WO2024007975A1 - 通话能力监测方法、装置、终端和可读存储介质 - Google Patents

通话能力监测方法、装置、终端和可读存储介质 Download PDF

Info

Publication number
WO2024007975A1
WO2024007975A1 PCT/CN2023/104411 CN2023104411W WO2024007975A1 WO 2024007975 A1 WO2024007975 A1 WO 2024007975A1 CN 2023104411 W CN2023104411 W CN 2023104411W WO 2024007975 A1 WO2024007975 A1 WO 2024007975A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
vonr
calls
call
network
Prior art date
Application number
PCT/CN2023/104411
Other languages
English (en)
French (fr)
Inventor
朱岳军
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024007975A1 publication Critical patent/WO2024007975A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • VoIP Voice over New Radio
  • a call capability monitoring device which includes: a statistics module and a determination module.
  • the statistics module is used to count the number of times the terminal successfully conducts VoNR calls and VoLTE calls when the terminal supports VoNR capabilities and completes SA's NR network registration.
  • the statistics module is also used to count the number of times the terminal successfully conducts VoNR calls and VoLTE calls when the target number is greater than or When equal to the preset number of times, stop counting the number of successful calls; the determination module is used to determine, according to the target number, the NR network at the first time after the statistical module stops counting the number of successful calls.
  • the NR network supports the VoNR capability within the first time period; or, if the target number is the If the number of times the terminal successfully performs VoLTE, the NR network does not support the VoNR capability within the first time period.
  • inventions of the present application provide an electronic device.
  • the electronic device includes a processor, a memory, and a program or instructions stored on the memory and executable on the processor.
  • the program or instructions are When executed by the processor, the steps of the method described in the first aspect are implemented.
  • embodiments of the present application provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the steps of the method described in the first aspect are implemented. .
  • embodiments of the present application provide a chip, which includes a processor and a communication interface.
  • the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method described in the first aspect.
  • Figure 1 is one of the block diagrams of a wireless communication system applicable to the embodiment of the present application
  • Figure 2 is the second block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 3 is the third block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 4 is a schematic flow chart of a call capability monitoring method provided by an embodiment of the present application.
  • FIG. 5 is a flow diagram of the VoNR calling process
  • FIG. 6 is a flow diagram of the VoNR called process
  • FIG. 7 is a flow diagram of the EPS FB calling process
  • FIG. 8 is a flow diagram of the EPS FB called process
  • Figure 9 is a schematic structural diagram of a call capability monitoring device provided by an embodiment of the present application.
  • Figure 10 is one of the structural schematic diagrams of a terminal provided by an embodiment of the present application.
  • Figure 11 is a second structural schematic diagram of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • MID Mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • PUE pedestrian terminals
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PCs), teller machines or self-service machines and other terminal-side devices
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart Clothing etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a wireless access network device or a Radio Access Network (Radio Access Network). ,RAN), radio access network function or radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home Node B Home Evolved Node B
  • TRP Transmitting Receiving Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • NR refers to “New Radio", which is usually translated as “new air interface”. It can be understood that the 5G network can also be called the “NR” network.
  • VoNR in 5G has higher call quality and more stable connection.
  • the former backbone network is based on 4G base stations, which has low cost and fast deployment, but its advantages such as low latency cannot be fully utilized; the latter backbone network is based on newly renovated 5G base stations, which has real technical advantages and can be regarded as the complete body of 5G.
  • the promotion and popularization of VoNR must achieve broad coverage of SA.
  • VoNR and EPS-FB will coexist for a long time. It is impossible to withdraw EPS-FB from the network and only support VoNR, because some users' terminals do not support VoNR when they leave the factory, and they still need to be installed under the operator's network. If used, only EPS-FB can be used at this time; the other part is that the terminal supports VoNR when shipped from the factory.
  • the network supports both VoNR+EPS-FB and only EPS-FB. The specific choice is determined by the network.
  • FIG. 3 (a) in Figure 3 is a block diagram of a wireless communication system used when the terminal 11 makes a VoLTE call (that is, with an EPS-FB process); (b) in Figure 3 is a block diagram of the terminal 11 Block diagram of a wireless communication system used when making VoNR calls.
