  • the obtained mRNA was purified using Monarch RNA Cleanup Kit (manufactured by New England Biolabs).
  • splicing buffer 50 mM Tris-HCl, 10 mM MgCl 2 , 1 mM DTT, pH 7.5, 2 mM GTP
  • Purified mRNA was subjected to 4% denaturing polyacrylamide gel electrophoresis (PAGE) (8.3M urea) and then separated from the gel in elution buffer (0.3M sodium acetate pH 5.2, 0.1% SDS) at 37°C with 200 rpm shaking. Incubation was performed overnight. Eluted mRNA was purified by phenol-chloroform extraction and precipitated with isopropanol.
  • PAGE polyacrylamide gel electrophoresis
  • the mRNA pellet was dissolved in nuclease-free water, desalted using Amicon Ultra 0.5 ml Centrifugal Filter Ultracel-50K (Millipore), and incubated with Antarctic Phosphatase (New England Biolabs) at 37°C for 30 minutes. Phosphatase-treated mRNA was repurified by phenol-chloroform extraction and isopropanol precipitation. In the experiment in Figure 5C, purification from the denaturing gel was omitted to save time. The concentration of purified mRNA was measured using NanoDrop2000 (Thermo Fisher scientific), and cell experiments were performed.
  • the precursor sequence of the circular RNA molecule used in this example is shown in the sequence listing using the following sequence number.
  • HEK293FT (Invitrogen), HeLa CCL2 (ATCC) and A549 (RCB3677) were prepared using 10% FBS (Biocera, Irish Origin), 0.1 mM MEM non-essential amino acids (Life Technologies), 2 mM L-glutamine (Life Technologies) and 1 mM Cultured in Dulbecco's Modified Eagle's Medium (DMEM) 4.5 g/L glucose (Nacalai Tesque) supplemented with sodium pyruvate (Nacalai Tesque). All cell lines were cultured at 37°C and 5% CO2 . All transfections were performed using Lipofectamine MessengerMAX (Thermo Fisher scientific) according to the manufacturer's protocol. For relevant experiments, RNA was co-introduced with synthetic miRNA mimics or inhibitors (Thermo Fisher scientific). Details of the transfection conditions for each experiment are shown in Table 4.
  • the reverse transcribed cDNA was purified using PrimeSTAR Max DNA using a primer set for splice junction amplification (Fwd: 5'-agctcgccgaccactaccagcag-3': SEQ ID NO: 51, Rev: 5'-gtagcggctgaagcactgcacg-3': SEQ ID NO: 52).
  • HEK293FT, A549 (1.0x10 5 cells) and HeLa (0.5x10 5 cells) were seeded in 24-well plates 24 hours before transfection. All flow cytometry measurements were performed 24 hours after transfection using a BD Accuri C6 (BD Biosciences). Cells were washed with phosphate-buffered saline (PBS, Nacalai Tesque), trypsinized with 100 ⁇ L of 0.25% Trypsin-EDTA (Thermo Fisher Scientific), and incubated at 37°C for 5 min. After incubation, 150 ⁇ L of fresh medium was added. Cells were transferred through a nylon mesh to a new microcentrifuge tube.
  • PBS phosphate-buffered saline
  • Trypsin-EDTA Trypsin-EDTA
  • EGFP was detected with FL1 (533/30 nm, 99% attenuation) and iRFP670 with FL4 (675/25 nm) filter.
  • the collected data were analyzed using FlowJo 10.5.3 software.
  • gates were created using mock samples. Debris data was removed when creating the anterior vs. lateral dot plot (FSC-A vs. SSC-A). Additionally, in the FL-1 vs FL-4 dot plot, events at the edge of the chart were removed.
  • the iRFP670 positive (reference positive) gate was defined with mock samples with 99.9% outside the gate. In the following analysis, the average value of EGFP+/iRFP670+ was used for calculation.
  • RNA extraction was performed 24 hours after transfection.
  • 200 ng of Polyinosinic-polycytidylic acid [Poly(I:C)] was transfected as a positive control.
  • Total RNA extraction was performed using Trizol Reagent (Thermo Fisher Scientific) and Monarch RNA Cleanup Kit (New England Biolabs) according to the manufacturer's protocol.
  • Reverse transcription was performed using 10 ⁇ l of the reaction solution using ReverTra Ace qPCR RT Master Mix with gDNA Remover (TOYOBO), and 400 ng of total RNA was used as a template.
  • the synthesized cDNA solution was diluted to 50 ⁇ l with nuclease-free water, and 1 ⁇ l of the cDNA solution was subjected to qPCR analysis.
  • qPCR analysis was performed using THUNDERBIRD Next SYBR qPCR Mix (TOYOBO), 20 ⁇ l of reaction mixture, and QuantStudio 3 Real-time PCR Systems (Thermo Fisher Scientific) in a three-step reaction according to the manufacturer's protocol.
  • Target mRNA amounts were normalized to ATP5B mRNA. All qPCRs were performed in duplicate, and the average value of Ct was processed to calculate the relative expression level using the ⁇ Ct method.
  • Primers for qPCR are shown in Table 5.
  • [WST-1 assay] HEK293FT, A549 (2.0x10 4 cells) and HeLa (1.0x10 4 cells) were seeded in a 96-well plate 24 hours before transfection. 24 hours after transfection, 10 ⁇ L/well of WST-1 reagent (Sigma-Aldrich) was added to the medium of each well, and the plate was incubated at 37°C for 1 hour. After incubation, absorbance at 440 nm and 620 nm was measured with a PE Envision 2104 Multilabel Reader (PerkinElmer).
  • Metridial luciferase (MetLuc2)
  • 50 ⁇ l of the medium was transferred to a Greiner LUMITRA 200 microplate (Greiner) and 0.5 ⁇ l of the Ready-To-Glow Secreted Luciferase Reporter Assay (TaKaRa) was added using an injector attached to a plate reader.
  • 10 ⁇ l of x substrate/reaction buffer was added. After shaking both vertically and horizontally with a shaking width of 3.0 mm and incubation for 30 seconds, luminescence was detected with a Centro LB 960 (Berthold technologies) with an integration time of 1 second. MetLuc activity was normalized and calculated 24 hours after transfection.
  • RNA linear mRNA
  • linRNA linear mRNA
  • Different types of linRNA including those with or without a 120-nucleotide polyA (pA) sequence (circRNA +pA, circRNA ⁇ pA), those without IRES (circRNA +pA ⁇ IRES, circRNA ⁇ pA ⁇ IRES), and three types of linRNA (Linear EGFP, Cap-EGFP).
  • RNA was prepared (Fig. 3A). In both cases, RNA was used that does not have a target site.
  • circRNAs with IRES showed higher translation efficiency than linRNA in the three human cell lines tested (HEK293FT, HeLa, A549), circRNAs ⁇ IRES did not activate translation (Fig. 3B).
  • circRNA+pA showed higher translation efficiency than IRES-dependent linRNA and circRNA ⁇ pA ( Figure 3B), confirming that the pA sequence enhances protein expression from circRNA.
  • CircRNA+pA showed a higher translation level than Cap-EGFP with m5C/ ⁇ , but its expression level was lower than m1 ⁇ and native mRNA (Fig. 3C).
