WO2024009600A1 - Solid-state imaging element and imaging device - Google Patents

Solid-state imaging element and imaging device Download PDF

Info

Publication number
WO2024009600A1
WO2024009600A1 PCT/JP2023/017242 JP2023017242W WO2024009600A1 WO 2024009600 A1 WO2024009600 A1 WO 2024009600A1 JP 2023017242 W JP2023017242 W JP 2023017242W WO 2024009600 A1 WO2024009600 A1 WO 2024009600A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
mirror
driver
circuit
signal
Prior art date
Application number
PCT/JP2023/017242
Other languages
French (fr)
Japanese (ja)
Inventor
大至 江崎
智行 弘
斉仁 池田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024009600A1 publication Critical patent/WO2024009600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/779Circuitry for scanning or addressing the pixel array

Definitions

  • the present technology relates to a solid-state image sensor. Specifically, the present invention relates to a solid-state imaging device and an imaging device having a drive circuit that drives pixels.
  • the present technology was created in view of this situation, and its purpose is to suppress the increase in circuit scale in a solid-state image sensor in which the driving ability of the driving circuit is variable.
  • This technology was developed to solve the above-mentioned problems, and its first aspect is a driver that outputs a predetermined drive signal from an output terminal, and a driver that generates an output current according to a predetermined reference current.
  • a current mirror that causes the current to flow to at least one of the power supply side and the ground side of the driver;
  • the present invention provides a solid-state imaging device and an imaging device including a current control circuit that controls the current value of the reference current. This brings about the effect of suppressing an increase in circuit scale.
  • a pixel array section may be further provided in which a plurality of pixels that generate analog signals in accordance with the drive signal are arranged in a two-dimensional grid. This brings about the effect that an image is captured.
  • the driver and the current mirror are arranged for each row in the pixel array section, and the current mirror includes a mirror source transistor that flows the reference current and a mirror destination that generates the output current. It may also include a transistor. This provides the effect of suppressing current variations from row to row.
  • the current mirror includes a mirror source transistor through which the reference current flows, and first and second mirror destination transistors that share the mirror source transistor and generate the output current.
  • the driver includes first and second drivers, the first driver outputs the output current to a first row within the pixel array section, and the second driver outputs the output current to a first row within the pixel array section.
  • the first mirrored transistor outputs the output current to a second row of the first driver, the second mirrored transistor supplies the output current to the second driver;
  • An output current may be applied. This brings about the effect that the circuit scale of the vertical scanning circuit is reduced.
  • a first analog-to-digital converter converts an analog signal from the first row into a digital signal
  • a second analog-to-digital converter converts an analog signal from the second row into a digital signal
  • the first and second drivers may simultaneously supply the output current. This brings about the effect that multiple rows are read at the same time.
  • it may further include a selection switch that opens and closes a path between the current mirror and the current control circuit in synchronization with a predetermined selection signal. This brings about the effect of reducing power consumption.
  • the device may further include a logic gate that generates and outputs the selection signal, and a latch circuit that holds the output selection signal and supplies it to the selection switch. This brings about the effect of suppressing potential fluctuations due to settling.
  • the output current includes first and second output currents
  • the current mirror is configured to generate a power supply side current that causes the first output current to flow from the power supply node to the power supply terminal of the driver.
  • the device may include a mirror and a ground side current mirror that causes the second output current to flow from the ground terminal of the driver to the ground node. This brings about the effect that the currents on both the power supply side and the ground side are controlled.
  • a second aspect of the present technology includes a variable current source, a mirror source transistor through which a reference current generated by the variable current source flows, and an output current corresponding to the reference current and outputting a voltage signal from the drain.
  • the solid-state image sensing device includes a mirror destination transistor, and a sample and hold circuit that samples and holds a voltage between the gate and source of the mirror destination transistor in synchronization with a predetermined control signal. This brings about the effect of stabilizing the driving ability.
  • FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology.
  • FIG. 1 is a block diagram showing an example of a configuration of a solid-state image sensor according to a first embodiment of the present technology.
  • FIG. 2 is a circuit diagram showing an example of a configuration of a pixel in a first embodiment of the present technology.
  • FIG. 1 is a block diagram illustrating a configuration example of a vertical scanning circuit according to a first embodiment of the present technology.
  • FIG. 2 is a block diagram illustrating a configuration example of a drive unit in the first embodiment of the present technology.
  • FIG. 2 is a circuit diagram illustrating a configuration example of a transfer drive circuit according to the first embodiment of the present technology.
  • FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology.
  • FIG. 1 is a block diagram showing an example of a configuration of a solid-state image sensor according to a first embodiment
  • FIG. 2 is a circuit diagram showing a configuration example of a drive circuit for initialization in the first embodiment of the present technology.
  • FIG. 2 is a circuit diagram showing a configuration example of a selection drive circuit in the first embodiment of the present technology.
  • FIG. 2 is a circuit diagram showing a configuration example of a current control circuit according to a first embodiment of the present technology.
  • FIG. 2 is a circuit diagram showing a configuration example of a drive circuit in a first comparative example.
  • FIG. 2 is a circuit diagram showing a configuration example of a column signal processing circuit according to a first embodiment of the present technology. It is a timing chart which shows an example of operation of a solid-state image sensing device in a 1st embodiment of this art.
  • FIG. 6 is a diagram illustrating an example of the state of the drive circuit of each row when driving the first row in the first embodiment of the present technology.
  • FIG. 7 is a diagram illustrating an example of the state of the drive circuit of each row when driving the second row in the first embodiment of the present technology.
  • FIG. 6 is a diagram illustrating an example of the state of the drive circuit of each row when driving the last row in the first embodiment of the present technology.
  • FIG. 2 is a block diagram illustrating a configuration example of a solid-state image sensor according to a second embodiment of the present technology.
  • FIG. 7 is a circuit diagram illustrating a configuration example of a drive circuit according to a second embodiment of the present technology.
  • FIG. 7 is a circuit diagram showing an example of a configuration of a drive circuit and a current control circuit in a third embodiment of the present technology.
  • FIG. 7 is a diagram illustrating an example of a drive circuit and operation in a second comparative example.
  • 12 is a timing chart illustrating an example of the operation of the drive circuit in the third embodiment of the present technology. It is a figure for explaining the effect in a 3rd embodiment of this technology.
  • First embodiment (example of controlling the current value of reference current) 2.
  • Second embodiment (example where the current value of the reference current is controlled and a mirror source transistor is shared by multiple rows) 3.
  • Third embodiment (example of controlling the current value of the reference current and maintaining the gate-source voltage of the mirror destination transistor)
  • FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology.
  • the imaging device 100 is a device for capturing image data, and includes an optical section 110, a solid-state imaging device 200, and a DSP (Digital Signal Processing) circuit 120. Further, the imaging device 100 includes a display section 130, an operation section 140, a bus 150, a frame memory 160, a storage section 170, and a power supply section 180.
  • a smartphone, a digital still camera, a vehicle-mounted camera, etc. are assumed.
  • the optical section 110 collects light from a subject and guides it to the solid-state image sensor 200.
  • the solid-state image sensor 200 generates image data through photoelectric conversion. This solid-state image sensor 200 generates image data and supplies it to the DSP circuit 120 via a signal line 209.
  • the DSP circuit 120 performs predetermined signal processing on image data. This DSP circuit 120 outputs the processed image data to a frame memory 160 or the like via a bus 150.
  • the display unit 130 displays image data.
  • a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed.
  • the operation unit 140 generates an operation signal according to a user's operation.
  • the bus 150 is a common path through which the optical section 110, solid-state image sensor 200, DSP circuit 120, display section 130, operation section 140, frame memory 160, storage section 170, and power supply section 180 exchange data with each other.
  • the frame memory 160 holds image data.
  • the storage unit 170 stores various data such as image data.
  • the power supply section 180 supplies power to the solid-state image sensor 200, the DSP circuit 120, the display section 130, and the like.
  • FIG. 2 is a block diagram showing a configuration example of the solid-state image sensor 200 in the first embodiment of the present technology.
  • This solid-state imaging device 200 includes a vertical scanning circuit 300, a pixel array section 210, a timing control circuit 230, and a column signal processing circuit 250.
  • a plurality of pixels 220 are arranged in a two-dimensional grid in the pixel array section 210.
  • a set of pixels 220 arranged in the horizontal direction will be referred to as a "row”
  • a set of pixels 220 arranged in the vertical direction will be referred to as a "column”.
  • the pixel 220 generates an analog pixel signal by photoelectric conversion according to the drive signal from the vertical scanning circuit 300, and outputs it to the column signal processing circuit 250.
  • the vertical scanning circuit 300 sequentially drives the rows and outputs pixel signals.
  • the timing control circuit 230 controls the operation timing of the vertical scanning circuit 300 and the column signal processing circuit 250 in synchronization with the vertical synchronization signal VSYNC indicating the imaging timing.
  • the column signal processing circuit 250 performs various signal processing such as AD (Analog to Digital) conversion processing and CDS (Correlated Double Sampling) processing on pixel signals from each column.
  • the column signal processing circuit 250 supplies image data in which processed pixel signals are arranged to the DSP circuit 120. Note that the column signal processing circuit 250 is an example of a signal processing circuit described in the claims.
  • FIG. 3 is a circuit diagram showing a configuration example of the pixel 220 in the first embodiment of the present technology.
  • This pixel 220 includes a photoelectric conversion element 221, a transfer transistor 222, a reset transistor 223, a floating diffusion layer 224, an amplification transistor 225, and a selection transistor 226. Further, in the pixel array section 210, vertical signal lines 219 are wired for each column.
  • the photoelectric conversion element 221 generates charges by photoelectric conversion of incident light.
  • the transfer transistor 222 transfers charges from the photoelectric conversion element 221 to the floating diffusion layer 224 in accordance with the drive signal TRG from the vertical scanning circuit 300.
  • the reset transistor 223 initializes the floating diffusion layer 224 according to the drive signal RST from the vertical scanning circuit 300.
  • the floating diffusion layer 224 accumulates charge and generates a voltage according to the amount of charge.
  • the amplification transistor 225 amplifies the voltage of the floating diffusion layer 224.
  • the selection transistor 226 outputs the amplified voltage signal as a pixel signal to the column signal processing circuit 250 via the vertical signal line 219 in accordance with the selection signal SEL from the vertical scanning circuit 300.
  • circuit configuration of the pixel 220 is not limited to that illustrated in the figure as long as it can generate a pixel signal according to the control of the vertical scanning circuit 300.
  • FIG. 4 is a block diagram showing a configuration example of the vertical scanning circuit 300 in the first embodiment of the present technology.
  • This vertical scanning circuit 300 includes a decoder 310, a current control circuit 320, and a drive section 330.
  • the decoder 310 generates a plurality of signals through decoding processing under the control of the timing control circuit 230. This decoder 310 supplies these signals to the drive section 330.
  • drive circuits 400, 500, and 600 are arranged for each row. Assuming that the number of rows is N (N is an integer), N driving circuits 400, 500, and 600 are provided.
  • the drive circuit 400 generates a drive signal TRG for charge transfer and outputs it to the corresponding row.
  • the drive circuit 500 generates a drive signal RST for initialization and outputs it to a corresponding row.
  • the drive circuit 600 generates a selection signal SEL and outputs it to a corresponding row.
  • TRG, RST, and SEL in the n-th (n is an integer from 1 to N) row be TRGn, RSTn, and SELn, respectively.
  • the current control circuit 320 controls the current within the drive unit 330 according to setting data indicating a current value.
  • FIG. 5 is a block diagram showing a configuration example of the drive section 330 in the first embodiment of the present technology.
  • a signal from decoder 310 is input to each of drive circuits 400 and 500.
  • the first row drive circuit 400 generates a selection signal SEL1 and supplies it to the first row drive circuits 500 and 600.
  • drive circuits 400, 500, and 600 are commonly connected to current control circuit 320. The same applies to each drive circuit corresponding to the second and subsequent rows.
  • FIG. 6 is a circuit diagram showing a configuration example of the transfer drive circuit 400 in the first embodiment of the present technology.
  • This drive circuit 400 includes a selection signal generation section 410, a control signal generation section 420, selection switches 431 and 432, current mirrors 440 and 460, and a driver 450.
  • the selection signal generation section 410 generates the selection signal SEL1.
  • This selection signal generation section 410 includes a logic gate 411 and a latch circuit 412.
  • As the logic gate 411 for example, a NAND (not logical product) gate is used.
  • the logic gate 411 performs a predetermined logical operation on a plurality of signals from the decoder 310. This logic gate 411 supplies the processing result to the latch circuit 412 as a selection signal SEL1.
  • the latch circuit 412 holds the selection signal SEL1 from the logic gate 411 and supplies the signal to the selection switches 431 and 432, the drive circuit 500, and the like.
  • the time that the latch circuit 412 holds is set in consideration of the settling time of the selection switches 431 and 432.
  • the control signal generation unit 420 generates a control signal xTRG1 and supplies it to the input terminal 458 of the driver 450.
  • the circuit configuration of this control signal generation section 420 is the same as that of the selection signal generation section 410, for example.
  • the current mirror 440 generates an output current Iout1 according to the reference current Iref1 and sends it to the power supply side (that is, from the power supply node to the power supply terminal 456 of the driver 450). For example, a current having the same value as the reference current Iref1 is generated as the output current Iout1.
  • This current mirror 440 includes a mirror source transistor 441 and a mirror destination transistor 442. For example, pMOS transistors are used as these transistors. Note that the current mirror 440 is an example of a power supply side current mirror described in the claims.
  • the mirror source transistor 441 is for flowing the reference current Iref1.
  • the mirror destination transistor 442 generates an output current Iout1 according to the reference current Iref1, and causes it to flow from the power supply node to the power supply terminal 456.
  • the sources of these mirror source transistor 441 and mirror destination transistor 442 are commonly connected to a power supply node. Further, the gate and drain of the mirror source transistor 441 are short-circuited, and the drain is connected to the selection switch 431.
  • the gate of the mirror destination transistor 442 is connected to the gate of the mirror source transistor 441, and the drain is connected to the power supply terminal 456.
  • the driver 450 generates a drive signal TRG1 based on the control signal xTRG1 and outputs it to the corresponding row of the pixel array section 210.
  • This driver 450 includes a pMOS transistor 451 and an nMOS transistor 452. These transistors are connected in series between power supply terminal 456 and ground terminal 457. Further, the gates of these transistors are commonly connected to an input terminal 458, and the connection nodes of these transistors are connected to an output terminal 459.
  • the driver 450 functions as an inverter that inverts the control signal xTRG1 and outputs it as the drive signal TRG1. Furthermore, when inverting, the driver 450 shifts the level of the signal as necessary.
  • the current mirror 460 generates an output current Iout2 according to the reference current Iref2 and sends it to the ground side (that is, from the ground terminal 457 of the driver 450 to the ground node). For example, a current having the same value as the reference current Iref2 is generated as the output current Iout2.
  • This current mirror 460 includes a mirror source transistor 461 and a mirror destination transistor 462. For example, nMOS transistors are used as these transistors. Note that the current mirror 460 is an example of a ground side current mirror described in the claims.
  • the mirror source transistor 461 is for flowing the reference current Iref2.
  • the mirror destination transistor 462 generates an output current Iout2 according to the reference current Iref2, and causes it to flow from the ground terminal 457 to the ground node.
  • the sources of mirror source transistor 461 and mirror destination transistor 462 are commonly connected to a ground node. Further, the gate and drain of the mirror source transistor 461 are short-circuited, and the drain is connected to the selection switch 432.
  • the gate of the mirror destination transistor 462 is connected to the gate of the mirror source transistor 461, and the drain is connected to the ground terminal 457.
  • Selection switches 431 and 432 open and close paths between current mirrors 440 and 460 and current control circuit 320 according to selection signal SEL.
  • Selection switch 431 is connected to current control circuit 320 via signal line 329
  • selection switch 432 is connected to current control circuit 320 via signal line 328.
  • This current control circuit 320 controls the current values of reference currents Iref1 and Iref2.
  • the drive capability of the drive circuit 400 can be freely adjusted.
  • this method since there is no need to increase or decrease the number of inverter stages, it is possible to suppress an increase in circuit scale when improving drive capability.
  • the mirror source transistors 441 and 461 are arranged in the drive circuit 400, it is possible to suppress variations in current due to fluctuations in voltage and temperature, and realize stable driving of the drive circuit 400.
  • the selection switches 431 and 432 open and close according to the selection signal SEL, power consumption can be reduced compared to the case where they are always connected to the current control circuit 320.
  • current mirrors are arranged on both the power supply side and the ground side of the driver 450, they can also be arranged only on one side.
  • selection switches 431 and 432 are provided, current mirrors 440 and 460 and current control circuit 320 may be directly connected without providing these.
  • an inverter is arranged as the driver 450, a buffer can also be arranged. Furthermore, multiple stages of inverters and buffers can be arranged as the driver 450.
  • the current mirrors 440 and 460 generate an output current having the same value as the reference current, they can also generate an output current that is twice or more the reference current. In this case, mirror destination transistors are added in a number corresponding to the value of the output current and connected in parallel.
  • FIG. 7 is a circuit diagram showing a configuration example of the initialization drive circuit 500 in the first embodiment of the present technology.
  • This drive circuit 500 includes a control signal generation section 520, selection switches 531 and 532, current mirrors 540 and 560, and a driver 550.
  • control signal generation section 520 The circuit configurations of the control signal generation section 520, selection switches 531 and 532, current mirrors 540 and 560, and driver 550 are similar to the circuits with the same names in the drive circuit 400. However, the control signal generation unit 520 generates the control signal xRST1, and the driver 550 inverts the control signal xRST1 and outputs it as the drive signal RST1.
  • FIG. 8 is a circuit diagram showing a configuration example of the selection drive circuit 600 in the first embodiment of the present technology.
  • This drive circuit 600 includes selection switches 631 and 632, current mirrors 640 and 660, and a driver 650.
  • the respective circuit configurations of the selection switches 631 and 632 and the current mirrors 640 and 660 are similar to the circuits with the same names in the drive circuit 400.
  • the driver 650 changes the level of the selection signal SEL1 as necessary and outputs it to the corresponding first row.
  • a buffer or a two-stage inverter is used as the driver 650.
  • FIG. 9 is a circuit diagram showing a configuration example of the current control circuit 320 in the first embodiment of the present technology.
  • This current control circuit 320 includes a variable current source 321, nMOS transistors 322, 323, and 324, and pMOS transistors 325 and 326.
  • the variable current source 321 generates a current having a value indicated by the setting data.
  • the setting data is held in, for example, a register (not shown).
  • setting data is supplied from a predetermined setting circuit (not shown) that generates setting data depending on the operation mode and the like.
  • nMOS transistors 322, 323, and 324 are commonly connected to a ground node. Further, the gate and drain of the nMOS transistor 322 are short-circuited, and the drain is connected to the variable current source 321. The gate of nMOS transistor 323 is connected to the gate of nMOS transistor 322, and the drain is connected to pMOS transistor 325.
