WO2024008691A1 - Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu'à une zone de resolubilisation des sels précipités, installation de gazéification de biomasse associée - Google Patents

Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu'à une zone de resolubilisation des sels précipités, installation de gazéification de biomasse associée Download PDF

Info

Publication number
WO2024008691A1
WO2024008691A1 PCT/EP2023/068332 EP2023068332W WO2024008691A1 WO 2024008691 A1 WO2024008691 A1 WO 2024008691A1 EP 2023068332 W EP2023068332 W EP 2023068332W WO 2024008691 A1 WO2024008691 A1 WO 2024008691A1
Authority
WO
WIPO (PCT)
Prior art keywords
salts
tube
temperature
salt
salt separator
Prior art date
Application number
PCT/EP2023/068332
Other languages
English (en)
Inventor
Frédéric DUCROS
Hary DEMEY CEDENO
Gilles Ratel
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2024008691A1 publication Critical patent/WO2024008691A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/009Heating or cooling mechanisms specially adapted for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/04Settling tanks with single outlets for the separated liquid with moving scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0031Evaporation of components of the mixture to be separated by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/008Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using scrapers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0979Water as supercritical steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus

Definitions

  • the present invention generally relates to salt separators and more particularly those intended to be used in an installation for the thermochemical conversion of a carbonaceous material feed, in particular under a supercritical fluid, for the production of a gas mixture.
  • load of carbonaceous material we mean here and in the context of the invention any material containing a quantity of carbon, in particular any carbonaceous material from residues.
  • H can therefore be biomass, that is to say any inhomogeneous material of plant origin containing carbon, such as lignocellulosic biomass, forest or agricultural residues (straw), which can be almost dry or soaked in water such as household waste or waste resulting from water treatment such as sewage treatment plant sludge.
  • biomass that is to say any inhomogeneous material of plant origin containing carbon, such as lignocellulosic biomass, forest or agricultural residues (straw), which can be almost dry or soaked in water such as household waste or waste resulting from water treatment such as sewage treatment plant sludge.
  • supercritical fluid we mean here and in the context of the invention, the usual meaning, namely a pressure and a temperature beyond which the fluid is in a supercritical state. Its behavior becomes intermediate between the liquid state and the gaseous state: its density is that of a liquid, but its low viscosity is similar to that of a gas.
  • “supercritical water” is meant the usual meaning, that is to say water at temperatures above 374°C under a pressure above 22.1 MPa.
  • a salt separator according to the invention can be implemented in numerous applications, and particularly in the industrial fields of agri-food, chemistry, energy, including the oil sector and the transport sector, ... for which a separation of salts an aqueous fluid mixture is required.
  • a salt separator according to the invention is suitable for the separation of salts initially present in aqueous solutions with or without organic matter.
  • a salt separator according to the invention is advantageously used in a thermochemical conversion installation of wet carbon resources, such as supercritical water gasification.
  • the gasification of biomass and coal has been known for a long time.
  • it can be defined as a thermochemical transformation of biomass or coal by the action of heat in the presence of gasifying agents.
  • lignocellulosic biomass gasification processes make it possible to generate a gas rich in methane or hydrogen.
  • thermochemical processes The separation and recovery of inorganic constituents present in the feed stream of the reactors which implement these thermochemical processes are crucial, because these constituents can lead to blockage of the installation, fouling and poisoning of the catalyst gasification. Additionally, salt recovery offers the opportunity to produce fertilizer as a valuable by-product.
  • FIG. 1 reproduces a salt separator as disclosed in publication [1], as it was envisaged for the gasification of biomass with supercritical water.
  • This separator 1 comprises, as a biomass injection device, a cylindrical tube 10 with an injection orifice 11 through which the biomass is injected, and an outlet orifice 12 through which the biomass is discharged into a chamber interior C delimited by a double-walled enclosure 2 20, 21 of which the exterior 21, thermally insulating, integrates heating elements 22 which thus heats the chamber C and the injection tube 10.
  • wet biomass When the wet biomass is introduced into tube 10, it is gradually brought to a temperature of approximately 450°C: precipitation occurs almost instantly as soon as the temperature reached causes a reduction in the solubility of the salts, leading to separation.
  • wet biomass in various phases, in particular solids in a separation zone S within the chamber C.
  • this separation zone S In the configuration installed vertically of the separator, the biomass se/water/salts and other solids mixture, this separation zone S generates a gravity separation into a brine very loaded with salts and a solution depleted in salts.
  • a resolubilization zone R immediately below the separation zone S allows the resolubilization of the salts which are therefore evacuated by gravity in the form of brine through the outlet orifice 23 drilled in the bottom 24 of the separator, and this without mixing with the part of the effluents which rises in the chamber C to be evacuated through the outlet orifice 25 towards a gasification reactor, not shown.
  • Such gravity separators are also described in publications [2] and [3]: they are used for inorganic fluids and salt deposits for hydrothermal gasification. For the same application, there are also cyclonic separators.
  • a gravity separator operates satisfactorily when the phases in question turn out to be denser than the carrier medium and according to a grain size distribution allowing gravity separation and brine-type behavior, salts which we qualify as type I in this case.
  • salts precipitate in particles so small (micro or nano-particles) that they do not sediment.
  • the scrapers used can be rotary, for example of the endless screw or blade type, or even oscillating of the piston type, for example with plates, annular or not.
  • the actuation of the scraper, rotary or oscillating piston type is generally operated by an electric motor.
  • Patent application US 2012/214977 describes a scraper for ultrafiltration applications. Specific scrapers have also been considered for viscous fluids: https://www.hrsasia.co.in/heat-exchanger-specialists/scraped-surface-heat-exchanger/.
  • the aim of the invention is to respond at least in part to this need.
  • the invention relates to a salt separator for separating salts from a solution containing them, the salt separator comprising:
  • a tube comprising an injection orifice through which a solution containing one or more salts is intended to be injected, and an outlet orifice through which the solution is intended to be evacuated, at least part of the height of the internal wall of the tube being adapted to be heated to a temperature greater than or equal to the precipitation temperature of the salts,
  • the scraping plate being slidably mounted at least in the tube according to a stroke which on the one hand generates scraping friction directly with the heated internal wall of the tube and/ or with any deposit of solid material including precipitated salts, likely to form thereon, and on the other hand positions the scraping plate in at least one so-called resolubilization zone in the tube or in the enclosure, in which the temperature is lower than the temperature of precipitation of the salts so as to allow the resolubilization of the precipitated salts, deposited on the scraping plate.
  • the salt resolubilization zone is reached when the scraping plate is in an extreme position, outside the part of the heated internal wall of the tube, close to the injection orifice or close to the outlet orifice through which the precipitated salts are intended to be discharged in the form of brine.
  • the stroke of the scraping plate is a back and forth stroke in operation.
  • the tube is advantageously made of a metallic material adapted to the operating conditions of temperature and pressure: it can be Inconel®, stainless steel or others.
  • the tube includes heating means for heating the height portion of the inner wall of the tube to a temperature greater than or equal to the precipitation temperature of the salts.
  • - heating resistors in the form of cartridges, intended to be powered by an external electrical power source and integrated into the thickness of the tube to heat its internal wall part to the temperature greater than or equal to the precipitation temperature of the salts,