  • miR-21-5p- and miR-339-5p-responsive circRNA switches may be due to endogenous miRNA activity expressed in HEK293FT cells. Therefore, in order to inhibit endogenous miRNA activity, a target miRNA inhibitor was added into the cells. Co-introduction of miR-21-5p inhibitor rescued circRNA translation. However, this was not observed with the miR-339-5p inhibitor. This result suggests that the lower fold change observed in the case of miR-21-5p-responsive circRNA switch may be due to the reduced ON state due to the intrinsic weak miR-21-5p activity, which is observed in HEK293FT cells. Consistent with previous reports describing weak miR-21-5p activity. However, the miR-339-5p responsive switch may be due to other factors, such as the accessibility of target sites through RNA secondary structure, as predicted by CentroidFold.
  • a miRNA-responsive ON system using two circRNA switches: an RBP-producing miRNA (miR-302a-5p)-responsive (MS2CP or U1A) circRNA and an EGFP-producing RBP-responsive EGFP circRNA.
  • the circRNA circuit designed with MS2CP or U1A produced EGFP only in the presence of miR-302a-5p mimic and functioned as an ON switch by detecting the target miRNA (Fig. 6B, left).
  • the fold change between the ON and OFF states of these miRNA-responsive ON circuits was approximately 3.5 times in the presence of 1 pmol of miR-302a-5p mimic (Fig. 6B, right).
  • the circRNA switch of the present invention has the potential to solve the problem of the prior art, which is the short half-life of modRNA-based circuits. Moreover, although durable RNA-based genetic circuits have been realized using replicon vectors, the circRNA-based circuits of the present invention have a more compact size, expected It is believed that it has multiple advantages compared to conventional techniques, such as the lack of self-replication, ease of handling, and high transfection efficiency with lipid nanoparticle-based systems.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

安定性が高く、かつ、miRNAまたはタンパク質特異的に翻訳制御可能な環状RNA分子。 (a)内部リボソーム侵入部位(IRES)と、 (b)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、 (c)miRNAまたはタンパク質を特異的に認識する核酸配列からなる認識領域とを含む核酸配列からなる環状RNA分子。

Description

環状RNA分子及びこれを用いた翻訳制御方法、翻訳活性化システム、並びに医薬組成物
 本発明は、miRNAまたはタンパク質に特異的に応答して翻訳を制御することができ、安定性、持続性に優れた環状RNA分子、当該環状RNA分子を用いた翻訳制御方法、当該環状RNAを含む翻訳活性化システム、並びに当該環状RNA分子を含む医薬組成物に関する。
 mRNAを用いた遺伝子導入は、現在広く用いられているプラスミドDNAやウイルスベクターなどのDNAベースの遺伝子導入技術とは異なり、望まないゲノムDNA の損傷リスクを回避できる。これに加え、プラスミドDNAは非分裂細胞への導入が難しい一方、mRNA は非分裂細胞にも容易に導入できることが知られている。これらの特性から、近年ではmRNAを用いたゲノム編集やiPS 細胞の樹立、mRNAワクチンに代表されるmRNA医薬としての利用についての研究が進められており、医療分野において、mRNAを用いた遺伝子導入技術に注目が集まっている。
 しかし、mRNAを用いた遺伝子導入の問題点として、mRNAの細胞内における不安定さに起因する、遺伝子発現の持続性・発現レベルの低さが挙げられる(例えば、非特許文献1、2を参照)。また、成長因子や修飾酵素などの特定のタンパク質は複数の疾患の病態を担っている場合が多く、生体レベルでの遺伝子導入において、ターゲットの臓器・細胞種以外でタンパク質が発現してしまうオフターゲットによる副作用が懸念されている(例えば、非特許文献3を参照)。
 mRNAによる遺伝子導入を利用した技術において、これらの諸問題点の改善が必要とされている。古くから行われてきたmRNAによる持続性・遺伝子発現レベルの改善研究は、コドンの最適化や修飾塩基の導入、半減期の長いmRNAを探索し、そのUTRを付加するといった、配列ベースのエンジニアリングがほとんどであった(例えば、非特許文献1、4を参照)。これに加え、近年ではあらゆる細胞種において報告が相次いでいるCircular RNA (circRNA)を模倣し、mRNAを環状化することで末端からの分解を抑制し、遺伝子発現の持続性・発現レベルを改善しようという取り組みが報告され始めている。
 人工環状mRNAは通常の人工mRNAよりも高い遺伝子発現レベルとその持続性を示すことが報告されている(例えば、非特許文献5を参照)。その有用性の高さから、米国では人工環状mRNAを用いた疾患治療を目的としたベンチャー企業が設立されるなど、医療応用の面で注目が集まっている。また、環状化の方法や、翻訳方法についても、議論されている(例えば、非特許文献5、6を参照)。
Sahin U. et al., Nat Rev Drug Discov 13(10), 759-780 (2014) Schott JW. et al., Mol Ther 24(9), 1513-1527 (2016) Kowalski SP. et al., Mol Ther 27(4), 710-728 (2019) Thess A. et al., Mol Ther 23(9),1456-1465 (2015) Wesselhoeft RA., et al. Nat Commun 9(1), 2629 (2018) Alan C et al., Trends in Biotechnology 38(2), 217-230 (2020)
 しかし、これまでの人工環状mRNAのエンジニアリングに関する研究は、非特許文献5、6に開示されたように、「どのように環化させるか」や「どのように翻訳させるか」といった段階での議論にとどまっており、その翻訳制御手法は開発されていない。
 本発明者らは鋭意検討の結果、環状mRNA分子の所定の位置に、miRNAまたはタンパク質を認識する認識部位を設けることで、環状mRNA分子の翻訳制御を可能とし、かつ遺伝子発現の持続性及び発現レベルを改善することを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の態様を含む。
[1] (a)内部リボソーム侵入部位(IRES)と、
 (b)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
 (c)miRNAまたはタンパク質を特異的に認識する核酸配列からなる認識領域と
を含む核酸配列からなる環状RNA分子。
[2] 前記miRNAを特異的に認識する核酸配列からなる認識領域が、前記翻訳領域の3'末端側であって、前記IRESの5'末端側に位置する、[1]に記載の環状RNA分子。
[3] 前記翻訳領域の3'末端側に、polyA配列をさらに含む[1]に記載の環状RNA分子。
[4] 前記miRNAを特異的に認識する核酸配列からなる認識領域が、前記翻訳領域の3'末端側であって、polyA配列の5'末端側に位置する、[3]に記載の環状RNA分子。
[5] 前記miRNAを特異的に認識する核酸配列からなる認識領域が、polyA配列の3'末端側に位置する、[3]に記載の環状RNA分子。
[6] 前記タンパク質を特異的に認識する核酸配列からなる認識領域が、前記IRESの内部または3'末端側に位置する、[1]に記載の環状RNA分子。
[7] 前記IRESが、コクサッキーウイルスB3由来のIRESであり、当該IRESのDomain VIもしくはVIIに、または当該IRESのDomain VIIと翻訳領域との間に、前記タンパク質を特異的に認識する核酸配列を含む認識領域を備える、[6]に記載の環状RNA分子。
[8] [1]に記載の核酸配列を含む、線状核酸配列を含む前駆RNA分子。
[9] 前記線状核酸配列を挟み込む1対の環状化配列をさらに含み、前記1対の環状化配列が、グループIイントロンの5'断片とその5'末端側に設けられた5'相同性アーム、及びグループIイントロンの3'断片とその3'末端側に設けられた3'相同性アームを含む、[8]に記載の前駆RNA分子。
[10] [8]または[9]に記載の前駆RNA分子をコードするDNA構築物。
[11] [1]に記載の環状RNA分子を細胞に接触させる工程、または[10]に記載のDNA構築物を細胞に導入する工程を含む、翻訳制御方法。
[12] (i) (ai)内部リボソーム侵入部位(IRES)と
 (bi)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
 (ci)前記翻訳領域の3'末端側であって、前記IRESの5'末端側に位置するmiRNAを特異的に認識する核酸配列からなる認識領域とを含む、第1の環状RNA分子と、
 (ii) (aii)内部リボソーム侵入部位(IRES)と、
 (bii)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
 (cii)前記(bi)の翻訳領域がコードするタンパク質を特異的に認識する核酸配列からなる認識領域であって、前記IRESの内部または3'末端側に位置する認識領域とを含む、第2の環状RNA分子と
を含む、翻訳活性化システム。
[13] [12]に記載の翻訳活性化システムを細胞に接触させる工程を含む、翻訳活性化方法。
[14] [1]に記載の環状RNA分子を含む、医薬組成物。
 本発明によれば、miRNAやタンパク質などの細胞内分子との相互作用を利用した、人工環状RNAの翻訳制御手法を開発することに成功した。さらに、試験管内転写により作製した人工mRNAを細胞に導入し、その翻訳制御が可能であることも見出した。この翻訳制御手法の原理は、miRNAによる人工環状RNAの分解、またはIRESへのタンパク質の結合を介したリボソームのスキャニングの阻害である。この翻訳制御手法では、任意のmiRNAまたはタンパク質を用いて人工環状RNAの翻訳制御を行うことができる。また、これを応用することで、特定の細胞種でのみ人工環状RNAからの遺伝子発現をON/OFF制御することが可能であり、従来のものよりもより特異性の高いmRNA医薬としての利用が期待できる。
図1Aは、miRNA応答性環状RNAスイッチと、タンパク質応答性環状RNAスイッチの設計を表す模式図であり、翻訳領域の3'末端側にmiRNAの標的部位を持つmiRNA応答性環状RNAスイッチ(上段左)と、IRESの5'末端側miRNAの標的部位を持つmiRNA応答性環状RNAスイッチ(中段左)、及びIRESの内部にタンパク質の標的部位を持つタンパク質応答性環状RNAスイッチ(下段左)を例示する。いずれのスイッチでも、標的のmiRNA/タンパク質が存在すると、環状RNAからの遺伝子発現が抑制される。 図1Bは、miRNA応答性環状RNA回路のスキームであり、第1の出力(タンパク質)はmiRNA応答性スイッチにコードされ、第2の入力はタンパク質応答性スイッチとして設計されている。標的miRNAが第1の出力を抑制すると、第2の出力が活性化され(ON)、標的miRNAが存在せず、第1の出力が活性化されると、第2の出力が抑制される(OFF)。 図2Aは、permuted intron-exon(PIE)スプライシングの模式図であり、上から、グループIイントロン(自己スプライシングリボザイム)、前駆RNA分子、自己触媒性環状化反応を示す。 図2Bは、in vitro転写された後のcircRNAの変性PAGEゲルイメージであり、分子量マーカーとして、DynaMarker RNA High (BioDynamics Laboratory) とLow Range ssRNA Ladder (NEB) を使用した。 図2Cは、RT-PCR 増幅によるスプライスジャンクションのサンガーシーケンシングの結果を示す。 図2Dは、RNase R処理後の変性PAGEゲルイメージである。 図3Aは、実施例に用いたmRNAの構造説明図であって、5'末端にCap構造を備え、IRESを備える線状mRNA 及び、5'末端にA-Capを備え、IRESを備える線状mRNA(Linear EGFP)、5'末端にCap構造を備え、天然型、または修飾塩基(m5C/Ψ、m1Ψ)を備えるmRNA(Cap-EGFP (Native, m5C/Ψ, m1Ψ))、IRESを備え、polyA配列を持たない環状mRNA(Circular EGFP ΔpA)、IRESもpolyA配列も持たない環状mRNA(Circular EGFP ΔpAΔIRES)、IRESとpolyA配列を備える環状mRNA(Circular EGFP +pA)、IRESを持たず、polyA配列を備える環状mRNA(Circular EGFP +pAΔIRES)を示す。すべてのmRNAはレポーター遺伝子としてEGFPをコードする。 