  • the gate of the nMOS transistor 324 is connected to the gate of the nMOS transistor 322, and the drain is connected to a mirror source transistor (not shown) in a current mirror 440 on the power supply side via a selection switch 431.
  • the sources of pMOS transistors 325 and 326 are commonly connected to a ground node. Furthermore, the gate and drain of the pMOS transistor 325 are short-circuited. The gate of the pMOS transistor 326 is connected to the gate of the pMOS transistor 325, and the drain is connected to a mirror source transistor (not shown) in a current mirror 460 on the ground side via a selection switch 432.
  • each of the reference currents Iref1 and Iref2 can be adjusted according to the value.
  • FIG. 10 is a circuit diagram showing a configuration example of the drive circuit 400 in the first comparative example.
  • the drive circuit 400 of the first comparative example includes M (M is an integer) NAND gates 415, M nMOS transistors 452, M NOR gates 416, and M pMOS transistors 451. Be prepared.
  • a drive signal TRG1 is input to the input terminals of M NAND gates 415 and M NOR gates 416. A circuit that generates this drive signal is omitted.
  • the switching signal selm is input to the m-th (m is an integer from 1 to M) NAND gate 415, and the switching signal xselm obtained by inverting selm is input to the m-th NOR gate 416.
  • the NAND gate 415 at each stage supplies the NAND of the drive signal TRG1 and the corresponding switching signal selm to the gate of the m-th nMOS transistor 452.
  • the NOR gate 416 at each stage supplies the NOR of the drive signal TRG1 and the corresponding switching signal xselm to the gate of the m-th pMOS transistor 451.
  • the sources of the M nMOS transistors 452 are commonly connected to a power supply node, and the sources of the M pMOS transistors 451 are commonly connected to a ground node. Further, the drains of the M nMOS transistors 452 and the drains of the M pMOS transistors 451 are connected to a common output node, and the drive signal TRG1 is output from that node.
  • the driver consisting of the m-th nMOS transistor 452 and the pMOS transistor 451 can be enabled or disabled by the switching signals selm and xselm. Thereby, the number of driver stages can be changed and the driving ability of the driving circuit 400 can be adjusted. Increasing the drive capability improves the frame rate, but on the other hand, pixel noise components such as charge injection increase. On the other hand, if the driving ability is lowered, the pixel noise component will be reduced, but the frame rate will be lowered. The driving ability is adjusted in consideration of this trade-off.
  • the wider the variable range of the driving capability the larger the circuit scale.
  • the circuit size becomes twice as large as that when the number of driver stages can be switched up to two stages.
  • FIG. 11 is a circuit diagram showing a configuration example of the column signal processing circuit 250 in the first embodiment of the present technology.
  • This column signal processing circuit 250 includes a plurality of ADCs 251 and a digital signal processing section 252.
  • ADC 251 is arranged for each column.
  • Analog pixel signals from the corresponding columns are input to the ADC 251 via the vertical signal line 219.
  • This ADC 251 converts the pixel signal into a digital signal and supplies it to the digital signal processing section 252.
  • the digital signal processing unit 252 performs various signal processing such as CDS processing as necessary on image data in which digital signals are arranged.
  • the digital signal processing unit 252 then outputs the processed image data to the DSP circuit 120.
  • FIG. 12 is a timing chart showing an example of the operation of the solid-state image sensor 200 in the first embodiment of the present technology. After timing T0, the vertical scanning circuit 300 sequentially selects rows and starts exposure. Then, between timings T1 and T2, the vertical scanning circuit 300 sequentially selects rows, finishes exposure, and outputs pixel signals.
  • the vertical scanning circuit 300 outputs the high-level selection signal SEL1 to the first row over the selection period from timing T1 to T12. Further, the vertical scanning circuit 300 outputs a high-level drive signal RST1 to the first row from timing T1 over the pulse period, and outputs a high-level drive signal TRG1 to the first row from timing T11 within the selection period over the pulse period. Output on one line.
  • the pixels in the first row are initialized by the drive signal RST1, and immediately after that, the reset level is read by the ADC 251. Signal charges are transferred in the pixels of the first row by the drive signal TRG1, and immediately after that, the signal level is read by the ADC 251.
  • the vertical scanning circuit 300 Over the selection period from timing T12 to T13, the vertical scanning circuit 300 outputs a high-level selection signal SEL2 to the second row, and outputs a drive signal to the second row within that period. Thereafter, the vertical scanning circuit 300 sequentially selects rows up to the Nth row and performs similar control.
  • FIG. 13 is a diagram illustrating an example of the state of the drive circuit of each row when driving the first row in the first embodiment of the present technology.
  • the selection signal SEL1 When driving the first row, only the selection signal SEL1 is set to high level, and the selection signals SEL2 to SELN are set to low level. These selection signals turn on only the selection switches 431 and 432 in the first row, and current is supplied only to the driver 450 in the first row. Then, the first row driver 450 outputs the drive signal TRG1 to the first row.
  • FIG. 14 is a diagram illustrating an example of the state of the drive circuit of each row when driving the second row in the first embodiment of the present technology.
  • the selection signal SEL2 is set to high level, and the other selection signals are set to low level. These selection signals turn on only the selection switches 431 and 432 in the second row, and current is supplied only to the driver 450 in the second row. Then, the second row driver 450 outputs the drive signal TRG2 to the second row.
  • FIG. 15 is a diagram illustrating an example of the state of the drive circuit of each row when driving the last row in the first embodiment of the present technology.
  • the selection signal SELN is set to high level, and the other selection signals are set to low level. These selection signals turn on only the selection switches 431 and 432 in the Nth row, and current is supplied only to the driver 450 in the Nth row. Then, the driver 450 in the Nth row outputs the drive signal TRGN to the Nth row.
  • the selection switches 431 and 432 of the row to be driven are turned on in synchronization with the selection signal, and current is supplied only to the driver 450 to be driven. Thereby, power consumption can be reduced compared to the case where current is supplied to the drivers 450 of all rows. Note that if low power consumption is not required, the selection switches 431 and 432 may not be arranged for each row, and the current mirrors 440 and 460 of all rows may be directly connected to the current control circuit 320.
  • the drive capacity is adjusted by controlling the reference current values of the current mirrors 440 and 460, so compared to the first comparative example in which the number of driver stages is changed. This makes it possible to suppress an increase in circuit scale.
  • Second embodiment> In the first embodiment described above, the mirror source transistors 441 and 461 are arranged for each row, but the number of these transistors can also be reduced.
  • the solid-state imaging device 200 in this second embodiment differs from the first embodiment in that mirror source transistors 441 and 461 are shared by a plurality of rows.
  • FIG. 16 is a block diagram showing a configuration example of the solid-state image sensor 200 in the second embodiment of the present technology.
  • the solid-state imaging device 200 of this second embodiment differs from the first embodiment in that it further includes a column signal processing circuit 240.
  • ADCs are arranged for each column similarly to the column signal processing circuit 250. Further, in the pixel array section 210 of the second embodiment, vertical signal lines 218 and 219 are wired for each column. Half of all the rows (odd rows, etc.) are connected to the column signal processing circuit 240 via the vertical signal line 218, and the remaining half (even rows, etc.) are connected to the column signal processing circuit 250 via the vertical signal line 219. Connected. In this way, since two ADCs are arranged for each column, the vertical scanning circuit 300 drives two rows simultaneously, and the column signal processing circuits 240 and 250 simultaneously AD convert the pixel signals of the two rows. (In other words, read out).
  • the ADC in the column signal processing circuit 240 is an example of the first ADC described in the claims
  • the ADC in the column signal processing circuit 250 is an example of the second ADC described in the claims. This is an example.
  • FIG. 17 is a circuit diagram showing a configuration example of a drive circuit in the second embodiment of the present technology.
  • drive circuits 400, 500, and 600 that output TRG, RST, and SEL are connected to odd rows.
  • drive circuits 700, 800, and 900 that output TRG, RST, and SEL are connected to even-numbered rows.
  • the drive circuit 700 includes mirror destination transistors 742 and 762 and a driver 750.
  • Mirror destination transistor 742 is inserted between the power supply terminal of driver 750 and the power supply node
  • mirror destination transistor 762 is inserted between the ground terminal of driver 750 and the ground node.
  • the circuit configuration of the drive circuit 400 of the second embodiment is the same as that of the first embodiment.
  • the gate of the mirror source transistor 441 is also connected to the gate of the mirror destination transistor 742.
  • the gate of the mirror source transistor 461 is also connected to the gate of the mirror destination transistor 762.
  • the control signal xTRG is also input to the input terminal of the driver 750.
  • drivers 450 and 750 are examples of the first and second drivers described in the claims.
  • Mirror destination transistors 442 and 462 are examples of first mirror destination transistors described in the claims.
  • Mirror destination transistors 742 and 762 are examples of second mirror destination transistors described in the claims.
  • the mirror destination transistors are arranged for each row, and the mirror source transistors are shared by two rows.
  • the circuit scale of the vertical scanning circuit 300 can be reduced compared to the first embodiment in which mirror source transistors are arranged for each row.
  • mirror destination transistors and drivers are similarly arranged in the drive circuits 800 and 900, and are connected to the mirror source transistors of the drive circuits 500 and 600.
  • two rows share a mirror source transistor
  • the mirror source transistors are shared by multiple rows, so the circuit scale of the vertical scanning circuit 300 can be reduced.
  • the mirror source transistors 441 and 461 are arranged for each row, but in this configuration, when the amount of power fluctuation is different between the current control circuit 320 and the mirror source transistor, The amount of current may vary from row to row.
  • the solid-state imaging device 200 in the third embodiment differs from the first embodiment in that a mirror source transistor is placed within the current control circuit 320, and a sample and hold circuit is added for each row.
  • FIG. 18 is a circuit diagram showing a configuration example of the drive circuit 400 and the current control circuit 350 in the third embodiment of the present technology.
  • the drive circuit 400 includes a control signal generation section 470, sample and hold circuits 480 and 490, and a driver 450.
  • the driver 450 includes a pMOS transistor 451 and an nMOS transistor 452. These transistors are inserted in series between the power supply node and the ground node, and the drive signal TRG is output from these connection nodes to the corresponding row in the pixel array section 210.
  • the control signal generation unit 470 generates control signals SW1, SW2, SW3, and SW4. Control signals SW1 and SW2 are supplied to sample and hold circuit 480, and control signals SW3 and SW4 are supplied to sample and hold circuit 490.
  • the sample hold circuit 480 includes a sample switch 481, a short circuit switch 482, and a capacitive element 483.
  • the sample switch 481 opens and closes the path between the current control circuit 350 and the gate of the pMOS transistor 451 according to the control signal SW1.
  • the short-circuit switch 482 opens and closes a path between the power supply side terminal and the ground side terminal of the capacitive element 483 in accordance with the control signal SW2.
  • Capacitive element 483 is inserted between the gate and source of pMOS transistor 451.
  • the sample and hold circuit 490 includes a sample switch 491, a short circuit switch 492, and a capacitive element 493.
  • the sample switch 491 opens and closes the path between the current control circuit 350 and the gate of the nMOS transistor 452 according to the control signal SW3.
  • the short-circuit switch 492 opens and closes a path between the power supply side terminal and the ground side terminal of the capacitive element 493 in accordance with the control signal SW4.
  • Capacitive element 493 is inserted between the gate and source of nMOS transistor 452.
  • the current control circuit 350 includes variable current sources 351 and 352, a pMOS transistor 353, and an nMOS transistor 354.
  • variable current source 351 is inserted between the power supply node and the drain of the nMOS transistor 354, and the variable current source 352 is inserted between the ground node and the drain of the pMOS transistor 353.
  • the source of the pMOS transistor 353 is connected to the power supply node, and the gate and drain are short-circuited. Further, the gate of the pMOS transistor 353 is connected to the gate of the pMOS transistor 451 via a sample switch 481.
  • the source of the nMOS transistor 354 is connected to the ground node, and the gate and drain are short-circuited. Further, the gate of the nMOS transistor 354 is connected to the gate of the nMOS transistor 452 via a sample switch 491.
  • drive circuit 500 The configurations of other drive circuits such as drive circuit 500 are similar to drive circuit 400.
  • the pMOS transistor 353 common to each row and the pMOS transistor 451 in each row constitute a current mirror on the power supply side.
  • the pMOS transistor 353 functions as a mirror source transistor of a current mirror, and allows the reference current generated by the variable current source 352 to flow.
  • the pMOS transistor 451 functions as a mirror destination transistor of a current mirror, and generates an output current according to a reference current.
  • the nMOS transistor 354 common to each row and the nMOS transistor 452 in each row constitute a current mirror on the ground side.
  • the nMOS transistor 354 functions as a mirror source transistor of a current mirror, and allows the reference current generated by the variable current source 351 to flow.
  • the nMOS transistor 452 functions as a mirror destination transistor of a current mirror, and generates an output current according to the reference current.
  • the pMOS transistor 353 and the nMOS transistor 354 are examples of mirror source transistors described in the claims. Further, the pMOS transistor 451 and the nMOS transistor 452 are examples of mirror destination transistors described in the claims.
  • a pMOS transistor 451 and an nMOS transistor 452 which are mirror destinations of the current mirrors on the power supply side and the ground side, constitute a driver 450, and output a drive signal TRG, which is a voltage signal, from the drain.
  • FIG. 19 is a diagram illustrating an example of a drive circuit and operation in a second comparative example. As illustrated in a in the figure, in the second comparative example, power is supplied to each driver (driver 450, etc.) via a package terminal 911, a power supply pad 912, and a power supply wiring 913.
  • the symbol a for resistance in the figure indicates the impedance of the wiring or interposer.
  • One method for reducing internal impedance is to increase the width of the power supply wiring, but in this case, in the second comparative example, the circuit area increases.
  • the current values of the variable current sources 351 and 352 by changing the current values of the variable current sources 351 and 352, the current values of the reference currents of the current mirrors on the power supply side and the ground side can be controlled. can.
  • the current value By controlling the current value, power fluctuations due to IR drop can be suppressed.
  • the circuit scale of the drive circuit 400 and the like can be reduced without significantly increasing power consumption or reducing drive capability.
  • sample and hold circuit 480 holds the voltage between the gate and source of the pMOS transistor 451 in synchronization with the control signal SW1.
  • the sample and hold circuit 490 holds the voltage between the gate and source of the nMOS transistor 452 in synchronization with the control signal SW3.
  • sample and hold circuits maintain the gate-source voltage constant even if the respective source voltages (power supply voltage or ground voltage) of the pMOS transistor 451 and the nMOS transistor 452 fluctuate, suppressing fluctuations in drive capability. be able to.
  • FIG. 20 is a timing chart showing an example of the operation of the drive circuit 400 in the third embodiment of the present technology.
  • the control signal generation section 470 supplies the high-level control signal SW1 over the pulse period from timing T0 to T1. Furthermore, the control signal generation section 470 sets the control signal SW2 to a low level over a period from timing T0 to T2. Outside this period, the control signal SW2 is controlled to a high level. Even if the sample switch 481 is turned off at timing T1 and the power supply voltage VDD fluctuates, the gate voltage Vpg of the pMOS transistor 451 also fluctuates to the same extent due to the connection of the capacitive element 483. Therefore, the gate-source voltage of the pMOS transistor 451 becomes constant, and fluctuations in the power supply voltage do not affect the driving ability.
  • control signal generation section 470 supplies a high-level control signal SW3 over the pulse period from timing T2 to T3. Further, the control signal generation unit 470 sets the control signal SW4 to a high level over the period from timing T0 to timing T2. Outside this period, control signal SW4 is controlled to low level. Even if the sample switch 491 is turned off at timing T3 and the ground voltage VRL fluctuates, the gate voltage Vng of the nMOS transistor 452 fluctuates to the same extent due to the connection of the capacitive element 493. Therefore, the gate-source voltage of the nMOS transistor 452 becomes constant, and fluctuations in the ground voltage do not affect the driving ability.
  • the driver 450 outputs the drive signal TRG1 within the period from timing T0 to timing T2.
  • FIG. 21 is a diagram for explaining the effects of the third embodiment of the present technology.
  • a shows the layout of the drive unit 330 of the second comparative example
  • b in the same figure shows the layout of the drive unit 330 of the third embodiment.
  • the power supply wiring 913 is thick and its area is large.
  • the area of the power supply wiring 913 can be reduced.
  • the sample and hold circuits 480 and 490 hold the gate-source voltage of the mirror destination transistor, so even if the power supply voltage or the ground voltage fluctuates, the sample and hold circuits 480 and 490 can be driven. ability can be maintained.
  • the present technology can also have the following configuration.
  • a driver that outputs a predetermined drive signal from an output terminal; a current mirror that generates an output current according to a predetermined reference current and flows it to at least one of a power supply side and a ground side of the driver;
  • a solid-state imaging device comprising: a current control circuit that controls a current value of the reference current.
  • the solid-state imaging device according to (1) further comprising a pixel array section in which a plurality of pixels that generate analog signals in accordance with the drive signal are arranged in a two-dimensional grid.
  • the driver and the current mirror are arranged for each row in the pixel array section;
  • the current mirror is a mirror source transistor through which the reference current flows;
  • the current mirror is a mirror source transistor through which the reference current flows; first and second mirror destination transistors that share the mirror source transistor and generate the output current;
  • the driver includes first and second drivers; the first driver outputs the output current to a first row in the pixel array section; the second driver outputs the output current to a second row in the pixel array section; the first mirror destination transistor passes the output current to the first driver;
  • a first analog-to-digital converter that converts the analog signal from the first row into a digital signal; further comprising a second analog-to-digital converter that converts the analog signal from the second row into a digital signal
  • the output current includes first and second output currents;
  • the current mirror is a power supply side current mirror that causes the first output current to flow from the power supply node to the power supply terminal of the driver;
  • the solid-state image sensor according to any one of (1) to (7), including a ground side current mirror that causes the second output current to flow from the ground terminal of the driver to the ground node.
  • a variable current source a mirror source transistor through which a reference current generated by the variable current source flows; a mirror destination transistor that generates an output current according to the reference current and outputs a voltage signal from its drain;
  • a solid-state image pickup device comprising a sample and hold circuit that samples and holds a voltage between the gate and source of the mirror destination transistor in synchronization with a predetermined control signal.
  • a driver that outputs a predetermined drive signal from an output terminal; a current mirror that generates an output current according to a predetermined reference current and flows it to at least one of a power supply side and a ground side of the driver; a current control circuit that controls the current value of the reference current; a plurality of pixels that generate analog signals according to the drive signal;
  • An imaging device comprising: a signal processing circuit that performs predetermined signal processing on the analog signal.
  • Imaging device 110
  • Optical section 120
  • DSP circuit 130 Display section 140
  • Operation section 150
  • Bus 160
  • Frame memory 170
  • Power supply section 180
  • Solid-state image sensor 210
  • Pixel array section 220 Pixel 221 Photoelectric conversion element 222 Transfer transistor 223 Reset transistor 224
  • Floating diffusion layer 225
  • Amplification transistor 226 Selection transistor 230
  • Timing control circuit 240 250
  • Column signal processing circuit 251
  • Digital signal processing section 300
  • Vertical scanning circuit 310 Decoder 320, 350
  • Current control circuit 321, 351, 352 Variable current source 322 to 324, 354, 452 NMOS transistor 325, 326, 353, 451 PMOS transistor 330
  • Drive section 400, 500, 600, 700, 800, 900 Drive circuit
  • Selection signal generation section 411
  • Logic gate 412 Latch circuit 415 NAND (Negated OR) gate 416 NOR (Negated OR) gate 420, 470, 520
  • Control signal generation section 431, 432

