WO2024008980A1 - Transmisión variable continua toroidal y método de control de dicha transmisión - Google Patents

Transmisión variable continua toroidal y método de control de dicha transmisión Download PDF

Info

Publication number
WO2024008980A1
WO2024008980A1 PCT/ES2022/070444 ES2022070444W WO2024008980A1 WO 2024008980 A1 WO2024008980 A1 WO 2024008980A1 ES 2022070444 W ES2022070444 W ES 2022070444W WO 2024008980 A1 WO2024008980 A1 WO 2024008980A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
roller
input
output
disc
Prior art date
Application number
PCT/ES2022/070444
Other languages
English (en)
French (fr)
Inventor
Mikel IRIBECAMPOS JUARISTI
Jon LARRAÑAGA AMILIBIA
Original Assignee
MONDRAGON GOI ESKOLA POLITEKNIKOA J. Mª. ARIZMENDIARRIETA, S.COOP.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MONDRAGON GOI ESKOLA POLITEKNIKOA J. Mª. ARIZMENDIARRIETA, S.COOP. filed Critical MONDRAGON GOI ESKOLA POLITEKNIKOA J. Mª. ARIZMENDIARRIETA, S.COOP.
Priority to PCT/ES2022/070444 priority Critical patent/WO2024008980A1/es
Publication of WO2024008980A1 publication Critical patent/WO2024008980A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6649Friction gearings characterised by the means for controlling the torque transmitting capability of the gearing

