WO2024009765A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2024009765A1
WO2024009765A1 PCT/JP2023/022863 JP2023022863W WO2024009765A1 WO 2024009765 A1 WO2024009765 A1 WO 2024009765A1 JP 2023022863 W JP2023022863 W JP 2023022863W WO 2024009765 A1 WO2024009765 A1 WO 2024009765A1
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel
clutch
engine
mode
rotation speed
Prior art date
Application number
PCT/JP2023/022863
Other languages
English (en)
French (fr)
Inventor
篤史 小林
智章 福永
寿生 向井
川端 一弘
滉太 松本
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2024009765A1 publication Critical patent/WO2024009765A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/10Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H33/00Gearings based on repeated accumulation and delivery of energy
    • F16H33/02Rotary transmissions with mechanical accumulators, e.g. weights, springs, intermittently-connected flywheels

Definitions

  • the present invention relates to a work vehicle such as a tractor.
  • Patent Document 1 Conventionally, the technology disclosed in Patent Document 1 below is known.
  • Patent Document 1 is an energy recovery system for a vehicle drive line that includes an engine, a flywheel, and a transmission. According to this system, rotational energy can be received from the wheel drive line, stored in the flywheel, and the stored rotational energy can be returned to the drive line.
  • Patent No. 5554323 Japanese Patent Publication “Patent No. 5554323”
  • paths are configured between the engine and the flywheel and between the flywheel and the transmission, respectively, so that power can be transmitted.
  • these routes are not independent of each other.
  • both of the two routes described above are routes via a planetary gear mechanism.
  • the rotational speed of the rotational power input to the flywheel and when rotational power is transmitted from the flywheel to the transmission, the rotational speed of the rotational power output to the transmission is determined.
  • the number is the rotation speed determined based on the gear ratio of the planetary gear mechanism.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a work vehicle that can effectively assist the rotational power of the engine with the rotational power of the flywheel when the work load is large. do.
  • a work vehicle includes an engine, a first flywheel that rotates in response to rotational power of the engine, and a rotational power of the engine or the rotational power of the engine and the first flywheel.
  • a transmission device that selectively receives, changes speed and outputs rotational power of the engine; a first power transmission path that transmits the rotational power of the engine to the first flywheel; and a first power transmission path that transmits the rotational power of the engine to the first flywheel; a second power transmission path that transmits to the transmission, the first power transmission path and the second power transmission path are mutually independent paths, and the first power transmission path includes the engine
  • a first clutch is provided in the second power transmission path, and a first clutch is provided in the second power transmission path, and a first clutch is provided in the second power transmission path. Two clutches are provided.
  • the first power transmission path is provided with a speed increasing mechanism that speeds up the rotational power of the engine and transmits it to the first flywheel
  • the second power transmission path is provided with a speed increase mechanism that increases the rotational power of the engine and transmits it to the first flywheel. may be transmitted to the transmission without going through the speed reduction mechanism.
  • the work vehicle includes a third power transmission path that transmits rotational power of the engine to the transmission without going through the first flywheel, and the third power transmission path connects the output shaft of the engine and the transmission.
  • the input shaft may be connected at all times.
  • the speed increasing mechanism is composed of a planetary gear mechanism including a sun gear, a planet gear, and a ring gear, and the ring gear is fixed so as not to rotate, and the rotational power of the engine is transmitted to the planet gear.
  • the rotational power of the first flywheel may be inputted and transmitted to the first flywheel via the sun gear, and the rotational power of the first flywheel may be transmitted to the transmission without going through the planetary gear mechanism.
  • the work vehicle may include a second flywheel connected to the output shaft of the engine, and the first flywheel may be rotatable independently of the second flywheel.
  • the first flywheel may be disposed between the second flywheel and the transmission in the axial length direction of the output shaft.
  • the work vehicle includes a relay shaft interposed between the output shaft and the transmission to constitute the third power transmission path, and the relay shaft is provided to penetrate the first flywheel. You can do it like this.
  • the first clutch and the second clutch may be arranged side by side in the radial direction of the relay shaft.
  • the first clutch and the second clutch may be arranged side by side in the axial direction of the relay shaft.
  • the work vehicle includes a housing that accommodates the first flywheel, the first clutch, and the second clutch, and the interior of the housing is divided into a space in which the first flywheel is accommodated and a space in which the first flywheel is accommodated.
  • a partition wall may be provided to separate the clutch and the space in which the second clutch is accommodated, and the first clutch and the second clutch may be arranged at positions facing the partition wall.
  • the first clutch and the second clutch may be multi-plate clutches including a plurality of friction plates, and may be arranged on the inner peripheral side of the first flywheel.
  • the rotational power of the engine can be effectively assisted by the rotational power of the flywheel.
  • FIG. 1 is a schematic side view showing a work vehicle according to the present invention.
  • FIG. 2 is a diagram showing the configuration of a power transmission mechanism of a work vehicle. It is a figure showing the composition of a 1st embodiment of the 1st power transmission part. It is a figure showing the composition of a 2nd embodiment of the 1st power transmission part. It is a figure which shows the structure of 3rd Embodiment of a 1st power transmission part. It is a figure which shows the structure of 4th Embodiment of a 1st power transmission part. It is a figure which shows the structure of 5th Embodiment of a 1st power transmission part. It is a figure which shows the structure of 6th Embodiment of a 1st power transmission part.
  • FIG. 2 is a collinear diagram of a planetary gear mechanism that constitutes a speed increasing mechanism. It is a sectional view showing a power transmission mechanism including a first power transmission section according to a fifth embodiment and a part of a transmission case that houses the power transmission mechanism. 11 is an enlarged view of a part of FIG. 10.
  • FIG. It is a perspective view showing a 1st flywheel, a partition wall, a support body, a 1st friction plate, and a 2nd friction plate.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system included in the work vehicle.
  • FIG. 3 is a diagram showing the states of the engine, first flywheel, first clutch, and second clutch in each operation mode executed by the control system.
  • FIG. 3 is a state transition diagram of operation modes executed by the control system.
  • FIG. 3 is a diagram showing conditions (threshold values) for transition of operation modes. It is a flowchart which shows the flow of operation when shifting from free mode to sticky preparation mode. It is a flowchart which shows the flow of operation when shifting from sticky preparation mode to sticky mode or free mode. It is a flowchart showing the flow of operation when transitioning from sticky mode to charge preparation mode or free mode. It is a flowchart which shows the flow of operation when shifting from charge preparation mode to charge mode or free mode. It is a flowchart which shows the flow of operation when shifting from charge mode to boost preparation mode or free mode. It is a flowchart which shows the flow of operation when shifting from boost preparation mode to boost mode.
  • This is an example of a screen display when notifying that it is possible to switch from charge mode to boost preparation mode by displaying on the screen of the display input device, and the display input shows a state in which switching to boost preparation mode is not possible.
  • the screen of the device is shown.
  • a screen of an input device is shown. It is an example of the timing chart of a control system.
  • FIG. 1 is a schematic side view showing a work vehicle 1 according to the present invention.
  • a tractor is illustrated as the work vehicle 1.
  • the work vehicle 1 is not limited to a tractor, and may be another work vehicle such as a wheel loader, a compact track loader, a backhoe, or a rice transplanter.
  • the work vehicle 1 includes a vehicle body 2 and a traveling device 3.
  • the vehicle body 2 includes an engine 4 and a transmission case 5 connected to the rear of the engine 4.
  • the traveling device 3 supports the vehicle body 2 so that it can travel.
  • the traveling device 3 has a front wheel 3F and a rear wheel 3R.
  • a lifting device 7 is provided at the rear of the vehicle body 2.
  • a working device can be attached to the lifting device 7.
  • the working device attached to the lifting device 7 is a device that performs work on the field, and is, for example, a tilling device, a spraying device, or the like.
  • the lifting device 7 includes, for example, a three-point link mechanism. The lifting device 7 can lift and lower the attached working device.
  • a PTO shaft 8 is provided in a protruding manner at the rear of the transmission case 5.
  • the driving force transmitted from the PTO shaft 8 can drive the working device attached to the lifting device 7.
  • the transmission case 5 includes a flywheel housing 9 and a transmission case 10.
  • the flywheel housing 9 accommodates flywheels (a first flywheel 13, a second flywheel 14), etc., which will be described later.
  • the flywheel housing 9 is provided at the front of the transmission case 5.
  • the flywheel housing 9 may be simply referred to as the housing 9.
  • the transmission case 10 houses a transmission 16 and the like, which will be described later.
  • the transmission case 10 is provided at the rear of the transmission case 5.
  • a power transmission mechanism 6 is arranged inside the transmission case 5.
  • the power transmission mechanism 6 is a mechanism that transmits the rotational power of the engine 4 to the traveling device 3 and the PTO shaft 8 shown in FIG.
  • the power transmission mechanism 6 has a first power transmission section 11 and a second power transmission section 12.
  • the first power transmission section 11 is arranged inside the flywheel housing 9.
  • the second power transmission section 12 is arranged inside the mission case 10.
  • the first power transmission section 11 receives the rotational power of the engine 4 and transmits it to the second power transmission section 12 .
  • the second power transmission section 12 transmits the rotational power transmitted from the first power transmission section 11 to the traveling device 3 and the PTO shaft 8.
  • FIG. 3 to 8 show different embodiments of the first power transmission section 11.
  • 3 shows a first embodiment of the first power transmission section 11
  • FIG. 4 shows a second embodiment of the first power transmission section 11
  • FIG. 5 shows a third embodiment of the first power transmission section 11
  • FIG. 6 shows a first embodiment of the first power transmission section 11.
  • FIG. 7 shows a fifth embodiment of the first power transmission section 11
  • FIG. 8 shows a sixth embodiment of the first power transmission section 11.
  • the first power transmission section 11 includes a first flywheel 13 and a second flywheel 14.
  • the first flywheel 13 and the second flywheel 14 rotate by receiving rotational power from the engine 4.
  • the second flywheel 14 is configured in a disc shape.
  • the second flywheel 14 is connected to an output shaft (crankshaft) 4a of the engine 4. Therefore, the second flywheel 14 rotates at the same rotation speed as the engine 4.
  • rotation speed refers to the number of rotations per unit time (for example, rpm).
  • the first flywheel 13 is configured in a cylindrical shape with a through hole 13d passing through the first flywheel 13 in the front-rear direction.
  • the first flywheel 13 has an outer cylinder part 13a, an inner cylinder part 13b, and a connecting part 13c.
  • the outer cylinder portion 13a is a cylindrical portion that includes the outer peripheral surface of the first flywheel 13.
  • the inner cylinder part 13b is a cylindrical part that includes the inner peripheral surface of the first flywheel 13, and is arranged inside (inner peripheral side) of the outer cylinder part 13a.
  • the inner peripheral side of the inner cylinder portion 13b is a through hole 13d.
  • the connecting portion 13c is formed into a disc shape that connects the outer cylinder portion 13a and the inner cylinder portion 13b.
  • the first flywheel 13 may be composed of only the outer cylinder part 13a among the outer cylinder part 13a, the inner cylinder part 13b, and the connecting part 13c.
  • the portions corresponding to the inner cylindrical portion 13b and the connecting portion 13c are made of a separate member from the first flywheel 13, and the other member and the outer cylindrical portion 13a are connected and rotate integrally. .
  • the relay shaft 17 is inserted into the through hole 13d of the first flywheel 13.
  • the relay shaft 17 passes through the center of the first flywheel 13 and extends in the front-rear direction.
  • the relay shaft 17 relays between the second flywheel 14 and the transmission 16.
  • the inner cylinder portion 13b is supported by a bearing provided on the relay shaft 17. Thereby, the inner cylindrical portion 13b is rotatably supported relative to the relay shaft 17. Thereby, the first flywheel 13 can rotate around the axis of the relay shaft 17 independently of the relay shaft 17.
  • the inner cylindrical portion 13b may be directly supported by a bearing provided on the relay shaft 17, or indirectly supported by a bearing provided on the relay shaft 17 via another member.
  • the first flywheel 13 is connected to another member (such as a support 65 (see FIG. 11) described later), and the other member is supported by the relay shaft 17 via a bearing.
  • the first flywheel 13 is arranged between the second flywheel 14 and the transmission 16 in the axial length direction (front-rear direction) of the output shaft 4a.
  • the first flywheel 13 receives rotational power from the engine 4 via the first flywheel 13 and a speed increasing mechanism 20, which will be described later, and rotates.
  • a first rotation speed sensor 18 for measuring the rotation speed of the first flywheel 13 is provided near the first flywheel 13.
  • the first power transmission section 11 has a first power transmission path 31 and a second power transmission path 32.
  • the first power transmission path 31 is a path that transmits the rotational power of the engine 4 to the first flywheel 13.
  • the second power transmission path 32 is a path that transmits the rotational power of the first flywheel 13 to the transmission 16.
  • the first power transmission path 31 and the second power transmission path 32 are paths independent of each other. Therefore, when the rotational power of the engine 4 is transmitted to the first flywheel 13, the rotational power of the engine 4 is transmitted to the first flywheel 13 via the first power transmission path 31 without passing through the second power transmission path 32. is transmitted to. Further, when the rotational power of the first flywheel 13 is transmitted to the transmission 16, the rotational power of the first flywheel 13 is transmitted not through the first power transmission path 31 but through the second power transmission path 32. The signal is transmitted to the transmission 16.
  • the first power transmission section 11 includes a clutch device 25 consisting of a first clutch 26 and a second clutch 27.
  • a first clutch 26 is provided in the first power transmission path 31 .
  • a second clutch 27 is provided in the second power transmission path 32 .
  • the first power transmission path 31 is a path that passes through the first clutch 26 but does not pass through the second clutch 27.
  • the second power transmission path 32 is a path that passes through the second clutch 27 but does not pass through the first clutch 26.
  • the first clutch 26 interrupts (disconnects or connects) the transmission of rotational power from the engine 4 to the first flywheel 13 .
  • the second clutch 27 interrupts (disconnects or connects) transmission of rotational power from the first flywheel 13 to the transmission 16 .
  • the first clutch 26 and the second clutch 27 are hydraulic clutches operated by supply of hydraulic oil.
  • the first clutch 26 includes a first friction plate 26A, a second friction plate 26B, and a hydraulic piston.
  • the second clutch 27 includes a first friction plate 27A, a second friction plate 27B, and a hydraulic piston. By driving the hydraulic piston, the first friction plates 26A, 27A can be moved to switch between a state in which the first friction plates 26A, 27A and the second friction plates 26B, 27B are in pressure contact with each other and a state in which they are separated.
  • the first friction plate 26A is configured to press against or separate from the second friction plate 26B, and the first friction plate 27A is configured to press against or separate from the second friction plate 27B. is configured to do so.
  • the second friction plate 26B is configured to press against or separate from the first friction plate 26A, and the second friction plate 27B is configured to press against or separate from the first friction plate 27A. may be configured.
  • the first clutch 26 is connected when the first friction plate 26A and the second friction plate 26B are in pressure contact, and is disconnected when the first friction plate 26A and the second friction plate 26B are separated.
  • the second clutch 27 is connected when the first friction plate 27A and the second friction plate 27B are in pressure contact, and is disconnected when the first friction plate 27A and the second friction plate 27B are in a separated state.
  • the first clutch 26 and the second clutch 27 each include a hydraulic control valve (not shown) that controls the supply of hydraulic oil to the oil chamber of the hydraulic piston.
  • the hydraulic control valve is composed of a solenoid valve that is controlled by supplying electric current.
  • the hydraulic control valve is composed of, for example, a proportional valve whose opening degree changes depending on the current value.
  • the first friction plates 26A, 27A are urged in the return direction (in the direction away from the second friction plates 26B, 27B) by a spring, and when hydraulic oil is supplied to the oil chamber of the hydraulic piston, the spring is biased. It moves against the force and approaches the second friction plates 26B, 27B.
  • connection preparation state When connecting the first clutch 26 and the second clutch 27, first, the pressure of the hydraulic oil in the oil chamber of the piston is increased by temporarily supplying a set amount of hydraulic oil that balances the biasing force of the spring. (hereinafter referred to as "connection preparation state").
  • connection preparation state In the preparation state for connection, when the conditions for connecting the first clutch 26 and the second clutch 27 are met, the pressure is activated to press the first friction plates 26A, 27A against the second friction plates 26B, 27B. Continuous supply of oil. As a result, the first clutch 26 and the second clutch 27 are connected. In other words, the state shifts from the connection preparation state to the connection state. In this manner, when connecting the clutches (first clutch 26, second clutch 27), the responsiveness of clutch connection can be improved by transitioning to the connected state after passing through the connection preparation state.
  • a momentary current (one-shot pulse current) is supplied to the hydraulic control valve (electromagnetic valve). That is, when a one-shot pulse current is supplied to the hydraulic control valve, a set amount of hydraulic oil that balances the biasing force of the spring is supplied instantaneously, and the valve is ready for connection.
  • supplying a one-shot pulse current will be referred to as one-shot implementation. Further, the number of times the one-shot pulse current is supplied is referred to as the number of times one-shot is performed or the number of attempts to connect the clutch (first clutch 26 or second clutch 27).
  • the first clutch 26 is provided with a first pressure sensor 28.
  • the second clutch 27 is provided with a second pressure sensor 29 .
  • first pressure sensor 28 and the second pressure sensor 29 are omitted in FIGS. 4 to 8 (second to sixth embodiments).
  • the second to sixth embodiments also differ from the first embodiment.
  • a first pressure sensor 28 and a second pressure sensor 29 are provided.
  • illustration of the first rotation speed sensor 18 and the second rotation speed sensor 15 is omitted, but in the second to sixth embodiments, the As in the first embodiment, a first rotation speed sensor 18 and a second rotation speed sensor 15 are provided.
  • the first pressure sensor 28 detects the pressure of hydraulic oil in the oil passage (operating pressure of the oil passage piston) for supplying hydraulic oil to the hydraulic piston of the first clutch 26.
  • the second pressure sensor 29 detects the pressure of hydraulic oil in the oil passage for supplying hydraulic oil to the hydraulic piston of the second clutch 27 (the working pressure of the oil passage piston).
  • the state (connected state, disconnected state) of the first clutch 26 and the second clutch 27 can be determined by the pressure of the hydraulic oil detected by the first pressure sensor 28 and the second pressure sensor 29.
  • the first power transmission path 31 is provided with a speed increasing mechanism 20. That is, the first power transmission path 31 is a path that passes through the speed increasing mechanism 20.
  • the second power transmission path 32 is a path that does not go through the speed increasing mechanism 20.
  • the speed increasing mechanism 20 may not be provided in the first power transmission path 31.
  • the speed increasing mechanism 20 is a mechanism that speeds up the rotational power of the engine 4 and transmits it to the first flywheel 13.
  • the speed increasing mechanism 20 is composed of a planetary gear mechanism including a sun gear 21, a planetary gear 22, and a ring gear 23. Ring gear 23 is fixed to flywheel housing 9. Therefore, the ring gear 23 cannot rotate.
  • the planetary gear 22 meshes with the internal teeth of the ring gear 23.
  • the sun gear 21 meshes with the planet gear 22.
  • the sun gear 21 is rotatable around the axis of the relay shaft 17.
  • the planetary gear 22 can rotate (revolution) around the sun gear 21 .
  • FIG. 9 is a collinear diagram of the planetary gear mechanism that constitutes the speed increasing mechanism 20.
  • the vertical axis in FIG. 9 is the number of rotations (rotational speed).
  • the rotational power input from the planetary gear 22 can be accelerated and output from the sun gear 21.
  • the speed increasing ratio of the speed increasing mechanism 20 is set to a value exceeding 1 (ie, speed increasing ratio>1), preferably 2 or more, more preferably 3 or more.
  • the speed increasing ratio can be set in a range of 3 to 5.
  • the rotational power of the engine 4 is input to the planetary gear 22 of the speed increasing mechanism 20, transmitted from the planetary gear 22 to the sun gear 21, and from the sun gear 21 to the first flywheel 13. Thereby, the rotational power of the engine 4 is increased in speed and transmitted to the first flywheel 13. As a result, the rotation speed of the first flywheel 13 becomes higher than the rotation speed (actual rotation speed) of the engine 4. (Hereinafter, unless otherwise specified, the rotational speed of the engine 4 refers to the actual rotational speed of the engine 4.) Thereby, a large amount of rotational energy can be stored in the first flywheel 13.
  • the first power transmission path 31 speeds up the rotational power of the engine 4 via the speed increasing mechanism 20 and 1 flywheel 13.
  • the speed increasing mechanism 20 is not provided in the second power transmission path 32.
  • the second power transmission path 32 is a path that passes through the speed increase mechanism 20 provided in the first power transmission path 31, the speed increase mechanism 20 functions as a deceleration mechanism. Specifically, the rotational power of the first flywheel 13 is input to the sun gear 21 and transmitted to the first flywheel 13 via the planetary gears 22. Therefore, the rotational power of the first flywheel 13 is decelerated and transmitted to the transmission 16.
  • the speed increasing mechanism 20 since the speed increasing mechanism 20 is not provided in the second power transmission path 32, the rotational power of the first flywheel 13 is transferred to the transmission device 16 without being decelerated. communicated. Therefore, it can be said that the second power transmission path 32 is not provided with a speed reduction mechanism.
  • the second power transmission path 32 since the second power transmission path 32 is not provided with a speed reduction mechanism, the second power transmission path 32 transmits the rotational power of the first flywheel 13 to the transmission 16 without going through the speed reduction mechanism. do. Therefore, the second power transmission path 32 can transmit the rotational power of the first flywheel 13 to the transmission 16 without reducing the speed.
  • the second power transmission path 32 is not provided with a mechanism for increasing the speed of the rotational power of the first flywheel 13 and transmitting it to the transmission 16. Therefore, the number of rotations of the first flywheel 13 and the number of rotations input to the input shaft 16a of the transmission 16 become equal.
  • the first power transmission path 31 and the second power transmission path 32 are mutually independent paths” specifically means that "the first power transmission path 31 passes through the speed increasing mechanism 20.
  • the second power transmission path 32 is a path that does not go through the speed increasing mechanism 20 provided in the first power transmission path 31.
  • the second power transmission path 32 may be provided with a speed increase mechanism different from the speed increase mechanism 20 provided in the first power transmission path 31 (a speed increase mechanism independent of the speed increase mechanism 20).
  • the second power transmission path 32 can increase the speed of the rotational power of the first flywheel 13 and transmit it to the transmission 16 . Therefore, the number of rotations input to the input shaft 16a of the transmission 16 becomes higher than the number of rotations of the first flywheel 13.
  • the first power transmission section 11 has a third power transmission path 33.
  • the third power transmission path 33 is a path that transmits the rotational power of the engine 4 to the transmission 16 without going through the first flywheel 13. Further, the third power transmission path 33 is a path that transmits the rotational power of the engine 4 to the transmission 16 without passing through either the first clutch 26 or the second clutch 27. That is, the third power transmission path 33 is not provided with a clutch that connects and disconnects the path. Therefore, the third power transmission path 33 always connects the output shaft 4a of the engine 4 and the input shaft 16a of the transmission 16.
  • the third power transmission path 33 includes a relay shaft 17 interposed between the output shaft 4a of the engine 4 and the transmission 16.
  • the relay shaft 17 passes through the through hole 13d of the first flywheel 13. Therefore, the third power transmission path 33 is formed to penetrate through the through hole 13d of the first flywheel 13.
  • the third power transmission path 33 linearly connects the output shaft 4a of the engine 4 and the input shaft 16a of the transmission 16 via the second flywheel 14 and the relay shaft 17.
  • One end side (front end side) of the relay shaft 17 is connected to the second flywheel 14.
  • the other end side (rear end side) of the relay shaft 17 is connected to an input shaft 16a of the transmission 16. Thereby, the relay shaft 17 connects the second flywheel 14 and the transmission 16.
  • the flywheel housing 9 has a first wall 9a, a second wall 9b, and a peripheral wall 9c.
  • the first wall 9a and the second wall 9b are arranged to face each other.
  • the first wall 9a is arranged on the engine 4 side (front side).
  • a second flywheel 14 is arranged near the inner surface (rear surface) of the first wall 9a.
  • the second wall 9b is arranged on the transmission 16 side (rear side).
  • a transmission 16 is arranged near the outer surface (rear surface) of the second wall 9b.
  • the peripheral wall 9c connects the first wall 9a and the second wall 9b.
  • the peripheral wall 9c is provided so as to surround the first flywheel 13, the second flywheel 14, the first clutch 26, and the second clutch 27 (on the outer peripheral side).
  • the first flywheel 13 is rotatable independently of the second flywheel 14. Specifically, the first flywheel 13 can rotate independently of the second flywheel 14 when the first clutch 26 and the second clutch 27 are disengaged. With the first clutch 26 and the second clutch 27 disengaged, the first flywheel 13, once rotated, can continue to rotate even if the second flywheel 14 stops.
  • the above is the basic configuration of the first power transmission section 11 (common configuration in all embodiments).
  • the second power transmission section 12 has a transmission 16.
  • the transmission 16 is a hydrostatic continuously variable transmission (HST).
  • the transmission 16 includes a hydraulic pump P1 and a hydraulic motor M1.
  • Hydraulic pump P1 and hydraulic motor M1 are connected through an oil passage (circulation oil passage) through which hydraulic oil flows.
  • the hydraulic pump P1 is a variable displacement pump that can change the discharge amount of hydraulic oil.
  • the hydraulic pump P1 is driven by power input from the input shaft 16a of the transmission 16 and discharges hydraulic oil.
  • Hydraulic motor M1 is driven by hydraulic oil discharged from hydraulic pump P1.
  • the driving speed of the hydraulic motor M1 can be adjusted steplessly by increasing or decreasing the amount of hydraulic oil supplied from the hydraulic pump P1.
  • Rotational power is transmitted to the transmission 16 from the first power transmission section 11 .
  • the transmission 16 selectively receives the rotational power of the engine 4 or the rotational power of the engine 4 and the first flywheel 13, changes speed, and outputs the rotational power. That is, the transmission 16 may receive the rotational power of the engine 4, change the speed, and output the same, or receive the rotational power of the engine 4 and the first flywheel 13, change the speed, and output the same.
  • the transmission 16 receives only the rotational power of the engine 4, changes speed, and outputs the same. At this time, the rotational power of the engine 4 is transmitted via the third power transmission path 33.
  • the transmission 16 receives the rotational power of the engine 4 and the first flywheel 13, changes speed, and outputs the gear. At this time, the rotational power of the engine 4 is transmitted through the third power transmission path 33, and the rotational power of the first flywheel 13 is transmitted through the second power transmission path 32.
  • the transmission 16 has a first output shaft 16b and a second output shaft 16c.
  • the first output shaft 16b is a shaft that outputs power to the PTO shaft 8.
  • the second output shaft 16c is a shaft that outputs power to the traveling device 3.
  • the second power transmission section 12 has a clutch section 41 and a transmission section 42.
  • the clutch section 41 has a PTO clutch 43.
  • the PTO clutch 43 can intermittent the rotational power output from the first output shaft 16b.
  • the rotational power output from the first output shaft 16b can be extracted from the first transmission shaft 44, and the PTO shaft 8 can be rotated by the extracted rotational power.
  • the PTO clutch 43 is disconnected, the rotational power output from the first output shaft 16b is not taken out from the first transmission shaft 44, so the rotation of the PTO shaft 8 is stopped.
  • the transmission section 42 includes a PTO transmission section 45 and a traveling transmission section 46.
  • the PTO transmission section 45 can change the speed of the rotational power taken out from the first transmission shaft 44 and output it to the PTO shaft 8.
  • a first torque sensor 35 is provided between the PTO transmission section 45 and the PTO shaft 8. The first torque sensor 35 can detect the torque acting on the PTO shaft 8 .
  • a power relay section 40 is provided between the traveling transmission section 46 and the second output shaft 16c.
  • the power relay section 40 transmits the power output from the second output shaft 16c to the traveling transmission section 46.
  • a second torque sensor 36 is provided on the second transmission shaft 50 that extracts power from the power relay section 40. The second torque sensor 36 can detect the torque acting on the second transmission shaft 50.
  • the traveling transmission section 46 changes the speed of the rotational power transmitted from the second output shaft 16c of the transmission 16 via the second transmission shaft 50, and transmits it to the traveling device 3.
  • the traveling transmission section 46 is provided with a third rotation speed sensor 37.
  • the third rotation speed sensor 37 can detect the rotation speed of the rotational power transmitted to the traveling device 3.
  • the traveling transmission section 46 has a gear transmission mechanism 48 and a differential gear 49.
  • the gear transmission mechanism 48 can change the speed of the rotational power taken out from the second transmission shaft 50 and transmit it to the differential gear 49.
  • the differential gear 49 transmits the rotational power transmitted from the gear transmission mechanism 48 to the rear wheel 3R of the traveling device 3.
  • first power transmission section 11A First, based on FIG. 3, a specific configuration of the first power transmission section 11 according to the first embodiment will be described. Hereinafter, the first power transmission section 11 according to the first embodiment will be referred to as "first power transmission section 11A.”
  • the first clutch 26 and the second clutch 27 are arranged side by side in the axial length direction (front-rear direction) of the relay shaft 17.
  • the first clutch 26 is arranged on the second flywheel 14 side (front side).
  • the second clutch 27 is arranged on the transmission 16 side (rear side).
  • the first clutch 26 is arranged near the first wall 9a of the flywheel housing 9.
  • the second clutch 27 is arranged near the second wall 9b of the flywheel housing 9. Further, the second clutch 27 is arranged on the inner peripheral side of the first flywheel 13.
  • the first clutch 26 is a single-plate clutch and includes one first friction plate 26A and one second friction plate 26B.
  • the first friction plate 26A is formed into a disk shape or an annular shape.
  • the second friction plate 26B is formed in an annular shape.
  • the first friction plate 26A of the first clutch 26 is attached to one end side (the second flywheel 14 side) of the relay shaft 17, and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 26B of the first clutch 26 is attached to the planetary gear 22 of the speed increasing mechanism 20.
  • the second clutch 27 is also a single-plate clutch, and has one first friction plate 27A and one second friction plate 27B.
  • the first friction plate 27A is formed into a disk shape or an annular shape.
  • the second friction plate 27B is formed in an annular shape.
  • the first friction plate 27A of the second clutch 27 is attached to the other end side (transmission 16 side) of the relay shaft 17, and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 27B of the second clutch 27 is attached to the first flywheel 13.
  • the first power transmission path 31 of the first power transmission section 11A transmits the rotational power of the engine 4 to the second flywheel 14, the relay shaft 17, the first clutch 26, the planetary gear 22, and the sun gear 21 in this order. , which is a path for transmitting the signal to the first flywheel 13.
  • the second power transmission path 32 of the first power transmission section 11A is a path that transmits the rotational power of the first flywheel 13 to the second clutch 27 and the relay shaft 17 in this order, and then to the transmission 16.
  • the third power transmission path 33 of the first power transmission section 11A is a path that transmits the rotational power of the engine 4 to the transmission 16 via the relay shaft 17.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the second flywheel 14.
  • the second flywheel 14 rotates, and the relay shaft 17 connected to the second flywheel 14 also rotates.
  • the number of revolutions of the engine 4, the number of revolutions of the second flywheel 14, and the number of revolutions of the relay shaft 17 are the same.
  • the rotational power transmitted from the output shaft 4a to the relay shaft 17 is transmitted from the relay shaft 17 to the input shaft 16a of the transmission 16.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the first flywheel 13 via the first power transmission path 31. is transmitted to.
  • the rotational power transmitted from the output shaft 4a of the engine 4 to the second flywheel 14 and the relay shaft 17 is transmitted from the first friction plate 26A of the first clutch 26 to the second friction plate 26B.
  • the planetary gear 22 rotates, and as the planetary gear 22 rotates, the sun gear 21 rotates.
  • the sun gear 21 is connected to the first flywheel 13, the first flywheel 13 rotates together with the sun gear 21. In this way, the rotational power of the engine 4 is transmitted to the first flywheel 13 via the first clutch 26 and the speed increasing mechanism 20.
  • the rotational power of the engine 4 is increased in speed when it is transmitted from the planetary gear 22 to the sun gear 21. Therefore, the rotational power of the engine 4 is increased in speed and transmitted to the first flywheel 13. Thereby, the first flywheel 13 rotates at a rotation speed higher than the rotation speed of the engine 4. As a result, high rotational energy can be stored in the first flywheel 13.
  • the rotational power of the first flywheel 13 is transmitted to the transmission 16 via the second power transmission path 32. Specifically, the rotational power of the first flywheel 13 is transmitted from the second friction plate 27B of the second clutch 27 to the first friction plate 27A. Thereby, the rotational power of the first flywheel 13 is transmitted from the first friction plate 27A to the relay shaft 17, and from the relay shaft 17 to the input shaft 16a of the transmission 16. At this time, the rotational power of the first flywheel 13 is transmitted to the input shaft 16a of the transmission 16 without being decelerated (without passing through the deceleration mechanism).
  • the rotational power of the first flywheel 13 can be transmitted to the transmission 16 without deceleration. Therefore, it becomes possible to transmit the high rotational energy accumulated in the first flywheel 13 to the transmission 16.
  • the rotational power output from the output shaft 4a of the engine 4 can also be transmitted to the transmission 16 via the third power transmission path 33.
  • both the rotational power of the engine 4 and the rotational power of the first flywheel 13 are transmitted to the transmission 16. Therefore, when the rotational power of the engine 4 is insufficient due to an increase in the load on the working equipment connected to the PTO shaft 8, etc., the rotational power of the engine 4 is effectively assisted by the rotational power of the first flywheel 13. can do. Thereby, it is possible to prevent or suppress the rotational speed of the engine 4 from decreasing when the load on the working device connected to the PTO shaft 8 increases.
  • the first power transmission section 11 according to the first to sixth embodiments each has unique features, and the features of the first power transmission section 11A according to the first embodiment are as follows.
  • the first clutch 26 is arranged near the first wall 9a of the flywheel housing 9, and the second clutch 27 is arranged near the second wall 9b of the flywheel housing 9. located nearby. Therefore, an oil passage for supplying hydraulic oil to the first clutch 26 can be provided along the first wall 9a, and an oil passage for supplying hydraulic oil to the second clutch 27 can be provided along the second wall 9b. It can be provided as follows. Thereby, it is easy to provide an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27. In other words, it is excellent in establishing oil passages.
  • first clutch 26 and the second clutch 27 are composed of single-plate clutches, the clutch and the structure associated with the clutch can be simplified, and the number of parts can be reduced. In other words, it is excellent in that the number of parts can be reduced.
  • first power transmission section 11B the first power transmission section 11 according to the second embodiment.
  • the first clutch 26 and the second clutch 27 are arranged on the transmission 16 side (rear side) in the axial length direction (front-rear direction) of the relay shaft 17.
  • the first clutch 26 and the second clutch 27 are arranged with positions shifted in the front-rear direction.
  • the first clutch 26 is disposed further forward than the second clutch 27.
  • the rear part of the first clutch 26 and the front part of the second clutch 27 are located at overlapping positions in the longitudinal direction.
  • the first clutch 26 is arranged on the outer peripheral side (the side far from the relay shaft 17).
  • the second clutch 27 is arranged on the inner peripheral side (the side closer to the relay shaft 17). That is, the second clutch 27 is arranged on the inner circumferential side than the first clutch 26.
  • the first clutch 26 is arranged on the inner peripheral side of the first flywheel 13.
  • the first clutch 26 is located at a position overlapping the first flywheel 13 in the longitudinal direction.
  • the second clutch 27 is located at a position where only the front portion thereof overlaps the first flywheel 13 in the longitudinal direction.
  • the first clutch 26 is arranged on the inner peripheral side of the speed increasing mechanism 20 (inner peripheral side of the sun gear 21).
  • the second clutch 27 is arranged in front of the speed increasing mechanism 20.
  • the first clutch 26 is a multi-plate clutch and includes a plurality of first friction plates 26A and a plurality of second friction plates 26B.
  • the first friction plates 26A and the second friction plates 26B are arranged alternately in the front-rear direction.
  • the first friction plate 26A and the second friction plate 26B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 26A and the second friction plate 26B.
  • the first friction plate 26A is attached to the first flywheel 13.
  • the first friction plate 26A is movable in the axial direction of the relay shaft 17.
  • the second friction plate 26B is attached to the sun gear 21 of the speed increasing mechanism 20.
  • the second clutch 27 is also a multi-plate clutch and includes a plurality of first friction plates 27A and a plurality of second friction plates 27B.
  • the first friction plates 27A and the second friction plates 27B are arranged alternately in the front-rear direction.
  • the first friction plate 27A and the second friction plate 27B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 27A and the second friction plate 27B.
  • the first friction plate 27A is attached to the first flywheel 13.
  • the first friction plate 27A is movable in the axial direction of the relay shaft 17.
  • the second friction plate 27B is connected to the planetary gear 22 of the speed increasing mechanism 20.
  • the first power transmission path 31 of the first power transmission section 11B transmits the rotational power of the engine 4 to the second flywheel 14, the relay shaft 17, the planetary gear 22, the sun gear 21, and the first clutch 26 in this order. , which is a path for transmitting the signal to the first flywheel 13.
  • the second power transmission path 32 of the first power transmission section 11B is a path that transmits the rotational power of the first flywheel 13 to the transmission 16 via the second clutch 27.
  • the third power transmission path 33 of the first power transmission section 11B is a path that transmits the rotational power of the engine 4 to the transmission 16 via the relay shaft 17.
  • the third power transmission path 33 transmits the rotational power of the engine 4 to the transmission 16 without passing through either the first clutch 26 or the second clutch 27.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the second flywheel 14.
  • the second flywheel 14 rotates, and the relay shaft 17 connected to the second flywheel 14 also rotates.
  • the number of revolutions of the engine 4, the number of revolutions of the second flywheel 14, and the number of revolutions of the relay shaft 17 are the same.
  • the rotational power transmitted to the relay shaft 17 is transmitted to the input shaft 16a of the transmission 16.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the first flywheel 13 via the first power transmission path 31. is transmitted to.
  • the rotational power transmitted from the engine 4 to the second flywheel 14 is transmitted from the second flywheel 14 to the planetary gear 22 via the relay shaft 17.
  • the planetary gear 22 rotates, and as the planetary gear 22 rotates, the sun gear 21 rotates.
  • the sun gear 21 is connected to the second friction plate 26B of the first clutch 26. Therefore, the rotational power of the sun gear 21 is transmitted to the second friction plate 26B, and from the second friction plate 26B to the first flywheel 13 via the first friction plate 26A.
  • the rotational power of the engine 4 is increased in speed when it is transmitted from the planetary gear 22 to the sun gear 21. That is, the rotational power of the engine 4 is increased in speed and transmitted to the first flywheel 13. Therefore, the first flywheel 13 rotates at a rotation speed higher than the rotation speed of the engine 4. Thereby, high rotational energy can be stored in the first flywheel 13.
  • the second power transmission path 32 is connected, so the rotational power of the first flywheel 13 is transmitted to the transmission 16. be done. Specifically, the rotational power of the first flywheel 13 is transmitted from the first friction plate 27A of the second clutch 27 to the second friction plate 27B. Thereby, the rotational power of the first flywheel 13 is transmitted from the second friction plate 27B to the input shaft 16a of the transmission 16 via the relay shaft 17. At this time, the rotational power of the first flywheel 13 is transmitted to the input shaft 16a of the transmission 16 without being decelerated (without passing through the deceleration mechanism). Therefore, the high rotational energy of the first flywheel 13 can be directly input to the transmission 16.
  • the first power transmission section 11B can provide the same effects as those of the first power transmission section 11A described above.
  • the features of the first power transmission section 11B according to the second embodiment are as follows.
  • the first clutch 26 and the second clutch 27 are composed of multi-plate clutches, the first friction plates 26A, 27A and the second friction plates 26B, 27B are It is possible to obtain high power transmission performance between the two. Therefore, the power transmission performance of the clutch device 25 is superior to that of the first power transmission section 1A.
  • the clutch device 25 since the clutch device 25 has excellent power transmission performance, power can be reliably transmitted to the first flywheel 13 and high rotational energy can be stored in the first flywheel 13. Therefore, compared to the first power transmission section 1A, the first flywheel 13 has superior performance in accumulating rotational energy.
  • first power transmission section 11C the first power transmission section 11 according to the third embodiment.
  • the first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17 (direction away from the axis of the relay shaft 17).
  • the first clutch 26 is arranged on the outer peripheral side (the side far from the relay shaft 17).
  • the second clutch 27 is arranged on the inner peripheral side (the side closer to the relay shaft 17). In other words, the second clutch 27 is arranged on the inner peripheral side of the first clutch 26.
  • the first clutch 26 and the second clutch 27 are arranged near the second wall 9b of the flywheel housing 9. Specifically, the first clutch 26 and the second clutch 27 are arranged at positions facing the second wall 9b.
  • the first clutch 26 and the second clutch 27 are arranged between the first flywheel 13 and the transmission 16 in the longitudinal direction.
  • the first clutch 26 and the second clutch 27 are located at positions shifted from the first flywheel 13 in the longitudinal direction. In other words, the first clutch 26 and the second clutch 27 do not overlap the first flywheel 13 in the longitudinal direction.
  • the outer diameter of the clutch device 25 consisting of the first clutch 26 and the second clutch 27 is smaller than the outer diameter of the first flywheel 13.
  • the first clutch 26 is a multi-plate clutch and includes a plurality of first friction plates 26A and a plurality of second friction plates 26B.
  • the plurality of first friction plates 26A and the plurality of second friction plates 26B of the first clutch 26 are arranged alternately in the front-rear direction.
  • the first friction plate 26A and the second friction plate 26B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 26A and the second friction plate 26B.
  • the first friction plate 26A is attached to the relay shaft 17 and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 26B is attached to the planetary gear 22 of the speed increasing mechanism 20.
  • the second clutch 27 is also a multi-plate clutch and includes a plurality of first friction plates 27A and a plurality of second friction plates 27B.
  • the first friction plates 27A and the second friction plates 27B are arranged alternately in the front-rear direction.
  • the first friction plate 27A and the second friction plate 27B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 27A and the second friction plate 27B.
  • the first friction plate 27A is attached to the relay shaft 17 and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 27B is attached to the sun gear 21 of the speed increasing mechanism 20.
  • the first power transmission path 31 of the first power transmission section 11C transmits the rotational power of the engine 4 to the second flywheel 14, the relay shaft 17, the first clutch 26, the planetary gear 22, and the sun gear 21 in this order. , which is a path for transmitting the signal to the first flywheel 13.
  • the second power transmission path 32 of the first power transmission section 11C is a path that transmits the rotational power of the first flywheel 13 to the second clutch 27 and the relay shaft 17 in this order, and then to the transmission 16.
  • the third power transmission path 33 of the first power transmission section 11C is a path that transmits the rotational power of the engine 4 to the transmission 16 via the relay shaft 17.
  • the third power transmission path 33 transmits the rotational power of the engine 4 to the transmission 16 without passing through either the first clutch 26 or the second clutch 27.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the second flywheel 14.
  • the second flywheel 14 rotates, and the relay shaft 17 connected to the second flywheel 14 also rotates.
  • the number of revolutions of the engine 4, the number of revolutions of the second flywheel 14, and the number of revolutions of the relay shaft 17 are the same.
  • the rotational power transmitted from the output shaft 4a to the relay shaft 17 is transmitted from the relay shaft 17 to the input shaft 16a of the transmission 16.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the first flywheel 13 via the first power transmission path 31. is transmitted to.
  • the rotational power transmitted from the output shaft 4a of the engine 4 to the second flywheel 14 and the relay shaft 17 is transmitted from the first friction plate 26A of the first clutch 26 to the second friction plate 26B.
  • the planetary gear 22 rotates, and as the planetary gear 22 rotates, the sun gear 21 rotates.
  • the sun gear 21 is connected to the first flywheel 13, the first flywheel 13 rotates together with the sun gear 21. In this way, the rotational power of the engine 4 is transmitted to the first flywheel 13 via the first clutch 26 and the speed increasing mechanism 20.
  • the rotational power of the engine 4 is increased in speed when it is transmitted from the planetary gear 22 to the sun gear 21. That is, the rotational power of the engine 4 is increased in speed and transmitted to the first flywheel 13. Therefore, the first flywheel 13 rotates at a rotation speed higher than the rotation speed of the engine 4. Thereby, high rotational energy can be stored in the first flywheel 13.
  • the rotational power of the first flywheel 13 is transmitted to the transmission 16 via the second power transmission path 32. Specifically, the rotational power of the first flywheel 13 is transmitted from the second friction plate 27B of the second clutch 27 to the first friction plate 27A. Thereby, the rotational power of the first flywheel 13 is transmitted from the first friction plate 27A to the relay shaft 17, and from the relay shaft 17 to the input shaft 16a of the transmission 16. At this time, the rotational power of the first flywheel 13 is transmitted to the input shaft 16a of the transmission 16 without being decelerated (without passing through the deceleration mechanism).
  • the first power transmission section 11C can have the same effects as the first power transmission section 11A described above.
  • the features of the first power transmission section 11C according to the third embodiment are as follows.
  • the first clutch 26 and the second clutch 27 are composed of multi-plate clutches, the first friction plates 26A, 27A and the second friction plates 26B, 27B are It is possible to obtain high power transmission performance between the two. In other words, the power transmission performance of the clutch device 25 is excellent.
  • both the first clutch 26 and the second clutch 27 are placed near the second wall 9b of the flywheel housing 9. can be placed in Therefore, an oil passage for supplying hydraulic oil to the first clutch 26 and an oil passage for supplying hydraulic oil to the second clutch 27 can be provided along the second wall 9b. Therefore, it is easy to provide an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27. In other words, it is excellent in establishing oil passages.
  • one end side of the relay shaft 17 can be rotatably supported.
  • the other end of the relay shaft 17 or the input shaft 16a of the transmission 16 connected to the other end can be rotatably supported. .
  • first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17 near the second wall 9b, a member for supporting the first clutch 26 and the second clutch 27 is required. It becomes possible to share the parts, and the number of parts can be reduced. In other words, it is excellent in that the number of parts can be reduced.
  • first power transmission section 11D the first power transmission section 11 according to the fourth embodiment.
  • the first clutch 26 and the second clutch 27 are arranged side by side in the axial length direction (front-rear direction) of the relay shaft 17.
  • the first clutch 26 is disposed at the rear of the relay shaft 17 in the axial direction (on the transmission 16 side).
  • the second clutch 27 is disposed at the front portion of the relay shaft 17 in the axial direction (on the second flywheel 14 side).
  • the first clutch 26 is arranged near the second wall 9b of the flywheel housing 9.
  • the second clutch 27 is arranged near the first wall 9a of the flywheel housing 9.
  • the outer diameter of the first clutch 26 and the outer diameter of the second clutch 27 are smaller than the outer diameter of the first flywheel 13.
  • the first clutch 26 and the second clutch 27 are arranged on the inner peripheral side of the first flywheel 13. Specifically, the first clutch 26 and the second clutch 27 are arranged on the inner peripheral side of the outer cylinder portion 13a of the first flywheel 13.
  • the first clutch 26 is disposed between the speed increasing mechanism 20 and the transmission 16 in the longitudinal direction.
  • the speed increasing mechanism 20 is arranged between the first clutch 26 and the second clutch 27 in the longitudinal direction.
  • the first clutch 26 and the second clutch 27 are located at a position where at least a portion thereof overlaps the first flywheel 13 in the longitudinal direction. Specifically, the first clutch 26 is located at a position where the entire first clutch 26 overlaps the first flywheel 13 in the longitudinal direction. The second clutch 27 is located at a position where its front portion overlaps the first flywheel 13 in the longitudinal direction.
  • the first clutch 26 is a multi-plate clutch and includes a plurality of first friction plates 26A and a plurality of second friction plates 26B.
  • the first friction plates 26A and the second friction plates 26B are arranged alternately in the front-rear direction.
  • the first friction plate 26A and the second friction plate 26B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 26A and the second friction plate 26B.
  • the first friction plate 26A is attached to the relay shaft 17 and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 26B is attached to the planetary gear 22 of the speed increasing mechanism 20.
  • the second clutch 27 is also a multi-plate clutch and includes a plurality of first friction plates 27A and a plurality of second friction plates 27B.
  • the first friction plates 27A and the second friction plates 27B are arranged alternately in the front-rear direction.
  • the first friction plate 27A and the second friction plate 27B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 27A and the second friction plate 27B.
  • the first friction plate 27A is attached to the relay shaft 17 and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 27B is attached to the first flywheel 13.
  • the first power transmission path 31 of the first power transmission section 11D transmits the rotational power of the engine 4 to the second flywheel 14, the relay shaft 17, the first clutch 26, the planetary gear 22, and the sun gear 21 in this order. , which is a path for transmitting the signal to the first flywheel 13.
  • the second power transmission path 32 of the first power transmission section 11D is a path that transmits the rotational power of the first flywheel 13 to the second clutch 27 and the relay shaft 17 in this order, and then to the transmission 16.
  • the third power transmission path 33 of the first power transmission section 11D is a path that transmits the rotational power of the engine 4 to the transmission 16 via the relay shaft 17.
  • the third power transmission path 33 transmits the rotational power of the engine 4 to the transmission 16 without passing through either the first clutch 26 or the second clutch 27.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the second flywheel 14.
  • the second flywheel 14 rotates, and the relay shaft 17 connected to the second flywheel 14 also rotates.
  • the number of revolutions of the engine 4, the number of revolutions of the second flywheel 14, and the number of revolutions of the relay shaft 17 are the same.
  • the rotational power transmitted from the output shaft 4a to the relay shaft 17 is transmitted from the relay shaft 17 to the input shaft 16a of the transmission 16.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the first flywheel 13 via the first power transmission path 31. is transmitted to.
  • the rotational power transmitted from the output shaft 4a of the engine 4 to the second flywheel 14 and the relay shaft 17 is transmitted from the first friction plate 26A of the first clutch 26 to the second friction plate 26B.
  • the planetary gear 22 rotates, and as the planetary gear 22 rotates, the sun gear 21 rotates.
  • the sun gear 21 is connected to the first flywheel 13, the first flywheel 13 rotates together with the sun gear 21. In this way, the rotational power of the engine 4 is transmitted to the first flywheel 13 via the first clutch 26 and the speed increasing mechanism 20.
  • the rotational power of the engine 4 is increased in speed when it is transmitted from the planetary gear 22 to the sun gear 21. That is, the rotational power of the engine 4 is increased in speed and transmitted to the first flywheel 13. Therefore, the first flywheel 13 rotates at a rotation speed higher than the rotation speed of the engine 4. Thereby, high rotational energy can be stored in the first flywheel 13.
  • the rotational power of the first flywheel 13 is transmitted to the transmission 16 via the second power transmission path 32. Specifically, the rotational power of the first flywheel 13 is transmitted from the second friction plate 27B of the second clutch 27 to the first friction plate 27A. Thereby, the rotational power of the first flywheel 13 is transmitted from the first friction plate 27A to the relay shaft 17, and from the relay shaft 17 to the input shaft 16a of the transmission 16. At this time, the rotational power of the first flywheel 13 is transmitted to the input shaft 16a of the transmission 16 without being decelerated (without passing through the deceleration mechanism).
  • the first power transmission section 11D can provide the same effects as those of the first power transmission section 11A described above.
  • the features of the first power transmission section 11D according to the fourth embodiment are as follows.
  • the first clutch 26 and the second clutch 27 are composed of multi-plate clutches, the first friction plates 26A, 27A and the second friction plates 26B, 27B It is possible to obtain high power transmission performance between the two. In other words, the power transmission performance of the clutch device 25 is excellent.
  • the clutch device 25 can be connected to the outside of the clutch device 25 while maintaining high power transmission performance. It can be arranged on the inner peripheral side of the first flywheel 13 with a smaller diameter. This makes it possible to increase the axial length (length in the longitudinal direction) of the first flywheel 13, thereby increasing the moment of inertia of the first flywheel 13, and the rotation that can be accumulated in the first flywheel 13. Can increase energy. In other words, the first flywheel 13 has excellent storage performance of rotational energy.
  • the first clutch 26 and the second clutch 27 are arranged side by side in the axial direction of the relay shaft 17, the first power transmission section 11B, 11C is composed of the first clutch 26 and the second clutch 27.
  • the outer diameter of the clutch device 25 can be made smaller. Thereby, the drag torque of the clutch device 25 (frictional torque that causes co-rotation) can be reduced.
