WO2024008125A1 - 自移动清洁机器人 - Google Patents

自移动清洁机器人 Download PDF

Info

Publication number
WO2024008125A1
WO2024008125A1 PCT/CN2023/105939 CN2023105939W WO2024008125A1 WO 2024008125 A1 WO2024008125 A1 WO 2024008125A1 CN 2023105939 W CN2023105939 W CN 2023105939W WO 2024008125 A1 WO2024008125 A1 WO 2024008125A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
field
module
laser sensor
axial direction
Prior art date
Application number
PCT/CN2023/105939
Other languages
English (en)
French (fr)
Inventor
曹华奎
蒋月红
黄华
毕金廷
吴现勇
刘峰
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210800283.2A external-priority patent/CN117398019A/zh
Priority claimed from CN202211159217.8A external-priority patent/CN117770698A/zh
Priority claimed from CN202310721502.2A external-priority patent/CN117770699A/zh
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Publication of WO2024008125A1 publication Critical patent/WO2024008125A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present application relates to the field of cleaning equipment, and in particular to a self-moving cleaning robot.
  • V-slam visual navigation The navigation methods of autonomous mobile robots currently on the market are roughly divided into laser navigation methods using LiDAR (LDS) (hereinafter referred to as LDS laser navigation) and Visual SLAM (V-slam (simultaneous localization and mapping)). ) visual navigation method (hereinafter referred to as V-slam visual navigation).
  • LDS laser navigation LiDAR
  • V-slam visual navigation shoots images through a camera, which is easily affected by light, has problems such as low mapping quality and low navigation and obstacle avoidance efficiency.
  • LDS Laser Although navigation is not easily affected by light, it has the problem that the overall navigation obstacle avoidance structure is complex and costly.
  • the above two machines are working, they are generally set on the top of the machine, and the rotation is driven up and down by the motor. This method is used to solve the problem of limited field of view.
  • this solution has problems such as too high height when the whole machine is working, complex structure, and high cost.
  • a pot lid control method is provided.
  • An embodiment of the present application provides a self-moving cleaning robot, including: a host machine, an edge sensor, and a laser sensor.
  • the edge sensor and the laser sensor are respectively disposed on opposite sides of the host machine.
  • the laser sensor includes: a first transmitting and receiving module arranged along a first axial direction and having a first field of view; and a second transmitting and receiving module arranged along a second axial direction and having a second field of view; wherein , the first axial direction and the second axial direction intersect, and a critical zone is formed between the first axial direction and the second axial direction, the first field of view angle and the second visual field angle The field angles meet or overlap each other in the critical region.
  • the host computer includes a first corner area and a second corner area, the first corner area is provided with a side brush, and the laser sensor is provided in the second corner area, wherein the The second corner area includes a first vertical section, a second vertical section and a bent section, the bent section is curvedly connected between the first vertical section and the second vertical section, and within the critical region.
  • the laser sensor further includes a reflective module, the first axial direction and the second axial direction intersect with the reflective module, wherein the reflective module has a rotating shaft and a reflective mirror, and the reflective mirror It extends from two opposite sides of the rotating shaft along the radial direction of the rotating shaft, and can be rotated relative to the first transmitting and receiving module and the second transmitting and receiving module driven by the rotating shaft.
  • the first axial direction and the second axial direction intersect at an intersection point, the center of the main body and the intersection point are connected to form an auxiliary line, and the critical area and the auxiliary line are in the projection direction. overlap.
  • the angle between the first field of view angle and the second field of view angle is not less than 105 degrees.
  • the total viewing angle of the first viewing angle and the second viewing angle is between 210 degrees and 250 degrees.
  • the host includes a base and a strike plate.
  • the strike plate is connected to the base and can move relative to the base.
  • the laser sensor is disposed on the strike plate.
  • the self-moving cleaning robot further includes a structured light sensor disposed on the impact plate and between the side brush assembly and the laser sensor.
  • the strike plate assembly includes a plate body, a bracket, and a bracket.
  • the bracket is connected to the base.
  • the plate body is arranged on the bracket and surrounds the periphery of the bracket.
  • the bracket is combined with the plate body and has a bearing part and a fitting part.
  • the structured light sensor is combined in the fitting part, and the laser sensor is disposed on the carrying part, wherein the sensing surfaces of the structured light sensor and the laser sensor are respectively exposed outside the panel.
  • the top of the impact plate is the highest point of the main machine.
  • a universal wheel module and a rolling brush module are provided at the bottom of the main machine, and the universal wheel module is located between the front side of the main machine and the rolling brush module.
  • the laser sensor and the edge sensor respectively correspond to the left and right sides of the universal wheel module.
  • An embodiment of the present application also provides a self-moving cleaning robot, including a host computer and a laser sensor.
  • the laser sensor includes a first transmitting and receiving module arranged along a first axial direction and a second transmitting and receiving module arranged along a second axial direction. Wherein, the first axial direction and the second axial direction intersect.
  • the corner structure of the main machine is located between the first axial direction and the second axial direction. The first field of view angle of the first transmitting and receiving module and the second field of view angle of the second transmitting and receiving module meet or overlap each other at the corner.
  • Embodiments of the present application also provide a self-moving cleaning robot, including: a host machine having a corner structure; and a laser sensor including a first transmitting and receiving module arranged along the first axial direction and a second transmitting module arranged along the second axial direction.
  • the first axial direction and the second axial direction intersect at an intersection point.
  • the center of the host and the intersection point are connected to form an auxiliary line
  • the corner structure overlaps the auxiliary line in the projection direction
  • the second field of view angles of the two transmitting and receiving modules meet or overlap each other at the corner structure.
  • the self-moving cleaning robot is provided with edge sensors and laser sensors, which are located on opposite sides of the main machine.
  • the laser sensor includes a first transmitting and receiving module and a second transmitting and receiving module whose field of view angles are connected or overlap each other, which can eliminate sensing blind spots in the corner areas of the mobile robot.
  • the laser sensor can perform real-time integrated machine navigation and obstacle avoidance functions on the opposite side of the edge sensor.
  • the laser sensor can be set in the corner area of the host, the usual installation method of matching the lifting mechanism on the top of the host is omitted, saving the internal space of the host and reducing the thickness of the host, thus solving the problems of existing self-moving cleaning robots.
  • the navigation and obstacle avoidance structure is complex and the host is too large.
  • cleaning robots with cleaning functions such as floor washing, sweeping, and mopping can replace users in cleaning the floor and other cleaning tasks, bringing a lot of convenience to users, and are therefore widely used.
  • Cleaning robots usually implement path planning, navigation and obstacle avoidance functions based on lidar to ensure that the cleaning robot can perform cleaning work normally.
  • the lidars of cleaning robots currently on the market are usually equipped with at least two sets of laser transceiver components, and the field of view of the at least two sets of laser transceivers are integrated to ensure that the field of view of the entire cleaning robot meets the requirements.
  • the laser transceiver component realizes the path planning, navigation and obstacle avoidance functions of the cleaning robot by interacting with the external environment through laser signals.
  • embodiments of the present application also provide a cleaning device, a self-moving device, a control module and a control method applied to a lidar module, which can reduce the power consumption of the lidar module. specifically:
  • the cleaning device includes: a device main body that can move on the surface to be cleaned to clean the surface to be cleaned; a laser radar module located on the device main body, including at least two sets of laser transceiver components; and a control module located on the device body, It includes: a control circuit; and at least two groups of laser drive circuits, each group of laser drive circuits is electrically connected to the control circuit, and each group of laser drive circuits is also electrically connected to different laser transceiver components, wherein the control circuit is configured to be able to Time-sharing control of different laser drive circuits drives the corresponding laser transceiver components to work.
  • the control circuit includes: a control element, each group of laser driving circuits is electrically connected to the control element; and a power supply, which is electrically connected to the control element and each group of laser driving circuits respectively; wherein, the control element It is configured to be able to control the power supply to output electric energy to different laser driving circuits in a time-sharing manner, so that each group of laser driving circuits Time-sharing drives the corresponding laser transceiver component to work.
  • the lidar module further includes: a reflector, which is rotatably provided on the device body, wherein each group of laser transceiver components interacts with the external environment with laser signals through the reflector that rotates to a corresponding angle; control
  • the module also includes: a detection circuit, electrically connected to the control circuit, for detecting the rotation angle of the reflector.
  • the control circuit can respond to the detection of the rotation angle of the reflector through the detection circuit and time-sharing control of different laser drive circuits.
  • the corresponding laser transceiver component works.
  • the lidar module also defines a rotation axis, the reflector can rotate around the rotation axis, and the end of the reflector away from the rotation axis is the target end; at least two sets of laser transceiver components include a first A first laser transceiver component with an optical axis and a second laser transceiver component with a second optical axis. The first optical axis and the second optical axis intersect with the rotation axis, where the first optical axis and the second optical axis are bisected by the reflector.
  • the position of the reflector is the zero position; the control circuit responds to the detection circuit detecting through the detection circuit that the angle of rotation of the target end relative to the zero position is at the third Within an angle range, the first laser transceiver component is controlled to operate; and the control circuit controls the second laser transceiver component to operate in response to the detection circuit detecting that the angle of rotation of the target end relative to the zero position is within a second angle range.
  • the first angle range is 0° to 180°
  • the second angle range is 180° to 360°.
  • the detection circuit includes: a code wheel that can rotate synchronously with the reflector, wherein the code wheel has a marking structure for marking the end of the target; and a sensor that is electrically connected to the control circuit for The marking structure is detected during the rotation of the code wheel, and the control circuit measures the angle of rotation of the target end relative to the zero position in response to the sensor detecting the marking structure.
  • the code wheel includes: a code wheel body that can rotate synchronously with the reflector; and at least two tooth portions that are spaced apart along the circumferential direction of the code wheel body, and each tooth portion can rotate with the code wheel.
  • the main body rotates and passes through the sensor in turn; wherein, at least two tooth portions have a first tooth portion, and the remaining tooth portions are second tooth portions.
  • the first tooth portion is different from the second tooth portion, and the first tooth portion is used to identify the target.
  • the control circuit calculates the angle of rotation of the target end relative to the zero position by counting the number of second teeth passing through the sensor after the first teeth.
  • the laser radar module also includes: a motor, which is transmission connected to the reflector and used to drive the reflector to rotate; and a motor drive circuit, which is electrically connected to the control circuit and the motor respectively; wherein, the control circuit
  • the detection circuit is also used to detect the rotation speed of the reflector, and the motor drive circuit is used to adjust the rotation speed of the motor so that the reflector maintains the preset rotation speed.
  • the self-moving device includes: a device main body capable of moving on a moving surface; a laser radar module located on the device main body and including at least two sets of laser transceiver components; and a control module
  • the group is located on the main body of the device and includes: a control circuit; and at least two groups of laser driving circuits, each group of laser driving circuits is electrically connected to the control circuit, and each group of laser driving circuits is also electrically connected to different laser transceiver components,
  • the control circuit is configured to control different laser driving circuits in a time-sharing manner to drive corresponding laser transceiver components to work.
  • the control circuit includes: a control element, each group of laser driving circuits is electrically connected to the control element; and a power supply, which is electrically connected to the control element and each group of laser driving circuits respectively; wherein, the control element It is configured to control the power supply to output electric energy to different laser driving circuits in a time-sharing manner, so that each group of laser driving circuits drives the corresponding laser transceiver component in a time-sharing manner.
  • this application also provides a control module applied to a laser radar module.
  • the lidar module includes at least two sets of laser transceiver components.
  • the control module includes: a control circuit; and at least two sets of laser drive circuits. Each set of laser drive circuits is electrically connected to the control circuit, and each set of laser drive circuits is also used for It is electrically connected to different laser transceiver components, wherein the control circuit is configured to control different laser driving circuits in a time-sharing manner to drive the corresponding laser transceiver components to work.
  • the control circuit includes: a control element, each group of laser driving circuits is electrically connected to the control element; and a power supply, which is electrically connected to the control element and each group of laser driving circuits respectively; wherein, the control element It is configured to control the power supply to output electric energy to different laser driving circuits in a time-sharing manner, so that each group of laser driving circuits drives the corresponding laser transceiver component in a time-sharing manner.
  • this application also provides a control method applied to a lidar module.
  • the lidar module includes at least two sets of laser transceiver components.
  • the control method includes: receiving a preset switching instruction; responding to the preset switching instruction, time-sharing Control the work of different laser transceiver components.
  • the step of controlling the operation of different laser transceiver components in a time-sharing manner includes: controlling the power supply to output electric energy to different laser transceiver components in a time-sharing manner, so that each group of laser transceiver components operates in a time-sharing manner.
  • the lidar module also includes a reflector, in which each group of laser transceiver components interacts with the external environment with laser signals through the reflector that rotates to a corresponding angle; the step of receiving the preset switching instruction includes: Detect the rotation angle of the reflector; generate a preset switching instruction in response to the rotation of the reflector to the corresponding angle.
  • the lidar module also defines a rotation axis, the reflector can rotate around the rotation axis, and the end of the reflector away from the rotation axis is the target end; at least two sets of laser transceiver components include a first A first laser transceiver component with an optical axis and a second laser transceiver component with a second optical axis. The first optical axis and the second optical axis intersect with the rotation axis, where the first optical axis and the second optical axis are bisected by the reflector.
  • the position of the reflector is the zero position; the step of detecting the rotation angle of the reflector includes: detecting the angle of rotation of the target end relative to the zero position.
  • the step of generating a preset switching instruction includes: if the angle at which the target end rotates relative to the zero position is within the first angle range, then Generate a first switching instruction to control the operation of the first laser transceiver component in response to the first switching instruction; if the angle of rotation of the target end relative to the zero position is within a second angle range, generate a second switching instruction in response to the second The switching instruction controls the operation of the second laser transceiver component.
  • the lidar module also includes a motor, which is transmission connected to the reflector and used to drive the reflector to rotate; the step of detecting the rotation angle of the reflector includes: adjusting the speed of the motor so that the reflector Maintain the preset speed.
  • the beneficial effects of this application are: different from the existing technology, this application provides a cleaning device, a self-moving device, a control module and a control method applied to a laser radar module.
  • the lidar module includes at least two sets of laser transceiver components.
  • the control module includes a control circuit and at least two sets of laser driving circuits. Each group of laser driving circuits is electrically connected to the control circuit, and each group of laser driving circuits is also electrically connected to different laser transceiver components.
  • the control circuit is configured to time-share the control of different laser drive circuits to drive the corresponding laser transceiver components, so that the work burden of each group of laser transceiver components is reduced, which is beneficial to reducing the power consumption of the lidar module.
  • cleaning robots with cleaning functions such as floor washing, sweeping, and mopping can replace users in cleaning the floor and other cleaning tasks, bringing a lot of convenience to users, and are therefore widely used.
  • Cleaning robots usually implement navigation and obstacle avoidance functions based on lidar to ensure that the cleaning robot can perform cleaning work normally.
  • cleaning robots on the market have limited field of view due to unreasonable designs, and cannot meet the field of view requirements for navigation and obstacle avoidance functions.
  • embodiments of the present application also provide a cleaning device and a self-moving device, which can enable the cleaning device and the self-moving device to have a larger field of view, thus meeting the requirements for the field of view of navigation and obstacle avoidance functions. specifically:
  • the cleaning device includes: a device main body that can move on the surface to be cleaned to clean the surface to be cleaned; and at least two groups of laser sensor modules, each group of laser sensor modules are distributed at intervals along the circumferential direction of the device main body, at least one of which The laser sensor module has a divergent field of view.
  • the at least two groups of laser sensor modules include: a first laser sensor module having a first field of view; and a second laser sensor module having a second field of view; wherein the field of view area corresponding to the first field of view is Field of view areas corresponding to the second field of view angle border or overlap with each other.
  • the device body is defined with a first direction and a second direction, the first direction and the second direction are perpendicular to each other and both are parallel to the surface to be cleaned, wherein the device body moves along the first direction;
  • the device body has a front end in the first direction, and the device body has a side end in the second direction, wherein the first laser sensor module is located at the front end and the second laser sensor module is located at the side end.
  • the device body has a first side, a second side, a third side and a fourth side; the first side and the second side are spaced apart from each other along the first direction and both are perpendicular to the first side. direction, third side and fourth The side surfaces are spaced apart from each other along the second direction and both are perpendicular to the second direction.
  • the first side surface is respectively surrounded by the third side surface and the fourth side surface to form a first corner position and a second corner position.
  • the second side surface is respectively connected with the third side surface.
  • the side and the fourth side are surrounded to form a third corner position and a fourth corner position; wherein, the second laser sensor module is located at one of the first corner position, the second corner position, the third corner position and the fourth corner position. .
  • both the first field of view angle and the second field of view angle are greater than or equal to 105°; and the total field of view angle obtained by integrating the first field of view angle and the second field of view angle is between 210°. to 250°.
  • both the first field of view angle and the second field of view angle are greater than or equal to 90°; and the total field of view angle obtained by integrating the first field of view angle and the second field of view angle is between 180° to 250°.
  • the first laser sensor module includes: a laser sensor component having a first field of view; and a structured light sensor component disposed adjacent to the laser sensor component.
  • the laser sensor assembly includes: a first laser transceiver element; a first reflector group, through which the first laser transceiver element interacts with the external environment with laser signals; and a rotating shaft mechanism, with The first reflective mirror group is drivingly connected to drive the first reflective mirror group to rotate; wherein, the first laser transceiver element and the first reflective mirror group are both close to the surface to be cleaned relative to the structured light sensor assembly, and the rotating shaft mechanism is located at the structured light sensor assembly. the inside of.
  • the first laser sensor module also includes a circuit board with a hollow avoidance area;
  • the laser sensor component includes: a first laser transceiver element; a first reflector group, and a first laser transceiver element.
  • the laser signal interacts with the external environment through the first reflective mirror group; and a rotating shaft mechanism is drivingly connected to the first reflective mirror group and is used to drive the first reflective mirror group to rotate; wherein, the structured light sensor assembly is located on the circuit board away from the surface to be cleaned On one side of the circuit board, the first laser transceiver element and the first reflector group are located on the side of the circuit board facing the surface to be cleaned, and the rotating shaft mechanism is disposed in the avoidance area.
  • the first laser sensor module includes: a laser sensor component having a first field of view; and a camera component disposed adjacent to the laser sensor component.
  • the first laser sensor module also includes a circuit board with a hollow avoidance area;
  • the laser sensor component includes: a first laser transceiver element; a first reflector group, and a first laser transceiver element.
  • the laser signal interacts with the external environment through the first reflector group; and a rotating shaft mechanism is drivingly connected to the first reflector group and used to drive the first reflector group to rotate; wherein, the camera assembly, the first laser transceiver element and the first The reflector groups are all located on the side of the circuit board facing the surface to be cleaned, and the camera assembly is also located on the side of the first reflector group away from the first laser transceiver element.
  • the device main body has: a collision plate, which is movably provided on the device main body and is used to receive impact from obstacles; wherein the first laser sensor module is provided on the inside of the collision plate.
  • the distance between the first laser sensor module and the surface to be cleaned is equal to the distance between the second laser sensor module and the surface to be cleaned.
  • the maximum distance between the laser sensor module and the surface to be cleaned is less than or equal to the maximum distance between the device body and the surface to be cleaned.
  • the device body defines a third direction perpendicular to the surface to be cleaned;
  • the laser sensor module includes: a laser transmitter; a laser receiver, which is stacked with the laser transmitter along the third direction; first a reflector, the laser signal output by the laser transmitter is reflected to the external environment through the first reflector; and a second reflector, which is stacked with the first reflector along the third direction, and the laser signal from the external environment is reflected through the second reflector reflected to the laser receiver.