Definitions

  • the present invention relates to toroidal continuously variable transmissions.
  • Continuously variable transmissions are a type of automatic transmission that does not use gears to modify the transmission ratio, so it is not restricted to a limited number. of changes, for example between 4 or 7 gears, as occurs in vehicle gear transmissions, but it can change the transmission ratio to any value within limits and according to the needs of the application.
  • CVT transmissions are generally used in the automotive sector to change the transmission ratio of vehicles, however, CVTs can be used in different sectors where it is required to modify the relationship between the input and output of the transmission. .
  • CVT transmissions including pulley CVT transmissions, planetary or ball CVTs, curved CVTs, or toroidal CVTs, among others.
  • a pulley CVT comprises a driving pulley, a driven pulley, and a belt or chain that joins the pulleys.
  • Each pulley is made up of two truncated cones facing each other that can move closer and further apart, so that by varying the distance between the cones the transmission ratio can be changed.
  • WO2018222660A1 shows a planetary CVT comprising an input disc driven by an input shaft, an output disc driving an output shaft, and a set of balls that transfer motion from the input disc to the output disc.
  • the balls are arranged on a carriage that allows you to vary the angle of inclination of the balls and change the transmission ratio.
  • the discs are preloaded with a pre-established load to guarantee contact between the balls and the discs, preventing slipping.
  • WO2021197568A1 shows a curved CVT comprising an input wheel coupled to an input shaft, an output wheel coupled to an output shaft, and rollers that transfer motion from the input wheel to the output wheel.
  • the wheels are facing each other and have a curved inner surface on which the rollers rest to transmit movement.
  • the rollers are arranged on hinges that allow the angle of inclination of the rollers to be varied, and thereby change the transmission ratio.
  • first cylinder On the input side of the transmission there is a first cylinder with a piston that generates hydraulic pressure to axially push the input wheel, and on the output side there is a second cylinder with another piston that generates another hydraulic pressure to axially push the wheel output, so that by varying the pressures on the sides of the transmission, the angle of inclination of the rollers is varied and thus the transmission ratio. That is, when the loads applied by the cylinders are different, the system is unbalanced, and in this way the transmission ratio is changed.
  • a toroidal CVT comprises an input disc driven in rotation by an input shaft, an output disc that drives an output shaft in rotation, and rollers that transfer the motion of the input disc to the output disc.
  • the discs have opposing toroidal surfaces that are in contact with the rollers through a transmission fluid.
  • the ratio is 1:1, and the discs rotate at a similar speed depending on the slip between discs and rollers, and when the inclination of the rollers is changed, the transmission ratio and the output disc speed can be increased or decreased.
  • a CVT of this type requires a certain preload to guarantee contact between the discs and the rollers.
  • the transmission has a clamping mechanism that presses the input disc against the output disc, with an adequate load that guarantees contact between the discs and the rollers without excessive slip appearing that reduces the performance of the transmission.
  • the clamping mechanism is a cam type that can be moved axially on the input shaft to press the input disc against the output disc according to a preset load.
  • a toroidal CVT can be single cavity, with one input disc and one output disc, or double cavity with two input discs and one output disc, as shown for example in document EP2880336A1.
  • the object of the invention is to provide a toroidal continuously variable transmission and a method of controlling said transmission, as defined in the claims.
  • One aspect of the invention relates to a toroidal continuously variable transmission
  • a toroidal continuously variable transmission comprising an input disc driven in rotation by an input shaft, an output disc driving in rotation an output shaft and at least one roller that transfers the movement of the input disc towards the output disc, the input disc has a toroidal surface, and the output disc has another toroidal surface, which is facing the toroidal surface of the input disc, and both discs are coupled by the roller which is in contact with the toroidal surfaces of the discs, a transmission ratio changing mechanism that is coupled to the roller to vary the angle of inclination of the roller and modify the contact points between the roller and the toroidal surfaces of the discs.
  • the transmission also comprises an input clamping mechanism to press the input disc against the roller and sensors to measure, directly or indirectly, the speed of the input disc, the speed of the output disc and the angle of inclination of the roller.
  • the transmission additionally comprises an output clamping mechanism for pressing the output disc against the roller and a control unit that is configured to independently control the pressure exerted by the clamping mechanisms as a function of the speed of the discs and the angle of inclination of the roller.
  • a known toroidal CVT such as that shown in EP2880336A1 which only has a clamping mechanism, only applies a load to one of the discs, for example, to the input disc, so that the load at the points cannot be controlled. of contact between the output disc and the rollers.
  • the reactions at the contact point between the input disc and the roller and between the roller and the output disc are considered equal. Therefore, the normal forces at the contact point Fni and Fno would be equal (and in these cases, the point between the roller and the output disc would be overloaded, since it has been experimentally proven that both points do not have to be loaded. with the same normal force).
  • the toroidal CVT of the invention allows different loads to be applied to the input and output discs, thus avoiding overloaded points that reduce the performance of the transmission.
  • Another aspect of the invention relates to a transmission control method defined above, comprising:
  • Figure 1 shows a sectional view of an example of the toroidal continuously variable transmission of the invention
  • Figure 2 shows an exploded perspective view of the shaft, disc, and input clamping mechanism of the transmission of Figure 1.
  • Figure 3 shows a perspective view of the three rollers of the transmission of Figure 1.
  • Figure 4 shows a perspective view of the gear ratio mechanism used to vary the inclination angle of the three rollers in Figure 3.
  • Figure 5 shows the section view of Figure 1 with the control unit that receives information from the sensors and commands the clamping mechanisms based on said information.
  • the invention relates to a toroidal CVT continuously variable transmission that is used to modify the relationship between the input and output of the transmission, for example, to vary the torque delivered by a motor that is connected to the input of the transmission.
  • the toroidal CVT continuously variable transmission comprises an input disc 1 driven in rotation by an input shaft 2, an output disc 3 that drives in rotation an output shaft 4 and at least one roller 5 that transfers the movement of the input disc 1 towards output disc 3.
  • the input shaft 2 may be coupled to an engine, for example, a vehicle engine, and the output shaft 4 may be connected to an element that is required to be driven by changing the ratio of the torque transmitted by the input shaft 2, for example, to drive the wheels of a vehicle.
  • an engine for example, a vehicle engine
  • the output shaft 4 may be connected to an element that is required to be driven by changing the ratio of the torque transmitted by the input shaft 2, for example, to drive the wheels of a vehicle.
  • the input disc 1 has a toroidal surface
  • the output disc 3 has another toroidal surface, which is facing the toroidal surface of the input disc 1, and both discs are coupled by the roller 5 that is in contact with the surfaces toroidal surfaces of discs 1 and 3.
  • the toroidal surfaces of discs 1 and 3 define a toroidal cavity in which the roller 5 is arranged.
  • the toroidal surface of discs 1 and 3 is lubricated, so that the torque from the input shaft 2 is transmitted to the output shaft 4 through contact points between the roller and the discs that are lubricated and heavily loaded.
  • shear forces are generated between discs 1 and 3 and the roller that transmit the movement through the lubricated layer, producing a sliding movement between roller 5 and discs 1 and 3.
  • the toroidal CVT comprises an input clamping mechanism 7 for pressing the input disc 1 against the roller 5, and an output clamping mechanism 8 for pressing the output disc 3 against the roller 5.
  • the input clamping mechanism 7 generates a pressure between the input disc 1 and the roller 5 which is represented as an input load Fni in Figure 1
  • the output clamping mechanism 8 generates a pressure between the output disc 3 and roller 5 which is represented as an output load Fno.
  • the clamping mechanisms 7 and 8 are hydraulic cylinders.
  • other mechanisms can be used to press the discs, such as a cam-type mechanism, for example, as described in EP2880336A1.
  • the hydraulic cylinder of the inlet clamping mechanism 7 has a feed line through which an inlet pressure P ⁇ is applied, and the hydraulic cylinder of the outlet clamping mechanism 8 has another supply line through which an outlet pressure Po is applied.
  • the toroidal CVT also comprises a transmission ratio changing mechanism 6 that is coupled to the roller 5 to vary the inclination angle of the roller 5 and modify the contact points between the roller 5 and the toroidal surfaces of the discs 1 and 3.
  • a transmission ratio changing mechanism 6 that is coupled to the roller 5 to vary the inclination angle of the roller 5 and modify the contact points between the roller 5 and the toroidal surfaces of the discs 1 and 3.
  • An example of the gear ratio mechanism 6 used to vary the inclination angle of the roller 5 is shown in Figure 4, and which will be described later.
  • Changing the angle of inclination of roller 5 changes the transmission ratio.
  • the roller is perpendicular to the discs, that is, when the roller is parallel to the input shaft 1, the ratio is 1:1, and discs 1 and 3 rotate at approximately the same speed, but when the inclination of the roller 5, the transmission ratio is changed, and the speed of the output disc 3 can be increased or decreased without modifying the speed of the input disc 1.