  • the network can use AMF to determine whether the network supports VoNR and whether it has an N26 interface.
  • the N26 interface is the interface between the 4G core network and the 5G core network (between MME and AMF) and is used for interoperability between 4G and 5G. .
  • IMS Voice (3gpp) capabilities it does not specifically indicate which call capabilities among the VoNR capabilities and EPS FB capabilities the network port supports, so the terminal cannot know whether the network supports VoNR.
  • terminals may report VoNR capabilities by default. Some networks may report VoNR capabilities due to coverage. The reason is that VoNR is not supported for the time being; however, some VoNR networks are abnormal, and operators temporarily shut down VoNR after serious market complaints.
  • embodiments of the present application provide a method to automatically determine whether the network it accesses supports the VoNR capability based on the accessed network behavior or the bearer type of the call successfully conducted by the terminal. It can be understood that the terminal can learn the VoNR deployment situation of the network through the collected network behavior and the bearer type information of the calls successfully conducted by the terminal, and optimize some business scenarios according to whether the network supports VoNR; it can also be targeted after obtaining the VoNR capability of the network. Make some experience optimizations for this scene.
  • the embodiment of the present application provides a call capability monitoring method.
  • Figure 4 shows a possible flow diagram of the call capability monitoring method provided by the embodiment of the present application. As shown in Figure 4, the call capability provided by the embodiment of the present application The monitoring method may include steps 401 and 402 described below.
  • the terminal can continue to perform step 401; if the terminal does not support the VoNR capability, the terminal does not need to perform step 401. Alternatively, if the terminal completes registration with the NSA's NR network, the terminal does not need to perform step 401. In this way, the power consumption of the terminal can be saved.
  • the terminal counts the number of times the terminal successfully conducts VoNR calls and VoLTE calls respectively to monitor the VoNR capability of the NR network.
  • the VoNR capability of the above NR network can represent the VoNR capability of the core network to which the terminal accesses. That is, if the terminal determines that the above-mentioned NR network supports the VoNR capability, the terminal can think that the core network of the NR network also supports the VoNR capability; if the terminal determines that the above-mentioned NR network does not support the VoNR capability, the terminal can think that the core network of the NR network does not also support the VoNR capability. Support VoNR capability.
  • LTE_Call_Count and NR_Call_Count are the number of times the terminal has successfully made VoLTE calls and VoNR calls respectively. If the terminal starts counting, the number of times the terminal has successfully made VoLTE calls and VoNR Before the number of calls, set the values of LTE_Call_Count and NR_Call_Count to 0.
  • the "call" in the embodiment of this application includes: the calling call initiated by the terminal and the called call delivered by the NR network.
  • NR network in the following embodiments refers to the NR network of SA. The two have the same meaning and can be interchanged.
  • the NR network in which the "terminal” is a terminal that "supports VoNR capability” and the "NR network” is "SA” is taken as an example to describe the call capability monitoring method provided by the embodiments of the present application. .
  • the terminal in the process of counting the number of times the terminal successfully conducts VoNR calls and VoLTE calls, if a certain call made by the terminal is unsuccessful, for example, the establishment of a VoNR call is unsuccessful, the terminal can The number of successful VoNR calls made by the terminal is updated.
  • Step 402 When the target number is greater than or equal to the preset number, the terminal stops counting the number of successful calls, and determines the VoNR capability of the NR network in the first time period based on the target number.
  • the NR network supports the VoNR capability in the first time period; or if the target number is the number of times the terminal successfully makes VoLTE calls, then the NR network does not support the VoNR capability in the first time period. Support VoNR capability.
  • the preset number of times may be any possible number of times set in advance.
  • the target number is greater than or equal to the preset number, it means that the target number is enough to determine whether the NR network supports the VoNR capability.
  • the terminal stops counting the number of successful calls, which can be understood as: the terminal stops counting the number of times the terminal successfully makes VoNR calls and the number of times the terminal successfully makes VoLTE calls.