  • the self-moving device includes: a device main body capable of moving on a moving surface; and at least two groups of laser sensor modules, each group of laser sensor modules are distributed at intervals along the circumferential direction of the device main body, wherein at least one group of laser sensor modules has Divergent field of view.
  • the at least two groups of laser sensor modules include: a first laser sensor module having a first field of view; and a second laser sensor module having a second field of view; wherein the field of view area corresponding to the first field of view is Field of view areas corresponding to the second field of view angle border or overlap with each other.
  • the beneficial effects of this application are: different from the existing technology, this application provides a cleaning device and a self-moving device.
  • the cleaning device includes a device main body and at least two groups of laser sensor modules. Each group of laser sensor modules is distributed at intervals along the circumferential direction of the device main body. Among them, the field of view of each group of laser sensor modules is integrated to obtain the field of view of the entire cleaning device, and because at least one group of laser sensor modules has a divergent field of view, the cleaning device can have a larger field of view. Angle, thereby meeting the requirements for the field of view angle of navigation and obstacle avoidance functions.
  • Figure 1 is a perspective view of a self-moving cleaning robot according to an embodiment of the present application
  • Figure 2 is a top view of the self-moving cleaning robot according to the embodiment of the present application.
  • Figure 3 is a cross-sectional view of a laser sensor according to an embodiment of the present application.
  • Figure 4 is a top view of the laser sensor according to the embodiment of the present application.
  • FIG. 5 is a perspective view of the strike plate assembly according to the embodiment of the present application.
  • FIG. 6 is an exploded view of the strike plate assembly according to the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an embodiment of the cleaning device of the present application.
  • Figure 8 is a schematic structural diagram of an embodiment of the laser radar module of the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of the control module of the present application.
  • Figure 10 is a control timing diagram for the control circuit of the present application to time-share the operation of the first laser transceiver component and the second laser transceiver component;
  • Figure 11 is a schematic structural diagram of an embodiment of the code disk of the present application.
  • Figure 12 is a schematic flow chart of an embodiment of the control method applied to the laser radar module of the present application.
  • Figure 13 is a schematic flow chart of another embodiment of the control method applied to the laser radar module according to the present application.
  • Figure 14 is a schematic structural diagram of an embodiment of the cleaning device of the present application.
  • Figure 15 is a schematic structural diagram of another embodiment of the cleaning device of the present application.
  • Figure 16 is a schematic structural diagram of an embodiment of the first laser sensor module of the present application.
  • Figure 17 is a schematic diagram of an embodiment of the first field of view of the first laser sensor module of the present application.
  • Figure 18 is a schematic structural diagram of an embodiment of the second laser sensor module of the present application.
  • Figure 19 is a schematic diagram of an embodiment of the second field of view angle of the second laser sensor module of the present application.
  • the self-moving cleaning robot provided by the embodiments of the present application has one or more functions such as constructing a spatial map, planning cleaning paths and return paths, performing cleaning tasks and automatically returning, etc. It can be, but is not limited to, sweeping, washing, and mopping the floor. , window cleaning and a self-moving cleaning robot combining one of them.
  • the upper casing and other upper components of the self-moving cleaning robot shown in FIGS. 1 and 2 of the present application are omitted and will not be described further.
  • the self-moving cleaning robot 1 provided in an embodiment of the present application includes a main body 10 , a side brush assembly 20 and a laser sensor 30 .
  • the host 10 includes opposite first sides 110 and second sides 120 and a third side 130 connected between the first side 110 and the second side 120 , and between the third side 130 and the first side
  • the connection between the sides 110 has an included angle to form the first corner area 10a
  • the connection between the third side 130 and the second side 120 has another included angle to form the second corner area 10b.
  • the third side 130 and the second side 120 are bent and connected in the second corner area 10b to form a first vertical section 141, a second vertical section 142 and a bent connection between the first vertical section 141 and the second side.
  • the corner structure 140 is composed of the bent section 143 between the two vertical sections 141 .
  • the opposite ends of the bent section 143 may be, but are not limited to, bent and extended from the first vertical section 141 and the second vertical section 142 respectively, so as to be connected with the first vertical section 141 and the second vertical section 142 respectively. An angle is formed between them. Therefore, the bent section 143 can be a hypotenuse connected obliquely between the first vertical section 141 and the second vertical section 142, or a beveled edge connected between the first vertical section 141 and the second vertical section 142.
  • the bottom of the main machine 10 is provided with a universal wheel module 150, a roller brush module 160, a driving wheel module 170 and other related components for performing cleaning tasks, wherein the universal wheel module 150 is located on the front side of the main machine 10 and The roller brush module 160 is used to adjust the forward direction of the host 10 and overcome obstacles.
  • the side brush assembly 20 and the laser sensor 30 are respectively disposed on two opposite sides of the main body 10 .
  • the side brush assembly 20 and the laser sensor 30 are also disposed between the front side of the main unit 10 and the roller brush module 160, and correspond to the left and right sides of the universal wheel module 150, so that the side brush assembly 20
  • the laser sensor 30 can adjust the cleaning direction and sensing direction in real time as the universal wheel module 150 turns.
  • the side brush assembly 20 is disposed in the first corner area 10a of the main unit 10, and includes a side brush 210 and an edge sensor 220.
  • the side brush 210 is rotatably disposed on the main unit 10, and the sensing surface of the edge sensor 220 is exposed on the first side 110 of the main unit 10. It is used to detect the distance between the first side 110 and the wall, wall or obstacle when the self-mobile cleaning robot 1 walks along the wall or the edge of the wall.
  • the side brush 210 may be provided only in the first corner area 10a, and the edge sensor 220 may be provided at any position on the first side 110 of the host 10, or The edge sensor 220 is only provided in the first corner area 10a, and the side brush 210 is provided at an appropriate position on the first side 110 of the main body 10, or the side brush 210 is omitted.
  • the laser sensor 30 can be a time-of-flight sensor such as direct time of fly (dToF) or indirect time of fly (iToF), which is arranged on the host 10 close to the third side 130 (such as the front side of the host). ), or is provided on the side of the second side 120 away from the third side 130, such as the rear side of the host.
  • dToF direct time of fly
  • iToF indirect time of fly
  • the laser sensor 30 includes a housing 310 and a first transmitting and receiving module 320 and a second transmitting and receiving module 330 disposed in the housing 310 .
  • the structural form of the housing 310 matches the corner structure 140 and is thus combined with the corner structure 140 in the host 10 .
  • the first transmitting and receiving module 320 is disposed along the first axis x, and can transmit and receive optical signals along the first axis x, thereby having a first field of view angle ⁇ 1 in the first axis x.
  • the second transmitting and receiving module 330 is disposed along the second axis y, and can transmit and receive another optical signal along the second axis y, thereby having a second field of view angle ⁇ 2 in the second axis y.
  • the first axial direction x and the second axial direction y intersect at an intersection point on one side adjacent to the bending section 143 of the corner structure 140, and a critical zone cz is formed between them,
  • the bending section 143 is located in this critical area ca.
  • the first field of view angle ⁇ 1 of the first transmitting and receiving module 320 and the second field of view angle ⁇ 2 of the second transmitting and receiving module 330 also partially fall within this critical area cz, and are connected or mutually connected within the critical area cz. overlapping.
  • the intersection of the first axis x and the second axis y can be connected with the center C of the host 10 to form an auxiliary line AL, and the corner structure 140 is located at The auxiliary line AL or overlaps with the auxiliary line AL in the projection direction, that is, the vertex of the corner structure 140 can fall on the auxiliary line AL or be offset to the left or right, but at least the corner structure 140 is guaranteed to fall on the auxiliary line AL.
  • the first field of view angle ⁇ 1 of the first transmitting and receiving module 320 and the second field of view angle ⁇ 2 of the second transmitting and receiving module 330 can be covered.
  • the overall extent projected outward from the corner structure 140 is arranged in the critical area cz between the first axis x and the second axis y.
  • the angle of the first field of view ⁇ 1 and the angle of the second field of view ⁇ 2 may be 105 degrees respectively. Therefore, when the two are connected in the critical area cz, they can jointly form a total field of view of 210 degrees. Or in other embodiments of the present application, the angle of the first field of view ⁇ 1 and the angle of the second field of view ⁇ 2 can overlap in the critical area cz at an angle greater than 105 degrees, and the joint angle is between 210 degrees. to 250 degrees total field of view.
  • first field of view angle ⁇ 1 and the second field of view ⁇ 2 can meet or overlap each other in the critical area cz, in addition to eliminating the need for the first transmitting and receiving module 320 and the second transmitting and receiving module 330 in the corresponding bending section 143 In addition to the sensing blind zone in the direction, it can also provide a wide viewing angle sensing range.
  • the laser sensor 30 further includes a reflective module 340, which is disposed inside the housing 310. Adjacent to one side of the bending section 143 , the first axis x and the second axis y intersect at the position of the reflective module 340 .
  • the reflective module 340 includes a reflective mirror 341 and a rotating shaft 342.
  • the reflector 341 extends from two opposite sides of the rotating shaft 342 along the radial direction of the rotating shaft 342 .
  • the rotating shaft 342 is rotatably arranged in the housing 310, and can drive the reflector 341 to rotate relative to the first transmitting and receiving module 320 and the second transmitting and receiving module 330, so that the light emitting from the first transmitting module 320 and the second transmitting and receiving module 330 respectively
  • the optical signal can be transmitted to the external environment through the reflector 341, and the optical signal reflected by the external environment can be correspondingly transmitted back to the first light-emitting receiving module 320 and the second light-emitting receiving module 330, thereby expanding the first light-emitting receiving module 320 and the second light-emitting receiving module 330.
  • the sensing range of the second luminescence receiving module 330 is rotatably arranged in the housing 310, and can drive the reflector 341 to rotate relative to the first transmitting and receiving module 320 and the second transmitting and receiving module 330, so that the light emitting from the first transmitting module 320 and the second transmitting and receiving module 330 respectively
  • the optical signal can
  • the self-moving cleaning robot when the self-moving cleaning robot is started, it emits light to the external environment through the laser laser sensor and receives the reflected light from the external environment, and then transmits it to the self-moving cleaning robot in the form of an optical signal.
  • the electronic control module calculates the flight time of light to obtain the distance information of multiple points, and determines the distance between the body and the object or the surrounding environment accordingly, and generates point clouds such as depth images or 3D images based on the above measured points.
  • the image is used as a reference for the navigation and obstacle avoidance calculation of the self-moving cleaning robot, and for navigation and obstacle avoidance planning of the cleaning path.
  • the distance between the host and the wall or wall can be sensed through the edge sensor of the side brush assembly, so that the host can clean at the appropriate distance. Clean the floor with a side brush.
  • a laser sensor is used on the other side of the host to sense the traveling path and whether there are obstacles in the surrounding area, so as to carry out navigation and obstacle avoidance procedures.
  • the autonomous mobile robot can be better guided to perform cleaning tasks and avoid being blocked by obstacles, improving cleaning efficiency.
  • the laser sensor is arranged in the main body and located in the second corner area of the main body. Therefore, when the body performs cleaning tasks, the area array laser sensor can be used to sense, map, navigate and avoid obstacles directly on the side, front and diagonally in front of the host. Since there is no need to protrude from the top surface of the host during this process, the space in the vertical axis of the host is released and the top surface of the host remains flat. In addition to thinning the thickness of the host in the vertical axis, it also helps It allows autonomous mobile robots to enter shorter spaces to perform cleaning tasks.
  • FIG. 1 As shown in Figures 1, 2, 5, and 6, another embodiment of the present application provides a self-moving cleaning robot 1.
  • Its main body 10 includes a base 180 and a strike plate assembly 190, and a structured light is provided on the strike plate assembly 190.
  • Sensor 40 The impact plate assembly 190 is disposed on the front side of the host 10 to slow down the impact force and protect the host 10 from damage when the host 10 is subjected to a collision.
  • the strike plate assembly 190 includes a plate body 191, a bracket 192 and a bracket 193.
  • the bracket 192 is connected to the base 180 and can move forward and backward relative to the base 180 .
  • the plate body 191 is arranged on the bracket 192 and surrounds the periphery of the bracket 192 .
  • the bracket 193 is coupled to the plate body 191 and has a bearing portion 193a and a fitting portion 193b.
  • the laser sensor 30 is disposed on the bearing portion 193a and is integrated with the strike plate assembly 190 as a whole.
  • the appearance structure of the structured light sensor 40 and the fitting part 193b is a matching concave and convex structure, so that the structured light sensor 40 is combined in the fitting part 193b.
  • a plurality of openings 191a are provided on the plate body 191, and the structured light sensor 40 and the laser sensor 30 are respectively arranged corresponding to the openings, so that the sensing surface is exposed to the plate body 191 outside.
  • the top 190a of the striking plate assembly 190 is the highest point of the host 10 . Therefore, when the self-moving cleaning robot 1 is working, as long as its collision plate assembly 190 can enter a short space with a corresponding height, it can ensure that the entire host 10 can also enter this space to perform cleaning tasks, preventing the overall height of the host 10 from being too high. High and stuck in the space, unable to move.
  • embodiments of the present application also provide a cleaning device, a self-moving device, a control module and a control method applied to a laser radar module, which are described in detail below.
  • the basis for the cleaning robot to achieve path planning, navigation and obstacle avoidance functions is to build a map of the external environment.
  • the mainstream mapping solution for cleaning robots currently on the market is based on the SLAM (Simultaneous Localization and Mapping) framework algorithm, and the necessary sensor to implement the SLAM mapping solution is lidar.
  • the currently widely used sensor solution is the lidar sensor, which uses a 360° rotating lidar solution.
  • the motor drives the laser radar system to rotate to achieve a 360° field of view ranging. The advantage is that the field of view can reach 360°.
  • the disadvantage is that it needs to be protruding above the cleaning robot, resulting in a higher body height of the cleaning robot. From the market research analysis of cleaning robots, it can be concluded that because the body height of the cleaning robot is too high, in daily home environments, the cleaning robot cannot enter low areas such as the bottom of sofas and beds for cleaning, which greatly reduces the cost of cleaning robots. cleaning coverage.
  • VSLAM Visual Simultaneous Localization and Mapping
  • the VSLAM algorithm relies on cameras to obtain images of the external environment to build a map of the external environment. Since the camera can be installed inside the body of the cleaning robot, the height of the cleaning robot can be reduced. However, the imaging accuracy of the camera is easily affected by light, resulting in low mapping efficiency of the VSLAM algorithm.
  • the lidar is installed inside the body of the cleaning robot to reduce the height of the cleaning robot.
  • the lidar since the lidar is installed inside the fuselage of the cleaning robot, the field of view of the lidar will be limited and cannot meet the requirements.
  • the lidar is provided with at least two sets of laser transceiver components, and the field of view angles of the at least two sets of laser transceiver components are integrated so that the field of view angle of the entire cleaning robot meets the requirements.
  • the current laser transceiver component on the cleaning robot has a heavy workload, which also leads to high power consumption of the entire machine.
  • an embodiment of the present application provides a cleaning device, a self-moving device, a control module and a control method applied to a lidar module, which can reduce the power consumption of the lidar module and thereby reduce the power of the entire machine. Consumption.
  • Figure 7 is a schematic structural diagram of an embodiment of the cleaning device of the present application
  • Figure 8 is a schematic structural diagram of an embodiment of the laser radar module of the present application.
  • the cleaning device 10 may be a cleaning robot with cleaning functions such as floor washing, sweeping, and mopping.
  • the cleaning device 10 includes a device body 11 .
  • the device main body 11, as the name suggests, is the main part of the cleaning device 10.
  • the device main body 11 can move on the surface to be cleaned to clean the surface to be cleaned.
  • the device body 11 may be provided with cleaning elements such as roller brushes, side brushes, and rags, which are used to move synchronously with the device body 11 on the surface to be cleaned to clean the area where the device body 11 passes.
  • the cleaning device 10 also includes a lidar module 20 .
  • the lidar module 20 is provided on the device body 11 .
  • the lidar module 20 is used to implement path planning, navigation and obstacle avoidance functions of the cleaning device 10 .
  • the lidar module 20 includes at least two groups of laser transceiver components 21.
  • Each group of laser transceiver components 21 can interact with the external environment with laser signals to implement path planning, navigation and obstacle avoidance functions of the cleaning robot.
  • the principle of the laser transceiver component 21 interacting with the external environment with laser signals to achieve path planning, navigation and obstacle avoidance is within the understanding of those skilled in the art, and will not be described again here.
  • the at least two sets of laser transceiver assemblies 21 are disposed inside the device body 11 and close to the edge of the device body 11 to prevent the laser transceiver assembly 21 from affecting the overall height of the cleaning device 10 .
  • the field of view angles of the at least two groups of laser transceiver assemblies 21 are integrated so that the field of view angle of the entire cleaning device 10 meets the requirements.
  • each group of laser transceiver components 21 can also independently perform laser signal interaction operations.
  • the field of view of each group of laser transceiver components 21 is no longer integrated, and only the entire device 10 needs to be cleaned.
  • the field of view angle meets the requirements and is not limited here.
  • the cleaning device 10 also includes a control module 30 , which is provided on the device body 11 .
  • the control module 30 is configured to control the operation of different laser transceiver components 21 in a time-sharing manner.
  • the control module 30 of this embodiment controls the work of different laser transceiver components 21 in a time-sharing manner. , that is, only part of the laser transceiver components 21 is in the working state at the same time, and the remaining laser transceiver components 21 are not in the working state. This reduces the work load of each group of laser transceiver components 21 and is conducive to reducing the cost of the laser radar module 20 power consumption, thereby helping to reduce the power consumption of the entire cleaning device 10 .
  • the control module 30 of this embodiment controls the work of different laser transceiver components 21 in a time-sharing manner. Specifically, it controls the different laser transceiver components 21 to work one by one, that is, only one set of laser transceiver components 21 is in working state at the same time, and The remaining laser transceiver components 21 are not in working condition.
  • the lidar module 20 includes two groups of laser transceiver components 21 as an example.
  • the control module 30 is configured to control the operation of the two groups of laser transceiver components 21 in a time-sharing manner, that is, the two groups of laser transceiver components 21 are operated one by one.
  • the field of view angles of the two groups of laser transceiver assemblies 21 are integrated, thereby making the field of view of the entire cleaning device 10 meet the requirements, and at the same time, the work burden of each group of laser transceiver components 21 is reduced, which is beneficial to Reduce the power consumption of the lidar module 20.
  • FIG. 9 is a schematic structural diagram of an embodiment of the control module of the present application.
  • the control module 30 in the embodiment of the present application is described below.
  • the control module 30 includes a control circuit 31 and at least two sets of laser driving circuits 32 .
  • Each group of laser driving circuits 32 is electrically connected to the control circuit 31 , and each group of laser driving circuits 32 is also electrically connected to different laser transceiver components 21 .
  • the control circuit 31 is configured to time-share the control of different laser driving circuits 32 to drive corresponding laser collectors. Development component 21 works.
  • the control circuit 31 is the control center of the control module 30 and is used to control and coordinate other circuits of the control module 30 to work cooperatively.
  • the laser driving circuit 32 is used to drive the electrically connected laser transceiver component 21 to interact with the external environment with laser signals. That is, the laser drive circuit 32 is used to drive the corresponding laser transceiver component 21 to work.
  • the laser driving circuit 32 and the laser transceiver assembly 21 correspond one to one, that is, each group of laser driving circuits 32 is electrically connected to a different group of laser transceiver assembly 21 respectively.
  • the control circuit 31 controls the operation of different laser driving circuits 32 through time sharing to drive the corresponding laser transceiver components 21 to work in time sharing.
  • the laser driving circuit 32 is independent of the control circuit 31 .
  • the control circuit 31 and the laser driving circuit 32 can be integrated into the same component, which is not limited here.
  • the control circuit 31 includes a control element 311 and a power supply 312 .
  • Each group of laser driving circuits 32 is electrically connected to the control element 311, and the power supply 312 is electrically connected to the control element 311 and each group of laser driving circuits 32 respectively.
  • the control element 311 is configured to control the power supply 312 to output electric energy to different laser driving circuits 32 in a time-sharing manner, so that each group of laser driving circuits 32 drives the corresponding laser transceiver assembly 21 in a time-sharing manner.
  • Each group of laser transceiver components 21 in this embodiment shares the same power supply 312.
  • the control element 311 controls the power supply 312 to output electric energy to different laser driving circuits 32 in a time-sharing manner, that is, to supply power to different laser driving circuits 32 in a time-sharing manner, so that different laser driving circuits 32 are supplied with power.
  • the laser driving circuits 32 of the laser driving circuits 32 work in a time-sharing manner, so that each group of laser driving circuits 32 drives the corresponding laser transceiver component 21 in a time-sharing manner.
  • the laser driving circuit 32 can work to drive the corresponding laser transceiver component 21 to work, while the remaining laser driving circuits 32 are not in the working state because they are not powered on. , naturally cannot drive the corresponding laser transceiver component 21 to work.
  • each group of laser transceiver components 21 in this embodiment shares the same power supply 312, which avoids the problems of increasing costs and complicating the control module 30 caused by configuring different power supplies 312 for each group of laser transceiver components 21. That is, This embodiment can avoid the additional installation of the power supply 312, which is beneficial to reducing the cost of the control module 30 and simplifying the control module 30, and can optimize the circuit board space.