  • the toroidal CVT additionally comprises sensors 9 to measure, directly or indirectly, the speed of the input disc 1, the speed of the output disc 3 and the inclination angle of the roller 5, and a control unit 10 that is configured to control independently the pressure exerted by the clamping mechanisms 7 and 8 as a function of the speed of the discs 1 and 3 and the angle of inclination of the roller 5. See Figure 5.
  • the control unit 10 controls the inlet pressure Pi and the outlet pressure Po that is applied to the hydraulic cylinders of the clamping mechanisms 7 and 8 through the supply lines.
  • the speed of the discs 1 and 3 is measured with speed sensors that are respectively coupled to the input shaft 2 and the output shaft 4. It is evident to a person skilled in the art that the speed of the discs 1 and 3 can be measured in different ways, for example, it can be measured directly using torque sensors or encoders attached to the axes, or it can be measured indirectly, for example, the speed of the input disc 1 can be obtained by measuring the consumption of the motor that drives the axle. input 2.
  • the inclination angle of the roller 5 is measured from the transmission ratio changing mechanism 6 that drives the roller 5. The applicant has surprisingly found that the performance of the transmission improves when the loads Fni and Fno applied on each side of the transmission to press the discs 1 and 3 are independently controlled. Therefore, the invention proposes to independently select the input load Fni to which the contact points between the input disc 1 and the roller 5 are subjected, and the output load Fno to which the contact points between the output disc 3 and the roller 5 are subjected.
  • the transmission control method comprises:
  • the clamping mechanisms 7 and 8 apply the input load Fni and the output load Fno, and to determine the loads Fni and Fno, the control unit 10 has a database relating the optimal input load Fni and the load optimal output Fno for each speed of the input discs 1 and output 3 and for each angle of inclination of the roller 5. In this way, the transmission allows the sliding between the discs 1, 3 and the roller 5 to be controlled in real time. .
  • control unit 10 receives data from sensors 9 that measure the speed of discs 1 and 3 and the inclination angle of roller 5 and commands the clamping mechanisms 7 and 8 to press the discs 1 and 3 against roller 5.
  • the figures show a toroidal CVT according to an example of the invention having three rollers 5 arranged between the input disc 1 and the output disc 3.
  • the rollers 5 are equally spaced in angular positions 120° apart.
  • the toroidal CVT of Figure 1 has a casing 11 that supports all the transmission elements and which for clarity is represented schematically in the Figure.
  • the input shaft 2 and the output shaft 4 are aligned along a longitudinal axis a first end of the central shaft 12 through a first bearing 13 and the output shaft 4 is coupled with a second end of the central shaft 12 through a second bearing 13.
  • the input disc 1 rotates integral with the input shaft 2 and the output disc 3 rotates integrally with the output shaft 4, and the central shaft 12 allows aligning both input shafts 2 and output 4 along the longitudinal axis X, in this way, the input and output shafts 2 and 4 are coaxial and it is guaranteed that no misalignments occur between the axles that could affect the loads applied to the discs, and therefore the performance of the transmission.
  • the bearings 13 can be needle bearings that allow the rotation of the input shaft 2 and the output shaft 4, as well as their axial displacement, with respect to the central axis 12.
  • Figure 2 shows an exploded perspective view of the input shaft 2 of the transmission together with the input disc 1, the output shaft 4 being identical to the input shaft 2.
  • the input shaft 2 has at one of its ends a annular portion 14 that is integrally coupled to the axis of rotation of the input disc 1, and said annular portion 14 has a cavity 15 into which the first end of the central axis 12 enters, and the output shaft 4 has at one of its ends another annular portion 14 that is integrally coupled to the axis of rotation of the output disc 3, and said annular portion 14 has another cavity 15 into which the second end of the central axis 12 enters.
  • the end opposite to the annular portion 14 of the input 2 can be coupled to a motor, and the end opposite the annular portion 14 of the output shaft 2 can be coupled to the element that is required to be driven by the motor.
  • the cavities 15 of the input shafts 2 and output shafts 4 are sized to allow the input shaft 2 and the output shaft 4 to move axially with respect to the central shaft 12 and therefore the discs 1 and 3 can approach each other. each other when the clamping mechanisms 7 and 8 are activated. As can be seen in Figure 1, in the cavities 15 there is a space that allows the axial displacement of the axes 2 and 4 with respect to the ends of the central axis 12.
  • the input clamping mechanism 7 comprises a piston 16 that axially displaces an annular part 17 that is attached to the input shaft 2, and the output clamping mechanism 8 comprises another piston 16 that axially displaces another annular part 17 that is attached to the output shaft 4.
  • the annular part 17 of each clamping mechanism 7 and 8 is coupled to its respective shaft 2 or 4 through an angular contact bearing 18 that allows rotation and axial displacement of the shafts 2 and 4.
  • the angular contact bearing 18 is arranged on its axis 2 or 4 in the vicinity of the annular portion 14 of the shaft, and the annular part 17 is arranged on the angular contact bearing 18, so that the angular contact bearing 18 allows that the annular piece 17 axially pushes the annular portion 14 of the shaft, and in turn allows the rotation of the shaft.
  • Each clamping mechanism 7 and 8 is attached to the transmission housing 11 by means of a coupling part 19.
  • Each part 19 surrounds the clamping mechanism 7 or 8 and the annular part 17, and between the part 19 and the part ring 17, an annular sealing gasket is provided
  • each coupling piece 19 and its respective annular piece 17 there is a space that allows the axial displacement of the annular pieces 17 to be able to axially move the discs 1 and 3.
  • the toroidal CVT additionally comprises a central pedestal 21 that has a ball joint 22 on which the roller 5 tilts to vary the angle of inclination of the roller 5, the axis of rotation of the roller 5 being coupled to the ball joint 22 through a bearing 23.
  • Bearing 23 may be a ball bearing.
  • the central shaft 12 is retained in the central pedestal 21. In this way, the central pedestal 21
  • the central pedestal 21 guarantees that both the axles 2 and 4 that are coupled to the central axis 12, and the roller 5 that is arranged between the discs 1 and 2, are perfectly aligned. That is, the central pedestal 21 is arranged in the center of the transmission and all elements of the transmission are referenced with respect to the central pedestal 21.
  • the invention allows the loads Fni and Fno to be different and the reactions created by the difference in forces are transferred to the housing 11 through the central pedestal 21.
  • the central axis 12 has a cone shape that fits into a reciprocal cavity of the central pedestal 21, which facilitates the assembly and disassembly of the central axis 12. on the central pedestal 21.
  • the center pedestal 21 has a base 24 that is coupled to the transmission housing 11. As seen in Figure 3, the central pedestal 21 is coupled to three rollers 5, and therefore has three ball joints 22, one for each of the three rollers 5, and the base 24 comprises three feet that are attached to the casing. 11 of the transmission, the base feet 24 being equally spaced in angular positions 120° apart
  • the transmission ratio changing mechanism 6 comprises a nut-spindle drive 25 that axially displaces a ring 26.
  • Said ring 26 is attached to a carriage 27 that has a stem 28 that is inserted into the axis of rotation of the roller 5, such that the axial displacement of the carriage 27 causes the tilting of the stem 28, changing the angle of inclination of the roller 5.
  • the transmission comprises three rollers 5, and each roller 5 has on its axis of rotation a rod 28 that is attached to a carriage 27, the three carriages 27 being attached to the ring 26, such that the Nut-spindle drive 25 causes the three rods 28 to tilt, changing the angle of inclination of the three rollers 5 simultaneously.
  • the carriage 27 moves axially on a guide 29 that is fixed to the transmission housing 11. As shown in Figure 4, there are three carriages 27 that move on three respective guides 29.
  • the nut-spindle mechanism 25 is driven by a motor 30 that causes the rotation of a spindle 31 that is coupled to a nut 32 that is attached to the transmission housing 11.
  • One end of the spindle 31 is coupled to the motor 30, and the other end is coupled to the ring 26, so that when the spindle 31 rotates, as the nut 32 is attached to the transmission housing 11, an axial displacement of the spindle 31 next to ring 26, which in turn causes the axial displacement of the carriages 27 and the rods 28 that are attached to the rollers 5.
  • the ball joint 22 of the central pedestal 21 is inserted in the axis of rotation of the roller 5, where the stem 28 of the gear ratio change mechanism 6 is also inserted.
  • ball head 22 has a reciprocal shape to the lower end of the stem 28 to favor the tilting of the roller 5 along its axis of rotation.
  • the upper end of the rod 28 also has a ball-shaped head that fits into a hole in the carriage 26.
  • the bearing 23 Surrounding the coupling between the ball joint 22 and the lower end of the rod 28 is the bearing 23 that disengages the rotational turn of the roller. 5 with respect to the ball joint 22 and the stem 28.
  • the figures show a non-limiting example of a toroidal CVT.
  • the toroidal CVT shown in the figures has a toroidal cavity defined between the input disc 1 and the output disc 3, and in said toroidal cavity three rollers 5 are arranged, however, one or more rollers can be arranged in this toroidal cavity. 5.
  • the CVT could have two or more toroidal cavities, and in each toroidal cavity there are one or more rollers, for example, the CVT could be a double cavity CVT with two input discs and between them an output disc.
  • the toroidal CVT shown in the figures has the input shaft 2 coaxial to the output shaft 4, however, the shafts could not be coaxial, for example, the output disc 3 could have a toothed ring on its periphery that meshes with the output axis, in which case the input and output axes are parallel, as shown for example in document EP2880336A1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Abstract