Abstract

The present invention suppresses an increase in circuit scale in a solid-state imaging element in which the drive performance of a drive circuit is variable. This solid-state imaging element is equipped with a driver, a current mirror and a current control circuit. The driver in the solid-state imaging element outputs a prescribed drive signal from an output terminal. The current mirror in the solid-state imaging element generates an output current which corresponds to a prescribed reference current, and causes the same to flow to the power source side of the driver or the ground side thereof. The current control circuit in the solid-state imaging element controls the current value of the reference current.

Description

固体撮像素子、および、撮像装置Solid-state imaging device and imaging device
 本技術は、固体撮像素子に関する。詳しくは、画素を駆動する駆動回路を有する固体撮像素子、および、撮像装置に関する。 The present technology relates to a solid-state image sensor. Specifically, the present invention relates to a solid-state imaging device and an imaging device having a drive circuit that drives pixels.
 従来より、固体撮像素子などにおいては、行を駆動するために、駆動回路が行ごとに配置されている。例えば、2段のインバータからなる回路を駆動回路として行ごとに配置し、ブルーミングが生じないように、電圧を制御する固体撮像素子が提案されている(例えば、特許文献1参照。)。 Conventionally, in solid-state image sensors and the like, drive circuits have been arranged for each row in order to drive the rows. For example, a solid-state image sensor has been proposed in which a circuit including two stages of inverters is arranged as a drive circuit for each row and the voltage is controlled to prevent blooming (see, for example, Patent Document 1).
特開2012-195734号公報Japanese Patent Application Publication No. 2012-195734
 上述の従来技術では、ブルーミング対策により、画質の向上を図っている。しかしながら、上述の固体撮像素子では、駆動回路の駆動能力を向上させる際に、インバータの段数を増やす必要があり、回路規模が増大してしまうという問題がある。 The above-mentioned conventional technology attempts to improve image quality by taking measures against blooming. However, in the above-described solid-state image sensor, there is a problem in that the number of inverter stages needs to be increased when improving the driving capability of the drive circuit, resulting in an increase in circuit scale.
 本技術はこのような状況に鑑みて生み出されたものであり、駆動回路の駆動能力が可変の固体撮像素子において、回路規模の増大を抑制することを目的とする。 The present technology was created in view of this situation, and its purpose is to suppress the increase in circuit scale in a solid-state image sensor in which the driving ability of the driving circuit is variable.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定の駆動信号を出力端子から出力するドライバと、所定の参照電流に応じた出力電流を生成して上記ドライバの電源側および接地側の少なくとも一方に流すカレントミラーと、
上記参照電流の電流値を制御する電流制御回路とを具備する固体撮像素子、および、撮像装置である。これにより、回路規模の増大が抑制されるという作用をもたらす。
This technology was developed to solve the above-mentioned problems, and its first aspect is a driver that outputs a predetermined drive signal from an output terminal, and a driver that generates an output current according to a predetermined reference current. a current mirror that causes the current to flow to at least one of the power supply side and the ground side of the driver;
The present invention provides a solid-state imaging device and an imaging device including a current control circuit that controls the current value of the reference current. This brings about the effect of suppressing an increase in circuit scale.
 また、この第1の側面において、上記駆動信号に従ってアナログ信号を生成する複数の画素が二次元格子状に配列された画素アレイ部をさらに具備してもよい。これにより、画像が撮像されるという作用をもたらす。 Further, in this first aspect, a pixel array section may be further provided in which a plurality of pixels that generate analog signals in accordance with the drive signal are arranged in a two-dimensional grid. This brings about the effect that an image is captured.
 また、この第1の側面において、上記画素アレイ部内の行ごとに上記ドライバおよび上記カレントミラーが配置され、上記カレントミラーは、上記参照電流を流すミラー元トランジスタと、上記出力電流を生成するミラー先トランジスタとを備えてもよい。これにより、行ごとの電流ばらつきが抑制されるという作用をもたらす。 Further, in this first aspect, the driver and the current mirror are arranged for each row in the pixel array section, and the current mirror includes a mirror source transistor that flows the reference current and a mirror destination that generates the output current. It may also include a transistor. This provides the effect of suppressing current variations from row to row.
 また、この第1の側面において、上記カレントミラーは、上記参照電流を流すミラー元トランジスタと、上記ミラー元トランジスタを共有し、上記出力電流を生成する第1および第2のミラー先トランジスタとを備え、上記ドライバは、第1および第2のドライバを含み、上記第1のドライバは、上記画素アレイ部内の第1の行に上記出力電流を出力し、上記第2のドライバは、上記画素アレイ部内の第2の行に上記出力電流を出力し、上記第1のミラー先トランジスタは、上記第1のドライバに上記出力電流を流し、上記第2のミラー先トランジスタは、上記第2のドライバに上記出力電流を流してもよい。これにより、垂直走査回路の回路規模が削減されるという作用をもたらす。 Further, in this first aspect, the current mirror includes a mirror source transistor through which the reference current flows, and first and second mirror destination transistors that share the mirror source transistor and generate the output current. , the driver includes first and second drivers, the first driver outputs the output current to a first row within the pixel array section, and the second driver outputs the output current to a first row within the pixel array section. the first mirrored transistor outputs the output current to a second row of the first driver, the second mirrored transistor supplies the output current to the second driver; An output current may be applied. This brings about the effect that the circuit scale of the vertical scanning circuit is reduced.
 また、この第1の側面において、上記第1の行からのアナログ信号をデジタル信号に変換する第1のアナログデジタル変換器と、上記第2の行からのアナログ信号をデジタル信号に変換する第2のアナログデジタル変換器とをさらに具備し、上記第1および第2のドライバは、同時に上記出力電流を供給してもよい。これにより、複数行が同時に読み出されるという作用をもたらす。 Further, in this first aspect, a first analog-to-digital converter converts an analog signal from the first row into a digital signal, and a second analog-to-digital converter converts an analog signal from the second row into a digital signal. and an analog-to-digital converter, the first and second drivers may simultaneously supply the output current. This brings about the effect that multiple rows are read at the same time.
 また、この第1の側面において、上記カレントミラーと上記電流制御回路との間の経路を所定の選択信号に同期して開閉する選択スイッチをさらに具備してもよい。これにより、消費電力が削減されるという作用をもたらす。 In addition, in this first aspect, it may further include a selection switch that opens and closes a path between the current mirror and the current control circuit in synchronization with a predetermined selection signal. This brings about the effect of reducing power consumption.
 また、この第1の側面において、上記選択信号を生成して出力する論理ゲートと、上記出力された選択信号を保持して上記選択スイッチに供給するラッチ回路とをさらに具備してもよい。これにより、セトリングによる電位変動が抑制されるという作用をもたらす。 Furthermore, in this first aspect, the device may further include a logic gate that generates and outputs the selection signal, and a latch circuit that holds the output selection signal and supplies it to the selection switch. This brings about the effect of suppressing potential fluctuations due to settling.
 また、この第1の側面において、上記出力電流は、第1および第2の出力電流を含み、上記カレントミラーは、電源ノードから上記ドライバの電源端子に上記第1の出力電流を流す電源側カレントミラーと、上記ドライバの接地端子から接地ノードに上記第2の出力電流を流す接地側カレントミラーとを含むものであってもよい。これにより、電源側、接地側の両方の電流が制御されるという作用をもたらす。 Further, in this first aspect, the output current includes first and second output currents, and the current mirror is configured to generate a power supply side current that causes the first output current to flow from the power supply node to the power supply terminal of the driver. The device may include a mirror and a ground side current mirror that causes the second output current to flow from the ground terminal of the driver to the ground node. This brings about the effect that the currents on both the power supply side and the ground side are controlled.
 また、本技術の第2の側面は、可変電流源と、上記可変電流源の生成した参照電流を流すミラー元トランジスタと、上記参照電流に応じた出力電流を生成してドレインから電圧信号を出力するミラー先トランジスタと、所定の制御信号に同期して上記ミラー先トランジスタのゲート-ソース間の電圧をサンプルホールドするサンプルホールド回路とを具備する固体撮像素子である。これにより、駆動能力が安定するという作用をもたらす。 In addition, a second aspect of the present technology includes a variable current source, a mirror source transistor through which a reference current generated by the variable current source flows, and an output current corresponding to the reference current and outputting a voltage signal from the drain. The solid-state image sensing device includes a mirror destination transistor, and a sample and hold circuit that samples and holds a voltage between the gate and source of the mirror destination transistor in synchronization with a predetermined control signal. This brings about the effect of stabilizing the driving ability.
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology. 本技術の第1の実施の形態における固体撮像素子の一構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of a configuration of a solid-state image sensor according to a first embodiment of the present technology. 本技術の第1の実施の形態における画素の一構成例を示す回路図である。FIG. 2 is a circuit diagram showing an example of a configuration of a pixel in a first embodiment of the present technology. 本技術の第1の実施の形態における垂直走査回路の一構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a vertical scanning circuit according to a first embodiment of the present technology. 本技術の第1の実施の形態における駆動部の一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a drive unit in the first embodiment of the present technology. 本技術の第1の実施の形態における転送用の駆動回路の一構成例を示す回路図である。FIG. 2 is a circuit diagram illustrating a configuration example of a transfer drive circuit according to the first embodiment of the present technology. 本技術の第1の実施の形態における初期化用の駆動回路の一構成例を示す回路図である。FIG. 2 is a circuit diagram showing a configuration example of a drive circuit for initialization in the first embodiment of the present technology. 本技術の第1の実施の形態における選択用の駆動回路の一構成例を示す回路図である。FIG. 2 is a circuit diagram showing a configuration example of a selection drive circuit in the first embodiment of the present technology. 本技術の第1の実施の形態における電流制御回路の一構成例を示す回路図である。FIG. 2 is a circuit diagram showing a configuration example of a current control circuit according to a first embodiment of the present technology. 第1の比較例における駆動回路の一構成例を示す回路図である。FIG. 2 is a circuit diagram showing a configuration example of a drive circuit in a first comparative example. 本技術の第1の実施の形態におけるカラム信号処理回路の一構成例を示す回路図である。FIG. 2 is a circuit diagram showing a configuration example of a column signal processing circuit according to a first embodiment of the present technology. 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of operation of a solid-state image sensing device in a 1st embodiment of this art. 本技術の第1の実施の形態における第1行を駆動する際の各行の駆動回路の状態の一例を示す図である。FIG. 6 is a diagram illustrating an example of the state of the drive circuit of each row when driving the first row in the first embodiment of the present technology. 本技術の第1の実施の形態における第2行を駆動する際の各行の駆動回路の状態の一例を示す図である。FIG. 7 is a diagram illustrating an example of the state of the drive circuit of each row when driving the second row in the first embodiment of the present technology. 本技術の第1の実施の形態における最終行を駆動する際の各行の駆動回路の状態の一例を示す図である。FIG. 6 is a diagram illustrating an example of the state of the drive circuit of each row when driving the last row in the first embodiment of the present technology. 本技術の第2の実施の形態における固体撮像素子の一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a solid-state image sensor according to a second embodiment of the present technology. 本技術の第2の実施の形態における駆動回路の一構成例を示す回路図である。FIG. 7 is a circuit diagram illustrating a configuration example of a drive circuit according to a second embodiment of the present technology. 本技術の第3の実施の形態における駆動回路および電流制御回路の一構成例を示す回路図である。FIG. 7 is a circuit diagram showing an example of a configuration of a drive circuit and a current control circuit in a third embodiment of the present technology. 第2の比較例における駆動回路および動作の一例を示す図である。FIG. 7 is a diagram illustrating an example of a drive circuit and operation in a second comparative example. 本技術の第3の実施の形態における駆動回路の動作の一例を示すタイミングチャートである。12 is a timing chart illustrating an example of the operation of the drive circuit in the third embodiment of the present technology. 本技術の第3の実施の形態における効果を説明するための図である。It is a figure for explaining the effect in a 3rd embodiment of this technology.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(参照電流の電流値を制御する例)
 2.第2の実施の形態(参照電流の電流値を制御し、複数行でミラー元トランジスタを共有する例)
 3.第3の実施の形態(参照電流の電流値を制御し、ミラー先トランジスタのゲート-ソース間電圧を保持する例)
Hereinafter, a mode for implementing the present technology (hereinafter referred to as an embodiment) will be described. The explanation will be given in the following order.
1. First embodiment (example of controlling the current value of reference current)
2. Second embodiment (example where the current value of the reference current is controlled and a mirror source transistor is shared by multiple rows)
3. Third embodiment (example of controlling the current value of the reference current and maintaining the gate-source voltage of the mirror destination transistor)
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200およびDSP(Digital Signal Processing)回路120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、フレームメモリ160、記憶部170および電源部180を備える。撮像装置100としては、スマートフォン、デジタルスチルカメラや車載カメラなどが想定される。
<1. First embodiment>
[Example of configuration of imaging device]
FIG. 1 is a block diagram illustrating a configuration example of an imaging device according to a first embodiment of the present technology. The imaging device 100 is a device for capturing image data, and includes an optical section 110, a solid-state imaging device 200, and a DSP (Digital Signal Processing) circuit 120. Further, the imaging device 100 includes a display section 130, an operation section 140, a bus 150, a frame memory 160, a storage section 170, and a power supply section 180. As the imaging device 100, a smartphone, a digital still camera, a vehicle-mounted camera, etc. are assumed.
 光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、光電変換により画像データを生成するものである。この固体撮像素子200は、画像データを生成し、DSP回路120に信号線209を介して供給する。 The optical section 110 collects light from a subject and guides it to the solid-state image sensor 200. The solid-state image sensor 200 generates image data through photoelectric conversion. This solid-state image sensor 200 generates image data and supplies it to the DSP circuit 120 via a signal line 209.
 DSP回路120は、画像データに対して所定の信号処理を実行するものである。このDSP回路120は、処理後の画像データを、バス150を介してフレームメモリ160などに出力する。 The DSP circuit 120 performs predetermined signal processing on image data. This DSP circuit 120 outputs the processed image data to a frame memory 160 or the like via a bus 150.
 表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。 The display unit 130 displays image data. As the display unit 130, for example, a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed. The operation unit 140 generates an operation signal according to a user's operation.
 バス150は、光学部110、固体撮像素子200、DSP回路120、表示部130、操作部140、フレームメモリ160、記憶部170および電源部180が互いにデータをやりとりするための共通の経路である。 The bus 150 is a common path through which the optical section 110, solid-state image sensor 200, DSP circuit 120, display section 130, operation section 140, frame memory 160, storage section 170, and power supply section 180 exchange data with each other.
 フレームメモリ160は、画像データを保持するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。電源部180は、固体撮像素子200、DSP回路120や表示部130などに電源を供給するものである。 The frame memory 160 holds image data. The storage unit 170 stores various data such as image data. The power supply section 180 supplies power to the solid-state image sensor 200, the DSP circuit 120, the display section 130, and the like.
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、垂直走査回路300、画素アレイ部210、タイミング制御回路230およびカラム信号処理回路250を備える。
[Configuration example of solid-state image sensor]
FIG. 2 is a block diagram showing a configuration example of the solid-state image sensor 200 in the first embodiment of the present technology. This solid-state imaging device 200 includes a vertical scanning circuit 300, a pixel array section 210, a timing control circuit 230, and a column signal processing circuit 250.
 画素アレイ部210内には、二次元格子状に複数の画素220が配列される。以下、水平方向に配列された画素220の集合を「行」と称し、垂直方向に配列された画素220の集合を「列」と称する。 A plurality of pixels 220 are arranged in a two-dimensional grid in the pixel array section 210. Hereinafter, a set of pixels 220 arranged in the horizontal direction will be referred to as a "row", and a set of pixels 220 arranged in the vertical direction will be referred to as a "column".
 画素220は、垂直走査回路300からの駆動信号に従って、光電変換によりアナログの画素信号を生成し、カラム信号処理回路250に出力するものである。 The pixel 220 generates an analog pixel signal by photoelectric conversion according to the drive signal from the vertical scanning circuit 300, and outputs it to the column signal processing circuit 250.
 垂直走査回路300は、行を順に駆動し、画素信号を出力させるものである。タイミング制御回路230は、撮像タイミングを示す垂直同期信号VSYNCに同期して、垂直走査回路300およびカラム信号処理回路250のそれぞれの動作タイミングを制御するものである。 The vertical scanning circuit 300 sequentially drives the rows and outputs pixel signals. The timing control circuit 230 controls the operation timing of the vertical scanning circuit 300 and the column signal processing circuit 250 in synchronization with the vertical synchronization signal VSYNC indicating the imaging timing.
 カラム信号処理回路250は、列のそれぞれからの画素信号に対して、AD(Analog to Digital)変換処理や、CDS(Correlated Double Sampling)処理などの各種の信号処理を行うものである。このカラム信号処理回路250は、処理後の画素信号を配列した画像データをDSP回路120に供給する。なお、カラム信号処理回路250は、特許請求の範囲に記載の信号処理回路の一例である。 The column signal processing circuit 250 performs various signal processing such as AD (Analog to Digital) conversion processing and CDS (Correlated Double Sampling) processing on pixel signals from each column. The column signal processing circuit 250 supplies image data in which processed pixel signals are arranged to the DSP circuit 120. Note that the column signal processing circuit 250 is an example of a signal processing circuit described in the claims.
 [画素の構成例]
 図3は、本技術の第1の実施の形態における画素220の一構成例を示す回路図である。この画素220は、光電変換素子221、転送トランジスタ222、リセットトランジスタ223、浮遊拡散層224、増幅トランジスタ225および選択トランジスタ226を備える。また、画素アレイ部210には、列ごとに垂直信号線219が配線される。
[Example of pixel configuration]
FIG. 3 is a circuit diagram showing a configuration example of the pixel 220 in the first embodiment of the present technology. This pixel 220 includes a photoelectric conversion element 221, a transfer transistor 222, a reset transistor 223, a floating diffusion layer 224, an amplification transistor 225, and a selection transistor 226. Further, in the pixel array section 210, vertical signal lines 219 are wired for each column.
 光電変換素子221は、入射光に対する光電変換により電荷を生成するものである。転送トランジスタ222は、垂直走査回路300からの駆動信号TRGに従って、光電変換素子221から浮遊拡散層224へ電荷を転送するものである。リセットトランジスタ223は、垂直走査回路300からの駆動信号RSTに従って、浮遊拡散層224を初期化するものである。 The photoelectric conversion element 221 generates charges by photoelectric conversion of incident light. The transfer transistor 222 transfers charges from the photoelectric conversion element 221 to the floating diffusion layer 224 in accordance with the drive signal TRG from the vertical scanning circuit 300. The reset transistor 223 initializes the floating diffusion layer 224 according to the drive signal RST from the vertical scanning circuit 300.
 浮遊拡散層224は、電荷を蓄積して、電荷量に応じた電圧を生成するものである。増幅トランジスタ225は、浮遊拡散層224の電圧を増幅するものである。選択トランジスタ226は、垂直走査回路300からの選択信号SELに従って、増幅後の電圧の信号を画素信号として、垂直信号線219を介してカラム信号処理回路250に出力するものである。 The floating diffusion layer 224 accumulates charge and generates a voltage according to the amount of charge. The amplification transistor 225 amplifies the voltage of the floating diffusion layer 224. The selection transistor 226 outputs the amplified voltage signal as a pixel signal to the column signal processing circuit 250 via the vertical signal line 219 in accordance with the selection signal SEL from the vertical scanning circuit 300.