  • the terminal when the terminal determines that the number of times the terminal has successfully made VoNR calls or the number of times the terminal has successfully made VoLTE calls is greater than or equal to the preset number, the terminal stops counting the number of times the terminal has successfully made VoNR calls and VoLTE calls, so that Ensure that among the number of VoNR calls and VoLTE calls successfully made by the terminal counted by the terminal, one and only one number can be greater than or equal to the preset number.
  • the above-mentioned preset number of times can be any possible number of times, for example, the preset number of times can be: 2 times, 3 times, 4 times, etc., which can be determined according to actual usage requirements.
  • the duration for counting the number of times a terminal successfully makes VoLTE calls and VoLTE calls may not be limited, that is, the process of monitoring the VoNR capability of the NR network each time starts from the number of times the terminal starts counting until the target number is greater than or equal to the preset number. End of times.
  • the duration for counting the number of successful VoLTE calls and VoLTE calls made by the terminal can also be limited.
  • the statistical duration can be set to 24h, 28h or 30h. If the statistical duration is exceeded, the target number is not greater than or equal to the predetermined number. If the number of times is set, it is determined that monitoring the VoNR capability of the NR network has failed, and then the terminal can monitor again.
  • the terminal can clear the number of times the terminal has successfully made VoNR calls and the number of times the terminal has successfully made VoLTE calls, so that the terminal can enter the loop judgment (re-monitoring) next time.
  • VoNR capability process of NR network
  • the terminal can reset LTE_Call_Count or NR_Call_Count to 0.
  • the first time period may be a time period starting from the time when the terminal determines that the target number is greater than or equal to the preset number of times and continuing for a preset time period; wherein the preset time period may be any possible time length.
  • the preset duration can be 72h, 48h or 24h.
  • the terminal can immediately start the timer T1.
  • the timing length of the timer T1 is 72h. It can be seen that the start time of the first time period is 8:00 am on March 24 and the end time of the first time period is the am of March 27. 8 o'clock. Furthermore, the terminal can stop counting the number of successful VoNR calls and the number of VoLTE calls made by the terminal starting from 8:00 am on March 24.
  • step 401 can be specifically implemented through the following step A.
  • Step A When the terminal supports VoNR calls and completes SA's NR network registration, the terminal determines whether the call process for each successful call includes the EPS-FB process (a possible implementation method), and/or based on Dedicated bearer type for each successful call (another possible implementation), counting the number of successful VoNR calls and VoLTE calls made by the terminal respectively.
  • the EPS-FB process a possible implementation method
  • Dedicated bearer type for each successful call
  • each successful call in step A refers to each successful call made by the terminal when the terminal supports VoNR calls and completes SA's NR network registration.
  • the terminal can count each call that the terminal successfully conducts after time t1.
  • the "call process of the call” can be understood as: the signaling process between the terminal and the network (which may include the above-mentioned NR network) from the start of the call to the successful establishment of the call.
  • the terminal can determine whether the dedicated bearer of the call is created based on the NR network or the LTE network by receiving the Quality of Service (QoS) identification of each successful call, thereby determining whether the call is a VoNR call or VoLTE. call.
  • QoS Quality of Service
  • the QoS identifier can be carried in the Protocol Data Unit (PDU) session modification command corresponding to each successful call, and the value of each QoS identifier is the service quality level of the corresponding call.
  • PDU Protocol Data Unit
  • “5QI” is the QoS identifier, and
  • “1" is the value of the QoS identifier.
  • the EPS bearer is VoLTE voice.
  • the QoS level created by the call "5QI” is the QoS identifier
  • "1" is the value of the QoS identifier.
  • the QoS level takes the QoS level as 1 as an example.
  • the QoS level can also be other levels.
  • the following is an exemplary description of the call procedures for the terminal to establish a VoNR call and a VoLTE call respectively.
  • Example 1 is a flow diagram of the VoNR calling process. As shown in Figure 5, the VoNR calling process includes the following steps 51 to 58.
  • Step 52 The NR network sends a call request response, for example, "100trying" to the terminal. This response is used to indicate that the NR network is processing the call request.
  • Step 53 The terminal sends an NR Radio Resource Control (RRC) reconfiguration message to the NR network and starts the NR-RRC reconfiguration process; this reconfiguration message is used to request to add a radio bearer (add radio bearer).