La invención se refiere a una transmisión variable continua toroidal que comprende un disco de entrada (1) accionado en rotación por un eje de entrada (2), un disco de salida (3) que acciona en rotación un eje de salida (4) y unos rodillos (5) que transfieren el movimiento entre los discos (1,3), un mecanismo (6) para variar el ángulo de inclinación de los rodillos (5), un mecanismo (7) para presionar el disco de entrada (1) contra el rodillo (5), un mecanismo (8) para presionar el disco de salida (3) contra el rodillo (5), unos sensores (9) para medir la velocidad de los discos (1,3) y el ángulo de inclinación de los rodillos (5), y una unidad de control (10) que está configurada para controlar de manera independiente la presión ejercida por los mecanismos de sujeción (7,8) en función de la velocidad de los discos (1,3) y del ángulo de inclinación de los rodillos (5).

Description

DESCRIPCIÓN
“Transmisión variable continua toroidal y método de control de dicha transmisión”
SECTOR DE LA TÉCNICA
La presente invención se relaciona con transmisiones variables continuas toroidales.
ESTADO ANTERIOR DE LA TÉCNICA
Las transmisiones variables continuas (por sus siglas en inglés, CVT, “continuously variable transmisión") son un tipo de transmisión automática que no emplea engranajes para modificar la relación (ratio) de la transmisión, por lo que no está restringida a un número limitado de cambios, por ejemplo entre 4 o 7 cambios, como ocurre en las transmisiones de engranajes de vehículos, sino que puede cambiar la relación de la transmisión a cualquier valor dentro de unos límites y según las necesidades de la aplicación.
Generalmente las transmisiones CVT se emplean en el sector de automoción, para cambiar la relación de la transmisión de los vehículos, no obstante, las CVT se pueden emplear en diferentes sectores en donde se requiere modificar la relación entre la entrada y la salida de la transmisión. Existen diferentes tipos de transmisiones CVT, entre las que se encuentran las transmisiones CVT de poleas, CVT planetarias o de bolas, CVT curvas, o CVT toroidales, entre otras.
Una CVT de poleas comprende una polea conductora, una polea conducida y una correa o cadena que une las poleas. Cada polea está formada por dos conos truncados enfrentados que pueden acercarse y separarse entre sí, de manera que vahando la distancia entre los conos se puede vahar la relación de la transmisión.
WO2018222660A1 muestra una CVT planetaria que comprende un disco de entrada accionado por un eje de entrada, un disco de salida que acciona un eje de salida, y un conjunto de bolas que transfieren el movimiento del disco de entrada hacia el disco de salida. Las bolas están dispuestas en un carro que permite vahar el ángulo de inclinación de las bolas y cambiar la relación de la transmisión. Mediante unos anillos de tracción se precargan los discos con una carga preestablecida para garantizar el contacto entre las bolas y los discos, evitando el deslizamiento.
WO2021197568A1 muestra una CVT curva que comprende una rueda de entrada acoplada a un eje de entrada, una rueda de salida acoplada a un eje de salida, y unos rodillos que transfieren el movimiento de la rueda de entrada hacia la rueda de salida. Las ruedas están enfrentadas entre sí y tienen una superficie interior curva sobre la que apoyan los rodillos para transmitir el movimiento. Los rodillos están dispuestos en unas bisagras que permiten vahar el ángulo de inclinación de los rodillos, y con ello cambiar la relación de la transmisión. En el lado de entrada de la transmisión hay un primer cilindro con un pistón que genera una presión hidráulica para empujar axialmente la rueda de entrada, y en lado de salida hay un segundo cilindro con otro pistón que genera otra presión hidráulica para empujar axialmente la rueda de salida, de manera que vahando las presiones en los lados de la transmisión se varía el ángulo de inclinación de los rodillos y con ello la relación de la transmisión. Es decir, cuando las cargas aplicadas por los cilindros son diferentes, el sistema está en desequilibrio, y de esa manera se cambia la relación de transmisión.
Por último, una CVT toroidal comprende un disco de entrada accionado en rotación por un eje de entrada, un disco de salida que acciona en rotación un eje de salida y unos rodillos que transfieren el movimiento del disco de entrada hacia el disco de salida. Los discos tienen unas superficies toroidales enfrentadas que están en contacto con los rodillos a través de un fluido de transmisión. Mediante un mecanismo de relación de transmisión que está acoplado a los rodillos, se puede vahar el ángulo de inclinación de los rodillos y por tanto se pueden modificar los puntos de contacto entre los rodillos y las superficies toroidales de los discos, vahando así la relación de la transmisión. Cuando los rodillos están en paralelo con el eje de entrada, la relación es 1 :1 , y los discos giran a la una velocidad similar en función del deslizamiento entre discos y rodillos, y cuando se vaha la inclinación de los rodillos, se cambia la relación de la transmisión y se puede aumentar o disminuir la velocidad el disco de salida.
Una CVT de este tipo requiere de una cierta precarga para garantizar el contacto entre los discos y los rodillos. Para ello, la transmisión tiene un mecanismo de sujeción que presiona el disco de entrada contra el disco de salida, con una carga adecuada que garantiza el contacto entre los discos y los rodillos sin que aparezca un deslizamiento excesivo que reduzca el rendimiento de la transmisión. Generalmente el mecanismo de sujeción es un mecanismo de tipo leva que se puede desplazar axialmente sobre el eje de entrada para presionar el disco de entrada contra el disco de salida según un carga preestablecida. Una CVT toroidal puede ser de cavidad simple, con un disco de entrada y un disco de salida, o de cavidad doble con dos discos de entrada y un disco de salida, como se muestra por ejemplo en el documento EP2880336A1 .
EXPOSICIÓN DE LA INVENCIÓN
El objeto de la invención es el de proporcionar una transmisión variable continua toroidal y un método de control de dicha transmisión, según se define en las reivindicaciones.
Un aspecto de la invención se refiere a una transmisión variable continua toroidal que comprende un disco de entrada accionado en rotación por un eje de entrada, un disco de salida que acciona en rotación un eje de salida y al menos un rodillo que transfiere el movimiento del disco de entrada hacia el disco de salida, el disco de entrada tiene una superficie toroidal, y el disco de salida tiene otra superficie toroidal, que está enfrentada a la superficie toroidal del disco de entrada, y ambos discos están acoplados mediante el rodillo que está en contacto con las superficies toroidales de los discos, un mecanismo de cambio de relación de transmisión que está acoplado al rodillo para vahar el ángulo de inclinación del rodillo y modificar los puntos de contacto entre el rodillo y las superficies toroidales de los discos. La transmisión también comprende un mecanismo de sujeción de entrada para presionar el disco de entrada contra el rodillo y unos sensores para medir, directa o indirectamente, la velocidad del disco de entrada, la velocidad del disco de salida y el ángulo de inclinación del rodillo. Según la invención, la transmisión adicionalmente comprende un mecanismo de sujeción de salida para presionar el disco de salida contra el rodillo y una unidad de control que está configurada para controlar de manera independiente la presión ejercida por los mecanismos de sujeción en función de la velocidad de los discos y del ángulo de inclinación del rodillo.
De esta manera, controlando de forma independiente las cargas aplicadas por cada mecanismo de sujeción durante el uso de la transmisión, se aumenta la eficiencia de la transmisión y la vida útil de sus componentes.
Se ha comprobado que la eficacia de la transmisión disminuye cuando se aplican cargas de sujeción demasiado bajas, que provocan un deslizamiento excesivo entre el rodillo y los discos, o cargas de sujeción demasiado altas, que provocan una sujeción excesiva que dificulta el movimiento de los discos, de forma que el control independiente de cada mecanismo de sujeción permite seleccionar de forma independiente la carga que se establece entre el rodillo y el disco de entrada, y la carga que se establece entre el rodillo y el disco de salida.
Una CVT toroidal conocida, como la mostrada en EP2880336A1 , que solo tiene un mecanismo de sujeción, únicamente aplica una carga sobre uno de los discos, por ejemplo, sobre el disco de entrada, de manera que no se puede controlar la carga en los puntos de contacto entre el disco de salida y los rodillos. Cuando se emplea un solo mecanismo de sujeción, las reacciones en el punto de contacto entre el disco de entrada y el rodillo y entre el rodillo y el disco de salida se consideran ¡guales. Por tanto, las fuerzas normales en el punto de contacto Fni y Fno serían ¡guales (y en estos casos, el punto entre el rodillo y el disco de salida estaría sobracargado, ya que experimentalmente se ha comprobado que ambos puntos no tiene porque estar cargados con la misma fuerza normal).