  • control element 311 may be an MCU (Micro Controller Unit), etc., which is not limited here.
  • each group of laser transceiver components 21 may be configured with different power supplies 312 respectively.
  • each group of laser transceiver components 21 works in a time-sharing manner, which can reduce the work load of each group of laser transceiver components 21 to a certain extent, which is beneficial to reducing the power consumption of the laser radar module 20 .
  • the lidar module 20 further includes a reflector 22 .
  • the reflector 22 is rotatably disposed on the device body 11 , wherein each group of laser transceiver components 21 interacts with the external environment with laser signals through the reflector 22 that rotates to a corresponding angle.
  • the laser transceiver assembly 21 includes an output element and a receiving element.
  • the output element can output laser.
  • the laser output by the output element is output to the external environment through the reflector 22.
  • the laser reflected back by the external environment is received by the receiving element through the reflector 22. This completes the laser signal interaction between the laser transceiver component 21 and the external environment.
  • the reflector 22 rotates to different angles, so that the reflector 22 can interact with laser signals between the corresponding laser transceiver component 21 and the external environment.
  • the laser transceiver component 21 interacts with the external environment through the reflector 22 in laser signals, while the remaining laser transceiver components 21 do not temporarily communicate with the external environment through the reflector 22 Laser signal interaction is performed, so the control circuit 31 controls the laser transceiver component 21 to work at this time, while the other laser transceiver components 21 are not in working state.
  • the control module 30 also includes a detection circuit 33 .
  • the detection circuit 33 is electrically connected to the control circuit 31 , and the detection circuit 33 is used to detect the rotation angle of the reflector 22 .
  • the control circuit 31 can respond to the detection of the rotation angle of the reflector 22 through the detection circuit 33 and time-sharing control of different laser driving circuits 32 to drive the corresponding laser transceiver components 21 to work.
  • the detection circuit 33 detects that the reflector 22 rotates to an angle corresponding to one of the laser transceiver components 21
  • the control circuit 31 controls the laser transceiver component 21 to interact with the external environment with laser signals, while the other laser transceiver components 21 do not. Not in working order.
  • the lidar module 20 also defines a rotation axis (as shown by O in FIG. 8 , the same below), the reflector 22 can rotate around the rotation axis, and the end of the reflector 22 away from the rotation axis is the target end 221 .
  • the above-mentioned at least two groups of laser transceiver components 21 include a first laser transceiver component 21a and a second laser transceiver component 21b.
  • the first laser transceiver component 21a has a first optical axis 211
  • the second laser transceiver component 21b has a second optical axis 212
  • the first optical axis 211 and the second optical axis 212 intersect with the rotation axis.
  • the position of the reflector 22 is: Zero point position (shown as S in Figure 8, the same below). It should be noted that the distance between the target end 221 and the first laser transceiver assembly 21a and the second laser transceiver 21b should be understood as the distance between the target end 221 and the first laser transceiver assembly 21a and the distance between the target end 221 and the second laser. The distance between the transceiver components 21b reaches the maximum value.
  • the control circuit 31 controls the first laser transceiver component 21a to operate in response to the detection circuit 33 detecting that the angle of rotation of the target end 221 relative to the zero position (shown as ⁇ in Figure 8, the same below) is within the first angle range; and
  • the control circuit 31 controls the second laser transceiver component 21b to operate in response to the detection circuit 33 detecting that the angle of rotation of the target end 221 relative to the zero position is within the second angle range.
  • control circuit 31 of this embodiment controls the operation of different laser transceiver components 21 in a time-sharing manner based on the rotation angle of the reflector 22 .
  • the detection circuit 33 detects that the angle of rotation of the target end 221 relative to the zero position is within the first angle range, the first laser transceiver component 21a can interact with the external environment with laser signals through the reflector 22, so the control circuit 31 controls the operation of the first laser transceiver component 21a.
  • the second laser transceiver component 21b can interact with the external environment with laser signals through the reflector 22, so the control circuit 31 controls the operation of the second laser transceiver component 21b.
  • the first angle range may be 0° to 180°
  • the second angle range may be 180° to 360°.
  • FIG. 8 shows that the reflector 22 is in the zero position, and the reflector 22 rotates counterclockwise from the zero position, so that the first laser transceiver component 21a and the second laser transceiver component 21b periodically alternately communicate with the external environment for laser signals.
  • Figure 10 is a control timing diagram in which the control circuit 31 controls the operation of the first laser transceiver component 21a and the second laser transceiver component 21b in a time-sharing manner.
  • the control module 30 controls the operation of the first laser transceiver component 21a and the second laser transceiver component 21b in a time-sharing manner, that is, the first laser transceiver component 21a and the second laser transceiver component 21b switch to work.
  • the control circuit 31 controls the first laser transceiver component 21a to work; and the angle of rotation of the target end 221 of the reflector 22 relative to the zero position is From 180° to 360°, the control circuit 31 controls the second laser transceiver component 21b to operate.
  • the control circuit 31 only needs to determine the angle corresponding to switching the first laser transceiver component 21a or the second laser transceiver component 21b.
  • the control logic of the control circuit 31 can be simplified.
  • the reflector 22 has a preset rotation speed, so that the first laser transceiver component 21a and the second laser transceiver component 21b switch to work according to the preset frequency, so that the first laser transceiver component 21a and the second laser transceiver component 21b are sensitive to the external environment.
  • the scanning efficiency meets the requirements, thus ensuring the real-time performance of path planning, navigation and obstacle avoidance of the cleaning device 10 .
  • the preset rotation speed can be 900r/min, etc., which means that the preset frequency corresponds to 15Hz.
  • the first angle range and the second angle range no longer cover the angle span of 180°.
  • the first angle range may be 0° to 150°
  • the second angle range may be 210° to 360°, which is not limited here. .
  • FIG. 11 is a schematic structural diagram of an embodiment of the code disk of the present application.
  • the detection circuit 33 includes a code wheel 331 that can rotate synchronously with the reflector 22 .
  • the code wheel 331 has an identification structure for identifying the target end 221 .
  • the detection circuit 33 also includes a sensor 332, which is electrically connected to the control circuit 31.
  • the sensor 332 is used to detect the mark structure during the rotation of the code wheel 331.
  • the control circuit 31 measures the angle of rotation of the target end 221 relative to the zero position in response to the sensor 332 detecting the marking structure.
  • the code wheel 331 includes a code wheel body 333 and at least two tooth portions 334.
  • the code wheel body 333 can rotate synchronously with the reflector 22 .
  • the at least two tooth portions 334 are sequentially spaced apart along the circumferential direction of the code plate body 333, and each tooth portion 334 can It can pass through the sensor 332 in sequence as the code wheel body 333 rotates.
  • the at least two tooth portions 334 include a first tooth portion 334a, and the remaining tooth portions 334 are second tooth portions 334b.
  • the first tooth portion 334a is different from the second tooth portion 334b in that the first tooth portion 334a is used to mark the target end 221, that is, the first tooth portion 334a has the above-mentioned marking structure.
  • the control circuit 31 calculates the rotation angle of the target end 221 relative to the zero position by counting the number of second tooth portions 334b passing through the sensor 332 after the first tooth portion 334a.
  • the sensor 332 can be an optical coupler, etc., and each tooth portion 334 can sequentially block the light signal of the sensor 332 as the code wheel body 333 rotates, so that the sensor 332 generates a corresponding pulse signal, and the pulse signal indicates the sensor 332 The motion of each tooth portion 334 passing through the sensor 332 is detected.
  • the above-mentioned at least two tooth portions 334 are evenly spaced along the circumferential direction of the code plate body 333, and the central angle corresponding to each tooth portion 334 is the same.
  • the tooth width of the first tooth portion 334a is different from the tooth width of the second tooth portion 334b.
  • the control circuit 31 can determine that the sensor 332 has detected the first tooth portion 334a (ie, the identification structure), and then calculate the target end by counting the number of the second tooth portion 334b that passes through the sensor 332 after the first tooth portion 334a. The angle of rotation of 221 relative to the zero position.
  • the first tooth portion 334a may be disposed directly opposite the target end 221 to identify the target end 221 .
  • the sensor 332 detects that the first tooth portion 334a passes the sensor 332, it means that the target end portion 221 passes the sensor 332.
  • the sensor 332 can be set corresponding to the zero point position, so that when the target end portion 221 passes the sensor 332, it means that the angle of rotation of the target end portion 221 relative to the zero point position is 0°.
  • the sensor 332 may also deviate from the zero position.
  • the angle between the sensor 332 and the zero position is the angle at which the target end 221 rotates relative to the zero position when the target end 221 passes through the sensor 332 .
  • the code wheel 331 may only be provided with the tooth portion 334 for identifying the target end portion 221. Since the rotation speed of the reflector 22 is known, the rotation angle of the target end 221 relative to the zero position can be directly measured based on the time difference from the time when the target end 221 passes the sensor 332, which is not limited here.
  • the detection circuit 33 in the embodiment of the present application is not limited to detecting the rotation angle of the reflector 22 through the code wheel 331, and there is no limitation here.
  • the laser radar module 20 further includes a motor 23 and a motor driving circuit 24 .
  • the motor 23 is drivingly connected to the reflector 22 and is used to drive the reflector 22 to rotate.
  • the motor drive circuit 24 is electrically connected to the control circuit 31 and the motor 23 respectively.
  • the control circuit 31 also detects the rotation speed of the reflector 22 through the detection circuit 33, and adjusts the rotation speed of the motor 23 through the motor drive circuit 24, so that the reflector 22 maintains the above-mentioned preset rotation speed.
  • control circuit 31 of this embodiment adjusts the rotation speed of the motor 23 through the motor drive circuit 24 to move the mirror The speed of 22 is stable at the preset speed.
  • the code wheel 331 and the sensor 332 cooperate to detect the rotation angle of the reflector 22, and the rotation speed of the reflector 22 is stable, which is helpful to ensure that the control circuit 31 accurately calculates the angle of rotation of the target end 221 relative to the zero position, that is, The rotation angle of the reflector 22 is accurately measured.
  • the motor 23, the code wheel 331 and the reflector 22 are coaxially arranged, and the motor 23 drives the code wheel 331 and the reflector 22 to rotate synchronously.
  • the rotation speeds of the motor 23, the code disk 331 and the reflector 22 are consistent.
  • the sensor 332 detects the rotation speed of the code disk 331 and feeds it back to the control circuit 31.
  • the control circuit 31 can learn the current rotation speed of the motor 23, and then adjust the motor through the motor drive circuit 24. 23 to stabilize the rotation speed of the reflector 22.
  • the self-moving device includes a device body 11, and the device body 11 can move on the moving surface.
  • the mobile device also includes a laser radar module 20 .
  • the laser radar module 20 is provided on the device body 11 , and the laser radar module 20 includes at least two sets of laser transceiver components 21 .
  • the mobile device also includes a control module 30 , which is provided on the device body 11 .
  • the control module 30 includes a control circuit 31 and at least two sets of laser driving circuits 32 .
  • Each group of laser driving circuits 32 is electrically connected to the control circuit 31, and each group of laser driving circuits 32 is also electrically connected to different laser transceiver components 21, wherein the control circuit 31 is configured to be able to control different laser driving circuits in a time-sharing manner.
  • 32 drives the corresponding laser transceiver component 21 to work.
  • the self-moving device can be applied in the field of cleaning equipment, that is, the self-moving device can be a cleaning device 10 such as a cleaning robot, and the moving surface is the corresponding surface to be cleaned.
  • the control module 30 has been described in detail in the above embodiments and will not be described again here.
  • this embodiment provides a control module 30 applied to the laser radar module 20 .
  • the lidar module 20 includes at least two sets of laser transceiver components 21 .
  • the control module 30 includes a control circuit 31 and at least two sets of laser driving circuits 32 .
  • Each group of laser driving circuits 32 is electrically connected to the control circuit 31, and each group of laser driving circuits 32 is also electrically connected to different laser transceiver components 21, where the control circuit 31 is configured to be able to control different laser driving circuits in a time-sharing manner. 32 drives the corresponding laser transceiver component 21 to work.
  • control module 30 has been described in detail in the above embodiments and will not be described again here.
  • Figure 12 is a schematic flowchart of a control method applied to a laser radar module according to an embodiment of the present application.
  • the control method applied to the lidar module 20 described in this embodiment is based on the control module 30 described in the above embodiment.
  • the laser radar module 20 includes at least two sets of laser transceiver components 21 .
  • S101 Receive preset switching instructions.
  • the work of different laser transceiver components 21 is controlled in a time-sharing manner to reduce the work load of each group of laser transceiver components 21, thereby helping to reduce the power consumption of the laser radar module 20.
  • the preset switching instruction is used to indicate the timing of switching the operation of different laser transceiver components 21 .
  • the optical transceiver component 21 works. Compared with the situation where each group of laser transceiver components 21 is always in the working state, this embodiment controls the work of different laser transceiver components 21 in a time-sharing manner, that is, only some of the laser transceiver components 21 are in the working state at the same time, and the remaining laser transceiver components 21 are in the working state at the same time. 21 is not in the working state, thus reducing the workload of each group of laser transceiver components 21 and conducive to reducing the power consumption of the laser radar module 20 .
  • FIG. 13 is a schematic flowchart of another embodiment of the control method applied to the lidar module of the present application.
  • the control method applied to the lidar module 20 described in this embodiment is based on the control module 30 described in the above embodiment.
  • the laser radar module 20 includes at least two sets of laser transceiver components 21 .
  • the lidar module 20 further includes a reflector 22 .
  • the reflector 22 By driving the reflector 22 to rotate, the reflector 22 is rotated to different angles, thereby allowing the reflector 22 to interact with laser signals between the corresponding laser transceiver component 21 and the external environment.
  • the reflector 22 maintains the preset rotation speed, that is, the rotation speed of the reflector 22 is stabilized at the preset rotation speed.
  • the stable rotation speed of the reflector 22 is conducive to accurate calculation of the reflector. 22 degrees of rotation.
  • control circuit 31 enables the motor driving circuit 24 to drive the motor 23 to drive the mirror 22 to rotate through the motor 23 . Since the rotation speeds of the motor 23, the code disk 331 and the reflector 22 are consistent, the sensor 332 can measure the rotation speed of the motor 23 by detecting the rotation speed of the code disk 331. The sensor 332 feeds back the measured rotational speed information to the control circuit 31. The control circuit 31 can obtain the current rotational speed of the motor 23, and then adjust the rotational speed of the motor 23 through the motor drive circuit 24 to stabilize the rotational speed of the reflector 22.
  • the rotation angle of the reflector 22 is detected to determine the timing when it is necessary to switch to different laser transceiver components 21 .
  • a preset switching instruction is generated in response to the reflector 22 rotating to a corresponding angle.
  • the sensor 332 detects the rotation angle of the code wheel 331 and feeds it back to the control circuit 31.
  • the control circuit 31 obtains the rotation angle of the reflector 22 based on the angle information fed back by the sensor 332, and then enables different laser transceiver components 21, so that different The laser transceiver component works around the clock.
  • the above-mentioned at least two groups of laser transceiver components 21 include a first laser transceiver component 21a and a second laser transceiver component 21b.
  • the first laser transceiver component 21a has a first optical axis 211
  • the second laser transceiver component 21b has a second optical axis 212.
  • the axis 211 and the second optical axis 212 intersect with the rotation axis of the reflector 22 .
  • the angle of the reflector 22 is The position is the zero position. The angle of rotation of the target end 221 relative to the zero point position is detected.
  • a first switching command is generated to control the operation of the first laser transceiver component 21a in response to the first switching command; similarly, if the target is detected If the angle at which the end 221 rotates relative to the zero position is within the second angle range, a second switching instruction is generated to control the operation of the second laser transceiver component 21b in response to the second switching instruction.
  • the work of different laser transceiver components 21 is controlled in a time-sharing manner to reduce the work load of each group of laser transceiver components 21, thereby helping to reduce the power consumption of the laser radar module 20.
  • the preset switching instruction is used to indicate the timing of switching the operation of different laser transceiver components 21 .
  • different laser transceiver components 21 are controlled to operate in a time-sharing manner.
  • this embodiment controls the work of different laser transceiver components 21 in a time-sharing manner, that is, only some of the laser transceiver components 21 are in the working state at the same time, and the remaining laser transceiver components 21 are in the working state at the same time. 21 is not in the working state, thus reducing the workload of each group of laser transceiver components 21 and conducive to reducing the power consumption of the laser radar module 20 .
  • each group of laser transceiver components 21 in this embodiment shares the same power supply 312. Specifically, the power supply 312 is controlled to output power to different laser transceiver components 21 in a time-sharing manner, that is, power is supplied to different laser transceiver components 21 in a time-sharing manner.
  • Each group of laser transceiver components 21 in this embodiment shares the same power supply 312, which avoids the problems of increasing costs and complicating the control module 30 caused by configuring different power supplies 312 for each group of laser transceiver components 21. That is, this embodiment can Avoiding an additional power supply 312 is beneficial to reducing the cost of the control module 30 and simplifying the control module 30, and can optimize the circuit board space.
  • the cleaning device 10 is a cleaning robot.
  • the cleaning device 10 includes a device body 11 .
  • the cleaning device 10 also includes a laser radar module 20 , which is provided on the device body 11 .
  • the lidar module 20 includes at least two groups of laser transceiver components 21. Each group of laser transceiver components 21 can interact with the external environment with laser signals to implement path planning, navigation and obstacle avoidance functions of the cleaning robot.
  • the cleaning device 10 also includes a control module 30 , which is provided on the device body 11 .
  • the control module 30 is configured to control the operation of different laser transceiver components 21 in a time-sharing manner.
  • the control module 30 includes a control circuit 31 and at least two sets of laser driving circuits 32 .
  • Each group of laser driving circuits 32 is electrically connected to the control circuit 31 , and each group of laser driving circuits 32 is also electrically connected to different laser transceiver components 21 .
  • control The control circuit 31 includes a control element 311 and a power supply 312.
  • Each group of laser driving circuits 32 is electrically connected to the control element 311, and the power supply 312 is electrically connected to the control element 311 and each group of laser driving circuits 32 respectively.
  • the control element 311 is configured to control the power supply 312 to output electric energy to different laser driving circuits 32 in a time-sharing manner, so that each group of laser driving circuits 32 drives the corresponding laser transceiver assembly 21 in a time-sharing manner.
  • Control element 311 enables power supply 312 .
  • the control element 311 enables the motor drive circuit 24 to drive the motor 23 to drive the code wheel 331 and the reflector 22 to rotate through the motor 23 .
  • the sensor 332 can detect the speed of the motor 23 by detecting the speed of the code wheel 331 .
  • the sensor 332 feeds back the measured rotational speed information to the control element 311.
  • the control element 311 can obtain the current rotational speed of the motor 23, and then adjust the rotational speed of the motor 23 through the motor drive circuit 24 to stabilize the rotational speed of the reflector 22. After the rotational speed of the reflector 22 stabilizes, the sensor 332 detects the rotation angle of the code wheel 331 and feeds it back to the control element 311.
  • the control element 311 obtains the rotation angle of the reflector 22 based on the angle information fed back by the sensor 332, thereby enabling different laser transceivers. Components work at 21:00. Specifically, when the angle of rotation of the target end 221 of the reflector 22 relative to the zero position is 0° to 180°, the control element 311 controls the first laser transceiver assembly 21a to work; and the target end 221 of the reflector 22 rotates relative to the zero position. When the angle is 180° to 360°, the control element 311 controls the second laser transceiver component 21b to work.
  • the lidar module 20 includes at least two groups of laser transceiver components 21. Each group of laser transceiver components 21 can interact with the external environment with laser signals to implement path planning, navigation and obstacle avoidance functions of the cleaning robot.
  • the control module 30 is configured to control the operation of different laser transceiver components 21 in a time-sharing manner.
  • the control module 30 includes a control circuit 31 and at least two sets of laser driving circuits 32 .
  • Each group of laser driving circuits 32 is electrically connected to the control circuit 31 , and each group of laser driving circuits 32 is also electrically connected to different laser transceiver components 21 .
  • the control circuit 31 includes a control element 311 and a power supply 312 .
  • Each group of laser driving circuits 32 is electrically connected to the control element 311, and the power supply 312 is electrically connected to the control element 311 and each group of laser driving circuits 32 respectively.
  • the control element 311 is configured to control the power supply 312 to output electric energy to different laser driving circuits 32 in a time-sharing manner, so that each group of laser driving circuits 32 drives the corresponding laser transceiver assembly 21 in a time-sharing manner.
  • Control element 311 enables power supply 312 .
  • the control element 311 enables the motor drive circuit 24 to drive the motor 23 to drive the code wheel 331 and the reflector 22 to rotate through the motor 23 .
  • the sensor 332 can detect the speed of the motor 23 by detecting the speed of the code wheel 331 .
  • the sensor 332 feeds back the measured rotational speed information to the control element 311.
  • the control element 311 can learn the current rotational speed of the motor 23, and then adjust the rotational speed of the motor 23 through the motor drive circuit 24 to stabilize the rotational speed of the reflector 22. After the rotational speed of the reflector 22 stabilizes, the sensor 332 detects the rotation angle of the code wheel 331 and feeds it back to the control element 311.
  • the control element 311 obtains the rotation angle of the reflector 22 based on the angle information fed back by the sensor 332, thereby enabling different laser transceivers. Components work at 21:00. Specifically, the target end 221 of the reflector 22 is relative to the zero point When the angle of position rotation is 0° to 180°, the control element 311 controls the operation of the first laser transceiver component 21a; and when the angle of rotation of the target end 221 of the reflector 22 relative to the zero position is 180° to 360°, the control element 311 Control the operation of the second laser transceiver component 21b.