 なお、画素220の回路構成は、垂直走査回路300の制御に従って画素信号を生成することができるものであれば、同図に例示したものに限定されない。 Note that the circuit configuration of the pixel 220 is not limited to that illustrated in the figure as long as it can generate a pixel signal according to the control of the vertical scanning circuit 300.
 [垂直走査回路の構成例]
 図4は、本技術の第1の実施の形態における垂直走査回路300の一構成例を示すブロック図である。この垂直走査回路300は、デコーダー310、電流制御回路320および駆動部330を備える。
[Example of configuration of vertical scanning circuit]
FIG. 4 is a block diagram showing a configuration example of the vertical scanning circuit 300 in the first embodiment of the present technology. This vertical scanning circuit 300 includes a decoder 310, a current control circuit 320, and a drive section 330.
 デコーダー310は、タイミング制御回路230の制御に従って、デコード処理により複数の信号を生成するものである。このデコーダー310は、それらの信号を駆動部330に供給する。 The decoder 310 generates a plurality of signals through decoding processing under the control of the timing control circuit 230. This decoder 310 supplies these signals to the drive section 330.
 駆動部330には、行ごとに、駆動回路400、500および600が配置される。行数をN(Nは、整数)とすると、駆動回路400、500および600は、N個ずつ設けられる。 In the drive unit 330, drive circuits 400, 500, and 600 are arranged for each row. Assuming that the number of rows is N (N is an integer), N driving circuits 400, 500, and 600 are provided.
 駆動回路400は、電荷の転送用の駆動信号TRGを生成し、対応する行に出力するものである。駆動回路500は、初期化用の駆動信号RSTを生成し、対応する行に出力するものである。駆動回路600は、選択信号SELを生成し、対応する行に出力するものである。第n(nは、1乃至Nの整数)行のTRG、RST、SELのそれぞれをTRGn、RSTn、SELnとする。 The drive circuit 400 generates a drive signal TRG for charge transfer and outputs it to the corresponding row. The drive circuit 500 generates a drive signal RST for initialization and outputs it to a corresponding row. The drive circuit 600 generates a selection signal SEL and outputs it to a corresponding row. Let TRG, RST, and SEL in the n-th (n is an integer from 1 to N) row be TRGn, RSTn, and SELn, respectively.
 電流制御回路320は、電流値を示す設定データに従って駆動部330内の電流を制御するものである。 The current control circuit 320 controls the current within the drive unit 330 according to setting data indicating a current value.
 [駆動部の構成例]
 図5は、本技術の第1の実施の形態における駆動部330の一構成例を示すブロック図である。駆動回路400および500のそれぞれには、デコーダー310からの信号が入力される。第1行の駆動回路400は、選択信号SEL1を生成し、第1行の駆動回路500および600に供給する。また、駆動回路400、500および600は、電流制御回路320に共通に接続される。第2行以降に対応する各駆動回路についても同様である。
[Example of configuration of drive unit]
FIG. 5 is a block diagram showing a configuration example of the drive section 330 in the first embodiment of the present technology. A signal from decoder 310 is input to each of drive circuits 400 and 500. The first row drive circuit 400 generates a selection signal SEL1 and supplies it to the first row drive circuits 500 and 600. Further, drive circuits 400, 500, and 600 are commonly connected to current control circuit 320. The same applies to each drive circuit corresponding to the second and subsequent rows.
 [駆動回路の構成例]
 図6は、本技術の第1の実施の形態における転送用の駆動回路400の一構成例を示す回路図である。この駆動回路400は、選択信号生成部410と、制御信号生成部420と、選択スイッチ431および432と、カレントミラー440および460と、ドライバ450とを備える。
[Configuration example of drive circuit]
FIG. 6 is a circuit diagram showing a configuration example of the transfer drive circuit 400 in the first embodiment of the present technology. This drive circuit 400 includes a selection signal generation section 410, a control signal generation section 420, selection switches 431 and 432, current mirrors 440 and 460, and a driver 450.
 選択信号生成部410は、選択信号SEL1を生成するものである。この選択信号生成部410は、論理ゲート411およびラッチ回路412を備える。論理ゲート411として、例えば、NAND(否定論理積)ゲートが用いられる。 The selection signal generation section 410 generates the selection signal SEL1. This selection signal generation section 410 includes a logic gate 411 and a latch circuit 412. As the logic gate 411, for example, a NAND (not logical product) gate is used.
 論理ゲート411は、デコーダー310からの複数の信号に対して、所定の論理演算を行うものである。この論理ゲート411は、処理結果を選択信号SEL1として、ラッチ回路412に供給する。ラッチ回路412は、論理ゲート411からの選択信号SEL1を保持し、その信号を選択スイッチ431および432と、駆動回路500などとに供給するものである。ラッチ回路412が保持する時間は、選択スイッチ431および432のセトリング時間を考慮して設定される。 The logic gate 411 performs a predetermined logical operation on a plurality of signals from the decoder 310. This logic gate 411 supplies the processing result to the latch circuit 412 as a selection signal SEL1. The latch circuit 412 holds the selection signal SEL1 from the logic gate 411 and supplies the signal to the selection switches 431 and 432, the drive circuit 500, and the like. The time that the latch circuit 412 holds is set in consideration of the settling time of the selection switches 431 and 432.
 制御信号生成部420は、制御信号xTRG1を生成し、ドライバ450の入力端子458に供給するものである。この制御信号生成部420の回路構成は、例えば、選択信号生成部410と同様である。 The control signal generation unit 420 generates a control signal xTRG1 and supplies it to the input terminal 458 of the driver 450. The circuit configuration of this control signal generation section 420 is the same as that of the selection signal generation section 410, for example.
 カレントミラー440は、参照電流Iref1に応じた出力電流Iout1を生成し、電源側(すなわち、電源ノードからドライバ450の電源端子456)に流すものである。例えば、参照電流Iref1と同じ値の電流が出力電流Iout1として生成される。このカレントミラー440は、ミラー元トランジスタ441およびミラー先トランジスタ442を備える。これらのトランジスタとして、例えば、pMOSトランジスタが用いられる。なお、カレントミラー440は、特許請求の範囲に記載の電源側カレントミラーの一例である。 The current mirror 440 generates an output current Iout1 according to the reference current Iref1 and sends it to the power supply side (that is, from the power supply node to the power supply terminal 456 of the driver 450). For example, a current having the same value as the reference current Iref1 is generated as the output current Iout1. This current mirror 440 includes a mirror source transistor 441 and a mirror destination transistor 442. For example, pMOS transistors are used as these transistors. Note that the current mirror 440 is an example of a power supply side current mirror described in the claims.
 ミラー元トランジスタ441は、参照電流Iref1を流すものである。ミラー先トランジスタ442は、参照電流Iref1に応じた出力電流Iout1を生成し、電源ノードから電源端子456に流すものである。これらのミラー元トランジスタ441およびミラー先トランジスタ442のソースは、電源ノードに共通に接続される。また、ミラー元トランジスタ441のゲートおよびドレイン間は短絡され、ドレインは選択スイッチ431に接続される。ミラー先トランジスタ442のゲートは、ミラー元トランジスタ441のゲートに接続され、ドレインは、電源端子456に接続される。 The mirror source transistor 441 is for flowing the reference current Iref1. The mirror destination transistor 442 generates an output current Iout1 according to the reference current Iref1, and causes it to flow from the power supply node to the power supply terminal 456. The sources of these mirror source transistor 441 and mirror destination transistor 442 are commonly connected to a power supply node. Further, the gate and drain of the mirror source transistor 441 are short-circuited, and the drain is connected to the selection switch 431. The gate of the mirror destination transistor 442 is connected to the gate of the mirror source transistor 441, and the drain is connected to the power supply terminal 456.
 ドライバ450は、制御信号xTRG1に基づいて、駆動信号TRG1を生成し、画素アレイ部210の対応する行に出力するものである。このドライバ450は、pMOSトランジスタ451およびnMOSトランジスタ452を備える。これらのトランジスタは、電源端子456および接地端子457の間において直列に接続される。また、これらのトランジスタのゲートは、入力端子458に共通に接続され、それらのトランジスタの接続ノードは、出力端子459に接続される。この回路構成により、ドライバ450は、制御信号xTRG1を反転し、駆動信号TRG1として出力するインバータとして機能する。また、ドライバ450は、反転する際に、必要に応じて信号のレベルをシフトさせる。 The driver 450 generates a drive signal TRG1 based on the control signal xTRG1 and outputs it to the corresponding row of the pixel array section 210. This driver 450 includes a pMOS transistor 451 and an nMOS transistor 452. These transistors are connected in series between power supply terminal 456 and ground terminal 457. Further, the gates of these transistors are commonly connected to an input terminal 458, and the connection nodes of these transistors are connected to an output terminal 459. With this circuit configuration, the driver 450 functions as an inverter that inverts the control signal xTRG1 and outputs it as the drive signal TRG1. Furthermore, when inverting, the driver 450 shifts the level of the signal as necessary.
 カレントミラー460は、参照電流Iref2に応じた出力電流Iout2を生成し、接地側(すなわち、ドライバ450の接地端子457から接地ノード)に流すものである。例えば、参照電流Iref2と同じ値の電流が出力電流Iout2として生成される。このカレントミラー460は、ミラー元トランジスタ461およびミラー先トランジスタ462を備える。これらのトランジスタとして、例えば、nMOSトランジスタが用いられる。なお、カレントミラー460は、特許請求の範囲に記載の接地側カレントミラーの一例である。 The current mirror 460 generates an output current Iout2 according to the reference current Iref2 and sends it to the ground side (that is, from the ground terminal 457 of the driver 450 to the ground node). For example, a current having the same value as the reference current Iref2 is generated as the output current Iout2. This current mirror 460 includes a mirror source transistor 461 and a mirror destination transistor 462. For example, nMOS transistors are used as these transistors. Note that the current mirror 460 is an example of a ground side current mirror described in the claims.
 ミラー元トランジスタ461は、参照電流Iref2を流すものである。ミラー先トランジスタ462は、参照電流Iref2に応じた出力電流Iout2を生成し、接地端子457から接地ノードに流すものである。これらのミラー元トランジスタ461およびミラー先トランジスタ462のソースは、接地ノードに共通に接続される。また、ミラー元トランジスタ461のゲートおよびドレイン間は短絡され、ドレインは選択スイッチ432に接続される。ミラー先トランジスタ462のゲートはミラー元トランジスタ461のゲートに接続され、ドレインは、接地端子457に接続される。 The mirror source transistor 461 is for flowing the reference current Iref2. The mirror destination transistor 462 generates an output current Iout2 according to the reference current Iref2, and causes it to flow from the ground terminal 457 to the ground node. The sources of mirror source transistor 461 and mirror destination transistor 462 are commonly connected to a ground node. Further, the gate and drain of the mirror source transistor 461 are short-circuited, and the drain is connected to the selection switch 432. The gate of the mirror destination transistor 462 is connected to the gate of the mirror source transistor 461, and the drain is connected to the ground terminal 457.
 選択スイッチ431および432は、選択信号SELに従って、カレントミラー440および460と電流制御回路320との間の経路を開閉するものである。選択スイッチ431は、信号線329を介して電流制御回路320に接続され、選択スイッチ432は、信号線328を介して電流制御回路320に接続される。この電流制御回路320により、参照電流Iref1およびIref2の電流値が制御される。 Selection switches 431 and 432 open and close paths between current mirrors 440 and 460 and current control circuit 320 according to selection signal SEL. Selection switch 431 is connected to current control circuit 320 via signal line 329, and selection switch 432 is connected to current control circuit 320 via signal line 328. This current control circuit 320 controls the current values of reference currents Iref1 and Iref2.
 同図に例示したように、駆動回路400内にカレントミラー440および460を設け、その参照電流の値を制御することにより、駆動回路400の駆動能力を自由に調節することができる。この方式では、インバータの段数を増減する必要が無いため、ドライブ能力を向上させる際に、回路規模の増大を抑制することができる。 As illustrated in the figure, by providing current mirrors 440 and 460 in the drive circuit 400 and controlling the value of the reference current, the drive capability of the drive circuit 400 can be freely adjusted. In this method, since there is no need to increase or decrease the number of inverter stages, it is possible to suppress an increase in circuit scale when improving drive capability.
 また、駆動回路400内にミラー元トランジスタ441および461を配置したため、電圧や温度の変動による電流のばらつきを抑制し、安定した駆動回路400の駆動を実現することができる。 Further, since the mirror source transistors 441 and 461 are arranged in the drive circuit 400, it is possible to suppress variations in current due to fluctuations in voltage and temperature, and realize stable driving of the drive circuit 400.
 また、選択スイッチ431および432が、選択信号SELに従って開閉するため、常に電流制御回路320に接続する場合と比較して、消費電力を低減することができる。 Furthermore, since the selection switches 431 and 432 open and close according to the selection signal SEL, power consumption can be reduced compared to the case where they are always connected to the current control circuit 320.
 なお、ドライバ450の電源側および接地側の両方にカレントミラーを配置しているが、一方のみに配置することもできる。 Although current mirrors are arranged on both the power supply side and the ground side of the driver 450, they can also be arranged only on one side.
 また、選択スイッチ431および432を配置しているが、これらを配置せずにカレントミラー440および460と電流制御回路320とを直接、接続することもできる。 Further, although selection switches 431 and 432 are provided, current mirrors 440 and 460 and current control circuit 320 may be directly connected without providing these.
 また、インバータをドライバ450として配置しているが、バッファを配置することもできる。また、複数段のインバータやバッファをドライバ450として配置することもできる。 Furthermore, although an inverter is arranged as the driver 450, a buffer can also be arranged. Furthermore, multiple stages of inverters and buffers can be arranged as the driver 450.
 また、カレントミラー440および460は、参照電流と同一の値の出力電流を生成しているが、参照電流の2倍以上の出力電流を生成することもできる。この場合には、出力電流の値に応じた個数のミラー先トランジスタが追加され、並列に接続される。 Further, although the current mirrors 440 and 460 generate an output current having the same value as the reference current, they can also generate an output current that is twice or more the reference current. In this case, mirror destination transistors are added in a number corresponding to the value of the output current and connected in parallel.
 図7は、本技術の第1の実施の形態における初期化用の駆動回路500の一構成例を示す回路図である。この駆動回路500は、制御信号生成部520と、選択スイッチ531および532と、カレントミラー540および560と、ドライバ550とを備える。 FIG. 7 is a circuit diagram showing a configuration example of the initialization drive circuit 500 in the first embodiment of the present technology. This drive circuit 500 includes a control signal generation section 520, selection switches 531 and 532, current mirrors 540 and 560, and a driver 550.
 制御信号生成部520と、選択スイッチ531および532と、カレントミラー540および560と、ドライバ550とのそれぞれの回路構成は、駆動回路400内の同名の回路と同様である。ただし、制御信号生成部520は、制御信号xRST1を生成し、ドライバ550は、その制御信号xRST1を反転し、駆動信号RST1として出力する。 The circuit configurations of the control signal generation section 520, selection switches 531 and 532, current mirrors 540 and 560, and driver 550 are similar to the circuits with the same names in the drive circuit 400. However, the control signal generation unit 520 generates the control signal xRST1, and the driver 550 inverts the control signal xRST1 and outputs it as the drive signal RST1.
 図8は、本技術の第1の実施の形態における選択用の駆動回路600の一構成例を示す回路図である。この駆動回路600は、選択スイッチ631および632と、カレントミラー640および660と、ドライバ650とを備える。 FIG. 8 is a circuit diagram showing a configuration example of the selection drive circuit 600 in the first embodiment of the present technology. This drive circuit 600 includes selection switches 631 and 632, current mirrors 640 and 660, and a driver 650.
 選択スイッチ631および632と、カレントミラー640および660とのそれぞれの回路構成は、駆動回路400内の同名の回路と同様である。 The respective circuit configurations of the selection switches 631 and 632 and the current mirrors 640 and 660 are similar to the circuits with the same names in the drive circuit 400.
 ドライバ650は、選択信号SEL1のレベルを必要に応じて変更し、対応する第1行に出力するものである。ドライバ650としてバッファや2段のインバータが用いられる。 The driver 650 changes the level of the selection signal SEL1 as necessary and outputs it to the corresponding first row. A buffer or a two-stage inverter is used as the driver 650.
 [電流制御回路の構成例]
 図9は、本技術の第1の実施の形態における電流制御回路320の一構成例を示す回路図である。この電流制御回路320は、可変電流源321と、nMOSトランジスタ322、323および324と、pMOSトランジスタ325よび326とを備える。
[Example of configuration of current control circuit]
FIG. 9 is a circuit diagram showing a configuration example of the current control circuit 320 in the first embodiment of the present technology. This current control circuit 320 includes a variable current source 321, nMOS transistors 322, 323, and 324, and pMOS transistors 325 and 326.
 可変電流源321は、設定データの示す値の電流を生成するものである。電流値を静的に制御する場合、設定データは、例えば、レジスタ(不図示)などに保持される。電流値を動的に制御する場合、動作モードなどに応じて設定データを生成する所定の設定回路(不図示)から、設定データが供給される。 The variable current source 321 generates a current having a value indicated by the setting data. When controlling the current value statically, the setting data is held in, for example, a register (not shown). When dynamically controlling the current value, setting data is supplied from a predetermined setting circuit (not shown) that generates setting data depending on the operation mode and the like.
 nMOSトランジスタ322、323および324のソースは、接地ノードに共通に接続される。また、nMOSトランジスタ322のゲートおよびドレイン間は短絡され、ドレインは可変電流源321に接続される。nMOSトランジスタ323のゲートはnMOSトランジスタ322のゲートに接続され、ドレインは、pMOSトランジスタ325に接続される。 The sources of nMOS transistors 322, 323, and 324 are commonly connected to a ground node. Further, the gate and drain of the nMOS transistor 322 are short-circuited, and the drain is connected to the variable current source 321. The gate of nMOS transistor 323 is connected to the gate of nMOS transistor 322, and the drain is connected to pMOS transistor 325.
 nMOSトランジスタ324のゲートは、nMOSトランジスタ322のゲートに接続され、ドレインは、選択スイッチ431を介して電源側のカレントミラー440内のミラー元トランジスタ(不図示)に接続される。 The gate of the nMOS transistor 324 is connected to the gate of the nMOS transistor 322, and the drain is connected to a mirror source transistor (not shown) in a current mirror 440 on the power supply side via a selection switch 431.
 pMOSトランジスタ325および326のソースは、接地ノードに共通に接続される。また、pMOSトランジスタ325のゲートおよびドレイン間は短絡される。pMOSトランジスタ326のゲートはpMOSトランジスタ325のゲートに接続され、ドレインは、選択スイッチ432を介して接地側のカレントミラー460内のミラー元トランジスタ(不図示)に接続される。 The sources of pMOS transistors 325 and 326 are commonly connected to a ground node. Furthermore, the gate and drain of the pMOS transistor 325 are short-circuited. The gate of the pMOS transistor 326 is connected to the gate of the pMOS transistor 325, and the drain is connected to a mirror source transistor (not shown) in a current mirror 460 on the ground side via a selection switch 432.
 同図に例示した回路において、可変電流源の電流値を設定データで変更することにより、その値に応じた参照電流Iref1およびIref2のそれぞれを調整することができる。 In the circuit illustrated in the figure, by changing the current value of the variable current source using setting data, each of the reference currents Iref1 and Iref2 can be adjusted according to the value.
 ここで、インバータを複数段に接続し、その段数を変えることにより、駆動回路400の駆動能力を調整する構成を第1の比較例として想定する。 Here, as a first comparative example, a configuration is assumed in which the drive capability of the drive circuit 400 is adjusted by connecting inverters in multiple stages and changing the number of stages.
 図10は、第1の比較例における駆動回路400の一構成例を示す回路図である。この第1の比較例の駆動回路400は、M(Mは、整数)個のNANDゲート415と、M個のnMOSトランジスタ452と、M個のNORゲート416と、M個のpMOSトランジスタ451とを備える。 FIG. 10 is a circuit diagram showing a configuration example of the drive circuit 400 in the first comparative example. The drive circuit 400 of the first comparative example includes M (M is an integer) NAND gates 415, M nMOS transistors 452, M NOR gates 416, and M pMOS transistors 451. Be prepared.
 M個のNANDゲート415と、M個のNORゲート416との入力端子に、駆動信号TRG1が入力される。この駆動信号を生成する回路は省略されている。 A drive signal TRG1 is input to the input terminals of M NAND gates 415 and M NOR gates 416. A circuit that generates this drive signal is omitted.
 m(mは、1乃至Mの整数)個目のNANDゲート415には、切替信号selmが入力され、m個目のNORゲート416には、selmを反転した切替信号xselmが入力される。各段のNANDゲート415は、駆動信号TRG1と対応する切替信号selmとの否定論理積をm個目のnMOSトランジスタ452のゲートに供給する。各段のNORゲート416は、駆動信号TRG1と対応する切替信号xselmとの否定論理和をm個目のpMOSトランジスタ451のゲートに供給する。 The switching signal selm is input to the m-th (m is an integer from 1 to M) NAND gate 415, and the switching signal xselm obtained by inverting selm is input to the m-th NOR gate 416. The NAND gate 415 at each stage supplies the NAND of the drive signal TRG1 and the corresponding switching signal selm to the gate of the m-th nMOS transistor 452. The NOR gate 416 at each stage supplies the NOR of the drive signal TRG1 and the corresponding switching signal xselm to the gate of the m-th pMOS transistor 451.