  • first clutch 26 is arranged near the second wall 9b and the second clutch 27 is arranged near the first wall 9a, an oil passage for supplying hydraulic oil to the first clutch 26 is provided. It can be provided along the second wall 9b, and an oil passage for supplying hydraulic oil to the second clutch 27 can be provided along the first wall 9a. Therefore, it is easy to provide an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27. In other words, it is excellent in establishing oil passages.
  • first power transmission section 11E the first power transmission section 11 according to the fifth embodiment.
  • a partition wall 9d is provided inside the flywheel housing 9 that accommodates the first power transmission section 11E according to the fifth embodiment.
  • the partition wall 9d is provided between the first wall 9a and the second wall 9b.
  • One surface of the partition wall 9d faces the first wall 9a.
  • the other surface of the partition wall 9d faces the second wall 9b.
  • the partition wall 9d partitions the inside of the flywheel housing 9 into a space 51 in which the first flywheel 13 is housed and a space 52 in which the first clutch 26 and the second clutch 27 are housed.
  • first space 51 the space 51 in which the first flywheel 13 is accommodated
  • second space 52 the space 52 in which the first clutch 26 and the second clutch 27 are accommodated
  • the first space 51 is provided at the front of the flywheel housing 9 (on the engine 4 side).
  • the second flywheel 14 is also accommodated in the first space 51.
  • the second space 52 is provided at the rear of the flywheel housing 9 (on the transmission 16 side).
  • the speed increasing mechanism 20 is also housed in the second space 52.
  • the first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17 (direction away from the axis of the relay shaft 17).
  • the first clutch 26 is arranged on the outer peripheral side (the side far from the relay shaft 17).
  • the second clutch 27 is arranged on the inner peripheral side (the side closer to the relay shaft 17). That is, the second clutch 27 is arranged on the inner peripheral side of the first clutch 26.
  • the first clutch 26 and the second clutch 27 are arranged near the partition wall 9d of the flywheel housing 9. Specifically, the first clutch 26 and the second clutch 27 are arranged at positions facing the partition wall 9d.
  • the first clutch 26 and the second clutch 27 are arranged between the first flywheel 13 and the transmission 16 in the longitudinal direction.
  • the first clutch 26 and the second clutch 27 are located at positions shifted from the first flywheel 13 in the longitudinal direction. In other words, the first clutch 26 and the second clutch 27 do not overlap the first flywheel 13 in the longitudinal direction. Further, the first clutch 26 and the second clutch 27 are arranged between the first flywheel 13 and the speed increasing mechanism 20 in the front-rear direction.
  • the first clutch 26 is a multi-plate clutch and includes a plurality of first friction plates 26A and a plurality of second friction plates 26B.
  • the first friction plates 26A and the second friction plates 26B are arranged alternately in the front-rear direction.
  • the first friction plate 26A and the second friction plate 26B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 26A and the second friction plate 26B.
  • the first friction plate 26A is attached to the first flywheel 13. Specifically, the first friction plate 26A is attached to the first flywheel 13 via a support 65 (see FIG. 11), which will be described later.
  • the first friction plate 26A is movable in the axial direction of the relay shaft 17.
  • the second friction plate 26B is attached to the sun gear 21 of the speed increasing mechanism 20. Specifically, the second friction plate 26B is attached to the sun gear 21 via an attachment member 69 (see FIG. 11), which will be described later.
  • the second clutch 27 is also a multi-plate clutch and includes a plurality of first friction plates 27A and a plurality of second friction plates 27B.
  • the first friction plates 27A and the second friction plates 27B are arranged alternately in the front-rear direction.
  • the first friction plate 27A and the second friction plate 27B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 27A and the second friction plate 27B.
  • the first friction plate 27A is attached to the first flywheel 13. Specifically, the first friction plate 27A is attached to the first flywheel 13 via a support 65 (see FIG. 11), which will be described later.
  • the first friction plate 27A is movable in the axial direction of the relay shaft 17.
  • the second friction plate 27B is connected to the planetary gear 22 of the speed increasing mechanism 20. Specifically, the second friction plate 27B is connected to the planetary gear 22 via the connecting body 60 and the planetary carrier 24.
  • the connecting body 60 connects the relay shaft 17 and the input shaft 16a of the transmission 16.
  • the planet carrier 24 supports the planet gear 22.
  • the first power transmission path 31 of the first power transmission section 11E transmits the rotational power of the engine 4 to the second flywheel 14, the relay shaft 17, the connecting body 60, the planetary carrier 24, the planetary gear 22, the sun gear 21, the first This is a route in which the signal is transmitted to the clutch 26 in this order, and then to the first flywheel 13.
  • the second power transmission path 32 of the first power transmission section 11E is a path that transmits the rotational power of the first flywheel 13 to the second clutch 27 and the connecting body 60 in this order, and then to the transmission 16.
  • the third power transmission path 33 of the first power transmission section 11E is a path that transmits the rotational power of the engine 4 to the transmission 16 via the relay shaft 17 and the connection body 60.
  • the third power transmission path 33 transmits the rotational power of the engine 4 to the transmission 16 without passing through either the first clutch 26 or the second clutch 27.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the second flywheel 14.
  • the second flywheel 14 rotates, and the relay shaft 17 connected to the second flywheel 14 also rotates.
  • the number of revolutions of the engine 4, the number of revolutions of the second flywheel 14, and the number of revolutions of the relay shaft 17 are the same.
  • the rotational power transmitted to the relay shaft 17 is transmitted to the input shaft 16a of the transmission 16 via the connecting body 60.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the first flywheel 13 via the first power transmission path 31. is transmitted to.
  • the rotational power transmitted from the engine 4 to the second flywheel 14 is transmitted from the second flywheel 14 to the planetary gear 22 via the relay shaft 17, the connection body 60, and the planetary carrier 24.
  • the planetary gear 22 rotates, and as the planetary gear 22 rotates, the sun gear 21 rotates.
  • the sun gear 21 is connected to the second friction plate 26B of the first clutch 26. Therefore, the rotational power of the sun gear 21 is transmitted to the second friction plate 26B, and from the second friction plate 26B to the first flywheel 13 via the first friction plate 26A.
  • the rotational power of the engine 4 is increased in speed when it is transmitted from the planetary gear 22 to the sun gear 21. That is, the rotational power of the engine 4 is increased in speed and transmitted to the first flywheel 13. Therefore, the first flywheel 13 rotates at a rotation speed higher than the rotation speed of the engine 4. Thereby, high rotational energy can be stored in the first flywheel 13.
  • the second power transmission path 32 is connected, so the rotational power of the first flywheel 13 is transmitted to the transmission 16.
  • the rotational power of the first flywheel 13 is transmitted from the first friction plate 27A of the second clutch 27 to the second friction plate 27B.
  • the rotational power of the first flywheel 13 is transmitted from the second friction plate 27B to the input shaft 16a of the transmission 16 via the connection body 60.
  • the rotational power of the first flywheel 13 is transmitted to the input shaft 16a of the transmission 16 without being decelerated (without passing through the deceleration mechanism). Therefore, the high rotational energy of the first flywheel 13 can be directly input to the transmission 16.
  • the first power transmission section 11E can provide the same effects as the first power transmission section 11A described above.
  • the features of the first power transmission section 11E according to the fifth embodiment are as follows.
  • the first clutch 26 and the second clutch 27 are composed of multi-plate clutches, the first friction plates 26A, 27A and the second friction plates 26B, 27B It is possible to obtain high power transmission performance between the two. In other words, the power transmission performance of the clutch device 25 is excellent.
  • the first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17, the length in the front-rear direction can be shortened. This makes it possible to increase the axial length (length in the front-rear direction) of the first flywheel 13. Therefore, the moment of inertia of the first flywheel 13 can be increased, and the rotational energy that can be stored in the first flywheel 13 can be increased. In other words, the first flywheel 13 has excellent storage performance of rotational energy.
  • first clutch 26 and the second clutch 27 are arranged at a position facing the partition wall 9d of the flywheel housing 9, an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27 is provided. can be provided along the partition wall 9d. Therefore, it is easy to provide an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27. In other words, it is excellent in establishing oil passages.
  • the shaft support is excellent.
  • first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17 near the partition wall 9d, the members for supporting the first clutch 26 and the second clutch 27 are commonly used. This makes it possible to reduce the number of parts. In other words, it is excellent in that the number of parts can be reduced.
  • the first power transmission section 11E according to the fifth embodiment is excellent in power transmission performance, rotational energy storage performance, oil passage establishment, shaft support establishment, and reduction in the number of parts. . Therefore, it is possible to achieve a high level of balance between performance-related features (power transmission performance, rotational energy storage performance) and structure-related features (oil passageability, shaft supportability, reduction in the number of parts).
  • first power transmission section 11F the first power transmission section 11 according to the sixth embodiment.
  • a partition wall 9d is provided inside the flywheel housing 9 that accommodates the first power transmission section 11F according to the sixth embodiment.
  • the partition wall 9d is provided between the first wall 9a and the second wall 9b.
  • One surface of the partition wall 9d faces the first wall 9a.
  • the other surface of the partition wall 9d faces the second wall 9b.
  • the partition wall 9d partitions the inside of the flywheel housing 9 into a first space 51 in which the first flywheel 13 is accommodated and a second space 52 in which the first clutch 26 and the second clutch 27 are accommodated.
  • the first space 51 is provided at the front of the flywheel housing 9 (on the engine 4 side).
  • the second flywheel 14 is also accommodated in the first space 51.
  • the second space 52 is provided at the rear of the flywheel housing 9 (on the transmission 16 side).
  • the speed increasing mechanism 20 is also housed in the second space 52.
  • the first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17 (direction away from the axis of the relay shaft 17).
  • the first clutch 26 is arranged on the outer peripheral side (the side far from the relay shaft 17).
  • the second clutch 27 is arranged on the inner peripheral side (the side closer to the relay shaft 17). In other words, the second clutch 27 is arranged on the inner peripheral side of the first clutch 26.
  • the first clutch 26 and the second clutch 27 are arranged near the partition wall 9d of the flywheel housing 9. Specifically, the first clutch 26 and the second clutch 27 are arranged at positions facing the partition wall 9d.
  • the first clutch 26 and the second clutch 27 are arranged between the first flywheel 13 and the transmission 16 in the longitudinal direction.
  • the first clutch 26 and the second clutch 27 are located at positions shifted from the first flywheel 13 in the longitudinal direction. In other words, the first clutch 26 and the second clutch 27 do not overlap the first flywheel 13 in the longitudinal direction. Further, the first clutch 26 and the second clutch 27 are arranged between the first flywheel 13 and the speed increasing mechanism 20 in the front-rear direction.
  • the first clutch 26 is a multi-plate clutch and includes a plurality of first friction plates 26A and a plurality of second friction plates 26B.
  • the first friction plates 26A and the second friction plates 26B are arranged alternately in the front-rear direction.
  • the first friction plate 26A and the second friction plate 26B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 26A and the second friction plate 26B.
  • the first friction plate 26A is attached to the first flywheel 13 and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 26B is attached to the sun gear 21 of the speed increasing mechanism 20.
  • the second clutch 27 is also a multi-plate clutch and includes a plurality of first friction plates 27A and a plurality of second friction plates 27B.
  • the first friction plates 27A and the second friction plates 27B are arranged alternately in the front-rear direction.
  • the first friction plate 27A and the second friction plate 27B are formed in an annular shape.
  • the relay shaft 17 passes through the centers of the first friction plate 27A and the second friction plate 27B.
  • the first friction plate 27A is attached to the first flywheel 13 and is movable in the axial direction of the relay shaft 17.
  • the second friction plate 27B is attached to the planetary gear 22 of the speed increasing mechanism 20.
  • the second friction plate 27B is connected to the planet gear 22 of the speed increasing mechanism 20 via the connecting body 60 and the planet carrier 24.
  • the connecting body 60 connects the relay shaft 17 and the input shaft 16a of the transmission 16.
  • the planet carrier 24 supports the planet gear 22.
  • the second friction plate 27B is arranged on the outer peripheral side of the first friction plate 27A.
  • the first power transmission path 31 of the first power transmission section 11F transmits the rotational power of the engine 4 to the second flywheel 14, the relay shaft 17, the connecting body 60, the planetary carrier 24, the planetary gear 22, the sun gear 21, the first This is a route in which the signal is transmitted to the clutch 26 in this order, and then to the first flywheel 13.
  • the second power transmission path 32 of the first power transmission section 11F is a path that transmits the rotational power of the first flywheel 13 to the second clutch 27 and the connecting body 60 in this order, and then to the transmission 16.
  • the third power transmission path 33 of the first power transmission section 11F is a path that transmits the rotational power of the engine 4 to the transmission 16 via the connecting body 60 and the relay shaft 17.
  • the third power transmission path 33 transmits the rotational power of the engine 4 to the transmission 16 without passing through either the first clutch 26 or the second clutch 27.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the second flywheel 14.
  • the second flywheel 14 rotates, and the relay shaft 17 connected to the second flywheel 14 also rotates.
  • the number of revolutions of the engine 4, the number of revolutions of the second flywheel 14, and the number of revolutions of the relay shaft 17 are the same.
  • the rotational power transmitted to the relay shaft 17 is transmitted to the input shaft 16a of the transmission 16 via the connecting body 60.
  • the rotational power output from the output shaft 4a of the engine 4 is transmitted to the first flywheel 13 via the first power transmission path 31. is transmitted to.
  • the rotational power of the engine 4 is transmitted from the second flywheel 14 to the planet gear 22 via the relay shaft 17, the connecting body 60, and the planet carrier 24.
  • the planetary gear 22 rotates, and as the planetary gear 22 rotates, the sun gear 21 rotates.
  • the sun gear 21 is connected to the second friction plate 26B of the first clutch 26. Therefore, the rotational power transmitted to the sun gear 21 is transmitted from the second friction plate 26B to the first friction plate 26A, and from the first friction plate 26A to the first flywheel 13.
  • the rotational power of the engine 4 is increased in speed when it is transmitted from the planetary gear 22 to the sun gear 21. That is, the rotational power of the engine 4 is increased in speed and transmitted to the first flywheel 13. Therefore, the first flywheel 13 rotates at a rotation speed higher than the rotation speed of the engine 4. Thereby, high rotational energy can be stored in the first flywheel 13.
  • the second power transmission path 32 is connected, so the rotational power of the first flywheel 13 is transmitted to the transmission 16.
  • the rotational power of the first flywheel 13 is transmitted from the first friction plate 27A of the second clutch 27 to the second friction plate 27B.
  • the rotational power of the first flywheel 13 is transmitted from the second friction plate 27B to the input shaft 16a of the transmission 16 via the connection body 60.
  • the rotational power of the first flywheel 13 is transmitted to the input shaft 16a of the transmission 16 without being decelerated (without passing through the deceleration mechanism). Therefore, the high rotational energy of the first flywheel 13 can be directly input to the transmission 16.
  • the first power transmission section 11F can have the same effects as the first power transmission section 11A described above.
  • the features of the first power transmission section 11F according to the sixth embodiment are as follows.
  • the first clutch 26 and the second clutch 27 are constituted by multi-plate clutches, there is a gap between the first friction plates 26A, 27A and the second friction plate 27B. High power transmission performance can be obtained. In other words, the power transmission performance of the clutch device 25 is excellent.
  • the first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17, the length in the front-rear direction can be shortened. This makes it possible to increase the axial length (length in the front-rear direction) of the first flywheel 13. Therefore, the moment of inertia of the first flywheel 13 can be increased, and the rotational energy that can be stored in the first flywheel 13 can be increased. In other words, the first flywheel 13 has excellent storage performance of rotational energy.
  • first clutch 26 and the second clutch 27 are arranged at a position facing the partition wall 9d of the flywheel housing 9, an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27 is provided. can be provided along the partition wall 9d. Therefore, it is easy to provide an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27. In other words, it is excellent in establishing oil passages.
  • the shaft support is excellent.
  • first clutch 26 and the second clutch 27 are arranged side by side in the radial direction of the relay shaft 17 near the partition wall 9d, the members for supporting the first clutch 26 and the second clutch 27 are commonly used. This makes it possible to reduce the number of parts. In other words, it is excellent in that the number of parts can be reduced.
  • the first power transmission section 11F according to the sixth embodiment is excellent in power transmission performance, rotational energy storage performance, oil passage establishment, shaft support establishment, and reduction in the number of parts. . Therefore, it is possible to achieve a good balance between performance-related features (power transmission performance, rotational energy storage performance) and structure-related features (oil passageability, shaft supportability, reduction in the number of parts).
  • the fifth embodiment is superior in terms of oil passage establishment, shaft support establishment, and reduction in the number of parts. This is due to a difference in the specific configuration of the clutch device 25 of the fifth embodiment and the sixth embodiment.
  • the first friction plate 26A is moved from the outer circumferential side (the side far from the axis of the relay shaft 17) toward the inner circumferential side (the side close to the axis of the relay shaft 17).
  • the supporting part, the part supporting the second friction plate 26B, the part supporting the second friction plate 27B, and the part supporting the first friction plate 27A are arranged in this order.
  • the fifth embodiment from the outer circumferential side to the inner circumferential side, the part supporting the first friction plate 26A, the part supporting the second friction plate 26B, the first friction The parts that support the plate 27A and the parts that support the second friction plate 27B are arranged in this order.
  • the fifth embodiment can simplify the support structure of the clutch device 25 compared to the sixth embodiment, and it is possible to reduce the number of parts. Furthermore, in the fifth embodiment, compared to the sixth embodiment, it is easier to form an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27.
  • a portion 80 (see FIG. 7 ), and a bearing (a fifth bearing 66 (see FIG. 11) to be described later) can be disposed in this portion 80.
  • the portion 80 corresponds to the rear part of the support body 65 (see FIG. 11), which will be described later.
  • FIG. 10 is a sectional view showing a power transmission mechanism 6 including a first power transmission section 11E according to the fifth embodiment and a part of the transmission case 5 that houses the power transmission mechanism 6.
  • FIG. 11 is an enlarged view of a part of FIG. 10.
  • the transmission case 5 has a front section 5A, an intermediate section 5B, and a rear section 5C.
  • the front portion 5A is located at the front of the transmission case 5.
  • the intermediate part 5B is connected to the rear part of the front part 5A.
  • the rear part 5C is connected to the rear part of the intermediate part 5B.
  • a front wheel drive shaft 63 for transmitting rotational power to the front wheels 3F is disposed at the lower part of the transmission case 5, passing through the transmission case 5.
  • the front wheel drive shaft 63 passes through the front portion 5A, the intermediate portion 5B, and the rear portion 5C and extends in the front-rear direction.
  • the front portions of the front portion 5A, the intermediate portion 5B, and the rear portion 5C constitute a flywheel housing 9.
  • the rear part of the rear part 5C constitutes the front part of the mission case 10.
  • the rear part 5C has a structure that combines the rear part of the flywheel housing 9 and the front part of the transmission case 10.
  • the front portion 5A has a first cylindrical portion 91 and a first wall 9a.
  • the first cylindrical portion 91 covers the second flywheel 14 .
  • the first wall 9 a is the first wall 9 a of the above-described flywheel housing 9 and is disposed in front of the second flywheel 14 .
  • the intermediate portion 5B has a second cylindrical portion 92 and an intermediate wall 95.
  • the second cylindrical portion 92 is connected to the rear portion of the first cylindrical portion 91 of the front portion 5A. Specifically, the second cylindrical part 92 is connected to the rear part of the first cylindrical part 91 by a bolt B1.
  • the second cylindrical portion 92 covers the periphery of the first flywheel 13 and the front portion of the clutch device 25 (first clutch 26 and second clutch 27).
  • the intermediate wall 95 is provided between the first flywheel 13 and the second flywheel 14.
  • the intermediate wall 95 partitions the first space 51 into a space where the first flywheel 13 is arranged and a space where the second flywheel 14 is arranged.
  • the rear portion 5C has a third cylindrical portion 93, a second wall 9b, and a fourth cylindrical portion 94.
  • the third cylindrical portion 93 is connected to the rear portion of the second cylindrical portion 92 of the intermediate portion 5B. Specifically, the third cylindrical part 93 is connected to the rear part of the second cylindrical part 92 by a bolt B2.
  • the third cylindrical portion 93 surrounds the speed increasing mechanism 20 .
  • the second wall 9b is the second wall 9b of the above-mentioned flywheel housing 9 and is arranged at the rear of the speed increasing mechanism 20.
  • the first cylindrical portion 91, the second cylindrical portion 92, and the third cylindrical portion 93 constitute the peripheral wall 9c of the flywheel housing 9.
  • the inside of the flywheel housing 9 is partitioned into a first space 51 and a second space 52 by a partition wall 9d.
  • a partition wall 9d is fixed to the intermediate wall 95.
  • the intermediate wall 95 is fixed to the partition wall 9d by a bolt B3 inserted into a mounting hole 9e (see FIG. 12) formed in the partition wall 9d.
  • a first bearing 61 and a second bearing 62 are attached to the intermediate wall 95.
  • the first bearing 61 rotatably supports the front part of the relay shaft 17.
  • the second bearing 62 rotatably supports the front portion of the first flywheel 13.
  • the first flywheel 13 has an outer cylinder part 13a, an inner cylinder part 13b, and a connecting part 13c.
  • the length of the connecting portion 13c in the front-rear direction is smaller than the lengths of the outer cylinder portion 13a and the inner cylinder portion 13b in the front-rear direction. That is, the thickness of the connecting part 13c is smaller than the thickness of the outer cylinder part 13a and the inner cylinder part 13b.
  • the first flywheel 13 has a first recess 13e and a second recess 13f.
  • the first recessed portion 13e is recessed in front of the connecting portion 13c and between the outer cylindrical portion 13a and the inner cylindrical portion 13b.
  • the second recessed portion 13f is recessed behind the connecting portion 13c and between the outer cylindrical portion 13a and the inner cylindrical portion 13b.
  • a second bearing 62 is arranged in the first recess 13e.
  • a third bearing 64 is arranged in the second recess 13f.
  • the first flywheel 13 is rotatably supported by a second bearing 62 and a third bearing 64.
  • a support 65 is arranged on the outer peripheral side of the relay shaft 17.
  • the support body 65 rotatably supports the first flywheel 13 with respect to the relay shaft 17.
  • the support body 65 has a first section 65a, a second section 65b, a third section 65c, a fourth section 65d, a fifth section 65e, and a sixth section 65f.
  • the first portion 65a has a cylindrical shape, and the relay shaft 17 passes through it.
  • the rear portion of the first portion 65a is supported by a fifth bearing 66 attached to the outer peripheral surface of the relay shaft 17.
  • the support body 65 is rotatable relative to the relay shaft 17.
  • An intermediate portion of the first portion 65a in the front-rear direction is supported by a sixth bearing 67 attached to the inner peripheral surface of the partition wall 9d.
  • the support body 65 is rotatable relative to the partition wall 9d.
  • the first flywheel 13 is attached to the front part of the first portion 65a.
  • the first flywheel 13 and the front part of the support body 65 are spline connected. Therefore, the first flywheel 13 is rotatable integrally with the support body 65 relative to the relay shaft 17 and the partition wall 9d.
  • the second portion 65b extends outward (in the direction away from the relay shaft 17) from the rear portion of the first portion 65a.
  • the second portion 65b is formed into a disk shape.
  • the third portion 65c extends rearward from the outer peripheral end of the second portion 65b.
  • the third portion 65c is formed in a cylindrical shape.
  • the fourth portion 65d extends rearward from between the outer peripheral end and the inner peripheral end of the second portion 65b.
  • the fourth portion 65d is formed in a cylindrical shape with a smaller diameter than the third portion 65c.
  • the fourth portion 65d is arranged on the inner peripheral side of the third portion 65c.
  • the fifth portion 65e extends forward from the outer peripheral end of the second portion 65b.
  • the fifth portion 65e is formed in a cylindrical shape.
  • the diameter of the fifth portion 65e is approximately equal to the diameter of the third portion 65c.
  • the sixth portion 65f extends forward from between the outer peripheral end and the inner peripheral end of the second portion 65b.
  • the sixth portion 65f is formed in a cylindrical shape with a smaller diameter than the fifth portion 65e.
  • the diameter of the sixth portion 65f is approximately equal to the diameter of the fourth portion 65d.
  • the partition wall 9d has a wall portion 96, a cylindrical portion 97, a first protrusion 98, and a second protrusion 99.
  • the wall portion 96 is formed into a disk shape and partitions the first flywheel 13 and the clutch device 25.
  • an oil passage 70 for supplying hydraulic oil to the clutch device 25 is formed in the wall portion 96.
  • a supply pipe 71 is connected to the oil passage 70 . Hydraulic oil can be supplied from the outside of the flywheel housing 9 to the oil passage 70 through the supply pipe 71.
  • the oil passage 70 is composed of a main oil passage 70a, a first branch oil passage 70b, and a second branch oil passage 70c.
  • the main oil passage 70a extends from the outer circumferential side to the inner circumferential side of the partition wall 9d.
  • a supply pipe 71 is connected to the outer peripheral end of the main oil passage 70a.
  • the first branch oil passage 70b and the second branch oil passage 70c branch from the main oil passage 70a and extend rearward.
  • the main oil passage 70a is a passage that receives hydraulic oil from the outside of the flywheel housing 9 through the supply pipe 71.
  • the first branch oil passage 70b is an oil passage that supplies the hydraulic oil supplied to the main oil passage 70a to the first clutch 26.
  • the second branch oil passage 70c is an oil passage that supplies the hydraulic oil supplied to the main oil passage 70a to the second clutch 27.
  • the cylindrical portion 97 is formed in a cylindrical shape.
  • a sixth bearing 67 is interposed between the inner circumferential surface of the cylindrical portion 97 and the outer circumferential surface of the first portion 65a of the support body 65.
  • the cylindrical portion 97 has a front cylindrical portion 97a extending forward from the inner circumferential end of the wall portion 96, and a rear cylindrical portion 97b extending rearward from the inner circumferential end of the wall portion 96.
  • a third bearing 64 is interposed between the outer peripheral surface of the front cylinder portion 97a and the first flywheel 13.
  • the first protrusion 98 extends rearward from the wall 96.
  • the first protrusion 98 is formed in a cylindrical shape.
  • the second protruding portion 99 extends rearward from between the outer circumferential end and the inner circumferential end of the wall portion 96 .
  • the second protrusion 99 is formed in a cylindrical shape with a diameter smaller than that of the first protrusion 98 .
  • the second protrusion 99 is arranged on the inner peripheral side of the first protrusion 98 .
  • the relay shaft 17 and the input shaft 16a of the transmission 16 are connected by a connecting body 60.
  • External splines are formed on the rear outer peripheral surface of the relay shaft 17 and the front outer peripheral surface of the input shaft 16a.
  • An internal spline is formed on the inner peripheral surface of the connecting body 60.
  • the connecting body 60 is arranged at the rear of the support body 65.
  • the connecting body 60 includes a cylindrical connecting portion 60a and an extending portion 60b extending outward from the front portion of the connecting portion 60a (in a direction away from the relay shaft 17) and then forward.
  • the above-mentioned internal spline is formed on the inner circumferential surface of the connecting portion 60a.
  • the outer end of the extending portion 60b is formed into a cylindrical shape having a larger diameter than the connecting portion 60a.
  • the outer circumferential surface of the extended portion 60b faces the inner circumferential surface of the fourth portion 65d.
  • the sun gear 21 of the speed increasing mechanism 20 is supported on the outer peripheral surface of the connecting portion 60a via a seventh bearing 68. Thereby, the sun gear 21 is rotatable relative to the connecting body 60.
  • a mounting member 69 is fixed to the sun gear 21.
  • the mounting member 69 has a fixed portion 69a fixed to the sun gear 21 and a front extending portion 69b extending forward from the fixed portion 69a.
  • the fixed portion 69a is formed into a disk shape.
  • the front extension part 69b is formed in a cylindrical shape.
  • the planet gear 22 of the speed increasing mechanism 20 is supported by a planet carrier 24.
  • An inner spline is formed on the inner peripheral surface of the planet carrier 24.
  • the inner spline of the planet carrier 24 meshes with the outer spline formed on the outer peripheral surface of the connecting portion 60a. Thereby, the planet carrier 24 can rotate together with the connecting body 60 and the relay shaft 17.
  • the ring gear 23 of the speed increasing mechanism 20 is attached to the ring support 72.
  • the ring support 72 is fixed to the intermediate portion 5B of the flywheel housing 9.
  • the ring support body 72 is fixed to the intermediate portion 5B with a bolt B4.
  • the ring gear 23 is fixed to the flywheel housing 9 in a non-rotatable manner.
  • the first friction plate 26A and the second friction plate 26B of the first clutch 26 are arranged behind the second portion 65b of the support body 65.
  • the first friction plate 26A and the second friction plate 26B are arranged between the third portion 65c of the support body 65 and the front extension portion 69b of the attachment member 69.
  • the first friction plate 26A of the first clutch 26 has an annular shape, and its outer peripheral portion is supported by the third portion 65c of the support body 65. Specifically, a plurality of protrusions 26A1 (see FIG. 12) formed on the outer periphery of the first friction plate 26A fit into a plurality of notches 65g (see FIG. 12) formed in the third portion 65c. Thereby, the first friction plate 26A cannot rotate relative to the support body 65, and is movable in the front-rear direction along the notch 65g.
  • the second friction plate 26B of the first clutch 26 has an annular shape, and its inner peripheral portion is supported by the front extension portion 69b of the mounting member 69.
  • the second friction plate 26B is immovably fixed to the front extension portion 69b.
  • the hydraulic piston 73 of the first clutch 26 (hereinafter referred to as "first hydraulic piston 73") is arranged between the partition wall 9d and the second portion 65b of the support body 65. Specifically, the first hydraulic piston 73 is surrounded by the wall 96 of the partition wall 9d, the first protrusion 98, the second protrusion 99, and the second portion 65b, fifth portion 65e, and sixth portion 65f of the support body 65. It is placed in a space where it can be used. An opening 65h (see FIGS. 11 and 12) is formed in the second portion 65b of the support body 65, and the tip of the first hydraulic piston 73 projects from the opening 65h. The tip of the first hydraulic piston 73 is close to the first friction plate 26A located furthest forward.
  • Hydraulic oil is supplied to the base end side of the first hydraulic piston 73 from the first branch oil passage 70b.
  • the first hydraulic piston 73 moves rearward to push the first friction plate 26A, and the first friction plate 26A comes into pressure contact with the second friction plate 26B. .
  • the first hydraulic piston 73 is urged forward by a first spring 74. Therefore, when hydraulic oil is not supplied from the first branch oil passage 70b, the first hydraulic piston 73 is moved forward by the biasing force of the first spring 74. When the first hydraulic piston 73 moves forward, the first friction plate 26A separates from the second friction plate 26B.
  • the first friction plate 27A and the second friction plate 27B of the second clutch 27 are arranged behind the second portion 65b of the support body 65.
  • the first friction plate 27A and the second friction plate 27B are arranged between the fourth portion 65d of the support body 65 and the outer peripheral surface of the extending portion 60b of the connecting body 60.
  • the first friction plate 27A of the second clutch 27 has an annular shape, and its outer peripheral portion is supported by the fourth portion 65d of the support body 65. Specifically, a plurality of protrusions 27A1 (see FIG. 12) formed on the outer periphery of the first friction plate 27A fit into a plurality of notches 65i (see FIG. 12) formed in the fourth portion 65d. Thereby, the first friction plate 27A cannot rotate with respect to the support body 65, and is movable in the front-rear direction along the notch 65i.
  • the second friction plate 27B of the second clutch 27 has an annular shape, and its inner peripheral portion is supported by the extending portion 60b of the connecting body 60.
  • the second friction plate 27B is immovably fixed to the extension portion 60b.
  • the hydraulic piston 75 of the second clutch 27 (hereinafter referred to as "second hydraulic piston 75") is arranged between the partition wall 9d and the second portion 65b of the support body 65. Specifically, the second hydraulic piston 75 is located in a space surrounded by the wall portion 96 of the partition wall 9d, the cylinder portion 97, the second protrusion portion 99, and the first portion 65a, second portion 65b, and sixth portion 65f of the support body 65. It is located in An opening 65j (see FIGS. 11 and 12) is formed in the second portion 65b of the support body 65, and the tip of the second hydraulic piston 75 projects from the opening 65j. The tip of the second hydraulic piston 75 is close to the first friction plate 27A located furthest forward.
  • Hydraulic oil is supplied to the base end side of the second hydraulic piston 75 from the second branch oil passage 70c.
  • the second hydraulic piston 75 moves rearward and pushes the first friction plate 27A, and the first friction plate 27A comes into pressure contact with the second friction plate 27B. .
  • the second hydraulic piston 75 is urged forward by a second spring 76. Therefore, when hydraulic oil is not supplied from the second branch oil passage 70c, the second hydraulic piston 75 is moved forward by the urging force of the second spring 76. When the second hydraulic piston 75 moves forward, the first friction plate 27A separates from the second friction plate 27B.
  • FIG. 13 is a block diagram showing a schematic configuration of a control system 100 included in the work vehicle 1 according to the present invention.
  • This control system 100 is a control system that can be included in the work vehicle 1 described above. That is, the control system 100 can be applied to the work vehicle 1 equipped with the first power transmission section 11 of all the embodiments described above (first to sixth embodiments).
  • the control system 100 includes a control device 110, an information acquisition section 120, a display input device 130, and an operation section 140.
  • the control device 110 includes an ECU (Electronic Control Unit).
  • the control device 110 receives various information and signals transmitted (input) from the information acquisition section 120 and performs calculations, and also controls the operation of the operation section 140 based on the calculation results etc. Send control signals.
  • the control device 110 includes a calculation section 111, a storage section 112, and a communication section 113.
  • the calculation unit 111 is composed of a CPU and the like, and reads various programs stored in the storage unit 112 and executes various calculations and processes.
  • the storage unit 112 stores programs executed by the calculation unit 111 and various data.
  • the storage unit 112 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. Note that the storage unit 112 may be an external storage device connected to the control device 110.
  • the communication unit 113 communicates between the control device 110, the information acquisition unit 120, the display input device 130, and the operation unit 140 via a telecommunication line or wirelessly, and transmits and receives various information and signals.
  • the information acquisition unit 120 acquires information regarding the operation of the work vehicle 1 and transmits it to the control device 110.
  • the information acquisition unit 120 includes a first pressure sensor 28 , a second pressure sensor 29 , a first rotation speed sensor 18 , a second rotation speed sensor 15 , and an accelerator opening sensor 19 .
  • the first pressure sensor 28 detects the pressure of the hydraulic oil in the oil passage (the working pressure of the oil passage piston) for supplying hydraulic oil to the hydraulic piston of the first clutch 26.
  • the second pressure sensor 29 detects the pressure of hydraulic oil in the oil passage for supplying hydraulic oil to the hydraulic piston of the second clutch 27 (the working pressure of the oil passage piston).
  • the first rotation speed sensor 18 measures the rotation speed of the first flywheel 13.
  • the second rotation speed sensor 15 calculates the rotation speed (actual rotation speed) of the engine 4 by measuring the rotation speed of the second flywheel 14 .
  • the accelerator opening sensor 19 detects the commanded injection amount (the commanded value of the injection amount for the fuel injection valve (injector)) according to the amount of depression of the accelerator pedal.
  • the information acquisition unit 120 may include the first torque sensor 35, the second torque sensor 36, and the third rotation speed sensor 37 described above.
  • the display input device 130 is configured to be able to display various information and accept human operations.
  • the display input device 130 is, for example, a touch panel display device.
  • the display input device 130 is arranged near the driver's seat of the work vehicle 1, for example.
  • the calculation unit 111 includes a load factor calculation unit 111a, a torque rate calculation unit 111b, a drop rate calculation unit 111c, and an operation mode determination unit 111d.
  • the load factor calculation unit 111a calculates the load factor of the engine 4 (hereinafter sometimes simply referred to as "load factor"). Specifically, the load factor calculating section 111a calculates the load factor based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount corresponding to the boost pressure stored in the storage section 112. Specifically, the load factor calculation unit 111a calculates the load factor using the calculation formula of "instructed injection amount/limited injection amount corresponding to boost pressure x 100".
  • Boost pressure is the pressure of compressed air forcibly sent to the engine 4 by the supercharger.
  • the “limited injection amount” is a value beyond which the amount of fuel injected by a fuel injection valve (injector) is not allowed.
  • “Limited injection amount corresponding to boost pressure” is a limited injection amount determined corresponding to boost pressure. The limited injection amount is determined to increase in response to an increase in boost pressure. “Limited injection amount corresponding to boost pressure” is stored in the storage unit 112.
  • the torque rate calculation unit 111b calculates the torque rate of the engine 4 (hereinafter sometimes simply referred to as "torque rate"). Specifically, the torque rate calculation unit 111b calculates the torque rate based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount of the full load curve stored in the storage unit 112. Specifically, the load factor calculation unit 111a calculates the torque factor using the calculation formula of "instruction injection amount/limited injection amount of full load curve x 100".
  • “Limited injection amount of full load curve” is the limited injection amount determined corresponding to the full load curve of the engine 4 (full load curve with the horizontal axis of the engine speed and the vertical axis of the fuel injection amount). It is.
  • the “limited injection amount of the full load curve” is stored in the storage unit 112.
  • the drop rate calculation unit 111c calculates the drop rate of the engine 4 (hereinafter sometimes simply referred to as "drop rate”). Specifically, the drop rate calculation unit 111c calculates the actual rotational speed of the engine 4 detected by the second rotational speed sensor 15 (hereinafter sometimes simply referred to as “actual rotational speed”) and the engine 4 stored in the storage unit 112. The drop rate is calculated based on the target rotation speed (hereinafter sometimes simply referred to as “target rotation speed”). Specifically, the drop rate calculation unit 111c calculates the drop rate using the formula of "actual rotation number/target rotation number x 100". Note that the target rotational speed of the engine 4 is a rotational speed of the engine 4 that is predetermined in accordance with the opening degree of the accelerator and the like.
  • the operation mode determining unit 111d based on the information (detected value etc.) acquired by the information acquiring unit 120, the values calculated by the load factor calculating unit 111a, the torque rate calculating unit 111b, the drop rate calculating unit 111c, etc. Determine the operating mode (described below) of control system 100.
  • the control device 110 transmits a control signal to the operation section 140 based on the operation mode determined by the operation mode determination section 111d.
  • the operating unit 140 operates according to a control signal transmitted from the control device 110.
  • the operating section 140 includes a first clutch 26 and a second clutch 27.
  • the first clutch 26 operates based on a first control signal transmitted from the control device 110.
  • the first control signal is a control signal for driving the hydraulic piston (first hydraulic piston 73) of the first clutch 26, and is a command pressure of hydraulic oil (hereinafter referred to as "first hydraulic piston 73") for driving the hydraulic piston of the first clutch 26. 1 indicated pressure).
  • the operating pressure of the hydraulic piston of the first clutch 26 is determined by the first command pressure included in the control signal transmitted from the control device 110.
  • the first clutch 26 is connected or disconnected by driving a hydraulic piston based on the first command pressure.
  • the second clutch 27 operates based on a second control signal transmitted from the control device 110.
  • the second control signal is a control signal that drives the hydraulic piston (second hydraulic piston 75) of the second clutch 27, and is a command pressure of hydraulic fluid (hereinafter referred to as "second hydraulic piston 75") for driving the hydraulic piston of the second clutch 27. 2 indicated pressure).
  • the operating pressure of the hydraulic piston of the second clutch 27 is determined by the second command pressure included in the control signal transmitted from the control device 110.
  • the second clutch 27 is connected or disconnected by driving the hydraulic piston based on the second command pressure.
  • the control device 110 executes control regarding engagement and engagement of the first clutch 26 and the second clutch 27 in order to switch between a plurality of operation modes. Specifically, the control device 110 switches the operating mode by controlling engagement and engagement of the first clutch 26 and the second clutch 27, or provides a message to the operator of the work vehicle 1 to the effect that the operating mode can be switched. Make announcements.
  • the plurality of operation modes include free mode, charge preparation mode, charge mode, boost preparation mode, boost mode, stickiness preparation mode, stickiness mode, and engine off mode. Each operation mode will be explained below.
  • the free mode is a mode in which the engine 4 is in an operating state immediately after being started. In the free mode, the engine 4 is started but has not reached the idling speed. The first clutch 26 and the second clutch 27 are disconnected. Since the first clutch 26 and the second clutch 27 are disengaged, the first flywheel 13 is stopped. However, when shifting to the free mode from another operation mode, the first flywheel 13 may be rotating due to inertia force.
  • the charge mode is a mode in which rotational energy is stored in the first flywheel 13.
  • the engine 4 rotates at a target rotation speed that exceeds the idling rotation speed. However, when the load on the engine 4 increases due to work load or the like, the rotation speed may become lower than the target rotation speed.
  • the number of revolutions of the first flywheel 13 is higher than the number of revolutions (actual number of revolutions) of the engine 4, but is less than the target number of revolutions of the first flywheel 13.
  • the target rotation speed of the first flywheel 13 is higher than the rotation speed of the engine 4.
  • the target rotational speed of the first flywheel 13 is the rotational speed obtained by multiplying the actual rotational speed of the engine 4 by the speed increasing ratio of the speed increasing mechanism 20.
  • target rotation speed of the first flywheel 13 actual rotation speed of the engine 4 x 3".
  • first target rotation speed first target rotation speed
  • the first clutch 26 In the charge mode, the first clutch 26 is connected and the second clutch 27 is disconnected. By connecting the first clutch 26, the first flywheel 13 and the engine 4 are connected via the first path in which the speed increasing mechanism 20 is provided.
  • the first path is a path in which the speed increasing mechanism 20 and the first clutch 26 are provided among the paths (power transmission paths) connecting the engine 4 and the first flywheel 13.
  • the first path is from the output shaft 4a of the engine 4 to the second flywheel 14, the relay shaft 17, and the first clutch. 26, a route leading to the first flywheel 13 via the speed increasing mechanism 20.
  • the charge preparation mode is a preparatory mode before transitioning to the charge mode.
  • Charge preparation mode is a mode that is switched before transitioning to charge mode.
  • the engine 4 rotates at the target rotation speed. However, when the load on the engine 4 increases due to work load or the like, the rotation speed may become lower than the target rotation speed.
  • the rotation speed of the first flywheel 13 is less than the target rotation speed (first target rotation speed) of the first flywheel 13.
  • the rotation speed of the first flywheel 13 is greater than or equal to the rotation speed (actual rotation speed) of the engine 4.
  • the first clutch 26 is in the middle of switching from the disengaged state to the connected state, and the second clutch 27 is disengaged. When the first clutch 26 switches from the disconnected state to the connected state, the charging mode is entered.
  • the state in which the first clutch 26 is in the middle of switching from the disconnected state to the connected state is when the first friction plate 26A of the first clutch 26 is pushed by the hydraulic piston (first hydraulic piston 73) and approaches the second friction plate 26B. However, it is not in a state where power can be transmitted. In other words, this is a state in which a one-shot is being performed to prepare the first clutch 26 for connection. Hereinafter, this state will be referred to as the "ineffective stroke reduction" state of the first clutch 26. Further, in FIG. 14, this state is expressed as "invalid stroke reduction".
  • the boost mode is a mode in which the rotational power of the engine 4 is assisted by the rotational power of the first flywheel 13 when the rotational speed of the first flywheel 13 is higher than the rotational speed (actual rotational speed) of the engine 4.
  • boost mode the engine 4 rotates at the target rotation speed.
  • the rotation speed may become lower than the target rotation speed.
  • the rotation speed of the first flywheel 13 is higher than the rotation speed (actual rotation speed) of the engine 4. This is because the rotation speed of the first flywheel 13 is higher than the rotation speed (actual rotation speed) of the engine 4 in the charge mode executed before shifting to the boost mode.
  • a load is applied to the engine 4 due to work load or the like, and the actual rotational speed of the engine 4 decreases. Work load occurs, for example, when a working device is connected to the PTO shaft 8 of the working vehicle 1 and power is transmitted from the PTO shaft 8 to the working device to drive the working device.
  • the first clutch 26 is disconnected and the second clutch 27 is connected.
  • the second clutch 27 is.
  • boost mode the clutch changes from a half-clutch state to a connected state. By connecting the second clutch 27, the first flywheel 13 and the engine 4 are connected via the second path.
  • the second path is a path (power transmission path) connecting the engine 4 and the first flywheel 13, in which the speed increase mechanism 20 is not provided and the second clutch 27 is provided.
  • the second path runs from the output shaft 4a of the engine 4 to the second flywheel 14, the relay shaft 17, and the second clutch. 27 to the first flywheel 13.
  • the boost mode is an operation mode in which the rotational power of the first flywheel 13 assists the rotational power of the engine 4 when the rotational speed of the first flywheel 13 is higher than the rotational speed (actual rotational speed) of the engine 4. It is.
  • the boost preparation mode is a mode in the preparation stage before shifting to the boost mode.
  • Boost preparation mode is a mode that is switched before transitioning to boost mode.
  • the boost preparation mode is a mode to which the engine 4 shifts when the load on the engine 4 increases due to an increase in workload or the like.
  • the engine 4 rotates at the target rotation speed. However, when the load on the engine 4 increases due to work load or the like, the rotation speed may become lower than the target rotation speed.
  • the rotation speed of the first flywheel 13 is the first target rotation speed and is higher than the rotation speed (actual rotation speed) of the engine 4.
  • the first clutch 26 is connected and the second clutch 27 is in a state in the middle of switching from a disconnected state to a connected state (a state in which the invalid stroke is being shortened).
  • the boost mode is entered.
  • the state in which the second clutch 27 is in the middle of switching from the disconnected state to the connected state is when the first friction plate 27A of the second clutch 27 is pushed by the hydraulic piston (second hydraulic piston 75) and approaches the second friction plate 27B. However, it is not in a state where power can be transmitted. In other words, this is a state in which a one-shot for preparing the second clutch 27 for connection is being performed. Hereinafter, this state will be referred to as the "ineffective stroke reduction" state of the second clutch 27. Further, in FIG. 14, this state is expressed as "invalid stroke reduction".
  • the sticky mode is a mode in which the inertial force of the first flywheel 13 prevents a sudden drop in the rotational speed of the engine 4 when the rotational speed of the first flywheel 13 is lower than the rotational speed (actual rotational speed) of the engine 4. It is.
  • the engine 4 rotates at the target rotation speed.
  • the rotation speed of the first flywheel 13 is equal to or lower than the rotation speed (actual rotation speed) of the engine 4.
  • the rotation speed of the first flywheel 13 at the time of transition to the sticky mode is the same as the rotation speed (actual rotation speed) of the engine 4.
  • the rotation speed of the first flywheel 13 at the time of transition to the sticky mode becomes smaller than the rotation speed (actual rotation speed) of the engine 4.
  • the first clutch 26 is disconnected and the second clutch 27 is connected.
  • the second clutch 27 changes from a half-clutch state to a connected state in the sticky mode.
  • the first flywheel 13 and the engine 4 are connected via the second path, the first flywheel 13 and the engine 4 are in a state where they rotate together. Therefore, when a high load is applied to the engine 4, the inertial force of the first flywheel 13 can prevent the rotational speed of the engine 4 from rapidly decreasing.
  • the rotational power of the engine 4 cannot be assisted by the rotational power of the first flywheel 13; It is possible to prevent a sudden decline in Therefore, in the sticky mode, when the first flywheel 13 does not have enough rotational energy to assist the rotational power of the engine 4, the rotational power is used to prevent a sudden decrease in the rotational speed of the engine 4 ( It can be used to make the engine 4 sticky.
  • the sticky preparation mode is a preparatory mode before transitioning to the sticky mode.
  • the sticky preparation mode is a mode that is switched to before transitioning to the sticky mode.
  • the engine 4 rotates at the target rotation speed. However, when the load on the engine 4 increases due to work load or the like, the rotation speed may become lower than the target rotation speed.
  • the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4.
  • the first clutch 26 is disengaged and the second clutch 27 is in the middle of switching from the disengaged state to the connected state (ineffective stroke reduction state).
  • the second clutch 27 is switched to the connected state, the mode shifts to the sticky mode.
  • the engine off mode is a mode in which the engine 4 is in an off state (the spark plug is not ignited), but the first flywheel 13 is rotating while decelerating.
  • the spark plug of the engine 4 is not ignited, but the engine 4 rotates by inertia while decelerating. Further, the first flywheel 13 is also rotating due to inertia while being decelerated.
  • the first clutch 26 and the second clutch 27 are connected. Therefore, the first flywheel 13 is connected to the engine 4 via the first clutch 26 and the second clutch 27. Since the first flywheel 13 has a large inertial force, it tries to continue rotating for a while even when the engine 4 is turned off, but it is connected to the engine 4 via the first clutch 26 and the second clutch 27. This applies a brake to the rotation, so the rotation can be stopped early.
  • both the first clutch 26 and the second clutch 27 or Either one does not need to be connected. This is because if the rotational speed of the first flywheel 13 is sufficiently low, the first flywheel 13 will stop in a short time without applying a brake to the rotation.
  • the rotation speed of the first flywheel 13 is sufficiently small, for example, the rotation speed of the first flywheel 13 is equal to or lower than the idling rotation speed of the engine 4.
  • FIG. 15 is a state transition diagram regarding operation modes.
  • Free mode can be entered from all other operating modes except boost preparation mode.
  • Charge mode can be transitioned from charge preparation mode.
  • Charge preparation mode can be transitioned from stickiness mode.
  • Sticky mode can be transitioned from sticky preparation mode and boost mode.
  • the sticky preparation mode can be transitioned from the free mode.
  • Boost mode can be transitioned from boost preparation mode.
  • Boost preparation mode can be transitioned from charge mode.
  • Engine off mode can be transitioned from all operating modes.
  • FIG. 16 shows the conditions (threshold values) for shifting the operating mode.
  • FIGS. 17 to 23 are flowcharts showing an example of the flow (steps) of transition of the operation mode.
  • the transition to the free mode is automatically executed by starting the engine 4, or when a predetermined condition (described later) is satisfied in another operation mode (FIGS. 18 to 21). 23). Transition from other operation modes to free mode will be explained later.
  • the engine 4 In the free mode, the engine 4 is started, and the first clutch 26 and second clutch 27 are in a disconnected state. Since the first clutch 26 and the second clutch 27 are in the disconnected state, the rotational power of the engine 4 is not transmitted to the first flywheel 13, and the first flywheel 13 is stopped. However, as described above, when shifting from another operation mode to the free mode, the first flywheel 13 may be rotating due to inertia force.
  • the transition from the free mode to the sticky preparation mode occurs when the rotation speed of the first flywheel 13 is lower than the rotation speed (actual rotation speed) of the engine 4 and the load factor of the engine 4 is less than a predetermined value X1 (%). is executed.
  • the transition from the free mode to the sticky preparation mode requires that the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 (first condition AA1) and that the load factor of the engine 4 is set to a predetermined value. It is executed when the value is less than the value X1 (second condition AA2).
  • the predetermined value X1 is stored in the storage unit 112.
  • the first flywheel 13 has not yet rotated.
  • the first flywheel 13 is being executed when the free mode has been transferred from another operation mode (see FIGS. 18 to 21 and 23)
  • the first flywheel 13 is lower than the rotational speed (actual rotational speed) of the engine 4.
  • the first flywheel 13 is rotating at a rotation speed lower than the rotation speed (actual rotation speed) of the engine 4.
  • the calculation unit 111 of the control device 110 determines whether the first condition AA1 is satisfied (S3). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. is compared to determine whether the first condition AA1 is satisfied.
  • the calculation unit 111 determines whether the second condition AA2 is satisfied (S4). Specifically, the calculation unit 111 (load factor calculation unit 111a) calculates the load based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount corresponding to the boost pressure stored in the storage unit 112. By calculating the load factor and comparing the load factor with a predetermined value X1, it is determined whether the second condition AA2 is satisfied (S4).
  • the calculation unit 111 determines to shift to the sticky preparation mode.
  • a control signal for transitioning to the sticky preparation mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 transitions from the free mode to the sticky preparation mode (S5).
  • the second hydraulic piston 75 of the second clutch 27 is driven to move the first friction plate 27A, and the second clutch 27
  • the state is in the middle of switching from the disconnected state to the connected state (a state where invalid strokes are closed). If at least one of the first condition AA1 and the second condition AA2 is not satisfied (No in S3 or No in S4), the process does not shift to the sticky preparation mode.
  • first condition AA1 is that the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 in the transition from the free mode to the sticky preparation mode is as follows. This is because if the transition from the sticky preparation mode to the sticky mode occurs when the rotational speed of the flywheel 13 is higher than the rotational speed (actual rotational speed) of the engine 4, the load on the engine 4 increases. Also, the reason why the condition is that the load factor of the engine 4 is less than the predetermined value This is because the load involved becomes large.
  • the transition from the sticky preparation mode to the sticky mode occurs when the rotation speed of the first flywheel 13 is lower than the rotation speed (actual rotation speed) of the engine 4, and the torque rate of the engine 4 is less than a predetermined value Y1 (%), It is executed when the actual rotation speed of the engine 4 is at the target rotation speed.