  • the embodiment of the present application also provides a cleaning device and a self-moving device, which are described in detail below.
  • LDS Laser Direct Structuring
  • D-TOF Direct Time of Fly, direct time of flight
  • the navigation module is usually installed on the top of the machine, and the motor drives the module to rotate to meet the navigation work within a certain field of view.
  • this design still has some shortcomings.
  • the protrusion at the top of the machine causes the machine to be too high, making it impossible for the cleaning robot to clean low areas such as the bottom of furniture.
  • the mechanism that drives the rotation of the module has a large load, and there is a risk of jamming during operation.
  • the current navigation and obstacle avoidance solutions are relatively expensive.
  • embodiments of the present application provide a cleaning device and a self-moving device that can solve the technical problem in the prior art that the navigation module is installed on the top of the machine, causing the top of the machine to protrude and cause the machine to be too high, as will be discussed below. Elaborate.
  • Figure 14 is a schematic structural diagram of an embodiment of the cleaning device of the present application.
  • the cleaning device 10 may be a cleaning robot with cleaning functions such as floor washing, sweeping, and mopping.
  • the cleaning device 10 includes a device body 11 .
  • the device main body 11, as the name implies, is the main part of the cleaning device 10.
  • the device main body 11 can move on the surface 12 to be cleaned to clean the surface 12 to be cleaned.
  • the device body 11 may be provided with cleaning elements such as roller brushes, side brushes, and rags, which are used to move synchronously with the device body 11 on the surface to be cleaned 12 to clean the area where the device body 11 passes.
  • the cleaning device 10 also includes a laser sensor module 20 .
  • the laser sensor module 20 is provided on the device body 11 , and the laser sensor module 20 is used to realize the navigation and obstacle avoidance functions of the cleaning device 10 .
  • the maximum distance D 1 between the laser sensor module 20 and the surface to be cleaned 12 is less than or equal to the maximum distance D 2 between the device body 11 and the surface to be cleaned 12, that is, the laser sensor module
  • the distance between the top of 20 away from the surface to be cleaned 12 and the surface to be cleaned 12 is less than or equal to the distance between the top of the device body 11 away from the surface to be cleaned 12 and the surface to be cleaned 12 .
  • the laser sensor module 20 of this embodiment is built into the main body 11 of the device, which replaces the navigation module protruding from the top of the machine in the prior art, which is conducive to reducing the overall height of the cleaning device 10 so that the cleaning device 10 can Clean low areas such as under furniture.
  • the cleaning device 10 of this embodiment includes at least two groups of laser sensor modules 20, each group of laser sensor modules.
  • the groups 20 are distributed at intervals along the circumferential direction of the device body 11 , that is, each group of laser sensor modules 20 is independent of each other, and each group of laser sensor modules 20 is located at different positions of the device body 11 .
  • the field of view of each group of laser sensor modules 20 is integrated to obtain the field of view of the entire cleaning device 10 , and since at least one group of laser sensor modules 20 has a divergent field of view, the cleaning device 10 can be It has a larger field of view, thereby meeting the field of view requirements for navigation and obstacle avoidance functions.
  • the relative position of the laser sensor module 20 on the device body 11 remains fixed. Instead, at least two sets of laser sensors are integrated.
  • the field of view of the module 20 enables the field of view of the entire cleaning device 10 to meet the requirements. This also eliminates the need for a mechanism that drives the module to rotate in the prior art, and avoids problems such as lags during operation and higher costs.
  • the divergence of the field of view means that the field of view has a certain angle, that is, the field of view area of the laser sensor module 20 in this embodiment is a sector-shaped area centered on each.
  • the laser sensor module 20 in this embodiment is not Single point ranging sensor.
  • each group of laser sensor modules 20 is located at the edge of the device body 11 to prevent each group of laser sensor modules 20 from being blocked and ensure the navigation and obstacle avoidance functions of the cleaning device 10.
  • the laser sensor module 20 is not limited to being built into the device body 11 .
  • the laser sensor module 20 can be disposed on the top, bottom or other locations of the device body 11 .
  • the laser sensor module 20 of the cleaning device 10 is described below.
  • the above-mentioned at least two groups of laser sensor modules 20 include a first laser sensor module 20a and a second laser sensor module 20b.
  • the first laser sensor module 20a has a first field of view angle (shown as angle ⁇ 1 in Figure 14), and the second laser sensor module 20b has a second field of view angle (shown as angle ⁇ 2 in Figure 14).
  • the field of view area corresponding to the first field of view angle and the field of view area corresponding to the second field of view angle border each other or overlap with each other.
  • both the first laser sensor module 20a and the second laser sensor module 20b have divergent field of view angles, and by integrating the first field of view angle of the first laser sensor module 20a and the second laser sensor The second field of view angle of the module 20b enables the cleaning device 10 as a whole to have a larger field of view angle, thereby meeting the requirements for the field of view angle of the navigation and obstacle avoidance functions.
  • the distance between the first laser sensor module 20a and the surface to be cleaned 12 is equal to the distance between the second laser sensor module 20b and the surface to be cleaned 12, that is, the height of the first laser sensor module 20a and The height of the second laser sensor module 20b remains consistent.
  • the field of view area corresponding to the first field of view angle and the field of view area corresponding to the second field of view angle are adjacent to each other, This means that the edges of the field of view area corresponding to the first field of view angle and the field of view area corresponding to the second field of view angle overlap with each other.
  • the field of view area corresponding to the first field of view angle and the field of view area corresponding to the second field of view angle overlap with each other, which means that the field of view area corresponding to the first field of view angle and the field of view area corresponding to the second field of view angle are close to each other.
  • the edges meet at an angle.
  • the cleaning device 10 may include a greater number of laser sensor modules 20 on the basis of the first laser sensor module 20a and the second laser sensor module 20b.
  • the field of view of the laser sensor module 20 is such that the field of view of the entire cleaning device 10 meets the requirements, and is not limited here.
  • the device body 11 defines a first direction (shown by arrow X in Figure 14, the same below) and a second direction (shown by arrow Y in Figure 14, the same below).
  • the first direction and the second direction are perpendicular to each other, and both the first direction and the second direction are parallel to the surface 12 to be cleaned.
  • the device body 11 moves along the first direction, that is, the first direction is the traveling direction of the device body 11 .
  • the device main body 11 has a front end 111a and a rear end 111b in the first direction, and the device main body 11 has two side ends (ie, side end 112a, side end 112b) in the second direction.
  • the first laser sensor module 20a is located at the front end 111a of the device body 11, and the second laser sensor module 20b is located at one of the side ends of the device body 11 (specifically, at the side end 112a).
  • the field of view area of the first laser sensor module 20a is located in front of the device body 11 to sense the front area of the device body 11.
  • the field of view area of the second laser sensor module 20b is located on the side of the device body 11 to sense the device body. 11 side area.
  • the first laser sensor module 20a and the second laser sensor module 20b are reasonably arranged so that the area sensed by the first laser sensor module 20a and the area sensed by the second laser sensor module 20b satisfy the navigation and obstacle avoidance algorithms. requirements.
  • the device main body 11 has a first side 113a, a second side 113b, a third side 113c and a fourth side 113d.
  • the first side 113a and the second side 113b are spaced apart from each other along the first direction, and the first side 113a and the second side 113b are also perpendicular to the first direction, wherein the first side 113a is located at the front end 111a, and the second side 113b is located at the rear end. 111b.
  • the third side 113c and the fourth side 113d are spaced apart from each other along the second direction, and the third side 113c and the fourth side 113d are also perpendicular to the second direction.
  • the first side 113a, the second side 113b, the third side 113c and the fourth side 113d of the device main body 11 of this embodiment form a square-like structure, that is, the structure of the device main body 11 is similar to a square, so that the cleaning device can be improved 10.
  • the first side 113a and the second side 113b are both perpendicular to the first direction
  • the third side 113c and the fourth side 113d are both perpendicular to the second direction, which should be understood as passing through at least part of the first side 113a and the second side 113b.
  • the plane is perpendicular to the first direction, and at least part of the plane passing through the third side 113c and the fourth side 113d is perpendicular to the second direction.
  • first side 113a is respectively surrounded by the third side 113c and the fourth side 113d to form a first corner position 114a and a second corner position 114b.
  • the first corner position 114a and the second corner position 114b are the front end 111a of the device main body 11.
  • the third corner position 114c and the fourth corner position 114d are the main body of the device. After 11 The left and right corner positions of end 111b.
  • the second laser sensor module 20b is located at one of the first corner position 114a, the second corner position 114b, the third corner position 114c and the fourth corner position 114d.
  • the second laser sensor module 20b is located at one of the third corner position 114c and the fourth corner position 114d.
  • Figure 14 exemplarily shows the situation where the second laser sensor module 20b is located at the third corner position 114c.
  • the second laser sensor module 20b is located at the corner of the rear end 111b of the device body 11.
  • the second laser sensor module 20b is located at one of the first corner location 114a and the second corner location 114b.
  • the second laser sensor module 20b is located at the corner of the front end 111a of the device body 11.
  • the second laser sensor module 20b is located on the left or right side of the device body 11 will affect the field of view direction of the second laser sensor module 20b.
  • the second laser sensor module 20b can be selected according to the needs of the navigation and obstacle avoidance algorithms.
  • the two laser sensor modules 20b are arranged on the left or right side of the device body 11. Furthermore, whether the second laser sensor module 20b is located at the front end 111a or the rear end 111b of the device body 11 will affect the position of the blind spot in the field of view.
  • the water tank located at the rear end 111b of the device body 11 is allowed to be designed with a larger volume; and when the second laser sensor module 20b is located at the rear end 111a of the device body 11 When the end 111b is used, the roller brush located at the front end 111a of the device body 11 is allowed to be designed with a larger length, so as to improve the cleaning efficiency of the cleaning device 10 .
  • the cleaning device 10 further includes a dust box 14.
  • the dust box 14 is provided on the device body 11.
  • the dust box 14 is used to store the garbage collected by the cleaning device 10, so that the user can centrally clean the garbage collected by the cleaning device 10.
  • the first laser sensor module 20a is located on the side of the dust box 14 facing the front end 111a
  • the second laser sensor module 20b is located on the side of the dust box 14 facing the rear end 111b.
  • the cleaning device 10 also includes a rag tray 15 .
  • the rag tray 15 is disposed on the main body 11 of the device.
  • Figure 14 shows the rotating shaft mechanism that drives the rag tray 15 to rotate to show the approximate location of the rag tray 15.
  • the second laser sensor module 20b and the rag tray 15 are jointly disposed at the rear end 111b of the device body 11.
  • Figure 14 exemplarily shows the situation where the second laser sensor module 20b is located at the third corner position 114c.
  • the first field of view angle of the first laser sensor module 20a is shown as angle ⁇ 1 in Figure 14
  • the second field of view angle of the second laser sensor module 20b is shown as angle ⁇ 2 in Figure 14.
  • the first laser sensor The total field of view angle obtained by integrating the first field of view angle of the module 20a and the second field of view angle of the second laser sensor module 20b is shown as angle ⁇ 3 in FIG. 14 .
  • both the first field of view angle and the second field of view angle are greater than or equal to 105°, and the total field of view angle obtained by integrating the first field of view angle and the second field of view angle is between 210° and 250°.
  • the first field of view angle and the second field of view angle are both 120°, and there is an overlapping area between the field of view area corresponding to the first field of view angle and the field of view area corresponding to the second field of view angle, The corresponding angle of this overlapping area is 30°, so that the total field of view angle obtained by integrating the first field of view angle and the second field of view angle reaches 210°, which can meet the field of view angle requirements of navigation and obstacle avoidance functions.
  • the first field of view angle and the second field of view angle may both be greater than or equal to 90°, and the total field of view angle obtained by integrating the first field of view angle and the second field of view angle is between 180° and 250°. between.
  • the first laser sensor module 20a and the second laser sensor module 20b according to the embodiment of the present application are described below.
  • Figure 16 is a schematic structural diagram of an embodiment of the first laser sensor module of the present application.
  • Figure 17 is a schematic diagram of the first field of view of the first laser sensor module of the present application. .
  • the first laser sensor module 20a includes a laser sensor assembly 21.
  • the laser sensor component 21 can interact with the external environment with laser signals.
  • the laser sensor component 21 can apply ranging technologies such as direct time of fly (dToF) or indirect time of fly (iToF), that is, this invention
  • the laser sensor component 21 may be a TOF module, and the laser sensor component 21 has the above-mentioned first field of view angle (shown as angle ⁇ 1 in Figure 17 ).
  • the first laser sensor module 20a also includes a structured light sensor assembly 22.
  • the structured light sensor component 22 and the laser sensor component 21 cooperate to sense the external environment to realize the navigation and obstacle avoidance functions of the cleaning device 10 .
  • the structured light sensor component 22 may include a camera and line laser emitters distributed on both sides of the camera. The principle of the structured light sensor component 22 sensing the external environment is within the understanding of those skilled in the art and will not be described again here.
  • the structured light sensor assembly 22 is disposed adjacent to the laser sensor assembly 21, so that the structure of the first laser sensor module 20a is compact, which is beneficial to improving the space utilization of the cleaning device 10.
  • the laser sensor assembly 21 includes a first laser transceiver element 211 , a first mirror group 212 and a rotating shaft mechanism 213 .
  • the first laser transceiver element 211 is used to emit and receive laser signals.
  • the rotating shaft mechanism 213 is drivingly connected to the first reflective mirror group 212 and is used to drive the first reflective mirror group 212 to rotate.
  • the first laser transceiver element 211 interacts with the external environment with laser signals through the first reflector group 212 .
  • the rotating shaft mechanism 213 may include a motor and a rotating shaft that is driven by the motor.
  • the rotating shaft is drivingly connected to the first reflective mirror group 212 , and the motor drives the first reflective mirror group 212 to rotate through the rotating shaft.
  • the first laser transceiver element 211 and the first mirror group 212 are both close to the surface to be cleaned 12 relative to the structured light sensor assembly 22 , and the rotating shaft mechanism 213 is located inside the structured light sensor assembly 22 , that is, the rotating shaft mechanism 213 is located toward the structured light sensor assembly 22
  • the inner side of the device body 11 means that the structural cooperation between the laser sensor assembly 21 and the structured light sensor assembly 22 in this embodiment is relatively compact.
  • the first laser sensor module 20a also includes a circuit board 23, which integrates at least the control circuits of the laser sensor component 21 and the structured light sensor component 22.
  • the circuit board 23 has a hollow escape area 231 .
  • the structured light sensor assembly 22 is located on the side of the circuit board 23 facing away from the surface 12 to be cleaned.
  • the first laser transceiver element 211 and the first reflector group 212 are located on the side of the circuit board 23 facing the surface 12 to be cleaned.
  • the rotating shaft mechanism 213 is inserted through In the avoidance area 231, this can also make the structure of the first laser sensor module 20a compact, which is beneficial to improving the space utilization of the cleaning device 10.
  • the first laser sensor module 20a further includes a camera assembly 24.
  • the camera assembly 24 and the laser sensor assembly 21 cooperate to sense the external environment to realize the navigation and obstacle avoidance functions of the cleaning device 10 .
  • the camera assembly 24 can acquire image information of the external environment and be used to construct a navigation map of the external environment to realize navigation and avoidance of the cleaning device 10 . Impaired function.
  • the camera assembly 24 is disposed adjacent to the laser sensor assembly 21, so that the structure of the first laser sensor module 20a is compact, which is beneficial to improving the space utilization of the cleaning device 10.
  • the camera assembly 24, the first laser transceiver element 211 and the first reflector group 212 are all located on the side of the circuit board 23 facing the surface 12 to be cleaned, and the camera assembly 24 is also located on the first reflector group 212 away from the first laser.
  • One side of the transceiver element 211 means that the structure of the laser sensor assembly 21 and the camera assembly 24 in this embodiment is relatively compact.
  • the device main body 11 has a collision plate 13, which is movably provided on the device main body 11 and is used to receive impact from obstacles. During the movement of the device body 11, the impact plate 13 is used to receive impact from obstacles. When the collision plate 13 is hit by an obstacle, the collision plate 13 moves toward the inside of the device body 11 .
  • the first laser sensor module 20a is disposed inside the collision plate 13, that is, the first laser sensor module 20a is disposed on the side of the collision plate 13 facing the inside of the device body 11. This can prevent the first laser sensor module 20a from being blocked. It is ensured that the first laser sensor module 20a can normally interact with the external environment with laser signals.
  • the device body 11 also defines a third direction perpendicular to the surface 12 to be cleaned (as shown by arrow Z in Figure 16, the same below).
  • the first laser transceiver element 211 includes a laser transmitter 251a and a laser receiver 252a
  • the first reflector group 212 includes a first reflector 261a and a second reflector 262a.
  • the laser emitter 251a and the laser receiver 252a are stacked along the third direction.
  • the laser signal output by the laser emitter 251a is reflected to the external environment via the first reflector 261a.
  • the first reflector 261a and the second reflector 262a are stacked along the third direction, and the laser signal from the external environment is reflected to the laser receiver 252a via the second reflector 262a.
  • Figure 18 is a schematic structural diagram of an embodiment of the second laser sensor module of the present application.
  • Figure 19 is a schematic diagram of a second field of view of the second laser sensor module of the present application. .
  • the second laser sensor module 20b can specifically apply ranging technologies such as direct time of fly (dToF) or indirect time of fly (iToF), that is, the second laser sensor module 20b in this embodiment.
  • the laser sensor module 20b may be a TOF module.
  • the second field of view angle of the second laser sensor module 20b is shown as angle ⁇ 2 in FIG. 19 .
  • the second laser sensor module 20b includes a second laser transceiver element 271 and a second reflective mirror group 272 .
  • the second laser transceiver element 271 is used to emit and receive laser signals.
  • the second laser transceiver element 271 interacts with the external environment through the second reflector group 272 for laser signals.
  • the second laser sensor module 20b may also include a motor and a rotating shaft that is driven by the motor.
  • the rotating shaft is drivingly connected to the second reflective mirror group 272, and the motor drives the second reflective mirror group 272 to rotate through the rotating shaft.
  • the second laser transceiver element 271 includes a laser transmitter 251b and a laser receiver 252b
  • the second reflective mirror group 272 includes a first reflective mirror 261b and a second reflective mirror 262b.
  • the laser emitter 251b and the laser receiver 252b are stacked along the third direction.
  • the laser signal output by the laser emitter 251b is reflected to the external environment via the first reflector 261b.
  • the mirror 261b and the second reflective mirror 262b are stacked along the third direction, and the laser signal from the external environment is reflected to the laser receiver 252b via the second reflective mirror 262b.
  • the size of the second laser sensor module 20b can be 76.5mm ⁇ 39.9mm ⁇ 35.7mm.
  • the second laser sensor module 20b is smaller in size and has a compact structure, which further helps to increase the space of the cleaning device 10 Utilization.
  • the self-moving device includes a device body 11, and the device body 11 can move on the moving surface.
  • the self-moving device also includes at least two groups of laser sensor modules 20. Each group of laser sensor modules 20 is spaced apart in sequence along the circumferential direction of the device body 11, and at least one group of laser sensor modules 20 has a divergent field of view.
  • the self-moving device is a device that can move on its own on the moving surface, including but not limited to the cleaning device 10 described in the above embodiments.
  • the moving surface includes but is not limited to the surface to be cleaned 12 explained in the above embodiment.
  • the device main body 11 and the laser sensor module 20 have been described in detail in the above embodiments and will not be described again here.
  • the cleaning device 10 is a cleaning robot.
  • the cleaning device 10 includes a device body 11 that can move on the surface 12 to be cleaned to clean the surface 12 to be cleaned.
  • the self-moving device also includes at least two groups of laser sensor modules 20. Each group of laser sensor modules 20 is spaced apart in sequence along the circumferential direction of the device body 11, and at least one group of laser sensor modules 20 has a divergent field of view.
  • the at least two groups of laser sensor modules 20 include a first laser sensor module 20a and a second laser sensor module 20b.
  • the first laser sensor module 20a has a first field of view
  • the second laser sensor module 20b has a second field of view.
  • the first laser sensor module 20a is located at the front end 111a of the device body 11, and the second laser sensor module 20b is located at the third corner position 114c of the device body 11.
  • the first field of view angle and the second field of view angle are both 120°.
  • the corresponding angle of the overlapping area is 30°, so that the first field of view angle and the second field of view angle are integrated.
  • the obtained total field of view reaches 210°, which can meet the field of view requirements of navigation and obstacle avoidance functions.
  • the self-moving device includes a device body 11 that can move on a moving surface.
  • the self-moving device also includes at least two groups of laser sensor modules 20. Each group of laser sensor modules 20 is spaced apart in sequence along the circumferential direction of the device body 11, and at least one group of laser sensor modules 20 has a divergent field of view.
  • the at least two groups of laser sensor modules 20 include a first laser sensor module 20a and a second laser sensor module 20b.
  • the first laser sensor module 20a has a first field of view
  • the second laser sensor module 20b has a second field of view.
  • the first laser sensor module 20a is located at the front end 111a of the device body 11, and the second laser sensor module 20b is located at the device body 11.
  • the first field of view angle and the second field of view angle are both 120°, and there is an overlapping area between the field of view area corresponding to the first field of view angle and the field of view area corresponding to the second field of view angle.
  • the corresponding angle of the overlapping area is 30°, so that the total field of view angle obtained by integrating the first field of view angle and the second field of view angle reaches 210°, which can meet the field of view angle requirements of navigation and obstacle avoidance functions.