 M個のnMOSトランジスタ452のソースは、電源ノードに共通に接続され、M個のpMOSトランジスタ451のソースは、接地ノードに共通に接続される。また、M個のnMOSトランジスタ452のドレインと、M個のpMOSトランジスタ451のドレインとは共通の出力ノードに接続され、そのノードから駆動信号TRG1が出力される。 The sources of the M nMOS transistors 452 are commonly connected to a power supply node, and the sources of the M pMOS transistors 451 are commonly connected to a ground node. Further, the drains of the M nMOS transistors 452 and the drains of the M pMOS transistors 451 are connected to a common output node, and the drive signal TRG1 is output from that node.
 切替信号selmおよびxselmにより、m個目のnMOSトランジスタ452およびpMOSトランジスタ451からなるドライバを有効または無効にすることができる。これにより、ドライバの段数を変更し、駆動回路400の駆動能力を調整することができる。駆動能力を高くすると、フレームレートは向上するが、その反面、チャージインジェクション等の画素ノイズ成分が増加してしまう。逆に駆動能力を低くすると、画素ノイズ成分は減少するが、フレームレートが低下してしまう、このトレードオフを考慮して、駆動能力が調整される。 The driver consisting of the m-th nMOS transistor 452 and the pMOS transistor 451 can be enabled or disabled by the switching signals selm and xselm. Thereby, the number of driver stages can be changed and the driving ability of the driving circuit 400 can be adjusted. Increasing the drive capability improves the frame rate, but on the other hand, pixel noise components such as charge injection increase. On the other hand, if the driving ability is lowered, the pixel noise component will be reduced, but the frame rate will be lowered.The driving ability is adjusted in consideration of this trade-off.
 しかしながら、同図に例示した回路構成では、駆動能力の可変範囲を広くするほど、回路規模が増大してしまう。例えば、1段から4段までドライバの段数を切り替え可能にする場合、2段まで切り替え可能な場合と比較して、回路規模が2倍になってしまう。 However, in the circuit configuration illustrated in the figure, the wider the variable range of the driving capability, the larger the circuit scale. For example, when the number of driver stages is switchable from one stage to four stages, the circuit size becomes twice as large as that when the number of driver stages can be switched up to two stages.
 これに対して、参照値の電流値の制御により、駆動能力を調整する構成では、駆動能力の可変範囲を広くする際に、インバータの段数を増やす必要がないため、回路規模の増大を抑制することができる。 On the other hand, in a configuration in which the drive capacity is adjusted by controlling the current value of the reference value, there is no need to increase the number of inverter stages when widening the variable range of the drive capacity, thereby suppressing the increase in circuit size. be able to.
 [カラム信号処理回路の構成例]
 図11は、本技術の第1の実施の形態におけるカラム信号処理回路250の一構成例を示す回路図である。このカラム信号処理回路250は、複数のADC251と、デジタル信号処理部252とを備える。ADC251は、列ごとに配置される。
[Example of configuration of column signal processing circuit]
FIG. 11 is a circuit diagram showing a configuration example of the column signal processing circuit 250 in the first embodiment of the present technology. This column signal processing circuit 250 includes a plurality of ADCs 251 and a digital signal processing section 252. ADC 251 is arranged for each column.
 ADC251には、垂直信号線219を介して対応する列からのアナログの画素信号が入力される。このADC251は、画素信号をデジタル信号に変換し、デジタル信号処理部252に供給するものである。 Analog pixel signals from the corresponding columns are input to the ADC 251 via the vertical signal line 219. This ADC 251 converts the pixel signal into a digital signal and supplies it to the digital signal processing section 252.
 デジタル信号処理部252は、デジタル信号を配列した画像データに対し、必要に応じてCDS処理などの各種の信号処理を行うものである。そして、デジタル信号処理部252は、処理後の画像データをDSP回路120に出力する。 The digital signal processing unit 252 performs various signal processing such as CDS processing as necessary on image data in which digital signals are arranged. The digital signal processing unit 252 then outputs the processed image data to the DSP circuit 120.
 [固体撮像素子の動作例]
 図12は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すタイミングチャートである。タイミングT0以降に垂直走査回路300は、行を順に選択して露光を開始させる。そして、タイミングT1からT2までの間に垂直走査回路300は、行を順に選択して露光を終了させるとともに画素信号を出力させる。
[Operation example of solid-state image sensor]
FIG. 12 is a timing chart showing an example of the operation of the solid-state image sensor 200 in the first embodiment of the present technology. After timing T0, the vertical scanning circuit 300 sequentially selects rows and starts exposure. Then, between timings T1 and T2, the vertical scanning circuit 300 sequentially selects rows, finishes exposure, and outputs pixel signals.
 例えば、タイミングT1からT12までの選択期間に亘って垂直走査回路300は、ハイレベルの選択信号SEL1を第1行に出力する。また、垂直走査回路300は、タイミングT1からパルス期間に亘ってハイレベルの駆動信号RST1を第1行に出力し、選択期間内のタイミングT11からパルス期間に亘ってハイレベルの駆動信号TRG1を第1行に出力する。駆動信号RST1により第1行の画素が初期化され、その直後にADC251によりリセットレベルが読み出される。駆動信号TRG1により第1行の画素で信号電荷が転送され、その直後にADC251により信号レベルが読み出される。 For example, the vertical scanning circuit 300 outputs the high-level selection signal SEL1 to the first row over the selection period from timing T1 to T12. Further, the vertical scanning circuit 300 outputs a high-level drive signal RST1 to the first row from timing T1 over the pulse period, and outputs a high-level drive signal TRG1 to the first row from timing T11 within the selection period over the pulse period. Output on one line. The pixels in the first row are initialized by the drive signal RST1, and immediately after that, the reset level is read by the ADC 251. Signal charges are transferred in the pixels of the first row by the drive signal TRG1, and immediately after that, the signal level is read by the ADC 251.
 タイミングT12からT13までの選択期間に亘って垂直走査回路300は、ハイレベルの選択信号SEL2を第2行に出力し、その期間内に駆動信号を第2行に出力する。以下、垂直走査回路300は、第N行まで行を順に選択して同様の制御を行う。 Over the selection period from timing T12 to T13, the vertical scanning circuit 300 outputs a high-level selection signal SEL2 to the second row, and outputs a drive signal to the second row within that period. Thereafter, the vertical scanning circuit 300 sequentially selects rows up to the Nth row and performs similar control.
 図13は、本技術の第1の実施の形態における第1行を駆動する際の各行の駆動回路の状態の一例を示す図である。第1行を駆動する場合、選択信号SEL1のみがハイレベルに設定され、選択信号SEL2乃至SELNまではローレベルに設定される。これらの選択信号により、第1行の選択スイッチ431および432のみがオン状態になり、第1行のドライバ450にのみ電流が供給される。そして、第1行のドライバ450は、駆動信号TRG1を第1行に出力する。 FIG. 13 is a diagram illustrating an example of the state of the drive circuit of each row when driving the first row in the first embodiment of the present technology. When driving the first row, only the selection signal SEL1 is set to high level, and the selection signals SEL2 to SELN are set to low level. These selection signals turn on only the selection switches 431 and 432 in the first row, and current is supplied only to the driver 450 in the first row. Then, the first row driver 450 outputs the drive signal TRG1 to the first row.
 図14は、本技術の第1の実施の形態における第2行を駆動する際の各行の駆動回路の状態の一例を示す図である。第1行の駆動の直後に、選択信号SEL2のみがハイレベルに設定され、他の選択信号がローレベルに設定される。これらの選択信号により、第2行の選択スイッチ431および432のみがオン状態になり、第2行のドライバ450にのみ電流が供給される。そして、第2行のドライバ450は、駆動信号TRG2を第2行に出力する。 FIG. 14 is a diagram illustrating an example of the state of the drive circuit of each row when driving the second row in the first embodiment of the present technology. Immediately after driving the first row, only the selection signal SEL2 is set to high level, and the other selection signals are set to low level. These selection signals turn on only the selection switches 431 and 432 in the second row, and current is supplied only to the driver 450 in the second row. Then, the second row driver 450 outputs the drive signal TRG2 to the second row.
 以下、第3行以降において、同様の制御が繰り返し実行される。 Hereinafter, similar control is repeatedly executed from the third line onwards.
 図15は、本技術の第1の実施の形態における最終行を駆動する際の各行の駆動回路の状態の一例を示す図である。第N-1行の駆動の直後に、選択信号SELNのみがハイレベルに設定され、他の選択信号がローレベルに設定される。これらの選択信号により、第N行の選択スイッチ431および432のみがオン状態になり、第N行のドライバ450にのみ電流が供給される。そして、第N行のドライバ450は、駆動信号TRGNを第N行に出力する。 FIG. 15 is a diagram illustrating an example of the state of the drive circuit of each row when driving the last row in the first embodiment of the present technology. Immediately after driving the N-1th row, only the selection signal SELN is set to high level, and the other selection signals are set to low level. These selection signals turn on only the selection switches 431 and 432 in the Nth row, and current is supplied only to the driver 450 in the Nth row. Then, the driver 450 in the Nth row outputs the drive signal TRGN to the Nth row.
 図13乃至図15に例示したように、選択信号に同期して、駆動する行の選択スイッチ431および432のみがオン状態になり、駆動するドライバ450のみに電流が供給される。これにより、全行のドライバ450に電流を供給する場合と比較して、消費電力を削減することができる。なお、低消費電力が要求されない場合は、行ごとに選択スイッチ431および432を配置せず、全行のカレントミラー440および460と電流制御回路320とを直接接続する構成とすることもできる。 As illustrated in FIGS. 13 to 15, only the selection switches 431 and 432 of the row to be driven are turned on in synchronization with the selection signal, and current is supplied only to the driver 450 to be driven. Thereby, power consumption can be reduced compared to the case where current is supplied to the drivers 450 of all rows. Note that if low power consumption is not required, the selection switches 431 and 432 may not be arranged for each row, and the current mirrors 440 and 460 of all rows may be directly connected to the current control circuit 320.
 このように、本技術の第1の実施の形態によれば、カレントミラー440および460の参照電流の値の制御によって駆動能力を調整するため、ドライバの段数を切り替える第1の比較例と比較して回路規模の増大を抑制することができる。 As described above, according to the first embodiment of the present technology, the drive capacity is adjusted by controlling the reference current values of the current mirrors 440 and 460, so compared to the first comparative example in which the number of driver stages is changed. This makes it possible to suppress an increase in circuit scale.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、行ごとにミラー元トランジスタ441および461を配置していたが、これらのトランジスタ数を削減することもできる。この第2の実施の形態における固体撮像素子200は、複数の行でミラー元トランジスタ441および461を共有する点において第1の実施の形態と異なる。
<2. Second embodiment>
In the first embodiment described above, the mirror source transistors 441 and 461 are arranged for each row, but the number of these transistors can also be reduced. The solid-state imaging device 200 in this second embodiment differs from the first embodiment in that mirror source transistors 441 and 461 are shared by a plurality of rows.
 図16は、本技術の第2の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この第2の実施の形態の固体撮像素子200は、カラム信号処理回路240をさらに備える点において第1の実施の形態と異なる。 FIG. 16 is a block diagram showing a configuration example of the solid-state image sensor 200 in the second embodiment of the present technology. The solid-state imaging device 200 of this second embodiment differs from the first embodiment in that it further includes a column signal processing circuit 240.
 カラム信号処理回路240には、カラム信号処理回路250と同様に列ごとにADCが配列される。また、第2の実施の形態の画素アレイ部210において、列ごとに垂直信号線218および219が配線される。そして、全行のうち半分(奇数行など)が垂直信号線218を介してカラム信号処理回路240に接続され、残り半分(偶数行など)が垂直信号線219を介してカラム信号処理回路250に接続される。このように、列ごとに、2つのADCが配置されるため、垂直走査回路300は、2行を同時に駆動し、カラム信号処理回路240および250は、その2行の画素信号を同時にAD変換する(言い換えれば、読み出す)ことができる。 In the column signal processing circuit 240, ADCs are arranged for each column similarly to the column signal processing circuit 250. Further, in the pixel array section 210 of the second embodiment, vertical signal lines 218 and 219 are wired for each column. Half of all the rows (odd rows, etc.) are connected to the column signal processing circuit 240 via the vertical signal line 218, and the remaining half (even rows, etc.) are connected to the column signal processing circuit 250 via the vertical signal line 219. Connected. In this way, since two ADCs are arranged for each column, the vertical scanning circuit 300 drives two rows simultaneously, and the column signal processing circuits 240 and 250 simultaneously AD convert the pixel signals of the two rows. (In other words, read out).
 なお、カラム信号処理回路240内のADCは、特許請求の範囲に記載の第1のADCの一例であり、カラム信号処理回路250内のADCは、特許請求の範囲に記載の第2のADCの一例である。 Note that the ADC in the column signal processing circuit 240 is an example of the first ADC described in the claims, and the ADC in the column signal processing circuit 250 is an example of the second ADC described in the claims. This is an example.
 図17は、本技術の第2の実施の形態における駆動回路の一構成例を示す回路図である。この第2の実施の形態において、TRG、RSTおよびSELを出力する駆動回路400、500および600は奇数行に接続される。また、TRG、RSTおよびSELを出力する駆動回路700、800および900が偶数行に接続される。 FIG. 17 is a circuit diagram showing a configuration example of a drive circuit in the second embodiment of the present technology. In this second embodiment, drive circuits 400, 500, and 600 that output TRG, RST, and SEL are connected to odd rows. Furthermore, drive circuits 700, 800, and 900 that output TRG, RST, and SEL are connected to even-numbered rows.
 駆動回路700は、ミラー先トランジスタ742および762と、ドライバ750とを備える。ミラー先トランジスタ742は、ドライバ750の電源端子と電源ノードとの間に挿入され、ミラー先トランジスタ762は、ドライバ750の接地端子と接地ノードとの間に挿入される。 The drive circuit 700 includes mirror destination transistors 742 and 762 and a driver 750. Mirror destination transistor 742 is inserted between the power supply terminal of driver 750 and the power supply node, and mirror destination transistor 762 is inserted between the ground terminal of driver 750 and the ground node.
 第2の実施の形態の駆動回路400の回路構成は、第1の実施の形態と同様である。ただし、ミラー元トランジスタ441のゲートは、ミラー先トランジスタ742のゲートにも接続される。また、ミラー元トランジスタ461のゲートは、ミラー先トランジスタ762のゲートにも接続される。また、制御信号xTRGは、ドライバ750の入力端子にも入力される。 The circuit configuration of the drive circuit 400 of the second embodiment is the same as that of the first embodiment. However, the gate of the mirror source transistor 441 is also connected to the gate of the mirror destination transistor 742. Further, the gate of the mirror source transistor 461 is also connected to the gate of the mirror destination transistor 762. The control signal xTRG is also input to the input terminal of the driver 750.
 なお、ドライバ450および750は、特許請求の範囲に記載の第1および第2のドライバの一例である。ミラー先トランジスタ442および462は、特許請求の範囲に記載の第1のミラー先トランジスタの一例である。ミラー先トランジスタ742および762は、特許請求の範囲に記載の第2のミラー先トランジスタの一例である。 Note that the drivers 450 and 750 are examples of the first and second drivers described in the claims. Mirror destination transistors 442 and 462 are examples of first mirror destination transistors described in the claims. Mirror destination transistors 742 and 762 are examples of second mirror destination transistors described in the claims.
 同図に例示したように、ミラー先トランジスタは、行ごとに配置され、ミラー元トランジスタは、2行で共有される。これにより、行ごとにミラー元トランジスタを配置する第1の実施の形態と比較して垂直走査回路300の回路規模を削減することができる。 As illustrated in the figure, the mirror destination transistors are arranged for each row, and the mirror source transistors are shared by two rows. Thereby, the circuit scale of the vertical scanning circuit 300 can be reduced compared to the first embodiment in which mirror source transistors are arranged for each row.
 なお、駆動回路800および900にも、同様にミラー先トランジスタおよびドライバが配置され、駆動回路500および600のミラー元トランジスタに接続される。 Note that mirror destination transistors and drivers are similarly arranged in the drive circuits 800 and 900, and are connected to the mirror source transistors of the drive circuits 500 and 600.
 また、2行でミラー元トランジスタを共有しているが、列ごとに3つ以上のADCを配置し、3行以上でミラー元トランジスタを共有することもできる。 Furthermore, although two rows share a mirror source transistor, it is also possible to arrange three or more ADCs in each column and share a mirror source transistor among three or more rows.
 このように、本技術の第2の実施の形態によれば、複数の行でミラー元トランジスタを共有するため、垂直走査回路300の回路規模を削減することができる。 In this way, according to the second embodiment of the present technology, the mirror source transistors are shared by multiple rows, so the circuit scale of the vertical scanning circuit 300 can be reduced.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、行ごとにミラー元トランジスタ441および461を配置していたが、この構成では、電流制御回路320とミラー元トランジスタとで、電源の変動量が異なる場合に、行ごとに電流量がばらつくおそれがある。この第3の実施の形態における固体撮像素子200は、ミラー元トランジスタを電流制御回路320内に配置し、行ごとにサンプルホールド回路を追加した点において第1の実施の形態と異なる。
<3. Third embodiment>
In the first embodiment described above, the mirror source transistors 441 and 461 are arranged for each row, but in this configuration, when the amount of power fluctuation is different between the current control circuit 320 and the mirror source transistor, The amount of current may vary from row to row. The solid-state imaging device 200 in the third embodiment differs from the first embodiment in that a mirror source transistor is placed within the current control circuit 320, and a sample and hold circuit is added for each row.
 図18は、本技術の第3の実施の形態における駆動回路400および電流制御回路350の一構成例を示す回路図である。駆動回路400は、制御信号生成部470と、サンプルホールド回路480および490と、ドライバ450とを備える。 FIG. 18 is a circuit diagram showing a configuration example of the drive circuit 400 and the current control circuit 350 in the third embodiment of the present technology. The drive circuit 400 includes a control signal generation section 470, sample and hold circuits 480 and 490, and a driver 450.
 ドライバ450は、pMOSトランジスタ451およびnMOSトランジスタ452を備える。これらのトランジスタは、電源ノードおよび接地ノードの間に直列に挿入され、これらの接続ノードから駆動信号TRGが、画素アレイ部210内の対応する行へ出力される。 The driver 450 includes a pMOS transistor 451 and an nMOS transistor 452. These transistors are inserted in series between the power supply node and the ground node, and the drive signal TRG is output from these connection nodes to the corresponding row in the pixel array section 210.
 制御信号生成部470は、制御信号SW1、SW2、SW3およびSW4を生成するものである。制御信号SW1およびSW2は、サンプルホールド回路480に供給され、制御信号SW3およびSW4は、サンプルホールド回路490に供給される。 The control signal generation unit 470 generates control signals SW1, SW2, SW3, and SW4. Control signals SW1 and SW2 are supplied to sample and hold circuit 480, and control signals SW3 and SW4 are supplied to sample and hold circuit 490.
 サンプルホールド回路480は、サンプルスイッチ481、短絡スイッチ482および容量素子483を備える。 The sample hold circuit 480 includes a sample switch 481, a short circuit switch 482, and a capacitive element 483.
 サンプルスイッチ481は、制御信号SW1に従って、電流制御回路350とpMOSトランジスタ451のゲートとの間の経路を開閉するものである。短絡スイッチ482は、制御信号SW2に従って、容量素子483の電源側の端子と接地側の端子との間の経路を開閉するものである。容量素子483は、pMOSトランジスタ451のゲートおよびソースの間に挿入される。 The sample switch 481 opens and closes the path between the current control circuit 350 and the gate of the pMOS transistor 451 according to the control signal SW1. The short-circuit switch 482 opens and closes a path between the power supply side terminal and the ground side terminal of the capacitive element 483 in accordance with the control signal SW2. Capacitive element 483 is inserted between the gate and source of pMOS transistor 451.
 サンプルホールド回路490は、サンプルスイッチ491、短絡スイッチ492および容量素子493を備える。 The sample and hold circuit 490 includes a sample switch 491, a short circuit switch 492, and a capacitive element 493.
 サンプルスイッチ491は、制御信号SW3に従って、電流制御回路350とnMOSトランジスタ452のゲートとの間の経路を開閉するものである。短絡スイッチ492は、制御信号SW4に従って、容量素子493の電源側の端子と接地側の端子との間の経路を開閉するものである。容量素子493は、nMOSトランジスタ452のゲートおよびソースの間に挿入される。 The sample switch 491 opens and closes the path between the current control circuit 350 and the gate of the nMOS transistor 452 according to the control signal SW3. The short-circuit switch 492 opens and closes a path between the power supply side terminal and the ground side terminal of the capacitive element 493 in accordance with the control signal SW4. Capacitive element 493 is inserted between the gate and source of nMOS transistor 452.
 電流制御回路350は、可変電流源351および352と、pMOSトランジスタ353と、nMOSトランジスタ354とを備える。 The current control circuit 350 includes variable current sources 351 and 352, a pMOS transistor 353, and an nMOS transistor 354.
 可変電流源351は、電源ノードとnMOSトランジスタ354のドレインとの間に挿入され、可変電流源352は、接地ノードとpMOSトランジスタ353のドレインとの間に挿入される。 The variable current source 351 is inserted between the power supply node and the drain of the nMOS transistor 354, and the variable current source 352 is inserted between the ground node and the drain of the pMOS transistor 353.