  • the transition from the sticky preparation mode to the sticky mode requires that the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 (first condition BB1), and that the torque rate of the engine 4 is set to a predetermined value.
  • the calculation unit 111 of the control device 110 determines whether the first condition BB1 is satisfied (S6). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. is compared to determine whether the first condition BB1 is satisfied.
  • the calculation unit 111 determines whether the second condition BB2 is satisfied (S7). Specifically, the calculation unit 111 (torque rate calculation unit 111b) calculates the torque rate based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount of the full load curve stored in the storage unit 112. By calculating and comparing the torque rate with a predetermined value Y1, it is determined whether the second condition BB2 is satisfied (S7).
  • the calculation unit 111 calculates the target rotation speed of the engine 4 stored in the storage unit 112 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. By comparison, it is determined whether the third condition BB3 is satisfied (S8).
  • the calculation unit 111 determines to shift to the sticky mode.
  • a control signal for shifting to the sticky mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 shifts from the sticky preparation mode to the sticky mode (S10).
  • the second clutch 27 is switched from the idle stroke reduction state to the half-clutch state to the connected state based on the control signal (second control signal) from the control device 110. If at least one of the first condition BB1, second condition BB2, and third condition BB3 is not satisfied (No in S6, No in S7, or No in S8), the process does not shift to the sticky mode.
  • first condition BB1 The reason why the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 (first condition BB1) is required in the transition from the stickiness preparation mode to the stickiness mode described above. This is because in the preparation mode, the rotation speed of the first flywheel 13 is lower than the rotation speed (actual rotation speed) of the engine 4. Also, the reason why the condition is that the torque rate of the engine 4 is less than the predetermined value Y1 (second condition BB2) is that if the torque rate of the engine 4 is high and the mode shifts to the sticky mode, the load applied to the engine 4 becomes large. This is to become.
  • third condition BB3 the reason why the condition is that the actual rotation speed of the engine 4 is at the target rotation speed (third condition BB3) is that after confirming that the actual rotation speed of the engine 4 has settled down to the target rotation speed, This is to transition to The third condition BB3 prevents the engine 4 from shifting to the sticky mode when the engine 4 is under load due to work load or the like (the actual rotation speed of the engine 4 is lower than the target rotation speed).
  • the transition from the sticky preparation mode to the free mode is performed when the number of revolutions of the first flywheel 13 is lower than the number of revolutions (actual number of revolutions) of the engine 4, and the number of attempts to connect the second clutch 27 within the predetermined time T1 (one The shot is executed when the number of times the shot is executed reaches a predetermined number N1.
  • the transition from the sticky preparation mode to the free mode requires that the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 (first condition CC1) and that the second flywheel rotation speed within the predetermined time T1 It is executed when the number of attempts to connect the clutch 27 (the number of times one shot is performed) reaches a predetermined number N1 (second condition CC2).
  • the predetermined time T1 and the predetermined number of times N1 are stored in the storage unit 112.
  • the predetermined time T1 is measured by a timer (not shown), and the measured value is transmitted to the control device 110.
  • the second condition CC2 is when the number of executions of the one-shot for connecting the second clutch 27 within the predetermined time T1 reaches the predetermined number N1.
  • the number of times a one-shot is performed to connect the second clutch 27 is a one-shot supplied to a hydraulic control valve (electromagnetic valve) that drives a second hydraulic piston 75 that pushes the first friction plate 27A of the second clutch 27. This is the number of times the pulse current is supplied.
  • the calculation unit 111 of the control device 110 determines whether the first condition CC1 is satisfied (S6). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. is compared to determine whether the first condition CC1 is satisfied.
  • the calculation unit 111 calculates the second condition CC1 to It is determined whether CC2 is satisfied (S9). Specifically, the calculation unit 111 counts the number of one-shots performed within the predetermined time T1 (one-shot number), and determines whether the number of one-shots within the predetermined time T1 has reached N1 ( S9).
  • the calculation unit 111 determines to shift to the free mode.
  • a control signal for transitioning to the free mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 transitions from the sticky preparation mode to the free mode (S11).
  • the second clutch 27 is switched from the invalid stroke reduction state to the disconnected state based on the control signal (second control signal) from the control device 110. If at least either the first condition CC1 or the second condition CC2 is not satisfied (No in S6 or No in S10), the free mode is not entered.
  • one-shots (one-shot pulse current supply) for connecting the second clutch 27 are performed at predetermined time intervals, but even when one-shots have been performed a predetermined number of times N1 within a predetermined time T1, If the conditions for transitioning to the sticky mode are not met, the one-shot execution is stopped and the connection preparation state of the second clutch 27 is released. As a result, a transition to the sticky mode is not performed, but a transition is made to the free mode.
  • the sticky preparation mode shifts to the sticky mode
  • the engine 4 and the first flywheel 13 are connected via the second clutch 27. Therefore, there is a possibility that the rotational speed of the engine 4 may decrease rapidly.
  • the one-shot is performed a predetermined number of times N1 within the predetermined time T1 in the sticky preparation mode, if the condition for transitioning to the sticky mode (torque rate Y1% or less) is not met, the sticky mode will be activated. By controlling not to shift (shift to free mode), it is possible to prevent a sudden drop in engine speed.
  • the transition from the sticky mode to the charge preparation mode occurs when the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4, and the load factor of the engine 4 is less than the predetermined value X2 (%). executed when In other words, the transition from the sticky mode to the charge preparation mode requires that the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4 (first condition DD1) and that the load factor of the engine 4 is It is executed when the value is less than the predetermined value X2 (second condition DD2).
  • the predetermined value X2 is stored in the storage unit 112.
  • the calculation unit 111 of the control device 110 determines whether the first condition CC1 is satisfied (S12). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. is compared to determine whether the first condition DD1 is satisfied.
  • the calculation unit 111 determines whether the second condition DD2 is satisfied (S13). Specifically, the calculation section 111 (load factor calculation section 111a) calculates the load factor based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount corresponding to the boost pressure stored in the storage section 112. is calculated, and by comparing the load factor with a predetermined value X2, it is determined whether the second condition DD2 is satisfied (S13).
  • the calculation unit 111 determines to shift to the charge preparation mode.
  • a control signal for transitioning to the charging preparation mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 transitions from the sticky mode to the charging preparation mode (S14).
  • the first hydraulic piston 73 of the first clutch 26 is driven to move the first friction plate 26A, and the first clutch 26
  • the state is in the middle of switching from the disconnected state to the connected state (a state where invalid strokes are closed).
  • the second clutch 27 switches from the connected state to the disconnected state based on a control signal (second control signal) transmitted from the control device 110. If at least one of the first condition DD1 and the second condition DD2 is not satisfied (No in S12 or No in S13), the charging preparation mode is not entered.
  • first condition DD1 The reason why the condition (first condition DD1) is that the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4 in the transition from the sticky mode to the charge preparation mode described above. Since the number of revolutions of the first flywheel 13 is the same as the actual number of revolutions of the engine 4, preparations are made to increase the number of revolutions of the first flywheel 13 to a greater extent than the actual number of revolutions of the engine 4. This is because it can be judged.
  • the transition from the sticky mode to the free mode occurs when the rotation speed of the first flywheel 13 is lower than the rotation speed (actual rotation speed) of the engine 4 and the torque rate of the engine 4 is equal to or higher than a predetermined value Y2 (%). executed.
  • the transition from the sticky mode to the free mode requires that the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 (first condition EE1) and that the torque rate of the engine 4 is set to a predetermined value. This is executed when the value is greater than or equal to Y2 (second condition EE2).
  • the predetermined value Y2 is stored in the storage unit 112.
  • the calculation unit 111 determines whether the second condition EE2 is satisfied (S15). Specifically, the calculation unit 111 (torque rate calculation unit 111b) calculates the torque rate based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount of the full load curve stored in the storage unit 112. By comparing the torque rate with a predetermined value Y2, it is determined whether the second condition EE2 is satisfied (S15).
  • the calculation unit 111 determines to shift to free mode.
  • a control signal for shifting to the free mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 shifts from the sticky mode to the free mode (S16).
  • the second clutch 27 is switched from the connected state to the disconnected state based on the control signal (second control signal) from the control device 110. If at least either the first condition EE1 or the second condition EE2 is not satisfied (No in S12 or No in S15), the free mode is not entered.
  • first condition EE1 The reason why the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 (first condition EE1) is required in the transition from the stickiness mode to the free mode as described above. This is because the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4. Also, the reason why the condition is that the torque rate of the engine 4 is equal to or higher than the predetermined value Y2 (second condition EE2) is that in the sticky mode, the load (torque rate) of the engine 4 suddenly increases due to work load, etc. This is because when the load on the engine 4 increases, the load on the engine 4 is reduced by shifting to free mode.
  • the transition from charge preparation mode to charge mode occurs when the number of revolutions of the first flywheel 13 is the same as the number of revolutions (actual number of revolutions) of the engine 4, and the torque rate of the engine 4 is less than a predetermined value Y3 (%). executed when In other words, the transition from charge preparation mode to charge mode requires that the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4 (first condition FF1) and that the torque rate of the engine 4 is This is executed when the value is less than the predetermined value Y3 (second condition FF2).
  • the predetermined value Y3 is stored in the storage unit 112.
  • the calculation unit 111 of the control device 110 determines whether the first condition FF1 is satisfied (S17). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. is compared to determine whether the first condition FF1 is satisfied.
  • the calculation unit 111 determines whether the second condition FF2 is satisfied (S13). Specifically, the calculation unit 111 (torque rate calculation unit 111b) calculates the torque rate based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount of the full load curve stored in the storage unit 112. By calculating and comparing the torque rate with a predetermined value Y3, it is determined whether the second condition FF2 is satisfied (S18).
  • the calculation unit 111 determines to shift to charge mode.
  • a control signal for transitioning to the charge mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 transitions from the charge preparation mode to the charge mode (S19).
  • the first clutch 26 is switched from the idle stroke reduction state to the connected state. If at least one of the first condition FF1 and the second condition FF2 is not satisfied (No in S17 or No in S18), the charge mode is not entered.
  • first condition FF1 The reason why the condition (first condition FF1) is that the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4 in the transition from the charge preparation mode to the charge mode described above. Since the number of revolutions of the first flywheel 13 has reached the same number of revolutions (actual number of revolutions) of the engine 4, preparations are made to increase the number of revolutions of the first flywheel 13 to a greater extent than the actual number of revolutions of the engine 4. This is because it can be determined that it is in place.
  • the reason why the torque rate of the engine 4 is required to be less than the predetermined value Y3 (second condition FF2) is that shifting to the charge mode when the load (torque rate) of the engine 4 is high is because the torque rate of the engine 4 is less than the predetermined value Y3. This is not preferable because it increases the load, but it is preferable to shift to the charge mode and store rotational energy in the first flywheel 13 when the load (torque rate) of the engine 4 is low.
  • the transition from the charge preparation mode to the free mode is performed when the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4, and the number of attempts to connect the first clutch 26 within the predetermined time T2 (
  • the one-shot is executed when the number of times the one-shot is executed reaches a predetermined number N2.
  • the transition from charge preparation mode to free mode requires that the rotation speed of the first flywheel 13 be the same as the rotation speed (actual rotation speed) of the engine 4 (first condition GG1) and that the This is executed when the number of attempts to connect the second clutch 27 (the number of times one-shot is performed) reaches a predetermined number N2 (second condition GG2).
  • the predetermined time T2 and the predetermined number of times N2 are stored in the storage unit 112.
  • the predetermined time T2 is measured by a timer (not shown), and the measured value is transmitted to the control device 110.
  • the second condition GG2 is when the number of executions of the one-shot for connecting the first clutch 26 within the predetermined time T2 reaches the predetermined number N2.
  • the number of times a one-shot is performed to connect the first clutch 26 is a one-shot supplied to a hydraulic control valve (electromagnetic valve) that drives a first hydraulic piston 73 that pushes the first friction plate 26A of the first clutch 26. This is the number of times the pulse current is supplied.
  • the calculation unit 111 of the control device 110 determines whether the first condition GG1 is satisfied (S17). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. is compared to determine whether the first condition GG1 is satisfied.
  • the calculation unit 111 determines whether or not the second condition GG2 is satisfied, when the second condition FF2 is not satisfied (the condition for transitioning to charge mode is not satisfied). (S20). Specifically, the calculation unit 111 counts the number of one-shots performed within the predetermined time T2, and determines whether the number of one-shots within the predetermined time T2 has reached N2 (S20).
  • the calculation unit 111 determines to shift to free mode.
  • a control signal for shifting to the free mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 shifts from the charge preparation mode to the free mode (S21).
  • the first clutch 26 is switched from the idle stroke reduction state to the disconnected state based on a control signal (first control signal) from the control device 110. If at least either the first condition GG1 or the second condition GG2 is not satisfied (No in S17 or No in S20), the free mode is not entered.
  • one-shots (one-shot pulse current supply) for connecting the first clutch 26 are performed at predetermined time intervals, but even when one-shots have been performed a predetermined number of times N2 within a predetermined time T2, If the conditions for transitioning to the charge mode are not met, the one-shot execution is stopped and the connection preparation state of the first clutch 26 is released. As a result, the system shifts to the free mode without shifting to the charge mode.
  • first condition GG1 the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4 in the transition from the charge preparation mode to the free mode described above. This is because in the charge preparation mode, the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4.
  • second condition GG2 the reason why the condition is that the number of attempts to connect the second clutch 27 (the number of one-shot executions) within the predetermined time T2 has reached the predetermined number N2 (second condition GG2) is that This is because if the conditions for transitioning to charge mode are not met even after shots have been performed a predetermined number of times N2, transition to charge mode should be abandoned.
  • the transition from the charge mode to the boost preparation mode occurs when the rotation speed of the first flywheel 13 is a target rotation speed (first target rotation speed NA) larger than the rotation speed (actual rotation speed) of the engine 4, and the load of the engine 4 is This is executed when the ratio is less than a predetermined value X3 (%).
  • the transition from the charge mode to the boost preparation mode requires that the rotation speed of the first flywheel 13 is the first target rotation speed NA which is higher than the rotation speed (actual rotation speed) of the engine 4 (first condition HH1). This is executed when the load factor of the engine 4 is less than the predetermined value X3 (second condition HH2).
  • the predetermined value X3 is stored in the storage unit 112.
  • the speed increasing ratio a is stored in the storage unit 112.
  • the calculation unit 111 of the control device 110 determines whether the first condition HH1 is satisfied (S22). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. Based on the first target rotational speed NA and the speed increasing ratio a stored in the storage unit 112, it is determined whether the first condition HH1 is satisfied.
  • the calculation unit 111 determines whether the second condition HH2 is satisfied (S23). Specifically, the calculation section 111 (load factor calculation section 111a) calculates the load factor based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount corresponding to the boost pressure stored in the storage section 112. By calculating the load factor and comparing it with a predetermined value X3, it is determined whether the second condition HH2 is satisfied (S23).
  • the calculation unit 111 determines to shift to the boost preparation mode.
  • a control signal for transitioning to the boost preparation mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 transitions from the charge mode to the boost preparation mode (S24).
  • the second hydraulic piston 75 of the second clutch 27 is driven to move the first friction plate 27A, and the second clutch 27
  • the state is in the middle of switching from the disconnected state to the connected state (a state where invalid strokes are closed). If at least one of the first condition HH1 and the second condition HH2 is not satisfied (No in S22 or No in S23), the boost preparation mode is not entered.
  • the rotation speed of the first flywheel 13 is a first target rotation speed NA that is larger than the rotation speed (actual rotation speed) of the engine 4 (first condition HH1).
  • the reason for this condition is that the rotational speed of the first flywheel 13 has reached the first target rotational speed NA, so that an amount of rotational energy capable of assisting the engine 4 is accumulated in the first flywheel 13. This is because it can be determined that
  • the reason why the load factor of the engine 4 is less than the predetermined value X3 (second condition HH2) is that when the load factor of the engine 4 is small, there is no need to assist the engine 4 (in boost This is because it can be determined that it is better to prepare to transition to boost mode without transitioning.
  • the transition from the charge mode to the free mode occurs when the rotation speed of the first flywheel 13 is greater than the rotation speed (actual rotation speed) of the engine 4 and less than the first target rotation speed NA, and the torque rate of the engine 4 is at a predetermined level. It is executed when the value is greater than or equal to Y4.
  • the transition from charge mode to free mode requires that the rotation speed of the first flywheel 13 is greater than the rotation speed (actual rotation speed) of the engine 4 and less than the first target rotation speed NA (first condition JJ1 ) and the torque rate of the engine 4 is greater than or equal to the predetermined value Y4 (second condition JJ2).
  • the first target rotation speed NA and the predetermined value Y4 are stored in the storage unit 112. As described above, the target rotation speed NA of the first flywheel 13 is "actual rotation speed of the engine 4 x speed increase ratio a of the speed increase mechanism 20 (a>1)".
  • the calculation unit 111 of the control device 110 determines whether the first condition JJ1 is satisfied (S22). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. Based on the first target rotational speed NA and the speed increasing ratio a stored in the storage unit 112, it is determined whether the first condition JJ1 is satisfied.
  • the calculation unit 111 determines whether the second condition JJ2 is satisfied (S25). Specifically, the calculation unit 111 (torque rate calculation unit 111b) calculates the torque rate based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount of the full load curve stored in the storage unit 112. By comparing the torque rate with a predetermined value Y4, it is determined whether the second condition JJ2 is satisfied (S25).
  • the calculation unit 111 determines to shift to free mode.
  • a control signal for shifting to the free mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 shifts from the charge mode to the free mode (S26).
  • the first clutch 26 is switched from the connected state to the disconnected state based on a control signal (first control signal) from the control device 110. If at least either the first condition JJ1 or the second condition JJ2 is not satisfied (No in S22 or No in S25), the free mode is not entered.
  • the rotation speed of the first flywheel 13 is larger than the rotation speed (actual rotation speed) of the engine 4 and is less than the first target rotation speed NA (first condition JJ1 ) and the torque rate of the engine 4 is equal to or higher than the predetermined value Y4 (second condition JJ2). This is to reduce the load on the engine 4 by shifting to the free mode when a large load is placed on the engine 4.
  • the transition from the boost preparation mode to the boost mode occurs when the rotation speed of the first flywheel 13 is a first target rotation speed NA larger than the rotation speed (actual rotation speed) of the engine 4, and the load factor of the engine 4 is a predetermined value. This is executed when the drop rate of the engine 4 is equal to or higher than a predetermined value Z.
  • the transition from the boost preparation mode to the boost mode requires that the rotation speed of the first flywheel 13 is the first target rotation speed NA which is higher than the rotation speed (actual rotation speed) of the engine 4 (first condition KK1).
  • the load factor of the engine 4 is greater than or equal to the predetermined value X4 (second condition KK2), and the drop rate of the engine 4 is greater than or equal to the predetermined value Z (third condition KK3).
  • the first target rotational speed NA, the predetermined value X3, and the predetermined value Z are stored in the storage unit 112. As described above, the target rotation speed NA of the first flywheel 13 is "actual rotation speed of the engine 4 x speed increase ratio a of the speed increase mechanism 20 (a>1)".
  • the calculation unit 111 of the control device 110 determines whether the first condition KK1 is satisfied (S27). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. Based on the first target rotational speed NA and the speed increasing ratio a stored in the storage unit 112, it is determined whether the first condition KK1 is satisfied.
  • the calculation unit 111 determines whether the second condition KK2 is satisfied (S28). Specifically, the calculation section 111 (load factor calculation section 111a) calculates the load factor based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount corresponding to the boost pressure stored in the storage section 112. By calculating the load factor and comparing it with a predetermined value X4, it is determined whether the second condition KK2 is satisfied (S28).
  • the calculation unit 111 determines whether the third condition KK3 is satisfied (S29). Specifically, the calculation section 111 (drop rate calculation section 111c) calculates the rotation speed based on the actual rotation speed of the engine 4 detected by the second rotation speed sensor 15 and the target rotation speed of the engine 4 stored in the storage section 112. By calculating the drop rate and comparing the drop rate with a predetermined value Z, it is determined whether the third condition KK3 is satisfied (S29).
  • the calculation unit 111 determines to shift to boost mode.
  • a control signal for transitioning to the boost mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 transitions from the boost preparation mode to the boost mode (S30).
  • the second clutch 27 is switched from the idle stroke reduction state to the half-clutch state to the connected state based on the control signal (second control signal) from the control device 110. In other words, the second clutch 27 switches from the connection preparation state to the connection state. If at least one of the first condition KK1, the second condition KK2, and the third condition KK3 is not satisfied (No in S27, No in S28, or No in S29), the boost mode is not shifted.
  • the rotation speed of the first flywheel 13 is a first target rotation speed NA that is higher than the rotation speed (actual rotation speed) of the engine 4 (first condition KK1).
  • the reason for this condition is that the rotational speed of the first flywheel 13 has reached the first target rotational speed NA, so that an amount of rotational energy capable of assisting the engine 4 is accumulated in the first flywheel 13. This is because it can be determined that Furthermore, the reason why the conditions are that the load factor of the engine 4 is equal to or greater than the predetermined value X4 (second condition KK2) and that the drop rate of the engine 4 is equal to or greater than the predetermined value Z (third condition KK3) is as follows.
  • the transition from the boost mode to the sticky mode is executed when the rotation speed of the first flywheel 13 becomes the same as the rotation speed (actual rotation speed) of the engine 4. That is, the transition from the boost mode to the sticky mode is performed when the rotation speed of the first flywheel 13 is the same as the rotation speed (actual rotation speed) of the engine 4 (condition LL1).
  • the calculation unit 111 of the control device 110 determines whether condition LL1 is satisfied (S31). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. By comparing , it is determined whether condition LL1 is satisfied.
  • condition LL1 If condition LL1 is satisfied, the process shifts to sticky mode (S32). At this time, the states of the first clutch 26 and the second clutch 27 do not change from the boost mode, but the rotational speed of the first flywheel 13 changes from a state higher than the actual rotational speed of the engine 4 to a lower state. If condition LL1 is not satisfied (No in S31), the process does not shift to sticky mode.
  • the reason why the rotational speed of the first flywheel 13 is the same as the rotational speed (actual rotational speed) of the engine 4 (condition LL1) is a condition for the transition from the boost mode to the tenacity mode. Since the rotational speed of the wheel 13 became the same as the rotational speed (actual rotational speed) of the engine 4, the rotational power accumulated in the first flywheel 13 could no longer assist the rotational power of the engine 4 (engine This is because it can be determined that the rotational energy that can be supplied to the assist has been used up. In other words, it can be determined that the engine can no longer be assisted in boost mode, so it shifts from boost mode to sticky mode. Although the rotational power of the engine 4 cannot be assisted by this, the engine 4 can be made sticky, and a sudden drop in the rotational speed of the engine 4 can be suppressed.
  • the transition from boost mode to free mode occurs when the rotation speed of the first flywheel 13 is lower than the rotation speed (actual rotation speed) of the engine 4, the load factor of the engine 4 is less than a predetermined value X5 (%), and the engine 4 is executed when the actual rotation speed is less than the target rotation speed.
  • the transition from boost mode to free mode requires that the rotation speed of the first flywheel 13 is smaller than the rotation speed (actual rotation speed) of the engine 4 (first condition MMM1), and that the load factor of the engine 4 is a predetermined value. It is executed when the following conditions are satisfied: that the actual rotation speed of the engine 4 is less than the target rotation speed (second condition MM2), and that the actual rotation speed of the engine 4 is less than the target rotation speed (third condition MM3).
  • the predetermined value X5 and the target rotation speed of the engine 4 are stored in the storage unit 112.
  • the calculation unit 111 of the control device 110 determines whether the first condition MM1 is satisfied (S33). Specifically, the calculation unit 111 calculates the rotation speed of the first flywheel 13 measured by the first rotation speed sensor 18 and the rotation speed (actual rotation speed) of the engine 4 calculated by the second rotation speed sensor 15. By comparing , it is determined whether the first condition MM1 is satisfied.
  • the calculation unit 111 determines whether the second condition MM2 is satisfied (S34). Specifically, the calculation section 111 (load factor calculation section 111a) calculates the load factor based on the instructed injection amount detected by the accelerator opening sensor 19 and the limit injection amount corresponding to the boost pressure stored in the storage section 112. By calculating the load factor and comparing it with a predetermined value X5, it is determined whether the second condition MM2 is satisfied (S34).
  • the calculation unit 111 determines whether the third condition MM3 is satisfied (S34). Specifically, the calculation unit 111 determines the third condition by comparing the actual rotation speed of the engine 4 detected by the second rotation speed sensor 15 and the target rotation speed of the engine 4 stored in the storage unit 112. It is determined whether MM3 is satisfied (S35).
  • the calculation unit 111 determines to shift to free mode.
  • a control signal for shifting to the free mode is transmitted from the control device 110 to the operating unit 140, and the control system 100 shifts from the boost mode to the free mode (S36).
  • the second clutch 27 is switched from the connected state to the disconnected state based on the control signal (second control signal) from the control device 110. If at least one of the first condition MM1, second condition MM2, and third condition MM3 is not satisfied (No in S33, No in S34, or No in S35), the free mode is not entered.
  • the reason why the number of revolutions of the first flywheel 13 is smaller than the number of revolutions (actual number of revolutions) of the engine 4 (first condition MM1) is a condition for the transition from the boost mode to the free mode described above. Since the rotational speed of the flywheel 13 became smaller than the rotational speed (actual rotational speed) of the engine 4, the rotational power of the first flywheel 13 could no longer assist the rotational power of the engine 4 (boost mode could not be maintained). This is because it can be determined that The reason why the load factor of the engine 4 is less than the predetermined value X5 (second condition MM2) is that the rotational power of the engine 4 is assisted by the rotational power of the first flywheel 13 in the boost mode.
  • the load on the engine 4 decreases during the process and assist becomes unnecessary, it is necessary to prevent the rotational power of the first flywheel 13 from assisting the engine 4 even though the load on the engine 4 is light. It's for a reason. Also, the reason why the actual rotation speed of the engine 4 is required to be less than the target rotation speed (third condition MM3) is that in the boost mode, the actual rotation speed of the engine 4 is recovering from a decreased state (increasing). ), the actual rotational speed of the engine 4 is less than the target rotational speed.
  • ⁇ Transition to engine off mode> The transition to the engine-off mode is performed by a key-off operation or the like by an operator riding on the work vehicle 1.
  • the engine 4 When in an operating mode other than the engine-off mode, by performing a key-off operation or the like, the engine 4 is turned off (the spark plug is not ignited), and the mode shifts to the engine-off mode.
  • the clutch receives a control signal (first control signal or second control signal) from the control device 110. Connected based on. As a result, the first clutch 26 and the second clutch 27 are brought into a connected state.
  • the first clutch 26 and the second clutch 27 are One or both may not be connected.
  • control system 100 it is possible to shift from the free mode to the sticky preparation mode and then to the sticky mode, but it is possible to transfer from the free mode to the charge preparation mode and charge. It is not possible to switch to mode. To transition to charge mode, it is necessary to transition from sticky mode to charge preparation mode. In other words, in order to transition from free mode to charge mode, it is necessary to go through sticky mode. The reason for this will be explained below.
  • the second clutch 27 is connected so that the rotation speed of the first flywheel 13 becomes equal to or lower than the rotation speed (actual rotation speed) of the engine 4, so that the load on the engine 4 is small. Therefore, by shifting from the free mode to the charge mode via the sticky mode, it is possible to prevent a sudden load from being applied to the engine 4.
  • the first flywheel 13 is rotated at a rotation speed higher than the rotation speed of the engine 4 so that it can assist the engine 4 when the load on the engine 4 becomes large due to an increase in work load or the like. I want to go. For this purpose, it is necessary to increase the speed of the rotational power of the engine 4 and transmit it to the first flywheel 13 by shifting to the charge mode. However, if the mode is shifted to the charge mode when the work load is heavy, the load on the engine 4 increases, which hinders the work. Therefore, in the control system 100, while checking whether the load on the engine 4 is at a level that does not interfere with the work, the first It is configured to increase the rotational speed of the flywheel 13.
  • the torque rate does not reach 100% even if the rotational speed of the engine 4 increases, so when the torque rate is less than a predetermined value, the transition is made from charge preparation mode to charge mode. If the condition (threshold value) is set to 1, it becomes possible to shift to charge mode.
  • the load factor is used as a condition for changing the operating mode
  • the engine 4 is When the rotational speed is not increasing ((the rotational speed of the first flywheel 13 is not increasing), it is preferable to use the torque rate as a condition for changing the operating mode.
  • the load factors X1, X2, X3, X4, and X5, which are the conditions (threshold values) for transitioning to the operation mode described above, may all have the same value, or may have partially or entirely different values.
  • the torque rates Y1, Y2, Y3, and Y4 may all be the same value, or may be partially or entirely different values.
  • the predetermined times T1 and T2 may be the same time or may be different times.
  • the number of one-shots N1 and N2 may be the same number of times or may be different numbers of times.
  • transition to each operation mode is executed when predetermined conditions are met, except for transition to engine-off mode.
  • the control device 110 executes control regarding engagement and engagement of the first clutch 26 and the second clutch 27 in order to switch between a plurality of operation modes.
  • "executing control regarding engagement of the first clutch 26 and the second clutch 27” means that the control device 110 performs a control signal (first control signal) for disengaging and disengaging the first clutch 26 and/or the second clutch 27.
  • a method (first method) in which the control device 110 transmits the first A notification is given that the clutch 26 and/or the second clutch 27 can be switched, and the operator performs a predetermined operation based on the notification, thereby switching the first clutch 26 and/or the second clutch 27 on and off.
  • a switching method (second method) is included. In the control system 100, either the first method or the second method may be adopted.
  • the first method and the second method are applicable to all of the above-mentioned operating mode transitions (except for transition to engine-off mode), the second method is particularly applicable to transitions from charge mode to boost preparation mode. It is suitably applied to the transition to.
  • the control device 110 controls the charge mode when the rotation speed of the first flywheel 13 has reached the first target rotation speed (first condition HH1) and the load factor of the engine 4 is less than the predetermined value X3. (Second condition HH2), the operator is notified that it is possible to switch (transition) from the charge mode to the boost preparation mode.
  • the operation mode determination unit 111d of the control device 110 notifies the operator that switching (transition) to the boost preparation mode is possible. conduct.
  • the control device 110 does not transmit a control signal for automatically transitioning to the boost preparation mode to the operation section 140 based on the determination of the operation mode determining section 111d, but shifts to the boost preparation mode based on the operator's operation.
  • a control signal for doing so is transmitted to the operating section 140. That is, the control device 110 first notifies the operator that it is possible to switch to the boost preparation mode, and when the operator performs an operation for switching to the boost preparation mode in response to this notification, the control device 110 switches the boost preparation mode to the boost preparation mode.
  • a control signal for transitioning to the operation section 140 is transmitted to the operation section 140.
  • Notification that switching from charge mode to boost preparation mode is possible is performed, for example, by displaying on the screen of display input device 130.
  • 24A and 24B show an example of a screen display when the display on the screen of the display input device 130 notifies the user that switching from the charge mode to the boost preparation mode is possible.
  • 24A and 24B show a case where the display input device 130 is a touch panel type display device.
  • FIG. 24A shows a screen 131A of the display input device 130 in a state in which switching from the charge mode to the boost preparation mode is not possible in the charge mode (a state in which either the first condition HH1 or the second condition HH2 is not satisfied).
  • the screen 131A only displays that the charge mode is being executed (charging is in progress).
  • the operator cannot perform a switching operation from charge mode to boost preparation mode.
  • an indicator 132 indicating the progress of charging (the accumulation status of rotational energy in the first flywheel 13) is displayed.
  • the indicator 132 indicates the progress of charging by the length of a bar graph 132b within a display frame 132a.
  • the progress of charging is calculated by (actual rotation speed of the first flywheel 13/target rotation speed of the first flywheel 13).
  • FIG. 24B shows a screen 131B of the display input device 130 in a state where switching from the charge mode to the boost preparation mode is possible in the charge mode (a state in which both the first condition HH1 and the second condition HH2 are satisfied).
  • the indicator 132 shows on the screen 131B that the charge has reached 100% (the actual rotation speed of the first flywheel 13 has reached the target rotation speed).
  • a display 133 is displayed that reads "Move to boost preparation mode.” This display 133 is a notification that switching from charge mode to boost preparation mode is possible.
  • the operator can perform a switching operation from the charge mode to the boost preparation mode by touching the display 133 that reads "Move to boost preparation mode.” That is, the control device 100 transmits a control signal to the second clutch 27 based on the operator's touch operation on the display 133.
  • the method for notifying that switching from charge mode to boost preparation mode is possible is not limited to the method performed by displaying on the screen of display input device 130.
  • a method of notifying by lighting or blinking a lamp such as an LED, or a method of notifying by sound may be adopted.
  • the method by which the operator performs a switching operation from the charge mode to the boost preparation mode in response to the notification is not limited to the method of touching the screen of the display input device 130; for example, the method is provided separately from the display input device 130. This may also be done by operating a given operation switch (operation button, etc.).
  • FIG. 25 is an example of a timing chart of the control system 100.
  • FIG. 25 shows a case where the load factors X1 to X5, which are the conditions for transitioning to the operating mode, are all the same value, and the torque factors Y1 to Y4 are all the same value.
  • the engine 4 When the engine 4 starts, it shifts to free mode, and the number of revolutions (actual number of revolutions) of the engine 4 increases as time passes. At this time, the command pressure of the first clutch 26 (first command pressure) and the command pressure of the second clutch 27 (second command pressure) are 0, and the first clutch 26 and the second clutch 27 are in a disengaged state. Therefore, the number of rotations (actual number of rotations) of the first flywheel 13 is zero. Further, the load factor and torque factor of the engine 4 increase as the engine 4 is started, and decrease when the engine 4 reaches the target rotation speed.
  • the free mode changes. Enter preparation mode.
  • the first clutch 26 maintains a disengaged state, but the second clutch 27 enters a state where the invalid stroke is shortened by performing a one-shot (addition of a one-shot pulse current).
  • the sticky preparation mode shifts to the sticky mode.
  • the first clutch 26 maintains the disconnected state, but the second clutch 27 becomes the connected state. By connecting the second clutch 27, the first flywheel 13 rotates and speeds up.
  • the second clutch 27 When the second clutch 27 is connected, the first flywheel 13 and the engine 4 are connected, and the rotation speed (actual rotation speed) of the engine 4 temporarily decreases, but then reaches the target rotation speed. Recover. Furthermore, when the second clutch 27 is connected, the first flywheel 13 starts rotating and increases until it becomes the same as the actual rotation speed of the engine 4. At this time, the load rate and torque rate of the engine 4 become high. The drop rate of the engine 4 temporarily increases when the second clutch 27 is connected, but then decreases.
  • the load factor and torque rate of the engine 4 decrease.
  • the load factor becomes less than the predetermined value X2
  • the rotational speed of the engine 4 is less likely to suddenly drop, so the mode shifts from the sticky mode to the charge preparation mode.
  • the first clutch 26 is brought into a state where the invalid stroke is shortened by performing a one-shot (applying a one-shot pulse current), and the second clutch 27 is switched from a connected state to a disconnected state.
  • the charge preparation mode shifts to the charge mode.
  • the first clutch 26 In the charge mode, the first clutch 26 is in the connected state, and the second clutch 27 is maintained in the disconnected state.
  • the rotation speed (actual rotation speed) of the engine 4 temporarily decreases, but then recovers to the target rotation speed. Further, by connecting the first clutch 26, the rotation speed of the first flywheel 13 increases to exceed the actual rotation speed of the engine 4.
  • the charge mode is changed to the boost preparation mode. to move to.
  • the first clutch 26 maintains a connected state
  • the second clutch 27 enters a state where the invalid stroke is shortened by performing a one-shot (addition of a one-shot pulse current).
  • the transition from the boost preparation mode to the boost mode is performed when the rotation speed of the first flywheel 13 is a first target rotation speed NA larger than the rotation speed (actual rotation speed) of the engine 4 (in FIG. 25, the transition from the boost preparation mode (the first target rotation speed is reached in the initial stage), the load factor of the engine 4 is a predetermined value X4 (%) or more, and the drop rate of the engine 4 is a predetermined value Z or more.
  • the first clutch 26 is switched to a disconnected state, and the second clutch 27 is switched to a connected state.
  • the rotational power of the first flywheel 13 is transmitted to the engine 4, and the rotational power of the engine 4 is assisted by the rotational power of the first flywheel 13.
  • the number of revolutions (actual number of revolutions) of the engine 4 increases, and the load rate, torque rate, and drop rate of the engine 4 decrease. Further, the rotation speed of the first flywheel 13 decreases as the assist time becomes longer.
  • FIG. 25 shows a state in which the boost mode has been switched to the engine off mode.
  • the engine When the engine is turned off in the boost mode, the engine 4 and the first flywheel 13 gradually decelerate while rotating due to inertia.
  • the first clutch 26 and/or the second clutch 27 are in a connected state, and the first flywheel 13 is connected to the engine 4 via the first clutch 26 and/or the second clutch 27. Therefore, the first flywheel 13, which has a large inertial force, can be stopped in a short time.
  • FIG. 25 shows a case where only the second clutch 27 is in the connected state, both the first clutch 26 and the second clutch 27 may be in the connected state.
  • the work vehicle 1 includes an engine 4 , a first flywheel 13 that rotates in response to the rotational power of the engine 4 , and a first flywheel 13 that is rotated by either the rotational power of the engine 4 or the rotational power of the engine 4 and the first flywheel 13 .
  • a transmission 16 that selectively receives power, changes the speed, and outputs it; a first power transmission path 31 that transmits the rotational power of the engine 4 to the first flywheel 13; and a transmission that transmits the rotational power of the first flywheel 13.
  • the first power transmission path 31 and the second power transmission path 32 are mutually independent paths, and the first power transmission path 31 has a power transmission path from the engine 4 to the engine 4.
  • a first clutch 26 that connects and disconnects the transmission of rotational power to the first flywheel 13 is provided, and a first clutch 26 that connects and disconnects the transmission of rotational power from the first flywheel 13 to the transmission 16 is provided in the second power transmission path 32.
  • Two clutches 27 are provided.
  • the first power transmission path 31 transmits the rotational power of the engine 4 to the first flywheel 13, and the second power transmission path 32 transmits the rotational power of the first flywheel 13 to the transmission 16.
  • the speed change mechanism does not affect the other path. Therefore, the rotational power output from the engine 4 is increased in speed through the first power transmission path 31 and transmitted to the first flywheel 13, and the transmitted rotational power is shifted through the second power transmission path 32 without being decelerated. It becomes possible to output to the device 16.
  • each path is provided with a clutch (first clutch 26, second clutch 27) that connects and disconnects the transmission of rotational power
  • first clutch 26, second clutch 27 that connects and disconnects the transmission of rotational power
  • the state in which the rotational power of the engine 4 is transmitted to the first flywheel 13 and the state in which the rotational power is transmitted to the first flywheel 13 and The state in which the rotational power of the first flywheel 13 is output to the transmission 16 can be switched.
  • the rotational power of the engine 4 is stored as rotational energy in the first flywheel 13, and when the work load of the engine 4 is large, the rotational power of the first flywheel 13 is used to store the rotational power of the engine 4. can assist.
  • the first power transmission path 31 is provided with a speed increasing mechanism 20 that speeds up the rotational power of the engine 4 and transmits it to the first flywheel 13. The rotational power is transmitted to the transmission 16 without going through a reduction mechanism.
  • the rotational power of the engine 4 is increased in speed by the speed increasing mechanism 20 and transmitted to the first flywheel 13, and the rotational power of the first flywheel 13 is outputted to the transmission 16 without being decelerated. Therefore, it becomes possible to accumulate high rotational energy in the first flywheel 13 and transmit this high rotational energy to the transmission 16 as is. Therefore, when the workload is heavy, the rotational power of the engine 4 can be effectively assisted by the rotational power of the first flywheel 13.
  • the work vehicle 1 includes a third power transmission path 33 that transmits the rotational power of the engine 4 to the transmission 16 without going through the first flywheel 13, and the third power transmission path 33 is connected to the output shaft of the engine 4. 4a and the input shaft 16a of the transmission 16 are always connected.
  • the rotational power of the engine 4 can be transmitted to the transmission 16 through the third power transmission path 33 without going through the first flywheel 13, so that it is independent of the rotation of the first flywheel 13.
  • the rotational power of the engine 4 can be input to the transmission 16.
  • the speed increasing mechanism 20 is composed of a planetary gear mechanism including a sun gear 21, a planetary gear 22, and a ring gear 23.
  • the ring gear 23 is fixed so as not to rotate, and the rotational power of the engine 4 is
  • the rotational power of the first flywheel 13 is input to the planetary gear 22 and transmitted to the first flywheel 13 via the sun gear 21, and the rotational power of the first flywheel 13 is transmitted to the transmission 16 without going through the planetary gear mechanism.
  • the speed can be increased and input to the first flywheel 13. Furthermore, by transmitting the rotational power of the first flywheel 13 to the transmission 16 without going through the planetary gear mechanism, the rotational power of the first flywheel 13 can be output to the transmission 16 without being decelerated.
  • the work vehicle 1 includes a second flywheel 14 connected to the output shaft 4a of the engine 4, and the first flywheel 13 is rotatable independently of the second flywheel 14.
  • the first flywheel 13 when the first clutch 26 and the second clutch 27 are disengaged, the first flywheel 13 can be rotated independently of the rotation of the second flywheel 14. Thereby, even when the second flywheel 14 stops or decelerates, the rotation of the first flywheel 13 can be maintained without being affected by the second flywheel 14.
  • first flywheel 13 is arranged between the second flywheel 14 and the transmission 16 in the axial length direction of the output shaft 4a of the engine 4.
  • the radial size (outer diameter dimension) of the power transmission mechanism 6 can be reduced, and the power transmission from the second flywheel 14 to the first flywheel 13 and the second flywheel 14 can be made smaller. It becomes possible to smoothly transmit power from the transmission device 16 to the transmission device 16.
  • the work vehicle 1 also includes a relay shaft 17 that is interposed between the output shaft 4a of the engine 4 and the transmission 16 and forms a third power transmission path 33, and the relay shaft 17 passes through the first flywheel 13. It is provided.
  • the third power transmission path 33 is configured by the relay shaft 17 passing through the first flywheel 13, so the third power transmission path 33 can be linearly transmitted over a short distance without using a complicated mechanism. It becomes possible to configure.
  • both the first clutch 26 and the second clutch 27 are arranged side by side along the wall of the housing 9. It becomes possible to arrange. Thereby, an oil passage for supplying hydraulic oil to the first clutch 26 and an oil passage for supplying hydraulic oil to the second clutch 27 can be provided along the wall. Therefore, it is easy to provide an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27.
  • the outer diameter of the clutch device 25 consisting of the first clutch 26 and the second clutch 27 can be reduced. can do. Therefore, the moment of inertia can be increased by reducing the inner diameter while maintaining the outer diameter of the first flywheel 13.
  • the work vehicle 1 also includes a housing 9 that accommodates the first flywheel 13, the first clutch 26, and the second clutch 27, and the housing 9 has a space inside the housing 9 in which the first flywheel 13 is accommodated.
  • a partition wall 9d is provided to partition the space into a space in which the first clutch 26 and the second clutch 27 are accommodated, and the first clutch 26 and the second clutch 27 are arranged at positions facing the partition wall 9d.
  • an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27 can be provided along the partition wall 9d. Therefore, it is easy to provide an oil passage for supplying hydraulic oil to the first clutch 26 and the second clutch 27.
  • first clutch 26 and the second clutch 27 are multi-plate clutches each having a plurality of friction plates, and are arranged on the inner peripheral side of the first flywheel 13.
  • the outer diameter can be reduced while maintaining high power transmission performance. Furthermore, by arranging the first clutch 26 and the second clutch 27 on the inner peripheral side of the first flywheel 13, it is possible to increase the axial length (length in the longitudinal direction) of the first flywheel 13. Become. Therefore, the moment of inertia of the first flywheel 13 can be increased, and the rotational energy that can be stored in the first flywheel 13 can be increased.
  • the work vehicle 1 also includes an engine 4 , a flywheel 13 (first flywheel 13 ) that rotates in response to the rotational power of the engine 4 , and a first flywheel 13 that connects the engine 4 and the flywheel 13 .
  • a first clutch 26 is provided on the path and connects and disconnects the transmission of the rotational power via the first path, and a first clutch 26 is provided on the second path connecting the engine 4 and the flywheel and connects the rotational power via the second path.
  • a second clutch 27 that connects and disconnects transmission; a speed increasing mechanism 20 that is provided on the first path and speeds up the rotational power of the engine and transmits it to the flywheel 13 when the first clutch 26 is in the connected state; a control device 110 that executes control regarding engagement and disengagement of the first clutch 26 and the second clutch 27 in order to switch between a plurality of operation modes; boost mode, in which the first clutch 26 is disengaged and the second clutch 27 is connected, and a boost mode in which the rotation speed of the flywheel 13 is less than or equal to the engine 4 rotation speed, the first clutch 26 is disengaged, and the second clutch 27 is engaged. and a tenacity mode in which the clutch 27 is connected.
  • the rotational speed of the flywheel 13 is sufficiently large to assist the rotational power of the engine 4, so the rotational power of the engine 4 can be assisted by the rotational power of the flywheel 13.
  • the rotational speed of the flywheel 13 is not large enough to assist the rotational power of the engine 4, but the inertial force of the flywheel 13 prevents the rotational speed of the engine 4 from rapidly decreasing. Can be done.
  • the plurality of operation modes include a charge mode in which the rotation speed of the flywheel 13 is lower than the target rotation speed and higher than the rotation speed of the engine 4, the first clutch 26 is connected, and the second clutch 27 is disconnected; including.
  • the plurality of operation modes include a sticky preparation mode that is a mode that is switched before transitioning to the sticky mode, and in the sticky preparation mode, the rotation speed of the flywheel 13 is lower than the rotation speed of the engine 4, and the first clutch 26 is disconnected, and the second clutch 27 is in the middle of switching from the disconnected state to the connected state.
  • the second clutch 27 in the middle of switching to the connected state, so preparations for transition to the sticky mode are made, and the transition to the sticky mode can be smoothly performed.
  • the plurality of operation modes include a boost preparation mode that is a mode that is switched before shifting to the boost mode, and the boost preparation mode is a mode in which the rotation speed of the flywheel 13 is the target rotation speed and is lower than the rotation speed of the engine 4.
  • the first clutch 26 is connected and the second clutch 27 is in the middle of switching from the disconnected state to the connected state.
  • the second clutch 27 in the boost preparation mode, the second clutch 27 is in the middle of switching to the connected state, so preparations for transition to the boost mode are made, and the transition to the boost mode can be performed smoothly.
  • the plurality of operation modes include a charge preparation mode that is a mode that is switched before transitioning to the charge mode, and in the charge preparation mode, the rotation speed of the flywheel 13 is less than the target rotation speed and the first clutch 26 is disconnected.
  • the state is in the middle of switching from the state to the connected state, and the second clutch 27 is disengaged.
  • the first clutch 26 in the charge preparation mode, the first clutch 26 is in the middle of switching to the connected state, so preparations for transition to the charge mode are made, and the transition to the charge mode can be performed smoothly.
  • the plurality of operation modes include a free mode in which the engine 4 is started, the first clutch 26 and the second clutch 27 are disengaged, and the flywheel 13 is stopped.
  • the flywheel 13 and the engine 4 are separated by disengaging the first clutch 26 and the second clutch 27, so that the load on the engine 4 can be reduced.
  • the plurality of operation modes also include an engine off mode in which the spark plug of the engine 4 is not ignited, the first clutch 26 and the second clutch 27 are connected, and the flywheel 13 is decelerated.
  • the first clutch 26 and the second clutch 27 are connected to the engine 4, so that the flywheel 13 can be quickly decelerated. Therefore, it is possible to prevent the flywheel 13 from continuing to rotate for a long time due to inertia even after the engine 4 is turned off.
  • control device 110 switches from the free mode to the sticky preparation mode.
  • the control device 110 controls the Switch from preparation mode to stickiness mode.
  • control device 110 changes the mode from the sticky preparation mode to the free mode.
  • control device 110 switches from the sticky mode to the charge preparation mode.
  • preparations can be made for transitioning to the charge mode in order to store rotational energy in the flywheel 13 when the load on the engine 4 is small, so that the transition to the charge mode can be made smoothly. It can be carried out.
  • control device 110 switches from the sticky mode to the free mode when the rotation speed of the flywheel 13 is lower than the rotation speed of the engine 4 and the torque rate of the engine 4 is equal to or higher than a predetermined value.
  • the load on the engine 4 when the load on the engine 4 increases due to an increase in work load, etc., the load on the engine 4 can be reduced by shifting from the sticky mode to the free mode. This can be prevented.
  • the control device 110 switches from the charge preparation mode to the charge mode.
  • the control device 110 switches from the charging preparation mode to the free mode.
  • the control device 110 switches from the charge mode to the boost preparation mode or Notification is made to the effect that switching to boost preparation mode is possible.
  • the rotational speed of the flywheel 13 is increased sufficiently to assist the engine 4, but when the load on the engine 4 is small, the boost mode is set in preparation for an increase in the load on the engine 4. You can prepare to switch to Thereby, when the load on the engine 4 increases, it is possible to smoothly shift to the boost mode.
  • the control device 110 switches from the charge mode to the free mode.
  • the load on the engine 4 can be reduced by shifting to the free mode. Can be done.
  • the control device 110 also controls the control device 110 when the rotation speed of the flywheel 13 is a target rotation speed larger than the rotation speed of the engine 4, the load factor of the engine 4 is a predetermined value or more, and the drop rate of the engine 4 is a predetermined value or more. At some point, switch from boost preparation mode to boost mode.
  • the load on the engine 4 increases when the rotational speed of the flywheel 13 is sufficiently increased to assist the engine 4 (a state where high rotational energy is stored in the flywheel 13).
  • the rotational power of the engine 4 can be assisted by the rotational power of the flywheel 13 by switching to the boost mode.
  • control device 110 switches from the boost mode to the sticky mode.
  • the control device 110 controls the boost Switch from mode to free mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