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自移动清洁机器人(1),包括主机(10)以及分别位于主机(10)相对两侧的沿边传感器(220)和激光传感器(30)。激光传感器(30)包括第一发射接收模块(320)和第二发射接收模块(330),其中第一发射接收模块(320)的第一视场角(θ1)和第二发射接收模块(330)的第二视场角(θ2)在主机(10)的边角区域相接或相互重叠,从而消除边角区域的感测盲区,并扩大感测范围。同时,激光传感器(30)可设置在主机(10)内的边角区域,节省了主机(10)内部空间,并由于省略了机械升降机构的配置,从而缩减主机(10)的厚度,解决现有的自移动清洁机器人的导航避障结构复杂以及主机(10)的体积过大等问题。

Description

自移动清洁机器人
交叉引用
本申请要求下表中的中国专利申请的优选权,其全部内容通过引用被并入本申请中。
技术领域
本申请涉及清洁设备领域,尤其涉及一种自移动清洁机器人。
背景技术
当前市面上的自移动器人的导航方式大致上分为采用激光雷达(LDS)的激光导航方式(以下简称LDS激光导航)和视觉同步定位与地图构建Visual SLAM(V-slam(simultaneous localization and mapping)的视觉导航方式(以下简称V-slam视觉导航)。其中,V-slam视觉导航通过摄像头拍摄画面,容易受到光线影响,存在建图质量不高,导航避障效率偏低的问题。LDS激光导航虽不易受光线影响,但存在整体的导航避障结构复杂,成本较高的问题。此外,上述两者的整机在工作时,一般设置在整机的顶部,并通过电机带动旋转的升降方式来解决视场角受限的问题。但此方案存在整机工作时高度过高、结构复杂、成本高等问题。
申请内容
本申请实施例的多个方面提供一种自移动清洁机器人,用以解决上述问题。具体地:
在本申请的一个实施例中,提供了一种锅盖控制方法,
本申请实施例提供一种自移动清洁机器人,包括:主机、沿边传感器和激光传感器,所述沿边传感器和所述激光传感器分别设置于所述主机的相对二侧。所述激光传感器包括:第一发射接收模块,沿第一轴向设置,并具有第一视场角;以及第二发射接收模块,沿第二轴向设置,并具有第二视场角;其中,所述第一轴向和所述第二轴向相交,并且在所述第一轴向和所述第二轴向之间形成临界区,所述第一视场角和所述第二视场角在所述临界区相接或相互重叠。
在一些实施例中,所述主机包括第一边角区和第二边角区,所述第一边角区设置有边刷,所述激光传感器设置于所述第二边角区,其中所述第二边角区包括第一竖直段、第二竖直段以及弯折段,所述弯折段弯曲连接于所述第一竖直段和所述第二竖直段之间,并且位于所述临界区内。
在一些实施例中,所述激光传感器还包括反光模块,所述第一轴向和所述第二轴向相交于所述反光模块,其中所述反光模块具有转轴和反光镜,所述反光镜沿所述转轴的径向伸出于所述转轴的相对二侧,并可在所述转轴的带动下相对所述第一发射接收模块和所述第二发射接收模块转动。
在一些实施例中,所述第一轴向和所述第二轴向相交于一交点,所述主机的中心和所述交点连成一辅助线,所述临界区与所述辅助线在投影方向上重叠。
在一些实施例中,所述第一视场角和所述第二视场角的角度不小于105度。
在一些实施例中,所述第一视场角和所述第二视场角的总视场角介于210度至250度之间。
在一些实施例中,所述主机包括底座和撞板,所述撞板连接于所述底座,并且可相对底座位移,所述激光传感器设置于所述撞板上。
在一些实施例中,所述自移动清洁机器人还包括结构光传感器,设置于所述撞板上,并且介于所述边刷组件和所述激光传感器之间。
在一些实施例中,所述撞板组件包括板体、支架和托架。所述支架连接于所述底座。所述板体设置于所述支架上并围绕于所述支架外围。所述托架结合于所述板体上,并且具有承载部和套合部。所述结构光传感器结合于所述套合部内,所述激光传感器设置于所述承载部上,其中所述结构光传感器和所述激光传感器的感测面分别露出于所述板体外。
在一些实施例中,所述撞板的顶端是所述主机的最高点。
在一些实施例中,所述主机的底部设置有万向轮模组和滚刷模组,所述万向轮模组位于所述主机的前侧和所述滚刷模组之间,所述激光传感器和所述沿边传感器分别对应于所述万向轮模组的左右两侧。
本申请实施例还提供一种自移动清洁机器人,包括主机和激光传感器。所述激光传感器包括沿第一轴向设置的第一发射接收模块以及沿第二轴向设置的第二发射接收模块。其中,所述第一轴向和所述第二轴向相交。所述主机的边角结构位于所述第一轴向和所述第二轴向之间。所述第一发射接收模块的第一视场角和所述第二发射接收模块的第二视场角在所述边角相接或相互重叠。
本申请实施例同时提供一种自移动清洁机器人,包括:主机,具有边角结构;以及激光传感器,包括沿第一轴向设置的第一发射接收模块以及沿第二轴向设置的第二发射接收模块,所述第一轴向和所述第二轴向相交于一交点。其中,所述主机的中心和所述交点连成一辅助线,所述边角结构与所述辅助线在投影方向上重叠,且所述第一发射接收模块的第一视场角和所述第二发射接收模块的第二视场角在所述边角结构处相接或相互重叠
在本申请实施例中,自移动清洁机器人设置有沿边传感器和激光传感器,分别位于主机的相对二侧。其中激光传感器包括视场角相接或相互重叠的第一发射接收模块和第二发射接收模块,可消除自移动机器人边角区域的感测盲点。在执行沿边清洁任务时,激光传感器可在沿边传感器的相对侧实时执行整机导航、避障合而为一的功能。同时,由于激光传感器可以设置在主机内的边角区域,省略了一般在主机顶部配合升降机构的置方式,节省主机的内部空间并使主机厚度减薄,从而解决现有的自移动清洁机器人的导航避障结构复杂,主机体积过大等问题。
以及,具有洗地、扫地、擦地等清洁功能的清洁机器人能够代替用户进行清洗地面等清洁工作,给用户带来诸多便利,因而得到广泛的应用。清洁机器人通常基于激光雷达实现路径规划导航及避障功能,以保证清洁机器人正常进行清洁工作。但是,目前市面上的清洁机器人的激光雷达通常会设置至少两组激光收发组件,该至少两组激光收发组件的视场角进行整合以使得清洁机器人整机的视场角达到要求。激光收发组件通过与外部环境进行激光信号交互以实现清洁机器人的路径规划导航及避障功能。然而目前清洁机器人上激光收发组件的工作负担较重,也导致整机的功耗较高。针对此,本申请实施例还提供了一种清洁装置、自移动装置以及应用于激光雷达模组的控制模组和控制方法,能够降低激光雷达模组的功耗。具体地:
本申请提供一种清洁装置。该清洁装置包括:装置主体,能够在待清洁面上移动以对待清洁面进行清洁;激光雷达模组,设于装置主体,包括至少两组激光收发组件;以及控制模组,设于装置主体,包括:控制电路;以及至少两组激光驱动电路,各组激光驱动电路均与控制电路电性连接,且各组激光驱动电路还与不同的激光收发组件电性连接,其中控制电路被配置为能够分时控制不同的激光驱动电路驱动对应的激光收发组件工作。
在本申请的一实施例中,控制电路包括:控制元件,各组激光驱动电路均与控制元件电性连接;以及电源,分别与控制元件及各组激光驱动电路电性连接;其中,控制元件被配置为能够控制电源分时向不同的激光驱动电路输出电能,使得各组激光驱动电路 分时驱动对应的激光收发组件工作。
在本申请的一实施例中,激光雷达模组还包括:反光镜,可转动地设置于装置主体,其中各组激光收发组件通过转动至对应角度的反光镜与外部环境进行激光信号交互;控制模组还包括:检测电路,与控制电路电性连接,用于检测反光镜的转动角度,其中控制电路能够响应于通过检测电路检测到反光镜的转动角度,分时控制不同的激光驱动电路驱动对应的激光收发组件工作。
在本申请的一实施例中,激光雷达模组还定义有旋转轴,反光镜能够绕旋转轴转动,且反光镜远离旋转轴的一端为目标端部;至少两组激光收发组件包括具有第一光轴的第一激光收发组件及具有第二光轴的第二激光收发组件,第一光轴和第二光轴相交于旋转轴,其中以当反光镜平分第一光轴和第二光轴构成的夹角、且目标端部远离第一激光收发组件和第二激光收发组件时反光镜的位置为零点位置;控制电路响应于通过检测电路检测到目标端部相对零点位置转动的角度处于第一角度范围内,控制第一激光收发组件工作;且控制电路响应于通过检测电路检测到目标端部相对零点位置转动的角度处于第二角度范围内,控制第二激光收发组件工作。
在本申请的一实施例中,第一角度范围为0°至180°,第二角度范围为180°至360°。
在本申请的一实施例中,检测电路包括:码盘,能够随反光镜同步转动,其中码盘具有用于标识目标端部的标识结构;以及传感器,与控制电路电性连接,用于在码盘转动的过程中检测标识结构,其中控制电路响应于传感器检测到标识结构测算出目标端部相对零点位置转动的角度。
在本申请的一实施例中,码盘包括:码盘主体,能够随反光镜同步转动;以及至少两个齿部,沿码盘主体的周向依次间隔分布,且各齿部能够随码盘主体转动而依次通过传感器;其中,至少两个齿部中具有一个第一齿部,其余齿部为第二齿部,第一齿部不同于第二齿部,第一齿部用于标识目标端部,控制电路通过统计在第一齿部之后通过传感器的第二齿部的数量测算目标端部相对零点位置转动的角度。
在本申请的一实施例中,激光雷达模组还包括:电机,与反光镜传动连接,用于驱动反光镜转动;以及电机驱动电路,分别与控制电路及电机电性连接;其中,控制电路还通过检测电路检测反光镜的转速,并通过电机驱动电路调整电机的转速,使得反光镜维持预设转速。
相应地,本申请还提供一种自移动装置。该自移动装置包括:装置主体,能够在移动面上移动;激光雷达模组,设于装置主体,包括至少两组激光收发组件;以及控制模 组,设于装置主体,包括:控制电路;以及至少两组激光驱动电路,各组激光驱动电路均与控制电路电性连接,且各组激光驱动电路还与不同的激光收发组件电性连接,其中控制电路被配置为能够分时控制不同的激光驱动电路驱动对应的激光收发组件工作。
在本申请的一实施例中,控制电路包括:控制元件,各组激光驱动电路均与控制元件电性连接;以及电源,分别与控制元件及各组激光驱动电路电性连接;其中,控制元件被配置为能够控制电源分时向不同的激光驱动电路输出电能,使得各组激光驱动电路分时驱动对应的激光收发组件工作。
相应地,本申请还提供一种应用于激光雷达模组的控制模组。激光雷达模组包括至少两组激光收发组件,控制模组包括:控制电路;以及至少两组激光驱动电路,各组激光驱动电路均与控制电路电性连接,且各组激光驱动电路还用于与不同的激光收发组件电性连接,其中控制电路被配置为能够分时控制不同的激光驱动电路驱动对应的激光收发组件工作。
在本申请的一实施例中,控制电路包括:控制元件,各组激光驱动电路均与控制元件电性连接;以及电源,分别与控制元件及各组激光驱动电路电性连接;其中,控制元件被配置为能够控制电源分时向不同的激光驱动电路输出电能,使得各组激光驱动电路分时驱动对应的激光收发组件工作。
相应地,本申请还提供一种应用于激光雷达模组的控制方法,激光雷达模组包括至少两组激光收发组件,控制方法包括:接收预设切换指令;响应于预设切换指令,分时控制不同的激光收发组件工作。
在本申请的一实施例中,分时控制不同的激光收发组件工作的步骤包括:控制电源分时向不同的激光收发组件输出电能,使得各组激光收发组件分时进行工作。
在本申请的一实施例中,激光雷达模组还包括反光镜,其中各组激光收发组件通过转动至对应角度的反光镜与外部环境进行激光信号交互;接收预设切换指令的步骤之前包括:检测反光镜的转动角度;响应于反光镜转动至对应角度,生成预设切换指令。
在本申请的一实施例中,激光雷达模组还定义有旋转轴,反光镜能够绕旋转轴转动,且反光镜远离旋转轴的一端为目标端部;至少两组激光收发组件包括具有第一光轴的第一激光收发组件及具有第二光轴的第二激光收发组件,第一光轴和第二光轴相交于旋转轴,其中以当反光镜平分第一光轴和第二光轴构成的夹角、且目标端部远离第一激光收发组件和第二激光收发组件时反光镜的位置为零点位置;检测反光镜的转动角度的步骤包括:检测目标端部相对零点位置转动的角度;响应于反光镜转动至对应角度,生成预设切换指令的步骤包括:若目标端部相对零点位置转动的角度处于第一角度范围内,则 生成第一切换指令,以响应于第一切换指令控制第一激光收发组件工作;若目标端部相对零点位置转动的角度处于第二角度范围内,则生成第二切换指令,以响应于第二切换指令控制第二激光收发组件工作。
在本申请的一实施例中,激光雷达模组还包括电机,电机与反光镜传动连接,用于驱动反光镜转动;检测反光镜的转动角度的步骤之前包括:调整电机的转速,使得反光镜维持预设转速。
本申请的有益效果是:区别于现有技术,本申请提供一种清洁装置、自移动装置以及应用于激光雷达模组的控制模组和控制方法。激光雷达模组包括至少两组激光收发组件。控制模组包括控制电路以及至少两组激光驱动电路。各组激光驱动电路均与控制电路电性连接,且各组激光驱动电路还与不同的激光收发组件电性连接。控制电路被配置为能够分时控制不同的激光驱动电路驱动对应的激光收发组件工作,使得每组激光收发组件的工作负担得到减轻,有利于降低激光雷达模组的功耗。
以及,具有洗地、扫地、擦地等清洁功能的清洁机器人能够代替用户进行清洗地面等清洁工作,给用户带来诸多便利,因而得到广泛的应用。清洁机器人通常基于激光雷达实现导航及避障功能,以保证清洁机器人正常进行清洁工作。目前,市面上的清洁机器人由于设计不合理,导致其激光雷达的视场角受限,无法达到导航及避障功能对视场角的要求。针对此问题,本申请实施例还提供一种清洁装置以及自移动装置,能够使得清洁装置和自移动装置具有较大的视场角,进而满足导航及避障功能对视场角的要求。具体地:
本申请提供一种清洁装置。该清洁装置包括:装置主体,能够在待清洁面上移动以清洁待清洁面;以及至少两组激光传感器模组,各组激光传感器模组沿装置主体的周向依次间隔分布,其中至少一组激光传感器模组具有发散的视场角。该至少两组激光传感器模组包括:第一激光传感器模组,具有第一视场角;以及第二激光传感器模组,具有第二视场角;其中,第一视场角对应的视野区域与第二视场角对应的视野区域相互接壤或相互交叠。
在本申请的一实施例中,装置主体定义有第一方向和第二方向,第一方向和第二方向相互垂直且二者还均平行于待清洁面,其中装置主体沿第一方向移动;装置主体在第一方向上具有前端,且装置主体在第二方向上具有侧端,其中第一激光传感器模组位于前端,第二激光传感器模组位于侧端。
在本申请的一实施例中,装置主体具有第一侧面、第二侧面、第三侧面及第四侧面;第一侧面和第二侧面沿第一方向彼此间隔且二者还均垂直于第一方向,第三侧面和第四 侧面沿第二方向彼此间隔且二者还均垂直于第二方向,第一侧面分别与第三侧面及第四侧面围设形成第一角落位置和第二角落位置,第二侧面分别与第三侧面及第四侧面围设形成第三角落位置和第四角落位置;其中,第二激光传感器模组位于第一角落位置、第二角落位置、第三角落位置及第四角落位置中的一处。
在本申请的一实施例中,第一视场角和第二视场角均大于或等于105°;且第一视场角和第二视场角整合得到的总视场角介于210°至250°之间。
在本申请的一实施例中,第一视场角和第二视场角均大于或等于90°;且第一视场角和第二视场角整合得到的总视场角介于180°至250°之间。
在本申请的一实施例中,第一激光传感器模组包括:激光传感器组件,具有第一视场角;以及结构光传感器组件,邻近激光传感器组件设置。
在本申请的一实施例中,激光传感器组件包括:第一激光收发元件;第一反光镜组,第一激光收发元件通过第一反光镜组与外部环境进行激光信号交互;以及转轴机构,与第一反光镜组传动连接,用于驱动第一反光镜组转动;其中,第一激光收发元件和第一反光镜组均相对结构光传感器组件靠近待清洁面,且转轴机构位于结构光传感器组件的内侧。
在本申请的一实施例中,第一激光传感器模组还包括电路板,电路板具有镂空的避让区;激光传感器组件包括:第一激光收发元件;第一反光镜组,第一激光收发元件通过第一反光镜组与外部环境进行激光信号交互;以及转轴机构,与第一反光镜组传动连接,用于驱动第一反光镜组转动;其中,结构光传感器组件位于电路板背离待清洁面的一侧,第一激光收发元件和第一反光镜组位于电路板朝向待清洁面的一侧,转轴机构穿设于避让区中。
在本申请的一实施例中,第一激光传感器模组包括:激光传感器组件,具有第一视场角;以及摄像头组件,邻近激光传感器组件设置。
在本申请的一实施例中,第一激光传感器模组还包括电路板,电路板具有镂空的避让区;激光传感器组件包括:第一激光收发元件;第一反光镜组,第一激光收发元件通过第一反光镜组与外部环境进行激光信号交互;以及转轴机构,与第一反光镜组传动连接,用于驱动第一反光镜组转动;其中,摄像头组件、第一激光收发元件及第一反光镜组均位于电路板朝向待清洁面的一侧,且摄像头组件还位于第一反光镜组背离第一激光收发元件的一侧。
在本申请的一实施例中,装置主体具有:撞板,可移动地设置于装置主体,用于接受障碍物撞击;其中,第一激光传感器模组设于撞板的内侧。
在本申请的一实施例中,第一激光传感器模组与待清洁面之间的距离等于第二激光传感器模组与待清洁面之间的距离。
在本申请的一实施例中,激光传感器模组与待清洁面之间的最大距离小于或等于装置主体与待清洁面之间的最大距离。
在本申请的一实施例中,装置主体定义有垂直于待清洁面的第三方向;激光传感器模组包括:激光发射器;激光接收器,与激光发射器沿第三方向层叠设置;第一反光镜,激光发射器输出的激光信号经由第一反光镜反射至外部环境;以及第二反光镜,与第一反光镜沿第三方向层叠设置,且来自外部环境的激光信号经由第二反光镜反射至激光接收器。
相应地,本申请还提供一种自移动装置。该自移动装置包括:装置主体,能够在移动面上移动;以及至少两组激光传感器模组,各组激光传感器模组沿装置主体的周向依次间隔分布,其中至少一组激光传感器模组具有发散的视场角。该至少两组激光传感器模组包括:第一激光传感器模组,具有第一视场角;以及第二激光传感器模组,具有第二视场角;其中,第一视场角对应的视野区域与第二视场角对应的视野区域相互接壤或相互交叠。
本申请的有益效果是:区别于现有技术,本申请提供一种清洁装置以及自移动装置。该清洁装置包括装置主体以及至少两组激光传感器模组,各组激光传感器模组沿装置主体的周向依次间隔分布。其中,各组激光传感器模组的视场角整合得到清洁装置整机的视场角,并且由于至少一组激光传感器模组具有发散的视场角,因而能够使得清洁装置具有较大的视场角,进而满足导航及避障功能对视场角的要求。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的自移动清洁机器人的立体图;
图2为本申请实施例的自移动清洁机器人的俯视图;
图3为本申请实施例的激光传感器的剖视图;
图4为本申请实施例的激光传感器的俯视图;
图5为本申请实施例的撞板组件的立体图;
图6为本申请实施例的撞板组件的分解图;
图7是本申请清洁装置一实施例的结构示意图;
图8是本申请激光雷达模组一实施例的结构示意图;
图9是本申请控制模组一实施例的结构示意图;
图10是本申请控制电路分时控制第一激光收发组件和第二激光收发组件工作的控制时序图;
图11是本申请码盘一实施例的结构示意图;
图12是本申请应用于激光雷达模组的控制方法一实施例的流程示意图;
图13是本申请应用于激光雷达模组的控制方法另一实施例的流程示意图;
针对图7至图13的附图标记说明:
10清洁装置、11装置主体、20激光雷达模组、21激光收发组件、21a第一激光收发
组件、21b第二激光收发组件、211第一光轴、212第二光轴、22反光镜、221目标端部、23电机、24电机驱动电路、30控制模组、31控制电路、311控制元件、312电源、32激光驱动电路、33检测电路、331码盘、332传感器、333码盘主体、334齿部、334a第一齿部、334b第二齿部。
图14是本申请清洁装置一实施例的结构示意图;
图15是本申请清洁装置另一实施例的结构示意图;
图16是本申请第一激光传感器模组一实施例的结构示意图;
图17是本申请第一激光传感器模组的第一视场角一实施例的示意图;
图18是本申请第二激光传感器模组一实施例的结构示意图;
图19是本申请第二激光传感器模组的第二视场角一实施例的示意图。
针对图14至图19的附图标记说明:
10清洁装置、11装置主体、111a前端、111b后端、112a、112b侧端、113a第一
侧面、113b第二侧面、113c第三侧面、113d第四侧面、114a第一角落位置、114b第二角落位置、114c第三角落位置、114d第四角落位置、12待清洁面、13撞板、20激光传感器模组、20a第一激光传感器模组、20b第二激光传感器模组、21激光传感器组件、211第一激光收发元件、212第一反光镜组、213转轴机构、22结构光传感器组件、23电路板、231避让区、24摄像头组件、251a、251b激光发射器、252a、252b激光接收器、261a、261b第一反光镜、262a、262b第二反光镜、271第二激光收发元件、272第二反光镜组。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相 应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请实施例所提供的自移动清洁机器人具备建构空间地图、规划清洁路径与返航路径、执行清洁任务并自动返航等一种或多种功能,其可以是但不限于扫地、洗地、拖地、擦窗及其组合其中之一的自移动清洁机器人。此外,为了方便说明,本申请图1和图2所绘示的自移动清洁机器人省略绘示上部机壳及其他上部构件,合先叙明。
请参阅图1至图4。本申请一实施例所提供的自移动清洁机器人1包括主机10、边刷组件20和激光传感器30。主机10包括相对的第一侧边110和第二侧边120以及连接于第一侧边110和第二侧边120之间的第三侧边130,并且在第三侧边130和第一侧边110的连接处具有夹角而形成第一边角区10a,以及在第三侧边130和第二侧边120的连接处具有另一夹角而形成第二边角区10b。其中第三侧边130和第二侧边120在第二边角区10b弯折连接,形成由第一竖直段141、第二竖直段142以及弯曲连接在第一竖直段141和第二竖直段141之间的弯折段143所组成的边角结构140。其中,弯折段143的相对二端可以是但不限于分别从第一竖直段141和第二竖直段142弯折延伸,从而分别与第一竖直段141和第二竖直段142之间形成夹角。因此,弯折段143可以是倾斜连接在第一竖直段141和第二竖直段142之间的斜边,或是连接在第一竖直段141和第二竖直段142之间具有圆弧面或曲面的连接结构或者是其他多边形结构。
此外,主机10的底部设置有万向轮模组150、滚刷模组160和驱动轮模组170等用于执行清洁任务的相关组件,其中万向轮模组150位于主机10的前侧和滚刷模组160之间,用以调整主机10前进方向和越障。边刷组件20和激光传感器30分别设置在主机10的相对二侧。在本实施例中,边刷组件20和激光传感器30也设置于主机10的前侧和滚刷模组160之间,并且对应于万向轮模组150的左右两侧,使边刷组件20和激光传感器30可以随着万向轮模组150的转向而即时的对应调整清扫方向和感测方向。
其中,边刷组件20设置在主机10的第一边角区10a,其包括边刷210和沿边传感器220。边刷210可转动的设置在主机10上,沿边传感器220的感测面露出于主机10的第一侧边110, 用以在自移动清洁机器人1沿壁面或墙面贴边行走时,检测第一侧边110和墙面、壁面或障碍物之间的距离。可以理解的是,在本申请的其他实施例中,也可以是只在第一边角区10a设置边刷210,以及在主机10的第一侧边110上的任意位置设置沿边传感器220,或是只在第一边角区10a设置沿边传感器220,并在主机10的第一侧边110上的适当位置设置边刷210或省略边刷210的设置。
激光传感器30可以是直接飞行时间(direct time of fly,dToF)或间接飞行时间(indirect time of fly,iToF)等飞行时间传感器,其设置在主机10上靠近第三侧边130(例如主机前侧)的第二边角区10b,或是设置在第二侧边120远离第三侧边130的一侧,例如主机后侧。
激光传感器30包括壳体310以及设置于壳体310内的第一发射接收模块320和第二发射接收模块330。壳体310的结构形态与边角结构140相匹配,从而在主机10内结合于边角结构140上。第一发射接收模块320沿第一轴向x设置,并且可以沿第一轴向x发射和接收光信号,从而在第一轴向x上具有第一视场角θ1。第二发射接收模块330沿第二轴向y设置,并且可以沿第二轴向y发射和接收另一光信号,从而在第二轴向y上具有第二视场角θ2。在本申请的实施例中,第一轴向x和第二轴向y在相邻于边角结构140的弯折段143的一侧相交于一交点,并且在两者间形成临界区cz,弯折段143即位于此临界区ca内。其中,第一发射接收模块320的第一视场角θ1和第二发射接收模块330的第二视场角θ2亦部分的落入此临界区cz内,并且在临界区cz内相接或相互重叠。
值得说明的是,在本申请的某些实施例中,第一轴向x和第二轴向y的交点可以和主机10的中心C连线而构成一辅助线AL,边角结构140即位于辅助线AL上或是在投影方向上和辅助线AL重叠,也就是边角结构140的顶点可以是落在辅助线AL上或者是向左或向右偏移,但至少保证边角结构140落于第一轴向x和第二轴向y之间的临界区cz内,让第一发射接收模块320的第一视场角θ1和第二发射接收模块330的第二视场角θ2可以覆盖从边角结构140向外投射的整体范围。
例如,在本申请的一些实施例中,第一视场角θ1的角度和第二视场角θ2的角度可以分别为105度。因此,当两者在临界区cz相接时,可以共同构成210度的总视场角。或者是在本申请的其他实施例中,第一视场角θ1的角度和第二视场角θ2的角度可以分别大于105度的角度在临界区cz内重叠,而共同构成角度介于210度至250度之间的总视场角。通过第一视场角θ1和第二视场角θ2在临界区cz内相接或相互重叠的配置方式,除了可以消除第一发射接收模块320和第二发射接收模块330在对应弯折段143的方向上的感测盲区外,同时还能提供广视角的感测范围。
在本申请的一些实施例中,激光传感器30还包括反光模块340,其设置于壳体310内相 邻于弯折段143的一侧,第一轴向x和第二轴向y即在反光模块340的位置处相交。反光模块340包括反光镜341和转轴342。其中,反光镜341沿转轴342的径向伸出于转轴342的相对二侧。转轴342可转动的设置在壳体310内,并且可带动反光镜341相对第一发射接收模块320和第二发射接收模块330转动,使分别来自于第一发射模块320和第二发光接收模块330的光信号可以通过反光镜341传递至外界环境,以及将外界环境反射的光信号对应的传回至第一发光接收模块320和第二发光接收模块330,从而扩大第一发光接收模块320和第二发光接收模块330的感测范围。