  • the salt separator advantageously comprises mechanical means for sliding the scraping plate actuated by at least one motor and/or a pressurized drive fluid circuit.
  • the mechanical sliding means comprise a screw arranged axially inside the tube and onto which the scraping plate is screwed in order to constitute an endless screw, the plate being guided in translation by at least one guide rail which extends and is maintained over at least the height of the tube and, where appropriate, to the bottom of the enclosure.
  • the screw can constitute a mechanical coupling shaft or be fitted at its end outside the enclosure with a Pelton or Francis type hydraulic turbine.
  • a Pelton or Francis type hydraulic turbine We can refer to patent application EP3839405 for the implementation of a hydraulic solution for rotating the screw.
  • the invention also relates to a biomass gasification installation comprising:
  • the tube of the salt separator integrates in its thickness a part of the circuit for recovering the effluents obtained at the reactor outlet, as a heat transfer fluid circuit to heat its internal wall part to the higher temperature or equal to the precipitation temperature of the salts.
  • the temperature of the biomass at the injection orifice is of the order of 20°C lower than the precipitation temperature of the salts, the temperature of the biomass at the outlet orifice of the salt separator being around 20°C higher than the precipitation temperature of the salts.
  • the operating temperature of the reactor is approximately 600° C. and the operating pressure of the reactor is approximately 300 bars.
  • the invention essentially consists of producing a separator of salts contained in a solution, preferably to be converted thermochemically, which is carried under supercritical conditions, with at least one scraping plate whose sliding will generate continuous friction. All the phases which can appear within the solution, some of which are potentially clogging because they stick to the walls, in particular the salts contained are eliminated because they are ablated by friction.
  • the stroke of the scraping plate allows it to be brought into a salt resolubilization zone, that is to say in an area of the interior chamber of the enclosure or in the tube where the temperature is lower at the salt precipitation temperature.
  • the operation of the salt separator firstly allows the solution to be converted to be heated to a temperature guaranteeing the precipitation of the salts and their separation by the friction induced by the scraping plate, the resolubilization of the salts precipitated and deposited on the plate then separate the solution to be converted into a flow depleted in salts which is evacuated from the separator to be directed towards a conversion reactor, in particular a gasification reactor, and into a flow loaded with salts to be extracted in the form of a brine.
  • Figure 1 is a schematic longitudinal sectional view of a salt separator according to the state of the art.
  • FIG 2 is a perspective view of a salt separator integrating an injection device according to one embodiment of the invention.
  • FIG 3 is a perspective view of a salt separator integrating an injection device according to another embodiment of the invention.
  • FIG 4 is a synoptic view of a wet biomass gasification installation integrating a salt separator according to the invention.
  • a salt separator 1 according to one embodiment of the invention.
  • the salt separator 1 has an axisymmetric shape of revolution. In its installed configuration, it extends vertically.
  • This separator 1 firstly comprises a tube 10, typically made of metal, part of the height of the internal wall of the envelope is adapted to be heated to a temperature greater than or equal to the precipitation temperature of the salts contained in a wet biomass that we seek to convert, advantageously in a gasification installation like the one detailed below.
  • the tube 10 of cylindrical shape in the example illustrated, comprises an injection orifice 11 through which the wet biomass containing salts is injected, and an outlet 12 through which it is evacuated.
  • Heating resistors in the form of cartridges, intended to be powered by an external electrical power source are advantageously integrated into the thickness of the tubelO to heat its internal wall to the temperature greater than or equal to the precipitation temperature of the salts .
  • These may be cylindrical cartridges of small diameter, typically equal to 3.15mm, such as those marketed by the Omega company: https://www.omega.fr/subsection/cartouches-chauffantes.html.
  • the separator 1 also includes an enclosure 2 around the tube 10. This enclosure 2 delimits an interior chamber C including a zone S for separating the precipitated salts into which the outlet 12 of the tube 10 opens.
  • the cover 26 of the enclosure is pierced with the injection port 11.
  • the enclosure 2 has a double metal wall 20, 21, which is pierced with one or more outlet orifices 25 through which the biomass without the precipitated salts is intended to be evacuated.
  • the bottom 24 of the enclosure is pierced with an outlet 23 through which the precipitated salts are intended to be evacuated in the form of brine.
  • a scraping plate 13 is slidably mounted in the tube 10 and in the interior chamber C of the enclosure according to a stroke which on the one hand generates scraping friction directly with the heated internal wall of the tube 10 and/or with any deposit of solid material including precipitated salts, likely to form on it, and on the other hand positions the scraping plate in at least one so-called resolubilization zone (R) in the tube or in the enclosure, in which the temperature is lower at the precipitation temperature of the salts so as to allow the resolubilization of the precipitated salts, deposited on the scraping plate.
  • the scraping plate 13 is pierced with one or more orifices 130 to allow the solution to pass through.
  • the operation of the separator is designed so that the stroke of the scraping plate 13 performs back and forth movements at least over the entire internal wall of the heated tube 10 to scrape off any deposit of solid material including salts. precipitated.
  • the scraping plate can take, apart from the part of the heated internal wall of the tube 10, a first extreme position PI near the injection orifice 11 and a second extreme position P2 near the outlet 23 through which the precipitated salts are intended to be evacuated in the form of brine.
  • the temperature is lower than the precipitation temperature of the salts, which allows them to be resolubilized.
  • the scraping plate can take, apart from the part of the heated internal wall of the tube 10, a first extreme position PI near the injection orifice 11 and a second extreme position P3 near the outlet 12 of the tube 10.
  • the temperature is lower than the precipitation temperature of the salts, which makes it possible to resolubilize them.
  • FIG. 2 and 3 an advantageous variant of mechanical means for sliding the scraping plate 13 is illustrated.
  • a screw 14 is arranged axially inside the tube 10 and the scraping plate 13 is screwed onto this screw in order to constitute an endless screw.
  • the screw 14 is guided in translation by two guide rails 16 which extend parallel to each other and are held over the height of the tube 10 in notches provided for this purpose in the bottom 24 of the enclosure.
  • the screw constituting a mechanical coupling shaft or being provided at its end outside the enclosure of a hydraulic turbine
  • FIG. 4 illustrates an installation 3 for gasifying wet biomass which integrates a salt separator 1 according to the invention.
  • the different symbols relating to temperatures are as follows:
  • T- salt precipitation temperature, typically around 450°C, reduced by 20°C,
  • T+ salt precipitation temperature, typically around 450°C, increased by 20°C,
  • Tg gasification temperature of biomass, typically around 600°C.
  • This installation 3 includes from upstream to downstream in the direction of the circulation of biomass to be gasified:
  • heat exchanger 4 which can be standard in the management of non-sticky viscous fluid and optimized for heat recovery between ambient temperature and maximum temperature T-.
  • a salt separator 1 connected downstream to the heat exchanger 4, which makes it possible to go from T- to T+ and to evacuate the biomass effluent without salts while separating the salts in the form of brine,
  • the gasification reactor 6 is typically a tube-and-shell reactor and operates at 600°C under pressure of 300 bar.
  • the solid lines symbolize the material flows before gasification, respectively at a cold (ambient) temperature at the inlet of the exchanger 4, at a temperature close to T-/T+ at the outlet of the exchanger 4, then at the required gasification temperature Tg from the outlet of separator 1.
  • the dotted lines represent the post-gasification material flows which exit at the temperature Tg of the reactor, pass into a heating circuit within the envelope 2 at this temperature Tg, in order to heat the biomass which enters the separator 1, then pass back into the heat exchanger 4 to be cooled.
  • the effluents converted by gasification are evacuated from installation 3 to a storage or direct exploitation process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