  • RRC Radio Resource Control
  • Step 54 The terminal sends an NR-RRC reconfiguration completion message to the NR network to indicate that the terminal has completed the NR-RRC reconfiguration.
  • Step 56 The terminal sends a PDU session modification command completion message to the NR network.
  • the response message is used to indicate that the terminal has completed the establishment of the dedicated bearer.
  • Step 57 The NR network sends a call progress message, such as "183Session Progress", to the terminal.
  • the call progress message is used to indicate the progress of establishing the call.
  • Step 58 The terminal makes a VoNR call, namely "VoLTE NR Process".
  • FIG. 6 is a flow chart of the VoNR called process. As shown in Figure 6, the VoNR called process includes the following steps 61 to 68.
  • Step 61 The NR network sends a call request to the terminal.
  • Step 62 The terminal sends a call request response, for example, "100trying" to the NR network. This response is used to indicate that the terminal is processing the call request.
  • a call request response for example, "100trying"
  • Step 63 The terminal sends a call progress message, such as "183Session Progress", to the NR network.
  • the call progress message is used to indicate the progress of establishing the call.
  • Step 64 The terminal sends an NR-RRC reconfiguration message to the NR network and starts the NR-RRC reconfiguration process; this reconfiguration message is used to request to add a radio bearer (add radio bearer).
  • Step 65 The terminal sends an NR-RRC reconfiguration complete message to the NR network to indicate that the terminal has completed the NR-RRC reconfiguration.
  • Step 67 The terminal sends a PDU session modification command completion message to the NR network. This response message is used to indicate that the terminal has completed the establishment of the dedicated bearer.
  • Step 68 The terminal makes a VoNR call, namely "VoLTE NR Process".
  • FIG. 7 is a flow diagram of the EPS FB calling process. As shown in Figure 7, the EPS FB calling process includes the following steps 71 to 83.
  • Step 71 The terminal sends a call request to the NR network.
  • Step 72 The NR network sends a call request response, for example, "100trying" to the terminal. This response is used to indicate that the NR network is processing the call request.
  • Step 73 The terminal sends an NR_RRC reconfiguration request message to the NR network, for example, "NR_RRC Reconfiguration (Measurement Control info)".
  • the reconfiguration request message is used to request reconfiguration of NR-RRC.
  • Step 74 The terminal sends an NR-RRC reconfiguration completion message to the NR network to indicate that the terminal has completed the NR-RRC reconfiguration.
  • Step 75 The terminal sends the measurement report of the NR network to the NR network.
  • Step 76 The NR network sends a redirection message to the terminal, which instructs the terminal to redirect the voice call, such as "Hanover or Redirection".
  • Step 77 The terminal sends a redirection completion message to the NR network to indicate that the NR network terminal has completed voice call redirection.
  • Step 78 The LTE network sends an LTE-RRC reconfiguration message to the terminal.
  • the reconfiguration message is used to request to add a radio bearer, that is, "add radio bearer”.
  • Step 79 The terminal sends an LTE-RRC reconfiguration completion message to the LTE network to indicate that the terminal has completed the LTE-RRC reconfiguration.
  • Step 82 The LTE network sends a call progress message, such as "183Session Progress", to the terminal.
  • the call progress message is used to indicate the progress of establishing the call.
  • Step 83 The terminal makes an EPS FB call.
  • FIG. 8 is a flow diagram of the EPS FB called process. As shown in Figure 8, the EPS FB called process includes the following steps 84 to 94.
  • Step 84 The NR network sends a call request to the terminal.
  • Step 85 The terminal sends a call request response, for example, "100trying" to the NR network. This response is used to indicate that the terminal is processing the call request.
  • a call request response for example, "100trying"
  • Step 86 The terminal sends an NR_RRC reconfiguration request message to the NR network, for example, "NR_RRC Reconfiguration (Measurement Control info)".
  • the reconfiguration request message is used to request reconfiguration of NR-RRC.
  • Step 87 The terminal sends an NR-RRC reconfiguration completion message to the NR network to indicate that the terminal has completed the NR-RRC reconfiguration.
  • Step 88 The terminal sends a measurement report of the NR network to the NR network.