在本申请实施例的一种应用场景中,当自移动清洁机器人被启动后,通过激光激光传感器向外界环境发射光线以及接收外界环境的反射光线后,以光信号的形式传送至自移动清洁机器人的电控制模块,计算光线的飞行时间,从而获得多个点的距离信息,并依此确定机体与物体或周围环境之间的距离,以及根据上述测量的点生成深度图像或3D图像等点云图像,供自移动清洁机器人导航避障计算参考,进行清洁路径的导航、避障规划。之后,当主机依据规划好的清洁路径在墙面或壁面等执行沿边清洁任务时,可通过边刷组件的沿边传感器感测主机和墙面或壁面之间的距离,使主机在适当的距离下通过边刷清洁地面。与此同时,通过激光传感器在主机的另一侧感测行进路径以及周边区域是否存在障碍物,以进行导航与避障等程序等。在上述过程中,通过激光传感器和边刷组件的协同作用,可以更好的导引自移动机器人进行清扫任务,并且避免受到障碍物的阻挡,提升清洁效率。
此外,在本申请实施例中,激光传感器设置在主机内,并位于主机的第二边角区。因此,当机体执行清洁任务时,可通过面阵激光传感器直接在主机的侧边、前侧以及斜前方等多方向进行感测建图和导航避障。由于在此过程中不须要伸出于主机的顶面,从而释放主机垂直轴向的空间使用,使主机的顶面维持平坦,除了可以使主机在垂直轴向上的厚度变薄,还有助于让自移动机器人进入较矮空间执行清洁任务。
如图1、2、5、6所示,本申请另一实施例提供一种自移动清洁机器人1,其主机10包括底座180和撞板组件190,并且在撞板组件190上设置有结构光传感器40。撞板组件190设置主机10的前侧,用以在主机10遭受碰撞时提供减缓撞击力道以及保护主机10不受损坏等作用。撞板组件190包括板体191、支架192和托架193。其中,支架192连接于底座180,并且可相对底座180前后位移。板体191设置于支架192上并围绕于支架192外围。托架193结合于板体191上,并且具有承载部193a和套合部193b。激光传感器30即设置于承载部193a上,从而与撞板组件190结合为一整体。结构光传感器40和套合部193b的外观结构为相配合的凹凸结构,使结构光传感器40结合于套合部193b内。其中,板体191上设置有多个开口191a,结构光传感器40和激光传感器30分别对应于开口设置,使感测面露出于板体191 外。此外,在本申请的一些实施例中,撞板组件190的顶端190a为主机10的最高点。因此,自移动清洁机器人1在工作时,只要其撞板组件190能进入高度相对应的矮小空间内,就能保证主机10整体也能进入此空间内执行清洁任务,避免主机10的整体高度过高而卡死在空间内动弹不得的情形发生。
此外,本申请实施例还提供了一种本清洁装置、自移动装置以及应用于激光雷达模组的控制模组和控制方法,以下分别进行详细说明。
清洁机器人实现路径规划导航及避障功能的基础是构建外部环境的地图。目前市面上的清洁机器人主流的建图方案是基于SLAM(Simultaneous Localization and Mapping)框架算法,而实现SLAM建图方案必备的传感器就是激光雷达。目前广泛使用的传感器方案是激光雷达传感器是使用360°旋转式激光雷达方案,主流的测距方案有三种:三角法、DTOF(Direct Time of Fly,直接飞行时间)以及ITOF(Indirect Time of Fly,间接飞行时间)。通过电机带动激光雷达系统旋转,达到360°的视场角测距,其优点是视场角能够达到360°,缺点是需要凸设于清洁机器人上方,导致清洁机器人的机身高度较高。从清洁机器人的市场调研分析得出,因为清洁机器人的机身高度过高,导致在日常家居环境中,清洁机器人无法进入诸如沙发底、床底等低矮的区域进行清扫,大大降低了清洁机器人的清扫覆盖率。
为解决清洁机器人机身高度过高的问题,市面上出现基于VSLAM(Visual Simultaneous Localization and Mapping)算法的清洁机器人。VSLAM算法依靠摄像头获取外部环境图像以构建外部环境的地图。由于摄像头可以设置于清洁机器人的机身内部,因此能够降低清洁机器人的机身高度。但是摄像头的成像精度容易受光线影响,导致VSLAM算法的建图效率较低。
因此,为降低清洁机器人的机身高度、同时保证建图效率,将激光雷达设置于清洁机器人的机身内部,以降低清洁机器人的机身高度。其中,由于将激光雷达设置于清洁机器人的机身内部,会导致激光雷达的视场角受限而达不到要求。为此,激光雷达设置至少两组激光收发组件,该至少两组激光收发组件的视场角进行整合以使得清洁机器人整机的视场角达到要求。然而,目前清洁机器人上激光收发组件的工作负担较重,也导致整机的功耗较高。
有鉴于此,本申请的一实施例提供一种清洁装置、自移动装置以及应用于激光雷达模组的控制模组和控制方法,能够降低激光雷达模组的功耗,进而降低整机的功耗。
请参阅图7和图8,图7是本申请清洁装置一实施例的结构示意图,图8是本申请激光雷达模组一实施例的结构示意图。
在一实施例中,清洁装置10可以是具有洗地、扫地、擦地等清洁功能的清洁机器人等。具体地,清洁装置10包括装置主体11。装置主体11,顾名思义,其为清洁装置10的主要部 分,装置主体11能够在待清洁面上移动以对待清洁面进行清洁。可选地,装置主体11可以设置有滚刷、边刷、抹布等清洁元件,用于随装置主体11在待清洁面上同步移动以对装置主体11经过的区域进行清洁。
清洁装置10还包括激光雷达模组20,激光雷达模组20设于装置主体11,激光雷达模组20用于实现清洁装置10的路径规划导航及避障功能。具体地,激光雷达模组20包括至少两组激光收发组件21,各组激光收发组件21能够与外部环境进行激光信号交互以实现清洁机器人的路径规划导航及避障功能。其中,激光收发组件21与外部环境进行激光信号交互以实现路径规划导航及避障的原理属于本领域技术人员的理解范畴,在此就不再赘述。
举例而言,该至少两组激光收发组件21设于装置主体11的内部且靠近装置主体11的边缘,以避免激光收发组件21影响清洁装置10的整机高度。并且,该至少两组激光收发组件21的视场角进行整合,以使得清洁装置10整机的视场角达到要求。当然,在本申请的其它实施例中,各组激光收发组件21之间也可以独立进行激光信号交互作业,各组激光收发组件21的视场角不再进行整合,只需清洁装置10整机的视场角达到要求即可,在此不作限定。
清洁装置10还包括控制模组30,控制模组30设于装置主体11。控制模组30被配置为能够分时控制不同的激光收发组件21工作。相较于各组激光收发组件21始终处于与外部环境进行激光信号交互的状态,即各组激光收发组件21始终处于工作状态,本实施例控制模组30分时控制不同的激光收发组件21工作,即同一时刻仅有部分的激光收发组件21处于工作状态,而其余激光收发组件21未处于工作状态,如此使得每组激光收发组件21的工作负担得到减轻,有利于降低激光雷达模组20的功耗,进而有利于降低清洁装置10整机的功耗。
举例而言,本实施例控制模组30分时控制不同的激光收发组件21工作,具体是控制不同的激光收发组件21逐一进行工作,即同一时刻仅有一组激光收发组件21处于工作状态,而其余激光收发组件21均未处于工作状态。本申请实施例以激光雷达模组20包括两组激光收发组件21为例,控制模组30被配置为能够分时控制该两组激光收发组件21工作,即该两组激光收发组件21一一交替进行工作,使得该两组激光收发组件21的视场角得到整合,进而使得清洁装置10整机的视场角达到要求,同时还使得每组激光收发组件21的工作负担得到减轻,有利于降低激光雷达模组20的功耗。
请一并参阅图9,图9是本申请控制模组一实施例的结构示意图。下文对本申请实施例的控制模组30进行阐述。
在一实施例中,控制模组30包括控制电路31以及至少两组激光驱动电路32。各组激光驱动电路32均与控制电路31电性连接,且各组激光驱动电路32还与不同的激光收发组件21电性连接。控制电路31被配置为能够分时控制不同的激光驱动电路32驱动对应的激光收 发组件21工作。
控制电路31为控制模组30的控制中枢,用于控制协调控制模组30的其它电路协同进行工作。激光驱动电路32则用于驱动其所电性连接的激光收发组件21与外部环境进行激光信号交互,即激光驱动电路32用于驱动对应的激光收发组件21工作。本实施例激光驱动电路32和激光收发组件21一一对应,即每组激光驱动电路32分别与不同的一组激光收发组件21电性连接。控制电路31通过分时控制不同的激光驱动电路32工作,以分时驱动对应的激光收发组件21工作。
需要说明的是,本实施例激光驱动电路32独立于控制电路31。当然,在本申请的其它实施例中,控制电路31和激光驱动电路32可以整合为同一个元件,在此不作限定。
在一实施例中,控制电路31包括控制元件311以及电源312。各组激光驱动电路32均与控制元件311电性连接,电源312分别与控制元件311及各组激光驱动电路32电性连接。控制元件311被配置为能够控制电源312分时向不同的激光驱动电路32输出电能,使得各组激光驱动电路32分时驱动对应的激光收发组件21工作。
本实施例的各组激光收发组件21共用同一电源312,具体是通过控制元件311控制电源312分时向不同的激光驱动电路32输出电能,即分时向不同的激光驱动电路32供电,使得不同的激光驱动电路32分时进行工作,进而使得各组激光驱动电路32分时驱动对应的激光收发组件21工作。当控制元件311控制电源312向其中一组激光驱动电路32供电是,该激光驱动电路32能够工作以驱动对应的激光收发组件21工作,而其余激光驱动电路32由于并未通电而未处于工作状态,自然无法驱动对应的激光收发组件21工作。
通过上述方式,本实施例的各组激光收发组件21共用同一电源312,避免了针对各组激光收发组件21分别配置不同的电源312所带来成本增加以及控制模组30复杂化的问题,即本实施例能够避免额外设置电源312,有利于降低控制模组30的成本以及简化控制模组30,并且能够优化线路板空间。
可选地,控制元件311可以是MCU(Micro Controller Unit,微控制单元)等,在此不作限定。
当然,在本申请的其它实施例中,也可以是各组激光收发组件21分别配置有不同的电源312。其中,各组激光收发组件21分时工作,已然能够一定程度地减轻每组激光收发组件21的工作负担,有利于降低激光雷达模组20的功耗。
在一实施例中,激光雷达模组20还包括反光镜22。反光镜22可转动地设置于装置主体11,其中各组激光收发组件21通过转动至对应角度的反光镜22与外部环境进行激光信号交互。
具体地,激光收发组件21包括输出元件和接收元件。输出元件能够输出激光,输出元件输出的激光经反光镜22输出至外部环境,经由外部环境反射回来的激光通过反光镜22而被接收元件接收,如此完成激光收发组件21与外部环境的激光信号交互。反光镜22转动至不同角度,使得反光镜22能够实现对应激光收发组件21与外部环境的激光信号交互。当反光镜22转动至其中一组激光收发组件21对应的角度时,该激光收发组件21通过反光镜22与外部环境进行激光信号交互,而其余激光收发组件21暂时不通过反光镜22与外部环境进行激光信号交互,因此此时控制电路31控制该激光收发组件21工作,而其余激光收发组件21并未处于工作状态。
控制模组30还包括检测电路33。检测电路33与控制电路31电性连接,检测电路33用于检测反光镜22的转动角度。其中,控制电路31能够响应于通过检测电路33检测到反光镜22的转动角度,分时控制不同的激光驱动电路32驱动对应的激光收发组件21工作。换言之,当检测电路33检测到反光镜22转动至其中一组激光收发组件21对应的角度时,控制电路31控制该激光收发组件21与外部环境进行激光信号交互,而其余激光收发组件21则并未处于工作状态。
进一步地,激光雷达模组20还定义有旋转轴(如图8中O所示,下同),反光镜22能够绕旋转轴转动,且反光镜22远离旋转轴的一端为目标端部221。
对于上述激光雷达模组20包括两组激光收发组件21的示例,上述的至少两组激光收发组件21包括第一激光收发组件21a及第二激光收发组件21b。第一激光收发组件21a具有第一光轴211,第二激光收发组件21b具有第二光轴212,第一光轴211和第二光轴212相交于旋转轴。其中,以当反光镜22平分第一光轴211和第二光轴212构成的夹角、且目标端部221远离第一激光收发组件21a和第二激光收发组件21b时反光镜22的位置为零点位置(如图8中S所示,下同)。需要说明的是,目标端部221远离第一激光收发组件21a和第二激光收发组件21b应当理解为目标端部221与第一激光收发组件21a之间的距离及目标端部221与第二激光收发组件21b之间的距离均达到最大值。
控制电路31响应于通过检测电路33检测到目标端部221相对零点位置转动的角度(如图8中θ所示,下同)处于第一角度范围内,控制第一激光收发组件21a工作;且控制电路31响应于通过检测电路33检测到目标端部221相对零点位置转动的角度处于第二角度范围内,控制第二激光收发组件21b工作。
换言之,本实施例控制电路31基于反光镜22的转动角度分时控制不同的激光收发组件21工作。当检测电路33检测到目标端部221相对零点位置转动的角度处于第一角度范围内,此时第一激光收发组件21a能够通过反光镜22与外部环境进行激光信号交互,因此控制电路 31控制第一激光收发组件21a工作。同理,当检测电路33检测到目标端部221相对零点位置转动的角度处于第二角度范围内,此时第二激光收发组件21b能够通过反光镜22与外部环境进行激光信号交互,因此控制电路31控制第二激光收发组件21b工作。
可选地,第一角度范围可以为0°至180°,第二角度范围可以为180°至360°。举例而言,图8展示了反光镜22处于零点位置,反光镜22自零点位置逆时针转动,以使得第一激光收发组件21a和第二激光收发组件21b周期性地交替与外部环境进行激光信号交互。图10为控制电路31分时控制第一激光收发组件21a和第二激光收发组件21b工作的控制时序图。控制模组30分时控制第一激光收发组件21a和第二激光收发组件21b工作,即第一激光收发组件21a和第二激光收发组件21b切换着进行工作。反光镜22的目标端部221相对零点位置转动的角度为0°至180°时,控制电路31控制第一激光收发组件21a工作;而反光镜22的目标端部221相对零点位置转动的角度为180°至360°时,控制电路31控制第二激光收发组件21b工作。如此一来,本实施例通过合理设置第一角度范围和第二角度范围,使得控制电路31只需判断切换第一激光收发组件21a或是第二激光收发组件21b进行工作对应的角度即可,能够简化控制电路31的控制逻辑。
并且,反光镜22具有预设转速,使得第一激光收发组件21a和第二激光收发组件21b按照预设频率切换进行工作,使得第一激光收发组件21a和第二激光收发组件21b对外部环境的扫描效率达到要求,进而保证清洁装置10路径规划导航及避障的实时性。例如,预设转速可以是900r/min等,意味着预设频率对应为15Hz。
需要说明的是,考虑到当反光镜22转动部分角度时,第一激光收发组件21a和第二激光收发组件21b输出至反光镜22的激光无法正常传输至外部,而是被反射至清洁装置10内部,此时第一激光收发组件21a和第二激光收发组件21b无法起到扫描外部环境的功能,因此可以控制第一激光收发组件21a和第二激光收发组件21b停止工作,以进一步降低激光雷达模组20的功耗。对应地,第一角度范围和第二角度范围不再涵盖180°的角度跨度,例如第一角度范围可以是0°至150°,第二角度范围可以是210°至360°,在此不作限定。
请一并参阅图11,图11是本申请码盘一实施例的结构示意图。
在一实施例中,检测电路33包括码盘331,码盘331能够随反光镜22同步转动。其中,码盘331具有用于标识目标端部221的标识结构。检测电路33还包括传感器332,传感器332与控制电路31电性连接,传感器332用于在码盘331转动的过程中检测标识结构。其中,控制电路31响应于传感器332检测到标识结构测算出目标端部221相对零点位置转动的角度。
具体地,码盘331包括码盘主体333以及至少两个齿部334。码盘主体333能够随反光镜22同步转动。该至少两个齿部334沿码盘主体333的周向依次间隔分布,且各齿部334能 够随码盘主体333转动而依次通过传感器332。
该至少两个齿部334中具有一个第一齿部334a,其余齿部334为第二齿部334b。第一齿部334a不同于第二齿部334b,第一齿部334a用于标识目标端部221,即第一齿部334a为上述的标识结构。控制电路31通过统计在第一齿部334a之后通过传感器332的第二齿部334b的数量测算目标端部221相对零点位置转动的角度。
举例而言,传感器332可以是光耦等,各齿部334能够随码盘主体333转动而依次对传感器332的光信号进行遮挡,使得传感器332产生对应的脉冲信号,该脉冲信号即指示传感器332检测到各齿部334通过传感器332的动作。上述的至少两个齿部334沿码盘主体333的周向均匀间隔分布,每个齿部334所对应的圆心角相同。第一齿部334a的齿宽不同于第二齿部334b的齿宽,图11示例性地展示了第一齿部334a的齿宽小于第二齿部334b的齿宽的情况。第一齿部334a对传感器332的光信号的遮挡程度不同于第二齿部334b对传感器332的光信号的遮挡程度,使得传感器332对应第一齿部334a和第二齿部334b产生不同的脉冲信号,控制电路31以此能够判断出传感器332检测到第一齿部334a(即标识结构),之后通过统计在第一齿部334a之后通过传感器332的第二齿部334b的数量测算目标端部221相对零点位置转动的角度。
第一齿部334a可以正对目标端部221设置,以标识目标端部221。当传感器332检测到第一齿部334a通过传感器332时,意味着目标端部221通过传感器332。并且,传感器332可以对应零点位置设置,如此当目标端部221通过传感器332时即意味着目标端部221相对零点位置转动的角度为0°。当然,在本申请的其它实施例中,传感器332也可以偏离零点位置,传感器332和零点位置之间的角度即为当目标端部221通过传感器332时目标端部221相对零点位置转动的角度。
需要说明的是,本申请的其它实施例并不局限于上述第一齿部334a和第二齿部334b的设计,例如码盘331上可以仅设置用于标识目标端部221的齿部334,由于反光镜22的转速已知,根据与目标端部221通过传感器332的时刻的时间差,可以直接测算出目标端部221相对零点位置转动的角度,在此不作限定。并且,本申请实施例检测电路33并不局限于通过码盘331来检测反光镜22的转动角度,在此不作限定。
在一实施例中,激光雷达模组20还包括电机23以及电机驱动电路24。电机23与反光镜22传动连接,用于驱动反光镜22转动。电机驱动电路24分别与控制电路31及电机23电性连接。其中,控制电路31还通过检测电路33检测反光镜22的转速,并通过电机驱动电路24调整电机23的转速,使得反光镜22维持上述的预设转速。
换言之,本实施例控制电路31通过电机驱动电路24调整电机23的转速,以将反光镜 22的转速稳定于该预设转速。尤其是对于上述实施例中码盘331和传感器332配合检测反光镜22的转动角度,反光镜22的转速稳定,有利于保证控制电路31准确测算出目标端部221相对零点位置转动的角度,即准确测算出反光镜22的转动角度。
具体地,电机23、码盘331及反光镜22三者同轴设置,电机23带动码盘331和反光镜22同步转动。电机23、码盘331及反光镜22三者的转速一致,传感器332检测码盘331的转速并反馈至控制电路31,控制电路31能够获知当前电机23的转速,进而通过电机驱动电路24调整电机23的转速,以稳定反光镜22的转速。
在一实施例中,自移动装置包括装置主体11,装置主体11能够在移动面上移动。自移动装置还包括激光雷达模组20,激光雷达模组20设于装置主体11,且激光雷达模组20包括至少两组激光收发组件21。自移动装置还包括控制模组30,控制模组30设于装置主体11。控制模组30包括控制电路31以及至少两组激光驱动电路32。各组激光驱动电路32均与控制电路31电性连接,且各组激光驱动电路32还与不同的激光收发组件21电性连接,其中控制电路31被配置为能够分时控制不同的激光驱动电路32驱动对应的激光收发组件21工作。
自移动装置可以应用于清洁设备领域,即自移动装置可以为诸如清洁机器人等清洁装置10,且移动面即为对应的待清洁面。当然,自移动装置也可以应用于其它领域,例如可以应用于物流等领域。其中,控制模组30已在上述实施例中详细阐述,在此就不再赘述。
在一实施例中,本实施例提供一种应用于激光雷达模组20的控制模组30。激光雷达模组20包括至少两组激光收发组件21。控制模组30包括控制电路31以及至少两组激光驱动电路32。各组激光驱动电路32均与控制电路31电性连接,且各组激光驱动电路32还与不同的激光收发组件21电性连接,其中控制电路31被配置为能够分时控制不同的激光驱动电路32驱动对应的激光收发组件21工作。
需要说明的是,控制模组30已在上述实施例中详细阐述,在此就不再赘述。
请参阅图12,图12是本申请应用于激光雷达模组的控制方法一实施例的流程示意图。本实施例阐述的应用于激光雷达模组20的控制方法是基于上述实施例阐述的控制模组30。其中,激光雷达模组20包括至少两组激光收发组件21。
S101:接收预设切换指令。
在本实施例中,通过分时控制不同的激光收发组件21工作,以减轻每组激光收发组件21的工作负担,进而有利于降低激光雷达模组20的功耗。其中,预设切换指令用于指示切换不同的激光收发组件21工作的时机。
S102:响应于预设切换指令,分时控制不同的激光收发组件工作。
在本实施例中,在接收到预设切换指令后,响应于该预设切换指令,分时控制不同的激 光收发组件21工作。相较于各组激光收发组件21始终处于工作状态的情况,本实施例分时控制不同的激光收发组件21工作,即同一时刻仅有部分的激光收发组件21处于工作状态,而其余激光收发组件21未处于工作状态,如此使得每组激光收发组件21的工作负担得到减轻,有利于降低激光雷达模组20的功耗。
请参阅图13,图13是本申请应用于激光雷达模组的控制方法另一实施例的流程示意图。本实施例阐述的应用于激光雷达模组20的控制方法是基于上述实施例阐述的控制模组30。其中,激光雷达模组20包括至少两组激光收发组件21。
S201:驱动反光镜转动。
在本实施例中,激光雷达模组20还包括反光镜22。通过驱动反光镜22转动,使得反光镜22转动至不同角度,进而使得反光镜22能够实现对应激光收发组件21与外部环境的激光信号交互。
S202:调整电机的转速,使得反光镜维持预设转速。
在本实施例中,通过调整电机23的转速,使得反光镜22维持预设转速,即将反光镜22的转速稳定于该预设转速,其中反光镜22的转速稳定,有利于准确测算出反光镜22的转动角度。
具体地,控制电路31使能电机驱动电路24驱动电机23,以通过电机23驱动反光镜22转动。由于电机23、码盘331及反光镜22三者的转速一致,传感器332通过检测码盘331的转速,即可测得电机23的转速。传感器332将测得的转速信息反馈至控制电路31,控制电路31能够获知当前电机23的转速,进而通过电机驱动电路24调整电机23的转速,以稳定反光镜22的转速。
S203:检测反光镜的转动角度。
在本实施例中,待反光镜22的转速稳定后,通过检测反光镜22的转动角度,以判断需要切换不同的激光收发组件21工作的时机。
S204:响应于反光镜转动至对应角度,生成预设切换指令。
在本实施例中,通过检测反光镜22的转动角度,以响应于反光镜22转动至对应角度,生成预设切换指令。
具体地,传感器332检测码盘331的转动角度并反馈至控制电路31,控制电路31根据传感器332反馈的角度信息得到反光镜22的转动角度,进而使能不同的激光收发组件21,使得不同的激光收发组件21分时进行工作。
上述的至少两组激光收发组件21包括第一激光收发组件21a及第二激光收发组件21b。第一激光收发组件21a具有第一光轴211,第二激光收发组件21b具有第二光轴212,第一光 轴211和第二光轴212相交于反光镜22的旋转轴。以当反光镜22平分第一光轴211和第二光轴212构成的夹角、且反光镜22的目标端部221远离第一激光收发组件21a和第二激光收发组件21b时反光镜22的位置为零点位置。检测目标端部221相对零点位置转动的角度。若检测到目标端部221相对零点位置转动的角度处于第一角度范围内,则生成第一切换指令,以响应于第一切换指令控制第一激光收发组件21a工作;同理,若检测到目标端部221相对零点位置转动的角度处于第二角度范围内,则生成第二切换指令,以响应于第二切换指令控制第二激光收发组件21b工作。
S205:接收预设切换指令。
在本实施例中,通过分时控制不同的激光收发组件21工作,以减轻每组激光收发组件21的工作负担,进而有利于降低激光雷达模组20的功耗。其中,预设切换指令用于指示切换不同的激光收发组件21工作的时机。
S206:响应于预设切换指令,分时控制不同的激光收发组件工作。
在本实施例中,在接收到预设切换指令后,响应于该预设切换指令,分时控制不同的激光收发组件21工作。相较于各组激光收发组件21始终处于工作状态的情况,本实施例分时控制不同的激光收发组件21工作,即同一时刻仅有部分的激光收发组件21处于工作状态,而其余激光收发组件21未处于工作状态,如此使得每组激光收发组件21的工作负担得到减轻,有利于降低激光雷达模组20的功耗。
进一步地,本实施例的各组激光收发组件21共用同一电源312,具体是通过控制电源312分时向不同的激光收发组件21输出电能,即分时向不同的激光收发组件21供电。本实施例的各组激光收发组件21共用同一电源312,避免了针对各组激光收发组件21分别配置不同的电源312所带来成本增加以及控制模组30复杂化的问题,即本实施例能够避免额外设置电源312,有利于降低控制模组30的成本以及简化控制模组30,并且能够优化线路板空间。
下面结合具体应用场景对本申请实施例提供的技术方案进行说明。
应用场景一:
清洁装置10为清洁机器人。清洁装置10包括装置主体11。清洁装置10还包括激光雷达模组20,激光雷达模组20设于装置主体11。激光雷达模组20包括至少两组激光收发组件21,各组激光收发组件21能够与外部环境进行激光信号交互以实现清洁机器人的路径规划导航及避障功能。清洁装置10还包括控制模组30,控制模组30设于装置主体11。控制模组30被配置为能够分时控制不同的激光收发组件21工作。
控制模组30包括控制电路31以及至少两组激光驱动电路32。各组激光驱动电路32均与控制电路31电性连接,且各组激光驱动电路32还与不同的激光收发组件21电性连接。控 制电路31包括控制元件311以及电源312。各组激光驱动电路32均与控制元件311电性连接,电源312分别与控制元件311及各组激光驱动电路32电性连接。控制元件311被配置为能够控制电源312分时向不同的激光驱动电路32输出电能,使得各组激光驱动电路32分时驱动对应的激光收发组件21工作。