作業負荷が大きいときにエンジン(4)の回転動力をフライホイールの回転動力によって効果的にアシストすることができる作業車両(1)を提供すること。 作業車両(1)は、エンジン(4)と、エンジン(4)の回転動力を受けて回転する第1フライホイール(13)と、エンジン(4)の回転動力、又は、エンジン(4)及び第1フライホイール(13)の回転動力のいずれかの回転動力を選択的に受けて変速して出力する変速装置(16)と、エンジン(4)の回転動力を第1フライホイール(13)に伝達する第1動力伝達経路(31)と、第1フライホイール(13)の回転動力を変速装置(16)に伝達する第2動力伝達経路(32)と、を備え、第1動力伝達経路(31)と第2動力伝達経路(32)とは互いに独立した経路であって、第1動力伝達経路(31)には、エンジン(4)から第1フライホイール(13)への回転動力の伝達を断続する第1クラッチ(26)が設けられ、第2動力伝達経路(32)には、第1フライホイール(13)から変速装置(16)への回転動力の伝達を断続する第2クラッチ(27)が設けられている。

Description

作業車両
 本発明は、トラクタ等の作業車両に関する。
 従来、下記特許文献1の開示技術が知られている。
 特許文献1の開示技術は、エンジンと、フライホイール(はずみ車)と、変速装置とを備えた車両駆動ラインのためのエネルギー回収システムである。このシステムによれば、車輪の駆動ラインから回転エネルギーを受け取ってフライホイールに貯蔵し、貯蔵した回転エネルギーを駆動ラインに戻すことができる。
日本国特許公報「特許第5554323号公報」
 上記開示技術では、エンジンとフライホイールとの間、フライホイールと変速装置との間にそれぞれ動力伝達が可能な経路が構成されている。しかし、これらの経路は互いに独立した経路となっていない。具体的には、上記した2つの経路は、いずれも遊星歯車機構を介した経路となっている。
 そのため、エンジンからフライホイールに回転動力を伝達した場合にフライホイールに入力される回転動力の回転数と、フライホイールから変速装置に回転動力を伝達した場合に変速装置に出力される回転動力の回転数は、遊星歯車機構のギア比に基づいて定まる回転数となる。その結果、エンジンの回転動力を遊星歯車機構で増速してフライホイールに入力したとしても、フライホイールから出力される回転動力は遊星歯車機構で減速されて変速装置に出力されるため、フライホイールに貯蔵された回転エネルギーを効率良く変速装置に出力することができない。このことから、エンジンの回転動力が不足した場合に、不足した回転動力をフライホイールの回転動力によって効果的にアシストすることは困難である。
 従って、上記した開示技術を、エンジンの回転動力により作業装置を駆動する作業車両に対して適用した場合、作業負荷が大きいときにエンジンの回転動力をフライホイールの回転動力によって効果的にアシストすることができない。
 本発明は、上記問題に鑑みてなされたものであって、作業負荷が大きいときにエンジンの回転動力をフライホイールの回転動力によって効果的にアシストすることができる作業車両を提供することを目的とする。
 本発明が上記課題を解決するために講じた技術的手段は、以下に示す点を特徴とする。
 本発明の一態様に係る作業車両は、エンジンと、前記エンジンの回転動力を受けて回転する第1フライホイールと、前記エンジンの回転動力、又は、前記エンジン及び前記第1フライホイールの回転動力のいずれかの回転動力を選択的に受けて変速して出力する変速装置と、前記エンジンの回転動力を前記第1フライホイールに伝達する第1動力伝達経路と、前記第1フライホイールの回転動力を前記変速装置に伝達する第2動力伝達経路と、を備え、前記第1動力伝達経路と前記第2動力伝達経路とは互いに独立した経路であって、前記第1動力伝達経路には、前記エンジンから前記第1フライホイールへの回転動力の伝達を断続する第1クラッチが設けられ、前記第2動力伝達経路には、前記第1フライホイールから前記変速装置への回転動力の伝達を断続する第2クラッチが設けられている。
 前記第1動力伝達経路には、前記エンジンの回転動力を増速して前記第1フライホイールに伝達する増速機構が設けられ、前記第2動力伝達経路は、前記第1フライホイールの回転動力を減速機構を介さずに前記変速装置に伝達するようにしてもよい。
 作業車両は、前記エンジンの回転動力を前記第1フライホイールを介さずに前記変速装置に伝達する第3動力伝達経路を備え、前記第3動力伝達経路は、前記エンジンの出力軸と前記変速装置の入力軸とを常時接続しているようにしてもよい。
 前記増速機構は、太陽歯車と遊星歯車とリング歯車とを含む遊星歯車機構から構成されており、前記リング歯車は、回転不能に固定されており、前記エンジンの回転動力は、前記遊星歯車に入力されて前記太陽歯車を介して前記第1フライホイールに伝達され、前記第1フライホイールの回転動力は、前記遊星歯車機構を介さずに前記変速装置に伝達されるようにしてもよい。
 作業車両は、前記エンジンの出力軸と接続された第2フライホイールを備え、前記第1フライホイールは、前記第2フライホイールと独立して回転可能であるようにしてもよい。
 作業車両は、前記第1フライホイールは、前記出力軸の軸長方向において、前記第2フライホイールと前記変速装置との間に配置されているようにしてもよい。
 作業車両は、前記出力軸と前記変速装置との間に介在して前記第3動力伝達経路を構成する中継軸を備え、前記中継軸は、前記第1フライホイールを貫通して設けられているようにしてもよい。
 前記第1クラッチと前記第2クラッチは、前記中継軸の径方向に並んで配置されていてもよい。
 前記第1クラッチと前記第2クラッチは、前記中継軸の軸長方向に並んで配置されていてもよい。
 作業車両は、前記第1フライホイール、前記第1クラッチ、前記第2クラッチを収容するハウジングを備え、前記ハウジングの内部には、当該内部を前記第1フライホイールが収容される空間と前記第1クラッチ及び前記第2クラッチが収容される空間とに仕切る仕切り壁が設けられ、前記第1クラッチ及び前記第2クラッチは、前記仕切り壁に面する位置に配置されているようにしてもよい。
 前記第1クラッチ及び前記第2クラッチは、複数の摩擦板を備えた多板クラッチであって、前記第1フライホイールの内周側に配置されているようにしてもよい。
 本発明に係る作業車両によれば、作業負荷が大きいときにエンジンの回転動力をフライホイールの回転動力によって効果的にアシストすることができる。
本発明に係る作業車両を示す概略側面図である。 作業車両の動力伝達機構の構成を示す図である。 第1動力伝達部の第1実施形態の構成を示す図である。 第1動力伝達部の第2実施形態の構成を示す図である。 第1動力伝達部の第3実施形態の構成を示す図である。 第1動力伝達部の第4実施形態の構成を示す図である。 第1動力伝達部の第5実施形態の構成を示す図である。 第1動力伝達部の第6実施形態の構成を示す図である。 増速機構を構成する遊星歯車機構の共線図である。 第5実施形態に係る第1動力伝達部を備えた動力伝達機構と、当該動力伝達機構を収容する伝動ケースの一部とを示す断面図である。 図10の一部を拡大した図である。 第1フライホイール、仕切り壁、支持体、第1摩擦板、第2摩擦板を示す斜視図である。 作業車両が備える制御システムの概略構成を示すブロック図である。 制御システムにより実行される各動作モードのエンジン、第1フライホイール、第1クラッチ、第2クラッチの状態を示す図である。 制御システムにより実行される動作モードの状態遷移図である。 動作モードの移行の条件(閾値)を示す図である。 フリーモードからねばり準備モードに移行するときの動作の流れを示すフローチャートである。 ねばり準備モードからねばりモード又はフリーモードに移行するときの動作の流れを示すフローチャートである。 ねばりモードからチャージ準備モード又はフリーモードに移行するときの動作の流れを示すフローチャートである。 チャージ準備モードからチャージモード又はフリーモードに移行するときの動作の流れを示すフローチャートである。 チャージモードからブースト準備モード又はフリーモードに移行するときの動作の流れを示すフローチャートである。 ブースト準備モードからブーストモードに移行するときの動作の流れを示すフローチャートである。 ブーストモードからねばりモード又はフリーモードに移行するときの動作の流れを示すフローチャートである。 表示入力装置の画面への表示によりチャージモードからブースト準備モードへの切り替えが可能である旨の報知を行う場合における画面表示の一例であって、ブースト準備モードへの切り替えが可能でない状態の表示入力装置の画面を示している。 表示入力装置の画面への表示によりチャージモードからブースト準備モードへの切り替えが可能である旨の報知を行う場合における画面表示の一例であって、ブースト準備モードへの切り替えが可能である状態の表示入力装置の画面を示している。 制御システムのタイミングチャートの一例である。
 以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
 以下の説明においては、図1の矢印A1方向を前方、矢印A2方向を後方とする。
 <作業車両>
 図1は、本発明に係る作業車両1を示す概略側面図である。本実施形態の場合、作業車両1としてトラクタが例示されている。但し、作業車両1は、トラクタには限定されず、例えば、ホイールローダ、コンパクトトラックローダ、バックホー、田植え機等の他の作業車両であってもよい。
 作業車両1は、車体2と走行装置3とを備えている。
 車体2は、エンジン4と、エンジン4の後部に連結された伝動ケース5とを有している。走行装置3は、車体2を走行可能に支持している。走行装置3は、前輪3Fと後輪3Rとを有している。
 車体2の後部には、昇降装置7が設けられている。昇降装置7には、作業装置を装着可能である。昇降装置7に装着される作業装置は、圃場に対して作業を行う装置であって、例えば、耕耘装置や散布装置等である。昇降装置7は、例えば、3点リンク機構から構成されている。昇降装置7は、装着された作業装置を昇降可能である。
 伝動ケース5の後部には、PTO軸8が突出して設けられている。PTO軸8から伝達される駆動力によって、昇降装置7に装着された作業装置を駆動することができる。
 伝動ケース5は、フライホイールハウジング9とミッションケース10とを有している。フライホイールハウジング9は、後述するフライホイール(第1フライホイール13、第2フライホイール14)等を収容する。フライホイールハウジング9は、伝動ケース5の前部に設けられている。以下、フライホイールハウジング9を、単にハウジング9という場合がある。ミッションケース10は、後述する変速装置16等を収容する。ミッションケース10は、伝動ケース5の後部に設けられている。
 <動力伝達機構>
 図2に示すように、伝動ケース5の内部には、動力伝達機構6が配置されている。動力伝達機構6は、エンジン4の回転動力を、図1に示した走行装置3及びPTO軸8に伝達する機構である。
 動力伝達機構6は、第1動力伝達部11と第2動力伝達部12とを有している。第1動力伝達部11は、フライホイールハウジング9の内部に配置されている。第2動力伝達部12は、ミッションケース10の内部に配置されている。第1動力伝達部11は、エンジン4の回転動力を受けて第2動力伝達部12に伝達する。第2動力伝達部12は、第1動力伝達部11から伝達される回転動力を走行装置3及びPTO軸8に伝達する。
 図3~図8は、第1動力伝達部11のそれぞれ異なる実施形態を示している。図3は第1動力伝達部11の第1実施形態、図4は第1動力伝達部11の第2実施形態、図5は第1動力伝達部11の第3実施形態、図6は第1動力伝達部11の第4実施形態、図7は第1動力伝達部11の第5実施形態、図8は第1動力伝達部11の第6実施形態、をそれぞれ示している。
 <第1動力伝達部(基本構成)>
 以下、第1動力伝達部11の構成について説明する。
 先ず、第1動力伝達部11の構成のうち、全ての実施形態(第1~第6実施形態)で共通する構成(第1動力伝達部11の基本構成)について説明する。
 図2~図8に示すように、第1動力伝達部11は、第1フライホイール13と第2フライホイール14とを有している。第1フライホイール13及び第2フライホイール14は、エンジン4の回転動力を受けて回転する。
 第2フライホイール14は、円板状に構成されている。第2フライホイール14は、エンジン4の出力軸(クランク軸)4aに接続されている。そのため、第2フライホイール14は、エンジン4の回転数と同じ回転数で回転する。尚、本明細書において「回転数」とは、単位時間当たりの回転の回数(例えばrpm)を意味する。
 第1フライホイール13は、当該第1フライホイール13を前後方向に貫く貫通孔13dを有する円筒状に構成されている。具体的には、第1フライホイール13は、外筒部13aと内筒部13bと連結部13cとを有している。外筒部13aは、第1フライホイール13の外周面を含む円筒状の部分である。内筒部13bは、第1フライホイール13の内周面を含む円筒状の部分であって、外筒部13aの内側(内周側)に配置されている。内筒部13bの内周側が貫通孔13dとなっている。連結部13cは、外筒部13aと内筒部13bとを連結する円板状に形成されている。
 尚、第1フライホイール13は、外筒部13aと内筒部13bと連結部13cのうち、外筒部13aのみから構成されたものであってもよい。この場合、内筒部13b及び連結部13cに相当する部分は、第1フライホイール13とは別の部材から構成され、当該別の部材と外筒部13aとが接続されて一体的に回転する。
 第1フライホイール13の貫通孔13dには、中継軸17が挿通されている。中継軸17は、第1フライホイール13の中心を貫通して前後方向に延びている。中継軸17は、第2フライホイール14と変速装置16との間を中継している。内筒部13bは、中継軸17に設けられた軸受に支持されている。これにより、内筒部13bは、中継軸17に対して相対的に回転可能に支持されている。これにより、第1フライホイール13は、中継軸17と独立して中継軸17の軸心回りに回転することができる。
 尚、内筒部13bは、中継軸17に設けられた軸受に直接的に支持されていてもよいし、他の部材を介して間接的に中継軸17に設けられた軸受に支持されていてもよい。後者の場合、第1フライホイール13は他の部材(後述する支持体65((図11参照)等)と接続され、当該他の部材が軸受を介して中継軸17に支持される。
 第1フライホイール13は、出力軸4aの軸長方向(前後方向)において、第2フライホイール14と変速装置16との間に配置されている。第1フライホイール13は、エンジン4の回転動力を、第1フライホイール13及び後述する増速機構20を介して受けて回転する。
 第1フライホイール13の近傍には、第1フライホイール13の回転数を測定するための第1回転数センサ18が設けられている。第2フライホイール14の近傍には、第2フライホイール14の回転数(=エンジン4の回転数)を測定するための第2回転数センサ15が設けられている。
 第1動力伝達部11は、第1動力伝達経路31と第2動力伝達経路32とを有している。
 第1動力伝達経路31は、エンジン4の回転動力を第1フライホイール13に伝達する経路である。第2動力伝達経路32は、第1フライホイール13の回転動力を変速装置16に伝達する経路である。
 第1動力伝達経路31と第2動力伝達経路32とは、互いに独立した経路である。そのため、エンジン4の回転動力が第1フライホイール13に伝達されるときには、エンジン4の回転動力は、第2動力伝達経路32を介することなく第1動力伝達経路31を介して第1フライホイール13に伝達される。また、第1フライホイール13の回転動力が変速装置16に伝達されるときは、第1フライホイール13の回転動力は、第1動力伝達経路31を介することなく第2動力伝達経路32を介して変速装置16に伝達される。
 第1動力伝達部11は、第1クラッチ26と第2クラッチ27とからなるクラッチ装置25を備えている。第1動力伝達経路31には、第1クラッチ26が設けられている。第2動力伝達経路32には、第2クラッチ27が設けられている。
 第1動力伝達経路31は、第1クラッチ26を経由するが、第2クラッチ27を経由しない経路である。第2動力伝達経路32は、第2クラッチ27を経由するが、第1クラッチ26を経由しない経路である。
 第1クラッチ26は、エンジン4から第1フライホイール13への回転動力の伝達を断続(切断又は接続)する。第2クラッチ27は、第1フライホイール13から変速装置16への回転動力の伝達を断続(切断又は接続)する。
 第1クラッチ26及び第2クラッチ27は、作動油の供給によって動作する油圧クラッチである。第1クラッチ26は、第1摩擦板26Aと第2摩擦板26Bと油圧ピストンとを備えている。第2クラッチ27は、第1摩擦板27Aと第2摩擦板27Bと油圧ピストンとを備えている。油圧ピストンの駆動によって、第1摩擦板26A,27Aを移動させて、第1摩擦板26A,27Aと第2摩擦板26B,27Bとが圧接した状態と離反した状態とを切り替えることができる。
 第1~第6実施形態の場合、第1摩擦板26Aが第2摩擦板26Bに対して圧接又は離反するように構成され、第1摩擦板27Aが第2摩擦板27Bに対して圧接又は離反するように構成されている。但し、各実施形態において、第2摩擦板26Bが第1摩擦板26Aに対して圧接又は離反するように構成され、第2摩擦板27Bが第1摩擦板27Aに対して圧接又は離反するように構成されていてもよい。
 第1クラッチ26は、第1摩擦板26Aと第2摩擦板26Bとが圧接状態となると接続され、第1摩擦板26Aと第2摩擦板26Bとが離反状態となると切断される。第2クラッチ27は、第1摩擦板27Aと第2摩擦板27Bとが圧接状態となると接続され、第1摩擦板27Aと第2摩擦板27Bと離反状態となると切断される。
 第1クラッチ26及び第2クラッチ27は、それぞれ油圧ピストンの油室に対する作動油の供給を制御する油圧制御弁(図示略)を備えている。油圧制御弁は、電流の供給により制御される電磁弁から構成されている。油圧制御弁は、例えば、電流値に応じて開度が変化する比例弁から構成される。油圧制御弁に対して電流を供給することにより、油圧制御弁の開閉が制御され、油圧ピストンの油室に対する作動油の供給が制御される。これにより、油圧ピストンの動作が制御され、第1クラッチ26及び第2クラッチ27の断続が制御される。
 第1摩擦板26A,27Aは、スプリングにより戻り方向(第2摩擦板26B、27Bから離れる方向)に付勢されており、油圧ピストンの油室に対する作動油の供給がなされると、スプリングの付勢力に抗して移動して第2摩擦板26B、27Bに接近する。
 第1クラッチ26及び第2クラッチ27を接続する場合、先ず、スプリングの付勢力とバランスする設定量の作動油を単発的に供給することにより、ピストンの油室内の作動油の圧力を高めた状態(以下、「接続の準備状態」という)とする。そして、接続の準備状態において、第1クラッチ26及び第2クラッチ27を接続する条件が整った場合には、第1摩擦板26A,27Aを第2摩擦板26B、27Bに圧接可能な圧力の作動油を継続的に供給する。これにより、第1クラッチ26及び第2クラッチ27が接続される。つまり、接続の準備状態から接続状態に移行する。このように、クラッチ(第1クラッチ26、第2クラッチ27)を接続するに際して、接続の準備状態を経てから接続状態に移行することにより、クラッチ接続の応答性を向上させることができる。
 スプリングの付勢力とバランスする設定量の作動油を単発的に供給するためには、油圧制御弁(電磁弁)に単発的な電流(ワンショットパルス電流)が供給される。つまり、油圧制御弁にワンショットパルス電流が供給されると、スプリングの付勢力とバランスする設定量の作動油が単発的に供給され、接続の準備状態となる。
 以下、ワンショットパルス電流を供給することをワンショットの実施という。また、ワンショットパルス電流の供給回数をワンショットの実施回数又はクラッチ(第1クラッチ26又は第2クラッチ27)の接続の試行回数という。
 図3に示すように、第1クラッチ26には、第1圧力センサ28が設けられている。第2クラッチ27には、第2圧力センサ29が設けられている。
 図4~図8(第2~第6実施形態)では第1圧力センサ28及び第2圧力センサ29の図示を省略しているが、第2~第6実施形態においても、第1実施形態と同様に第1圧力センサ28及び第2圧力センサ29が設けられる。また、図4~図8(第2~第6実施形態)では第1回転数センサ18及び第2回転数センサ15の図示を省略しているが、第2~第6実施形態においても、第1実施形態と同様に第1回転数センサ18及び第2回転数センサ15が設けられる。
 第1圧力センサ28は、第1クラッチ26の油圧ピストンに作動油を供給するための油路内の作動油の圧力(油路ピストンの作動圧)を検出する。第2圧力センサ29は、第2クラッチ27の油圧ピストンに作動油を供給するための油路内の作動油の圧力(油路ピストンの作動圧)を検出する。第1圧力センサ28及び第2圧力センサ29により検出される作動油の圧力によって、第1クラッチ26及び第2クラッチ27の状態(接続状態、切断状態)を把握することができる。
 図3~図8に示すように、第1動力伝達経路31には増速機構20が設けられている。つまり、第1動力伝達経路31は、増速機構20を経由する経路である。一方、第2動力伝達経路32は、増速機構20を経由しない経路である。但し、第1動力伝達経路31に増速機構20が設けられていなくてもよい。
 増速機構20は、エンジン4の回転動力を増速して第1フライホイール13に伝達する機構である。増速機構20は、太陽歯車21と遊星歯車22とリング歯車23とを含む遊星歯車機構から構成されている。リング歯車23は、フライホイールハウジング9に固定されている。そのため、リング歯車23は、回転不能である。遊星歯車22は、リング歯車23の内歯と噛み合っている。太陽歯車21は、遊星歯車22と噛み合っている。太陽歯車21は、中継軸17の軸心回りに回転可能である。遊星歯車22は、太陽歯車21の周囲に沿って回転(公転)可能である。
 図9は、増速機構20を構成する遊星歯車機構の共線図である。図9の縦軸は、回転数(回転速度)である。図9の矢印Bに示すように、増速機構20を構成する遊星歯車機構によれば、遊星歯車22から入力された回転動力を増速して太陽歯車21から出力することができる。増速機構20の増速比は、1を超える値(即ち、増速比>1)であって、好ましくは2以上、より好ましくは3以上に設定される。一例として、増速比は3~5の範囲で設定することができる。
 エンジン4の回転動力は、増速機構20の遊星歯車22に入力され、遊星歯車22から太陽歯車21に伝達され、太陽歯車21から第1フライホイール13に伝達される。これにより、エンジン4の回転動力は、増速されて第1フライホイール13に伝達される。その結果、第1フライホイール13の回転数は、エンジン4の回転数(実回転数)よりも大きくなる。(以下、特に断らない限り、エンジン4の回転数とはエンジン4の実回転数を指す。)これにより、第1フライホイール13に大きな回転エネルギーを蓄えることができる。
 上記の通り、第1動力伝達経路31に増速機構20が設けられていることによって、第1動力伝達経路31は、エンジン4の回転動力を、増速機構20を介して増速して第1フライホイール13に伝達することができる。
 一方、第2動力伝達経路32には増速機構20が設けられていない。仮に、第2動力伝達経路32を第1動力伝達経路31に設けられた増速機構20を経由する経路とした場合、当該増速機構20は減速機構として機能する。具体的には、第1フライホイール13の回転動力は、太陽歯車21に入力されて、遊星歯車22を介して第1フライホイール13に伝達される。そのため、第1フライホイール13の回転動力は、減速されて変速装置16に伝達される。これに対して、本発明に係る実施形態の場合、第2動力伝達経路32には増速機構20が設けられていないため、第1フライホイール13の回転動力は減速されずに変速装置16に伝達される。従って、第2動力伝達経路32には減速機構が設けられていない、ということができる。
 このように、第2動力伝達経路32には減速機構が設けられていないため、第2動力伝達経路32は、第1フライホイール13の回転動力を、減速機構を介さずに変速装置16に伝達する。そのため、第2動力伝達経路32は、第1フライホイール13の回転動力を減速せずに変速装置16に伝達することができる。
 第1~第6実施形態の場合、第2動力伝達経路32には、第1フライホイール13の回転動力を増速して変速装置16に伝達する機構も設けられていない。そのため、第1フライホイール13の回転数と変速装置16の入力軸16aに入力される回転数とは等しくなる。
 以上のことから、「第1動力伝達経路31と第2動力伝達経路32とは互いに独立した経路である」とは、具体的には、「第1動力伝達経路31が増速機構20を経由する経路であるのに対して、第2動力伝達経路32が第1動力伝達経路31に設けられた増速機構20を経由しない経路である」と言うこともできる。
 但し、第2動力伝達経路32には、第1動力伝達経路31に設けられる増速機構20とは異なる増速機構(増速機構20とは独立した増速機構)を設けてもよい。この場合、第2動力伝達経路32は、第1フライホイール13の回転動力を増速して変速装置16に伝達することができる。そのため、第1フライホイール13の回転数よりも変速装置16の入力軸16aに入力される回転数が大きくなる。
 図3~図8に示すように、第1動力伝達部11は、第3動力伝達経路33を有している。
 第3動力伝達経路33は、エンジン4の回転動力を、第1フライホイール13を介さずに変速装置16に伝達する経路である。また、第3動力伝達経路33は、エンジン4の回転動力を、第1クラッチ26と第2クラッチ27のいずれも介さずに変速装置16に伝達する経路である。つまり、第3動力伝達経路33には、当該経路を断続するクラッチが設けられていない。そのため、第3動力伝達経路33は、エンジン4の出力軸4aと変速装置16の入力軸16aとを常時接続している。
 第3動力伝達経路33は、エンジン4の出力軸4aと変速装置16との間に介在された中継軸17を含んでいる。中継軸17は、第1フライホイール13の貫通孔13dを貫通している。そのため、第3動力伝達経路33は、第1フライホイール13の貫通孔13dを貫通して形成されている。第3動力伝達経路33は、エンジン4の出力軸4aと変速装置16の入力軸16aとを、第2フライホイール14及び中継軸17を介して直線状に繋いでいる。
 中継軸17の一端側(前端側)は、第2フライホイール14と接続されている。中継軸17の他端側(後端側)は、変速装置16の入力軸16aと接続されている。これにより、中継軸17は、第2フライホイール14と変速装置16との間を接続している。
 図2に示すように、第1フライホイール13、第2フライホイール14、第1クラッチ26、第2クラッチ27は、フライホイールハウジング9の内部に収容されている。フライホイールハウジング9は、第1壁9aと第2壁9bと周壁9cとを有している。第1壁9aと第2壁9bとは、対向して配置されている。第1壁9aは、エンジン4側(前側)に配置されている。第1壁9aの内面(後面)の近傍に第2フライホイール14が配置されている。第2壁9bは、変速装置16側(後側)に配置されている。第2壁9bの外面(後面)の近傍に変速装置16が配置されている。周壁9cは、第1壁9aと第2壁9bとを接続している。周壁9cは、第1フライホイール13、第2フライホイール14、第1クラッチ26、第2クラッチ27の周囲(外周側)を囲うように設けられている。
 第1フライホイール13は、第2フライホイール14と独立して回転可能である。具体的には、第1クラッチ26及び第2クラッチ27を切断した状態において、第1フライホイール13は第2フライホイール14と独立して回転することができる。第1クラッチ26及び第2クラッチ27を切断した状態では、第1フライホイール13は、一旦回転すると、第2フライホイール14が停止した場合でも回転を持続することができる。
 以上は、第1動力伝達部11の基本構成(全ての実施形態で共通する構成)である。
 次に、第1動力伝達部11の基本構成以外の構成について説明する前に、動力伝達機構6の全体構成を理解するために、第2動力伝達部12の構成について説明する。
 <第2動力伝達部>
 以下、図2を参照して、第2動力伝達部12の構成について説明する。
 第2動力伝達部12は、変速装置16を有している。
 変速装置16は、静油圧式の無段変速装置(HST:Hydro Static Transmission)である。変速装置16は、油圧ポンプP1と油圧モータM1とを有している。油圧ポンプP1と油圧モータM1とは、作動油が流れる油路(循環油路)で接続されている。油圧ポンプP1は、作動油の吐出量の変更が可能な可変容量ポンプである。油圧ポンプP1は、変速装置16の入力軸16aから入力される動力によって駆動して作動油を吐出する。油圧モータM1は、油圧ポンプP1から吐出される作動油により駆動する。油圧モータM1は、油圧ポンプP1から供給される作動油の量を増減することによって、駆動速度を無段階に調整することができる。
 変速装置16には、第1動力伝達部11から回転動力が伝達される。変速装置16は、エンジン4の回転動力、又は、エンジン4及び第1フライホイール13の回転動力のいずれかの回転動力を選択的に受けて変速して出力する。つまり、変速装置16は、エンジン4の回転動力を受けて変速して出力する場合と、エンジン4及び第1フライホイール13の回転動力を受けて変速して出力する場合とがある。
 具体的には、第2クラッチ27が切断されている場合、変速装置16は、エンジン4の回転動力のみを受けて変速して出力する。このとき、エンジン4の回転動力は、第3動力伝達経路33を介して伝達される。第2クラッチ27が接続されている場合、変速装置16は、エンジン4及び第1フライホイール13の回転動力を受けて変速して出力する。このとき、エンジン4の回転動力は第3動力伝達経路33を介して伝達され、第1フライホイール13の回転動力は第2動力伝達経路32を介して伝達される。
 変速装置16は、第1出力軸16bと第2出力軸16cとを有している。第1出力軸16bは、PTO軸8に対して動力を出力する軸である。第2出力軸16cは、走行装置3に対して動力を出力する軸である。
 第2動力伝達部12は、クラッチ部41と変速部42とを有している。
 クラッチ部41は、PTOクラッチ43を有している。
 PTOクラッチ43は、第1出力軸16bから出力される回転動力を断続することができる。PTOクラッチ43を接続した場合、第1出力軸16bから出力される回転動力を第1伝達軸44から取り出して、取り出された回転動力によってPTO軸8を回転させることができる。PTOクラッチ43を切断した場合、第1出力軸16bから出力される回転動力は第1伝達軸44から取り出されないため、PTO軸8の回転が停止する。
 変速部42は、PTO変速部45と走行変速部46とを有している。
 PTO変速部45は、第1伝達軸44から取り出された回転動力を変速してPTO軸8に出力することができる。PTO変速部45とPTO軸8との間には、第1トルクセンサ35が設けられている。第1トルクセンサ35により、PTO軸8に作用するトルクを検出することができる。
 走行変速部46と第2出力軸16cとの間には、動力中継部40が設けられている。動力中継部40は、第2出力軸16cから出力される動力を走行変速部46に伝達する。動力中継部40から動力を取り出す第2伝達軸50には、第2トルクセンサ36が設けられている。第2トルクセンサ36により、第2伝達軸50に作用するトルクを検出することができる。
 走行変速部46は、変速装置16の第2出力軸16cから第2伝達軸50を介して伝達される回転動力を変速して走行装置3に伝達する。走行変速部46には、第3回転数センサ37が設けられている。第3回転数センサ37により、走行装置3に伝達される回転動力の回転数を検出することができる。
 走行変速部46は、歯車変速機構48と差動歯車49を有している。歯車変速機構48は、第2伝達軸50から取り出された回転動力を変速して差動歯車49に伝達することができる。差動歯車49は、歯車変速機構48から伝達された回転動力を走行装置3の後輪3Rに伝達する。
 <第1動力伝達部(具体的構成)>
 次に、第1動力伝達部11の具体的構成について説明する。
 第1動力伝達部11の具体的構成は、図3~図8に示した第1~第6実施形態でそれぞれ異なる部分があるため、実施形態毎に説明する。
 <<第1実施形態>>
 先ず、図3に基づいて、第1実施形態に係る第1動力伝達部11の具体的構成について説明する。以下、第1実施形態に係る第1動力伝達部11を「第1動力伝達部11A」と表記する。
 第1動力伝達部11Aにおいて、第1クラッチ26と第2クラッチ27は、中継軸17の軸長方向(前後方向)に並んで配置されている。第1クラッチ26は、第2フライホイール14側(前側)に配置されている。第2クラッチ27は、変速装置16側(後側)に配置されている。第1クラッチ26は、フライホイールハウジング9の第1壁9aの近傍に配置されている。第2クラッチ27は、フライホイールハウジング9の第2壁9bの近傍に配置されている。また、第2クラッチ27は、第1フライホイール13の内周側に配置されている。
 第1クラッチ26は、単板クラッチであって、1つの第1摩擦板26Aと1つの第2摩擦板26Bと、を有している。第1摩擦板26Aは、円板状又は円環状に形成されている。第2摩擦板26Bは、円環状に形成されている。
 第1クラッチ26の第1摩擦板26Aは、中継軸17の一端側(第2フライホイール14側)に取り付けられており、中継軸17の軸長方向に移動可能である。第1クラッチ26の第2摩擦板26Bは、増速機構20の遊星歯車22に取り付けられている。
 第2クラッチ27も、単板クラッチであって、1つの第1摩擦板27Aと1つの第2摩擦板27Bとを有している。第1摩擦板27Aは、円板状又は円環状に形成されている。第2摩擦板27Bは、円環状に形成されている。
 第2クラッチ27の第1摩擦板27Aは、中継軸17の他端側(変速装置16側)に取り付けられており、中継軸17の軸長方向に移動可能である。第2クラッチ27の第2摩擦板27Bは、第1フライホイール13に取り付けられている。
 第1動力伝達部11Aの第1動力伝達経路31は、エンジン4の回転動力を、第2フライホイール14、中継軸17、第1クラッチ26、遊星歯車22、太陽歯車21の順に伝達してから、第1フライホイール13に伝達する経路である。
 第1動力伝達部11Aの第2動力伝達経路32は、第1フライホイール13の回転動力を、第2クラッチ27、中継軸17の順に伝達してから、変速装置16に伝達する経路である。
 第1動力伝達部11Aの第3動力伝達経路33は、エンジン4の回転動力を、中継軸17を介して変速装置16に伝達する経路である。
 以下、上記した第1動力伝達部11Aの動作について説明する。
 エンジン4の出力軸4aから出力された回転動力は、第2フライホイール14に伝達される。これにより、第2フライホイール14が回転し、第2フライホイール14に接続された中継軸17も回転する。このとき、エンジン4の回転数と第2フライホイール14の回転数と中継軸17の回転数とは同一となる。出力軸4aから中継軸17に伝達された回転動力は、中継軸17から変速装置16の入力軸16aに伝達される。
 このように、エンジン4の出力軸4aから出力された回転動力は、第3動力伝達経路33を構成する中継軸17を介して変速装置16に伝達される。この第3動力伝達経路33を介した回転動力の伝達は、第1クラッチ26と第2クラッチ27の断続とは無関係に常時行われる。
 第1クラッチ26が接続状態であって且つ第2クラッチ27が切断状態にある場合、エンジン4の出力軸4aから出力された回転動力は、第1動力伝達経路31を介して第1フライホイール13に伝達される。具体的には、エンジン4の出力軸4aから第2フライホイール14及び中継軸17に伝達された回転動力は、第1クラッチ26の第1摩擦板26Aから第2摩擦板26Bに伝達される。これにより、遊星歯車22が回転し、遊星歯車22の回転に伴って太陽歯車21が回転する。すると、太陽歯車21は第1フライホイール13と接続されているため、太陽歯車21と共に第1フライホイール13が回転する。このように、エンジン4の回転動力は、第1クラッチ26及び増速機構20を介して第1フライホイール13へと伝達される。
 ここで、エンジン4の回転動力は、遊星歯車22から太陽歯車21に伝達されるときに増速される。そのため、エンジン4の回転動力は、増速されて第1フライホイール13へと伝達される。これにより、第1フライホイール13は、エンジン4の回転数よりも大きい回転数で回転する。その結果、第1フライホイール13に高い回転エネルギーを蓄積することができる。
 第1クラッチ26が切断状態であって且つ第2クラッチ27が接続状態にある場合、第1フライホイール13の回転動力は、第2動力伝達経路32を介して変速装置16に伝達される。具体的には、第1フライホイール13の回転動力は、第2クラッチ27の第2摩擦板27Bから第1摩擦板27Aに伝達される。これにより、第1フライホイール13の回転動力は、第1摩擦板27Aから中継軸17に伝達され、中継軸17から変速装置16の入力軸16aに伝達される。このとき、第1フライホイール13の回転動力は、減速されずに(減速機構を介さずに)変速装置16の入力軸16aに伝達される。
 上記した第1動力伝達部11Aを備えた動力伝達機構6によれば、以下の作用効果を奏することができる。
 第1クラッチ26を接続状態とし、第2クラッチ27を切断状態とすることにより、エンジン4の回転動力を増速して第1フライホイール13に伝達することができる。そのため、第1フライホイール13に高い回転エネルギーを蓄積することが可能となる。
 また、第1クラッチ26を切断状態とし、第2クラッチ27を接続状態とすることにより、第1フライホイール13の回転動力を減速せずに変速装置16に伝達することができる。そのため、第1フライホイール13に蓄積された高い回転エネルギーを変速装置16に伝達することが可能となる。このとき、エンジン4の出力軸4aから出力された回転動力も、第3動力伝達経路33を介して変速装置16に伝達することができる。これにより、変速装置16にはエンジン4の回転動力と第1フライホイール13の回転動力の両方が伝達される。そのため、PTO軸8に接続される作業装置の負荷が大きくなる等してエンジン4の回転動力が不足したときは、第1フライホイール13の回転動力によって、エンジン4の回転動力を効果的にアシストすることができる。これにより、PTO軸8に接続される作業装置の負荷が大きくなったときにエンジン4の回転数が低下することを防止又は抑制することができる。
 第1~第6実施形態に係る第1動力伝達部11はそれぞれ固有の特長を有しているが、第1実施形態に係る第1動力伝達部11Aの特長は以下の通りである。
 第1実施形態に係る第1動力伝達部11Aの場合、第1クラッチ26がフライホイールハウジング9の第1壁9aの近傍に配置され、第2クラッチ27がフライホイールハウジング9の第2壁9bの近傍に配置されている。そのため、第1クラッチ26に作動油を供給するための油路を第1壁9aに沿って設けることができ、第2クラッチ27に作動油を供給するための油路を第2壁9bに沿って設けることができる。これにより、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を設けることが容易である。つまり、油路成立性において優れている。
 また、フライホイールハウジング9の第1壁9aに軸受を設けることにより、中継軸17の一端側を回転可能に支持することができる。また、フライホイールハウジング9の第2壁9bに軸受を設けることにより、中継軸17の他端側又は当該他端側と接続される変速装置16の入力軸16aを回転可能に支持することができる。これにより、中継軸17の両端側を確実に且つ容易に回転可能に支持することが可能となる。つまり、軸支持成立性において優れている。
 また、第1クラッチ26及び第2クラッチ27が単板クラッチから構成されているため、クラッチ及びクラッチに付随する構造を簡素化することができ、部品点数を少なくすることができる。つまり、部品点数を削減できる点において優れている。
 <<第2実施形態>>
 次に、図4に基づいて、第2実施形態に係る第1動力伝達部11の具体的構成について説明する。以下、第2実施形態に係る第1動力伝達部11を「第1動力伝達部11B」と表記する。
 第1動力伝達部11Bにおいて、第1クラッチ26及び第2クラッチ27は、中継軸17の軸長方向(前後方向)の変速装置16側(後側)に配置されている。第1クラッチ26と第2クラッチ27とは、前後方向の位置がずれて配置されている。具体的には、第1クラッチ26は、第2クラッチ27に比べて前方に配置されている。第1クラッチ26の後部と第2クラッチ27の前部とは、前後方向においてオーバーラップする位置にある。
 第1クラッチ26は、外周側(中継軸17から遠い側)に配置されている。第2クラッチ27は、内周側(中継軸17に近い側)に配置されている。つまり、第2クラッチ27は、第1クラッチ26よりも内周側に配置されている。
 第1クラッチ26は、第1フライホイール13の内周側に配置されている。第1クラッチ26は、前後方向において第1フライホイール13とオーバーラップする位置にある。第2クラッチ27は、前部のみが、前後方向において第1フライホイール13とオーバーラップする位置にある。
 第1クラッチ26は、増速機構20の内周側(太陽歯車21の内周側)に配置されている。第2クラッチ27は、増速機構20の前方に配置されている。
 第1クラッチ26は、多板クラッチであって、複数の第1摩擦板26Aと複数の第2摩擦板26Bとを有している。第1摩擦板26Aと第2摩擦板26Bは、前後方向に交互に並んで配置されている。第1摩擦板26A及び第2摩擦板26Bは、円環状に形成されている。第1摩擦板26A及び第2摩擦板26Bの中心を中継軸17が貫通している。
 第1摩擦板26Aは、第1フライホイール13に取り付けられている。第1摩擦板26Aは、中継軸17の軸長方向に移動可能である。第2摩擦板26Bは、増速機構20の太陽歯車21に取り付けられている。
 第2クラッチ27も、多板クラッチであって、複数の第1摩擦板27Aと複数の第2摩擦板27Bとを有している。第1摩擦板27Aと第2摩擦板27Bは、前後方向に交互に並んで配置されている。第1摩擦板27A及び第2摩擦板27Bは、円環状に形成されている。第1摩擦板27A及び第2摩擦板27Bの中心を中継軸17が貫通している。
 第1摩擦板27Aは、第1フライホイール13に取り付けられている。第1摩擦板27Aは、中継軸17の軸長方向に移動可能である。第2摩擦板27Bは、増速機構20の遊星歯車22に接続されている。
 第1動力伝達部11Bの第1動力伝達経路31は、エンジン4の回転動力を、第2フライホイール14、中継軸17、遊星歯車22、太陽歯車21、第1クラッチ26の順に伝達してから、第1フライホイール13に伝達する経路である。
 第1動力伝達部11Bの第2動力伝達経路32は、第1フライホイール13の回転動力を、第2クラッチ27を介して変速装置16に伝達する経路である。
 第1動力伝達部11Bの第3動力伝達経路33は、エンジン4の回転動力を、中継軸17を介して変速装置16に伝達する経路である。第3動力伝達経路33は、エンジン4の回転動力を第1クラッチ26と第2クラッチ27のいずれも介さずに変速装置16に伝達する。
 以下、上記した第1動力伝達部11Bの動作について説明する。
 エンジン4の出力軸4aから出力された回転動力は、第2フライホイール14に伝達される。これにより、第2フライホイール14が回転し、第2フライホイール14に接続された中継軸17も回転する。このとき、エンジン4の回転数と第2フライホイール14の回転数と中継軸17の回転数とは同一となる。中継軸17に伝達された回転動力は、変速装置16の入力軸16aに伝達される。
 このように、エンジン4の出力軸4aから出力された回転動力は、第3動力伝達経路33を介して変速装置16に伝達される。この第3動力伝達経路33を介した回転動力の伝達は、第1クラッチ26と第2クラッチ27の断続とは無関係に常時行われる。
 第1クラッチ26が接続状態であって且つ第2クラッチ27が切断状態にある場合、エンジン4の出力軸4aから出力された回転動力は、第1動力伝達経路31を介して第1フライホイール13に伝達される。具体的には、エンジン4から第2フライホイール14に伝達された回転動力は、第2フライホイール14から中継軸17を介して遊星歯車22に伝達される。これにより、遊星歯車22が回転し、遊星歯車22の回転に伴って太陽歯車21が回転する。太陽歯車21は、第1クラッチ26の第2摩擦板26Bと接続されている。そのため、太陽歯車21の回転動力は、第2摩擦板26Bに伝達され、当該第2摩擦板26Bから第1摩擦板26Aを介して第1フライホイール13へと伝達される。
 ここで、エンジン4の回転動力は、遊星歯車22から太陽歯車21に伝達されるときに増速される。つまり、エンジン4の回転動力は、増速されて第1フライホイール13へと伝達される。そのため、第1フライホイール13はエンジン4の回転数よりも大きい回転数で回転する。これにより、第1フライホイール13に高い回転エネルギーを蓄積することができる。
 また、第1クラッチ26が切断状態であって第2クラッチ27が接続状態にある場合、第2動力伝達経路32が接続されるため、第1フライホイール13の回転動力は、変速装置16に伝達される。具体的には、第1フライホイール13の回転動力は、第2クラッチ27の第1摩擦板27Aから第2摩擦板27Bに伝達される。これにより、第1フライホイール13の回転動力は、第2摩擦板27Bから中継軸17を介して変速装置16の入力軸16aに伝達される。このとき、第1フライホイール13の回転動力は、減速されずに(減速機構を介さずに)変速装置16の入力軸16aに伝達される。そのため、第1フライホイール13の高い回転エネルギーをそのまま変速装置16に入力することができる。
 第1クラッチ26と第2クラッチ27が共に切断状態にある場合、第1動力伝達経路31と第2動力伝達経路32が遮断されるため、エンジン4の回転動力は第1フライホイール13へと伝達されず、第1フライホイール13の回転動力は変速装置16に伝達されない。
 第1動力伝達部11Bは、上述した第1動力伝達部11Aの作用効果と同じ作用効果を奏することができる。
 第2実施形態に係る第1動力伝達部11Bの特長は、以下の通りである。
 第2実施形態に係る第1動力伝達部11Bは、第1クラッチ26及び第2クラッチ27が多板クラッチから構成されているため、第1摩擦板26A,27Aと第2摩擦板26B,27Bとの間で高い動力伝達性能を得ることができる。そのため、第1動力伝達部1Aと比べて、クラッチ装置25の動力伝達性能において優れている。
 また、クラッチ装置25の動力伝達性能において優れているため、第1フライホイール13に対して確実に動力を伝達して、高い回転エネルギーを第1フライホイール13に蓄積することができる。そのため、第1動力伝達部1Aと比べて、第1フライホイール13による回転エネルギーの蓄積性能において優れている。
 <<第3実施形態>>
 次に、図5に基づいて、第3実施形態に係る第1動力伝達部11の具体的構成について説明する。以下、第3実施形態に係る第1動力伝達部11を「第1動力伝達部11C」と表記する。
 第1動力伝達部11Cにおいて、第1クラッチ26と第2クラッチ27は、中継軸17の径方向(中継軸17の軸心から離れる方向)に並んで配置されている。第1クラッチ26は、外周側(中継軸17から遠い側)に配置されている。第2クラッチ27は、内周側(中継軸17に近い側)に配置されている。言い換えれば、第2クラッチ27は、第1クラッチ26の内周側に配置されている。第1クラッチ26及び第2クラッチ27は、フライホイールハウジング9の第2壁9bの近傍に配置されている。具体的には、第1クラッチ26及び第2クラッチ27は、第2壁9bに面する位置に配置されている。
 第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13と変速装置16との間に配置されている。第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13とずれた位置にある。言い換えれば、第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13とオーバーラップしていない。第1クラッチ26と第2クラッチ27とからなるクラッチ装置25の外径は、第1フライホイール13の外径よりも小さい。
 第1クラッチ26は、多板クラッチであって、複数の第1摩擦板26Aと複数の第2摩擦板26Bとを有している。第1クラッチ26の複数の第1摩擦板26Aと複数の第2摩擦板26Bは、前後方向に交互に並んで配置されている。第1摩擦板26A及び第2摩擦板26Bは、円環状に形成されている。第1摩擦板26A及び第2摩擦板26Bの中心を中継軸17が貫通している。
 第1摩擦板26Aは、中継軸17に取り付けられており、中継軸17の軸長方向に移動可能である。第2摩擦板26Bは、増速機構20の遊星歯車22に取り付けられている。
 第2クラッチ27も、多板クラッチであって、複数の第1摩擦板27Aと複数の第2摩擦板27Bとを有している。第1摩擦板27Aと第2摩擦板27Bは、前後方向に交互に並んで配置されている。第1摩擦板27A及び第2摩擦板27Bは、円環状に形成されている。第1摩擦板27A及び第2摩擦板27Bの中心を中継軸17が貫通している。
 第1摩擦板27Aは、中継軸17に取り付けられており、中継軸17の軸長方向に移動可能である。第2摩擦板27Bは、増速機構20の太陽歯車21に取り付けられている。
 第1動力伝達部11Cの第1動力伝達経路31は、エンジン4の回転動力を、第2フライホイール14、中継軸17、第1クラッチ26、遊星歯車22、太陽歯車21の順に伝達してから、第1フライホイール13に伝達する経路である。