  • Step 89 The NR network sends a redirection message to the terminal, which instructs the terminal to redirect the voice call, such as "Hanover or Redirection".
  • Step 90 The terminal sends a redirection completion message to the NR network to indicate that the NR network terminal has completed voice call redirection.
  • Step 91 The terminal sends a call progress message, such as "183Session Progress", to the LTE network.
  • the call progress message is used to indicate the progress of establishing the call.
  • Step 92 The LTE network sends an LTE-RRC reconfiguration message to the terminal.
  • the reconfiguration message is used to request to add a radio bearer, that is, "add radio bearer”.
  • Step 93 The terminal sends an LTE-RRC reconfiguration completion message to the LTE network to indicate that the terminal has completed the LTE-RRC reconfiguration.
  • Step 96 The terminal makes an EPS FB call.
  • Step A1 The terminal determines whether the call process of the i-th successful call made by the terminal includes the EPS-FB process.
  • the terminal device can first determine whether the call process of the i-th successful call includes the EPS-FB process. If the call process of the i-th successful call does not include the EPS-FB process, process, the terminal can continue to perform the following step A2. If the call process of the i-th successful call includes the EPS-FB process, the terminal can continue to perform the following step A3.
  • the i-th successful call is a successful call that is being detected and counted by the terminal.
  • Step A2 The terminal device determines that the number of successful VoNR calls made by the terminal is M+1.
  • Step A3 The terminal device determines that the number of times the terminal has successfully made VoLTE calls is N+1.
  • M is the number of successful VoNR calls counted by the terminal before the terminal counts the i-th successful call
  • N is the number of successful VoLTE calls counted by the terminal before the terminal counts the i-th successful call.
  • Step a01 Start entering the program
  • Step a02 The terminal registers with the NR network and successfully registers with IMS;
  • Step a03 The terminal determines whether the terminal supports the VoNR capability. Only if the terminal supports the VoNR capability, the terminal performs the following step a04, otherwise it ends;
  • Step a04 Set the parameter for the terminal to record the number of successful VoLTE calls to LTE_Call_Count, and the parameter to record the number of successful VoNR calls for the terminal to NR_Call_Count.
  • LTE_Call_Count and NR_Call_Count are used to determine whether the NR network supports VoNR.
  • the parameters LTE_Call_Count and NR_Call_Count are both set to 0.
  • the calls counted by the terminal include calls actively initiated by the terminal (calls in which the terminal sends a call invitation (call)), or calls with the called party issued by the network (calls in which the terminal receives a call invitation).
  • Step a05 For each call made by the terminal, check whether the NR network triggers the NR->LTE redirection or handover process (EPS FB process) after the terminal sends or receives a call invitation. That is, through this point, the NR network can be confirmed Whether to support VoNR capability.
  • EPS FB process NR->LTE redirection or handover process
  • the NR network will generally establish a VoNR call without triggering the EPS FB process.
  • a temporary abnormality in the NR network causes the VoNR call creation to fail, resulting in an EPS Fallback. Therefore, it is necessary to further confirm whether the call established by the current radio access technology (RAT) is successful.
  • RAT radio access technology
  • Step a06 Only if the call of the current RAT is successfully established, the value of LTE_Call_Count or NR_Call_Count will be incremented by 1; otherwise, the judgment will be made again on the next call.
  • step a07 the value of LTE_Call_Count or NR_Call_Count is greater than or equal to the preset number of times K, the current maximum number of times is considered to be sufficient to determine whether the network supports VoNR;
  • Step a08 If LTE_Call_Count is greater than or equal to K, it means that every call on the NR network is an EPS fallback, and it is judged that the NR network does not support VoNR; if NR_Call_Count is greater than K, it means that every call on the NR network is a VoNR call, and it is judged that the network Support VoNR.
  • the EPS FB process when the terminal supports VoNR calls and completes SA's NR network registration, the EPS FB process will be triggered only when the NR network does not support the VoNR capability. Therefore, each time the terminal is counted, Whether the call process of a successful call includes the EPS FB process can improve the accuracy of statistics on the number of successful VoNR calls and VoLTE calls made by the terminal, thereby improving the accuracy of the terminal's ability to monitor the VoNR capability of the NR network.