L'invention concerne un séparateur de sels contenus dans une solution qui est portée dans des conditions supercritiques, avec au moins une plaque de raclage dont le coulissement va générer des frottements en continu. Toutes les phases qui peuvent apparaitre au sein de la solution, dont certaines sont potentiellement encrassantes car collantes aux parois, notamment les sels contenus sont éliminés car ablatées par les frottements. La course de la plaque de raclage lui permet d'être d'amener dans une zone de resolubilisation des sels, c'est-à-dire dans une zone de la chambre intérieure de l'enceinte ou dans le tube où la température est inférieure à la température de précipitation des sels.

Description

Description
Titre : Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu’à une zone de resolubilisation des sels précipités, Installation de gazéification de biomasse associée.
Domaine technique
La présente invention concerne de manière générale les séparateurs de sels et plus particulièrement ceux destinés à être mis en œuvre dans une installation de conversion thermochimique d’une charge de matière carbonée, notamment sous fluide supercritique, pour la production d'un mélange gazeux.
Par « charge de matière carbonée », on entend ici et dans le cadre de l’invention toute matière contenant une quantité de carbone, en particulier toute matière carbonée de résidus.
H peut donc s'agir de biomasse, c'est-à-dire tout matériau inhomogène d'origine végétale contenant du carbone, tel que de la biomasse ligno-cellulosique, des résidus forestiers ou agricoles (paille), qui peut être quasi- sec ou imbibé d'eau comme les déchets ménagers ou de déchets résultants de l’assainissement des eaux comme les boues de station d’épuration.
H peut aussi s'agir d'un combustible d'origine fossile, tel que le charbon.
H peut aussi s'agir de déchets combustibles d'origine industrielle, en particulier de l’industrie agroalimentaire, contenant du carbone, tel que des matières plastiques ou des pneumatiques usagés, des huiles usagées, les solvants organiques
II peut aussi s'agir d'une combinaison de biomasse et de combustible d'origine fossile.
Par « fluide supercritique », on entend ici et dans le cadre de l’invention, le sens usuel, à savoir une pression et une température au-delà desquelles le fluide se trouve dans un état supercritique. Son comportement devient intermédiaire entre l'état liquide et l'état gazeux: sa masse volumique est celle d'un liquide, mais sa faible viscosité s'apparente à celle d'un gaz.
Ainsi, par « eau supercritique », il est entendu le sens usuel, c’est-à-dire de l'eau à des températures supérieures à 374°C sous une pression supérieure à 22,1 MPa.
Bien que décrite en référence à une application privilégiée de gazéification d’une charge de matière carbonée sous eau supercritique, un séparateur de sels selon l’invention peut être mis en œuvre dans de nombreuses applications, et tout particulièrement dans les domaines industriels de l'agroalimentaire, de la chimie, de l'énergie, dont le secteur pétrolier et le secteur des transports, ...pour lesquelles une séparation de sels d’un mélange fluide aqueux est requis.
De manière générale, un séparateur de sels selon l’invention convient à la séparation de sels initialement présents dans des solutions aqueuses avec ou sans matière organique.
Plus spécifiquement, un séparateur de sels selon l’invention est avantageusement mis en œuvre dans une installation de conversion thermochimique de ressources carbonées humides, telle que la gazéification en eau supercritique.
Technique antérieure
Bon nombre de procédés existants permettent de convertir par voie thermochimique une charge carbonée en combustibles liquides (biocarburants, biochar), solides (granulés), et gazeux (biogaz, méthane, syngas, hydrogène).
Parmi ceux-ci, la gazéification de la biomasse et du charbon est connue depuis longtemps. De manière générale, on peut la définir comme une transformation thermochimique de la biomasse ou du charbon par l’action de la chaleur en présence d’agents gazéifiant. On cherche à générer, à l’issue de la gazéification, un mélange de gaz.
Ainsi, les procédés de gazéification de la biomasse ligno-cellulosique permettent de générer un gaz riche en méthane ou hydrogène.
La séparation et la récupération des constituants inorganiques présents dans le flux d'alimentation des réacteurs qui mettent en œuvre ces procédés thermochimiques sont cruciales, car ces constituants peuvent conduire au blocage de l'installation, à l'encrassement et à l'empoisonnement du catalyseur de gazéification. De plus, la récupération des sels offre la possibilité de produire un engrais en tant que sous-produit précieux.
De nombreux articles dans la littérature montrent que la séparation des sels dans un procédé de conversion thermochimique est d'une importance majeure pour l'efficacité réel du procédé global et pour la durée de vie de l’installation afférente. Néanmoins, l'inconvénient des séparateurs de sel connus jusqu'à présent est que la séparation du sel n'est toujours pas satisfaisante ou, bien que satisfaisante, nécessite des apports d’énergie thermique ou mécanique trop élevées ou que les sels soient associés à une part importante de matière organique. De plus, le colmatage et les dépôts sont un problème majeur dans de tels séparateurs de sel.
Plus particulièrement, divers articles scientifiques s’intéressent à la dynamique de la précipitation des sels en conditions d’hydrogénations supercritiques, qui permet de séparer des sels présents initialement d’une solution aqueuse contenant une matière organique.
La figure 1 reproduit un séparateur de sels tel que divulgué dans la publication [1], tel qu’il a été envisagé pour la gazéification de biomasse à l'eau supercritique. Ce séparateur 1 comprend en tant que dispositif d’injection de la biomasse, un tube cylindrique 10 avec un orifice d’injection 11 à travers lequel la biomasse est injectée, et un orifice de sortie 12 à travers lequel la biomasse est évacuée dans une chambre intérieure C délimitée par une enceinte 2 à double -paroi 20, 21 dont celle extérieure 21, isolante thermiquement, intègre des éléments de chauffe 22 qui chauffe ainsi la chambre C et le tube d’injection 10.
Lorsque la biomasse humide est introduite dans le tube 10, elle est portée progressivement à une température d’environ 450°C : la précipitation s’opère quasi-instantanément dès que la température atteinte entraine une diminution de la solubilité des sels, entrainant la séparation de la biomasse humide en diverses phases, notamment solides dans une zone de séparation S au sein de la chambre C.