控制元件311使能电源312。控制元件311使能电机驱动电路24驱动电机23,以通过电机23驱动码盘331和反光镜22转动。码盘331转动后,传感器332通过检测码盘331的转速,即可测得电机23的转速。传感器332将测得的转速信息反馈至控制元件311,控制元件311能够获知当前电机23的转速,进而通过电机驱动电路24调整电机23的转速,以稳定反光镜22的转速。待反光镜22的转速稳定后,传感器332检测码盘331的转动角度并反馈至控制元件311,控制元件311根据传感器332反馈的角度信息得到反光镜22的转动角度,进而使能不同的激光收发组件21分时进行工作。具体地,反光镜22的目标端部221相对零点位置转动的角度为0°至180°时,控制元件311控制第一激光收发组件21a工作;而反光镜22的目标端部221相对零点位置转动的角度为180°至360°时,控制元件311控制第二激光收发组件21b工作。
应用场景二:
激光雷达模组20包括至少两组激光收发组件21,各组激光收发组件21能够与外部环境进行激光信号交互以实现清洁机器人的路径规划导航及避障功能。控制模组30被配置为能够分时控制不同的激光收发组件21工作。
控制模组30包括控制电路31以及至少两组激光驱动电路32。各组激光驱动电路32均与控制电路31电性连接,且各组激光驱动电路32还与不同的激光收发组件21电性连接。控制电路31包括控制元件311以及电源312。各组激光驱动电路32均与控制元件311电性连接,电源312分别与控制元件311及各组激光驱动电路32电性连接。控制元件311被配置为能够控制电源312分时向不同的激光驱动电路32输出电能,使得各组激光驱动电路32分时驱动对应的激光收发组件21工作。
控制元件311使能电源312。控制元件311使能电机驱动电路24驱动电机23,以通过电机23驱动码盘331和反光镜22转动。码盘331转动后,传感器332通过检测码盘331的转速,即可测得电机23的转速。传感器332将测得的转速信息反馈至控制元件311,控制元件311能够获知当前电机23的转速,进而通过电机驱动电路24调整电机23的转速,以稳定反光镜22的转速。待反光镜22的转速稳定后,传感器332检测码盘331的转动角度并反馈至控制元件311,控制元件311根据传感器332反馈的角度信息得到反光镜22的转动角度,进而使能不同的激光收发组件21分时进行工作。具体地,反光镜22的目标端部221相对零点 位置转动的角度为0°至180°时,控制元件311控制第一激光收发组件21a工作;而反光镜22的目标端部221相对零点位置转动的角度为180°至360°时,控制元件311控制第二激光收发组件21b工作。
以上对本申请提供的清洁装置、自移动装置以及应用于激光雷达模组的控制模组和控制方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
本申请实施例还提供了一种清洁装置以及自移动装置,以下分别进行详细说明。
目前,市面上的自移动清洁机器人采用的导航避障系统主要应用LDS(Laser Direct Structuring)激光雷达技术和D-TOF(Direct Time of Fly,直接飞行时间)技术。导航模组通常设置在机器的顶部,通过电机带动模组旋转来满足一定视场角范围的导航工作。但这种设计仍存在一些缺点,例如机器顶部突起而造成机器高度过高,导致清洁机器人无法清扫家具底部等低矮区域,并且驱动模组旋转的机构负载较大,运行时有卡顿风险,此外目前的导航避障方案成本较高。
有鉴于此,本申请实施例提供一种清洁装置以及自移动装置,能够解决现有技术中由于机器顶部设置导航模组,导致机器顶部突起而造成机器高度过高的技术问题,将在下文进行详细阐述。
请参阅图14,图14是本申请清洁装置一实施例的结构示意图。
在一实施例中,清洁装置10可以是具有洗地、扫地、擦地等清洁功能的清洁机器人等。具体地,清洁装置10包括装置主体11。装置主体11,顾名思义,其为清洁装置10的主要部分,装置主体11能够在待清洁面12上移动以对待清洁面12进行清洁。可选地,装置主体11可以设置有滚刷、边刷、抹布等清洁元件,用于随装置主体11在待清洁面12上同步移动以对装置主体11经过的区域进行清洁。
清洁装置10还包括激光传感器模组20,激光传感器模组20设于装置主体11,且激光传感器模组20用于实现清洁装置10的导航及避障功能。具体地,如图15所示,激光传感器模组20与待清洁面12之间的最大距离D1小于或等于装置主体11与待清洁面12之间的最大距离D2,即激光传感器模组20远离待清洁面12的顶部与待清洁面12之间的距离小于或等于装置主体11远离待清洁面12的顶部与待清洁面12之间的距离。换言之,本实施例激光传感器模组20内置于装置主体11,替代了现有技术中导航模组凸设于机器顶部的方式,有利于降低清洁装置10的整机高度,使得清洁装置10能够对家具底部等低矮区域进行清洁。
进一步地,由于激光传感器模组20内置于装置主体11,导致激光传感器模组20的视场角受限,因此本实施例清洁装置10包括至少两组激光传感器模组20,各组激光传感器模组20沿装置主体11的周向依次间隔分布,即各组激光传感器模组20之间相互独立,且各组激光传感器模组20分别处于装置主体11的不同位置。
本实施例中各组激光传感器模组20的视场角整合得到清洁装置10整机的视场角,并且由于至少一组激光传感器模组20具有发散的视场角,因而能够使得清洁装置10具有较大的视场角,进而满足导航及避障功能对视场角的要求。有别于现有技术中通过机构驱动模组旋转以满足视场角要求的方式,本实施例激光传感器模组20在装置主体11上的相对位置保持固定,取而代之的是整合至少两组激光传感器模组20的视场角,使得清洁装置10整机的视场角满足要求,如此还能够省去现有技术中驱动模组旋转的机构,避免了运行时卡顿以及成本较高等问题。
需要说明的是,视场角发散意味着该视场角具有一定角度,即本实施例激光传感器模组20的视野区域为以各自为中心的扇形区域,本实施例激光传感器模组20并非是单点测距传感器。并且,各组激光传感器模组20处于装置主体11的边缘,以避免各组激光传感器模组20被遮挡,保证清洁装置10的导航及避障功能实现。
当然,在本申请的其它实施例中,激光传感器模组20并不局限于内置于装置主体11的方式,激光传感器模组20可以设置于装置主体11的顶部、底部等其它位置。通过整合至少两组激光传感器模组20的视场角,使得清洁装置10整机的视场角满足要求,仍然具备省去现有技术中驱动模组旋转的机构等优点,避免了运行时卡顿以及成本较高等问题。
下文对本申请实施例清洁装置10的激光传感器模组20进行阐述。
在一实施例中,上述的至少两组激光传感器模组20包括第一激光传感器模组20a和第二激光传感器模组20b。第一激光传感器模组20a具有第一视场角(如图14中角θ1所示),第二激光传感器模组20b具有第二视场角(如图14中角θ2所示)。其中,第一视场角对应的视野区域与第二视场角对应的视野区域相互接壤或相互交叠。
换言之,本实施例中第一激光传感器模组20a和第二激光传感器模组20b均具有发散的视场角,并且通过整合第一激光传感器模组20a的第一视场角及第二激光传感器模组20b的第二视场角,使得清洁装置10整体具有较大的视场角,进而满足导航及避障功能对视场角的要求。
需要说明的是,第一激光传感器模组20a与待清洁面12之间的距离等于第二激光传感器模组20b与待清洁面12之间的距离,即第一激光传感器模组20a的高度与第二激光传感器模组20b的高度保持一致。第一视场角对应的视野区域与第二视场角对应的视野区域相互接壤, 意味着第一视场角对应的视野区域与第二视场角对应的视野区域二者相互靠近的边缘重合。而第一视场角对应的视野区域与第二视场角对应的视野区域相互交叠,意味着第一视场角对应的视野区域与第二视场角对应的视野区域二者相互靠近的边缘以一定角度相交。
当然,在本申请的其它实施例中,清洁装置10可以在第一激光传感器模组20a和第二激光传感器模组20b的基础上包括更多数量的激光传感器模组20,通过整合清洁装置10上的激光传感器模组20的视场角,使得清洁装置10整机的视场角满足要求,在此不作限定。
在一实施例中,装置主体11定义有第一方向(如图14中箭头X所示,下同)和第二方向(如图14中箭头Y所示,下同)。第一方向和第二方向相互垂直,且第一方向和第二方向还均平行于待清洁面12。其中,装置主体11沿第一方向移动,即第一方向为装置主体11的行进方向。装置主体11在第一方向上具有前端111a和后端111b,且装置主体11在第二方向上具有两个侧端(即侧端112a、侧端112b)。
第一激光传感器模组20a位于装置主体11的前端111a,第二激光传感器模组20b位于装置主体11的其中一个侧端(具体位于侧端112a)。第一激光传感器模组20a的视野区域位于装置主体11的前方,以感测装置主体11的前方区域,第二激光传感器模组20b的视野区域位于装置主体11的侧方,以感测装置主体11的侧方区域。本实施例通过合理布置第一激光传感器模组20a和第二激光传感器模组20b,使得第一激光传感器模组20a所感测区域与第二激光传感器模组20b所感测区域满足导航及避障算法的要求。
进一步地,装置主体11具有第一侧面113a、第二侧面113b、第三侧面113c及第四侧面113d。第一侧面113a和第二侧面113b沿第一方向彼此间隔,且第一侧面113a和第二侧面113b还均垂直于第一方向,其中第一侧面113a位于前端111a,第二侧面113b位于后端111b。第三侧面113c和第四侧面113d沿第二方向彼此间隔,且第三侧面113c和第四侧面113d还均垂直于第二方向。换言之,本实施例装置主体11的第一侧面113a、第二侧面113b、第三侧面113c及第四侧面113d围成一个类似方形的结构,即装置主体11的构造类似方形,如此能够提升清洁装置10清洁边角位置的能力以及提高清洁装置10的清洁效率。其中,第一侧面113a和第二侧面113b均垂直于第一方向,第三侧面113c和第四侧面113d均垂直于第二方向,应当理解为经过第一侧面113a和第二侧面113b的至少部分平面垂直于第一方向,经过第三侧面113c和第四侧面113d的至少部分平面垂直于第二方向。
并且,第一侧面113a分别与第三侧面113c及第四侧面113d围设形成第一角落位置114a和第二角落位置114b,第一角落位置114a和第二角落位置114b为装置主体11前端111a的左右两个角落位置;第二侧面113b分别与第三侧面113c及第四侧面113d围设形成第三角落位置114c和第四角落位置114d,第三角落位置114c和第四角落位置114d为装置主体11后 端111b的左右两个角落位置。其中,第二激光传感器模组20b位于第一角落位置114a、第二角落位置114b、第三角落位置114c及第四角落位置114d中的一处。
在一示例性实施例中,第二激光传感器模组20b位于第三角落位置114c和第四角落位置114d中的一处。图14示例性地展示了第二激光传感器模组20b位于第三角落位置114c的情况。换言之,第二激光传感器模组20b位于装置主体11后端111b的角落位置。在另一示例性实施例中,第二激光传感器模组20b位于第一角落位置114a和第二角落位置114b中的一处。换言之,第二激光传感器模组20b位于装置主体11前端111a的角落位置。
需要说明的是,第二激光传感器模组20b位于装置主体11的左侧还是右侧,会影响第二激光传感器模组20b的视场角方向,可以根据导航及避障算法需求,选择将第二激光传感器模组20b设置于装置主体11的左侧还是右侧。并且,第二激光传感器模组20b位于装置主体11的前端111a还是后端111b,会影响视野盲区的位置。此外,当第二激光传感器模组20b位于装置主体11的前端111a时,允许位于装置主体11后端111b的水箱设计更大的容积;而当第二激光传感器模组20b位于装置主体11的后端111b时,允许位于装置主体11前端111a的滚刷设计更大的长度,以提高清洁装置10的清洁效率。
举例而言,清洁装置10还包括集尘盒14,集尘盒14设于装置主体11,集尘盒14用于储存清洁装置10回收的垃圾,以便用户集中清理清洁装置10回收的垃圾。第一激光传感器模组20a位于集尘盒14朝向前端111a的一侧,而第二激光传感器模组20b位于集尘盒14朝向后端111b的一侧。清洁装置10还包括抹布盘15。抹布盘15设于装置主体11,图14中展示了驱动抹布盘15转动的转轴机构,以展示抹布盘15的大致设置位置。第二激光传感器模组20b和抹布盘15共同设置于装置主体11的后端111b。
图14示例性地展示了第二激光传感器模组20b位于第三角落位置114c的情况。第一激光传感器模组20a的第一视场角如图14中角θ1所示,第二激光传感器模组20b的第二视场角如图14中角θ2所示,第一激光传感器模组20a的第一视场角与第二激光传感器模组20b的第二视场角所整合得到的总视场角如图14中角θ3所示。
可选地,第一视场角和第二视场角均大于或等于105°,且第一视场角和第二视场角整合得到的总视场角介于210°至250°之间。举例而言,图14中第一视场角和第二视场角均为120°,第一视场角对应的视野区域和第二视场角对应的视野区域之间具有一交叠区域,该交叠区域对应的角度为30°,使得第一视场角和第二视场角整合得到的总视场角达到210°,能够满足导航及避障功能对视场角的要求。
可选地,第一视场角和第二视场角可以均大于或等于90°,且第一视场角和第二视场角整合得到的总视场角介于180°至250°之间。
下文对本申请实施例第一激光传感器模组20a和第二激光传感器模组20b进行阐述。
请一并参阅图16和图17,图16是本申请第一激光传感器模组一实施例的结构示意图,图17是本申请第一激光传感器模组的第一视场角一实施例的示意图。
在一实施例中,第一激光传感器模组20a包括激光传感器组件21。激光传感器组件21能够与外部环境进行激光信号交互,激光传感器组件21具体可以应用直接飞行时间(direct time of fly,dToF)或间接飞行时间(indirect time of fly,iToF)等测距技术,即本实施例激光传感器组件21可以是TOF模组,激光传感器组件21具有上述的第一视场角(如图17中角θ1所示)。
第一激光传感器模组20a还包括结构光传感器组件22。结构光传感器组件22与激光传感器组件21配合感知外部环境,以实现清洁装置10的导航及避障功能。结构光传感器组件22可以包括一个摄像头以及分布于该摄像头两侧的线激光发射器,结构光传感器组件22感知外部环境的原理属于本领域技术人员的理解范畴,在此就不再赘述。
进一步地,本实施例结构光传感器组件22邻近激光传感器组件21设置,使得第一激光传感器模组20a的结构紧凑,进而有利于提高清洁装置10的空间利用率。
具体地,激光传感器组件21包括第一激光收发元件211、第一反光镜组212以及转轴机构213。第一激光收发元件211用于发射以及接收激光信号,转轴机构213与第一反光镜组212传动连接,用于驱动第一反光镜组212转动。第一激光收发元件211通过第一反光镜组212与外部环境进行激光信号交互。其中,转轴机构213可以包括电机以及与电机传动配合的转轴,转轴与第一反光镜组212传动连接,电机通过转轴驱动第一反光镜组212转动。
第一激光收发元件211和第一反光镜组212均相对结构光传感器组件22靠近待清洁面12,且转轴机构213位于结构光传感器组件22的内侧,即转轴机构213位于结构光传感器组件22朝向装置主体11内部的一侧,意味着本实施例激光传感器组件21和结构光传感器组件22的结构配合较为紧凑。
并且,第一激光传感器模组20a还包括电路板23,电路板23至少集成有激光传感器组件21和结构光传感器组件22的控制电路。其中,电路板23具有镂空的避让区231。结构光传感器组件22位于电路板23背离待清洁面12的一侧,第一激光收发元件211和第一反光镜组212位于电路板23朝向待清洁面12的一侧,转轴机构213穿设于避让区231中,如此同样能够使得第一激光传感器模组20a的结构紧凑,进而有利于提高清洁装置10的空间利用率。
在一实施例中,第一激光传感器模组20a还包括摄像头组件24。摄像头组件24与激光传感器组件21配合感知外部环境,以实现清洁装置10的导航及避障功能。摄像头组件24能够获取外部环境的图像信息,用于构建外部环境的导航地图,以实现清洁装置10的导航及避 障功能。
进一步地,本实施例摄像头组件24邻近激光传感器组件21设置,使得第一激光传感器模组20a的结构紧凑,进而有利于提高清洁装置10的空间利用率。
具体地,摄像头组件24、第一激光收发元件211及第一反光镜组212均位于电路板23朝向待清洁面12的一侧,且摄像头组件24还位于第一反光镜组212背离第一激光收发元件211的一侧,意味着本实施例激光传感器组件21和摄像头组件24的结构配合较为紧凑。
在一实施例中,装置主体11具有撞板13,撞板13可移动地设置于装置主体11,用于接受障碍物撞击。在装置主体11的移动过程中,撞板13用于接受障碍物撞击。当撞板13受到障碍物撞击时,撞板13朝向装置主体11的内部移动。第一激光传感器模组20a设于撞板13的内侧,即第一激光传感器模组20a设于撞板13朝向装置主体11内部的一侧,如此能够避免第一激光传感器模组20a被遮挡,保证第一激光传感器模组20a能够正常与外部环境进行激光信号交互。
在一实施例中,装置主体11还定义有垂直于待清洁面12的第三方向(如图16中箭头Z所示,下同)。在第一激光传感器模组20a的激光传感器组件21中,第一激光收发元件211包括激光发射器251a和激光接收器252a,第一反光镜组212包括第一反光镜261a和第二反光镜262a。激光发射器251a与激光接收器252a沿第三方向层叠设置。激光发射器251a输出的激光信号经由第一反光镜261a反射至外部环境。第一反光镜261a与第二反光镜262a沿第三方向层叠设置,且来自外部环境的激光信号经由第二反光镜262a反射至激光接收器252a。
请一并参阅图18和图19,图18是本申请第二激光传感器模组一实施例的结构示意图,图19是本申请第二激光传感器模组的第二视场角一实施例的示意图。
在一实施例中,第二激光传感器模组20b具体可以应用直接飞行时间(direct time of fly,dToF)或间接飞行时间(indirect time of fly,iToF)等测距技术,即本实施例第二激光传感器模组20b可以是TOF模组。第二激光传感器模组20b的第二视场角如图19中角θ2所示。
第二激光传感器模组20b包括第二激光收发元件271和第二反光镜组272。第二激光收发元件271用于发射以及接收激光信号,第二激光收发元件271通过第二反光镜组272与外部环境进行激光信号交互。其中,第二激光传感器模组20b也可以包括电机以及与电机传动配合的转轴,该转轴与第二反光镜组272传动连接,电机通过转轴驱动第二反光镜组272转动。
第二激光收发元件271包括激光发射器251b和激光接收器252b,第二反光镜组272包括第一反光镜261b和第二反光镜262b。激光发射器251b与激光接收器252b沿第三方向层叠设置。激光发射器251b输出的激光信号经由第一反光镜261b反射至外部环境。第一反光 镜261b与第二反光镜262b沿第三方向层叠设置,且来自外部环境的激光信号经由第二反光镜262b反射至激光接收器252b。
举例而言,第二激光传感器模组20b的尺寸规格可以为76.5mm×39.9mm×35.7mm,第二激光传感器模组20b的体积较小,且结构紧凑,进一步有利于提高清洁装置10的空间利用率。
在一实施例中,自移动装置包括装置主体11,装置主体11能够在移动面上移动。自移动装置还包括至少两组激光传感器模组20,各组激光传感器模组20沿装置主体11的周向依次间隔分布,其中至少一组激光传感器模组20具有发散的视场角。
需要说明的是,自移动装置为可以在移动面上自行移动的装置,其包括但不限于上述实施例阐述的清洁装置10。对应地,移动面包括但不限于上述实施例阐述的待清洁面12。其中,装置主体11及激光传感器模组20已在上述实施例中详细阐述,在此就不再赘述。
下面结合具体应用场景对本申请实施例提供的技术方案进行说明。
应用场景一:
清洁装置10为清洁机器人。清洁装置10包括装置主体11,装置主体11能够在待清洁面12上移动以清洁该待清洁面12。自移动装置还包括至少两组激光传感器模组20,各组激光传感器模组20沿装置主体11的周向依次间隔分布,其中至少一组激光传感器模组20具有发散的视场角。
该至少两组激光传感器模组20包括第一激光传感器模组20a和第二激光传感器模组20b。第一激光传感器模组20a具有第一视场角,第二激光传感器模组20b具有第二视场角。第一激光传感器模组20a位于装置主体11的前端111a,第二激光传感器模组20b位于装置主体11的第三角落位置114c,第一视场角和第二视场角均为120°,第一视场角对应的视野区域和第二视场角对应的视野区域之间具有一交叠区域,该交叠区域对应的角度为30°,使得第一视场角和第二视场角整合得到的总视场角达到210°,能够满足导航及避障功能对视场角的要求。
应用场景二:
自移动装置包括装置主体11,装置主体11能够在移动面上移动。自移动装置还包括至少两组激光传感器模组20,各组激光传感器模组20沿装置主体11的周向依次间隔分布,其中至少一组激光传感器模组20具有发散的视场角。
该至少两组激光传感器模组20包括第一激光传感器模组20a和第二激光传感器模组20b。第一激光传感器模组20a具有第一视场角,第二激光传感器模组20b具有第二视场角。第一激光传感器模组20a位于装置主体11的前端111a,第二激光传感器模组20b位于装置主体 11的第三角落位置114c,第一视场角和第二视场角均为120°,第一视场角对应的视野区域和第二视场角对应的视野区域之间具有一交叠区域,该交叠区域对应的角度为30°,使得第一视场角和第二视场角整合得到的总视场角达到210°,能够满足导航及避障功能对视场角的要求。
以上对本申请提供的清洁装置以及自移动装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种自移动清洁机器人,其特征在于,包括:主机、沿边传感器和激光传感器,所述沿边传感器和所述激光传感器分别设置于所述主机的相对二侧,其中所述激光传感器包括:
    第一发射接收模块,沿第一轴向设置,并具有第一视场角;以及
    第二发射接收模块,沿第二轴向设置,并具有第二视场角;
    其中,所述第一轴向和所述第二轴向相交,并且在所述第一轴向和所述第二轴向之间形成临界区,所述第一视场角和所述第二视场角在所述临界区相接或相互重叠。
  2. 如权利要求1所述的自移动清洁机器人,其特征在于,所述主机包括第一边角区和第二边角区,所述第一边角区设置有边刷,所述激光传感器设置于所述第二边角区,其中所述第二边角区包括第一竖直段、第二竖直段以及弯折段,所述弯折段弯曲连接于所述第一竖直段和所述第二竖直段之间,并且位于所述临界区内。
  3. 如权利要求2所述的自移动清洁机器人,其特征在于,所述激光传感器还包括反光模块,所述第一轴向和所述第二轴向相交于所述反光模块,其中所述反光模块具有转轴和反光镜,所述反光镜沿所述转轴的径向伸出于所述转轴的相对二侧,并可在所述转轴的带动下相对所述第一发射接收模块和所述第二发射接收模块转动。
  4. 如权利要求1所述的自移动清洁机器人,其特征在于,所述第一轴向和所述第二轴向相交于一交点,所述主机的中心和所述交点连成一辅助线,所述临界区与所述辅助线在投影方向上重叠。
  5. 如权利要求1所述的自移动清洁机器人,其特征在于,所述第一视场角和所述第二视场角的角度不小于105度。
  6. 如权利要求4所述的自移动清洁机器人,其特征在于,所述第一视场角和所述第二视场角的总视场角介于210度至250度之间。
  7. 如权利要求1所述的自移动清洁机器人,其特征在于,所述主机包括底座和撞板组件,所述撞板组件连接于所述底座,并且可相对底座位移,所述激光传感器设置于所述撞板组件上。
  8. 如权利要求6所述的自移动清洁机器人,其特征在于,还包括结构光传感器,设置于所述撞板组件上,并且介于所述边刷组件和所述激光传感器之间。
  9. 如权利要求7所述的自移动清洁机器人,其特征在于,所述撞板组件包括板体、支架和托架,所述支架连接于所述底座,所述板体设置于所述支架上并围绕于所述支架 外围,所述托架结合于所述板体上,并且具有承载部和套合部,所述结构光传感器结合于所述套合部内,所述激光传感器设置于所述承载部上,其中所述结构光传感器和所述激光传感器的感测面分别露出于所述板体外。
  10. 如权利要求6所述的自移动清洁机器人,其特征在于,所述撞板组件的顶端是所述主机的最高点。
  11. 如权利要求1所述的自移动清洁机器人,其特征在于,所述主机的底部设置有万向轮模组和滚刷模组,所述万向轮模组位于所述主机的前侧和所述滚刷模组之间,所述激光传感器和所述沿边传感器分别对应于所述万向轮模组的左右两侧。
  12. 一种自移动清洁机器人,其特征在于,包括主机和激光传感器,所述激光传感器包括沿第一轴向设置的第一发射接收模块以及沿第二轴向设置的第二发射接收模块,其中所述第一轴向和所述第二轴向相交,所述主机的边角结构位于所述第一轴向和所述第二轴向之间,所述第一发射接收模块的第一视场角和所述第二发射接收模块的第二视场角在所述边角结构处相接或相互重叠。
  13. 一种自移动清洁机器人,其特征在于,包括:
    主机,具有边角结构;以及
    激光传感器,包括沿第一轴向设置的第一发射接收模块以及沿第二轴向设置的第二发射接收模块,所述第一轴向和所述第二轴向相交于一交点,其中所述主机的中心和所述交点连成一辅助线,所述边角结构与所述辅助线在投影方向上重叠,且所述第一发射接收模块的第一视场角和所述第二发射接收模块的第二视场角在所述边角结构处相接或相互重叠。
PCT/CN2023/105939 2022-07-06 2023-07-05 自移动清洁机器人 WO2024008125A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210800283.2A CN117398019A (zh) 2022-07-06 2022-07-06 自移动清洁机器人
CN202210800283.2 2022-07-06
CN202211159217.8A CN117770698A (zh) 2022-09-22 2022-09-22 应用于激光雷达模组的控制模组和控制方法、装置
CN202211159217.8 2022-09-22
CN202211158864.7 2022-09-22
CN202211158864 2022-09-22
CN202310721502.2A CN117770699A (zh) 2022-09-22 2023-06-16 清洁装置以及自移动装置
CN202310721502.2 2023-06-16