  • the terminal when the terminal supports VoNR calls and completes SA's NR network registration, the terminal can perform the following for each successful call to the terminal.
  • Step A4 The terminal determines the dedicated bearer type for the i-th successful call.
  • the terminal device can first determine the dedicated bearer type of the i-th successful call. If the dedicated bearer type of the i-th successful call is created based on the NR network, the terminal can continue Perform the following step A5. If the dedicated bearer type for the i-th successful call is created based on the LTE network, the terminal can continue to perform the following step A6.
  • Step A5 The terminal device determines that the number of successful VoNR calls made by the terminal is M+1.
  • Step A6 The terminal device determines that the number of times the terminal has successfully made VoNR calls is N+1.
  • step A5 and step A6 please refer to the related description of step A2 and step A3 in one possible implementation manner.
  • Step b01 Start entering the program
  • Step b02 The terminal registers with the NR network and successfully registers with IMS;
  • Step b03 The terminal determines whether the terminal supports the VoNR capability. Only if the terminal supports the VoNR capability, the terminal performs the following step b04, otherwise it ends;
  • Step b04 Set the parameter for the terminal to record the number of successful VoLTE calls to LTE_Call_Count, and the parameter to record the number of successful VoNR calls for the terminal to NR_Call_Count.
  • LTE_Call_Count and NR_Call_Count are used to determine whether the NR network supports VoNR.
  • the parameters LTE_Call_Count and NR_Call_Count are both set to 0.
  • the calls counted by the terminal include calls actively initiated by the terminal (calls in which the terminal sends a call invitation (call)), or calls with the called party issued by the network (calls in which the terminal receives a call invitation).
  • Step b05 For each call made by the terminal, whether the terminal establishes a dedicated bearer through LTE (EPS Bearer) or NR (PDU Session PDU Session Control), you can confirm whether the network supports VoNR.
  • LTE EPS Bearer
  • NR PDU Session PDU Session Control
  • a temporary network abnormality causes the VoNR Call to fail, resulting in an EPS Fallback. Therefore, it is necessary to further confirm whether the call established by the current RAT is successful.
  • Step b06 Only if the call of the current RAT is successfully established, LTE_Call_Count or
  • NR_Call_Count The value of NR_Call_Count is increased by 1; otherwise, the judgment will be made again on the next call.
  • step b07 the value of LTE_Call_Count or NR_Call_Count is greater than or equal to the preset number of times K, it is considered that the current maximum number of times is enough to determine whether the network supports VoNR;
  • Step b08 If LTE_Call_Count is greater than or equal to K, it means that every call on the NR network is an EPS fallback, and it is judged that the NR network does not support VoNR; if NR_Call_Count is greater than K, it means that every call on the NR network is a VoNR call, and it is judged that the network Support VoNR.
  • a dedicated bearer for the call will be established based on LET only when the NR network does not support VoNR capabilities.
  • the terminal can directly establish a call bearer based on NR. Therefore, by counting the dedicated bearer type for each successful call of the terminal, the accuracy of the statistics of the number of successful VoNR calls and VoLTE calls made by the terminal can be improved, thereby improving the accuracy of statistics.
  • the terminal monitors the accuracy of the VoNR capability of the NR network.
  • the terminal can count the number of times the terminal successfully conducts VoNR calls and VoLTE calls based on whether the call process of each successful call includes the EPS FB process or the dedicated bearer type of each successful call, it can improve the terminal Flexibility and accuracy in counting calls.
  • step 401 can be specifically implemented through the following step B.
  • Step B If the terminal supports VoNR calls and completes SA's NR network registration, the terminal will re-count the number of successful VoNR calls and VoLTE calls made by the terminal after the second time period.
  • the second time period is a preset time period after the terminal last determined the VoNR capability of the NR network. It should be noted that the “latest time” here refers to the latest time after the terminal completes registration with the NR network.
  • the terminal has determined the VoNR capability of the NR network three times, and determined for the first time that the NR network supports VoNR capability within time period 1, and for the second time it determined The NR network supports VoNR capability in time period 2, and it is determined for the third time that the NR network does not support VoNR in time period 3. Supports VoNR capability; then, time period 3 is the above-mentioned second time period.