Con todo ello así, la CVT toroidal de la invención permite aplicar cargas diferentes sobre los discos de entrada y salida, con lo que se evita que existan puntos sobrecargados que disminuyen el rendimiento de la transmisión.
Otro aspecto de la invención se refiere a un método de control de la transmisión definida anteriormente, que comprende:
- medir la velocidad del disco de entrada,
- medir la velocidad del disco de salida,
- medir el ángulo de inclinación del rodillo, y
- modificar la presión ejercida por los mecanismos de sujeción en función de la velocidad de los discos y del ángulo de inclinación del rodillo.
De esta manera, se controla de forma continua la velocidad con la que giran los discos, es decir se controla de forma continua el par que está entregando el eje de salida de la transmisión de acuerdo al par aplicado en el eje de entrada, y se modifica la carga aplicada por los mecanismos de sujeción para que el rendimiento de la transmisión se encuentre dentro de unos valores óptimos previamente establecidos. Estas y otras ventajas y características de la invención se harán evidentes a la vista de las figuras y de la descripción detallada de la invención.
DESCRIPCIÓN DE LOS DIBUJOS
La Figura 1 muestra una vista en sección de un ejemplo de la transmisión variable continua toroidal de la invención
La Figura 2 muestra una vista en perspectiva explosionada del eje, disco y el mecanismo de sujeción de entrada de la transmisión de la Figura 1.
La Figura 3 muestra una vista en perspectiva de los tres rodillos de la transmisión de la Figura 1.
La Figura 4 muestra una vista en perspectiva del mecanismo de relación de transmisión que se emplea para variar el ángulo de inclinación de los tres rodillos de la Figura 3.
La Figura 5 muestra la vista en sección de la Figura 1 con la unidad de control que recibe la información de los sensores y comanda los mecanismos de sujeción en función de dicha información.
EXPOSICIÓN DETALLADA DE LA INVENCIÓN
La invención se refiere a una transmisión variable continua CVT toroidal que se emplea para modificar la relación entre la entrada y la salida de la transmisión, por ejemplo, para variar el par entregado por un motor que se conecta a la entrada de la transmisión.
La transmisión variable continua CVT toroidal comprende un disco de entrada 1 accionado en rotación por un eje de entrada 2, un disco de salida 3 que acciona en rotación un eje de salida 4 y al menos un rodillo 5 que transfiere el movimiento del disco de entrada 1 hacia el disco de salida 3.
El eje de entrada 2 puede estar acoplado a un motor, por ejemplo, el motor de un vehículo, y el eje de salida 4 puede estar conectado a un elemento que se requiere accionar cambiado la relación del par trasmitido por el eje de entrada 2, por ejemplo, para accionar las ruedas de un vehículo.
El disco de entrada 1 tiene una superficie toroidal, y el disco de salida 3 tiene otra superficie toroidal, que está enfrentada a la superficie toroidal del disco de entrada 1 , y ambos discos están acoplados mediante el rodillo 5 que está en contacto con las superficies toroidales de los discos 1 y 3. Las superficies toroidales de los discos 1 y 3 definen una cavidad toroidal en donde se dispone el rodillo 5.
La superficie toroidal de los discos 1 y 3 está lubricada, de manera que el par del eje de entrada 2 se trasmite al eje de salida 4 a través de unos puntos de contacto entre el rodillo y los discos que están lubricados y fuertemente cargados. Así, entre los discos 1 y 3 y el rodillo se generan unos esfuerzos cortantes que transmiten el movimiento a través de la capa lubricada, produciéndose un movimiento deslizante entre el rodillo 5 y los discos 1 y 3.
El deslizamiento es necesario para trasmitir el par, sin embargo, también es una fuente de pérdida de potencia, así que se debe encontrar un equilibrio entre las cargas aplicadas y la pérdida de potencia en función del deslizamiento. Por ello, se emplean unos mecanismos de sujeción 7 y 8 que presionan los discos de entrada 1 y salida 3, para garantizar el contacto entre los discos 1 y 3 y el rodillo 5.
La CVT toroidal comprende un mecanismo de sujeción de entrada 7 para presionar el disco de entrada 1 contra el rodillo 5, y un mecanismo de sujeción de salida 8 para presionar el disco de salida 3 contra el rodillo 5.
El mecanismo de sujeción de entrada 7 genera una presión entre el disco de entrada 1 y el rodillo 5 que se representa como una carga de entrada Fni en la Figura 1 , y el mecanismo de sujeción de salida 8 genera una presión entre el disco de salida 3 y el rodillo 5 que se representa como una carga de salida Fno.
Preferentemente, los mecanismos de sujeción 7 y 8 son cilindros hidráulicos. No obstante, se pueden emplear otros mecanismos para presionar los discos, como un mecanismo de tipo leva, por ejemplo, como el descrito en EP2880336A1.
El cilindro hidráulico del mecanismo de sujeción de entrada 7 tiene una línea de alimentación por la que se aplica una presión de entrada P¡, y el cilindro hidráulico del mecanismo de sujeción de salida 8 tiene otra línea de alimentación por la que se aplica una presión de salida Po.
La CVT toroidal también comprende un mecanismo de cambio de relación de transmisión 6 que está acoplado al rodillo 5 para variar el ángulo de inclinación del rodillo 5 y modificar los puntos de contacto entre el rodillo 5 y las superficies toroidales de los discos 1 y 3. En la Figura 4 se muestra un ejemplo del mecanismo de relación de transmisión 6 que se emplea para vahar el ángulo de inclinación del rodillo 5, y que se describirá más adelante. Vahando el ángulo de inclinación del rodillo 5 se cambia la relación de la transmisión. Cuando el rodillo está en perpendicular a los discos, es decir cuando el rodillo está en paralelo con el eje de entrada 1 , la relación es 1 :1 , y los discos 1 y 3 giran aproximadamente a la misma velocidad, pero cuando se vaha la inclinación del rodillo 5, se cambia la relación de la transmisión, y se puede aumentar o disminuir la velocidad del disco de salida 3 sin modificar la velocidad del disco de entrada 1 .
La CVT toroidal adicionalmente comprende unos sensores 9 para medir, directa o indirectamente, la velocidad del disco de entrada 1 , la velocidad del disco de salida 3 y el ángulo de inclinación del rodillo 5, y una unidad de control 10 que está configurada para controlar de manera independiente la presión ejercida por los mecanismos de sujeción 7 y 8 en función de la velocidad de los discos 1 y 3 y del ángulo de inclinación del rodillo 5. Ver Figura 5.
La unidad de control 10 controla la presión de entrada P¡ y la presión de salida Po que se aplica a los cilindros hidráulicos de los mecanismos de sujeción 7 y 8 a través de las líneas de alimentación.
Preferentemente, la velocidad de los discos 1 y 3 se mide con unos sensores de velocidad que están acoplados respectivamente al eje de entrada 2 y al eje de salida 4. Resulta evidente para un experto que la velocidad de los discos 1 y 3 se puede medir de diferentes formas, por ejemplo, se puede medir directamente empleando sensores de par o encóderes acoplados a los ejes, o se puede medir indirectamente, por ejemplo, la velocidad del disco de entrada 1 se puede obtener midiendo el consumo del motor que acciona el eje de entrada 2. Preferentemente, el ángulo de inclinación del rodillo 5 se mide a partir del mecanismo de cambio de relación de transmisión 6 que acciona el rodillo 5. El solicitante sorprendentemente ha comprobado que el rendimiento de la transmisión mejora cuando se controlan de forma independiente las cargas Fni y Fno aplicadas en cada lado de la transmisión para presionar los discos 1 y 3. Por ello, la invención propone seleccionar independientemente la carga de entrada Fni a la que están sometidos los puntos de contacto entre el disco de entrada 1 y el rodillo 5, y la carga de salida Fno a la que están sometidos los puntos de contacto entre el disco de salida 3 y el rodillo 5.
De acuerdo con ello, el método de control de la transmisión comprende:
- medir la velocidad del disco de entrada 1 ,
- medir la velocidad del disco de salida 3
- medir el ángulo de inclinación del rodillo 5, y
- determinar la presión ejercida por los mecanismos de sujeción 7 y 8 en función de la velocidad de los discos 1 y 3 y del ángulo de inclinación del rodillo 5.
Los mecanismos de sujeción 7 y 8 aplican la carga de entrada Fni y la carga de salida Fno, y para determinar las cargas Fni y Fno, la unidad de control 10 tiene una base de datos que relaciona la carga óptima de entrada Fni y la carga óptima de salida Fno para cada velocidad de los discos de entrada 1 y de salida 3 y para cada ángulo de inclinación del rodillo 5. De esta manera, la transmisión permite controlar en tiempo real el deslizamiento entre los discos 1 , 3 y el rodillo 5.
Como se muestra en la Figura 5, la unidad de control 10 recibe datos de los sensores 9 que miden la velocidad de los discos 1 y 3 y el ángulo de inclinación del rodillo 5 y comanda los mecanismos de sujeción 7 y 8 para que presionen los discos 1 y 3 contra el rodillo 5.