図3Bは、circRNAと、当該circRNAと同じ構成成分を持つ線状mRNAの、HEK293FT、HeLa、A549細胞における翻訳効率の比較を示す。すべてのデータは、平均値±SD、n = 3で示される。 図3Cは、circRNAと、CVB3 IRESに対応する構造的特徴及び自己スプライシングリボザイムに対応する構造的特徴を持たない線状mRNAの、HEK293FT、HeLa、A549細胞における翻訳効率の比較を示す。すべてのデータは、平均値±SD、n = 3で示される。 図3Dは、A549細胞におけるトランスフェクション24時間後の免疫応答関連遺伝子の評価を示す。有意水準は、**P < 0.01 ***P < 0.001 (Dunnett's test)で示され、すべてのデータは、平均値±SD、n = 3で示される。 図3Eは、WST-1アッセイによる細胞毒性評価を示す。毒性コントロールのため、細胞は1 μg/ml (HEK293FT, HeLa) または2 μg/ml (A549)のpuromycin で1日間培養した後、測定した。この図のすべてのデータは、平均値±SD、n = 3で示される。 図4Aは、5' UTRまたは3'UTRに標的miRNA(hsa-miR-206、hsa-miR-302-5p、hsa-miR-21-5p、hsa-miR-339-5p)の標的部位を持つcircRNAのトランスフェクション効率を評価した結果であり、HEK293FT細胞にmiRNAのmimicを共導入して評価した。翻訳効率は、miRNA mimicを共導入しなかったサンプル(miRNA mimic-)に対して正規化することによって算出した。 図4Bは、図4Aで評価した各miRNA応答性circRNAのON状態とOFF状態のFold Changeを示す。miRNA mimicを共導入しなかったサンプルをON状態とした。 図4Cは、HEK293FT、HeLa、A549におけるmiRNA応答性circRNAによる内在性miRNAの検出結果を示す。翻訳効率は、miRNA阻害剤を導入したサンプルに対して正規化することにより算出した。 図4Dは、図4Cで評価した4種のmiRNA応答性circRNAのFold Changeと、Fold Changeの数値が最も大きかったmiRNA応答性circRNAスイッチの蛍光画像を示す。ON状態は、特定のmiRNA阻害剤を添加したサンプルとした。蛍光画像のスケールバーは200μmを示す。有意水準は、***P < 0.001 (Dunnett's test)で示される。すべてのデータは、平均±SD、n = 3として示される。 図5Aは、タンパク質応答性circRNAスイッチ を構成するCVB3 IRESへの、タンパク質認識領域(モチーフ)である、U1AアプタマーまたはMS2SLの挿入位置の違いによるvariantを示す図である。 図5Bは、図5Aに示す、MS2SLをCVB3 IRESのDomain VIIに挿入したMS2SL応答性circRNAスイッチ variant 4と、U1AアプタマーをCVB3 IRESのDomain VIに挿入したU1A応答性circRNAスイッチvariant 4の、MS2SLまたはU1A存在下(+)または非存在下(-)における蛍光画像を示す。 図5Cは、タンパク質認識領域(モチーフ)の挿入位置の検討を示す模式図、及びドメインVIIのステムループの下流20 nt(variant 5)または98 nt(variant 6)にモチーフを挿入したMS2SL応答性またはU1A応答性circRNAスイッチvariantの翻訳活性を、図5Bのvariant 4と比較した結果を示す。 図5Dは、polyA配列を持たないMS2SL応答性circRNAスイッチ(Switch)、polyA配列を持たず、MS2SLによる認識領域を持たないmRNA(No motif)、polyA配列を備えるMS2SL応答性circRNAスイッチ(Switch+pA)、polyA配列を備え、MS2SLによる認識領域を持たないmRNA(No motif+pA)の、MS2SL存在下(+)または非存在下(-)における翻訳効率を示すグラフ(上左)、FACS(上右)、並びにU1A応答性circRNAスイッチ(Switch)、polyA配列を持たず、U1Aによる認識領域を持たないmRNA(No motif)、polyA配列を備えるU1A応答性circRNAスイッチ(Switch+pA)、polyA配列を備え、U1Aによる認識領域を持たないmRNA(No motif+pA)の、U1A存在下(+)または非存在下(-)における翻訳効率を示すグラフ(下左)、FACS(下右)である。 図6Aは、miRNA応答性circRNAスイッチと、タンパク質応答性circRNAスイッチを使用した、miRNA応答性ON回路を概念的に示す図であり、miR-302-5p応答性MS2CPスイッチまたはmiR-21-5p応答性U1Aスイッチと、MS2CPもしくはU1A応答性EGFPスイッチによるEGFPの翻訳活性化、またはMS2CPもしくはU1A応答性MetLuc2スイッチによるMetLuc2の活性化のメカニズムを示す。 図6Bは、HEK293FT細胞にmiRNA応答性ON回路を導入した場合の蛍光画像、フローサイトメーターの散布図、およびmiR-302a-5p mimicを用いたcircRNA ON回路のタイトレーション結果であり、蛍光画像のスケールバーは200μmを示す。 図6Cは、HEK293FT細胞におけるmiR-302a-5pミミックを用いたcircRNA ON回路の持続性の評価を示す図である。 図6Dは、A549細胞における内在性miR-21-5pを用いたcircRNA ON回路の持続性の評価を示す図である。図6AからDのすべてのデータは、平均値±SD、n = 3で示される。 図7は、circRNAと修飾塩基(m5C/ψ、m1ψ)を持つ従来の線状mRNAのルシフェラーゼ活性の持続の比較を表す。データはすべて平均値±SD、n = 3で表示されている。
 以下に、本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。
 [1.環状RNA分子]
 本発明は、第1実施形態によれば、環状RNA分子に関する。環状RNA分子は、以下の(a)から(c)を含む核酸配列からなる。
 (a)内部リボソーム侵入部位(IRES)
 (b)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域
 (c)miRNAまたはタンパク質を特異的に認識する核酸配列からなる認識領域
 本実施形態による環状RNA分子とは、5'末端と3'末端が存在する線状RNA分子と異なり、環状に結合された核酸分子から構成されるRNA分子をいう。本明細書において、環状RNA分子を、circRNAと省略して記載する場合がある。本実施形態による環状RNA分子には、miRNAを特異的に認識する環状RNA分子と、タンパク質を特異的に認識する環状RNA分子とが含まれる。以下、環状RNA分子により認識されるmiRNA及びタンパク質を総称して、標的物質と指称する場合がある。本実施形態による環状RNA分子は、典型的には、標的物質の存在下で翻訳領域がコードするタンパク質の翻訳が抑制されるmRNAである。本実施形態による環状RNA分子が、標的物質の非存在下にあり、翻訳領域がコードするタンパク質の翻訳が行われうる状態にあることを、ON stateという。典型的には標的物質が存在しない、あるいは標的物質がRNA分子に結合可能な態様で存在しない場合をON stateという。一方、環状RNA分子が、タンパク質の翻訳ができない状態にあることをOFF stateという。典型的には標的物質がRNA分子に結合可能な態様で存在する場合をOFF stateという。本明細書において、このように標的物質の存在・非存在に応じて、翻訳状態がOFF/ONと変化するRNA分子をスイッチRNAという。
 環状RNA分子には、in vitroで合成された環状mRNAも、プラスミドとして人工的に調製され、細胞中で転写され、環状化されて生成した環状mRNAも含まれうる。
 本実施形態によるRNA分子の構造と設計について説明する。RNA分子は、(a)IRESと、(b)翻訳領域と、(c)認識領域とを含み、任意選択的に、polyA配列を含んでもよい核酸分子である。
 (a)内部リボソーム侵入部位(IRES)
 内部リボソーム侵入部位(internal ribosome entry site:IRES)は、目的の細胞での活性を有するIRES、またはin vitro転写mRNAで利用可能なIRESが望ましい。IRESの例としては、ウイルス由来のIRES、細胞のmRNA由来のIRES、人工的に得られたIRES、及び真核生物型開始因子(eukaryotic Initiation Factor: eIF)に対するアプタマーが挙げられるが、これらには限定されない。IRESの核酸配列は、データベース(例えば、http://www.iresite.org/)から得ることができる。ウイルス由来の好適なIRESの例としては、コクサッキーウイルスB郡3型(CVB3)、脳心筋炎ウイルス(EMCV)、またはIRESと推定され得る配列を持つウイルス由来の5'UTR配列などが挙げられるが、これらには限定されない。細胞のmRNA由来のIRESの例としては、RPL41、GATA1,HMGA1等のmRNA上に存在するIRESが挙げられるが、これらには限定されない。
 (b)翻訳領域
 翻訳領域は、IRESによって翻訳される核酸配列を含む領域であって、典型的には、タンパク質をコードする核酸配列を含む領域である。より詳細には、翻訳領域は、5'側から順に、開始コドン、タンパク質をコードする核酸配列、終始コドンを含む。ここでいうタンパク質には、タンパク質の断片や融合タンパク質、ペプチドを含むものとする。
 タンパク質は任意のタンパク質であってよく、その種類や数は限定されるものではない。RNA分子の用途及び目的に応じて、所望のタンパク質を含むことができる。例えば、タンパク質は、検出タンパク質、治療タンパク質、他のONスイッチまたはOFFスイッチmRNAに結合可能なRNA結合タンパク質を含んでいてもよい。検出タンパク質、治療タンパク質、もしくはRNA結合タンパク質は、検出、治療、もしくは結合機能を単独で発揮するタンパク質に限定されず、RNA分子がコードするタンパク質とは別の物質と一緒に、当該検出や治療、結合の機能を発揮する物質であってもよい。
 検出タンパク質とは、翻訳され、検出可能な情報を提示し得る任意のタンパク質をいう。検出タンパク質としては、蛍光、発光、もしくは呈色により、または蛍光、発光もしくは呈色を補助することなどにより、視覚化し、定量化することができるタンパク質であってよい。
 蛍光タンパク質の例としては、Sirius、EBFPなどの青色蛍光タンパク質;mTurquoise、TagCFP、AmCyan、mTFP1、MidoriishiCyan、CFPなどのシアン蛍光タンパク質;TurboGFP、AcGFP、TagGFP、Azami-Green (例えば、hmAG1)、ZsGreen、EmGFP、EGFP、GFP2、HyPerなどの緑色蛍光タンパク質;TagYFP、EYFP、Venus、YFP、PhiYFP、PhiYFP-m、TurboYFP、ZsYellow、mBananaなどの黄色蛍光タンパク質;KusabiraOrange (例えば、hmKO2)、mOrangeなどの橙色蛍光タンパク質;TurboRFP、DsRed-Express、DsRed2、TagRFP、DsRed-Monomer、AsRed2、mStrawberryなどの赤色蛍光タンパク質;TurboFP602、mRFP1、JRed、KillerRed、mCherry、HcRed、KeimaRed(例えば、hdKeimaRed)、mRasberry、mPlumなどの近赤外蛍光タンパク質が挙げられるが、これらには限定されない。発光タンパク質の例としては、イクオリンを例示することができるが、これに限定されない。
 蛍光、発光または呈色を補助するタンパク質としては、ルシフェラーゼ、ホスファターゼ、ペルオキシダーゼ、βラクタマーゼなどの蛍光、発光または呈色前駆物質を分解する酵素を例示することができるが、これらには限定されない。蛍光、発光または呈色を補助するタンパク質をコードする核酸配列を翻訳領域に含む環状RNA分子の使用においては、対応する前駆物質と、当該環状RNA分子に翻訳されて生成されるタンパク質とが接触可能な態様で使用する必要がある。例えば、前駆物質と当該環状RNA分子を導入した細胞を接触させること、または当該環状RNA分子を導入した細胞内に対応する前駆物質を導入することができる。
 治療タンパク質は、細胞の機能に影響を与えることにより、疾患や状態の治療、予防、診断に用いられ得るタンパク質をいう。細胞の機能に影響を与えるとは、細胞の所定の機能を上昇させ、低下させ、または一定の範囲に保持することが含まれる。治療タンパク質としては、細胞増殖タンパク質、細胞死滅タンパク質、細胞シグナル因子、薬剤耐性遺伝子、転写制御因子、翻訳制御因子、分化制御因子、リプログラミング誘導因子、RNA結合タンパク質因子、クロマチン制御因子、膜タンパク質、またはこれらの断片もしくは複合体を例示することができるが、これらには限定されない。なお、これらのタンパク質は、細胞の機能に影響を与えることで、検出可能な情報を提示し得るということもでき、治療タンパク質であるとともに、検出タンパク質であるということもできる。その他の治療タンパク質としては、酵素、成長因子、抗体、抗原、ウイルスまたはその部分を構成するタンパク質、ウイルスの産生を阻害するタンパク質、ゲノム編集タンパク質、またはこれらの断片もしくは複合体を例示することができるが、これらには限定されない。