Publications (1)

Publication Number Publication Date
WO2024008125A1 true WO2024008125A1 (zh) 2024-01-11

Family

ID=89454417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105939 WO2024008125A1 (zh) 2022-07-06 2023-07-05 自移动清洁机器人

Country Status (1)

Country Link
WO (1) WO2024008125A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160306358A1 (en) * 2015-04-16 2016-10-20 Samsung Electronics Co., Ltd Cleaning robot and method of controlling the same
US20170001311A1 (en) * 2015-07-01 2017-01-05 Irobot Corporation Robot navigational sensor system
CN108814452A (zh) * 2018-08-22 2018-11-16 上海炬佑智能科技有限公司 扫地机器人及其障碍检测方法
CN110537109A (zh) * 2017-04-28 2019-12-03 深圳市大疆创新科技有限公司 用于自主驾驶的感测组件
CN112902958A (zh) * 2019-11-19 2021-06-04 珠海市一微半导体有限公司 一种基于激光视觉信息避障导航的移动机器人
CN215227226U (zh) * 2020-12-28 2021-12-21 追觅创新科技(苏州)有限公司 扫地机器人
CN215897823U (zh) * 2021-08-17 2022-02-22 科沃斯机器人股份有限公司 结构光模组及自移动设备
CN218978766U (zh) * 2022-07-06 2023-05-09 科沃斯机器人股份有限公司 自移动清洁机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160306358A1 (en) * 2015-04-16 2016-10-20 Samsung Electronics Co., Ltd Cleaning robot and method of controlling the same
US20170001311A1 (en) * 2015-07-01 2017-01-05 Irobot Corporation Robot navigational sensor system
CN110537109A (zh) * 2017-04-28 2019-12-03 深圳市大疆创新科技有限公司 用于自主驾驶的感测组件
CN108814452A (zh) * 2018-08-22 2018-11-16 上海炬佑智能科技有限公司 扫地机器人及其障碍检测方法
CN112902958A (zh) * 2019-11-19 2021-06-04 珠海市一微半导体有限公司 一种基于激光视觉信息避障导航的移动机器人
CN215227226U (zh) * 2020-12-28 2021-12-21 追觅创新科技(苏州)有限公司 扫地机器人
CN215897823U (zh) * 2021-08-17 2022-02-22 科沃斯机器人股份有限公司 结构光模组及自移动设备
CN218978766U (zh) * 2022-07-06 2023-05-09 科沃斯机器人股份有限公司 自移动清洁机器人

Similar Documents

Publication Publication Date Title
AU2021201524B2 (en) Cleaning robot and controlling method thereof
TWI684084B (zh) 移動裝置
US11740625B2 (en) Plurality of autonomous mobile robots and controlling method for the same
KR102388448B1 (ko) 이동 로봇 및 그 제어 방법
KR102293615B1 (ko) 청소 로봇 및 그 제어 방법
US12064082B2 (en) Cleaning robot and controlling method thereof
JP2022517569A (ja) 移動ロボット
EP3795050B1 (en) Vacuum cleaner and control method thereof
US20200077861A1 (en) Robot cleaner and a controlling method for the same
CN103941306A (zh) 清洁机器人及用于控制其避开障碍物的方法
CN103941735A (zh) 地面清洁机器人及用于控制其避开障碍物的方法
US12059115B2 (en) Cleaner and method for controlling same
WO2024008125A1 (zh) 自移动清洁机器人
TWI723151B (zh) 掃地機
CN218978766U (zh) 自移动清洁机器人
KR20220021980A (ko) 청소 로봇 및 그 제어 방법
EP3949818B1 (en) Robot cleaner
CN210931169U (zh) 一种机器人
TW201805748A (zh) 邊界訊號發射裝置及其制約自走式清潔裝置之方法及依該方法制約之自走式清潔裝置
EP4379422A1 (en) Transceiver optical system, lidar, terminal device, and method and apparatus
CN219070084U (zh) 清洁装置、自移动装置、应用于激光雷达模组的控制模组
KR101225820B1 (ko) 자동청소장치 및 자동청소장치의 제어방법
US20230225580A1 (en) Robot cleaner and robot cleaner control method
CN209961912U (zh) 激光测距装置及清洁机器人
CN113693491A (zh) 移动机器人、控制方法和系统、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834892

Country of ref document: EP

Kind code of ref document: A1