Dans la configuration installée à la verticale du séparateur, le mélange biomas se/eau/sels et autres solides, cette zone de séparation S génère une séparation gravitaire en une saumure très chargée en sels et une solution appauvrie en sels. Une zone de resolubilisation R, immédiatement en-dessous de la zone de séparation S permet la resolubilisation des sels qui sont donc évacués par gravité sous forme de saumure par l’orifice de sortie 23 percé dans le fond 24 du séparateur, et ce sans mélange avec la partie des effluents qui remonte dans la chambre C pour être évacuée par l’orifice de sortie 25 vers un réacteur de gazéification, non représenté.
De tels séparateurs gravitaires sont aussi décrits dans les publications [2] et [3] : ils sont mis en œuvre pour des fluides inorganiques et des dépôts de sels pour la gazéification hydro thermale. Pour une même application, il existe également des séparateurs cycloniques.
Globalement, un séparateur gravitaire fonctionne de manière satisfaisante lorsque les phases enjeu s’avèrent plus denses que le milieu porteur et selon une distribution de taille de grains permettant une séparation gravitaire et un comportement de type saumure, sels que l’on qualifie de type I dans ce cas.
Or, dans certains cas, les sels précipitent en particules si petites (micro ou nano-particules), qu’elles ne sédimentent pas.
Dans d’autres cas, la séparation gravitaire n’est pas aisée, comme le précise la publication [3]. Ainsi, le passage de la matière carbonée humide dans des conditions sous critiques à des conditions supercritiques peut s’accompagner de l’apparition de phases solides très collantes, sous la forme de sels que l’on qualifie de type II. Ces sels de type II peuvent s’accumuler sur les parois internes de la chambre intérieure du séparateur et le cas échéant colmater le tube d’injection 10 du séparateur comme montré à la figure 1.
Pour éviter une telle accumulation néfaste de sels II, on pourrait envisager d’appliquer des solutions connues, mises en œuvre dans les échangeurs de chaleur de type à surface raclée. De tels échangeurs sont notamment utilisés dans les procédés encrassant, c’est-à-dire lorsque les parois des échangeurs peuvent être le siège de phénomènes d'encrassement des parois impliquées dans les transferts thermiques, i.e. avec dépôt de matières indésirables.
A titre d'exemples, les racleurs utilisés peuvent être rotatifs, par exemple de type vis sans fin ou à pales, ou bien encore oscillants de type piston, par exemple avec des plateaux, annulaires ou non. L'actionnement du racleur, rotatif ou oscillant de type piston, est généralement opéré par un moteur électrique.
Des racleurs pour des échangeurs thermiques ont en particulier été envisagés pour des réacteurs d'oxydation supercritique, comme décrite dans les brevets US 5,100,560A, US6,054,057 A et US5, 461,648 A.
La demande de brevet US 2012/214977 décrit un racleur pour des applications d’ultrafiltration. Des racleurs spécifiques ont également été envisagés pour des fluides visqueux : https://www.hrsasia.co.in/heat-exchanger-specialists/scraped-surface-heat- exchanger/.
Dans le domaine des fluides organiques, d’autres solutions de désencrassement ont été déjà envisagées, parmi lesquelles on peut citer :
- la mise en vibration de pièces par pulsation de pression, comme décrit dans la demande US2008/0073063A1, - des traitements chimiques, comme celui de la demande de brevet CA 2119056.
Toutes ces solutions ne conviennent pas à la problématique d’accumulation de sels de type II sur les parois, qui en outre peut éventuellement se produire sur les racleurs eux-mêmes.
Il existe donc un besoin pour trouver une solution qui permette de mieux contrôler l’élimination de sels, en particulier de type II, présents dans une solution, notamment une solution destinée à subir un traitement thermochimique de conversion telle que de la biomasse humide destinée à être gazéifier.
Le but de l’invention est de répondre au moins en partie à ce besoin.
Exposé de l’invention
Pour ce faire, l’invention concerne un séparateur de sels pour séparer les sels d'une solution les contenant, le séparateur de sel comprenant :
- un tube comprenant un orifice d’injection par lequel une solution contenant un ou des sels est destinée à être injecté, et un orifice de sortie par lequel la solution est destinée à être évacuée, au moins une partie de la hauteur de la paroi interne du tube étant adaptée pour être chauffée à une température supérieure ou égale à la température de précipitation des sels,
- une enceinte délimitant une chambre intérieure dont une zone de séparation des sels précipités dans laquelle débouche l’orifice de sortie du tube, l’enceinte comprenant :
• un couvercle auquel est fixé ou réalisé intégralement le tube et à travers lequel l’orifice d’injection est percé,
• au moins une paroi latérale percée d’au moins un orifice de sortie par lequel la solution dénuée des sels précipités est destinée à être évacuée, et
• un fond percé d’au moins un orifice de sortie par lequel les sels précipités sont destinés à être évacués sous la forme de saumure,
- au moins une plaque de raclage, percée pour laisser passer la solution, la plaque de raclage étant montée coulissante au moins dans le tube selon une course qui d’une part génère des frottements de raclage directement avec la paroi interne chauffée du tube et/ou avec tout dépôt de matière solide dont les sels précipités, susceptible de se former dessus, et d’autre part positionne la plaque de raclage dans au moins une zone dite de resolubilisation dans le tube ou dans l’enceinte, dans laquelle la température est inférieure à la température de précipitation des sels de sorte à permettre la resolubilisation des sels précipités, déposés sur la plaque de raclage.
Selon une configuration avantageuse, la zone de resolubilisation des sels est atteinte lorsque la plaque de raclage est dans une position extrême, en dehors de la partie de la paroi interne chauffée du tube, à proximité de l’orifice d’injection ou à proximité de l’orifice de sortie par lequel les sels précipités sont destinés à être évacués sous la forme de saumure.
Avantageusement, la course de la plaque de raclage est une course de va-et-vient en fonctionnement.
Le tube est avantageusement réalisé dans une matière métallique adaptée aux conditions opératoires de température et de pression : elle peut être en Inconel®, en acier inoxydable ou autres.
Le tube comprend des moyens de chauffage pour chauffer la partie de la hauteur de la paroi interne du tube à une température supérieure ou égale à la température de précipitation des sels.
Pour les moyens de chauffage du tube, on peut envisager plusieurs alternatives qui peuvent se cumuler l’une avec l’autre :