 例えば、細胞増殖タンパク質は、それを発現した細胞のみを増殖させ、増殖した細胞を特定することでマーカーとして機能する。細胞死滅タンパク質は、それを発現した細胞の細胞死を引き起こすことで、特定の分子(標的物質)を含有し、もしくは含有しない細胞自体を死滅させ、細胞の生死を示すマーカーとして機能する。細胞シグナル因子は、それを発現した細胞が、特定の生物学的信号を発し、この信号を特定することでマーカーとして機能する。細胞死滅タンパク質として、例えば、Bacillus amyloliquefaciens由来のbarnaseなどのRNA分解酵素、HokB、Fst、GhoT (膜破壊)、HipA(リン酸化による核酸伸長阻害)、RelE、YafO、VapC、MazF、MqsR、PemKHicA(endonuclease)、FicT(Adenylation)、oc(Phosphorylation)、CcdB、ParE(Gyrase inhibitor)、Tact(Inhibitor of translation)、cbtA (Inhibitor of cytoskeletal protein)などの毒素、Bax、Bimなどのアポトーシス誘導タンパク質が挙げられるが、これらには限定されない。翻訳制御因子は、一例としては、特定のRNAの3次構造を認識して結合することで他のmRNAからのタンパク質への翻訳を制御することでマーカーとして機能する。翻訳制御因子として、5R1、5R2(Nat Struct Biol. 1998 jul; 5(7):543-6)、B2(Nat Struct Mol Biol. 2005 Nov;12(11):952-7)、Fox-1(EMBO J. 2006 Jan 11;25(1):163-73.)、GLD-1(J Mol Biol. 2005 Feb 11;346(1):91-104.)、Hfq(EMBO J. 2004 Jan 28;23(2):396-405)、HuD(Nat Struct Biol. 2001 Feb;8(2):141-5.)、SRP19(RNA. 2005 Jul;11(7):1043-50)、L1(Nat Struct Biol. 2003 Feb;10(2):104-8.)、L11(Nat Struct Biol. 2000 Oct;7(10):834-7.)、L18(Biochem J. 2002 Mar 15;362(Pt 3):553-60)、L20(J Biol Chem. 2003 Sep 19;278(38):36522-30.)、L23(J Biomol NMR. 2003 Jun;26(2):131-7)、L25(EMBO J. 1999 Nov 15;18(22):6508-21.)、L30(Nat Struct Biol. 1999 Dec;6(12):1081-3.)、LicT(EMBO J. 2002 Apr 15;21(8):1987-97.)、MS2 coat(FEBS J. 2006 Apr;273(7):1463-75.)、Nova-2(Cell. 2000 Feb 4;100(3):323-32)、Nucleocapsid(J Mol Biol. 2000 Aug 11;301(2):491-511.)、Nucleolin(EMBO J. 2000 Dec 15;19(24):6870-81.)、p19(Cell. 2003 Dec 26;115(7):799-811)、L7Ae(RNA. 2005 Aug;11(8):1192-200.)、PAZ(PiWi Argonaut and Zwille)(Nat Struct Biol. 2003 Dec;10(12):1026-32.)、RnaseIII(Cell. 2006 Jan 27;124(2):355-66)、RR1-38(Nat Struct Biol. 1998 Jul;5(7):543-6.)、S15(EMBO J. 2003 Apr 15;22(8):1898-908.)、S4(J Biol Chem. 1979 Mar 25;254(6):1775-7.)、S8(J Mol Biol. 2001 Aug 10;311(2):311-24.)、SacY(EMBO J. 1997 Aug 15;16(16):5019-29.)、SmpB(J Biochem (Tokyo). 2005 Dec;138(6):729-39)、snRNP U1A(Nat Struct Biol. 2000 Oct;7(10):834-7.)、SRP54(RNA. 2005 Jul;11(7):1043-50)、Tat(Nucleic Acids Res. 1996 Oct 15;24(20):3974-81.)、ThrRS(Nat Struct Biol. 2002 May;9(5):343-7.)、TIS11d(Nat Struct Mol Biol. 2004 Mar;11(3):257-64.)、Virp1(Nucleic Acids Res. 2003 Oct 1;31(19):5534-43.)、Vts1P(Nat Struct Mol Biol. 2006 Feb;13(2):177-8.)、LS4及びLS12(いずれもNucleic Acids Res. 2022 Jan 25;50(2):601-616. doi: 10.1093/nar/gkab527.)及びλN(Cell. 1998 Apr 17;93(2):289-99.)が例示される。
 翻訳領域は、上記で例示したタンパク質の2以上の組み合わせからなる融合タンパク質をコードする核酸配列を含んでもよい。また、2以上のタンパク質の間に、自己切断配列を含んでもよく、これにより、翻訳されたタンパク質が、別個のタンパク質分子として機能するように構成されていてもよい。
 (c)認識領域
 RNA分子に含まれる認識領域は、miRNAまたはタンパク質を特異的に認識する核酸配列を含む領域である。認識領域は、標的物質の存在下で、miRNAまたはタンパク質と特異的な結合を形成し、miRNAによる環状RNAの分解、またはIRESへのタンパク質の結合を介したリボソームのスキャニングの阻害を生じさせる。miRNAを特異的に認識する核酸配列としては、miRNAの相補配列(部分相補配列を含む)が挙げられる。タンパク質を特異的に認識する核酸配列としては、Casファミリータンパク結合性RNAなどのタンパク質結合性RNA配列、アプタマー、アプタザイムが挙げられる。miRNAを特異的に認識する核酸配列を含む領域を、本明細書において、miRNA認識領域と指称する。また、タンパク質を特異的に認識する核酸配列を含む領域を、本明細書において、タンパク質認識領域と指称する。
 miRNA認識領域の一例であるRNAを特異的に認識する核酸配列の例としては、RNA誘導サイレンシング複合体(RNA induced silencing complex:RISC)を構成するmiRNAの標的となる核酸配列が挙げられる。RISCを構成するmiRNAの標的となる核酸配列は、miRNAの標的配列ともいう。miRNA標的配列は、例えば、miRNAに相補的な配列であることが好ましい。あるいは、当該miRNA標的配列は、miRNAにおいて認識され得る限り、完全に相補的な配列との不一致(ミスマッチ)を有していても良い。当該miRNAに完全に相補的な配列からの不一致は、所望の細胞において、通常にmiRNAが認識し得る不一致であれば良く、生体内における細胞内の本来の機能では、40~50% 程度の不一致があっても良いとされている。このような不一致は、特に限定されないが、1塩基、2塩基、3塩基、4塩基、5塩基、6塩基、7塩基、8塩基、9塩基、若しくは10塩基又は全認識配列の1%、5%、10%、20%、30%、若しくは40%の不一致が例示される。また、特には、細胞が備えているmRNAのmiRNA標的配列のように、特に、シード領域以外の部分に、すなわちmiRNAの3'側の16 塩基程度に対応する、標的配列内の5'側の領域に、多数の不一致を含んでもよく、シード領域の部分は、不一致を含まないか、1塩基、2塩基、若しくは3塩基の不一致を含んでもよい。miRNA認識領域は、1種類のmiRNAにより認識される核酸配列を1リピート備えてもよく、2リピート以上備えていてもよい。あるいは、miRNA認識領域は、それぞれが異なるmiRNAにより認識される2以上の異なる核酸配列を備えていてもよい。
 タンパク質認識領域の一例であるアプタマーとは、標的物質を特異的に認識するように選択される核酸をいう。アプタマーの標的物質は、タンパク質、ペプチド、有機小分子、細胞、組織、核酸、ウイルス、金属イオン等が挙げられるが、これらには限定されない。アプタマーは、標的物質が決まれば、例えば、SELEX(Systematic Evolution of Ligands By EXponential enrichment)法により選択し、設計することができる。あるいは、アプタマーは、文献やデータベース(例えば、https://www.aptagen.com/apta-index/)から知られている、特定の標的物質を認識するアプタマーもしくは、特異的に標的物質を認識可能なその改変配列を有するアプタマーであってもよい。または、天然に存在するRNA結合タンパク質とその結合配列のデータベース(例えば、http://cisbp-rna.ccbr.utoronto.ca/)を利用してもよい。
 タンパク質認識領域を構成する核酸配列はまた、タンパク質認識領域に含まれる核酸配列と標的物質との複合体の解離定数Kdが、8.0x10-6M以下、好ましくは1.0x10-9M以下、さらに好ましくは1.0x10-12M以下であって、タンパク質認識領域に含まれる核酸配列と標的物質との複合体がRNA分子上で維持され、はIRESへのタンパク質の結合を介したリボソームのスキャニングの阻害を生じさせることが可能な構造であることが好ましい。
 環状RNA分子は、上記(a)IRES、(b)翻訳領域、(c)認識領域を必須の構成要素とし、さらに、任意選択的な構成要素として下記(d)polyA配列、(e)接続配列、(f)スペーサ配列を含みうる。
 (d)polyA配列
 環状RNA分子は、上記(b)翻訳領域の3'側末端に、polyA配列を含むことができる。polyA配列は、アデニン塩基Aの合計長が15 mer 以上の核酸配列であってよく、途中にA以外の核酸塩基が約50%以下の割合で含まれていてもよい。好ましくは、polyA配列は、アデニン塩基Aの合計長が15~200mer程度であってよく、100~150mer程度であってもよい。polyA配列は、翻訳制御に必須の構成ではないが、翻訳効率を向上させ、免疫応答性を低減することができる点で、環状RNA分子に含まれていることが好ましい。polyA配列は、通常、(b)翻訳領域の3'末端側に設けられ、(b)翻訳領域と(d)polyA配列の間に、(c)miRNA認識領域が設けられる場合もありうる。
 (e)接続配列
 環状RNA分子が、自己スプライシングイントロンによる環状化反応により製造される場合には、環状RNA分子は、環状化配列に由来する接続配列を備える。この場合、接続配列は、自己スプライシングイントロンとその周辺配列であるエキソン配列の一部から構成され、3'スプライスサイトと5'スプライスサイトの連結部分にスプライスジャンクションを有する。接続配列は、IRESの5'末端側に位置する。環状RNA分子が、T4 RNA ligaseやケミカルライゲーションなどの方法により環状化されて製造される場合には、環状化に伴い残存する接続配列は存在しない。なお、環状化の方法については後述する。
 (f)スペーサ配列
 環状RNA分子は、上記(a)IRES、(b)翻訳領域、(c)認識領域、及び任意選択的に(d)polyA配列及び(e)接続配列の間に、これらのいずれにも該当しないスペーサ配列を含んでもよい。スペーサ配列は、IRESや、グループIイントロンなどの環状化に用いられる配列、polyA配列の機能を阻害しない配列であることが好ましい。
 環状RNA分子においては、上記(a)IRES、(b)翻訳領域、及び(c)認識領域が作動可能に連結されている。これにより、標的分子が存在しない場合には、翻訳領域がコードするタンパク質の翻訳が行われ、標的分子の認識配列への結合に応答して翻訳領域がコードするタンパク質の翻訳が抑制される。
 (i)miRNA認識領域を持つ環状RNA分子
 miRNA認識領域を持つ環状RNA分子は、5'から3'の向きに、順に(a)IRES、(b)翻訳領域、及び(c)認識領域が作動可能に連結され、(c)認識領域の3'側末端に(a)IRESが連結されていることが好ましい。ここで、例えば、構成単位(X)と(Y)が「連結される」とは、構成単位(X)と(Y)が直接連結されてもよく、間にスペーサ配列が介在していてもよいことをいう。より好ましい態様として以下が挙げられる。
 (態様iA)
 miRNA認識領域を持つ環状RNA分子は、好ましくは、[(a)IRES]を起点と捉えると、5'から3'の向きに以下を順に含む。
[(a)IRES]-[(b)翻訳領域]-[(c)miRNA認識領域]-[(d)polyA配列]-[(e)接続配列]
 ここで、[接続配列]の3'末端は、[(a)IRES]の5'末端と接続される。本態様においては、[(c)miRNA認識領域]は、[(b)翻訳領域]に直接連結することが好ましく、[(c)miRNA認識領域]の5'末端が、[(b)翻訳領域]の終始コドンと結合していることが好ましい。
 (態様iB)
 miRNA認識領域を持つ環状RNA分子は、好ましくは、[(a)IRES]を起点と捉えると、5'から3'の向きに以下を順に含む。
[(a)IRES]-[(b)翻訳領域]-[(d)polyA配列]-[(e)接続配列]-[(c)miRNA認識領域]ここで、[(c)miRNA認識領域]の3'末端は、[(a)IRES]の5'末端と接続される。
 (ii)タンパク質認識領域を持つ環状RNA分子
 タンパク質認識領域を持つ環状RNA分子は、5'から3'の向きに、順に(a)IRES及び(b)翻訳領域が作動可能に連結され、(c)タンパク質認識配列は、(a)IRESの配列内部に結合されるか、(a)IRESの3'側末端側に連結されることが好ましい。(c)タンパク質認識領域が、(a)IRESの配列内部に結合される場合、(c)タンパク質認識領域は、(a)IRESの、翻訳開始因子との結合部位と18S rRNAに対するアンチセンス領域の下流に結合されることが好ましい。このような構造とすることで、リボソームのスキャニング阻害が生じ、翻訳の抑制が可能となるためである。より好ましい態様として以下が挙げられる。
 (態様iiA)
 タンパク質認識領域を持つ環状RNA分子は、好ましくは、[(a)IRES]を起点と捉えると、5'から3'の向きに以下を順に含む。
[(a)IRES・(c)タンパク質認識領域]-[(b)翻訳領域]-[polyA配列]-[接続配列]
 ここで、[接続配列]の3'末端は、[(a)IRES・(c)タンパク質認識領域]の5'末端と接続され、[(a)IRES・(c)タンパク質認識領域]とは、IRES配列中に、タンパク質認識領域を備えることを意味する。したがって、[(a)IRES・(c)タンパク質認識領域]の5'末端および3'末端は、IRES由来の配列である。IRESが、Domain I、II、III、IV、V、VI、及びVIIを備えるコクサッキーウイルスB3(CVB3)由来のIRESであることが好ましく、この場合、Domain VIまたはVIIに、タンパク質認識領域を備えることが好ましい。
 CVB3 IRES配列中に、タンパク質認識領域を備える好ましい配列の例を、配列番号1及び2に示す。配列番号1は、IRES 中にMS2CPタンパク質を認識する配列を有する配列の例であり、配列番号2は、IRES 中にU1Aタンパク質を認識する配列を有する配列の例である。タンパク質を認識する配列には、下線を付して示す。
Figure JPOXMLDOC01-appb-T000001
 (態様iiB)
 態様iiAの変形形態である態様iiBの環状RNA分子は、好ましくは、[(a)IRES]を起点と捉えると、5'から3'の向きに以下を順に含む。
[(a)IRES]-[(f)スペーサ配列]-[(c)タンパク質認識領域]-[(b)翻訳領域]-[(d)polyA配列]-[(e)接続配列]
 [(e)接続配列]の3'末端は、[(a)IRES]の5'末端と接続される。IRESが、CVB3である態様が好ましいことは、態様iiAと同様である。IRESが、CVB3であり、タンパク質認識領域が、MS2CPまたはU1Aを認識する配列である場合には、[(f)スペーサ配列]は、1~100塩基長であることが好ましく、20~80塩基長であることがより好ましい。