 第1動力伝達部11Cの第2動力伝達経路32は、第1フライホイール13の回転動力を、第2クラッチ27、中継軸17の順に伝達してから、変速装置16に伝達する経路である。
 第1動力伝達部11Cの第3動力伝達経路33は、エンジン4の回転動力を、中継軸17を介して変速装置16に伝達する経路である。第3動力伝達経路33は、エンジン4の回転動力を第1クラッチ26と第2クラッチ27のいずれも介さずに変速装置16に伝達する。
 以下、上記した第1動力伝達部11Cの動作について説明する。
 エンジン4の出力軸4aから出力された回転動力は、第2フライホイール14に伝達される。これにより、第2フライホイール14が回転し、第2フライホイール14に接続された中継軸17も回転する。このとき、エンジン4の回転数と第2フライホイール14の回転数と中継軸17の回転数とは同一となる。出力軸4aから中継軸17に伝達された回転動力は、中継軸17から変速装置16の入力軸16aに伝達される。
 このように、エンジン4の出力軸4aから出力された回転動力は、第3動力伝達経路33を構成する中継軸17を介して変速装置16に伝達される。この第3動力伝達経路33を介した回転動力の伝達は、第1クラッチ26と第2クラッチ27の断続とは無関係に常時行われる。
 第1クラッチ26が接続状態であって且つ第2クラッチ27が切断状態にある場合、エンジン4の出力軸4aから出力された回転動力は、第1動力伝達経路31を介して第1フライホイール13に伝達される。具体的には、エンジン4の出力軸4aから第2フライホイール14及び中継軸17に伝達された回転動力は、第1クラッチ26の第1摩擦板26Aから第2摩擦板26Bに伝達される。これにより、遊星歯車22が回転し、遊星歯車22の回転に伴って太陽歯車21が回転する。すると、太陽歯車21は第1フライホイール13と接続されているため、太陽歯車21と共に第1フライホイール13が回転する。このように、エンジン4の回転動力は、第1クラッチ26及び増速機構20を介して第1フライホイール13へと伝達される。
 ここで、エンジン4の回転動力は、遊星歯車22から太陽歯車21に伝達されるときに増速される。つまり、エンジン4の回転動力は、増速されて第1フライホイール13へと伝達される。そのため、第1フライホイール13はエンジン4の回転数よりも大きい回転数で回転する。これにより、第1フライホイール13に高い回転エネルギーを蓄積することができる。
 第1クラッチ26が切断状態であって且つ第2クラッチ27が接続状態にある場合、第1フライホイール13の回転動力は、第2動力伝達経路32を介して変速装置16に伝達される。具体的には、第1フライホイール13の回転動力は、第2クラッチ27の第2摩擦板27Bから第1摩擦板27Aに伝達される。これにより、第1フライホイール13の回転動力は、第1摩擦板27Aから中継軸17に伝達され、中継軸17から変速装置16の入力軸16aに伝達される。このとき、第1フライホイール13の回転動力は、減速されずに(減速機構を介さずに)変速装置16の入力軸16aに伝達される。
 第1動力伝達部11Cは、上述した第1動力伝達部11Aの作用効果と同じ作用効果を奏することができる。
 第3実施形態に係る第1動力伝達部11Cの特長は、以下の通りである。
 第3実施形態に係る第1動力伝達部11Cは、第1クラッチ26及び第2クラッチ27が多板クラッチから構成されているため、第1摩擦板26A,27Aと第2摩擦板26B,27Bとの間で高い動力伝達性能を得ることができる。つまり、クラッチ装置25の動力伝達性能において優れている。
 また、第1クラッチ26及び第2クラッチ27が中継軸17の径方向に並んで配置されているため、第1クラッチ26及び第2クラッチ27の両方をフライホイールハウジング9の第2壁9bの近傍に配置することができる。そのため、第1クラッチ26に作動油を供給するための油路と第2クラッチ27に作動油を供給するための油路を第2壁9bに沿って設けることができる。そのため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を設けることが容易である。つまり、油路成立性において優れている。
 また、フライホイールハウジング9の第1壁9aに軸受を設けることにより中継軸17の一端側を回転可能に支持することができる。そして、フライホイールハウジング9の第2壁9bに軸受を設けることにより、中継軸17の他端側又は当該他端側と接続される変速装置16の入力軸16aを回転可能に支持することができる。これにより、中継軸17の両端側を確実に且つ容易に回転可能に支持することが可能となる。つまり、軸支持成立性において優れている。
 また、第1クラッチ26及び第2クラッチ27が第2壁9bの近傍で中継軸17の径方向に並んで配置されているため、第1クラッチ26及び第2クラッチ27を支持するための部材を共通化することが可能となり、部品点数を少なくすることができる。つまり、部品点数を削減できる点において優れている。
 <<第4実施形態>>
 次に、図6に基づいて、第4実施形態に係る第1動力伝達部11の具体的構成について説明する。以下、第4実施形態に係る第1動力伝達部11を「第1動力伝達部11D」と表記する。
 第1動力伝達部11Dにおいて、第1クラッチ26と第2クラッチ27は、中継軸17の軸長方向(前後方向)に並んで配置されている。第1クラッチ26は、中継軸17の軸長方向の後部(変速装置16側)に配置されている。第2クラッチ27は、中継軸17の軸長方向の前部(第2フライホイール14側)に配置されている。第1クラッチ26は、フライホイールハウジング9の第2壁9bの近傍に配置されている。第2クラッチ27は、フライホイールハウジング9の第1壁9aの近傍に配置されている。
 第1クラッチ26の外径及び第2クラッチ27の外径は、第1フライホイール13の外径よりも小さい。第1クラッチ26及び第2クラッチ27は、第1フライホイール13の内周側に配置されている。詳しくは、第1クラッチ26及び第2クラッチ27は、第1フライホイール13の外筒部13aの内周側に配置されている。
 第1クラッチ26は、前後方向において、増速機構20と変速装置16との間に配置されている。増速機構20は、前後方向において、第1クラッチ26と第2クラッチ27との間に配置されている。
 第1クラッチ26及び第2クラッチ27は、少なくとも一部が、前後方向において、第1フライホイール13とオーバーラップする位置にある。具体的には、第1クラッチ26は、その全体が、前後方向において、第1フライホイール13とオーバーラップする位置にある。第2クラッチ27は、その前部が、前後方向において、第1フライホイール13とオーバーラップする位置にある。
 第1クラッチ26は、多板クラッチであって、複数の第1摩擦板26Aと複数の第2摩擦板26Bとを有している。第1摩擦板26Aと第2摩擦板26Bは、前後方向に交互に並んで配置されている。第1摩擦板26A及び第2摩擦板26Bは、円環状に形成されている。第1摩擦板26A及び第2摩擦板26Bの中心を中継軸17が貫通している。
 第1摩擦板26Aは、中継軸17に取り付けられており、中継軸17の軸長方向に移動可能である。第2摩擦板26Bは、増速機構20の遊星歯車22に取り付けられている。
 第2クラッチ27も、多板クラッチであって、複数の第1摩擦板27Aと複数の第2摩擦板27Bとを有している。第1摩擦板27Aと第2摩擦板27Bは、前後方向に交互に並んで配置されている。第1摩擦板27A及び第2摩擦板27Bは、円環状に形成されている。第1摩擦板27A及び第2摩擦板27Bの中心を中継軸17が貫通している。
 第1摩擦板27Aは、中継軸17に取り付けられており、中継軸17の軸長方向に移動可能である。第2摩擦板27Bは、第1フライホイール13に取り付けられている。
 第1動力伝達部11Dの第1動力伝達経路31は、エンジン4の回転動力を、第2フライホイール14、中継軸17、第1クラッチ26、遊星歯車22、太陽歯車21の順に伝達してから、第1フライホイール13に伝達する経路である。
 第1動力伝達部11Dの第2動力伝達経路32は、第1フライホイール13の回転動力を、第2クラッチ27、中継軸17の順に伝達してから、変速装置16に伝達する経路である。
 第1動力伝達部11Dの第3動力伝達経路33は、エンジン4の回転動力を、中継軸17を介して変速装置16に伝達する経路である。第3動力伝達経路33は、エンジン4の回転動力を第1クラッチ26と第2クラッチ27のいずれも介さずに変速装置16に伝達する。
 以下、上記した第1動力伝達部11Dの動作について説明する。
 エンジン4の出力軸4aから出力された回転動力は、第2フライホイール14に伝達される。これにより、第2フライホイール14が回転し、第2フライホイール14に接続された中継軸17も回転する。このとき、エンジン4の回転数と第2フライホイール14の回転数と中継軸17の回転数とは同一となる。出力軸4aから中継軸17に伝達された回転動力は、中継軸17から変速装置16の入力軸16aに伝達される。
 このように、エンジン4の出力軸4aから出力された回転動力は、第3動力伝達経路33を構成する中継軸17を介して変速装置16に伝達される。この第3動力伝達経路33を介した回転動力の伝達は、第1クラッチ26と第2クラッチ27の断続とは無関係に常時行われる。
 第1クラッチ26が接続状態であって且つ第2クラッチ27が切断状態にある場合、エンジン4の出力軸4aから出力された回転動力は、第1動力伝達経路31を介して第1フライホイール13に伝達される。具体的には、エンジン4の出力軸4aから第2フライホイール14及び中継軸17に伝達された回転動力は、第1クラッチ26の第1摩擦板26Aから第2摩擦板26Bに伝達される。これにより、遊星歯車22が回転し、遊星歯車22の回転に伴って太陽歯車21が回転する。すると、太陽歯車21は第1フライホイール13と接続されているため、太陽歯車21と共に第1フライホイール13が回転する。このように、エンジン4の回転動力は、第1クラッチ26及び増速機構20を介して第1フライホイール13へと伝達される。
 ここで、エンジン4の回転動力は、遊星歯車22から太陽歯車21に伝達されるときに増速される。つまり、エンジン4の回転動力は、増速されて第1フライホイール13へと伝達される。そのため、第1フライホイール13はエンジン4の回転数よりも大きい回転数で回転する。これにより、第1フライホイール13に高い回転エネルギーを蓄積することができる。
 第1クラッチ26が切断状態であって且つ第2クラッチ27が接続状態にある場合、第1フライホイール13の回転動力は、第2動力伝達経路32を介して変速装置16に伝達される。具体的には、第1フライホイール13の回転動力は、第2クラッチ27の第2摩擦板27Bから第1摩擦板27Aに伝達される。これにより、第1フライホイール13の回転動力は、第1摩擦板27Aから中継軸17に伝達され、中継軸17から変速装置16の入力軸16aに伝達される。このとき、第1フライホイール13の回転動力は、減速されずに(減速機構を介さずに)変速装置16の入力軸16aに伝達される。
 第1動力伝達部11Dは、上述した第1動力伝達部11Aの作用効果と同じ作用効果を奏することができる。
 第4実施形態に係る第1動力伝達部11Dの特長は、以下の通りである。
 第4実施形態に係る第1動力伝達部11Dは、第1クラッチ26及び第2クラッチ27が多板クラッチから構成されているため、第1摩擦板26A,27Aと第2摩擦板26B,27Bとの間で高い動力伝達性能を得ることができる。つまり、クラッチ装置25の動力伝達性能において優れている。
 また、第1クラッチ26及び第2クラッチ27が多板クラッチから構成されており且つ中継軸17の軸長方向に並んで配置されているため、高い動力伝達性能を維持しながらクラッチ装置25の外径を小さくして第1フライホイール13の内周側に配置することができる。これにより、第1フライホイール13の軸長(前後方向の長さ)を長くすることが可能となるため、第1フライホイール13の慣性モーメントを増大させて、第1フライホイール13に蓄積できる回転エネルギーを増加させることができる。つまり、第1フライホイール13による回転エネルギーの蓄積性能において優れている。
 また、第1クラッチ26及び第2クラッチ27が中継軸17の軸長方向に並んで配置されているため、第1動力伝達部11B,11Cと比べて第1クラッチ26と第2クラッチ27からなるクラッチ装置25の外径を小さくすることができる。これにより、クラッチ装置25のひきずりトルク(連れ回りが生じる摩擦トルク)を小さくすることができる。
 また、第1クラッチ26が第2壁9bの近傍に配置され、第2クラッチ27が第1壁9aの近傍に配置されているため、第1クラッチ26に作動油を供給するための油路を第2壁9bに沿って設けることができ、第2クラッチ27に作動油を供給するための油路を第1壁9aに沿って設けることができる。そのため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を設けることが容易である。つまり、油路成立性において優れている。
 <<第5実施形態>>
 次に、図7に基づいて、第5実施形態に係る第1動力伝達部11の具体的構成について説明する。以下、第5実施形態に係る第1動力伝達部11を「第1動力伝達部11E」と表記する。
 第5実施形態に係る第1動力伝達部11Eを収容するフライホイールハウジング9の内部には、仕切り壁9dが設けられている。仕切り壁9dは、第1壁9aと第2壁9bとの間に設けられている。仕切り壁9dの一方の面は、第1壁9aと対向している。仕切り壁9dの他方の面は、第2壁9bとの対向している。
 仕切り壁9dは、フライホイールハウジング9の内部を第1フライホイール13が収容される空間51と第1クラッチ26及び第2クラッチ27が収容される空間52とに仕切っている。以下、第1フライホイール13が収容される空間51を「第1空間51」、第1クラッチ26及び第2クラッチ27が収容される空間52を「第2空間52」という。
 第1空間51は、フライホイールハウジング9の前部(エンジン4側)に設けられている。第1空間51には、第1フライホイール13に加えて第2フライホイール14も収容されている。第2空間52は、フライホイールハウジング9の後部(変速装置16側)に設けられている。第2空間52には、第1クラッチ26及び第2クラッチ27に加えて増速機構20も収容されている。
 第1動力伝達部11Eにおいて、第1クラッチ26と第2クラッチ27は、中継軸17の径方向(中継軸17の軸心から離れる方向)に並んで配置されている。第1クラッチ26は、外周側(中継軸17から遠い側)に配置されている。第2クラッチ27は、内周側(中継軸17に近い側)に配置されている。つまり、第2クラッチ27は、第1クラッチ26の内周側に配置されている。
 第1クラッチ26及び第2クラッチ27は、フライホイールハウジング9の仕切り壁9dの近傍に配置されている。具体的には、第1クラッチ26及び第2クラッチ27は、仕切り壁9dに面する位置に配置されている。
 第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13と変速装置16との間に配置されている。第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13とずれた位置にある。言い換えれば、第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13とオーバーラップしていない。また、第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13と増速機構20との間に配置されている。
 第1クラッチ26は、多板クラッチであって、複数の第1摩擦板26Aと複数の第2摩擦板26Bとを有している。第1摩擦板26Aと第2摩擦板26Bは、前後方向に交互に並んで配置されている。第1摩擦板26A及び第2摩擦板26Bは、円環状に形成されている。第1摩擦板26A及び第2摩擦板26Bの中心を中継軸17が貫通している。
 第1摩擦板26Aは、第1フライホイール13に取り付けられている。具体的には、第1摩擦板26Aは、後述する支持体65(図11参照)を介して第1フライホイール13に取り付けられている。第1摩擦板26Aは、中継軸17の軸長方向に移動可能である。第2摩擦板26Bは、増速機構20の太陽歯車21に取り付けられている。具体的には、第2摩擦板26Bは、後述する取付部材69(図11参照)を介して太陽歯車21に取り付けられている。
 第2クラッチ27も、多板クラッチであって、複数の第1摩擦板27Aと複数の第2摩擦板27Bとを有している。第1摩擦板27Aと第2摩擦板27Bは、前後方向に交互に並んで配置されている。第1摩擦板27A及び第2摩擦板27Bは、円環状に形成されている。第1摩擦板27A及び第2摩擦板27Bの中心を中継軸17が貫通している。
 第1摩擦板27Aは、第1フライホイール13に取り付けられている。具体的には、第1摩擦板27Aは、後述する支持体65(図11参照)を介して第1フライホイール13に取り付けられている。第1摩擦板27Aは、中継軸17の軸長方向に移動可能である。第2摩擦板27Bは、増速機構20の遊星歯車22に接続されている。具体的には、第2摩擦板27Bは、接続体60及び遊星キャリア24を介して遊星歯車22に接続されている。接続体60は、中継軸17と変速装置16の入力軸16aとを接続している。遊星キャリア24は、遊星歯車22を支持している。
 第1動力伝達部11Eの第1動力伝達経路31は、エンジン4の回転動力を、第2フライホイール14、中継軸17、接続体60、遊星キャリア24、遊星歯車22、太陽歯車21、第1クラッチ26の順に伝達してから、第1フライホイール13に伝達する経路である。
 第1動力伝達部11Eの第2動力伝達経路32は、第1フライホイール13の回転動力を、第2クラッチ27、接続体60の順に伝達してから、変速装置16に伝達する経路である。
 第1動力伝達部11Eの第3動力伝達経路33は、エンジン4の回転動力を中継軸17及び接続体60を介して変速装置16に伝達する経路である。第3動力伝達経路33は、エンジン4の回転動力を第1クラッチ26と第2クラッチ27のいずれも介さずに変速装置16に伝達する。
 以下、上記した第1動力伝達部11Eの動作について説明する。
 エンジン4の出力軸4aから出力された回転動力は、第2フライホイール14に伝達される。これにより、第2フライホイール14が回転し、第2フライホイール14に接続された中継軸17も回転する。このとき、エンジン4の回転数と第2フライホイール14の回転数と中継軸17の回転数とは同一となる。中継軸17に伝達された回転動力は、接続体60を介して変速装置16の入力軸16aに伝達される。
 このように、エンジン4の出力軸4aから出力された回転動力は、第3動力伝達経路33を介して変速装置16に伝達される。この第3動力伝達経路33を介した回転動力の伝達は、第1クラッチ26と第2クラッチ27の断続とは無関係に常時行われる。
 第1クラッチ26が接続状態であって且つ第2クラッチ27が切断状態にある場合、エンジン4の出力軸4aから出力された回転動力は、第1動力伝達経路31を介して第1フライホイール13に伝達される。具体的には、エンジン4から第2フライホイール14に伝達された回転動力は、第2フライホイール14から中継軸17、接続体60及び遊星キャリア24を介して遊星歯車22に伝達される。これにより、遊星歯車22が回転し、遊星歯車22の回転に伴って太陽歯車21が回転する。太陽歯車21は、第1クラッチ26の第2摩擦板26Bと接続されている。そのため、太陽歯車21の回転動力は、第2摩擦板26Bに伝達され、当該第2摩擦板26Bから第1摩擦板26Aを介して第1フライホイール13へと伝達される。
 ここで、エンジン4の回転動力は、遊星歯車22から太陽歯車21に伝達されるときに増速される。つまり、エンジン4の回転動力は、増速されて第1フライホイール13へと伝達される。そのため、第1フライホイール13はエンジン4の回転数よりも大きい回転数で回転する。これにより、第1フライホイール13に高い回転エネルギーを蓄積することができる。
 また、第1クラッチ26が切断状態であって第2クラッチ27が接続状態にある場合、第2動力伝達経路32が接続されるため、第1フライホイール13の回転動力は、変速装置16に伝達される。具体的には、第1フライホイール13の回転動力は、第2クラッチ27の第1摩擦板27Aから第2摩擦板27Bに伝達される。これにより、第1フライホイール13の回転動力は、第2摩擦板27Bから接続体60を介して変速装置16の入力軸16aに伝達される。このとき、第1フライホイール13の回転動力は、減速されずに(減速機構を介さずに)変速装置16の入力軸16aに伝達される。そのため、第1フライホイール13の高い回転エネルギーをそのまま変速装置16に入力することができる。
 第1クラッチ26と第2クラッチ27が共に切断状態にある場合、第1動力伝達経路31と第2動力伝達経路32が遮断されるため、エンジン4の回転動力は第1フライホイール13へと伝達されず、第1フライホイール13の回転動力は変速装置16に伝達されない。
 第1動力伝達部11Eは、上述した第1動力伝達部11Aの作用効果と同じ作用効果を奏することができる。
 第5実施形態に係る第1動力伝達部11Eの特長は、以下の通りである。
 第5実施形態に係る第1動力伝達部11Eは、第1クラッチ26及び第2クラッチ27が多板クラッチから構成されているため、第1摩擦板26A,27Aと第2摩擦板26B,27Bとの間で高い動力伝達性能を得ることができる。つまり、クラッチ装置25の動力伝達性能において優れている。
 また、第1クラッチ26及び第2クラッチ27が中継軸17の径方向に並んで配置されているため、前後方向の長さを短くすることができる。これにより、第1フライホイール13の軸長(前後方向の長さ)を長くすることが可能となる。そのため、第1フライホイール13の慣性モーメントを増大させて、第1フライホイール13に蓄積できる回転エネルギーを増加することができる。つまり、第1フライホイール13による回転エネルギーの蓄積性能において優れている。
 また、第1クラッチ26及び第2クラッチ27がフライホイールハウジング9の仕切り壁9dに面する位置に配置されているため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を仕切り壁9dに沿って設けることができる。そのため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を設けることが容易である。つまり、油路成立性において優れている。
 また、フライホイールハウジング9の第1壁9aに軸受を設けることにより中継軸17の一端側を回転可能に支持することができる。そして、フライホイールハウジング9の第2壁9bに軸受を設けることにより、中継軸17の他端側又は当該他端側と接続される変速装置16の入力軸16aを回転可能に支持することができる。また、仕切り壁9dに軸受を設けることにより、中継軸17の中途部を回転可能に支持することができる。これにより、中継軸17の両端側と中途部を確実に且つ容易に回転可能に支持することが可能となる。つまり、軸支持成立性において優れている。
 また、第1クラッチ26及び第2クラッチ27が仕切り壁9dの近傍で中継軸17の径方向に並んで配置されているため、第1クラッチ26及び第2クラッチ27を支持するための部材を共通化することができ、部品点数を少なくすることが可能となる。つまり、部品点数を削減できる点において優れている。
 上記したように、第5実施形態に係る第1動力伝達部11Eは、動力伝達性能、回転エネルギーの蓄積性能、油路成立性、軸支持成立性、部品点数の削減化という点で優れている。そのため、性能に関する特長(動力伝達性能、回転エネルギーの蓄積性能)と構造に関する特長(油路成立性、軸支持成立性、部品点数の削減)とを高い水準でバランス良く両立させることができる。
 <<第6実施形態>>
 次に、図8に基づいて、第6実施形態に係る第1動力伝達部11の具体的構成について説明する。以下、第6実施形態に係る第1動力伝達部11を「第1動力伝達部11F」と表記する。
 第6実施形態に係る第1動力伝達部11Fを収容するフライホイールハウジング9の内部には、仕切り壁9dが設けられている。仕切り壁9dは、第1壁9aと第2壁9bとの間に設けられている。仕切り壁9dの一方の面は、第1壁9aと対向している。仕切り壁9dの他方の面は、第2壁9bとの対向している。
 仕切り壁9dは、フライホイールハウジング9の内部を第1フライホイール13が収容される第1空間51と第1クラッチ26及び第2クラッチ27が収容される第2空間52とに仕切っている。
 第1空間51は、フライホイールハウジング9の前部(エンジン4側)に設けられている。第1空間51には、第1フライホイール13に加えて第2フライホイール14も収容されている。第2空間52は、フライホイールハウジング9の後部(変速装置16側)に設けられている。第2空間52には、第1クラッチ26及び第2クラッチ27に加えて増速機構20も収容されている。
 第1動力伝達部11Fにおいて、第1クラッチ26と第2クラッチ27は、中継軸17の径方向(中継軸17の軸心から離れる方向)に並んで配置されている。第1クラッチ26は、外周側(中継軸17から遠い側)に配置されている。第2クラッチ27は、内周側(中継軸17に近い側)に配置されている。言い換えれば、第2クラッチ27は、第1クラッチ26の内周側に配置されている。第1クラッチ26及び第2クラッチ27は、フライホイールハウジング9の仕切り壁9dの近傍に配置されている。具体的には、第1クラッチ26及び第2クラッチ27は、仕切り壁9dに面する位置に配置されている。
 第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13と変速装置16との間に配置されている。第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13とずれた位置にある。言い換えれば、第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13とオーバーラップしていない。また、第1クラッチ26及び第2クラッチ27は、前後方向において、第1フライホイール13と増速機構20との間に配置されている。
 第1クラッチ26は、多板クラッチであって、複数の第1摩擦板26Aと複数の第2摩擦板26Bとを有している。第1摩擦板26Aと第2摩擦板26Bは、前後方向に交互に並んで配置されている。第1摩擦板26A及び第2摩擦板26Bは、円環状に形成されている。第1摩擦板26A及び第2摩擦板26Bの中心を中継軸17が貫通している。
 第1摩擦板26Aは、第1フライホイール13に取り付けられており、中継軸17の軸長方向に移動可能である。第2摩擦板26Bは、増速機構20の太陽歯車21に取り付けられている。
 第2クラッチ27も、多板クラッチであって、複数の第1摩擦板27Aと複数の第2摩擦板27Bとを有している。第1摩擦板27Aと第2摩擦板27Bは、前後方向に交互に並んで配置されている。第1摩擦板27A及び第2摩擦板27Bは、円環状に形成されている。第1摩擦板27A及び第2摩擦板27Bの中心を中継軸17が貫通している。
 第1摩擦板27Aは、第1フライホイール13に取り付けられており、中継軸17の軸長方向に移動可能である。第2摩擦板27Bは、増速機構20の遊星歯車22に取り付けられている。第2摩擦板27Bは、接続体60及び遊星キャリア24を介して増速機構20の遊星歯車22に接続されている。接続体60は、中継軸17と変速装置16の入力軸16aとを接続している。遊星キャリア24は、遊星歯車22を支持している。第2摩擦板27Bは、第1摩擦板27Aの外周側に配置されている。
 第1動力伝達部11Fの第1動力伝達経路31は、エンジン4の回転動力を、第2フライホイール14、中継軸17、接続体60、遊星キャリア24、遊星歯車22、太陽歯車21、第1クラッチ26の順に伝達してから、第1フライホイール13に伝達する経路である。
 第1動力伝達部11Fの第2動力伝達経路32は、第1フライホイール13の回転動力を、第2クラッチ27、接続体60の順に伝達してから、変速装置16に伝達する経路である。
 第1動力伝達部11Fの第3動力伝達経路33は、エンジン4の回転動力を接続体60及び中継軸17を介して変速装置16に伝達する経路である。第3動力伝達経路33は、エンジン4の回転動力を第1クラッチ26と第2クラッチ27のいずれも介さずに変速装置16に伝達する。
 以下、上記した第1動力伝達部11Fの動作について説明する。
 エンジン4の出力軸4aから出力された回転動力は、第2フライホイール14に伝達される。これにより、第2フライホイール14が回転し、第2フライホイール14に接続された中継軸17も回転する。このとき、エンジン4の回転数と第2フライホイール14の回転数と中継軸17の回転数とは同一となる。中継軸17に伝達された回転動力は、接続体60を介して変速装置16の入力軸16aに伝達される。
 このように、エンジン4の出力軸4aから出力された回転動力は、第3動力伝達経路33を介して変速装置16に伝達される。この第3動力伝達経路33を介した回転動力の伝達は、第1クラッチ26と第2クラッチ27の断続とは無関係に常時行われる。
 第1クラッチ26が接続状態であって且つ第2クラッチ27が切断状態にある場合、エンジン4の出力軸4aから出力された回転動力は、第1動力伝達経路31を介して第1フライホイール13に伝達される。具体的には、エンジン4の回転動力は、第2フライホイール14から中継軸17、接続体60及び遊星キャリア24を介して遊星歯車22に伝達される。これにより、遊星歯車22が回転し、遊星歯車22の回転に伴って太陽歯車21が回転する。太陽歯車21は、第1クラッチ26の第2摩擦板26Bと接続されている。そのため、太陽歯車21に伝達された回転動力は、第2摩擦板26Bから第1摩擦板26Aに伝達され、第1摩擦板26Aから第1フライホイール13へと伝達される。
 ここで、エンジン4の回転動力は、遊星歯車22から太陽歯車21に伝達されるときに増速される。つまり、エンジン4の回転動力は、増速されて第1フライホイール13へと伝達される。そのため、第1フライホイール13はエンジン4の回転数よりも大きい回転数で回転する。これにより、第1フライホイール13に高い回転エネルギーを蓄積することができる。
 また、第1クラッチ26が切断状態であって第2クラッチ27が接続状態にある場合、第2動力伝達経路32が接続されるため、第1フライホイール13の回転動力は、変速装置16に伝達される。具体的には、第1フライホイール13の回転動力は、第2クラッチ27の第1摩擦板27Aから第2摩擦板27Bに伝達される。これにより、第1フライホイール13の回転動力は、第2摩擦板27Bから接続体60を介して変速装置16の入力軸16aに伝達される。このとき、第1フライホイール13の回転動力は、減速されずに(減速機構を介さずに)変速装置16の入力軸16aに伝達される。そのため、第1フライホイール13の高い回転エネルギーをそのまま変速装置16に入力することができる。
 第1クラッチ26と第2クラッチ27が共に切断状態にある場合、第1動力伝達経路31と第2動力伝達経路32が遮断されるため、エンジン4の回転動力は第1フライホイール13へと伝達されず、第1フライホイール13の回転動力は変速装置16に伝達されない。
 第1動力伝達部11Fは、上述した第1動力伝達部11Aの作用効果と同じ作用効果を奏することができる。
 第6実施形態に係る第1動力伝達部11Fの特長は、以下の通りである。
 第6実施形態に係る第1動力伝達部11Fは、第1クラッチ26及び第2クラッチ27が多板クラッチから構成されているため、第1摩擦板26A,27Aと第2摩擦板27Bとの間で高い動力伝達性能を得ることができる。つまり、クラッチ装置25の動力伝達性能において優れている。
 また、第1クラッチ26及び第2クラッチ27が中継軸17の径方向に並んで配置されているため、前後方向の長さを短くすることができる。これにより、第1フライホイール13の軸長(前後方向の長さ)を長くすることが可能となる。そのため、第1フライホイール13の慣性モーメントを増大させて、第1フライホイール13に蓄積できる回転エネルギーを増加することができる。つまり、第1フライホイール13による回転エネルギーの蓄積性能において優れている。
 また、第1クラッチ26及び第2クラッチ27がフライホイールハウジング9の仕切り壁9dに面する位置に配置されているため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を仕切り壁9dに沿って設けることができる。そのため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を設けることが容易である。つまり、油路成立性において優れている。
 また、フライホイールハウジング9の第1壁9aに軸受を設けることにより中継軸17の一端側を回転可能に支持することができる。そして、フライホイールハウジング9の第2壁9bに軸受を設けることにより、中継軸17の他端側又は当該他端側と接続される変速装置16の入力軸16aを回転可能に支持することができる。また、仕切り壁9dに軸受を設けることにより、中継軸17の中途部を回転可能に支持することができる。これにより、中継軸17の両端側と中途部を確実に且つ容易に回転可能に支持することが可能となる。つまり、軸支持成立性において優れている。
 また、第1クラッチ26及び第2クラッチ27が仕切り壁9dの近傍で中継軸17の径方向に並んで配置されているため、第1クラッチ26及び第2クラッチ27を支持するための部材を共通化することができ、部品点数を少なくすることが可能となる。つまり、部品点数を削減できる点において優れている。
 上記したように、第6実施形態に係る第1動力伝達部11Fは、動力伝達性能、回転エネルギーの蓄積性能、油路成立性、軸支持成立性、部品点数の削減化という点で優れている。そのため、性能に関する特長(動力伝達性能、回転エネルギーの蓄積性能)と構造に関する特長(油路成立性、軸支持成立性、部品点数の削減)とをバランス良く両立させることができる。
 但し、油路成立性、軸支持成立性、部品点数の削減の点では、第5実施形態の方が優れている。これは、第5実施形態と第6実施形態のクラッチ装置25の具体的構成の違いに起因する。
 第6実施形態(図8参照)の場合、外周側(中継軸17の軸心から遠い側)から内周側(中継軸17の軸心に近い側)に向けて、第1摩擦板26Aを支持する部分、第2摩擦板26Bを支持する部分、第2摩擦板27Bを支持する部分、第1摩擦板27Aを支持する部分の順に並んでいる。これに対して、第5実施形態(図7参照)の場合、外周側から内周側に向けて、第1摩擦板26Aを支持する部分、第2摩擦板26Bを支持する部分、第1摩擦板27Aを支持する部分、第2摩擦板27Bを支持する部分の順に並んでいる。
 この構成の相違によって、第5実施形態は、第6実施形態に比べて、クラッチ装置25の支持構造を単純化することができ、部品点数を削減することが可能となる。また、第5実施形態は、第6実施形態に比べて、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路の形成が容易となる。
 また、第5実施形態の場合、第2摩擦板26Bを支持する部分の内周側に、中継軸17に沿って第1フライホイール13の内筒部13bから後方に延びる部分80(図7参照)を設けて、この部分80に軸受(後述する第5軸受66(図11参照))を配置することができる。これにより、中継軸17を確実に且つ容易に回転可能に支持することが可能となる。尚、部分80は、後述する支持体65(図11参照)の後部に相当する。
 <第5実施形態の詳細構成>
 次に、図10、図11に基づいて、上記した第1~第6実施形態に係る第1動力伝達部11のうち、特に好適な実施形態である第5実施形態に係る第1動力伝達部11Eについて、詳細構成を説明する。
 図10は、第5実施形態に係る第1動力伝達部11Eを備えた動力伝達機構6と、当該動力伝達機構6を収容する伝動ケース5の一部とを示す断面図である。図11は、図10の一部を拡大した図である。
 図10に示すように、伝動ケース5は、前部位5Aと中間部位5Bと後部位5Cとを有している。前部位5Aは、伝動ケース5の前部に位置している。中間部位5Bは、前部位5Aの後部に接続されている。後部位5Cは、中間部位5Bの後部に接続されている。
 伝動ケース5の下部には、前輪3Fに回転動力を伝達するための前輪駆動軸63が伝動ケース5を貫通して配置されている。前輪駆動軸63は、前部位5Aと中間部位5Bと後部位5Cを貫通して前後方向に延びている。
 前部位5A及び中間部位5B及び後部位5Cの前部は、フライホイールハウジング9を構成している。後部位5Cの後部は、ミッションケース10の前部を構成している。後部位5Cは、フライホイールハウジング9の後部とミッションケース10の前部とを兼ね備えた構造である。
 前部位5Aは、第1筒状部91と第1壁9aとを有している。第1筒状部91は、第2フライホイール14の周囲を覆っている。第1壁9aは、上述したフライホイールハウジング9の第1壁9aであって、第2フライホイール14の前方に配置されている。
 中間部位5Bは、第2筒状部92と中間壁95とを有している。第2筒状部92は、前部位5Aの第1筒状部91の後部に接続されている。具体的には、第2筒状部92は、ボルトB1によって第1筒状部91の後部に接続されている。第2筒状部92は、第1フライホイール13の周囲及びクラッチ装置25(第1クラッチ26及び第2クラッチ27)の前部の周囲を覆っている。中間壁95は、第1フライホイール13と第2フライホイール14との間に設けられている。中間壁95は、第1空間51を第1フライホイール13が配置された空間と第2フライホイール14が配置された空間とに仕切っている。
 後部位5Cは、第3筒状部93と第2壁9bと第4筒状部94とを有している。第3筒状部93は、中間部位5Bの第2筒状部92の後部に接続されている。具体的には、第3筒状部93は、ボルトB2によって第2筒状部92の後部に接続されている。第3筒状部93は、増速機構20の周囲を覆っている。第2壁9bは、上述したフライホイールハウジング9の第2壁9bであって、増速機構20の後方に配置されている。
 第1筒状部91、第2筒状部92、第3筒状部93は、フライホイールハウジング9の周壁9cを構成している。フライホイールハウジング9の内部は、仕切り壁9dにより第1空間51と第2空間52とに仕切られている。
 図10に示すように、中間壁95には、仕切り壁9dが固定されている。具体的には、中間壁95は、仕切り壁9dに形成された取付孔9e(図12参照)に挿通されたボルトB3によって、仕切り壁9dに対して固定されている。
 また、図11に示すように、中間壁95には、第1軸受61と第2軸受62が取り付けられている。第1軸受61は、中継軸17の前部を回転可能に支持している。第2軸受62は、第1フライホイール13の前部を回転可能に支持している。
 図11、図12に示すように、第1フライホイール13は、外筒部13aと内筒部13bと連結部13cとを有している。連結部13cの前後方向の長さは、外筒部13a及び内筒部13bの前後方向の長さよりも小さい。つまり、連結部13cの厚みは、外筒部13a及び内筒部13bの厚みよりも小さい。
 第1フライホイール13は、第1凹部13eと第2凹部13fとを有している。第1凹部13eは、連結部13cの前方であって且つ外筒部13aと内筒部13bとの間において凹んでいる。第2凹部13fは、連結部13cの後方であって且つ外筒部13aと内筒部13bとの間において凹んでいる。
 第1凹部13eには、第2軸受62が配置されている。第2凹部13fには、第3軸受64が配置されている。第1フライホイール13は、第2軸受62及び第3軸受64によって回転可能に支持されている。
 図11に示すように、中継軸17の外周側には、支持体65が配置されている。支持体65は、第1フライホイール13を中継軸17に対して回転可能に支持する。図11、図12に示すように、支持体65は、第1部位65a、第2部位65b、第3部位65c、第4部位65d、第5部位65e、第6部位65fを有している。
 第1部位65aは、円筒状であって、中継軸17が貫通している。第1部位65aの後部は、中継軸17の外周面に取り付けられた第5軸受66に支持されている。これにより、支持体65は、中継軸17に対して相対的に回転可能である。第1部位65aの前後方向の中間部は、仕切り壁9dの内周面に取り付けられた第6軸受67に支持されている。これにより、支持体65は、仕切り壁9dに対して相対的に回転可能である。第1部位65aの前部には、第1フライホイール13が取り付けられている。第1フライホイール13と支持体65の前部とはスプライン結合されている。そのため、第1フライホイール13は、支持体65と一体的に中継軸17及び仕切り壁9dに対して相対的に回転可能である。
 第2部位65bは、第1部位65aの後部から外方(中継軸17から離れる方向)に延びている。第2部位65bは、円板状に形成されている。第3部位65cは、第2部位65bの外周端から後方に延びている。第3部位65cは、円筒状に形成されている。第4部位65dは、第2部位65bの外周端と内周端との間から後方に延びている。第4部位65dは、第3部位65cよりも小径の円筒状に形成されている。第4部位65dは、第3部位65cの内周側に配置されている。
 第5部位65eは、第2部位65bの外周端から前方に延びている。第5部位65eは、円筒状に形成されている。第5部位65eの直径は、第3部位65cの直径と略等しい。第6部位65fは、第2部位65bの外周端と内周端との間から前方に延びている。第6部位65fは、第5部位65eよりも小径の円筒状に形成されている。第6部位65fの直径は、第4部位65dの直径と略等しい。
 図11、図12に示すように、仕切り壁9dは、壁部96、筒部97、第1突出部98、第2突出部99を有している。壁部96は、円板状に形成されており、第1フライホイール13とクラッチ装置25との間を仕切っている。図11に示すように、壁部96には、クラッチ装置25に作動油を供給するための油路70が形成されている。油路70には、供給管71が接続されている。フライホイールハウジング9の外部から供給管71を通して油路70に作動油を供給することができる。
 油路70は、主油路70aと第1分岐油路70bと第2分岐油路70cとから構成されている。主油路70aは、仕切り壁9dの外周側から内周側へと延びている。主油路70aの外周側の端部には、供給管71が接続されている。第1分岐油路70b及び第2分岐油路70cは、主油路70aから分岐して後方に延びている。
 主油路70aは、フライホイールハウジング9の外部から供給管71を通して作動油を受け入れる通路である。第1分岐油路70bは、主油路70aに供給された作動油を第1クラッチ26に供給する油路である。第2分岐油路70cは、主油路70aに供給された作動油を第2クラッチ27に供給する油路である。
 筒部97は、円筒状に形成されている。筒部97の内周面と支持体65の第1部位65aの外周面との間に第6軸受67が介装されている。筒部97は、壁部96の内周端から前方に延びる前筒部97aと、壁部96の内周端から後方に延びる後筒部97bと、を有している。前筒部97aの外周面と第1フライホイール13との間には、第3軸受64が介装されている。
 第1突出部98は、壁部96から後方に延びている。第1突出部98は、円筒状に形成されている。第2突出部99は、壁部96の外周端と内周端との間から後方に延びている。第2突出部99は、第1突出部98よりも小径の円筒状に形成されている。第2突出部99は、第1突出部98の内周側に配置されている。
 図11に示すように、中継軸17と変速装置16の入力軸16aとは、接続体60により接続されている。中継軸17の後部の外周面と入力軸16aの前部の外周面には外スプラインが形成されている。接続体60の内周面には、内スプラインが形成されている。外スプラインと内スプラインとが噛み合うことにより、中継軸17と入力軸16aとが接続体60を介して接続されている。これにより、接続体60と中継軸17と入力軸16aは、一体的に回転する。
 接続体60は、支持体65の後方に配置されている。接続体60は、円筒状の接続部60aと、接続部60aの前部から外方(中継軸17から離れる方向)に延びてから前方に延びる延設部60bとを有している。接続部60aの内周面には、上述した内スプラインが形成されている。延設部60bの外方の端部は、接続部60aよりも大径の円筒状に形成されている。延設部60bの外周面は、第4部位65dの内周面と対向している。
 増速機構20の太陽歯車21は、接続部60aの外周面に第7軸受68を介して支持されている。これにより、太陽歯車21は、接続体60に対して相対的に回転可能である。太陽歯車21には、取付部材69が固定されている。取付部材69は、太陽歯車21に固定された固定部69aと、固定部69aから前方に延びる前延部69bと、を有している。固定部69aは、円板状に形成されている。前延部69bは、円筒状に形成されている。
 増速機構20の遊星歯車22は、遊星キャリア24により支持されている。遊星キャリア24の内周面には、内スプラインが形成されている。遊星キャリア24の内スプラインは、接続部60aの外周面に形成された外スプラインと噛み合っている。これにより、遊星キャリア24は、接続体60及び中継軸17と共に回転可能である。
 増速機構20のリング歯車23は、リング支持体72に取り付けられている。リング支持体72は、フライホイールハウジング9の中間部位5Bに固定されている。具体的には、リング支持体72は、ボルトB4により中間部位5Bに固定されている。これにより、リング歯車23は、フライホイールハウジング9に対して回転不能に固定されている。
 第1クラッチ26の第1摩擦板26Aと第2摩擦板26Bは、支持体65の第2部位65bの後方に配置されている。第1摩擦板26Aと第2摩擦板26Bは、支持体65の第3部位65cと取付部材69の前延部69bとの間に配置されている。
 第1クラッチ26の第1摩擦板26Aは、円環状であって、外周部が支持体65の第3部位65cに支持されている。詳しくは、第1摩擦板26Aの外周に形成された複数の突起26A1(図12参照)が第3部位65cに形成された複数の切り欠き65g(図12参照)に嵌まっている。これにより、第1摩擦板26Aは、支持体65に対して回転不能であって、切り欠き65gに沿って前後方向に移動可能となっている。
 第1クラッチ26の第2摩擦板26Bは、円環状であって、内周部が取付部材69の前延部69bに支持されている。第2摩擦板26Bは、前延部69bに対して移動不能に固定されている。
 第1クラッチ26の油圧ピストン73(以下、「第1油圧ピストン73」という)は、仕切り壁9dと支持体65の第2部位65bとの間に配置されている。詳しくは、第1油圧ピストン73は、仕切り壁9dの壁部96、第1突出部98、第2突出部99、支持体65の第2部位65b、第5部位65e、第6部位65fで囲まれる空間に配置されている。支持体65の第2部位65bには開口65h(図11,図12参照)が形成されており、第1油圧ピストン73の先端部は開口65hから突出している。第1油圧ピストン73の先端部は、最も前方に位置する第1摩擦板26Aに近接している。
 第1油圧ピストン73の基端側には、第1分岐油路70bから作動油が供給される。第1分岐油路70bから作動油が供給されると、第1油圧ピストン73が後方に向けて移動して第1摩擦板26Aを押し、第1摩擦板26Aが第2摩擦板26Bに圧接する。
 第1油圧ピストン73は、第1スプリング74によって前方に向けて付勢されている。そのため、第1分岐油路70bから作動油が供給されないときは、第1油圧ピストン73は第1スプリング74の付勢力によって前方に移動する。第1油圧ピストン73が前方に移動すると、第1摩擦板26Aが第2摩擦板26Bから離反する。
 第2クラッチ27の第1摩擦板27Aと第2摩擦板27Bは、支持体65の第2部位65bの後方に配置されている。第1摩擦板27Aと第2摩擦板27Bは、支持体65の第4部位65dと接続体60の延設部60bの外周面との間に配置されている。
 第2クラッチ27の第1摩擦板27Aは、円環状であって、外周部が支持体65の第4部位65dに支持されている。詳しくは、第1摩擦板27Aの外周に形成された複数の突起27A1(図12参照)が第4部位65dに形成された複数の切り欠き65i(図12参照)に嵌まっている。これにより、第1摩擦板27Aは、支持体65に対して回転不能であって、切り欠き65iに沿って前後方向に移動可能となっている。
 第2クラッチ27の第2摩擦板27Bは、円環状であって、内周部が接続体60の延設部60bに支持されている。第2摩擦板27Bは、延設部60bに対して移動不能に固定されている。
 第2クラッチ27の油圧ピストン75(以下、「第2油圧ピストン75」という)は、仕切り壁9dと支持体65の第2部位65bとの間に配置されている。詳しくは、第2油圧ピストン75は、仕切り壁9dの壁部96、筒部97、第2突出部99、支持体65の第1部位65a、第2部位65b、第6部位65fで囲まれる空間に配置されている。支持体65の第2部位65bには開口65j(図11,図12参照)が形成されており、第2油圧ピストン75の先端部は開口65jから突出している。第2油圧ピストン75の先端部は、最も前方に位置する第1摩擦板27Aに近接している。
 第2油圧ピストン75の基端側には、第2分岐油路70cから作動油が供給される。第2分岐油路70cから作動油が供給されると、第2油圧ピストン75が後方に向けて移動して第1摩擦板27Aを押し、第1摩擦板27Aが第2摩擦板27Bに圧接する。
 第2油圧ピストン75は、第2スプリング76によって前方に向けて付勢されている。そのため、第2分岐油路70cから作動油が供給されないときは、第2油圧ピストン75は第2スプリング76の付勢力によって前方に移動する。第2油圧ピストン75が前方に移動すると、第1摩擦板27Aが第2摩擦板27Bから離反する。
 <制御システム>