- des moyens de chauffage externe agencés autour du tube pour chauffer sa partie de paroi interne à la température supérieure ou égale à la température de précipitation des sels,
- des résistances chauffantes, sous la forme de cartouches, destinées à être alimentées par une source d’alimentation électrique externe et intégrées dans l’épaisseur du tube pour chauffer sa partie de paroi interne à la température supérieure ou égale à la température de précipitation des sels,
- un circuit de fluide caloporteur réalisé dans l’épaisseur de l’enveloppe pour chauffer sa partie de paroi interne à la température supérieure ou égale à la température de précipitation des sels.
Le séparateur de sels comprend avantageusement des moyens mécaniques de coulissement de la plaque de raclage actionnés par au moins un moteur et/ou un circuit de fluide d’entraînement pressurisé.
Selon une variante de réalisation avantageuse, les moyens mécaniques de coulissement comprennent une vis agencée axialement à l’intérieur du tube et sur laquelle la plaque de raclage est vissée afin de constituer une vis sans-fin, la plaque étant guidée en translation par au moins un rail de guidage qui s’étend et est maintenu sur la hauteur au moins du tube et le cas échéant jusqu’au fond de l’enceinte.
La vis peut constituer un arbre d’accouplement mécanique ou être munie à son extrémité en dehors de l’enceinte d’une turbine hydraulique de type Pelton ou Francis. On pourra se reporter à la demande de brevet EP3839405 pour la mise en œuvre d’une solution hydraulique de mise en rotation de la vis.
L’invention a également pour objet une installation de gazéification de biomasse comprenant:
- un séparateur de sels tel que décrit précédemment ;
- un réacteur de gazéification relié à l’enceinte du séparateur de sels pour être alimenté en biomasse dénuée de sels.
Selon un mode de réalisation avantageux, le tube du séparateur de sels intègre dans son épaisseur une partie du circuit de récupération des effluents obtenus en sortie de réacteur, en tant que circuit de fluide caloporteur pour chauffer sa partie de paroi interne à la température supérieure ou égale à la température de précipitation des sels.
Selon un autre mode de réalisation avantageux, la température de la biomasse à l’orifice d’injection est inférieure de l’ordre de 20°C de la température de précipitation des sels, la température de la biomasse à l’orifice de sortie du séparateur de sels étant supérieure de l’ordre de 20°C de la température de précipitation des sels.
Avantageusement, la température de fonctionnement du réacteur est d'environ 600°C et la pression de fonctionnement du réacteur est d'environ 300 bars.
Ainsi, l’invention consiste essentiellement à réaliser un séparateur de sels contenus dans une solution, de préférence à convertir thermochimiquement, qui est portée dans des conditions supercritiques, avec au moins une plaque de raclage dont le coulissement va générer des frottements en continu. Toutes les phases qui peuvent apparaitre au sein de la solution, dont certaines sont potentiellement encrassantes car collantes aux parois, notamment les sels contenus sont éliminés car ablatées par les frottements.
La course de la plaque de raclage lui permet d’être d’amener dans une zone de resolubilisation des sels, c’est-à-dire dans une zone de la chambre intérieure de l’enceinte ou dans le tube où la température est inférieure à la température de précipitation des sels. Le fonctionnement du séparateur de sels, permet en premier lieu de réchauffer la solution à convertir jusqu’à une température garantissant la précipitation des sels et leur séparation par les frottements induites par la plaque de raclage, la resolubilisation des sels précipités et déposés sur la plaque puis de séparer la solution à convertir en un flux appauvri en sels qui est évacué du séparateur pour être dirigé vers un réacteur de conversion, notamment un réacteur de gazéification, et en un flux chargé en sels à extraire sous la forme d’une saumure.
D’autre avantages et caractéristiques ressortiront mieux à la lecture de la description détaillée, faite à titre illustratif et non limitatif, en référence aux figures suivantes.
Brève description des dessins
[Fig 1] la figure 1 est une vue schématique en coupe longitudinale d’un séparateur de sels selon l’état de l’art.
[Fig 2] la figure 2 est une vue en perspective d’un séparateur de sels intégrant un dispositif d’injection selon un mode de réalisation de l’invention.
[Fig 3] la figure 3 est une vue en perspective d’un séparateur de sels intégrant un dispositif d’injection selon un autre mode de réalisation de l’invention.
[Fig 4] la figure 4 est une vue synoptique d’une installation de gazéification de biomasse humide intégrant un séparateur de sels selon l’invention.
Description détaillée
Par souci de clarté, les mêmes éléments sont désignés par les mêmes références numériques selon l’état de l’art et selon l’invention.
On précise que dans l’ensemble de la demande, les termes « entrée », « sortie », « amont », «aval » sont à comprendre en relation avec le sens de la circulation du fluide considéré au sein d’un séparateur de sels et d’une installation de gazéification selon l’invention.
La figure 1 relative à un séparateur de sels selon l’état de l’art a déjà été commentée en préambule. Elle ne le sera donc pas ci-après.
En figure 2, on a représenté un séparateur de sels 1 selon un mode de réalisation de l’invention. Dans l’exemple illustré, le séparateur de sels 1 est de forme axisymétrique de révolution. Dans sa configuration installée, il s’étend à la verticale. Ce séparateur 1 comprend tout d’abord un tube 10, typiquement en métal, dont une partie de la hauteur de la paroi interne de l’enveloppe est adaptée pour être chauffée à une température supérieure ou égale à la température de précipitation des sels contenus dans une biomasse humide que l’on cherche à convertir, avantageusement dans une installation de gazéification comme celle détaillée par la suite.
Le tube 10, de forme cylindrique dans l’exemple illustré, comprend un orifice d’injection 11 à travers laquelle la biomasse humide contenant des sels est injectée, et un orifice de sortie 12 par lequel elle est évacuée.
Des résistances chauffantes, sous la forme de cartouches, destinées à être alimentées par une source d’alimentation électrique externe sont avantageusement intégrées dans l’épaisseur de du tubelO pour chauffer sa paroi interne à la température supérieure ou égale à la température de précipitation des sels. Il peut s’agir de cartouches cylindriques de faible diamètre, typiquement égal à 3,15mm comme celles commercialisées par la société Omega : https://www.omega.fr/subsection/cartouches-chauffantes.html.