 上記の態様iA、iiA、及びiiBに共通して、[(e)接続配列]の3'末端と、[(a)IRES]の5'末端との間に、[(f)スペーサ配列]を設けることが好ましい。[(f)スペーサ配列]は、約10~約100塩基長であってよく、約20~約50塩基長であることが好ましい。
 本実施形態による環状RNA分子は、上記に従って、分子構造、核酸配列が決定されれば、環状RNA分子の構成要素に対応する線状核酸配列と、環状化配列とを含む前駆RNA分子から製造することができる。
 In vitroで人工環状RNA分子を製造する方法は、以下を含む。
(1)上記に従って決定した、少なくとも(a)IRES、(b)翻訳領域及び(c)認識領域を含む線状核酸配列を含む、線状RNA分子を得る工程と、(2)当該線状RNA分子を環状化配列に挿入し、前駆RNA分子を得る工程と、(3)工程(2)で得られた前駆RNA分子を、環状化する工程。
 線状RNA分子を合成する第1工程では、環状RNA分子の構成要素である、少なくとも(a)、(b)及び(c)を含む核酸配列を備える線状RNA分子を設計する。線状RNA分子の5'末端には、上記態様iBの場合は、miRNA認識領域を配置し、態様iA、iiA、iiBの場合は、IRESを配置するように設計することが好ましい。次いで、プロモーター配列を含むテンプレートDNAを鋳型として用いたin vitro合成法により、(a)、(b)及び(c)を含む核酸配列を備える線状RNA分子を得ることができる。
 第2工程では、環状化配列を準備する。環状化配列は、自己スプライシングイントロンを用いることができる。自己スプライシングイントロンとしては、例えば、グループIイントロンやグループIIイントロンを用いることができる。グループIイントロンとしては、Anabaena pre-tRNA Anabaena pre-tRNA由来のグループIイントロンを用いることが好ましい。より詳細には、環状化配列は、グループIイントロンの5'断片とその5'末端側に設けられた5'相同性アーム、及びグループIイントロンの3'断片とその3'末端側に設けられた3'相同性アームの1対から形成することができる。5'相同性アームと3'相同性アームは、それぞれ、5~50塩基程度の配列であってよく、5'相同性アームと3'相同性アームは、互いに相補的であるように設計することができる。また、これらの相同性アームは近接するグループIイントロンの機能を阻害しない配列であることが望ましい。グループIイントロンの5'断片と、グループIイントロンの3'断片の間に、線状RNA分子を挿入する。挿入された線状RNAは、グループIイントロンの5'断片中に含まれている3'スプライスサイトの下流かつ、グループIイントロンの3'断片中に含まれている5'スプライスサイトの上流に位置する。より詳細には、circular permutationされたグループIイントロンを用いることができ、当該イントロンの5'断片は以下の配列番号3で、3'断片は配列番号4で表すことができる。表2中、ボールド体は、環状化RNA分子に、接続配列として残存する配列を示す。
Figure JPOXMLDOC01-appb-T000002
 これらの操作により、環状化配列に、(a)IRES、(b)翻訳領域及び(c)認識領域を含む線状核酸配列が挟まれた前駆RNA分子を得ることができる。
 次いで、第3工程では、第2工程で準備した前駆RNA分子を、スプライシングバッファーの存在下で反応させ、環状化する。この反応により、環状RNA分子と、イントロンを含む線状RNA分子の混合物が生成し、これらを、ゲルやHPLCで精製することにより環状RNA分子を得ることができる。
 環状RNA分子を細胞内で合成させる方法は、先の工程(2)で得られた前駆RNA分子の核酸配列をコードするDNA構築物である発現ベクターを細胞に導入し、細胞内で生合成させることもできる。RNA分子の配列をコードする発現ベクターは、当該分野において周知慣用のものを用いることができ、例えば、ウイルスベクター、人工染色体ベクター、プラスミドベクター、トランスポゾンを用いた発現システム(トランスポゾンベクターと呼ばれる場合がある)等が挙げられる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクター等が例示される。人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)等が挙げられる。プラスミドベクターとしては、哺乳動物用プラスミド全般を使用することができ、例えば、エピソーマルベクターであってもよい。トランスポゾンベクターとしては、piggyBacトランスポゾンを用いた発現ベクター等が例示される。
 環状RNA分子を製造する上記の方法は、より詳細には、例えば、非特許文献5及び特表2021-526792を参照して実施することができる。別の方法としては、T4 RNA ligaseを用いて、線状のRNA分子の3'末端のOH基と5'末端のOH基を結合することにより、または、ケミカルライゲーション法により、線状のRNA分子の3'末端及び/または5'末端の官能基を介して環状化することにより、線状のRNAの環状化を実施することができる。加えて、分割型のグループIIイントロン(circular permuted group II intron)を用いて線状RNAの環状化を実施することができる。本明細書に具体的に示した方法以外にも、RNA分子を環状化することができる任意の方法で、第1実施形態による環状mRNA分子を製造することができる。
 [2.翻訳制御方法及びシステム]
 本発明は、第2実施形態によれば、翻訳制御方法及びシステムに関する。特には、第1実施形態によるRNA分子またはDNA構築物を用いた翻訳制御方法に関する。第2実施形態による翻訳制御方法は、第1実施形態によるRNA分子を細胞に接触させる工程、または第1実施形態によるDNA構築物を細胞に導入する工程を含む。
 本明細書において、細胞とは、特に限定されるものではなく任意の細胞であってよい。細胞は、単一の細胞であってもよく、2以上の細胞の集まりである、細胞集団であってもよい。細胞集団には理論上の数の上限はなく、任意の数の細胞からなる集団をいうものとする。例えば、細胞集団は、複数種類の異なる細胞が含まれ得る細胞集団であってよい。特には、RNA分子の認識領域を特異的に認識する標的物質を含有しうる細胞が含まれ得る細胞集団であってよい。
 細胞は、単細胞生物種もしくは多細胞生物種から採取した細胞であってもよく、さらに人為的な操作を加えた細胞(細胞株を含む)であってもよい。例えば、酵母、昆虫細胞、動物細胞などが用いられるが、中でも動物細胞が好ましい。動物細胞としては、例えば、哺乳動物(例、マウス、ラット、ハムスター、モルモット、イヌ、サル、オランウータン、チンパンジー、ヒト等)に由来する細胞が挙げられる。哺乳動物に由来する細胞としては、例えば、サルCOS-7細胞、サルVero細胞、チャイニーズハムスター卵巣(CHO)細胞、dhfr遺伝子欠損CHO細胞、マウスL細胞、マウスAtT-20細胞、マウスミエローマ細胞、ラットGH3細胞、ヒト胎児腎臓由来細胞(例:HEK293細胞)、ヒト肝癌由来細胞(例:HepG2)、ヒトFL細胞などの細胞株であってもよく、ヒト及び他の哺乳動物の組織から調製した初代培養細胞が用いられる。さらには、ゼブラフィッシュ胚、アフリカツメガエル卵母細胞なども用いることができる。
 細胞の分化の程度や細胞を採取する動物の齢などに特に制限はなく、(A)幹細胞、(B)前駆細胞、(C)最終分化した体細胞、(D)そのほかの細胞のいずれであってもよい。(A)幹細胞の例としては、以下のものに限定されないが、胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹細胞(「GS細胞」)、胚性生殖細胞(「EG細胞」)、人工多能性幹(iPS)細胞などが挙げられる。(B)前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。(C)体細胞としては、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能を持つ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞)、中枢・抹消神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、及びそれらの前駆細胞(組織前駆細胞)等が挙げられる。(D)そのほかの細胞としては、例えば、分化誘導を経た細胞が挙げられ、多能性幹細胞から分化誘導した前駆細胞及び体細胞も含まれる。また、体細胞または前駆細胞から未分化な状態を経ることなく直接所望の細胞に分化した、いわゆる「ダイレクトコンバージョン(direct reprogramming、trans-differentiationともいう)」により誘導された細胞であってもよい。
 環状RNA分子を細胞に接触させる工程は、当業者に既知の通常の方法で実施することができ、環状RNA分子を細胞に接触させ、これにより環状RNA分子を細胞に導入することができる。環状RNA分子を直接、細胞に導入する方法は、in vitroで、またはin vivoで、RNA分子を細胞に導入する方法であってよい。例えば、in vitroでの環状RNA分子導入法としては、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などが挙げられるが、これらには限定されない。合成RNA分子の導入による利点は、ゲノムへの組み込みがなく、環状RNA分子を導入した後の細胞を医療応用などに使用しやすいことが挙げられる。In vivoでのRNA分子導入法としては、例えば、哺乳動物に対しては、筋肉注射、皮下注射、静脈内注射、関節内注射などが挙げられるが、これらには限定されない。
 DNA構築物を細胞に導入する工程としては、主に、in vitroでのRNA分子の導入と同様の方法が挙げられる。また、エピソーマルベクターなど、導入する遺伝子が導入先の細胞のゲノムに組み込まれないDNA構築物は、in vivoでのRNA分子導入と同様の方法で細胞に導入することもできる。
 第1実施形態による環状RNA分子、またはこれをコードするDNA構築物が細胞に導入されると、標的物質に応答して、翻訳領域がコードするタンパク質の翻訳が抑制される。すなわち、細胞内において、標的物質が環状RNA分子の認識領域に結合可能な態様で存在すると、標的物質が環状RNA分子に結合する。これにより、miRNAによる環状RNAの分解、またはIRESへのタンパク質の結合を介したリボソームのスキャニング阻害を生じさせ、翻訳領域がコードするタンパク質翻訳が抑制される。一方、細胞内に標的物質が存在しない、あるいは標的物質がRNA分子の認識領域に結合可能な態様で存在しないと、環状RNA分子の翻訳領域がコードするタンパク質が翻訳される。
 第1実施形態による環状RNA分子の設計にあたって、認識領域を、特定の細胞に特異的に存在しうる標的分子であるmiRNAまたはタンパク質を認識するように選定することで、細胞特異的に翻訳制御を実現することができる。細胞特異的に発現するmiRNAの例としては、miR-302a-3p, miR-302a-5p, miR-302c-3p, miR-302c-5p, miR-302b-3p, miR-302d-3pなど(ヒトiPS/ES細胞)、miR-1-3p, miR-208a-3p(心筋細胞)、miR-9a-5p, miR-218a-5pなど(神経細胞)、miR-520c-3p, miR-520f, miR-520g, miR-520a-5p, miR-520d-5p, miR-520h, miR526a など(ヒトナイーブ型iPS細胞)、miR-122など(肝細胞)が挙げられ、miR-375など(インスリン産生細胞)、miR-21など(がん細胞)が挙げられるが、これらには限定されない。
 本実施形態による翻訳制御方法によれば、第1実施形態による環状RNA分子もしくはDNA構築物を、細胞もしくは細胞集団に接触させ、導入させることで、細胞内における標的物質に応答して、環状RNA分子の翻訳領域がコードするタンパク質の翻訳を制御することが可能になる。
 第2実施形態の別の態様による翻訳制御方法及び翻訳制御システムの別の例としては、2以上の異なる環状RNA分子を用いた、タンパク質の翻訳活性化方法、及びこれに用いることのできる2以上の異なる環状RNA分子の組み合わせが挙げられる。詳細には、翻訳制御システムは、下記(i)及び(ii)を含む。
 (i) 第1の環状RNA分子であって、
 (ai)内部リボソーム侵入部位(IRES)と
 (bi)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
 (ci)前記翻訳領域の3'末端側であって、前記IRESの5'末端側に位置するmiRNAを特異的に認識する核酸配列からなる認識領域とを含む、環状RNA分子
 (ii)第2の環状RNA分子であって、
 (aii)内部リボソーム侵入部位(IRES)と、
 (bii)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
 (cii)前記(bi)の翻訳領域がコードするタンパク質を特異的に認識する核酸配列からなる認識領域であって、前記IRESの内部または3'末端側に位置する認識領域とを含む、環状RNA分子
 第1の環状RNA分子、第2の環状RNA分子はともに、第1実施形態による環状RNA分子であって、第1の環状RNA分子がmiRNA応答性の環状RNA分子、第2の環状RNA分子がタンパク質応答性の環状RNA分子である。
 第1の環状RNA分子の認識領域(ci)は、任意のmiRNA認識領域であってよく、翻訳制御の目的に応じて選択することができる。第1の環状RNA分子の翻訳領域(bi)がコードするタンパク質は、第2の環状RNA分子の認識領域により認識されるタンパク質を含む。第2の環状RNA分子の認識領域(cii)は、第1の環状RNA分子の翻訳領域(bi)がコードするタンパク質を認識する領域である。したがって、認識領域(cii)は、(bi)がコードするタンパク質を特異的に認識するアプタマー配列であってよい。第2の環状RNA分子の翻訳領域(bii)は、任意のタンパク質をコードする領域であってよく、翻訳制御の目的に応じて選択することができる。例えば、第1実施形態において例示した翻訳領域がコードするタンパク質から選択することができるが、これらには限定されない。本システムによれば、第1の環状RNA分子の認識領域(ci)によって認識されるmiRNAに応答して、第2の環状RNA分子の翻訳領域(bii)がコードするタンパク質の翻訳が活性化される。
 このように、少なくとも2種の環状RNA分子を用いることで、先に挙げた環状RNA分子の持続性、安定性、並びに免疫原性の低減の利益を備え、かつ、タンパク質の翻訳活性化を実現することができる。本実施形態によるシステムは、本明細書において、miRNA応答性ON回路と指称する場合もある。