 図13は、本発明に係る作業車両1が備える制御システム100の概略構成を示すブロック図である。この制御システム100は、上述した作業車両1が備えることができる制御システムである。つまり、制御システム100は、上述した全ての実施形態(第1~第6実施形態)の第1動力伝達部11を備えた作業車両1に対して適用することができる。
 制御システム100は、制御装置110、情報取得部120、表示入力装置130、動作部140を備えている。
 制御装置110は、ECU(Electronic Control Unit)を含む。制御装置110は、情報取得部120から送信(入力)される各種の情報や信号を受信して演算を行うとともに、演算結果等に基づいて動作部140に対して動作部140の動作を制御する制御信号を送信する。
 制御装置110は、演算部111と記憶部112と通信部113とを有する。演算部111は、CPU等から構成されており、記憶部112に記憶された各種のプログラムを読み出して種々の演算や処理を実行する。記憶部112は、演算部111によって実行されるプログラムと各種のデータとを記憶する。記憶部112は、ROM(Read Only Memory)やRAM(Random Access Memory)等から構成される。尚、記憶部112は、制御装置110に接続された外部の記憶装置であってもよい。通信部113は、制御装置110と、情報取得部120、表示入力装置130、動作部140との間で、電気通信ライン又は無線により通信を行い、各種情報や各種信号の送受信を行う。
 情報取得部120は、作業車両1の動作に関する情報を取得して制御装置110に送信する。情報取得部120は、第1圧力センサ28、第2圧力センサ29、第1回転数センサ18、第2回転数センサ15、アクセル開度センサ19を含む。
 上述した通り、第1圧力センサ28は、第1クラッチ26の油圧ピストンに作動油を供給するための油路内の作動油の圧力(油路ピストンの作動圧)を検出する。第2圧力センサ29は、第2クラッチ27の油圧ピストンに作動油を供給するための油路内の作動油の圧力(油路ピストンの作動圧)を検出する。
 第1回転数センサ18は、第1フライホイール13の回転数を測定する。第2回転数センサ15は、第2フライホイール14の回転数を計測することにより、エンジン4の回転数(実回転数)を算出する。アクセル開度センサ19は、アクセルペダルの踏み込み量に応じて指示噴射量(燃料噴射弁(インジェクタ)に対する噴射量の指示値)を検出する。
 尚、図13には示していないが、情報取得部120は、上述した第1トルクセンサ35、第2トルクセンサ36、第3回転数センサ37を含んでいてもよい。
 表示入力装置130は、種々の情報を表示可能、且つ人為操作を受付可能に構成されている。表示入力装置130は、例えば、タッチパネル式表示装置である。表示入力装置130は、例えば、作業車両1の運転席の近傍に配置される。
 演算部111は、負荷率算出部111a、トルク率算出部111b、ドロップ率算出部111c、動作モード決定部111dを有している。
 負荷率算出部111aは、エンジン4の負荷率(以下、単に「負荷率」という場合がある)を算出する。詳しくは、負荷率算出部111aは、アクセル開度センサ19により検出された指示噴射量と、記憶部112に記憶されたブースト圧に対応した制限噴射量に基づいて負荷率を算出する。具体的には、負荷率算出部111aは、負荷率を「指示噴射量/ブースト圧に対応した制限噴射量×100」の算出式により算出する。
 「ブースト圧」とは、過給器によってエンジン4へ強制的に送り込まれる圧縮された空気の圧力である。「制限噴射量」とは、燃料噴射弁(インジェクタ)により噴射される燃料の量がその値を超えることは許容できないと定められる値である。「ブースト圧に対応した制限噴射量」とは、ブースト圧に対応して定められた制限噴射量である。制限噴射量は、ブースト圧の増加に対応して増加するように定められている。「ブースト圧に対応した制限噴射量」は、記憶部112に記憶されている。
 トルク率算出部111bは、エンジン4のトルク率(以下、単に「トルク率」という場合がある)を算出する。詳しくは、トルク率算出部111bは、アクセル開度センサ19により検出された指示噴射量と、記憶部112に記憶された全負荷曲線の制限噴射量に基づいてトルク率を算出する。具体的には、負荷率算出部111aは、トルク率を「指示噴射量/全負荷曲線の制限噴射量×100」の算出式により算出する。
 「全負荷曲線の制限噴射量」とは、エンジン4の全負荷曲線(エンジンの回転数を横軸とし、燃料噴射量を縦軸とした全負荷曲線)に対応して定められた制限噴射量である。「全負荷曲線の制限噴射量」は、記憶部112に記憶されている。
 ドロップ率算出部111cは、エンジン4のドロップ率(以下、単に「ドロップ率」という場合がある)を算出する。詳しくは、ドロップ率算出部111cは、第2回転数センサ15により検出されたエンジン4の実回転数(以下、単に「実回転数」という場合がある)と記憶部112に記憶されたエンジン4の目標回転数(以下、単に「目標回転数」という場合がある)に基づいてドロップ率を算出する。具体的には、ドロップ率算出部111cは、ドロップ率を「実回転数/目標回転数×100」の算出式により算出する。尚、エンジン4の目標回転数とは、アクセルの開度等に対応して予め定められたエンジン4の回転数のことである。
 動作モード決定部111dは、情報取得部120により取得された情報(検出値等)や、負荷率算出部111a、トルク率算出部111b、ドロップ率算出部111cにより算出された値等に基づいて、制御システム100の動作モード(後述する)を決定する。制御装置110は、動作モード決定部111dにより決定された動作モードに基づいて動作部140に対して制御信号を送信する。
 動作部140は、制御装置110から送信される制御信号により動作する。動作部140は、第1クラッチ26と第2クラッチ27とを含む。
 第1クラッチ26は、制御装置110から送信される第1制御信号に基づいて動作する。第1制御信号は、第1クラッチ26の油圧ピストン(第1油圧ピストン73)を駆動する制御信号であり、第1クラッチ26の油圧ピストンを駆動するための作動油の指示圧(以下、「第1指示圧」という)を含む。第1クラッチ26の油圧ピストンの作動圧は、制御装置110から送信される制御信号に含まれる第1指示圧によって定まる。第1クラッチ26は、第1指示圧に基づく油圧ピストンの駆動によって接続又は切断される。
 第2クラッチ27は、制御装置110から送信される第2制御信号に基づいて動作する。第2制御信号は、第2クラッチ27の油圧ピストン(第2油圧ピストン75)を駆動する制御信号であり、第2クラッチ27の油圧ピストンを駆動するための作動油の指示圧(以下、「第2指示圧」という)を含む。第2クラッチ27の油圧ピストンの作動圧は、制御装置110から送信される制御信号に含まれる第2指示圧によって定まる。第2クラッチ27は、第2指示圧に基づく油圧ピストンの駆動によって接続又は切断される。
 制御装置110は、複数の動作モードを切り替えるために第1クラッチ26及び第2クラッチ27の断続に関する制御を実行する。詳しくは、制御装置110は、第1クラッチ26及び第2クラッチ27の断続を制御することにより動作モードを切り替えるか、或いは、作業車両1のオペレータに対して動作モードの切り替えが可能である旨の報知を行う。
 図14に示すように、複数の動作モードは、フリーモード、チャージ準備モード、チャージモード、ブースト準備モード、ブーストモード、ねばり準備モード、ねばりモード、エンジンオフモードを含む。以下、夫々の動作モードについて説明する。
 <フリーモード>
 フリーモードは、エンジン4が起動された直後の動作状態のモードである。フリーモードでは、エンジン4が起動されているが、アイドリング回転数に達していない。第1クラッチ26及び第2クラッチ27は切断されている。第1クラッチ26及び第2クラッチ27が切断されているため、第1フライホイール13は停止している。但し、他の動作モードからフリーモードに移行した場合、第1フライホイール13は慣性力により回転している場合がある。
 <チャージモード>
 チャージモードは、第1フライホイール13に回転エネルギーを蓄えるモードである。
 チャージモードでは、エンジン4はアイドリング回転数を超えた目標回転数で回転する。但し、作業負荷等によってエンジン4の負荷が増加したときには目標回転数未満になる場合がある。チャージモードでは、第1フライホイール13の回転数は、エンジン4の回転数(実回転数)よりも大きいが、第1フライホイール13の目標回転数未満である。第1フライホイール13の目標回転数は、エンジン4の回転数よりも大きい回転数である。具体的には、第1フライホイール13の目標回転数は、エンジン4の実回転数に増速機構20の増速比を乗じた回転数である。例えば、増速機構20の増速比が3である場合、「第1フライホイール13の目標回転数=エンジン4の実回転数×3」となる。以下の説明において、第1フライホイール13の目標回転数をエンジン4の目標回転数と区別するために「第1目標回転数」という場合がある。
 チャージモードでは、第1クラッチ26が接続され且つ第2クラッチ27が切断される。第1クラッチ26が接続されることにより、第1フライホイール13とエンジン4とが増速機構20が設けられた第1経路を介して接続される。
 第1経路は、エンジン4と第1フライホイール13とを接続する経路(動力伝達経路)のうち、増速機構20及び第1クラッチ26が設けられている経路である。例えば、図2に示す実施形態(第1動力伝達部11の第1実施形態)の場合、第1経路は、エンジン4の出力軸4aから、第2フライホイール14、中継軸17、第1クラッチ26、増速機構20を介して第1フライホイール13に至る経路である。
 第1フライホイール13とエンジン4とが増速機構20が設けられた第1経路を介して接続されると、エンジン4の回転動力は、増速機構20により増速されて第1フライホイール13に伝達される。これにより、第1フライホイール13の回転数はエンジン4の回転数よりも大きくなり、エンジン4の回転動力を効果的に第1フライホイール13に蓄積することができる。
 <チャージ準備モード>
 チャージ準備モードは、チャージモードに移行する前の準備段階のモードである。チャージ準備モードは、チャージモードに移行する前に切り替わるモードである。
 チャージ準備モードでは、エンジン4は目標回転数で回転する。但し、作業負荷等によってエンジン4の負荷が増加したときには目標回転数未満になる場合がある。チャージ準備モードでは、第1フライホイール13の回転数は、第1フライホイール13の目標回転数(第1目標回転数)未満である。第1フライホイール13の回転数は、エンジン4の回転数(実回転数)よりも大きいか或いはエンジン4の回転数(実回転数)と同じである。チャージ準備モードでは、第1クラッチ26が切断状態から接続状態に切り替わる途中状態にあり且つ第2クラッチ27が切断されている。第1クラッチ26が切断状態から接続状態に切り換わると、チャージモードに移行する。
 第1クラッチ26が切断状態から接続状態に切り替わる途中状態とは、第1クラッチ26の第1摩擦板26Aが油圧ピストン(第1油圧ピストン73)により押されて第2摩擦板26Bに接近しているが、動力を伝達可能な状態にはなっていない状態である。別の言い方をすれば、第1クラッチ26を接続の準備状態とするためのワンショットが実施されている状態である。以下、この状態を第1クラッチ26の「無効ストローク詰め」の状態という。また、図14では、この状態を「無効ストローク詰め」と表記している。
 <ブーストモード>
 ブーストモードは、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きいときに、第1フライホイール13の回転動力によってエンジン4の回転動力をアシストするモードである。
 ブーストモードでは、エンジン4は目標回転数で回転する。但し、作業負荷等によってエンジン4の負荷が増加したときには目標回転数未満になる場合がある。ブーストモードでは、第1フライホイール13の回転数は、エンジン4の回転数(実回転数)よりも大きい。これは、ブーストモードに移行する前に実行されるチャージモードにおいて第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きくなっているためである。また、ブーストモードでは、作業負荷等によってエンジン4に負荷がかかってエンジン4の実回転数が低下しているためでもある。作業負荷は、例えば、作業車両1のPTO軸8に作業装置を接続し、PTO軸8から作業装置に動力を伝達して作業装置を駆動する場合に発生する。
 ブーストモードでは、第1クラッチ26が切断され且つ第2クラッチ27が接続される。第2クラッチ27は。ブーストモードにおいて、半クラッチ状態から接続状態となる。第2クラッチ27が接続されることにより、第1フライホイール13とエンジン4とが第2経路を介して接続される。
 第2経路は、エンジン4と第1フライホイール13とを接続する経路(動力伝達経路)のうち、増速機構20が設けられておらず、第2クラッチ27が設けられている経路である。例えば、図2に示す実施形態(第1動力伝達部11の第1実施形態)の場合、第2経路は、エンジン4の出力軸4aから、第2フライホイール14、中継軸17、第2クラッチ27を介して第1フライホイール13に至る経路である。
 第1フライホイール13とエンジン4とが第2経路を介して接続されると、第1フライホイール13の回転数がエンジン4の回転数よりも大きい状態にあるため、第1フライホイール13の回転動力によりエンジン4の回転動力をアシストすることができる。つまり、ブーストモードは、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きいときに、第1フライホイール13の回転動力によってエンジン4の回転動力をアシストする動作モードである。
 <ブースト準備モード>
 ブースト準備モードは、ブーストモードに移行する前の準備段階のモードである。ブースト準備モードは、ブーストモードに移行する前に切り替わるモードである。ブースト準備モードは、作業負荷の増加等によってエンジン4の負荷が増加した場合に移行するモードである。ブースト準備モードに移行することにより、チャージモードにおいて第1フライホイール13に蓄積された回転エネルギーをエンジン4のアシストに使用するブーストモードに移行する準備がなされる。
 ブースト準備モードでは、エンジン4は目標回転数で回転する。但し、作業負荷等によってエンジン4の負荷が増加したときには目標回転数未満になる場合がある。ブースト準備モードでは、第1フライホイール13の回転数が第1目標回転数であり且つエンジン4の回転数(実回転数)よりも大きい。また、第1クラッチ26が接続され且つ第2クラッチ27が切断状態から接続状態に切り替わる途中状態(無効ストローク詰めの状態)にある。第2クラッチ27が接続状態に切り換わると、ブーストモードに移行する。
 第2クラッチ27が切断状態から接続状態に切り替わる途中状態とは、第2クラッチ27の第1摩擦板27Aが油圧ピストン(第2油圧ピストン75)により押されて第2摩擦板27Bに接近しているが、動力を伝達可能な状態にはなっていない状態である。別の言い方をすれば、第2クラッチ27を接続の準備状態とするためのワンショットが実施されている状態である。以下、この状態を第2クラッチ27の「無効ストローク詰め」の状態という。また、図14では、この状態を「無効ストローク詰め」と表記している。
 <ねばりモード>
 ねばりモードは、第1フライホイール13の回転数がエンジン4の回転数(実回転数)以下であるときに、第1フライホイール13の慣性力によってエンジン4の回転数の急激な低下を防ぐモードである。
 ねばりモードでは、エンジン4は目標回転数で回転する。但し、作業負荷等によってエンジン4の負荷が増加したときには目標回転数未満になる場合がある。ねばりモードでは、第1フライホイール13の回転数は、エンジン4の回転数(実回転数)以下である。詳しくは、ブーストモードからねばりモードに移行した場合は、ねばりモード移行時における第1フライホイール13の回転数はエンジン4の回転数(実回転数)と同じとなる。他の動作モードからねばりモードに移行した場合は、ねばりモード移行時における第1フライホイール13の回転数はエンジン4の回転数(実回転数)よりも小さくなる。
 ねばりモードでは、第1クラッチ26が切断され且つ第2クラッチ27が接続される。第2クラッチ27は、ねばりモードにおいて、半クラッチ状態から接続状態となる。第2クラッチ27が接続されることにより、第1フライホイール13とエンジン4とが第2経路を介して接続される。
 第1フライホイール13とエンジン4とが第2経路を介して接続されると、第1フライホイール13とエンジン4とが連れ回りする状態となる。そのため、エンジン4に高負荷が加わった場合に、第1フライホイール13の慣性力によってエンジン4の回転数の急激な低下を防ぐことができる。
 ねばりモードは、第1フライホイール13の回転数がエンジン4の回転数以下であるため、第1フライホイール13の回転動力によってエンジン4の回転動力をアシストすることはできないが、エンジン4の回転数の急激な低下を防止することはできる。そのため、ねばりモードは、第1フライホイール13がエンジン4の回転動力をアシストするのに十分な回転エネルギーをしていない場合に、当該回転動力をエンジン4の回転数の急激な低下を防止する(エンジン4をねばらせる)ために利用することができる。
 <ねばり準備モード>
 ねばり準備モードは、ねばりモードに移行する前の準備段階のモードである。ねばり準備モードは、ねばりモードに移行する前に切り替わるモードである。
 ねばり準備モードでは、エンジン4は目標回転数で回転する。但し、作業負荷等によってエンジン4の負荷が増加したときには目標回転数未満になる場合がある。ねばり準備モードでは、第1フライホイール13の回転数は、エンジン4の回転数(実回転数)よりも小さい。また、第1クラッチ26が切断され且つ第2クラッチ27が切断状態から接続状態に切り替わる途中状態(無効ストローク詰めの状態)にある。第2クラッチ27が接続状態に切り換わると、ねばりモードに移行する。
 <エンジンオフモード>
 エンジンオフモードは、エンジン4がオフ状態(スパークプラグが点火していない状態)にあるが、第1フライホイール13が減速しながら回転している状態のモードである。
 エンジンオフモードでは、エンジン4のスパークプラグが点火していない状態にあるが、エンジン4は減速しながら惰性で回転している。また、第1フライホイール13も減速しながら惰性で回転している。
 エンジンオフモードでは、第1クラッチ26及び第2クラッチ27が接続される。そのため、第1フライホイール13が第1クラッチ26及び第2クラッチ27を介してエンジン4と接続される。第1フライホイール13は、慣性力が大きいため、エンジン4がオフ状態となっても、しばらく回転し続けようとするが、第1クラッチ26及び第2クラッチ27を介してエンジン4と接続されることによって、回転にブレーキがかかるため、早期に回転を停止させることができる。
 但し、エンジンオフモードにおいて、第1フライホイール13の回転数が十分に小さい場合(例えば、エンジン4を起動してすぐに停止した場合等)は、第1クラッチ26及び第2クラッチ27の両方又はいずれか一方を接続しなくてもよい。これは、第1フライホイール13の回転数が十分に小さい場合は、回転にブレーキをかけずとも第1フライホイール13が短時間で停止するためである。第1フライホイール13の回転数が十分に小さい場合は、例えば、第1フライホイール13の回転数がエンジン4のアイドリング回転数以下である場合である。
 <動作モードの移行(切り替え)について>
 次に、動作モードの移行について説明する。
 図15は、動作モードに関する状態遷移図である。
 フリーモードは、ブースト準備モードを除く他の全ての動作モードから移行することができる。チャージモードは、チャージ準備モードから移行することができる。チャージ準備モードは、ねばりモードから移行することができる。ねばりモードは、ねばり準備モード及びブーストモードから移行することができる。ねばり準備モードは、フリーモードから移行することができる。ブーストモードは、ブースト準備モードから移行することができる。ブースト準備モードは、チャージモードから移行することができる。エンジンオフモードは、全ての動作モードから移行することができる。
 以下、動作モードの移行の条件について説明する。
 図16は、動作モードの移行の条件(閾値)を示している。図17~図23は、動作モードの移行の流れ(ステップ)の一例を示すフローチャートである。
 <フリーモードからねばり準備モードへの移行>
 図17に基づいてフリーモードからねばり準備モードへの移行について説明する。
 先ず、フリーモードへの移行は、エンジン4を起動することにより自動的に実行されるか、或いは、他の動作モードにおいて所定条件(後述する)を満たしたときに(図18~図21.図23参照)に実行される。他の動作モードからフリーモードへの移行については、後ほど説明する。
 フリーモードでは、エンジン4が起動されており、第1クラッチ26及び第2クラッチ27が切断状態にある。第1クラッチ26及び第2クラッチ27が切断状態にあるため、エンジン4の回転動力は第1フライホイール13には伝達されず、第1フライホイール13は停止している。但し、上述した通り、他の動作モードからフリーモードに移行した場合、第1フライホイール13は慣性力により回転している場合がある。
 フリーモードからねばり準備モードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さく、エンジン4の負荷率が所定値X1(%)未満であるときに実行される。つまり、フリーモードからねばり準備モードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件AA1)及びエンジン4の負荷率が所定値X1未満であること(第2条件AA2)を満たす場合に実行される。所定値X1は、記憶部112に記憶されている。
 ここで、フリーモードへの移行がエンジン4を起動することにより自動的に実行されていた場合、第1フライホイール13は未だ回転していない。一方、他の動作モードからフリーモードに移行していた場合(図18~図21、図23参照)に実行されていた場合、第1フライホイール13はエンジン4の回転数(実回転数)よりも小さい回転数で回転している。例えば、ねばりモードからフリーモードを経てねばり準備モードに移行した場合、第1フライホイール13はエンジン4の回転数(実回転数)よりも小さい回転数で回転している。
 フリーモードに移行した後、制御装置110の演算部111は、第1条件AA1を満たすか否かを判断する(S3)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第1条件AA1を満たすか否かを判断する。
 第1条件を満たした場合、演算部111は、第2条件AA2を満たすか否かを判断する(S4)。具体的には、演算部111(負荷率算出部111a)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶されたブースト圧に対応した制限噴射量とに基づいて負荷率を算出し、当該負荷率を所定値X1と比較することにより第2条件AA2を満たすか否かを判断する(S4)。
 第1条件AA1と第2条件AA2を共に満たした場合、演算部111(動作モード決定部111d)は、ねばり準備モードに移行することを決定する。これにより、制御装置110からねばり準備モードに移行するための制御信号が動作部140に送信され、制御システム100はフリーモードからねばり準備モードに移行する(S5)。このとき、制御装置110から送信される制御信号(ワンショットパルス電流)に基づいて、第2クラッチ27の第2油圧ピストン75が駆動されて第1摩擦板27Aが移動し、第2クラッチ27は切断状態から接続状態に切り替わる途中状態(無効ストローク詰めの状態)となる。第1条件AA1と第2条件AA2の少なくともいずれか一方を満たさない場合(S3でNo又はS4でNoの場合)、ねばり準備モードに移行しない。
 上記したフリーモードからねばり準備モードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件AA1)が条件となる理由は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きい状態でねばり準備モードからねばりモードに移行すると、エンジン4にかかる負荷が大きくなるためである。また、エンジン4の負荷率が所定値X1未満であること(第2条件AA2)が条件となる理由は、エンジン4の負荷率が高い状態でねばり準備モードからねばりモードに移行すると、エンジン4にかかる負荷が大きくなるためである。
 <ねばり準備モードからねばりモードへの移行>
 図18に基づいて、ねばり準備モードからねばりモードへの移行について説明する。
 ねばり準備モードからねばりモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さく、エンジン4のトルク率が所定値Y1(%)未満であり、エンジン4の実回転数が目標回転数にあるときに実行される。つまり、ねばり準備モードからねばりモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件BB1)、エンジン4のトルク率が所定値Y1未満であること(第2条件BB2)、エンジン4の実回転数が目標回転数にあること(第3条件BB3)の全てを満たす場合に実行される。所定値Y1は、記憶部112に記憶されている。
 ねばり準備モードに移行した後、制御装置110の演算部111は、第1条件BB1を満たすか否かを判断する(S6)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第1条件BB1を満たすか否かを判断する。
 第1条件BB1を満たした場合、演算部111は、第2条件BB2を満たすか否かを判断する(S7)。具体的には、演算部111(トルク率算出部111b)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶された全負荷曲線の制限噴射量に基づいてトルク率を算出し、当該トルク率を所定値Y1と比較することにより、第2条件BB2を満たすか否かを判断する(S7)。
 第2条件BB2を満たした場合、演算部111は、記憶部112に記憶されたエンジン4の目標回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第3条件BB3を満たすか否かを判断する(S8)。
 第1条件BB1と第2条件BB2と第3条件BB3を全て満たした場合、演算部111(動作モード決定部111d)は、ねばりモードに移行することを決定する。これにより、制御装置110からねばりモードに移行するための制御信号が動作部140に送信され、制御システム100はねばり準備モードからねばりモードに移行する(S10)。このとき、第2クラッチ27は、制御装置110からの制御信号(第2制御信号)に基づいて、無効ストローク詰めの状態から半クラッチ状態を経て接続状態に切り替わる。第1条件BB1と第2条件BB2と第3条件BB3の少なくともいずれかを満たさない場合(S6でNo又はS7でNo又はS8でNoの場合)、ねばりモードに移行しない。
 上記したねばり準備モードからねばりモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件BB1)が条件となる理由は、ねばり準備モードにおいては、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さくなっているためである。また、エンジン4のトルク率が所定値Y1未満であること(第2条件BB2)が条件となる理由は、エンジン4のトルク率が高い状態でねばりモードに移行すると、エンジン4にかかる負荷が大きくなるためである。また、エンジン4の実回転数が目標回転数にあること(第3条件BB3)が条件となる理由は、エンジン4の実回転数が目標回転数に落ち着いていることを確認してからねばりモードに移行するためである。第3条件BB3によって、作業負荷等によってエンジン4に負荷がかかっている状態(エンジン4の実回転数が目標回転数よりも小さくなっている状態)でねばりモードに移行することを防止することができる。
 <ねばり準備モードからフリーモードへの移行>
 図18に基づいて、ねばり準備モードからフリーモードへの移行について説明する。
 ねばり準備モードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さく、所定時間T1内の第2クラッチ27の接続の試行回数(ワンショットの実施回数)が所定回数N1に達したときに実行される。つまり、ねばり準備モードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件CC1)及び所定時間T1内の第2クラッチ27の接続の試行回数(ワンショットの実施回数)が所定回数N1に達したこと(第2条件CC2)を満たす場合に実行される。所定時間T1及び所定回数N1は、記憶部112に記憶されている。所定時間T1は、タイマー(図示略)により計測され、計測値は制御装置110に送信される。
 第2条件CC2は、言い換えれば、所定時間T1内の第2クラッチ27を接続するためのワンショットの実施回数が所定回数N1に達したときである。第2クラッチ27を接続するためのワンショットの実施回数とは、第2クラッチ27の第1摩擦板27Aを押す第2油圧ピストン75を駆動する油圧制御弁(電磁弁)に供給されるワンショットパルス電流の供給回数である。
 ねばり準備モードに移行した後、制御装置110の演算部111は、第1条件CC1を満たすか否かを判断する(S6)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第1条件CC1を満たすか否かを判断する。
 第1条件CC1を満たした場合、演算部111は、第2条件BB2及び第3条件BB3の少なくともいずれかを満たさなかった場合(ねばりモードに移行する条件を満たさなかった場合)に、第2条件CC2を満たすか否かを判断する(S9)。具体的には、演算部111は、所定時間T1内のワンショットの実施回数(ワンショット回数)をカウントし、所定時間T1内のワンショット回数がN1回に達したか否かを判断する(S9)。
 第1条件CC1と第2条件CC2とを満たした場合、演算部111(動作モード決定部111d)は、フリーモードに移行することを決定する。これにより、制御装置110からフリーモードに移行するための制御信号が動作部140に送信され、制御システム100はねばり準備モードからフリーモードに移行する(S11)。このとき、第2クラッチ27は、制御装置110からの制御信号(第2制御信号)に基づいて、無効ストローク詰めの状態から切断状態に切り替わる。第1条件CC1と第2条件CC2の少なくともいずれかを満たさない場合(S6でNo又はS10でNoの場合)、フリーモードに移行しない。
 ねばり準備モードにおいて、第2クラッチ27を接続するためのワンショット(ワンショットパルス電流の供給)は所定の時間間隔で実施されるが、所定時間T1内にワンショットを所定回数N1実施した段階でも、ねばりモードに移行するための条件が満たされていなかった場合、ワンショットの実施が中止され、第2クラッチ27の接続の準備状態が解除される。これにより、ねばりモードへの移行は行われずにフリーモードに移行する。
 例えば、ねばり準備モードにおいて作業負荷が大きくなってトルク率が増加した場合に、ねばり準備モードからねばりモードに移行すると、エンジン4と第1フライホイール13とが第2クラッチ27を介して接続されるため、エンジン4の回転数が急激に低下するおそれがある。この場合、ねばり準備モードにおいて、ワンショットが所定時間T1内に所定回数N1実施された段階でも、ねばりモードに移行するための条件(トルク率Y1%未満)が満たされていないと、ねばりモードに移行しない(フリーモードに移行する)ように制御することによって、エンジン回転数の急激な低下を防ぐことができる。
 上記したねばり準備モードからフリーモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件CC1)が条件となる理由は、ねばり準備モードにおいては、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さくなっているためである。また、所定時間T1内の第2クラッチ27の接続の試行回数(ワンショットの実施回数)が所定回数N1に達したこと(第2条件CC2)が条件となる理由は、所定時間T1内にワンショットを所定回数N1実施した段階でもねばりモードに移行するための条件が満たされていない場合には、上述したようにエンジン回転数の急激な低下を防ぐためにねばりモードへの移行を断念すべきと判断されるためである。
 <ねばりモードからチャージ準備モードへの移行>
 図19に基づいて、ねばりモードからチャージ準備モードへの移行について説明する。
 ねばりモードからチャージ準備モードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであり、エンジン4の負荷率が所定値X2(%)未満であるときに実行される。つまり、ねばりモードからチャージ準備モードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(第1条件DD1)及びエンジン4の負荷率が所定値X2未満であること(第2条件DD2)を満たす場合に実行される。所定値X2は、記憶部112に記憶されている。
 ねばりモードに移行した後、制御装置110の演算部111は、第1条件CC1を満たすか否かを判断する(S12)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第1条件DD1を満たすか否かを判断する。
 第1条件DD1を満たした場合、演算部111は、第2条件DD2を満たすか否かを判断する(S13)。具体的には、演算部111(負荷率算出部111a)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶されたブースト圧に対応した制限噴射量に基づいて負荷率を算出し、当該負荷率を所定値X2と比較することにより第2条件DD2を満たすか否かを判断する(S13)。
 第1条件DD1及び第2条件DD2を満たした場合、演算部111(動作モード決定部111d)は、チャージ準備モードに移行することを決定する。これにより、制御装置110からチャージ準備モードに移行するための制御信号が動作部140に送信され、制御システム100はねばりモードからチャージ準備モードに移行する(S14)。このとき、制御装置110から送信される制御信号(第1制御信号)に基づいて、第1クラッチ26の第1油圧ピストン73が駆動されて第1摩擦板26Aが移動し、第1クラッチ26は切断状態から接続状態に切り替わる途中状態(無効ストローク詰めの状態)となる。また、第2クラッチ27は、制御装置110から送信される制御信号(第2制御信号)に基づいて、接続状態から切断状態に切り替わる。第1条件DD1と第2条件DD2の少なくともいずれか一方を満たさない場合(S12でNo又はS13でNoの場合)、チャージ準備モードに移行しない。
 上記したねばりモードからチャージ準備モードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(第1条件DD1)が条件となる理由は、第1フライホイール13の回転数がエンジン4の実回転数と同じとなっていることにより、第1フライホイール13の回転数をエンジン4の実回転数よりも大きく増加させる準備が整っていると判断できるためである。また、エンジン4の負荷率が所定値X2未満であること(第2条件DD2)が条件となる理由は、エンジン4の負荷率が低い状態では、第1フライホイール13の回転動力によりエンジン4の回転動力をアシストする必要が無いため、将来のアシストに備えて第1フライホイール13に回数動力を蓄積するためにチャージモードへの移行準備を実行すべきと判断されるためである。
 <ねばりモードからフリーモードへの移行>
 図19に基づいて、ねばりモードからフリーモードへの移行について説明する。
 ねばりモードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さく、エンジン4のトルク率が所定値Y2(%)以上であるときに実行される。つまり、ねばりモードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件EE1)及び、エンジン4のトルク率が所定値Y2以上であること(第2条件EE2)を満たす場合に実行される。所定値Y2は、記憶部112に記憶されている。
 ねばりモードに移行した後、制御装置110の演算部111は、第1条件EE1を満たすか否かを判断する(S12)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第1条件EE1を満たすか否かを判断する。尚、ねばりモードにおいては、第1フライホイール13の回転数がエンジン4の回転数(実回転数)を超えることはないため、ねばりモード移行後に実行されるステップ12で「エンジン回転数=第1フライホイール回転数」を満たさなかった場合、「エンジン回転数>第1フライホイール回転数」を満たすことになる。
 第1条件EE1を満たした場合、演算部111は、第2条件EE2を満たすか否かを判断する(S15)。具体的には、演算部111(トルク率算出部111b)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶された全負荷曲線の制限噴射量に基づいてトルク率を算出し、当該トルク率を所定値Y2と比較することにより第2条件EE2を満たすか否かを判断する(S15)。
 第1条件EE1及び第2条件EE2を満たした場合、演算部111(動作モード決定部111d)は、フリーモードに移行することを決定する。これにより、制御装置110からフリーモードに移行するための制御信号が動作部140に送信され、制御システム100はねばりモードからフリーモードに移行する(S16)。このとき、第2クラッチ27は、制御装置110からの制御信号(第2制御信号)に基づいて、接続状態から切断状態に切り替わる。第1条件EE1と第2条件EE2の少なくともいずれかを満たさない場合(S12でNo又はS15でNoの場合)、フリーモードに移行しない。
 上記したねばりモードからフリーモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件EE1)が条件となる理由は、ねばりモードでは、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さくなっているためである。また、エンジン4のトルク率が所定値Y2以上であること(第2条件EE2)が条件となる理由は、ねばりモードにおいて、作業負荷が加わる等して急激にエンジン4の負荷(トルク率)が増加した場合に、フリーモードに移行してエンジン4の負荷を減少させるためである。
 <チャージ準備モードからチャージモードへの移行>
 図20に基づいて、チャージ準備モードからチャージモードへの移行について説明する。
 チャージ準備モードからチャージモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであり、エンジン4のトルク率が所定値Y3(%)未満であるときに実行される。つまり、チャージ準備モードからチャージモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(第1条件FF1)及びエンジン4のトルク率が所定値Y3未満であること(第2条件FF2)を満たす場合に実行される。所定値Y3は、記憶部112に記憶されている。
 チャージ準備モードに移行した後、制御装置110の演算部111は、第1条件FF1を満たすか否かを判断する(S17)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第1条件FF1を満たすか否かを判断する。
 第1条件FF1を満たした場合、演算部111は、第2条件FF2を満たすか否かを判断する(S13)。具体的には、演算部111(トルク率算出部111b)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶された全負荷曲線の制限噴射量に基づいてトルク率を算出し、当該トルク率を所定値Y3と比較することにより、第2条件FF2を満たすか否かを判断する(S18)。
 第1条件FF1及び第2条件FF2を満たした場合、演算部111(動作モード決定部111d)は、チャージモードに移行することを決定する。これにより、制御装置110からチャージモードに移行するための制御信号が動作部140に送信されて、制御システム100はチャージ準備モードからチャージモードに移行する(S19)。このとき、制御装置110から送信される制御信号(第1制御信号)に基づいて、第1クラッチ26は無効ストローク詰めの状態から接続状態に切り替わる。第1条件FF1と第2条件FF2の少なくともいずれか一方を満たさない場合(S17でNo又はS18でNoの場合)、チャージモードに移行しない。
 上記したチャージ準備モードからチャージモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(第1条件FF1)が条件となる理由は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じに達していることにより、第1フライホイール13の回転数をエンジン4の実回転数よりも大きく増加させる準備が整っていると判断できるためである。また、エンジン4のトルク率が所定値Y3未満であること(第2条件FF2)が条件となる理由は、エンジン4の負荷(トルク率)が高い状態でチャージモードに移行することはエンジン4の負荷を増加させるために好ましくなく、エンジン4の負荷(トルク率)が低い状態ではチャージモードに移行して第1フライホイール13に回転エネルギーを蓄積することが好ましいためである。
 <チャージ準備モードからフリーモードへの移行>
 図20に基づいて、チャージ準備モードからフリーモードへの移行について説明する。
 チャージ準備モードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであり、所定時間T2内の第1クラッチ26の接続の試行回数(ワンショットの実施回数)が所定回数N2に達したときに実行される。つまり、チャージ準備モードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(第1条件GG1)及び所定時間T2内の第2クラッチ27の接続の試行回数(ワンショットの実施回数)が所定回数N2に達したこと(第2条件GG2)を満たす場合に実行される。所定時間T2及び所定回数N2は、記憶部112に記憶されている。所定時間T2は、タイマー(図示略)により計測され、計測値は制御装置110に送信される。
 第2条件GG2は、言い換えれば、所定時間T2内の第1クラッチ26を接続するためのワンショットの実施回数が所定回数N2に達したときである。第1クラッチ26を接続するためのワンショットの実施回数とは、第1クラッチ26の第1摩擦板26Aを押す第1油圧ピストン73を駆動する油圧制御弁(電磁弁)に供給されるワンショットパルス電流の供給回数である。
 チャージ準備モードに移行した後、制御装置110の演算部111は、第1条件GG1を満たすか否かを判断する(S17)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較して第1条件GG1を満たすか否かを判断する。
 第1条件GG1を満たした場合、演算部111は、第2条件FF2を満たさなかった場合(チャージモードに移行する条件を満たさなかった場合)に、第2条件GG2を満たすか否かを判断する(S20)。具体的には、演算部111は、所定時間T2内に実施されたワンショット回数をカウントし、所定時間T2内のワンショット回数がN2回に達したか否かを判断する(S20)。
 第1条件GG1と第2条件GG2とを満たした場合、演算部111(動作モード決定部111d)は、フリーモードに移行することを決定する。これにより、制御装置110からフリーモードに移行するための制御信号が動作部140に送信され、制御システム100はチャージ準備モードからフリーモードに移行する(S21)。このとき、第1クラッチ26は、制御装置110からの制御信号(第1制御信号)に基づいて、無効ストローク詰めの状態から切断状態に切り替わる。第1条件GG1と第2条件GG2の少なくともいずれかを満たさない場合(S17でNo又はS20でNoの場合)、フリーモードに移行しない。
 チャージ準備モードにおいて、第1クラッチ26を接続するためのワンショット(ワンショットパルス電流の供給)は所定の時間間隔で実施されるが、所定時間T2内にワンショットを所定回数N2実施した段階でも、チャージモードに移行するための条件が満たされていなかった場合、ワンショットの実施は中止され、第1クラッチ26の接続の準備状態は解除される。これにより、チャージモードへの移行は行われずにフリーモードに移行する。
 上記したチャージ準備モードからフリーモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(第1条件GG1)が条件となる理由は、チャージ準備モードでは、第1フライホイール13の回転数はエンジン4の回転数(実回転数)と同じとなっているためである。また、所定時間T2内の第2クラッチ27の接続の試行回数(ワンショットの実施回数)が所定回数N2に達したこと(第2条件GG2)が条件となる理由は、所定時間T2内にワンショットを所定回数N2実施した段階でもチャージモードに移行するための条件が満たされていない場合には、チャージモードへの移行を断念すべきであるためである。
 <チャージモードからブースト準備モードへの移行>
 図21に基づいて、チャージモードからブースト準備モードへの移行について説明する。
 チャージモードからブースト準備モードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)より大きい目標回転数(第1目標回転数NA)であり、エンジン4の負荷率が所定値X3(%)未満であるときに実行される。つまり、チャージモードからブースト準備モードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きい第1目標回転数NAであること(第1条件HH1)及びエンジン4の負荷率が所定値X3未満であること(第2条件HH2)を満たす場合に実行される。所定値X3は、記憶部112に記憶されている。
 第1フライホイール13の目標回転数(第1目標回転数)NAは、「エンジン4の実回転数×増速機構20の増速比a(a>1)」である。例えば、増速比a=3の場合、第1フライホイール13の目標回転数=エンジン4の実回転数×3」となる。つまり、この場合、第1フライホイール13の目標回転数は、エンジン4の実回転数の3倍となる。増速比aは、記憶部112に記憶されている。
 チャージモードに移行した後、制御装置110の演算部111は、第1条件HH1を満たすか否かを判断する(S22)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と、第2回転数センサ15により算出されたエンジン4の回転数(実回転数)と、記憶部112に記憶された第1目標回転数NA及び増速比aに基づいて、第1条件HH1を満たすか否かを判断する。
 第1条件HH1を満たした場合、演算部111は、第2条件HH2を満たすか否かを判断する(S23)。具体的には、演算部111(負荷率算出部111a)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶されたブースト圧に対応した制限噴射量に基づいて負荷率を算出し、当該負荷率を所定値X3と比較することにより、第2条件HH2を満たすか否かを判断する(S23)。
 第1条件HH1及び第2条件HH2を満たした場合、演算部111(動作モード決定部111d)は、ブースト準備モードに移行することを決定する。これにより、制御装置110からブースト準備モードに移行するための制御信号が動作部140に送信され、制御システム100はチャージモードからブースト準備モードに移行する(S24)。このとき、制御装置110から送信される制御信号(ワンショットパルス電流)に基づいて、第2クラッチ27の第2油圧ピストン75が駆動されて第1摩擦板27Aが移動し、第2クラッチ27は切断状態から接続状態に切り替わる途中状態(無効ストローク詰めの状態)となる。第1条件HH1と第2条件HH2の少なくともいずれか一方を満たさない場合(S22でNo又はS23でNoの場合)、ブースト準備モードに移行しない。
 上記したチャージモードからブースト準備モードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きい第1目標回転数NAであること(第1条件HH1)が条件となる理由は、第1フライホイール13の回転数が第1目標回転数NAに達していることにより、エンジン4をアシスト可能な量の回転エネルギーが第1フライホイール13に蓄積されていると判断できるためである。また、エンジン4の負荷率が所定値X3未満であること(第2条件HH2)が条件となる理由は、エンジン4の負荷率が小さい場合は、エンジン4をアシストする必要がない(ブーストモードに移行せずにブーストモードに移行する準備をしておけばよい)と判断できるためである。
 <チャージモードからフリーモードへの移行>
 図21に基づいて、チャージモードからフリーモードへの移行について説明する。
 チャージモードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きく且つ第1目標回転数NA未満であり、エンジン4のトルク率が所定値Y4以上であるときに実行される。つまり、チャージモードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きく且つ第1目標回転数NA未満であること(第1条件JJ1)及びエンジン4のトルク率が所定値Y4以上であること(第2条件JJ2)を満たす場合に実行される。第1目標回転数NA及び所定値Y4は、記憶部112に記憶されている。上述した通り、第1フライホイール13の目標回転数NAは、「エンジン4の実回転数×増速機構20の増速比a(a>1)」である。
 チャージモードに移行した後、制御装置110の演算部111は、第1条件JJ1を満たすか否かを判断する(S22)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と、第2回転数センサ15により算出されたエンジン4の回転数(実回転数)と、記憶部112に記憶された第1目標回転数NA及び増速比aに基づいて、第1条件JJ1を満たすか否かを判断する。尚、チャージモードにおいては、第1フライホイール13の回転数は、エンジン4の実回転数よりも大きく且つ第1目標回転数NAを超えることはないため、チャージモード移行後に行われるステップ22で「エンジン回転数×a(a>1)=第1フライホイール回転数」を満たさなかった場合、「第1フライホイール13の回転数がエンジン4の実回転数よりも大きく且つ第1目標回転数NA未満であること」を満たすことになる。
 第1条件JJ1を満たした場合、演算部111は、第2条件JJ2を満たすか否かを判断する(S25)。具体的には、演算部111(トルク率算出部111b)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶された全負荷曲線の制限噴射量に基づいてトルク率を算出し、当該トルク率を所定値Y4と比較することにより第2条件JJ2を満たすか否かを判断する(S25)。
 第1条件JJ1及び第2条件JJ2を満たした場合、演算部111(動作モード決定部111d)は、フリーモードに移行することを決定する。これにより、制御装置110からフリーモードに移行するための制御信号が動作部140に送信され、制御システム100はチャージモードからフリーモードに移行する(S26)。このとき、第1クラッチ26は、制御装置110からの制御信号(第1制御信号)に基づいて、接続状態から切断状態に切り替わる。第1条件JJ1と第2条件JJ2の少なくともいずれかを満たさない場合(S22でNo又はS25でNoの場合)、フリーモードに移行しない。
 上記したチャージモードからフリーモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きく且つ第1目標回転数NA未満であること(第1条件JJ1)及びエンジン4のトルク率が所定値Y4以上であること(第2条件JJ2)が条件となる理由は、エンジン4をアシスト可能な量の回転エネルギーを第1フライホイール13に蓄積している途中にエンジン4に大きな負荷がかかった場合に、フリーモードに移行して、エンジン4にかかる負荷を減少させるためである。
 <ブースト準備モードからブーストモードへの移行>
 図22に基づいて、ブースト準備モードからブーストモードへの移行について説明する。
 ブースト準備モードからブーストモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きい第1目標回転数NAであり、エンジン4の負荷率が所定値X4(%)以上であり、エンジン4のドロップ率が所定値Z以上であるときに実行される。つまり、ブースト準備モードからブーストモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きい第1目標回転数NAであること(第1条件KK1)、エンジン4の負荷率が所定値X4以上であること(第2条件KK2)、エンジン4のドロップ率が所定値Z以上である(第3条件KK3)を全て満たす場合に実行される。第1目標回転数NA、所定値X3、所定値Zは、記憶部112に記憶されている。上述した通り、第1フライホイール13の目標回転数NAは、「エンジン4の実回転数×増速機構20の増速比a(a>1)」である。
 ブースト準備モードに移行した後、制御装置110の演算部111は、第1条件KK1を満たすか否かを判断する(S27)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と、第2回転数センサ15により算出されたエンジン4の回転数(実回転数)と、記憶部112に記憶された第1目標回転数NA及び増速比aに基づいて、第1条件KK1を満たすか否かを判断する。
 第1条件KK1を満たした場合、演算部111は、第2条件KK2を満たすか否かを判断する(S28)。具体的には、演算部111(負荷率算出部111a)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶されたブースト圧に対応した制限噴射量に基づいて負荷率を算出し、当該負荷率を所定値X4と比較することにより、第2条件KK2を満たすか否かを判断する(S28)。
 第2条件KK2を満たした場合、演算部111は、第3条件KK3を満たすか否かを判断する(S29)。具体的には、演算部111(ドロップ率算出部111c)は、第2回転数センサ15により検出されたエンジン4の実回転数と記憶部112に記憶されたエンジン4の目標回転数に基づいてドロップ率を算出し、当該ドロップ率を所定値Zと比較することにより、第3条件KK3を満たすか否かを判断する(S29)。
 第1条件KK1、第2条件KK2、第3条件KK3を全て満たした場合、演算部111(動作モード決定部111d)は、ブーストモードに移行することを決定する。これにより、制御装置110からブーストモードに移行するための制御信号が動作部140に送信され、制御システム100はブースト準備モードからブーストモードに移行する(S30)。このとき、第2クラッチ27は、制御装置110からの制御信号(第2制御信号)に基づいて、無効ストローク詰めの状態から半クラッチ状態を経て接続状態に切り替わる。つまり、第2クラッチ27は、接続の準備状態から接続状態に切り替わる。第1条件KK1と第2条件KK2と第3条件KK3の少なくともいずれかを満たさない場合(S27でNo又はS28でNo又はS29でNoの場合)、ブーストモードに移行しない。
 上記したブースト準備モードからブーストモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きい第1目標回転数NAであること(第1条件KK1)が条件となる理由は、第1フライホイール13の回転数が第1目標回転数NAに達していることにより、エンジン4をアシスト可能な量の回転エネルギーが第1フライホイール13に蓄積されていると判断できるためである。また、エンジン4の負荷率が所定値X4以上であること(第2条件KK2)及びエンジン4のドロップ率が所定値Z以上である(第3条件KK3)が条件となる理由は、このような条件を満たす状況では、エンジン4の負荷を低減しなければエンジンストップに至るおそれがあるため、第1フライホイール13の回転動力でエンジン4の回転動力をアシストする必要があると判断できるためである。
 <ブーストモードからねばりモードへの移行>
 図23に基づいて、ブーストモードからねばりモードへの移行について説明する。
 ブーストモードからねばりモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じとなったときに実行される。つまり、ブーストモードからねばりモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(条件LL1)を満たす場合に実行される。
 ブーストモードに移行した後、制御装置110の演算部111は、条件LL1を満たすか否かを判断する(S31)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較することにより、条件LL1を満たすか否かを判断する。
 条件LL1を満たした場合、ねばりモードに移行する(S32)。このとき、第1クラッチ26と第2クラッチ27の状態はブーストモードから変化しないが、第1フライホイール13の回転数はエンジン4の実回転数よりも大きい状態から小さい状態に変化している。条件LL1を満たさない場合(S31でNoの場合)、ねばりモードに移行しない。
 上記したブーストモードからねばりモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じであること(条件LL1)が条件となる理由は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じになったことで第1フライホイール13に蓄積された回転動力がエンジン4の回転動力をアシストすることができなくなった(エンジンアシストに供給可能な回転エネルギーを使い切った)と判断できるためである。つまり、ブーストモードでエンジンをアシストできなくなったと判断できるため、ブーストモードからねばりモードに移行する。これによって、エンジン4の回転動力のアシストはできないが、エンジン4をねばらせることができ、エンジン4の回転数の急激な低下を抑制できる。
 <ブーストモードからフリーモードへの移行>
 図23に基づいて、ブーストモードからフリーモードへの移行について説明する。
 ブーストモードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さく、エンジン4の負荷率が所定値X5(%)未満であり、エンジン4の実回転数が目標回転数未満であるときに実行される。つまり、ブーストモードからフリーモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件MMM1)、エンジン4の負荷率が所定値X5未満であること(第2条件MM2)、エンジン4の実回転数が目標回転数未満であること(第3条件MM3)を全て満たす場合に実行される。所定値X5及びエンジン4の目標回転数は、記憶部112に記憶されている。
 ブーストモードに移行した後、制御装置110の演算部111は、第1条件MM1を満たすか否かを判断する(S33)。具体的には、演算部111は、第1回転数センサ18により測定された第1フライホイール13の回転数と第2回転数センサ15により算出されたエンジン4の回転数(実回転数)とを比較することにより、第1条件MM1を満たすか否かを判断する。
 第1条件MM1を満たした場合、演算部111は、第2条件MM2を満たすか否かを判断する(S34)。具体的には、演算部111(負荷率算出部111a)は、アクセル開度センサ19により検出された指示噴射量と記憶部112に記憶されたブースト圧に対応した制限噴射量に基づいて負荷率を算出し、当該負荷率を所定値X5と比較することにより、第2条件MM2を満たすか否かを判断する(S34)。
 第2条件MM2を満たした場合、演算部111は、第3条件MM3を満たすか否かを判断する(S34)。具体的には、演算部111は、第2回転数センサ15により検出されたエンジン4の実回転数と記憶部112に記憶されたエンジン4の目標回転数とを比較することにより、第3条件MM3を満たすか否かを判断する(S35)。
 第1条件MM1、第2条件MM2、第3条件MM3を全て満たした場合、演算部111(動作モード決定部111d)は、フリーモードに移行することを決定する。これにより、制御装置110からフリーモードに移行するための制御信号が動作部140に送信され、制御システム100はブーストモードからフリーモードに移行する(S36)。このとき、第2クラッチ27は、制御装置110からの制御信号(第2制御信号)に基づいて、接続状態から切断状態に切り替わる。第1条件MM1と第2条件MM2と第3条件MM3の少なくともいずれかを満たさない場合(S33でNo又はS34でNo又はS35でNoの場合)、フリーモードに移行しない。
 上記したブーストモードからフリーモードへの移行において、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さいこと(第1条件MM1)が条件となる理由は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さくなったことで第1フライホイール13の回転動力でエンジン4の回転動力をアシストできなくなった(ブーストモードを維持できない)と判断できるためである。また、エンジン4の負荷率が所定値X5未満であること(第2条件MM2)が条件となる理由は、ブーストモードにおいてエンジン4の回転動力を第1フライホイール13の回転動力でアシストしている最中にエンジン4にかかる負荷が低下してアシストが不要となった場合、エンジン4の負荷が軽いにも関わらず第1フライホイール13の回転動力でエンジン4をアシストすることを防ぐ必要があるためである。また、エンジン4の実回転数が目標回転数未満であること(第3条件MM3)が条件となる理由は、ブーストモードにおいては、エンジン4の実回転数は低下した状態から回復中(増加中)であるため、エンジン4の実回転数は目標回転数未満となっているためである。
 <エンジンオフモードへの移行>
 エンジンオフモードへの移行は、作業車両1に乗車したオペレータのキーオフ操作等によって行われる。エンジンオフモード以外の動作モードにあるとき、キーオフ操作等を行うことによって、エンジン4がオフ状態(スパークプラグが点火していない状態)となり、エンジンオフモードに移行する。エンジンオフモードに移行するとき、第1クラッチ26及び第2クラッチ27のうち接続されていないクラッチがあるとき、当該クラッチは制御装置110からの制御信号(第1制御信号又は第2制御信号)に基づいて接続される。これにより、第1クラッチ26及び第2クラッチ27が接続状態となる。但し、上述した通り、エンジンオフモードにおいて、第1フライホイール13の回転数が十分に小さい場合(例えば、エンジン4のアイドリング回転数以下である場合)は、第1クラッチ26及び第2クラッチ27の一方又は両方を接続しなくてもよい。
 <動作モードの移行に関する追加説明>
 以下、上述した動作モードの移行に関して追加説明をする。
 図15及び上記説明から明らかなように、制御システム100では、フリーモードからねばり準備モードに移行してねばりモードへと移行することは可能であるが、フリーモードからチャージ準備モードに移行してチャージモードに移行することはできない。チャージモードへの移行は、ねばりモードからチャージ準備モードを経由して移行する必要がある。つまり、フリーモードからチャージモードに移行するためには、ねばりモードを経由する必要がある。以下、この理由について説明する。
 チャージモードでは、第1クラッチ26が接続されることにより、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きくなる(例えば、増速率=3のときは、エンジンの回転数の3倍となる)ため、エンジン4に大きな負荷がかかる。そのため、フリーモードからねばりモードを経由せずにチャージモードへと移行すると、エンジン4に急激に大きな負荷がかかる。一方、ねばりモードでは、第2クラッチ27が接続されることにより、第1フライホイール13の回転数がエンジン4の回転数(実回転数)以下となるため、エンジン4にかかる負荷は小さい。そのため、フリーモードから一旦ねばりモードを経由してチャージモードへと移行することにより、エンジン4に急激に負荷がかかることを防止できる。
 作業車両1において、第1フライホイール13は、作業負荷の増加等によりエンジン4の負荷が大きくなったときにエンジン4をアシストできるように、エンジン4の回転数よりも高い回転数で回転させておきたい。そのためには、チャージモードに移行することによって、エンジン4の回転動力を増速して第1フライホイール13に伝達する必要がある。しかし、作業負荷が大きいときにチャージモードに移行すると、エンジン4の負荷が増加して作業の妨げになる。そこで、制御システム100においては、エンジン4の負荷が作業の妨げにならない程度の負荷であるかを確認しながら、フリーモードから、ねばりモードを経てチャージモードに移行することによって、段階的に第1フライホイール13の回転数を上昇させるように構成している。
 上述した通り、動作モード移行の条件として、エンジン4の負荷率を使用する場合とトルク率を使用する場合とがある。以下、この点について説明する。負荷率を使用せずにトルク率を使用する場合がある理由は、エンジン4の負荷が小さい場合でも、エンジン4の回転数が増加しているときは、負荷率が100%となるためである。例えば、チャージ準備モードからチャージモードに移行するとき、第1クラッチ26が接続状態となって第1フライホイール13の回転数が増加することで、エンジン4の回転数が増加する。このとき、「負荷率が所定値未満」をチャージ準備モードからチャージモードに移行するときの条件(閾値)とすると、チャージモードに移行することができなくなる。一方、トルク率は、エンジン4の負荷が小さい場合にはエンジン4の回転数が増加しても100%とはならないため、「トルク率が所定値未満」をチャージ準備モードからチャージモードに移行するときの条件(閾値)とすると、チャージモードに移行することが可能となる。
 このように、作業負荷が小さい状態でエンジン4の回転数が増加している状態(第1フライホイール13の回転数が増加している状態)では、負荷率とトルク率とに乖離が生じる。エンジン4の回転数が増加している状態にあるときには、動作モードの移行の条件として負荷率の代わりにトルク率を使用することにより、作業負荷が小さい状態でエンジン4の回転数が増加している状態においても、動作モードの移行を確実に行うことが可能となる。
 このことから、エンジン4の回転数が増加している状態(第1フライホイール13の回転数が増加している状態)にあるときには動作モードの移行の条件として負荷率を使用し、エンジン4の回転数が増加していない状態((第1フライホイール13の回転数が増加していない状態)にあるときには動作モードの移行の条件としてトルク率を使用することが好ましい。
 上述した動作モード移行の条件(閾値)となる負荷率X1,X2,X3,X4,X5は、全て同じ値であってもよいし、一部又は全部が異なる値であっていてもよい。また、トルク率Y1,Y2,Y3,Y4は、全て同じ値であってもよいし、一部又は全部が異なる値であってもよい。また、所定時間T1,T2は、同じ時間であってもよいし、異なる時間であってもよい。また、ワンショット回数N1,N2は、同じ回数であってもよいし、異なる回数であってもよい。
 上述したように、各動作モードへの移行(複数の動作モードの切り替え)は、エンジンオフモードへの移行を除き、予め定められた条件を満たしたときに実行される。
 制御装置110は、複数の動作モードを切り替えるために、第1クラッチ26及び第2クラッチ27の断続に関する制御を実行する。ここで、「第1クラッチ26及び第2クラッチ27の断続に関する制御を実行する」とは、制御装置110が第1クラッチ26及び/又は第2クラッチ27を断続するための制御信号(第1制御信号、第2制御信号)を送信して、当該制御信号により第1クラッチ26及び/又は第2クラッチ27の断続を切り換える方法(第1の方法)と、制御装置110がオペレータに対して第1クラッチ26及び/又は第2クラッチ27の切り替えが可能である旨の報知を行い、当該報知に基づいてオペレータが所定の操作を行うことにより、第1クラッチ26及び/又は第2クラッチ27の断続を切り換える方法(第2の方法)と、を含む。制御システム100においては、第1の方法と第2の方法のいずれの方法を採用してもよい。
 第1の方法及び第2の方法は、上述した全ての動作モードの移行(エンジンオフモードへの移行を除く)について適用可能であるが、第2の方法は、特に、チャージモードからブースト準備モードへの移行に対して好適に適用される。
 以下、第2の方法を、チャージモードからブースト準備モードへの移行に対して適用した場合について説明する。この場合、制御装置110は、チャージモードにおいて、第1フライホイール13の回転数が第1目標回転数に達しており(第1条件HH1)、エンジン4の負荷率が所定値X3未満であるとき(第2条件HH2)、チャージモードからブースト準備モードへの切り替え(移行)が可能である旨の報知をオペレータに対して行う。
 この場合、制御装置110の動作モード決定部111dは、チャージモードからブースト準備モードに移行することを決定した後、ブースト準備モードへの切り替え(移行)が可能である旨の報知をオペレータに対して行う。制御装置110は、動作モード決定部111dの決定に基づいて自動的にブースト準備モードに移行するための制御信号を動作部140に送信するのではなく、オペレータの操作に基づいてブースト準備モードに移行するための制御信号を動作部140に送信する。つまり、制御装置110は、先ずブースト準備モードに切り替え可能であることをオペレータに報知し、この報知に対応してオペレータがブースト準備モードへの切り替えのための操作を行った場合に、ブースト準備モードに移行するための制御信号を動作部140に送信する。
 チャージモードからブースト準備モードへの切り替えが可能である旨の報知は、例えば、表示入力装置130の画面への表示により行われる。図24A、図24Bは、表示入力装置130の画面への表示によりチャージモードからブースト準備モードへの切り替えが可能である旨の報知を行う場合における画面表示の一例を示している。図24A、図24Bは、表示入力装置130がタッチパネル式表示装置である場合を示している。
 図24Aは、チャージモードにおいてチャージモードからブースト準備モードへの切り替えが可能でない状態(第1条件HH1と第2条件HH2のいずれかを満たしていない状態)の表示入力装置130の画面131Aを示している。この状態では、画面131Aには、チャージモードが実行中(チャージが進行中)である旨の表示のみがある。この状態では、オペレータはチャージモードからブースト準備モードへの切り替え操作を行うことはできない。画面131Aには、チャージの進行状況(第1フライホイール13への回転エネルギーの蓄積状況)を示すインジケータ132が表示されている。図示例の場合、インジケータ132は、表示枠132aの中の棒グラフ132bの長さによってチャージの進行状況を示している。チャージの進行状況は、(第1フライホイール13の実回転数/第1フライホイール13の目標回転数)により算出される。オペレータは、インジケータ132を視認することによって、チャージの進行状況を容易に把握することができる。
 図24Bは、チャージモードにおいてチャージモードからブースト準備モードへの切り替えが可能である状態(第1条件HH1と第2条件HH2の両方を満たした状態)の表示入力装置130の画面131Bを示している。この状態では、画面131Bには、インジケータ132はチャージが100%になった(第1フライホイール13の実回転数が目標回転数に達した)ことが示されている。また、「ブースト準備モードへ移行」との表示133がなされている。この表示133は、チャージモードからブースト準備モードへの切り替えが可能である旨の報知である。この状態では、オペレータは「ブースト準備モードへ移行」との表示133をタッチすることにより、チャージモードからブースト準備モードへの切り替え操作を行うことができる。つまり、制御装置100は、オペレータの表示133へのタッチ操作に基づいて、第2クラッチ27に対して制御信号を送信する。
 尚、チャージモードからブースト準備モードへの切り替えが可能である旨の報知の方法は、表示入力装置130の画面への表示により行う方法には限定されない。例えば、LED等のランプを点灯又は点滅することにより報知する方法や、音声により報知する方法を採用してもよい。また、報知に対応してオペレータがチャージモードからブースト準備モードへの切り替え操作を行う方法は、表示入力装置130の画面をタッチする方法には限定されず、例えば、表示入力装置130とは別に設けられた操作スイッチ(操作ボタン等)を操作することにより行ってもよい。
 図25は、制御システム100のタイミングチャートの一例である。
 以下、図25に基づいて、制御システム100による動作モードの移行の一例を説明する。尚、図25は、動作モード移行の条件となる負荷率X1~X5が全て同じ値であり、トルク率Y1~Y4が全て同じ値である場合を示している。
 エンジン4が起動すると、フリーモードに移行し、時間の経過に伴ってエンジン4の回転数(実回転数)が増加する。このとき、第1クラッチ26の指示圧(第1指示圧)及び第2クラッチ27の指示圧(第2指示圧)は0であり、第1クラッチ26及び第2クラッチ27は切断状態にある。そのため、第1フライホイール13の回転数(実回転数)は0である。また、エンジン4の負荷率及びトルク率は、エンジン4の起動と共に上昇し、エンジン4が目標回転数に達すると低下する。
 第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さい(0である)状態で、エンジン4の負荷率が低下して所定値X1未満となると、フリーモードからねばり準備モードに移行する。ねばり準備モードでは、第1クラッチ26は切断状態を維持するが、第2クラッチ27はワンショットの実施(ワンショットパルス電流の付加)により無効ストローク詰めの状態となる。
 エンジン4の実回転数が目標回転数に達しており、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも小さい(0である)状態で、エンジン4のトルク率が所定値Y1未満であると、ねばり準備モードからねばりモードに移行する。ねばりモードでは、第1クラッチ26は切断状態を維持するが、第2クラッチ27は接続状態となる。第2クラッチ27が接続されることにより、第1フライホイール13が回転して増速する。
 ねばり準備モードにおいて、エンジン4のトルク率が低い(所定値Y1未満)状態で、第2クラッチ27を接続の準備状態から接続状態に切り替えるための制御信号が送信されることにより、第2クラッチ27は接続状態に切り替わり、ねばりモードに移行する。
 第2クラッチ27が接続状態となると、第1フライホイール13とエンジン4とが接続されることにより、エンジン4の回転数(実回転数)は一時的に低下するが、その後、目標回転数まで回復する。また、第2クラッチ27が接続状態となることにより、第1フライホイール13は、回転を開始し、エンジン4の実回転数と同じとなるまで増加する。このとき、エンジン4の負荷率及びトルク率は高くなる。エンジン4のドロップ率は、第2クラッチ27が接続状態となったときに一時的に増加するが、その後、低下する。
 ねばりモードにおいて、第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じ回転数に達すると、エンジン4の負荷率及びトルク率が低下する。負荷率が所定値X2未満になると、エンジン4の回転数の急低下が起こりにくくなるため、ねばりモードからチャージ準備モードに移行する。チャージ準備モードでは、第1クラッチ26はワンショットの実施(ワンショットパルス電流の付加)により無効ストローク詰めの状態となり、第2クラッチ27は接続状態から切断状態に切り替わる。
 第1フライホイール13の回転数がエンジン4の回転数(実回転数)と同じである状態において、エンジン4のトルク率が所定値Y3未満になると、チャージ準備モードからチャージモードに移行する。チャージモードでは、第1クラッチ26は接続状態となり、第2クラッチ27は切断状態を維持する。第1クラッチ26が接続されることにより、エンジン4の回転数(実回転数)は一時的に低下するが、その後、目標回転数まで回復する。また、第1クラッチ26が接続されることにより、第1フライホイール13の回転数はエンジン4の実回転数を超えて増加する。
 第1フライホイール13の回転数がエンジン4の回転数(実回転数)より大きい第1目標回転数NAに達し、エンジン4の負荷率が所定値X3未満であると、チャージモードからブースト準備モードに移行する。ブースト準備モードでは、第1クラッチ26は接続状態を維持し、第2クラッチ27はワンショットの実施(ワンショットパルス電流の付加)により無効ストローク詰めの状態となる。
 図25では、ブースト準備モードに移行後、作業車両1の作業負荷が急激に増加したことによって、エンジン4の負荷率、トルク率、ドロップ率が急激に増加し、エンジン4の回転数(実回転数)が低下している状態が示されている。この状態では、エンジン4の回転動力を第1フライホイール13の回転動力によってアシストする必要がある。そのため、ブースト準備モードからブーストモードに移行する必要がある。
 ブースト準備モードからブーストモードへの移行は、第1フライホイール13の回転数がエンジン4の回転数(実回転数)よりも大きい第1目標回転数NAであり(図25では、ブースト準備モードの初期段階で第1目標回転数となっている)、エンジン4の負荷率が所定値X4(%)以上であり、エンジン4のドロップ率が所定値Z以上であるときに実行される。
 ブーストモードでは、第1クラッチ26は切断状態に切り替わり、第2クラッチ27は接続状態に切り替わる。これにより、第1フライホイール13の回転動力がエンジン4に伝達され、第1フライホイール13の回転動力によりエンジン4の回転動力がアシストされる。すると、エンジン4の回転数(実回転数)は増加し、エンジン4の負荷率、トルク率、ドロップ率は低下する。また、第1フライホイール13の回転数は、アシスト時間が長くなるにつれて減少する。
 図25では、ブーストモードからエンジンオフモードに切り替えられた状態が示されている。ブーストモードにおいてエンジンをオフ状態とすると、エンジン4及び第1フライホイール13は惰性で回転しながら次第に減速する。エンジンオフモードでは、第1クラッチ26及び/又は第2クラッチ27は接続状態となり、第1フライホイール13が第1クラッチ26及び/又は第2クラッチ27を介してエンジン4と接続される。そのため、慣性力が大きい第1フライホイール13を短い時間で停止させることができる。尚、図25では、第2クラッチ27のみが接続状態にある場合を示しているが、第1クラッチ26と第2クラッチ27の両方を接続状態としてもよい。
 <効果>
 上記した実施形態に係る作業車両1の特徴的な構成と当該構成に基づく効果は、以下の通りである。
 作業車両1は、エンジン4と、エンジン4の回転動力を受けて回転する第1フライホイール13と、エンジン4の回転動力、又は、エンジン4及び第1フライホイール13の回転動力のいずれかの回転動力を選択的に受けて変速して出力する変速装置16と、エンジン4の回転動力を第1フライホイール13に伝達する第1動力伝達経路31と、第1フライホイール13の回転動力を変速装置16に伝達する第2動力伝達経路32と、を備え、第1動力伝達経路31と第2動力伝達経路32とは互いに独立した経路であって、第1動力伝達経路31には、エンジン4から第1フライホイール13への回転動力の伝達を断続する第1クラッチ26が設けられ、第2動力伝達経路32には、第1フライホイール13から変速装置16への回転動力の伝達を断続する第2クラッチ27が設けられている。
 この構成によれば、エンジン4の回転動力を第1フライホイール13に伝達する第1動力伝達経路31と、第1フライホイール13の回転動力を変速装置16に伝達する第2動力伝達経路32とが、互いに独立した経路として構成されているため、一方の経路に変速機構を設けた場合に当該変速機構が他方の経路に影響することがない。そのため、エンジン4から出力される回転動力を第1動力伝達経路31で増速して第1フライホイール13に伝達し、当該伝達された回転動力を第2動力伝達経路32で減速せずに変速装置16に出力することが可能となる。また、各経路にそれぞれ回転動力の伝達を断続するクラッチ(第1クラッチ26、第2クラッチ27)が設けられているため、エンジン4の回転動力を第1フライホイール13に伝達する状態と、第1フライホイール13の回転動力を変速装置16へと出力する状態とを切り替えることができる。これにより、作業負荷が小さいときには、エンジン4の回転動力を第1フライホイール13に回転エネルギーとして蓄積し、エンジン4の作業負荷が大きいときには、第1フライホイール13の回転動力によってエンジン4の回転動力をアシストすることができる。
 また、第1動力伝達経路31には、エンジン4の回転動力を増速して第1フライホイール13に伝達する増速機構20が設けられ、第2動力伝達経路32は、第1フライホイール13の回転動力を減速機構を介さずに変速装置16に伝達する。
 この構成によれば、エンジン4の回転動力を増速機構20により増速して第1フライホイール13に伝達し、第1フライホイール13の回転動力を減速せずに変速装置16へと出力させることができるため、第1フライホイール13に高い回転エネルギーを蓄積し、この高い回転エネルギーをそのまま変速装置16に伝達することが可能となる。そのため、作業負荷が大きいときにエンジン4の回転動力を第1フライホイール13の回転動力によって効果的にアシストすることができる。
 また、作業車両1は、エンジン4の回転動力を第1フライホイール13を介さずに変速装置16に伝達する第3動力伝達経路33を備え、第3動力伝達経路33は、エンジン4の出力軸4aと変速装置16の入力軸16aとを常時接続している。
 この構成によれば、第3動力伝達経路33によってエンジン4の回転動力を第1フライホイール13を介さずに変速装置16に伝達することができるため、第1フライホイール13の回転とは独立してエンジン4の回転動力を変速装置16へと入力することが可能となる。
 また、増速機構20は、太陽歯車21と遊星歯車22とリング歯車23とを含む遊星歯車機構から構成されており、リング歯車23は回転不能に固定されており、エンジン4の回転動力は、遊星歯車22に入力されて太陽歯車21を介して第1フライホイール13に伝達され、第1フライホイール13の回転動力は、遊星歯車機構を介さずに変速装置16に伝達される。
 この構成によれば、エンジン4の回転動力を遊星歯車22から太陽歯車21に伝達することによって増速して第1フライホイール13に入力することができる。また、第1フライホイール13の回転動力を遊星歯車機構を介さずに変速装置16に伝達することによって、第1フライホイール13の回転動力を減速せずに変速装置16に出力することができる。
 また、作業車両1は、エンジン4の出力軸4aと接続された第2フライホイール14を備え、第1フライホイール13は、第2フライホイール14と独立して回転可能である。
 この構成によれば、第1クラッチ26及び第2クラッチ27を切断したときに、第1フライホイール13を第2フライホイール14の回転とは無関係に回転させることができる。これにより、第2フライホイール14が停止又は減速した場合においても、第2フライホイール14に影響されずに第1フライホイール13の回転を維持することができる。
 また、第1フライホイール13は、エンジン4の出力軸4aの軸長方向において、第2フライホイール14と変速装置16との間に配置されている。
 この構成によれば、動力伝達機構6の径方向の大きさ(外径寸法)を小さくすることができるとともに、第2フライホイール14から第1フライホイール13への動力伝達及び第2フライホイール14から変速装置16への動力伝達を円滑に行うことが可能となる。
 また、作業車両1は、エンジン4の出力軸4aと変速装置16との間に介在して第3動力伝達経路33を構成する中継軸17を備え、中継軸17は第1フライホイール13を貫通して設けられている。
 この構成によれば、第1フライホイール13を貫通した中継軸17によって第3動力伝達経路33が構成されるため、複雑な機構を用いることなく第3動力伝達経路33を短い距離で直線的に構成することが可能となる。
 また、第1クラッチ26と第2クラッチ27が中継軸17の径方向に並んで配置されている構成によれば、第1クラッチ26及び第2クラッチ27の両方をハウジング9の壁に沿って並べて配置することが可能となる。これにより、第1クラッチ26に作動油を供給するための油路と第2クラッチ27に作動油を供給するための油路を壁に沿って設けることができる。そのため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を設けることが容易である。
 また、第1クラッチ26と第2クラッチ27が中継軸17の軸長方向に並んで配置されている構成によれば、第1クラッチ26と第2クラッチ27からなるクラッチ装置25の外径を小さくすることができる。そのため、第1フライホイール13の外径を維持したままで内径を小さくして慣性モーメントを増大することができる。
 また、作業車両1は、第1フライホイール13、第1クラッチ26、第2クラッチ27を収容するハウジング9を備え、ハウジング9の内部には、当該内部を第1フライホイール13が収容される空間と第1クラッチ26及び第2クラッチ27が収容される空間とに仕切る仕切り壁9dが設けられ、第1クラッチ26及び第2クラッチ27は、仕切り壁9dに面する位置に配置されている。
 この構成によれば、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を仕切り壁9dに沿って設けることができる。そのため、第1クラッチ26及び第2クラッチ27に作動油を供給するための油路を設けることが容易である。
 また、第1クラッチ26及び第2クラッチ27は、複数の摩擦板を備えた多板クラッチであって、第1フライホイール13の内周側に配置されている。
 この構成によれば、第1クラッチ26及び第2クラッチ27が多板クラッチから構成されているため、高い動力伝達性能を維持しながら外径を小さくすることができる。また、第1クラッチ26及び第2クラッチ27が第1フライホイール13の内周側に配置されることにより、第1フライホイール13の軸長(前後方向の長さ)を長くすることが可能となる。そのため、第1フライホイール13の慣性モーメントを増大させて、第1フライホイール13に蓄積できる回転エネルギーを増加することができる。
 また、作業車両1は、エンジン4と、エンジン4の回転動力を受けて回転するフライホイール13(第1フライホイール13の意味:以下同じ)と、エンジン4とフライホイール13とを接続する第1経路に設けられて第1経路を経由する回転動力の伝達を断続する第1クラッチ26と、エンジン4と前記フライホイールとを接続する第2経路に設けられて第2経路を経由する回転動力の伝達を断続する第2クラッチ27と、第1経路に設けられて第1クラッチ26が接続状態にあるときに前記エンジンの回転動力を増速してフライホイール13に伝達する増速機構20と、複数の動作モードを切り替えるために第1クラッチ26及び第2クラッチ27の断続に関する制御を実行する制御装置110と、を備え、複数の動作モードは、フライホイール13の回転数がエンジン4の回転数よりも大きく、第1クラッチ26が切断され且つ第2クラッチ27が接続されるブーストモードと、フライホイール13の回転数がエンジン4の回転数以下であり、第1クラッチ26が切断され且つ第2クラッチ27が接続されるねばりモードと、を含む。
 この構成によれば、フライホイール13の回転数がエンジン4の回転動力をアシストするのに十分に大きい場合だけでなく、フライホイール13の回転数がエンジン4の回転動力をアシストするのに十分な大きさではない場合においても、フライホイール13の回転動力を効率良く利用することができる。詳しくは、ブーストモードにおいては、フライホイール13の回転数がエンジン4の回転動力をアシストするのに十分に大きいため、フライホイール13の回転動力によってエンジン4の回転動力をアシストすることができる。ねばりモードにおいては、フライホイール13の回転数がエンジン4の回転動力をアシストするのに十分な大きさではないが、フライホイール13の慣性力によってエンジン4の回転数の急激な低下を防止することができる。
 また、複数の動作モードは、フライホイール13の回転数が目標回転数未満であって且つエンジン4の回転数よりも大きく、第1クラッチ26が接続され且つ第2クラッチ27が切断されるチャージモードを含む。
 この構成によれば、チャージモードにおいて、エンジン4の回転動力を増速してフライホイール13に伝達することにより、フライホイール13に高い回転エネルギーを蓄積することができる。
 また、複数の動作モードは、ねばりモードに移行する前に切り替わるモードであるねばり準備モードを含み、ねばり準備モードは、フライホイール13の回転数がエンジン4の回転数よりも小さく、第1クラッチ26が切断され且つ第2クラッチ27が切断状態から接続状態に切り替わる途中状態にある。
 この構成によれば、ねばり準備モードにおいて、第2クラッチ27が接続状態に切り替わる途中状態となるため、ねばりモードへの移行の準備が整えられて、ねばりモードへの移行を円滑に行うことができる。
 また、複数の動作モードは、ブーストモードに移行する前に切り替わるモードであるブースト準備モードを含み、ブースト準備モードは、フライホイール13の回転数が目標回転数であり且つエンジン4の回転数よりも大きく、第1クラッチ26が接続され且つ第2クラッチ27が切断状態から接続状態に切り替わる途中状態にある。
 この構成によれば、ブースト準備モードにおいて、第2クラッチ27が接続状態に切り替わる途中状態となるため、ブーストモードの移行の準備が整えられて、ブーストモードへの移行を円滑に行うことができる。
 また、複数の動作モードは、チャージモードに移行する前に切り替わるモードであるチャージ準備モードを含み、チャージ準備モードは、フライホイール13の回転数が目標回転数未満であり、第1クラッチ26が切断状態から接続状態に切り替わる途中状態にあり且つ第2クラッチ27が切断されている。
 この構成によれば、チャージ準備モードにおいて、第1クラッチ26が接続状態に切り替わる途中状態となるため、チャージモードの移行の準備が整えられて、チャージモードへの移行を円滑に行うことができる。
 また、複数の動作モードは、エンジン4が起動され、第1クラッチ26及び第2クラッチ27が切断され、フライホイール13が停止されるフリーモードを含む。
 この構成によれば、フリーモードにおいて、第1クラッチ26及び第2クラッチ27が切断されることにより、フライホイール13とエンジン4とが切り離されるため、エンジン4にかかる負荷を減少させることができる。
 また、複数の動作モードは、エンジン4のスパークプラグが点火していない状態にあり、第1クラッチ26及び第2クラッチ27が接続され、フライホイール13が減速されるエンジンオフモードを含む。
 この構成によれば、エンジンオフモードにおいて、第1クラッチ26及び第2クラッチ27がエンジン4と接続されることによって、フライホイール13を速やかに減速させることができる。そのため、エンジン4をオフした後もフライホイール13が慣性力によって長時間回り続けることを防止することができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数よりも小さく、エンジン4の負荷率が所定値未満であるとき、フリーモードからねばり準備モードに切り替える。
 この構成によれば、フライホイール13の回転数が小さく且つエンジン4の負荷が小さいときに、ねばりモードに移行するための準備を整えることができるため、ねばりモードへの移行を円滑に行うことができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数よりも小さく、エンジン4のトルク率が所定値未満であり、エンジン4の実回転数が目標回転数にあるとき、ねばり準備モードからねばりモードに切り替える。
 この構成によれば、フライホイール13の回転数がエンジン4の回転数よりも小さく、エンジン4の負荷が小さく、エンジン4の実回転数が低下していない状態で、ねばりモードに移行することによって、フライホイール13の回転数を増加させることができる。これにより、エンジン4をアシストする必要がない状態において、フライホイール13の回転数をエンジン4の回転数まで増加させて、更なるフライホイール13の回転数の増加が行われるチャージモードへの移行に備えることができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数よりも小さく、所定時間内の第2クラッチ27の接続の試行回数が所定回数に達したとき、ねばり準備モードからフリーモードに切り替える。
 この構成によれば、ねばり準備モードにおいて、作業負荷の増加等によりエンジン4の負荷が増加することによって、ねばりモードに移行することができなかった場合に、フリーモードに移行してエンジン4の負荷を減少させることができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数と同じになり、エンジン4の負荷率が所定値未満であるとき、ねばりモードからチャージ準備モードに切り替える。
 この構成によれば、エンジン4の負荷が小さい状態において、フライホイール13に回転エネルギーを蓄積するために、チャージモードに移行するための準備を整えることができるため、チャージモードへの移行を円滑に行うことができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数よりも小さく、エンジン4のトルク率が所定値以上であるとき、ねばりモードからフリーモードに切り替える。
 この構成によれば、作業負荷の増加等によってエンジン4の負荷が増加した場合に、ねばりモードからフリーモードに移行することにより、エンジン4の負荷を減少させることができるため、作業に支障をきたすことを防止できる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数と同じになり、エンジン4のトルク率が所定値未満であるとき、チャージ準備モードからチャージモードに切り替える。
 この構成によれば、エンジン4の負荷が小さく、フライホイール13の回転数が比較的高い状態において、フライホイール13に回転エネルギーを蓄積するために、チャージモードへの移行を行うことができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数と同じになり、所定時間内の第1クラッチ26の接続の試行回数に達したとき、チャージ準備モードからフリーモードに切り替える。
 この構成によれば、チャージ準備モードにおいて、作業負荷の増加等によりエンジン4の負荷が増加することによって、チャージモードに移行することができなかった場合に、フリーモードに移行してエンジン4の負荷を減少させることができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数よりも大きい目標回転数であり、エンジン4の負荷率が所定値未満であるとき、チャージモードからブースト準備モードに切り替える又はブースト準備モードへの切り替えが可能である旨の報知を行う。
 この構成によれば、フライホイール13の回転数はエンジン4をアシストするのに十分に増速しているが、エンジン4の負荷が小さい場合に、エンジン4の負荷の増加に備えて、ブーストモードに切り換える準備を行うことができる。これにより、エンジン4の負荷が増加したときに、ブーストモードへの移行を円滑に行うことができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数よりも大きく且つ目標回転数未満であり、エンジン4のトルク率が所定値以上であるとき、チャージモードからフリーモードに切り替える。
 この構成によれば、フライホイール13の回転数を増加させているときに、作業負荷の増加等によりエンジン4の負荷が増加した場合に、フリーモードに移行してエンジン4の負荷を減少させることができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数よりも大きい目標回転数であり、エンジン4の負荷率が所定値以上であり、エンジン4のドロップ率が所定値以上であるとき、ブースト準備モードからブーストモードに切り替える。
 この構成によれば、フライホイール13の回転数がエンジン4をアシストするのに十分に増速している状態(フライホイール13に高い回転エネルギーが蓄積されている状態)でエンジン4の負荷が増加した場合に、ブーストモードに切り替えてフライホイール13の回転動力によりエンジン4の回転動力をアシストすることができる。
 また、制御装置110は、フライホイール13の回転数がエンジン4の回転数と同じになったとき、ブーストモードからねばりモードに切り替える。
 この構成によれば、ブーストモードにおいて、フライホイール13の回転動力によってエンジン4の回転動力をアシストした結果、フライホイール13の回転動力が減少してアシストができなくなったときに、ねばりモードに切り替えることによって、エンジン4の回転数の急激な低下を防止することができる。
 また、制御装置110は、フライホイール13の回転数がエンジンの回転数よりも小さく、エンジン4の負荷率が所定値未満であり、エンジン4の実回転数が目標回転数未満であるとき、ブーストモードからフリーモードに切り替える。
 この構成によれば、ブーストモードにおいて、作業負荷の減少等によりエンジン4の負荷が減少してエンジン4のアシストが不要となった場合に、フリーモードに移行することにより、エンジン4の負荷が少ない状態でフライホイール13がエンジン4をアシストすることを防止することができる。
 以上、本発明の実施形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1    作業車両
4    エンジン
4a   エンジンの出力軸
9    ハウジング(フライホイールハウジング)
9d   仕切り壁
13   第1フライホイール
14   第2フライホイール
16   変速装置
16a  変速装置の入力軸
17   中継軸
20   増速機構
21   太陽歯車
22   遊星歯車
23   リング歯車
26   第1クラッチ
27   第2クラッチ
31   第1動力伝達経路
32   第2動力伝達経路
33   第3動力伝達経路