En las figuras se muestra una CVT toroidal según un ejemplo de la invención que tiene tres rodillos 5 dispuestos entre el disco de entrada 1 y el disco de salida 3. Los rodillos 5 están equiespaciados en posiciones angulares separadas a 120°.
La CVT toroidal de la Figura 1 tiene una carcasa 11 que soporta todos los elementos de la transmisión y que por motivos de claridad se representa de forma esquemática en la Figura.
El eje de entrada 2 y el eje de salida 4 están alineados a lo largo de un eje longitudinal X de la transmisión y están acoplados con un eje central 12. El eje de entrada 2 está acoplado con un primer extremo del eje central 12 a través de un primer rodamiento 13 y el eje de salida 4 está acoplado con un segundo extremo del eje central 12 a través de un segundo rodamiento 13. El disco de entrada 1 gira solidario con el eje de entrada 2 y el disco de salida 3 gira solidario con el eje de salida 4, y el eje central 12 permite alinear ambos ejes de entrada 2 y salida 4 a lo largo del eje longitudinal X, de esta forma, los ejes de entrada y salida 2 y 4 son coaxiales y se garantiza que no se produzcan desalineaciones entre los ejes que puedan afectar a las cargas aplicadas sobre los discos, y por tanto al rendimiento de la transmisión.
Los rodamientos 13 pueden ser unos rodamientos de aguja que permite la rotación del eje de entrada 2 y del eje de salida 4, así como su desplazamiento axial, con respecto al eje central 12.
La Figura 2 muestra una vista en perspectiva explosionada del eje de entrada 2 de la transmisión junto con el disco de entrada 1 , siendo el eje de salida 4 idéntico al eje de entrada 2. El eje de entrada 2 tiene en uno de sus extremos una porción anular 14 que está solidariamente acoplada al eje de rotación del disco de entrada 1 , y dicha porción anular 14 tiene una cavidad 15 en la que entra el primer extremo del eje central 12, y el eje de salida 4 tiene en uno de sus extremos otra porción anular 14 que está solidariamente acoplada al eje de rotación del disco de salida 3, y dicha porción anular 14 tiene otra cavidad 15 en la que entra el segundo extremo del eje central 12. El extremo opuesto a la porción anular 14 del eje de entrada 2 se puede acoplar a un motor, y el extremo opuesto a la porción anular 14 del eje de salida 2 se puede acoplar al elemento que se requiere accionar con el motor.
Las cavidades 15 de los ejes de entrada 2 y salida 4 están dimensionadas para permitir que el eje de entrada 2 y el eje de salida 4 se puedan mover axialmente con respecto al eje central 12 y que por tanto los discos 1 y 3 se puedan aproximar entre si cuando se activan los mecanismos de sujeción 7 y 8. Como se puede observa en la Figura 1 , en las cavidades 15 hay un espacio que permite el desplazamiento axial de los ejes 2 y 4 con respecto a los extremos del eje central 12.
El mecanismo de sujeción de entrada 7 comprende un pistón 16 que desplaza axialmente una pieza anular 17 que está unida al eje de entrada 2, y el mecanismo de sujeción de salida 8 comprende otro pistón 16 que desplaza axialmente otra pieza anular 17 que está unida al eje de salida 4. La pieza anular 17 de cada mecanismo de sujeción 7 y 8 está acoplada a su respectivo eje 2 o 4 a través de un rodamiento de contacto angular 18 que permite la rotación y el desplazamiento axial de los ejes 2 y 4.
El rodamiento de contacto angular 18 está dispuesto sobre su eje 2 o 4 en la proximidad de la porción anular 14 del eje, y la pieza anular 17 está dispuesta sobre el rodamiento de contacto angular 18, de manera que el rodamiento de contacto angular 18 permite que la pieza anular 17 empuje axialmente la porción anular 14 del eje, y a su vez permite la rotación del eje.
Cada mecanismo de sujeción 7 y 8 está unido a la carcasa 11 de la transmisión por medio de una pieza de acoplamiento 19. Cada pieza 19 rodea el mecanismo de sujeción 7 u 8 y la pieza anular 17, y entre la pieza 19 y la pieza anular 17 se dispone una junta anular de estanqueidad
20 que evita las fugas del fluido que se emplea para lubricar la transmisión.
Como se observa en la Figura 1 , entre cada pieza de acoplamiento 19 y su respetiva pieza anular 17 existe un espacio que permite el desplazamiento axial de las piezas anulares 17 para poder desplazar axialmente los discos 1 y 3.
La CVT toroidal adicionalmente comprende un pedestal central 21 que tiene una rotula 22 sobre la que bascula el rodillo 5 para variar el ángulo de inclinación del rodillo 5, estando el eje de rotación del rodillo 5 acoplado a la rótula 22 a través de un rodamiento 23. El rodamiento 23 puede ser un rodamiento a bolas.
El eje central 12 está retenido en el pedestal central 21. De esta manera, el pedestal central
21 garantiza que tanto los ejes 2 y 4 que se acoplan al eje central 12, como el rodillo 5 que está dispuesto entre los discos 1 y 2 estén perfectamente alineados. Es decir, el pedestal central 21 está dispuesto en el centro de la transmisión y todos los elementos de la transmisión están referenciados con respecto al pedestal central 21.
La invención permite que las cargas Fni y Fno sean diferentes y las reacciones creadas por la diferencia de fuerzas se transfiere a la carcasa 11 mediante el pedestal central 21 .
Preferentemente el eje central 12 tiene una forma de cono que encaja en una cavidad de forma reciproca del pedestal central 21 , que facilita el montaje y desmontaje del eje central 12 en el pedestal central 21.
El pedestal central 21 tiene una base 24 que está acoplada a la carcasa 11 de la transmisión. Como se observa en la Figura 3, el pedestal central 21 está acoplado a tres rodillos 5, y por tanto tiene tres rotulas 22, una por cada uno de los tres rodillos 5, y la base 24 comprende tres pies que se unen a la carcasa 11 de la transmisión, estando los pies de la base 24 equiespaciados en posiciones angulares separadas a 120°
Como se observa en la Figura 4, el mecanismo de cambio de relación de transmisión 6 comprende un accionamiento tuerca-husillo 25 que desplaza axialmente un anillo 26. Dicho anillo 26 está unido a un carro 27 que tiene un vástago 28 que está insertado en el eje de rotación del rodillo 5, tal que el desplazamiento axial del carro 27 provoca la basculación del vástago 28 vahando el ángulo de inclinación del rodillo 5.
También como se observa en la Figura 4, la transmisión comprende tres rodillos 5, y cada rodillo 5 tiene en su eje de rotación un vástago 28 que está unido a un carro 27, estando los tres carros 27 unidos al anillo 26, tal que el accionamiento tuerca-husillo 25 provoca la basculación de los tres vástagos 28, vahando el ángulo de inclinación de los tres rodillos 5 de forma simultánea.
El carro 27 se desplaza axialmente sobre una guía 29 que está fijada en la carcasa 11 de la transmisión. Como se muestra en la Figura 4, hay tres carros 27 que se desplazan sobre tres respectivas guías 29.
El mecanismo tuerca-husillo 25 está accionado por un motor 30 que provoca el giro de un husillo 31 que está acoplado a una tuerca 32 que va unida a la carcasa 11 de la transmisión. Un extremo del husillo 31 está acoplado al motor 30, y el otro extremo está acoplado al anillo 26, de manera que cuando el husillo 31 gira, al estar la tuerca 32 unida a la carcasa 11 de la transmisión, se provoca un desplazamiento axial del husillo 31 junto al anillo 26, que a su vez provoca el desplazamiento axial de los carros 27 y los vástagos 28 que van unidos a los rodillos 5.
Como se observa en detalle en la sección de la Figura 1 , la rotula 22 del pedestal central 21 está insertada en el eje de rotación del rodillo 5, en donde también está insertado el vástago 28 del mecanismo de cambio de relación de transmisión 6. La cabeza de la rótula 22 tiene una forma reciproca al extremo inferior del vástago 28 para favorecer la basculación del rodillo 5 por su eje de rotación. El extremo superior del vástago 28 también tiene una cabeza en forma de rotula que encaja en un agujero del carro 26. Rodeando el acoplamiento entre la rótula 22 y el extremo inferior del vástago 28 se dispone el rodamiento 23 que desacopla el giro de rotación del rodillo 5 con respecto a la rótula 22 y al vástago 28.
Las figuras muestran un ejemplo no limitativo de una CVT toroidal. La CVT toroidal mostrada en las figuras tiene una cavidad toroidal definida entre el disco de entrada 1 y el disco de salida 3, y en dicha cavidad toroidal se disponen tres rodillos 5, no obstante, en esa cavidad toroidal se pueden disponer uno o más rodillos 5. Alternativamente, la CVT podría tener dos o más cavidades toroidales, y en cada cavidad toroidal disponerse u o más rodillos, por ejemplo, la CVT podría ser una CVT de cavidad doble con dos discos de entrada y entre ellos un disco de salida. La CVT toroidal mostrada en las figuras tiene el eje de entrada 2 coaxial al eje de salida 4, no obstante, los ejes podrían no ser coaxiales, por ejemplo, el disco de salida 3 podría tener en su periferia una corona dentada que engrane con el eje de salida, siendo en tal caso los ejes de entrada y salida paralelos, como se muestra por ejemplo en el documento EP2880336A1.