Le séparateur 1 comprend également une enceinte 2 autour du tube 10. Cette enceinte 2 délimite une chambre intérieure C dont une zone S de séparation des sels précipités dans laquelle débouche l’orifice de sortie 12 du tube 10.
Le couvercle 26 de l’enceinte est percé de l’orifice d’injection 11.
L’enceinte 2 est à double -paroi métallique 20, 21, qui est percée d’un ou plusieurs orifices de sortie 25 par lequel(lesquels) la biomasse sans les sels précipités est destinée à être évacuée.
Le fond 24 de l’enceinte est quant à lui percé d’un orifice de sortie 23 par lequel les sels précipités sont destinés à être évacués sous la forme de saumure.
Une plaque de raclage 13 est montée coulissante dans le tube 10 et dans la chambre intérieure C de l’enceinte selon une course qui d’une part génère des frottements de raclage directement avec la paroi interne chauffée du tube 10 et/ou avec tout dépôt de matière solide dont les sels précipités, susceptible de se former dessus, et d’autre part positionne la plaque de raclage dans au moins une zone dite de resolubilisation (R) dans le tube ou dans l’enceinte, dans laquelle la température est inférieure à la température de précipitation des sels de sorte à permettre la resolubilisation des sels précipités, déposés sur la plaque de raclage. La plaque de raclage 13 est percée d’un ou plusieurs orifices 130 pour laisser passer la solution.
De préférence, le fonctionnement du séparateur est prévu pour que la course de la plaque de raclage 13 effectue des mouvements de va-et-vient au moins sur toute la paroi interne du tube 10 chauffée pour y racler tout dépôt de matière solide dont les sels précipités.
Plus précisément, dans l’exemple de la figure 2, la plaque de raclage peut prendre, en dehors de la partie de la paroi interne chauffée du tube 10, une première position extrême PI à proximité de l’orifice d’injection 11 et une deuxième position extrême P2 à proximité de l’orifice de sortie 23 par lequel les sels précipités sont destinés à être évacués sous la forme de saumure. Dans chacune de ces deux positions Pl, P2, la température est inférieure à la température de précipitation des sels, ce qui permet de resolubiliser ceux-ci.
Dans l’exemple de la figure 3, la plaque de raclage peut prendre, en dehors de la partie de la paroi interne chauffée du tube 10, une première position extrême PI à proximité de l’orifice d’injection 11 et une deuxième position extrême P3 à proximité de l’orifice de sortie 12 du tube 10. Dans chacune de ces deux positions Pl, P3, la température est inférieure à la température de précipitation des sels, ce qui permet de resolubiliser ceux-ci.
Sur les figures 2 et 3, est illustrée une variante avantageuse de moyens mécaniques coulissement de la plaque de raclage 13. Une vis 14 est agencée axialement à l’intérieur du tube 10 et la plaque de raclage 13 est vissée sur cette vis afin de constituer une vis sans-fin. Pour transformer la rotation de la vis 14 en translation de la plaque de raclage 13, cette dernière est guidée en translation par deux rails de guidage 16 qui s’étendent parallèlement l’un à l’autre et sont maintenus sur la hauteur du tube 10 dans des encoches prévues à cet effet dans le fond 24 de l’enceinte. 8, la vis constituant un arbre d’accouplement mécanique ou étant munie à son extrémité en dehors de l’enceinte d’une turbine hydraulique
Sur les figures 2 et 3, est également illustrée une variante avantageuse de moyens mécaniques de mise en rotation de la vis 14 : son extrémité en dehors de l’enceinte 2 est constituée par une turbine hydraulique de type Pelton ou Francis 15 qui sous l’action d’un fluide pressurisé F engendre la rotation de la vis 14. On pourra se reporter à la demande EP3839405 pour plus de détails.
La figure 4 illustre une installation 3 de gazéification de biomasse humide qui intègre un séparateur de sels 1 selon l’invention. Sur cette figure 4, les différents symboles relatifs aux températures sont les suivants :
T- : température de précipitation des sels, typiquement aux environs de 450°C, diminuée de 20°C,
T+: température de précipitation des sels, typiquement aux environs de 450°C, augmentée de 20°C,
Tg : température de gazéification de la biomasse, typiquement aux environs de 600°C.
Cette installation 3 comprend d’amont en aval dans le sens de la circulation de biomasse à gazéifier :
- un échangeur de chaleur 4, qui peut être standard dans la gestion de fluide visqueux non collant et optimisé pour la récupération de chaleur entre la température ambiante et au maximum la température T-.
- un séparateur de sels 1, relié en aval à l’échangeur de chaleur 4, qui permet de passer de T- à T+ et d’évacuer les effluents de biomasse sans sels tout en séparant les sels sous forme de saumure,
- un séparateur haute pression 5, relié en aval au séparateur 1, pour séparer les sels précipités sous forme solide de l’eau de saumure,
- un réacteur de gazéification 6, relié en aval au séparateur de sels 1 pour gazéifier la biomasse sans sels à la température Tg.
Le réacteur de gazéification 6 est typiquement un réacteur à tube-calandre et fonctionne à 600°C sous pression de 300 bar.
Sur cette figure 4, les tracés pleins symbolisent les flux de matière avant la gazéification, respectivement à une température froide (ambiante) à l’entrée de l’échangeur 4, à une température proche de T-/T+ à la sortie de l’échangeur 4, puis à la température requise de gazéification Tg dès la sortie du séparateur 1.
Les tracés pointillés représentent quant à eux les flux matière post-gazéification qui sortent à la température Tg du réacteur, passent dans un circuit de chauffe au sein de l’enveloppe 2 à cette température Tg, afin de chauffer la biomasse qui entre dans le séparateur 1, puis passent en retour dans l’échangeur de chaleur 4 pour être refroidis. Comme précisé sur cette figure 4, une fois refroidis, les effluents convertis par la gazéification (syngas) sont évacués de l’installation 3 vers un procédé de stockage ou d’exploitation directe.
D’autres variantes et améliorations peuvent être envisagées sans pour autant sortir du cadre de l’invention.
Liste des références citées
[1]: “A novel salt separator for the supercritical water gasification of biomass” , J Reimer, G. Peng, S. Viereck, E. De Boni, J. Breinl, F. Vogel, J. of Supercritical Fluids 117 (2016) 113-121. [2]: “Continuous salt precipitation and separation from supercritical water. Part 1: Type 1 salts”, Martin Schubert, Johann W. Regler, Frederic Vogel, J. of Supercritical Fluids 52 (2010) 99-112.
[3]: “Continuous salt precipitation and separation from supercritical water. Part 2. Type 2 salts and mixtures of two salts”, Martin Schubert, Johann W. Regler, Frederic Voge, J. of Supercritical Fluids 52 (2010) 113-124.