Claims (11)

  1.  エンジンと、
     前記エンジンの回転動力を受けて回転する第1フライホイールと、
     前記エンジンの回転動力、又は、前記エンジン及び前記第1フライホイールの回転動力のいずれかの回転動力を選択的に受けて変速して出力する変速装置と、
     前記エンジンの回転動力を前記第1フライホイールに伝達する第1動力伝達経路と、
     前記第1フライホイールの回転動力を前記変速装置に伝達する第2動力伝達経路と、
     を備え、
     前記第1動力伝達経路と前記第2動力伝達経路とは互いに独立した経路であって、
     前記第1動力伝達経路には、前記エンジンから前記第1フライホイールへの回転動力の伝達を断続する第1クラッチが設けられ、
     前記第2動力伝達経路には、前記第1フライホイールから前記変速装置への回転動力の伝達を断続する第2クラッチが設けられている作業車両。
  2.  前記第1動力伝達経路には、前記エンジンの回転動力を増速して前記第1フライホイールに伝達する増速機構が設けられ、
     前記第2動力伝達経路は、前記第1フライホイールの回転動力を減速機構を介さずに前記変速装置に伝達する請求項1に記載の作業車両。
  3.  前記エンジンの回転動力を前記第1フライホイールを介さずに前記変速装置に伝達する第3動力伝達経路を備え、
     前記第3動力伝達経路は、前記エンジンの出力軸と前記変速装置の入力軸とを常時接続している請求項1又は2に記載の作業車両。
  4.  前記増速機構は、太陽歯車と遊星歯車とリング歯車とを含む遊星歯車機構から構成されており、
     前記リング歯車は、回転不能に固定されており、
     前記エンジンの回転動力は、前記遊星歯車に入力されて前記太陽歯車を介して前記第1フライホイールに伝達され、
     前記第1フライホイールの回転動力は、前記遊星歯車機構を介さずに前記変速装置に伝達される請求項2に記載の作業車両。
  5.  前記エンジンの出力軸と接続された第2フライホイールを備え、
     前記第1フライホイールは、前記第2フライホイールと独立して回転可能である請求項1に記載の作業車両。
  6.  前記第1フライホイールは、前記出力軸の軸長方向において、前記第2フライホイールと前記変速装置との間に配置されている請求項5に記載の作業車両。
  7.  前記出力軸と前記変速装置との間に介在して前記第3動力伝達経路を構成する中継軸を備え、
     前記中継軸は、前記第1フライホイールを貫通して設けられている請求項3に記載の作業車両。
  8.  前記第1クラッチと前記第2クラッチは、前記中継軸の径方向に並んで配置されている請求項7に記載の作業車両。
  9.  前記第1クラッチと前記第2クラッチは、前記中継軸の軸長方向に並んで配置されている請求項7に記載の作業車両。
  10.  前記第1フライホイール、前記第1クラッチ、前記第2クラッチを収容するハウジングを備え、
     前記ハウジングの内部には、当該内部を前記第1フライホイールが収容される空間と前記第1クラッチ及び前記第2クラッチが収容される空間とに仕切る仕切り壁が設けられ、
     前記第1クラッチ及び前記第2クラッチは、前記仕切り壁に面する位置に配置されている請求項8に記載の作業車両。
  11.  前記第1クラッチ及び前記第2クラッチは、複数の摩擦板を備えた多板クラッチであって、前記第1フライホイールの内周側に配置されている請求項9に記載の作業車両。
PCT/JP2023/022863 2022-07-08 2023-06-21 作業車両 WO2024009765A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110626 2022-07-08
JP2022-110626 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024009765A1 true WO2024009765A1 (ja) 2024-01-11

Family

ID=89453261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022863 WO2024009765A1 (ja) 2022-07-08 2023-06-21 作業車両

Country Status (1)

Country Link
WO (1) WO2024009765A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108725U (ja) * 1976-02-14 1977-08-18
JP2004293726A (ja) * 2003-03-28 2004-10-21 Nissan Diesel Motor Co Ltd フライホイール装置
JP2010261566A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd 可変フライホイールの制御装置
WO2013108407A1 (ja) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 車両用振動低減装置
JP2014109359A (ja) * 2012-12-04 2014-06-12 Fuji Heavy Ind Ltd 車両用駆動装置
WO2014102908A1 (ja) * 2012-12-25 2014-07-03 トヨタ自動車株式会社 車両用変速機及び制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108725U (ja) * 1976-02-14 1977-08-18
JP2004293726A (ja) * 2003-03-28 2004-10-21 Nissan Diesel Motor Co Ltd フライホイール装置
JP2010261566A (ja) * 2009-05-11 2010-11-18 Isuzu Motors Ltd 可変フライホイールの制御装置
WO2013108407A1 (ja) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 車両用振動低減装置
JP2014109359A (ja) * 2012-12-04 2014-06-12 Fuji Heavy Ind Ltd 車両用駆動装置
WO2014102908A1 (ja) * 2012-12-25 2014-07-03 トヨタ自動車株式会社 車両用変速機及び制御装置

Similar Documents

Publication Publication Date Title
CN109114175B (zh) 作业车用变速器及具备其的作业车
EP2319720B1 (en) Travelling system transmission structure for vehicle
US20080214348A1 (en) Working Vehicle Transmission System
EP0899145A2 (en) Transmission mechanism for a working vehicle
CN105473896A (zh) 作业车辆和作业车辆的充电控制方法
JP2000355225A (ja) 作業車両のトランスミッション
WO2021132241A1 (ja) 作業車両
JPH11291775A (ja) 作業車両用の走行駆動トランスミッション
WO2024009765A1 (ja) 作業車両
WO2024009766A1 (ja) 作業車両
JP4515592B2 (ja) 車両の自動変速装置
JP6807808B2 (ja) 作業車用トランスミッション及びこれを備えた作業車
JP5192166B2 (ja) 建設車両
JP2008202721A (ja) トランスミッション
JP6770929B2 (ja) 作業車用トランスミッション及びこれを備えた作業車
JP2008201303A (ja) トランスミッション
WO2020255893A1 (ja) 作業車両及び作業車両の制御方法
JP4426051B2 (ja) 車両の自動変速装置
JP4637996B2 (ja) 車両の自動変速装置
EP4083473A1 (en) Work vehicle
JP6770927B2 (ja) 作業車用トランスミッション及びこれを備えた作業車
JP4899752B2 (ja) 走行車両
JP5083497B2 (ja) トラクタ
WO2006003840A1 (ja) 車両の変速装置
JP4505935B2 (ja) 車両の自動変速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835299

Country of ref document: EP

Kind code of ref document: A1