Claims

REIVINDICACIONES Transmisión variable continua toroidal que comprende un disco de entrada (1) accionado en rotación por un eje de entrada (2), un disco de salida (3) que acciona en rotación un eje de salida (4) y al menos un rodillo (5) que transfiere el movimiento del disco de entrada (1) hacia el disco de salida (3), el disco de entrada (1) tiene una superficie toroidal y el disco de salida (3) tiene otra superficie toroidal que está enfrentada a la superficie toroidal del disco de entrada (1) y ambos discos están acoplados mediante el rodillo (5) que está en contacto con las superficies toroidales de los discos (1 ,3), un mecanismo de cambio de relación de transmisión (6) que está acoplado al rodillo (5) para vahar el ángulo de inclinación del rodillo (5) y modificar los puntos de contacto entre el rodillo (5) y las superficies toroidales de los discos (1 ,3), un mecanismo de sujeción de entrada (7) para presionar el disco de entrada (1) contra el rodillo (5), y unos sensores (9) para medir, directa o indirectamente, la velocidad del disco de entrada (1), la velocidad del disco de salida (3) y el ángulo de inclinación del rodillo (5), caracterizada porque la transmisión adicionalmente comprende un mecanismo de sujeción de salida (8) para presionar el disco de salida (3) contra el rodillo (5), y una unidad de control (10) que está configurada para controlar de manera independiente la presión ejercida por los mecanismos de sujeción (7,8) en función de la velocidad de los discos (1 ,3) y del ángulo de inclinación del rodillo (5). Transmisión, según la reivindicación 1 , en donde el eje de entrada (2) y el eje de salida (4) están alineados a lo largo de un eje longitudinal X de la transmisión y están acoplados con un eje central (12), el eje de entrada (2) está acoplado con un primer extremo del eje central (12) a través de un primer rodamiento (13) y el eje de salida (4) está acoplado con un segundo extremo del eje central (12) a través de un segundo rodamiento (14). Transmisión, según la reivindicación 2, en donde el eje de entrada (2) tiene en uno de sus extremos una porción anular (14) que está solidariamente acoplada al eje de rotación del disco de entrada (1), y dicha porción anular (14) tiene una cavidad (15) en la que entra el primer extremo del eje central (12), y el eje de salida (4) tiene en uno de sus extremos otra porción anular (14) que está solidariamente acoplada al eje de rotación del disco de salida (3), y dicha porción anular (14) tiene otra cavidad (15) en la que entra el segundo extremo del eje central (12). Transmisión, según cualquiera de las reivindicaciones anteriores, en donde el mecanismo de sujeción de entrada (7) comprende un pistón (16) que desplaza axialmente una pieza anular (17) que está unida al eje de entrada (2) y el mecanismo de sujeción de salida (8) comprende otro pistón (16) que desplaza axialmente otra pieza anular (17) que está unida al eje de salida (4).
5. Transmisión, según la reivindicación anterior, en donde la pieza anular (17) de cada mecanismo de sujeción (7,8) está acoplada a su respectivo eje (2,4) a través de un rodamiento de contacto angular (18) que permite la rotación del eje (2,4) y el desplazamiento axial del eje (2,4).
6. Transmisión, según la reivindicación anterior, en donde cada mecanismo de sujeción (7,8) está unido a la carcasa (11) de la transmisión por medio de una pieza de acoplamiento (19), en donde cada pieza de acoplamiento (19) rodea el mecanismo de sujeción (7, 8) y la pieza anular (17), y entre la pieza de acoplamiento (19) y la pieza anular (17) se dispone una junta anular de estanqueidad (20).
7. Transmisión, según cualquiera de las reivindicaciones anteriores, que comprende un pedestal central (21) que tiene una rotula (22) sobre la que bascula el rodillo (5) para vahar el ángulo de inclinación del rodillo (5), estando el eje de rotación del rodillo (5) acoplado a la rótula (22) a través de un rodamiento (23).
8. Transmisión, según la reivindicación anterior, en donde el eje central (12) está retenido en el pedestal central (21).
9. Transmisión, según la reivindicación anterior, en donde el eje central (12) tiene una forma de cono que encaja en una cavidad reciproca del pedestal central (21).
10. Transmisión, según cualquiera de las reivindicaciones 7 a 9, en donde el pedestal central (21) tiene una base (24) que está acoplada a la carcasa (11) de la transmisión.
11. Transmisión, según cualquiera de las reivindicaciones anteriores, en donde el mecanismo de cambio de relación de transmisión (6) comprende un accionamiento tuerca-husillo (25) que desplaza axialmente un anillo (26), y en donde dicho anillo (26) está unido a un carro (27) que tiene un vástago (28) que está insertado en el eje de rotación del rodillo (5), tal que el desplazamiento axial del carro (27) provoca la basculación del vástago (28) vahando el ángulo de inclinación del rodillo (5). 2. Transmisión, según la reivindicación anterior, en donde la transmisión comprende tres rodillos (5), y cada rodillo (5) tiene en su eje de rotación un vástago (28) que está unido a un carro (27), estando los tres carros (27) unidos al anillo (26), tal que el accionamiento tuerca-husillo (25) provoca la basculación de los tres vástagos (28), vahando el ángulo de inclinación de los tres rodillos (5) de forma simultánea. 3. Transmisión, según las reivindicaciones 11 o 12, en donde el carro (27) se desplaza axialmente sobre una guía (29) que está fijada en la carcasa (11) de la transmisión.
14. Método de control de la transmisión de cualquiera de las reivindicaciones anteriores, que comprende:
- medir la velocidad del disco de entrada (1),
- medir la velocidad del disco de salida (3),
- medir el ángulo de inclinación del rodillo (5), y
- determinar la presión ejercida por los mecanismos de sujeción (7, 8) en función de la velocidad de los discos (1 ,3) y del ángulo de inclinación del rodillo (5). 5. Método, según la reivindicación anterior, en donde los mecanismos de sujeción (7,8) aplican una carga de entrada (Fni) y una carga de salida (Fno), y para determinar las cargas (Fni, Fno), la unidad de control (10) tiene una base de datos que relaciona la carga óptima de entrada (Fni) y la carga óptima de salida (Fno) para cada velocidad de los discos de entrada (1) y de salida (3) y para cada ángulo de inclinación del rodillo (5).
PCT/ES2022/070444 2022-07-08 2022-07-08 Transmisión variable continua toroidal y método de control de dicha transmisión WO2024008980A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070444 WO2024008980A1 (es) 2022-07-08 2022-07-08 Transmisión variable continua toroidal y método de control de dicha transmisión