 なお、本態様による翻訳制御システム及び方法の変形態様として、第1の環状RNA分子、または第2の環状RNA分子のいずれか、または両者が、第1実施形態において説明したDNA構築物の形態で細胞内に導入されてもよい。さらなる変形形態として、第1の環状RNA分子、または第2の環状RNA分子のいずれかが、従来技術による線状のスイッチRNAであってもよい。すなわち、第1の環状RNA分子に代えて、miRNAに応答してタンパク質の翻訳が抑制される任意の線状mRNAを用いることができる。miRNAに応答してタンパク質の翻訳が抑制される線状mRNAは、線状miRNA応答スイッチともいうことができる。線状miRNA応答スイッチは、5'から3'の順に、5'Cap構造、5'UTR、翻訳領域、3'UTRを含み、5'UTRまたは3'UTRの少なくとも一方に、miRNAの認識領域を有していてよい。5'Cap構造とは、7メチルグアノシン5'リン酸(Cap構造)、Ambion製のAnti-Reverse Cap Analog(ARCA)、New England Biolabs製の、m7G(5')ppp(5')G RNA Cap Structure Analog、TriLink製のCleanCapであってよいが、これらには限定されない。あるいは、第2の環状RNA分子に代えて、第1の環状RNA分子がコードするタンパク質に応答して、タンパク質の翻訳が抑制される任意の線状mRNAを用いることができる。第1の環状RNA分子がコードするタンパク質に応答して、タンパク質の翻訳が抑制される線状mRNAは、線状タンパク質応答スイッチともいうことができる。線状タンパク質応答スイッチは、5'から3'の順に、5'Cap構造、5'UTR、翻訳領域、3'UTRを含み、5'UTRに、タンパク質の認識領域を有していてよい。
 [3.医薬組成物]
 本発明は、第3実施形態によれば、医薬組成物に関する。特には、第1実施形態による環状RNA分子、または第2実施形態による翻訳制御システムを含む医薬組成物に関する。
 本実施形態による医薬組成物は、主に多細胞生物において、標的物質が存在する細胞において、特異的にタンパク質の翻訳を活性化することで、当該生物における特定の疾患を治療し、予防し、診断するために用いられる医薬組成物であってよい。多細胞生物は、好ましくは、哺乳動物(例えば、ヒト、マウス、サル、ブタ、ラット等)であり、より好ましくはヒトである。
 本実施形態による医薬組成物は、特定の細胞に特定の機能の変化を与えることにより治療効果が期待される疾患に広く適用することができる。本実施形態において、このような特定の細胞を目的細胞という。
 目的細胞の例としては、変質した細胞が挙げられ、より詳細には、本来の機能を喪失(loss of function)及び/または他細胞への有害性を獲得(gain of toxic function)した細胞等が挙げられる。好適な具体的としては、がん細胞、ウイルス感染細胞等が挙げられる。このうち、特に好ましくはがん細胞である。がん細胞の例としては、乳癌、肝臓癌、膵臓癌、前立腺癌、卵巣癌、大腸癌、結腸癌、胃癌、子宮頸癌、及び肺癌等に代表される固形癌の病変部を構成するがん細胞、並びに白血病及び悪性リンパ腫等に代表される血液癌におけるがん化した血球細胞(具体的には白血球及びリンパ球)等が挙げられる。がん細胞、ウイルス感染細胞等に特異的に存在し得る標的物質は、文献やデータベースから知られている任意の標的物質であってよい。
 がんの治療のための医薬組成物に含まれる環状RNA分子としては、例えば、がん細胞に特異的に存在するタンパク質やmiRNAを標的物質とする認識領域を備え、細胞を死滅させるタンパク質をコードする翻訳領域を備える環状RNA分子を用いることができる。このような医薬組成物は、がんに罹患した被験体に投与することにより治療効果が期待され、がん治療後の被検体に投与することにより再発防止効果が期待される。よって、本実施形態による医薬組成物は、がんの治療剤または再発防止剤として好適に使用することができる。
 ウイルス感染細胞のための医薬組成物に含まれる環状RNA分子としては、例えば、ウイルスタンパク質やその断片等を標的物質とする認識領域を備え、ウイルスの死滅・除去に有用なタンパク質をコードする翻訳領域を備える環状RNA分子を用いることができる。
 本実施形態による医薬組成物は、製薬上許容可能な担体を含むことができる。「製薬上許容可能な担体」とは、製剤技術分野において通常使用する医薬組成物の製剤化や生体への適用を容易にし、その作用を阻害または抑制しない範囲で添加される物質をいう。担体には、例えば、賦形剤、結合剤、崩壊剤、充填剤、乳化剤、流動添加調節剤、潤滑沢剤、または安定化剤が挙げられる。
 本実施形態による医薬組成物は、in vivoで細胞に導入することができる。in vivoでRNAを細胞に導入する方法として一般に用いられる任意の方法を用いることができる。例えば、哺乳動物に対しては、筋肉注射、皮下注射、静脈内注射、関節内注射などの導入法を用いて、RNA分子を直接、細胞に導入することができる。また、当該分野で自体公知の薬物送達担体に担持させて導入することもできる。そのような担体の例としては、例えば、ポリマーナノ粒子、ポリマーミセル、デンドリマー、リポソーム、ウイルスナノ粒子、カーボンナノチューブ等が挙げられる(Cho K. et al., Clin Cancer Res. 2008 Mar 1;14(5):1310-6等参照)。本実施形態による医薬組成物は、環状RNA分子を有効成分として含むため、安定性・持続性が高く、免疫原性が低い。そのため、翻訳制御が期待される所望の細胞に送達するにあたって、非常に有利である。
 以下に、本発明の実施例を用いてより詳細に説明する。以下の実施例は、本発明を限定するものではない。
 [実験方法]
 [mRNA用テンプレートプラスミドの構築]
 全てのPCRは、PrimeSTAR MAX DNA polymerase (TaKaRa)で行った。テンプレートをDpnI (東洋紡) で37℃、30分間消化した後、QIAquick PCR purification kit (QIAGEN)、またはMonarch DNA Gel Extraction Kit (New England Biolabs) でPCR 産物を精製した。RNAのテンプレートプラスミドを調製するため、PCR産物をNEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) を用いたGibsonアセンブリによりPCR線型化pUC19ベクターにクローニングし、DynaCompetent Cells JetGiga Escherichia coli DH5α(BioDynamics Laboratory) に形質転換させた。大腸菌を3mlのLB/Ampicillin (Amp)培地で37℃、8~16時間培養後、NucleoSpin Plasmid EasyPure (TaKaRa) によりプラスミドを精製した。内部PolyA含有circRNAのテンプレートプラスミドの場合、形質転換された大腸菌を50 ml LB/Amp培地で培養し、PureYield Plasmid midiprep System (Promega)によりプラスミドを精製した。全てのプラスミド配列は、BygDye terminator v3.1 Cycle Sequencing Kit (Thermo Fisher scientific) と 3500xL Genetic Analyzer (Thermo Fisher scientific) を用いた典型的なサンガーシーケンシング法によって確認した。
 [mRNAの合成と精製]
 テンプレートプラスミドからPrimeSTAR MAX DNA polymerase (TaKaRa) を用いてin vitro transcription (IVT) 用のDNA テンプレートを増幅した。テンプレートプラスミドをDpnI (TOYOBO) で37℃、30 分間消化した後、PCR 産物を QIAquick PCR purification kit (QIAGEN)で精製した。polyAを含有するcircRNAのIVTテンプレートの場合、テンプレートプラスミドをEcoRI-HF (New England Biolabs) またはBamHI-HF (New England Biolabs) で線状化し、Monarch PCR & DNA Cleanup Kit (New England Biolabs) で精製した。
 MEGAscript T7 Kit (Thermo Fisher Scientific) を使用してmRNAを合成した。Capが設けられたmRNAの合成には、75 mMのAnti-reverse cap analog (TriLink BioTechnologies) またはG(5')ppp(5')A RNA Cap Structure Analog (A-cap) (New England Biolabs Japan) .を使用して、GTP = 4 : 1 の溶液中で転写を行った。修飾塩基を含有するmRNAの合成には、ウリジン三リン酸(U)およびシトシン三リン酸(C)の代わりに、シュードウリジン-5'-三リン酸(Ψ)および5-メチルシチジン-5'-三リン酸(m5C)またはN1-メチルシュードウリジン-5'-三リン酸(m1Ψ)(トライリンクバイオテクノロジーズ社)を使用した。IVT反応混合物を37℃で最大6時間インキュベートした後、TURBO DNase (Thermo Fisher Scientific) と混合し、さらに37℃で30分間インキュベートしてテンプレートDNAを除去した。得られたmRNAは、Monarch RNA Cleanup Kit(New England Biolabs社製)により精製した。circRNAについては、スプライシングバッファー(50 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, pH7.5, 2 mM GTP)とともに55℃で30分間インキュベートし、再度精製を行った。精製したmRNAを4%変性ポリアクリルアミドゲル電気泳動(PAGE)(8.3M尿素)し、その後ゲルから溶出バッファー(0.3M酢酸ナトリウム pH5.2, 0.1% SDS)中で37℃、200rpm振とうで一晩インキュベーションを行った。溶出したmRNAは、フェノール-クロロホルム抽出により精製し、イソプロパノールで沈殿させた。mRNAペレットをヌクレアーゼフリー水に溶解後、Amicon Ultra 0.5 ml Centrifugal Filter Urtracel-50K (Millipore) で脱塩し、Antarctic Phosphatase (New England Biolabs) とともに37℃で30分インキュベートした。Phosphatase処理したmRNAは、フェノール-クロロホルム抽出とイソプロパノール沈殿で再精製した。図5Cの実験では、時間短縮のため、変性ゲルからの精製は省略した。精製したmRNAの濃度はNanoDrop2000 (Thermo Fisher scientific) で測定し、細胞実験を行った。
 本実施例で使用した環状RNA分子の前駆配列は、以下の配列番号を用いて、配列表に示す。
Figure JPOXMLDOC01-appb-T000003
 [細胞培養とRNAトランスフェクション]
 HEK293FT(Invitrogen)、HeLa CCL2(ATCC)およびA549(RCB3677)は、10% FBS(Biocera, Ireland Origin)、0.1 mM MEM非必須アミノ酸(Life Technologies)、2 mM L-glutamine(Life Technologies)および1 mMピルビン酸ナトリウム(Nacalai Tesque)で補充したDulbecco's Modified Eagle's Medium (DMEM) 4.5 g/L glucose(Nacalai Tesque)中で培養した。すべての細胞株は、37℃、5% CO2で培養した。すべてのトランスフェクションは、製造者のプロトコルに従って、Lipofectamine MessengerMAX (Thermo Fisher scientific)を用いて行った。該当する実験については、RNAを合成miRNAのmimicまたはインヒビター(Thermo Fisher scientific)と共導入した。各実験のトランスフェクション条件の詳細は、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 [RNase R 消化アッセイ]
 図2Dにおいて、2.5 μgのin vitro転写されたcircRNA (Circular EGFP ΔpAΔIRES)を、10 μl の混合液中で10 UのRNase R (Cosmo Bio) とともに37℃にてインキュベートした。45分インキュベーション後、混合物を、4%および8%変性PAGE (8.3 M尿素) し、SYBR Green II Nucleic Acid Gel Stain (TaKaRa) により染色した。染色したRNAは、Typhoon FLA-7000 (Fujifilm)で検出した。
 [スプライスジャンクションのシーケンシング]
 変性PAGEゲルから精製したcircRNA (Circular EGFP ΔpAΔIRES)を逆転写プライマー(5'-CCTACTCAGGCTTTATTCAAAGACCAAG-3':配列番号50)とSuperScript IV Reverse Transcriptase (Thermo Fisher Scientific) を用いて逆転写した。逆転写されたcDNAは、スプライスジャンクション増幅用のプライマーセット(Fwd : 5'-agctcgccgaccactaccagcag-3':配列番号51, Rev : 5'- gtagcggctgaagcactgcacg-3' :配列番号52)を用いて、PrimeSTAR Max DNA Polymerase (TaKaRa) を用いてPCR用のテンプレートとして使用された。増幅産物は、Monarch DNA Gel Extraction Kit (New England Biolabs) により精製した。Kit (New England Biolabs) で精製後、「mRNA 用テンプレートプラスミドの構築」と同じ方法で配列解析を行った。
 [フローサイトメトリーおよびデータ解析]
 HEK293FT、A549 (1.0x105 cells) およびHeLa (0.5x105 cells) は、トランスフェクションの24 時間前に 24-well プレートに播種した。すべてのフローサイトメトリー測定は、BD Accuri C6 (BD Biosciences) を用いて、トランスフェクションの24時間後に実施した。細胞をリン酸緩衝生理食塩水(PBS、ナカライテスク)で洗浄し、100μLの0.25% Trypsin-EDTA(Thermo Fisher Scientific)でトリプシン処理を行い、37℃で5分間インキュベートした。インキュベーション後、150μLの新鮮な培地を加えた。細胞はナイロンメッシュを通して、新しい微量遠心管に移した。EGFPはFL1(533/30 nm,99%減衰),iRFP670はFL4(675/25 nm)フィルターで検出された。収集したデータは、FlowJo 10.5.3 ソフトウェアを使用して解析した。データ解析のために、モックサンプルを用いてゲートを作成した。前方対側方のドットプロット(FSC-A vs SSC-A)を作成する際に、デブリのデータは削除した。また、FL-1 vs FL-4 のドットプロットでは、チャート端のイベントを削除した。iRFP670 強度を X 軸にとったヒストグラムでは、iRFP670 陽性(基準陽性)ゲートは、99.9% がゲート外にあるモックサンプルで定義された。以下の解析では、EGFP+/iRFP670+の平均値を算出に用いた。