Claims

Revendications
1. Séparateur de sels (1) pour séparer les sels d'une solution les contenant, le séparateur de sel comprenant :
- un tube (10) comprenant un orifice d’injection (11) par lequel une solution contenant un ou des sels est destinée à être injecté, et un orifice de sortie (12) par lequel la solution est destinée à être évacuée, au moins une partie de la hauteur de la paroi interne du tube étant adaptée pour être chauffée à une température supérieure ou égale à la température de précipitation des sels,
- une enceinte (2) délimitant une chambre intérieure (C) dont une zone de séparation (S) des sels précipités dans laquelle débouche l’orifice de sortie du tube, l’enceinte comprenant :
• un couvercle (26) auquel est fixé ou réalisé intégralement le tube et à travers lequel l’orifice d’injection est percé,
• au moins une paroi latérale (20, 21) percée d’au moins un orifice de sortie (25) par lequel la solution dénuée des sels précipités est destinée à être évacuée, et
• un fond (24) percé d’au moins un orifice de sortie (23) par lequel les sels précipités sont destinés à être évacués sous la forme de saumure,
- au moins une plaque de raclage (13), percée pour laisser passer la solution, la plaque de raclage étant montée coulissante au moins dans le tube selon une course qui d’une part génère des frottements de raclage directement avec la paroi interne chauffée du tube et/ou avec tout dépôt de matière solide dont les sels précipités, susceptible de se former dessus, et d’autre part positionne la plaque de raclage dans au moins une zone dite de resolubilisation (R) dans le tube ou dans l’enceinte, dans laquelle la température est inférieure à la température de précipitation des sels de sorte à permettre la resolubilisation des sels précipités, déposés sur la plaque de raclage.
2. Séparateur de sels selon la revendication 1, la zone de resolubilisation des sels étant atteinte lorsque la plaque de raclage est dans une position extrême (Pl, P2), en dehors de la partie de la paroi interne chauffée du tube, à proximité de l’orifice d’injection (11) ou à proximité de l’orifice de sortie (23) par lequel les sels précipités sont destinés à être évacués sous la forme de saumure.
3. Séparateur de sels selon la revendication 1 ou 2, la course de la plaque de raclage étant une course de va-et-vient en fonctionnement.
4. Séparateur de sels selon l’une des revendications précédentes, comprenant des moyens de chauffage externe agencés autour du tube pour chauffer sa partie de paroi interne à la température supérieure ou égale à la température de précipitation des sels.
5. Séparateur de sels selon l’une des revendications précédentes, comprenant des résistances chauffantes, sous la forme de cartouches (102), destinées à être alimentées par une source d’alimentation électrique externe et intégrées dans l’épaisseur du tube pour chauffer sa paroi interne à la température supérieure ou égale à la température de précipitation des sels.
6. Séparateur de sels selon l’une des revendications précédentes, comprenant un circuit de fluide caloporteur réalisé dans l’épaisseur du tube pour chauffer sa partie de paroi interne à la température supérieure ou égale à la température de précipitation des sels.
7. Séparateur de sels selon l’une des revendications précédentes, comprenant des moyens mécaniques de coulissement de la plaque de raclage actionnés par au moins un moteur et/ou un circuit de fluide d’entraînement pressurisé.
8. Séparateur de sels selon la revendication 7, les moyens mécaniques de coulissement comprenant une vis (14) agencée axialement à l’intérieur du tube et sur laquelle la plaque de raclage est vissée afin de constituer une vis sans-fin, la plaque étant guidée en translation par au moins un rail de guidage (16) qui s’étend et est maintenu sur la hauteur au moins du tube et le cas échéant jusqu’au fond de l’enceinte.
9. Séparateur de sels selon la revendication 8, la vis constituant un arbre d’accouplement mécanique ou étant munie à son extrémité en dehors de l’enceinte d’une turbine hydraulique (15) de type Pelton ou Francis.
10. Installation (3) de gazéification de biomasse comprenant :
- un séparateur de sels (1) selon l’une des revendications précédentes;
- un réacteur de gazéification (6) relié à l’enceinte du séparateur de sels pour être alimenté en biomasse dénuée de sels.
11. Installation selon la revendication 10, le tube du séparateur de sels intégrant dans son épaisseur une partie du circuit de récupération des effluents obtenus en sortie de réacteur (10), en tant que circuit de fluide caloporteur pour chauffer sa partie de paroi interne à la température supérieure ou égale à la température de précipitation des sels.
12. Installation selon la revendication 10 ou 11, la température de la biomasse à l’orifice d’injection du dispositif d’injection étant inférieure de l’ordre de 20°C de la température de précipitation des sels, la température de la biomasse à l’orifice de sortie du séparateur de sels étant supérieure de l’ordre de 20°C de la température de précipitation des sels.
13. Installation selon l’une des revendications 10 à 12, la température de fonctionnement du réacteur étant d'environ 600°C et la pression de fonctionnement du réacteur étant d'environ 300 bars.
PCT/EP2023/068332 2022-07-04 2023-07-04 Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu'à une zone de resolubilisation des sels précipités, installation de gazéification de biomasse associée WO2024008691A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2206783A FR3137382A1 (fr) 2022-07-04 2022-07-04 Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu’à une zone de resolubilisation des sels précipités, Installation de gazéification de biomasse associée.
FRFR2206783 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024008691A1 true WO2024008691A1 (fr) 2024-01-11

Family

ID=83280590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/068332 WO2024008691A1 (fr) 2022-07-04 2023-07-04 Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu'à une zone de resolubilisation des sels précipités, installation de gazéification de biomasse associée

Country Status (2)

Country Link
FR (1) FR3137382A1 (fr)
WO (1) WO2024008691A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1123741A (en) * 1965-02-13 1968-08-14 Svenska Carbon Black Aktiebola Improvements relating to coolers for mixtures of gases and solid particles
US4891190A (en) * 1983-02-15 1990-01-02 Monsanto Company Incrustation resistive crystallizer employing multifrequency vibrations
US5100560A (en) 1991-05-31 1992-03-31 Abb Lummus Crest Inc. Apparatus and method for supercritical water oxidation
CA2119056A1 (fr) 1994-03-15 1995-09-16 Stuart D. Klatskin Methode destinee a empecher l'encrassement des laveurs d'air
US5461648A (en) 1994-10-27 1995-10-24 The United States Of America As Represented By The Secretary Of The Navy Supercritical water oxidation reactor with a corrosion-resistant lining
US6054057A (en) 1997-09-26 2000-04-25 General Atomics Downflow hydrothermal treatment
US20080073063A1 (en) 2006-06-23 2008-03-27 Exxonmobil Research And Engineering Company Reduction of fouling in heat exchangers
US20120214977A1 (en) 2005-10-05 2012-08-23 Invensys Apv A/S Scraped surface heat exchanger and a method for producing whey protein concentrate
US9068031B2 (en) * 2010-12-29 2015-06-30 Lanxess International Sa Reactor and method for continuous polymerization
EP3839405A1 (fr) 2019-12-19 2021-06-23 Commissariat à l'énergie atomique et aux énergies alternatives Echangeur thermique de type à surface raclée comportant un système d actionnement hydraulique