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070444 WO2024008980A1 (es) 2022-07-08 2022-07-08 Transmisión variable continua toroidal y método de control de dicha transmisión

Publications (1)

Publication Number Publication Date
WO2024008980A1 true WO2024008980A1 (es) 2024-01-11

Family

ID=83081925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070444 WO2024008980A1 (es) 2022-07-08 2022-07-08 Transmisión variable continua toroidal y método de control de dicha transmisión

Country Status (1)

Country Link
WO (1) WO2024008980A1 (es)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB205479A (en) * 1922-10-11 1924-03-27 Georges Andre Waltefaugle Improvements in or relating to change speed gear
GB482493A (en) * 1936-08-06 1938-03-30 Gen Motors Corp Control means for toric race transmissions
CH290407A (de) * 1950-09-20 1953-04-30 Ag Dabo Mechanisches stufenloses Wechselgetriebe.
US2850910A (en) * 1954-03-12 1958-09-09 Excelermatic Variable speed power transmission mechanisms
US2971390A (en) * 1959-08-18 1961-02-14 Avco Corp Means for imposing pressure on toroid discs of variable transmissions
US3727474A (en) * 1971-10-04 1973-04-17 Fullerton Transiission Co Automotive transmission
EP1418081A2 (de) * 2002-11-06 2004-05-12 Bayerische Motoren Werke Aktiengesellschaft Stufenloses Getriebe für allradgetriebene Fahrzeuge
EP2880336A1 (en) 2012-08-03 2015-06-10 Transmission CVT Corp Inc. Over clamping protection method and clamping mechanism therefor
US20160377153A1 (en) * 2015-06-27 2016-12-29 Ayorinde Olusola Ajumobi Asymmetric toroidal transmission system
WO2018222660A1 (en) 2017-05-31 2018-12-06 Dana Limited Components and assemblies for a ball-type continuously variable planetary transmission
WO2021197568A1 (en) 2020-03-30 2021-10-07 Mazaro N.V. A method for controlling a continuously variable transmission and a transmission equipped with a control system for implementing said method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB205479A (en) * 1922-10-11 1924-03-27 Georges Andre Waltefaugle Improvements in or relating to change speed gear
GB482493A (en) * 1936-08-06 1938-03-30 Gen Motors Corp Control means for toric race transmissions
CH290407A (de) * 1950-09-20 1953-04-30 Ag Dabo Mechanisches stufenloses Wechselgetriebe.
US2850910A (en) * 1954-03-12 1958-09-09 Excelermatic Variable speed power transmission mechanisms
US2971390A (en) * 1959-08-18 1961-02-14 Avco Corp Means for imposing pressure on toroid discs of variable transmissions
US3727474A (en) * 1971-10-04 1973-04-17 Fullerton Transiission Co Automotive transmission
EP1418081A2 (de) * 2002-11-06 2004-05-12 Bayerische Motoren Werke Aktiengesellschaft Stufenloses Getriebe für allradgetriebene Fahrzeuge
EP2880336A1 (en) 2012-08-03 2015-06-10 Transmission CVT Corp Inc. Over clamping protection method and clamping mechanism therefor
US20160377153A1 (en) * 2015-06-27 2016-12-29 Ayorinde Olusola Ajumobi Asymmetric toroidal transmission system
WO2018222660A1 (en) 2017-05-31 2018-12-06 Dana Limited Components and assemblies for a ball-type continuously variable planetary transmission
WO2021197568A1 (en) 2020-03-30 2021-10-07 Mazaro N.V. A method for controlling a continuously variable transmission and a transmission equipped with a control system for implementing said method

Similar Documents

Publication Publication Date Title
US5184981A (en) Cam loaded continuously variable transmission
US9933054B2 (en) Continuously variable transmission and an infinitely variable transmission variator drive
ES2439647T3 (es) Conjunto de estator y mecanismo de cambio de velocidad para una transmisión continuamente variable
KR102021255B1 (ko) 무한 가변 변속기들, 연속 가변 변속기들, 이들에 대한 방법들, 어셈블리들, 서브어셈블리들, 및 구성요소들
CN101535110B (zh) 无级变速传动装置
JP6422468B2 (ja) 可変駆動補助エンジン装置およびバリエータ変速機
JP5731520B2 (ja) 無段変速機のための駆動機構
ES2254250T3 (es) Polea de transmision variable continua.
DK2620672T3 (en) Continuously variable transmission
JP5133914B2 (ja) 連続可変比動力伝達装置に関する改良
KR20040044867A (ko) 개선된 무단 트랜스미션장치
GB2438412A (en) Continuously variable transmission with two opposing biasing devices
US20060105867A1 (en) Belt-driven conical-pulley transmission, method for controlling and operating it, and vehicle having such a transmission
US7789779B2 (en) Continuously variable transmission
US20190323582A1 (en) Idler assembly for a ball variator continuously variable transmission
WO2024008980A1 (es) Transmisión variable continua toroidal y método de control de dicha transmisión
US20180119811A1 (en) Ball Variator Continuously Variable Transmission
KR101149665B1 (ko) 링크구조가 없는 무단변속기
US20170314654A1 (en) Variators
WO2017151568A1 (en) Shift actuator system and method for a continuously variable ball planetary transmission having a rotating and/or grounded carrier
WO2018222660A1 (en) Components and assemblies for a ball-type continuously variable planetary transmission
RU2295077C1 (ru) Передача с гибким тяговым органом
US20180135742A1 (en) Ball Variator Continuously Variable Transmission
US20190271379A1 (en) Passive preload control for a ball-type continuously variable planetary transmission
US20190264784A1 (en) Ball assembly for a ball-type continuously variable planetary transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22760756

Country of ref document: EP

Kind code of ref document: A1