  • the terminal can re-count the number of times the terminal has successfully made VoNR calls and VoLTE calls after the validity time of the VoNR capability of the NR network is greater than or equal to the last determined time, and determine the NR again based on the counted times Therefore, on the one hand, the terminal can continuously learn the VoNR capability of the NR network, and on the other hand, it can save the power consumption of the terminal.
  • a terminal that supports VoNR after a terminal that supports VoNR completes the NR network registration of the AS, it can count the number of successful VoNR calls and long-term evolution voice VoLTE calls made by the terminal, and based on this number, determine The VoNR capability of the terminal in a future time period (such as the first time period), thus enabling the terminal to accurately learn the VoNR capability of the network it accesses (i.e., the NR network), so that the terminal can accurately determine the VoNR capability of the accessed NR network.
  • VoNR capability optimizes the scene experience of voice services, thereby improving user experience.
  • the call capability monitoring method provided by the embodiment of the present application may further include the following step 403.
  • Step 403 The terminal determines the dedicated bearer type for each successful call based on the QoS identifier of each successful call.
  • the QoS identifier of the call indicates the dedicated bearer type of the call.
  • the QoS identifier refer to the related description of the QoS identifier in the above embodiment.
  • the QoS identifier of the call can indicate the dedicated bearer type of the call
  • the QoS identifier of each successful call by the terminal can be used to accurately determine the dedicated bearer type of each successful call and simplify the determination of the dedicated bearer of the call. type of operation process, so that the number of successful VoNR calls and VoLTE calls made by the terminal can be accurately determined.
  • the call capability monitoring method provided by the embodiment of the present application may further include the following step 404.
  • Step 404 The terminal updates the target capability information into the target database.
  • the target capability information indicates the VoNR capability of the NR network within the first time period; the target capability information in the target database is used for the target device to query the VoNR capability of the NR network within the first time period.
  • the target device may include at least one of the following: a terminal, and an upper-layer device of the terminal (such as the above-mentioned NR network).
  • the terminal can directly read the VoNR capability of the NR network from the target database "NW_VoNRCap Cache". This can improve the terminal's ability to obtain the VoNR capability of the NR network.
  • the terminal since each time the terminal determines the VoNR capability of the NR network, it can synchronously update the target capability information in the target database indicating the NR network. Therefore, the target device can query the NR network within the first time period. VoNR capability, thereby improving the operational convenience of querying the VoNR capability of the NR network.
  • the execution subject may be a call capability monitoring device, or a control module in the call capability monitoring device for executing the call capability monitoring method.
  • the call capability monitoring method performed by the call capability monitoring device is used as an example to illustrate the call capability monitoring method provided by the embodiment of the present application.
  • the embodiment of the present application provides a call capability monitoring device.
  • Figure 9 shows a possible structural diagram of the call capability monitoring device 900 provided by the embodiment of the present application.
  • the call capability monitoring device 900 can It includes: statistics module 901 and determination module 902.
  • the statistics module 901 is used to count the number of successful VoNR calls and VoLTE calls made by the terminal when the terminal supports VoNR capabilities and completes SA's NR network registration;
  • the statistics module is also used to stop counting successful calls when the target number is greater than or equal to the preset number. number of times;
  • the determination module is configured to determine the VoNR capability of the NR network in the first time period based on the target number after the statistics module stops counting the number of successful calls;
  • the NR network supports the VoNR capability within the first time period; or, if the target number is the number of times the terminal successfully conducts VoLTE times, the NR network does not support the VoNR capability within the first time period.
  • the above statistics module 901 is specifically used to determine whether the call process of each successful call includes the EPS-FB process when the terminal supports the VoNR capability and completes the SA's NR network registration, and /Or, based on the dedicated bearer type of each successful call, count the number of times the terminal successfully conducts VoNR calls and VoLTE calls respectively.