 pMOSトランジスタ353のソースは、電源ノードに接続され、ゲートおよびドレインは短絡される。また、pMOSトランジスタ353のゲートは、サンプルスイッチ481を介してpMOSトランジスタ451のゲートに接続される。 The source of the pMOS transistor 353 is connected to the power supply node, and the gate and drain are short-circuited. Further, the gate of the pMOS transistor 353 is connected to the gate of the pMOS transistor 451 via a sample switch 481.
 nMOSトランジスタ354のソースは、接地ノードに接続され、ゲートおよびドレインは短絡される。また、nMOSトランジスタ354のゲートは、サンプルスイッチ491を介してnMOSトランジスタ452のゲートに接続される。 The source of the nMOS transistor 354 is connected to the ground node, and the gate and drain are short-circuited. Further, the gate of the nMOS transistor 354 is connected to the gate of the nMOS transistor 452 via a sample switch 491.
 駆動回路500などの他の駆動回路の構成は、駆動回路400と同様である。 The configurations of other drive circuits such as drive circuit 500 are similar to drive circuit 400.
 同図に例示した接続構成により、各行で共通のpMOSトランジスタ353と、各行の
pMOSトランジスタ451とは、電源側のカレントミラーを構成する。pMOSトランジスタ353は、カレントミラーのミラー元トランジスタとして機能し、可変電流源352の生成した参照電流を流す。pMOSトランジスタ451は、カレントミラーのミラー先トランジスタとして機能し、参照電流に応じた出力電流を生成する。
With the connection configuration illustrated in the figure, the pMOS transistor 353 common to each row and the pMOS transistor 451 in each row constitute a current mirror on the power supply side. The pMOS transistor 353 functions as a mirror source transistor of a current mirror, and allows the reference current generated by the variable current source 352 to flow. The pMOS transistor 451 functions as a mirror destination transistor of a current mirror, and generates an output current according to a reference current.
 また、各行で共通のnMOSトランジスタ354と、各行のnMOSトランジスタ452とは、接地側のカレントミラーを構成する。nMOSトランジスタ354は、カレントミラーのミラー元トランジスタとして機能し、可変電流源351の生成した参照電流を流す。nMOSトランジスタ452は、カレントミラーのミラー先トランジスタとして機能し、参照電流に応じた出力電流を生成する。 Furthermore, the nMOS transistor 354 common to each row and the nMOS transistor 452 in each row constitute a current mirror on the ground side. The nMOS transistor 354 functions as a mirror source transistor of a current mirror, and allows the reference current generated by the variable current source 351 to flow. The nMOS transistor 452 functions as a mirror destination transistor of a current mirror, and generates an output current according to the reference current.
 なお、pMOSトランジスタ353およびnMOSトランジスタ354は、特許請求の範囲に記載のミラー元トランジスタの一例である。また、pMOSトランジスタ451およびnMOSトランジスタ452は、特許請求の範囲に記載のミラー先トランジスタの一例である。 Note that the pMOS transistor 353 and the nMOS transistor 354 are examples of mirror source transistors described in the claims. Further, the pMOS transistor 451 and the nMOS transistor 452 are examples of mirror destination transistors described in the claims.
 また、電源側、接地側のカレントミラーのそれぞれのミラー先であるpMOSトランジスタ451およびnMOSトランジスタ452は、ドライバ450を構成し、ドレインから、電圧信号である駆動信号TRGを出力する。 Furthermore, a pMOS transistor 451 and an nMOS transistor 452, which are mirror destinations of the current mirrors on the power supply side and the ground side, constitute a driver 450, and output a drive signal TRG, which is a voltage signal, from the drain.
 ここで、電流制御回路350、サンプルホールド回路480および490の無い構成を第2の比較例として想定する。 Here, a configuration without current control circuit 350 and sample and hold circuits 480 and 490 is assumed as a second comparative example.
 図19は、第2の比較例における駆動回路および動作の一例を示す図である。同図におけるaに例示するように、第2の比較例では、パッケージ端子911および電源パッド912を経由して、電源配線913を介して、各ドライバ(ドライバ450など)に電源が供給される。同図におけるaの抵抗の図記号は、配線やインターポーザのインピーダンスを示す。 FIG. 19 is a diagram illustrating an example of a drive circuit and operation in a second comparative example. As illustrated in a in the figure, in the second comparative example, power is supplied to each driver (driver 450, etc.) via a package terminal 911, a power supply pad 912, and a power supply wiring 913. The symbol a for resistance in the figure indicates the impedance of the wiring or interposer.
 電源パッド912から遠いほど、電源配線913の配線インピーダンスが大きくなり、同図におけるbに例示するようにドライバに電源パッド電流が流れて、その電流によりIRドロップが生じて電源パッド電圧が大きく変動する。この変動により、ドライバ内のトランジスタが一時的に動作しなくなる。このため、信号の立上り、立下りに時間がかかり、ドライバの入力信号に対し、その出力波形はなまった形になる。 The further away from the power supply pad 912, the higher the wiring impedance of the power supply wiring 913 becomes, and as illustrated in b in the figure, the power supply pad current flows through the driver, and this current causes an IR drop, causing a large fluctuation in the power supply pad voltage. . This fluctuation causes the transistors in the driver to temporarily become inoperable. Therefore, it takes time for the signal to rise and fall, and the output waveform becomes distorted with respect to the input signal of the driver.
 画素を正しく動作させるためには、「ある電圧以上をある時間以上」供給するというクライテリアが存在する。同図におけるbに例示するように、出力波形がなまった状態でも、そのクライテリアの条件を満たすには、入力信号のパルス幅を長くする方法があるが、その場合、AD変換に要する時間が長くなってしまうため、好ましくない。 In order to operate pixels correctly, there is a criterion that ``a certain voltage or more must be supplied for a certain period of time.'' As shown in b in the same figure, there is a way to satisfy the criteria even when the output waveform is distorted, by increasing the pulse width of the input signal, but in that case, the time required for AD conversion is longer. This is not desirable because it becomes
 入力信号のパルス幅を変えずにクライテリアの条件を満たすには、立上り、立下りの時間を短くする必要があり、そのためには、内部インピーダンスを小さくしてIRドロップを小さくするのが有効である。内部インピーダンスを小さくする手法として、電源配線幅を太くする方法があるが、その場合、第2の比較例では、回路面積が増大してしまう。 In order to meet the criteria without changing the pulse width of the input signal, it is necessary to shorten the rise and fall times. To this end, it is effective to reduce the internal impedance and reduce the IR drop. . One method for reducing internal impedance is to increase the width of the power supply wiring, but in this case, in the second comparative example, the circuit area increases.
 これに対して、図18に例示した回路構成では、可変電流源351および352の電流値を変更することにより、電源側、接地側のそれぞれのカレントミラーの参照電流の電流値を制御することができる。電流値の制御により、IRドロップによる電源変動を抑制することができる。IRドロップの抑制により、電源ノードや接地ノードに接続する信号線の配線幅を狭くして、配線インピーダンスが増大しても、駆動能力に影響を与えないようにすることができる。このため、消費電力を大きく増加させることなく、駆動能力を落とさずに、駆動回路400等の回路規模を削減することができる。 On the other hand, in the circuit configuration illustrated in FIG. 18, by changing the current values of the variable current sources 351 and 352, the current values of the reference currents of the current mirrors on the power supply side and the ground side can be controlled. can. By controlling the current value, power fluctuations due to IR drop can be suppressed. By suppressing the IR drop, it is possible to narrow the wiring width of the signal line connected to the power supply node and the ground node, so that even if the wiring impedance increases, the drive capability is not affected. Therefore, the circuit scale of the drive circuit 400 and the like can be reduced without significantly increasing power consumption or reducing drive capability.
 また、サンプルホールド回路480は、制御信号SW1に同期して、pMOSトランジスタ451のゲート-ソース間の電圧を保持する。サンプルホールド回路490は、制御信号SW3に同期して、nMOSトランジスタ452のゲート-ソース間の電圧を保持する。 Further, the sample and hold circuit 480 holds the voltage between the gate and source of the pMOS transistor 451 in synchronization with the control signal SW1. The sample and hold circuit 490 holds the voltage between the gate and source of the nMOS transistor 452 in synchronization with the control signal SW3.
 これらのサンプルホールド回路により、pMOSトランジスタ451およびnMOSトランジスタ452のそれぞれのソース電圧(電源電圧や接地電圧)が変動しても、ゲート-ソース間電圧を一定に維持し、駆動能力の変動を抑制することができる。 These sample and hold circuits maintain the gate-source voltage constant even if the respective source voltages (power supply voltage or ground voltage) of the pMOS transistor 451 and the nMOS transistor 452 fluctuate, suppressing fluctuations in drive capability. be able to.
 図20は、本技術の第3の実施の形態における駆動回路400の動作の一例を示すタイミングチャートである。 FIG. 20 is a timing chart showing an example of the operation of the drive circuit 400 in the third embodiment of the present technology.
 タイミングT0からT1までのパルス期間に亘って制御信号生成部470は、ハイレベルの制御信号SW1を供給する。また、タイミングT0からT2までの期間に亘って制御信号生成部470は、制御信号SW2をローレベルにする。この期間外において、制御信号SW2はハイレベルに制御される。タイミングT1でサンプルスイッチ481がオフになって電源電圧VDDが変動しても、容量素子483の接続によりpMOSトランジスタ451のゲート電圧Vpgも同程度に変動する。このため、pMOSトランジスタ451のゲート-ソース間電圧が一定になり、電源電圧の変動が駆動能力に影響を及ぼすことが無くなる。 The control signal generation section 470 supplies the high-level control signal SW1 over the pulse period from timing T0 to T1. Furthermore, the control signal generation section 470 sets the control signal SW2 to a low level over a period from timing T0 to T2. Outside this period, the control signal SW2 is controlled to a high level. Even if the sample switch 481 is turned off at timing T1 and the power supply voltage VDD fluctuates, the gate voltage Vpg of the pMOS transistor 451 also fluctuates to the same extent due to the connection of the capacitive element 483. Therefore, the gate-source voltage of the pMOS transistor 451 becomes constant, and fluctuations in the power supply voltage do not affect the driving ability.
 そして、タイミングT2からT3までのパルス期間に亘って制御信号生成部470は、ハイレベルの制御信号SW3を供給する。また、タイミングT0からタイミングT2までの期間に亘って制御信号生成部470は、制御信号SW4をハイレベルにする。この期間外において、制御信号SW4はローレベルに制御される。タイミングT3でサンプルスイッチ491がオフになって接地電圧VRLが変動しても、容量素子493の接続によりnMOSトランジスタ452のゲート電圧Vngも同程度に変動する。このため、nMOSトランジスタ452のゲート-ソース間電圧が一定になり、接地電圧の変動が駆動能力に影響を及ぼすことが無くなる。 Then, the control signal generation section 470 supplies a high-level control signal SW3 over the pulse period from timing T2 to T3. Further, the control signal generation unit 470 sets the control signal SW4 to a high level over the period from timing T0 to timing T2. Outside this period, control signal SW4 is controlled to low level. Even if the sample switch 491 is turned off at timing T3 and the ground voltage VRL fluctuates, the gate voltage Vng of the nMOS transistor 452 fluctuates to the same extent due to the connection of the capacitive element 493. Therefore, the gate-source voltage of the nMOS transistor 452 becomes constant, and fluctuations in the ground voltage do not affect the driving ability.
 また、ドライバ450は、タイミングT0からタイミングT2までの期間内に駆動信号TRG1を出力する。 Furthermore, the driver 450 outputs the drive signal TRG1 within the period from timing T0 to timing T2.
 図21は、本技術の第3の実施の形態における効果を説明するための図である。同図におけるaは、第2の比較例の駆動部330のレイアウトを示し、同図におけるbは、第3の実施の形態の駆動部330のレイアウトを示す。 FIG. 21 is a diagram for explaining the effects of the third embodiment of the present technology. In the same figure, a shows the layout of the drive unit 330 of the second comparative example, and b in the same figure shows the layout of the drive unit 330 of the third embodiment.
 同図におけるaに例示するように、第2の比較例では、電源配線913が太く、その面積が大きくなる。これに対して、同図におけるbに例示するように、第3の実施の形態では、電源配線913の面積を削減することができる。 As illustrated in a in the figure, in the second comparative example, the power supply wiring 913 is thick and its area is large. In contrast, in the third embodiment, as illustrated in b in the figure, the area of the power supply wiring 913 can be reduced.
 このように、本技術の第3の実施の形態によれば、サンプルホールド回路480および490が、ミラー先トランジスタのゲート-ソース間電圧を保持するため、電源電圧や接地電圧が変動しても駆動能力を維持することができる。 As described above, according to the third embodiment of the present technology, the sample and hold circuits 480 and 490 hold the gate-source voltage of the mirror destination transistor, so even if the power supply voltage or the ground voltage fluctuates, the sample and hold circuits 480 and 490 can be driven. ability can be maintained.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 Note that the above-described embodiments show an example for embodying the present technology, and the matters in the embodiments and the matters specifying the invention in the claims have a corresponding relationship, respectively. Similarly, the matters specifying the invention in the claims and the matters in the embodiments of the present technology having the same names have a corresponding relationship. However, the present technology is not limited to the embodiments, and can be realized by making various modifications to the embodiments without departing from the gist thereof.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limiting, and other effects may also exist.
 なお、本技術は以下のような構成もとることができる。
(1)所定の駆動信号を出力端子から出力するドライバと、
 所定の参照電流に応じた出力電流を生成して前記ドライバの電源側および接地側の少なくとも一方に流すカレントミラーと、
 前記参照電流の電流値を制御する電流制御回路と
を具備する固体撮像素子。
(2)前記駆動信号に従ってアナログ信号を生成する複数の画素が二次元格子状に配列された画素アレイ部をさらに具備する
前記(1)記載の固体撮像素子。
(3)前記画素アレイ部内の行ごとに前記ドライバおよび前記カレントミラーが配置され、
 前記カレントミラーは、
 前記参照電流を流すミラー元トランジスタと、
 前記出力電流を生成するミラー先トランジスタと
を備える前記(2)記載の固体撮像素子。
(4)前記カレントミラーは、
 前記参照電流を流すミラー元トランジスタと、
 前記ミラー元トランジスタを共有し、前記出力電流を生成する第1および第2のミラー先トランジスタと
を備え、
 前記ドライバは、第1および第2のドライバを含み、
 前記第1のドライバは、前記画素アレイ部内の第1の行に前記出力電流を出力し、
 前記第2のドライバは、前記画素アレイ部内の第2の行に前記出力電流を出力し、
 前記第1のミラー先トランジスタは、前記第1のドライバに前記出力電流を流し、
 前記第2のミラー先トランジスタは、前記第2のドライバに前記出力電流を流す
前記(2)記載の固体撮像素子。
(5)前記第1の行からのアナログ信号をデジタル信号に変換する第1のアナログデジタル変換器と、
 前記第2の行からのアナログ信号をデジタル信号に変換する第2のアナログデジタル変換器と
をさらに具備し、
 前記第1および第2のドライバは、同時に前記出力電流を供給する
前記(4)記載の固体撮像素子。
(6)前記カレントミラーと前記電流制御回路との間の経路を所定の選択信号に同期して開閉する選択スイッチをさらに具備する
前記(1)から(5)のいずれかに記載の固体撮像素子。
(7)前記選択信号を生成して出力する論理ゲートと、
 前記出力された選択信号を保持して前記選択スイッチに供給するラッチ回路と
をさらに具備する前記(6)記載の固体撮像素子。
(8)前記出力電流は、第1および第2の出力電流を含み、
 前記カレントミラーは、
 電源ノードから前記ドライバの電源端子に前記第1の出力電流を流す電源側カレントミラーと、
 前記ドライバの接地端子から接地ノードに前記第2の出力電流を流す接地側カレントミラーと
を含む前記(1)から(7)のいずれかに記載の固体撮像素子。
(9)可変電流源と、
 前記可変電流源の生成した参照電流を流すミラー元トランジスタと、
 前記参照電流に応じた出力電流を生成してドレインから電圧信号を出力するミラー先トランジスタと、
 所定の制御信号に同期して前記ミラー先トランジスタのゲート-ソース間の電圧をサンプルホールドするサンプルホールド回路と
を具備する固体撮像素子。
(10)所定の駆動信号を出力端子から出力するドライバと、
 所定の参照電流に応じた出力電流を生成して前記ドライバの電源側および接地側の少なくとも一方に流すカレントミラーと、
 前記参照電流の電流値を制御する電流制御回路と、
 前記駆動信号に従ってアナログ信号を生成する複数の画素と、
 前記アナログ信号に対して所定の信号処理を行う信号処理回路と
を具備する撮像装置。
Note that the present technology can also have the following configuration.
(1) A driver that outputs a predetermined drive signal from an output terminal;
a current mirror that generates an output current according to a predetermined reference current and flows it to at least one of a power supply side and a ground side of the driver;
A solid-state imaging device comprising: a current control circuit that controls a current value of the reference current.
(2) The solid-state imaging device according to (1), further comprising a pixel array section in which a plurality of pixels that generate analog signals in accordance with the drive signal are arranged in a two-dimensional grid.
(3) the driver and the current mirror are arranged for each row in the pixel array section;
The current mirror is
a mirror source transistor through which the reference current flows;
The solid-state imaging device according to (2) above, further comprising a mirror-end transistor that generates the output current.
(4) The current mirror is
a mirror source transistor through which the reference current flows;
first and second mirror destination transistors that share the mirror source transistor and generate the output current;
the driver includes first and second drivers;
the first driver outputs the output current to a first row in the pixel array section;
the second driver outputs the output current to a second row in the pixel array section;
the first mirror destination transistor passes the output current to the first driver;
The solid-state imaging device according to (2), wherein the second mirror destination transistor causes the output current to flow through the second driver.
(5) a first analog-to-digital converter that converts the analog signal from the first row into a digital signal;
further comprising a second analog-to-digital converter that converts the analog signal from the second row into a digital signal,
The solid-state imaging device according to (4), wherein the first and second drivers simultaneously supply the output current.
(6) The solid-state imaging device according to any one of (1) to (5), further comprising a selection switch that opens and closes a path between the current mirror and the current control circuit in synchronization with a predetermined selection signal. .
(7) a logic gate that generates and outputs the selection signal;
The solid-state imaging device according to (6), further comprising a latch circuit that holds the output selection signal and supplies it to the selection switch.
(8) the output current includes first and second output currents;
The current mirror is
a power supply side current mirror that causes the first output current to flow from the power supply node to the power supply terminal of the driver;
The solid-state image sensor according to any one of (1) to (7), including a ground side current mirror that causes the second output current to flow from the ground terminal of the driver to the ground node.
(9) a variable current source;
a mirror source transistor through which a reference current generated by the variable current source flows;
a mirror destination transistor that generates an output current according to the reference current and outputs a voltage signal from its drain;
A solid-state image pickup device comprising a sample and hold circuit that samples and holds a voltage between the gate and source of the mirror destination transistor in synchronization with a predetermined control signal.
(10) a driver that outputs a predetermined drive signal from an output terminal;
a current mirror that generates an output current according to a predetermined reference current and flows it to at least one of a power supply side and a ground side of the driver;
a current control circuit that controls the current value of the reference current;
a plurality of pixels that generate analog signals according to the drive signal;
An imaging device comprising: a signal processing circuit that performs predetermined signal processing on the analog signal.
 100 撮像装置
 110 光学部
 120 DSP回路
 130 表示部
 140 操作部
 150 バス
 160 フレームメモリ
 170 記憶部
 180 電源部
 200 固体撮像素子
 210 画素アレイ部
 220 画素
 221 光電変換素子
 222 転送トランジスタ
 223 リセットトランジスタ
 224 浮遊拡散層
 225 増幅トランジスタ
 226 選択トランジスタ
 230 タイミング制御回路
 240、250 カラム信号処理回路
 251 ADC
 252 デジタル信号処理部
 300 垂直走査回路
 310 デコーダー
 320、350 電流制御回路
 321、351、352 可変電流源
 322~324、354、452 nMOSトランジスタ
 325、326、353、451 pMOSトランジスタ
 330 駆動部
 400、500、600、700、800、900 駆動回路
 410 選択信号生成部
 411 論理ゲート
 412 ラッチ回路
 415 NAND(否定論理和)ゲート
 416 NOR(否定論理和)ゲート
 420、470、520 制御信号生成部
 431、432、531、532、631、632 選択スイッチ
 440、460、540、560、640、660 カレントミラー
 441、461 ミラー元トランジスタ
 442、462、742、762 ミラー先トランジスタ
 450、550、650、750 ドライバ
 480、490 サンプルホールド回路
 481、491 サンプルスイッチ
 482、492 短絡スイッチ
 483、493 容量素子
100 Imaging device 110 Optical section 120 DSP circuit 130 Display section 140 Operation section 150 Bus 160 Frame memory 170 Storage section 180 Power supply section 200 Solid-state image sensor 210 Pixel array section 220 Pixel 221 Photoelectric conversion element 222 Transfer transistor 223 Reset transistor 224 Floating diffusion layer 225 Amplification transistor 226 Selection transistor 230 Timing control circuit 240, 250 Column signal processing circuit 251 ADC
252 Digital signal processing section 300 Vertical scanning circuit 310 Decoder 320, 350 Current control circuit 321, 351, 352 Variable current source 322 to 324, 354, 452 NMOS transistor 325, 326, 353, 451 PMOS transistor 330 Drive section 400, 500, 600, 700, 800, 900 Drive circuit 410 Selection signal generation section 411 Logic gate 412 Latch circuit 415 NAND (Negated OR) gate 416 NOR (Negated OR) gate 420, 470, 520 Control signal generation section 431, 432, 531 , 532, 631, 632 Selection switch 440, 460, 540, 560, 640, 660 Current mirror 441, 461 Mirror source transistor 442, 462, 742, 762 Mirror destination transistor 450, 550, 650, 750 Driver 480, 490 Sample hold Circuit 481, 491 Sample switch 482, 492 Short circuit switch 483, 493 Capacitive element