 [RT-qPCR解析]
 A549(1.0x105細胞)細胞は、トランスフェクションの24時間前に24ウェルプレートに播種した。その後、PBSにより細胞を洗浄し、トランスフェクションから24時間後にその後のtotal RNA抽出を行った。免疫応答関連遺伝子を誘導するために、ポジティブコントロールとしてPolyinosinic-polycytidylic acid [Poly(I:C)] (Enzo Life Sciences,Inc.) 200 ngをトランスフェクションした。Trizol Reagent (Thermo Fisher Scientific) とMonarch RNA Cleanup Kit (New England Biolabs) を用いて、製造元のプロトコルに従い、Total RNA抽出を行った。ReverTra Ace qPCR RT Master Mix with gDNA Remover (TOYOBO)を用いて10μlの反応液で逆転写を行い、400ngのtotal RNAをテンプレートとして使用した。
 合成したcDNA溶液をヌクレアーゼフリーウォーターで50μlまで希釈し、1μlのcDNA溶液をqPCR解析に供した。qPCR解析は、THUNDERBIRD Next SYBR qPCR Mix(TOYOBO)を用い、20μlの反応液とQuantStudio 3 Real-time PCR Systems(Thermo Fisher Scientific)を用いて、メーカーのプロトコルに従い、3ステップの反応により実施した。ターゲットmRNA量は、ATP5B mRNAで正規化した。すべてのqPCRは二重に行い、Ctの平均値を、ΔΔCt法を用いて相対発現量を算出する処理を行った。qPCR のプライマーを表5に示す。
Figure JPOXMLDOC01-appb-T000005
 [WST-1アッセイ]
 HEK293FT、A549 (2.0x104 cells) およびHeLa (1.0x104 cells) をトランスフェクションの24時間前に96-wellプレートに播種した。トランスフェクションの24時間後、各ウェルの培地にWST-1試薬(Sigma-Aldrich)を10μL/ウェル添加し、プレートを37℃で1時間インキュベートした。インキュベーション後、PE Envision 2104 Multilabel Reader (PerkinElmer)で440 nmと620 nmの吸光度を測定した。
 [分泌型ルシフェラーゼアッセイ]
 トランスフェクションの24時間前に、HEK293FT、A549 (1.5x104 cells)、HeLa (0.5x104 cells)を24ウェルプレートに播種した。トランスフェクション後、各タイムポイントにおいて、トランスフェクションから24時間ごとに、5日(120時間)までの間、培地を回収し、新しいものに交換した。培地はProtein Lobind tube(登録商標、エッペンドルフ社製)に採取し、-30℃にて保存した。メトリディアルシフェラーゼ(MetLuc2)の発光を検出するために、50μlの培地をGreiner LUMITRA 200マイクロプレート(Greiner)に移し、プレートリーダー付属のインジェクターで、Ready-To-Glow Secreted Luciferase Reporter Assay(TaKaRa)の0.5x substrate/reaction bufferを10μl添加した。3.0mmの震盪幅で縦横両方の方向に振盪し、30秒間インキュベーションした後、Centro LB 960 (Berthold technologies) で発光を1秒間の積分時間で検出した。トランスフェクションから24時間後のMetLuc活性を正規化して算出した。
 [統計解析]
 有意水準は、*P < 0.05, **P < 0.01, ***P < 0.001と表記した。統計学的検定はすべてRを用いて行った。
 [結果]
 [合成環状化RNA分子(circRNA)の設計と評価]
 in vitro mRNAの環状化にあたって、酵素処理を必要としない効率的な環化法であるPermuted Intron-Exon (PIE) Splicing systemを選択した。Anabaena pre-tRNAに対応するGroup I触媒イントロンの順列が変更された分割断片(2本のホモロジーアームを持つ)を両端に持ち、オープンリーディングフレーム(ORF)の上流にCVB3 IRESを持つcircRNA構築物を設計した(図2A)。スプライス部位を持つcircRNAコンストラクトは、変性PAGEにおいて移動したバンドを生じ(図2B)、スプライスジャンクションの特定(図2C)およびRNase R耐性(図2D)によりcircRNAであることが確認された。これらのデータは、製造した構築物が期待通りのcircRNA産物を生成したことを示している。
 次に、合成したcircRNAの翻訳特性、および環状化の影響を調べた。circRNA の翻訳効率を、レポーター遺伝子としてEGFP をコードする線状 mRNA(linRNA) と比較した。120ヌクレオチドのpolyA(pA)配列を持つか持たないか(circRNA +pA, circRNAΔpA)、IRESを持たない(circRNA +pAΔIRES, circRNA ΔpAΔIRES)、3種類のlinRNA(Linear EGFP, Cap-EGFP) など異なる種類のRNAを調製した(図3A)。いずれも、標的部位を持たないRNAとした。
 まず、同じ配列成分(UTR、CVB3 IRES、リボザイム由来配列、EGFPコード領域、pA)を持つcircRNAとlinRNAの翻訳効率を比較した。IRESを持つcircRNAは、試験した3つのヒト細胞株(HEK293FT、HeLa、A549)においてlinRNAよりも高い翻訳効率を示したが、circRNAsΔIRESは翻訳を活性化させなかった(図3B)。circRNA+pAがIRES依存性のlinRNAやcircRNA ΔpAよりも高い翻訳効率を示し(図3B)、pA配列がcircRNAからのタンパク質発現を高めることが確認された。
 次に、circRNAと、修飾塩基(m5C/ψ、m1ψ;modRNA)を加えた従来のキャップ依存型linRNA(Cap-EGFP)の性能を比較検討した。CircRNA+pAはm5C/ψを持つCap-EGFPよりも高い翻訳レベルを示したが、その発現レベルはm1ψや天然型mRNAよりも低かった(図3C)。これらの結果から、circRNAからの翻訳レベルは、同じ配列成分を持つlinRNAやm5C/ψを持つcap-dependent modRNAからの翻訳レベルより優れていることが示された。
 次に、RT-qPCRにより、linRNAまたはcircRNAのトランスフェクションの免疫原性の影響を検討した(図3D)。予想通り、免疫応答関連遺伝子(RIG-1、IFNB、IL-6)の発現レベルは、天然型のmRNAをトランスフェクションすると上昇し、その天然型mRNAの代わりに、同等のmodRNA(m1ψ)をトランスフェクションすると上昇の程度は減少した。また、天然型の塩基を持つcircRNAコンストラクトでもこれらの遺伝子の発現が低下することが確認され、circRNAの免疫原性が低下していることが確認された。circRNAΔpA は、A cap-linRNA (m1ψ) と比較して、これらの遺伝子の発現が同レベルであることを示した。興味深いことに、circRNA +pAはcircRNAΔpAと比較してこれらの遺伝子の発現を減少させ、内部のpolyA配列の付加によりcircRNAの免疫原性がさらに低下していることが示された。
 さらに、3つの細胞株におけるcircRNAの細胞毒性効果について検討した(図3E)。その結果、天然型の塩基を持つlinRNAのトランスフェクションでは、HeLaやA549の細胞生存率が低下したが、modRNA(m1ψ)では正常な細胞生存率が維持され、これまでの観察結果を確認した。また、circRNA(circRNA +pAおよびcircRNA ΔpA、IRES配列あり/なし)においても、細胞毒性はなく、細胞生存率が維持された。このように、circRNAコンストラクトは、重度の細胞毒性および免疫原性を誘発することなく、翻訳領域がコードするタンパク質を効率的に発現しており、さらなるcircRNAエンジニアリングに使用できると結論付けている。
 近年、外来性のcircRNAが免疫反応を引き起こすことが報告されているが、一方で、免疫原性が低いという対照的な報告もある。免疫応答関連遺伝子(RIG-I、IFNB、IL-6)のRT-qPCR解析の結果、本発明のcircRNAは、天然型の塩基を持つ線状mRNAと比較して免疫原性が低く、一方、化学修飾した線状mRNA、特に一般的に用いられるCap-EGF構造を持つ線状mRNAと比較してより強い免疫反応が観察された(図3D)。注目すべきは、内部にpolyA配列を有するcircRNAでは、polyA配列を有しないものと比較して、より低い免疫原性が観察されたことである。従来の報告では、リボザイムとCVB3 IRESによって構築されたRNA二重鎖がcircRNAの免疫原性を引き起こすことが示唆されている。今回の観察から、circRNAのこのような構造に起因する免疫原性は、過去の報告の構築物よりも長い内部polyA-120配列によって低減される可能性があることが示唆された。細胞毒性に関しては、我々のcircRNAは、天然型の線状mRNAよりも優れた細胞生存率を示し、化学修飾したものと同等であった(図3E)。このことから、本発明のcircRNAによるこれらの免疫応答関連遺伝子の誘導レベルは、細胞に影響を与えないことが示唆された。
 [miRNA応答性circRNAスイッチの構築と評価]
 次に、UTRに完全相補的なanti-miR配列を含むcircRNAを設計し、様々なmiRNA mimicを共導入して評価した。CVB3 IRESの前(5'挿入)またはEGFPコード配列の後(3'挿入)にanti-miR配列を挿入し、4種類のヒトmiRNA(miR-206, miR-302a-5p, miR-21-5p, miR-339-5p)応答性circRNAスイッチを調製した。circRNAスイッチと対応するmiRNA mimicをトランスフェクションして24時間後、フローサイトメーターと蛍光顕微鏡でcircRNAからのEGFP発現を分析した。設計されたすべてのmiRNA応答性circRNAスイッチが、標的miRNA mimicを感知することによって翻訳レベルを抑制した(図4A)。ON状態とOFF状態の間で観察されたfold changeは、標的miRNA、anti-miR配列の挿入位置、および内部のpolyA配列の有無に依存し、約2倍から38倍の範囲であった(図4B)。
 miR-21-5p-およびmiR-339-5p-応答性circRNAスイッチの変化が比較的小さいのは、HEK293FT細胞で発現する内在性miRNA活性によるものではないかと推測した。そこで、内在性miRNAの活性を阻害するために、標的miRNA阻害剤を細胞内に添加した。miR-21-5p阻害剤を共導入したところ、circRNAの翻訳が救済された。しかし、miR-339-5p阻害剤では、このようなことは見られなかった。この結果は、miR-21-5p応答性circRNAスイッチの場合に観察される低いfold changeは、内在する弱いmiR-21-5p活性によるON状態の減少によるものと考えられ、HEK293FT細胞で観察される弱いmiR-21-5p活性について述べた以前の報告と一致する。しかし、miR-339-5p応答性スイッチについては、CentroidFoldで予測されるように、RNA二次構造による標的部位へのアクセス性など他の要因によるものと考えられる。
 次に、設計したcircRNAスイッチが内在性miRNAを検出し、標的細胞での翻訳を調節することができるかどうかを検討した。HEK293FTではmiR-17-5p、HeLaとA549ではmiR-21-5pに注目した。これらのmiRNAは各細胞型で効率的に発現しているからである。トランスフェクションしたスイッチからのレポーター発現は、標的miRNA特異的阻害剤と共導入した場合のみレスキューされ、ON/OFF倍率は約12倍(miR-17-5p)、80倍(miR-21-5p)を示した。また、フローサイトメーターにより阻害剤の有無で各細胞を明確に分離し(図4C、図4D)、miR mimicで得られた結果(図4A、4B)と比較すると、同等であることが確認できた。これらの結果は、miRNA応答性circRNAスイッチが効率的に標的miRNAを検出し、その翻訳レベルを細胞種特異的に制御していることを示している。
 [RBP応答性circRNAスイッチのためのCVB3 IRESエンジニアリング]
 次に、MS2ファージコートタンパク質(MS2CP)とスプライソソーム関連 U1A タンパク質の2種類のリボソーム結合タンパク質(RBP)を用いて、タンパク質応答性 circRNA を設計した。IRES依存的な翻訳抑制を可能にするタンパク質結合位置を調べるため、二次構造モデルや翻訳開始に必要な構造的特徴を参照しながら、タンパク質結合モチーフ(MS2SLとU1Aアプタマー)を挿入して設計した4種類のCVB3 IRES変異体(variants 1-4)の試験を行った(図5A)。MS2CPまたはU1A結合モチーフを挿入すると、モチーフをドメインVI(MS2CP)またはVII(U1A)に挿入したvariant 4が標的タンパク質存在下で翻訳を抑制することができた(図5B)。
 これらの結果から、RBP応答性circRNAスイッチの生成には、翻訳開始因子eIF4GとeIF4Aの結合部位(Domains V-VIIに結合)や18S rRNAに対するアンチセンス領域(Domain VとDomain VI間のリンカー領域)付近または下流へのCVB3 IRESへのモチーフ挿入が有効であることが予想された。さらに、挿入位置を最適化するために、挿入モチーフをドメインVIIステムループの下流20 ntまたは98 nt(ORFのすぐ上流)に配置したvariant 5およびvariant 6を設計し、variant 4と翻訳抑制効率を比較検討した。miRNA応答スイッチとしても機能するA-Cap線状EGFP mRNAを用いて、CVB3 IRES variants 4-6の翻訳効率を評価した。その結果、MS2SLについてはvariant 4、U1Aアプタマーについてはvariant 5が、MS2CPまたはU1Aの存在下での翻訳抑制に最適であることがわかった(図5C)。MS2SLについてはvariant 4、U1Aアプタマーについてはvariant 5を適用してcircRNAでの性能を評価し、内部のpolyA配列の有無が翻訳抑制やfold changeに及ぼす影響を確認した。MS2CPまたはU1Aの存在下または非存在下で、ON状態とOFF状態の間のfold change(7.3~13.9倍の範囲)が見られるように、circRNAスイッチ構築物で観察される翻訳抑制は、すべて効率的であった(図5D)。これらの結果は、CVB3 IRESのドメインVIとVIIの領域を操作することで、RBP応答性のcircRNAスイッチを設計できることを示している。