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1123741A (en) * 1965-02-13 1968-08-14 Svenska Carbon Black Aktiebola Improvements relating to coolers for mixtures of gases and solid particles
US4891190A (en) * 1983-02-15 1990-01-02 Monsanto Company Incrustation resistive crystallizer employing multifrequency vibrations
US5100560A (en) 1991-05-31 1992-03-31 Abb Lummus Crest Inc. Apparatus and method for supercritical water oxidation
CA2119056A1 (fr) 1994-03-15 1995-09-16 Stuart D. Klatskin Methode destinee a empecher l'encrassement des laveurs d'air
US5461648A (en) 1994-10-27 1995-10-24 The United States Of America As Represented By The Secretary Of The Navy Supercritical water oxidation reactor with a corrosion-resistant lining
US6054057A (en) 1997-09-26 2000-04-25 General Atomics Downflow hydrothermal treatment
US20120214977A1 (en) 2005-10-05 2012-08-23 Invensys Apv A/S Scraped surface heat exchanger and a method for producing whey protein concentrate
US20080073063A1 (en) 2006-06-23 2008-03-27 Exxonmobil Research And Engineering Company Reduction of fouling in heat exchangers
US9068031B2 (en) * 2010-12-29 2015-06-30 Lanxess International Sa Reactor and method for continuous polymerization
EP3839405A1 (fr) 2019-12-19 2021-06-23 Commissariat à l'énergie atomique et aux énergies alternatives Echangeur thermique de type à surface raclée comportant un système d actionnement hydraulique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J REIMERG. PENGS. VIERECKE. DE BONIJ. BREINLF. VOGEL: "A novel salt separator for the supercritical water gasification of biomass", J. OF SUPERCRITICAL FLUIDS, vol. 117, 2016, pages 113 - 121, XP029675116, DOI: 10.1016/j.supflu.2016.06.009
MARTIN SCHUBERTJOHANN W. REGLEFREDERIC VOGE: "Continuons salt precipitation and séparation from supercritical water. Part 2. Type 2 salts and mixtures of two salis", J. OF SUPERCRITICAL FLUIDS, vol. 52, 2010, pages 113 - 124
MARTIN SCHUBERTJOHANN W. REGLERFREDERIC VOGEL: "Continuous salt precipitation and séparation from supercritical water. Part 1: Type 1 salis", J. OF SUPERCRITICAL FLUIDS, vol. 52, 2010, pages 99 - 112

Also Published As

Publication number Publication date
FR3137382A1 (fr) 2024-01-05

Similar Documents

Publication Publication Date Title
CH634097A5 (fr) Procede et appareil pour le traitement d'un produit carbonisable solide broye.
EP2231826A2 (fr) Procede et chaine de traitement pour la conversion thermochimique par gazeification d'une charge humide de materiau biologique
WO2010136669A2 (fr) Nouveau procede pour la pyrogazeification de dechets organiques
WO2013098525A1 (fr) Procede et equipement de gazeification en lit fixe
EP3102322A1 (fr) Procédé utilisant l'énergie thermique solaire couplée à des plasmas et dispositif associé
EP1840191A1 (fr) Installation de gazéification de biomasse avec dispositif de craquage des goudrons dans le gaz de synthèse produit
WO2024008691A1 (fr) Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu'à une zone de resolubilisation des sels précipités, installation de gazéification de biomasse associée
WO2024008729A1 (fr) Dispositif d'injection pour un séparateur de sels, de type à surface raclée par au moins un rotor en rotation dans une enveloppe chauffante, séparateur de sels et installation de gazéification de biomasse associés.
WO2024008708A1 (fr) Séparateur de sels de type à surface raclée par une plaque de raclage coulissante jusqu'à une zone de resolubilisation des sels précipités, installation de gazéification de biomasse associée.
WO2024008756A1 (fr) Séparateur de sels intégré, comprenant une vis sans fin creuse et des billes formant des supports de précipitation et d'évacuation de sels, installation de gazéification de biomasse associée.
FR2660321A1 (fr) Appareil pour convertir une resine synthetique en une huile.
WO2024008757A1 (fr) Séparateur de sels comprenant une structure poreuse déformable formant un support de précipitation et d'évacuation de sels, installation de gazéification de biomasse associée.
EP1831336A1 (fr) Procede de gazeification de matieres carbonees et dispositif pour sa mise en oeuvre
EP3173459B1 (fr) Procede de pyrolyse rapide de particules organiques de biomasse avec injection à contre-courant de gaz chauds
FR2844804A1 (fr) Procede et installation de valorisation de sous-produits a base de matieres organiques
EP3822540B1 (fr) Réacteur solaire à jet à transfert thermique amélioré et procédé de fonctionnement d'un réacteur solaire à jet à transfert thermique amélioré
EP3055386A1 (fr) Procede de purification d'un gaz de synthese brut issu d'une pyrolyse et/ou gazeification d'une charge de matiere carbonee par destruction de goudrons contenus dans le gaz
EP3933010A1 (fr) Système de conversion thermochimique d'une charge carbonée en milieu supercritique dans un réacteur batch relié à un réservoir de transvasement contenant un liquide inerte chimiquement
EP3009495B1 (fr) Procédé et dispositif pour la pyro-gazéification d'une matière carbonée comprenant un bain de cendres en fusion
FR3131922A1 (fr) Procede de gazeification de la biomasse
EP3828465B1 (fr) Réacteur solaire à jet, destiné à la conversion thermochimique d'une charge carbonée, à évacuation des cendres améliorée, procédé de fonctionnement associé, application à la gazéification de biomasse ou au reformage
FR3127951A1 (fr) Système de conversion thermochimique d’une charge carbonée comprenant un réacteur batch et un réservoir d’attente contenant un fluide supercritique relié à la chambre réactionnelle du réacteur batch.
WO2021123693A1 (fr) Installation de gazéification hydrothermale de biomasse, comprenant, en aval du réacteur de gazéification, un système de détente du flux aqueux tolérant la présence de particules solides. procédé associé de fonctionnement de l'installation.
FR2955175A1 (fr) Procede et dispositif de torrefaction d'une charge de biomasse
BE405904A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23738028

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)