Claims (10)

  1.  所定の駆動信号を出力端子から出力するドライバと、
     所定の参照電流に応じた出力電流を生成して前記ドライバの電源側および接地側の少なくとも一方に流すカレントミラーと、
     前記参照電流の電流値を制御する電流制御回路と
    を具備する固体撮像素子。
    a driver that outputs a predetermined drive signal from an output terminal;
    a current mirror that generates an output current according to a predetermined reference current and flows it to at least one of a power supply side and a ground side of the driver;
    A solid-state imaging device comprising: a current control circuit that controls a current value of the reference current.
  2.  前記駆動信号に従ってアナログ信号を生成する複数の画素が二次元格子状に配列された画素アレイ部をさらに具備する
    請求項1記載の固体撮像素子。
    2. The solid-state image sensor according to claim 1, further comprising a pixel array section in which a plurality of pixels that generate analog signals in accordance with the drive signal are arranged in a two-dimensional grid.
  3.  前記画素アレイ部内の行ごとに前記ドライバおよび前記カレントミラーが配置され、
     前記カレントミラーは、
     前記参照電流を流すミラー元トランジスタと、
     前記出力電流を生成するミラー先トランジスタと
    を備える請求項2記載の固体撮像素子。
    The driver and the current mirror are arranged for each row in the pixel array section,
    The current mirror is
    a mirror source transistor through which the reference current flows;
    The solid-state image sensor according to claim 2, further comprising a mirror-end transistor that generates the output current.
  4.  前記カレントミラーは、
     前記参照電流を流すミラー元トランジスタと、
     前記ミラー元トランジスタを共有し、前記出力電流を生成する第1および第2のミラー先トランジスタと
    を備え、
     前記ドライバは、第1および第2のドライバを含み、
     前記第1のドライバは、前記画素アレイ部内の第1の行に前記出力電流を出力し、
     前記第2のドライバは、前記画素アレイ部内の第2の行に前記出力電流を出力し、
     前記第1のミラー先トランジスタは、前記第1のドライバに前記出力電流を流し、
     前記第2のミラー先トランジスタは、前記第2のドライバに前記出力電流を流す
    請求項2記載の固体撮像素子。
    The current mirror is
    a mirror source transistor through which the reference current flows;
    first and second mirror destination transistors that share the mirror source transistor and generate the output current;
    the driver includes first and second drivers;
    the first driver outputs the output current to a first row in the pixel array section;
    the second driver outputs the output current to a second row in the pixel array section;
    the first mirror destination transistor passes the output current to the first driver;
    3. The solid-state image sensor according to claim 2, wherein the second mirror destination transistor causes the output current to flow through the second driver.
  5.  前記第1の行からのアナログ信号をデジタル信号に変換する第1のアナログデジタル変換器と、
     前記第2の行からのアナログ信号をデジタル信号に変換する第2のアナログデジタル変換器と
    をさらに具備し、
     前記第1および第2のドライバは、同時に前記出力電流を供給する
    請求項4記載の固体撮像素子。
    a first analog-to-digital converter for converting analog signals from the first row into digital signals;
    further comprising a second analog-to-digital converter that converts the analog signal from the second row into a digital signal,
    The solid-state imaging device according to claim 4, wherein the first and second drivers simultaneously supply the output current.
  6.  前記カレントミラーと前記電流制御回路との間の経路を所定の選択信号に同期して開閉する選択スイッチをさらに具備する
    請求項1記載の固体撮像素子。
    2. The solid-state imaging device according to claim 1, further comprising a selection switch that opens and closes a path between the current mirror and the current control circuit in synchronization with a predetermined selection signal.
  7.  前記選択信号を生成して出力する論理ゲートと、
     前記出力された選択信号を保持して前記選択スイッチに供給するラッチ回路と
    をさらに具備する請求項6記載の固体撮像素子。
    a logic gate that generates and outputs the selection signal;
    7. The solid-state imaging device according to claim 6, further comprising a latch circuit that holds the output selection signal and supplies it to the selection switch.
  8.  前記出力電流は、第1および第2の出力電流を含み、
     前記カレントミラーは、
     電源ノードから前記ドライバの電源端子に前記第1の出力電流を流す電源側カレントミラーと、
     前記ドライバの接地端子から接地ノードに前記第2の出力電流を流す接地側カレントミラーと
    を含む請求項1記載の固体撮像素子。
    the output current includes first and second output currents,
    The current mirror is
    a power supply side current mirror that causes the first output current to flow from the power supply node to the power supply terminal of the driver;
    2. The solid-state image sensor according to claim 1, further comprising a ground-side current mirror that causes the second output current to flow from the ground terminal of the driver to the ground node.
  9.  可変電流源と、
     前記可変電流源の生成した参照電流を流すミラー元トランジスタと、
     前記参照電流に応じた出力電流を生成してドレインから電圧信号を出力するミラー先トランジスタと、
     所定の制御信号に同期して前記ミラー先トランジスタのゲート-ソース間の電圧をサンプルホールドするサンプルホールド回路と
    を具備する固体撮像素子。
    a variable current source;
    a mirror source transistor through which a reference current generated by the variable current source flows;
    a mirror destination transistor that generates an output current according to the reference current and outputs a voltage signal from its drain;
    A solid-state imaging device comprising a sample and hold circuit that samples and holds a voltage between the gate and source of the mirror destination transistor in synchronization with a predetermined control signal.
  10.  所定の駆動信号を出力端子から出力するドライバと、
     所定の参照電流に応じた出力電流を生成して前記ドライバの電源側および接地側の少なくとも一方に流すカレントミラーと、
     前記参照電流の電流値を制御する電流制御回路と、
     前記駆動信号に従ってアナログ信号を生成する複数の画素と、
     前記アナログ信号に対して所定の信号処理を行う信号処理回路と
    を具備する撮像装置。
    a driver that outputs a predetermined drive signal from an output terminal;
    a current mirror that generates an output current according to a predetermined reference current and flows it to at least one of a power supply side and a ground side of the driver;
    a current control circuit that controls the current value of the reference current;
    a plurality of pixels that generate analog signals according to the drive signal;
    An imaging device comprising: a signal processing circuit that performs predetermined signal processing on the analog signal.
PCT/JP2023/017242 2022-07-04 2023-05-08 Solid-state imaging element and imaging device WO2024009600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-107552 2022-07-04
JP2022107552A JP2024006550A (en) 2022-07-04 2022-07-04 Solid state image sensor and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2024009600A1 true WO2024009600A1 (en) 2024-01-11