 [合成 circRNA 回路の構築とその拡張駆動]
 最後に、circRNAがmiRNA応答性スイッチとRBP応答性スイッチの両方からなる合成RNA回路の駆動時間を向上させることができるかどうかを検討した。複数のスイッチがある場合、あるスイッチからの出力を別のスイッチの入力となるように設計することで、合成遺伝子回路を構築することができる(図1B、図6A)。
 まず、設計したcircRNAの安定性と遺伝子発現の持続性が向上していることを確認した。Metridiaルシフェラーゼ(MetLuc2)をコードするcircRNA(Circular MetLuc2 +pA)と、塩基を修飾した従来のキャップ依存性linRNA(m5C/ψ、m1ψ)の遺伝子発現を3種類のヒト細胞株を用いて比較した(図7)。circRNAはlinRNAよりも優れた発現持続性を示し、これまでの報告と同様であった。
 次に、RBP を産生する miRNA (miR-302a-5p)応答性(MS2CP または U1A) circRNA と、EGFP を産生する RBP 応答性 EGFP circRNA の2つの circRNA スイッチを用いて miRNA 応答性 ON システムを設計した。MS2CPまたはU1Aを用いて設計されたcircRNA回路は、miR-302a-5p mimicの存在下でのみEGFPを生成し、標的miRNAを検出することでONスイッチとして機能した(図6B、左)。これらのmiRNA応答性ON回路のON状態とOFF状態の間のfold changeは、1pmolのmiR-302a-5p mimic存在下で約3.5倍であった(図6B、右)。
 また、MetLuc2レポーターを用いて、circRNA回路の持続性の性能を先行研究(Ono, H., Kawasaki, S. & Saito, H. (2020) Orthogonal Protein-Responsive mRNA Switches for Mammalian Synthetic Biology. ACS Synth. Biol. 9, 169-174., Nakanishi, H. & Saito, H. (2020) Caliciviral protein-based artificial translational activator for mammalian gene circuits with RNA-only delivery. Nat. Commun. 11, 2-3.)で使用された線状mRNA回路と比較した。HEK293FTとA549という2つの細胞株を用いて、それぞれ外来性のmiR-302a-5p mimicまたは内在性のmiR-21-5pを検出するテストを行った。いずれの場合も、RNAトランスフェクションの約96時間後に、circRNA回路はm1ψを用いた線状RNA回路よりも持続時間の性能が優れており(1.5~137倍の持続時間)(図6Cおよび図6D)、本発明のcircRNA回路が合成mRNA回路の発現持続性を改善することが示された。
 本発明のcircRNAスイッチは、modRNAベースの回路の半減期が短いという従来技術の問題を解決できる可能性がある。また、耐久性のあるRNAベースの遺伝子回路は、レプリコンベクターを用いて実現されているが、本発明のcircRNAベースの回路は、このようなレプリコンベースの回路に比べて、よりコンパクトなサイズ、予期せぬ自己複製がない、取り扱いが容易、脂質ナノ粒子ベースのシステムによる高いトランスフェクション効率など、従来技術と比較して複数の利点を持っていると考えられる。

Claims (14)

  1.  (a)内部リボソーム侵入部位(IRES)と、
     (b)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
     (c)miRNAまたはタンパク質を特異的に認識する核酸配列からなる認識領域と
    を含む核酸配列からなる環状RNA分子。
  2.  前記miRNAを特異的に認識する核酸配列からなる認識領域が、前記翻訳領域の3'末端側であって、前記IRESの5'末端側に位置する、請求項1に記載の環状RNA分子。
  3.  前記翻訳領域の3'末端側に、polyA配列をさらに含む請求項1に記載の環状RNA分子。
  4.  前記miRNAを特異的に認識する核酸配列からなる認識領域が、前記翻訳領域の3'末端側であって、polyA配列の5'末端側に位置する、請求項3に記載の環状RNA分子。
  5.  前記miRNAを特異的に認識する核酸配列からなる認識領域が、polyA配列の3'末端側に位置する、請求項3に記載の環状RNA分子。
  6.  前記タンパク質を特異的に認識する核酸配列からなる認識領域が、前記IRESの内部または3'末端側に位置する、請求項1に記載の環状RNA分子。
  7.  前記IRESが、コクサッキーウイルスB3由来のIRESであり、当該IRESのDomain VIもしくはVIIに、または当該IRESのDomain VIIと翻訳領域との間に、前記タンパク質を特異的に認識する核酸配列を含む認識領域を備える、請求項6に記載の環状RNA分子。
  8.  請求項1に記載の核酸配列を含む、線状核酸配列を含む前駆RNA分子。
  9.  前記線状核酸配列を挟み込む1対の環状化配列をさらに含み、前記1対の環状化配列が、グループIイントロンの5'断片とその5'末端側に設けられた5'相同性アーム、及びグループIイントロンの3'断片とその3'末端側に設けられた3'相同性アームを含む、請求項8に記載の前駆RNA分子。
  10.  請求項8または9に記載の前駆RNA分子をコードするDNA構築物。
  11.  請求項1に記載の環状RNA分子を細胞に接触させる工程、または請求項10に記載のDNA構築物を細胞に導入する工程を含む、翻訳制御方法。
  12.  (i) (ai)内部リボソーム侵入部位(IRES)と
     (bi)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
     (ci)前記翻訳領域の3'末端側であって、前記IRESの5'末端側に位置するmiRNAを特異的に認識する核酸配列からなる認識領域とを含む、第1の環状RNA分子と、
     (ii) (aii)内部リボソーム侵入部位(IRES)と、
     (bii)前記IRESの3'末端側に位置し、前記IRESによって翻訳される翻訳領域と、
     (cii)前記(bi)の翻訳領域がコードするタンパク質を特異的に認識する核酸配列からなる認識領域であって、前記IRESの内部または3'末端側に位置する認識領域とを含む、第2の環状RNA分子と
    を含む、翻訳活性化システム。
  13.  請求項12に記載の翻訳活性化システムを細胞に接触させる工程を含む、翻訳活性化方法。
  14.  請求項1に記載の環状RNA分子を含む、医薬組成物。
     
PCT/JP2023/024911 2022-07-06 2023-07-05 環状rna分子及びこれを用いた翻訳制御方法、翻訳活性化システム、並びに医薬組成物 WO2024010028A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022109108 2022-07-06
JP2022-109108 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024010028A1 true WO2024010028A1 (ja) 2024-01-11

Family

ID=89453529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024911 WO2024010028A1 (ja) 2022-07-06 2023-07-05 環状rna分子及びこれを用いた翻訳制御方法、翻訳活性化システム、並びに医薬組成物

Country Status (1)

Country Link
WO (1) WO2024010028A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521133A (ja) * 2013-05-15 2016-07-21 クルーゼ,ロバート 環状rnaの細胞内翻訳
JP2021122189A (ja) * 2020-01-31 2021-08-30 国立大学法人京都大学 タンパク質翻訳の制御システム
JP2021526792A (ja) * 2018-06-06 2021-10-11 マサチューセッツ インスティテュート オブ テクノロジー 真核細胞における翻訳のための環状rna
JP2021531829A (ja) * 2018-07-24 2021-11-25 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 環状化された遺伝子操作rna及び方法
WO2021263124A2 (en) * 2020-06-25 2021-12-30 The Board Of Trustees Of The Leland Stanford Junior University Genetic elements driving circular rna translation and methods of use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521133A (ja) * 2013-05-15 2016-07-21 クルーゼ,ロバート 環状rnaの細胞内翻訳
JP2021526792A (ja) * 2018-06-06 2021-10-11 マサチューセッツ インスティテュート オブ テクノロジー 真核細胞における翻訳のための環状rna
JP2021531829A (ja) * 2018-07-24 2021-11-25 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 環状化された遺伝子操作rna及び方法
JP2021122189A (ja) * 2020-01-31 2021-08-30 国立大学法人京都大学 タンパク質翻訳の制御システム
WO2021263124A2 (en) * 2020-06-25 2021-12-30 The Board Of Trustees Of The Leland Stanford Junior University Genetic elements driving circular rna translation and methods of use

Similar Documents

Publication Publication Date Title
CN112399860B (zh) 用于在真核细胞中翻译的环状rna
US11634727B2 (en) Recombinant nucleic acid molecule of transcriptional circular RNA and its application in protein expression
US10323073B2 (en) CRISPR-based methods and products for increasing frataxin levels and uses thereof
JP2022081503A (ja) CRISPR/Cas9の核送達を通じた細胞RNAの追跡と操作
Guest et al. Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3
KR20220004674A (ko) Rna를 편집하기 위한 방법 및 조성물
US20170233765A1 (en) Non-disruptive gene targeting
KR20210056329A (ko) 신규 cas12b 효소 및 시스템
CA3201258A1 (en) Engineered class 2 type v crispr systems
US20180216087A1 (en) Enhanced hAT Family Transposon-Mediated Gene Transfer and Associated Compositions, Systems and Methods
KR20230002401A (ko) C9orf72의 표적화를 위한 조성물 및 방법
US20180163195A1 (en) Inducible dimerization of recombinases
US11834652B2 (en) Compositions and methods for scarless genome editing
CN114761035A (zh) 用于体内双重组酶介导的盒式交换(dRMCE)的系统和方法及其疾病模型
WO2022120089A1 (en) Compositions and methods for the targeting of ptbp1
EP4349979A1 (en) Engineered cas12i nuclease, effector protein and use thereof
KR20230137399A (ko) 기능성 핵산 분자 및 방법
US20110003883A1 (en) Allosteric trans-splicing group i ribozyme whose activity of target-specific rna replacement is controlled by theophylline
CN111088323A (zh) 筛选跨膜靶蛋白适配体的细胞selex方法及跨膜靶蛋白适配体及其应用
WO2024010028A1 (ja) 環状rna分子及びこれを用いた翻訳制御方法、翻訳活性化システム、並びに医薬組成物
WO2023051734A1 (en) Engineered crispr-cas13f system and uses thereof
WO2023030340A1 (en) Novel design of guide rna and uses thereof
JP5858393B2 (ja) 抗体の可変領域を用いた新規な遺伝子発現調節方法
TWI515203B (zh) 衍生自雞貧血病毒(cav)vp2蛋白質的細胞核定位信號胜肽以及它們的應用
JP6482869B2 (ja) miR−140の発現を制御するDNA及び該DNAを利用した薬剤のスクリーニング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835559

Country of ref document: EP

Kind code of ref document: A1