Family

ID=89453079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017242 WO2024009600A1 (en) 2022-07-04 2023-05-08 Solid-state imaging element and imaging device

Country Status (2)

Country Link
JP (1) JP2024006550A (en)
WO (1) WO2024009600A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029005A (en) * 2010-07-22 2012-02-09 Panasonic Corp Solid-state image pickup device and image pickup device
JP2012195734A (en) * 2011-03-16 2012-10-11 Sony Corp Solid state imaging apparatus, imaging apparatus, electronic apparatus, and solid state imaging apparatus driving method
JP2019161520A (en) * 2018-03-15 2019-09-19 ソニーセミコンダクタソリューションズ株式会社 Imaging device drive circuit and imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029005A (en) * 2010-07-22 2012-02-09 Panasonic Corp Solid-state image pickup device and image pickup device
JP2012195734A (en) * 2011-03-16 2012-10-11 Sony Corp Solid state imaging apparatus, imaging apparatus, electronic apparatus, and solid state imaging apparatus driving method
JP2019161520A (en) * 2018-03-15 2019-09-19 ソニーセミコンダクタソリューションズ株式会社 Imaging device drive circuit and imaging device

Also Published As

Publication number Publication date
JP2024006550A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US10681294B2 (en) Solid-state imaging device and camera system
US8743249B2 (en) Solid state imaging device and camera system having test-pattern generating circuitry
JP2012165168A (en) Semiconductor device, physical information acquisition apparatus and signal readout method
TW200922310A (en) A/D converting circuit, solid-state image sensing device and camera system
US8035713B2 (en) Driving circuit, driving method, solid imaging device, and electronic apparatus
US20090096818A1 (en) Data driver, integrated circuit device, and electronic instrument
US9497398B2 (en) Solid-state imaging device and camera for reducing random row noise
US20110058082A1 (en) CMOS Image Sensor with Noise Cancellation
US8363139B2 (en) Imaging device having hierarchical buses
US9860468B2 (en) Solid-state image pickup device, and image pickup device which provides for enhanced image quality
JP4661212B2 (en) Physical information acquisition method, physical information acquisition device, and semiconductor device
US8174475B2 (en) D/A conversion circuit, data driver, integrated circuit device, and electronic instrument
WO2024009600A1 (en) Solid-state imaging element and imaging device
JP5177198B2 (en) Physical information acquisition method and physical information acquisition device
JP2011171889A (en) Solid-state imaging element and imaging apparatus
JP5070945B2 (en) Solid-state imaging device, imaging device
JP2020102816A (en) Imaging apparatus and method of controlling imaging apparatus
JP2007087998A (en) Switching element driving circuit
WO2011070745A1 (en) Solid-state imaging device and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835141

Country of ref document: EP

Kind code of ref document: A1