  • the above statistics module 901 is specifically used to: when the terminal supports the VoNR capability and completes SA's NR network registration, for each successful call:
  • the call process of the i-th successful call does not include the EPS-FB process, it is determined that the number of times the terminal has successfully made VoNR calls is M+1, where M is the latest number of successful VoNR calls counted by the statistics module 901 that the terminal has successfully made VoNR the number of calls; or,
  • the call process of the i-th successful call includes an EPS-FB process, it is determined that the number of times the terminal has successfully made a VoLTE call is N+1, and N is the latest number of successful VoLTE calls counted by the statistics module 901. number of times;
  • the above-mentioned statistics module 901 is specifically used when the terminal supports the VoNR capability and completes the SA's NR network registration. If the dedicated bearer for the i-th successful call is created based on the NR network, then It is determined that the number of times the terminal has successfully made VoNR calls is M+1, where M is the number of times the terminal has successfully made VoNR calls last counted by the statistics module 901; or,
  • the terminal determines that the number of times the terminal has successfully made VoLTE calls is N+1, and N is the latest successful count of the terminal by the statistics module 901 Number of VoLTE calls made;
  • the above-mentioned determination module 902 is also configured to count the number of times the terminal successfully conducts VoNR calls and VoLTE calls based on the dedicated bearer type of each successful call respectively before the statistics module 901 counts the number of times the terminal successfully conducts VoNR calls and VoLTE calls. Describe the QoS level of each successful call and determine the dedicated bearer type for each successful call.
  • the above-mentioned statistics module 901 is specifically used to re-statisticate the successful completion of the terminal after the end of the second time period when the terminal supports the VoNR capability and completes the SA's NR network registration. Number of VoNR calls and VoLTE calls;
  • the second time period is a preset time period after the statistics module 901 last determined the VoNR capability of the NR network.
  • the above device 900 further includes: an update module.
  • the update module is configured to update the target capability information to the target database after the determination module 902 determines the VoNR capability of the NR network in the first time period according to the target number of times.
  • the capability information indicates the VoNR capability of the NR network within the first time period;
  • the target capability information in the target database is used for the target device to query the VoNR capability of the NR network within the first time period.
  • the call capability monitoring device 900 can count the number of successful VoNR calls and Long Term Evolution VoLTE calls made by a terminal that supports VoNR after completing the NR network registration of the AS. , and based on this number of times, determine the terminal's performance in a future time period (for example, the first time period), thus enabling the terminal to accurately learn the VoNR capability of the network it accesses (i.e., the NR network), so that the terminal can perform voice services based on the VoNR capability of the accessed network.
  • Scene experience is optimized to improve user experience.
  • the call capability monitoring device in the embodiment of the present application may be a device, or may be a component, integrated circuit, or chip in the terminal.
  • the device may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computers (personal computers, PC), televisions (television, TV), teller machines or self-service machines, etc., this application The examples are not specifically limited.
  • the call capability monitoring device in the embodiment of the present application may be a device with an operating system.
  • the operating system can be an Android operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of this application.
  • the call capability monitoring device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 4. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 5000, which includes a processor 5001 and a memory 5002.
  • the memory 5002 stores programs or instructions that can be run on the processor 5001, such as , when the communication device 5000 is a terminal, when the program or instruction is executed by the processor 5001, each step of the above terminal-side method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be repeated here, or the communication
  • the device 5000 is a network-side device, when the program or instruction is executed by the processor 5001, the steps performed by the terminal in the above method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • Figure 11 is a schematic diagram of the hardware structure of an electronic device that implements an embodiment of the present application.
  • the terminal 7000 includes but is not limited to: a radio frequency unit 7001, a network module 7002, an audio output unit 7003, an input unit 7004, a sensor 7005, a display unit 7006, a user input unit 7007, an interface unit 7008, a memory 7009, a processor 7010, etc. At least some parts.
  • the terminal 7000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 7010 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 7004 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 7006 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 7007 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 7001 after receiving downlink data from the network side device, can transmit it to the processor 7010 for processing; in addition, the radio frequency unit 7001 can send uplink data to the network side device.
  • the radio frequency unit 7001 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 7009 may be used to store software programs or instructions as well as various data.
  • the memory 7009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 7009 may include volatile memory or nonvolatile memory, or memory 7009 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • enhanced SDRAM synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 7010 may include one or more processing units; optionally, the processor 7010 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 7010.
  • the input unit 7004 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 7006 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 7007 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the processor 7010 is used to count the number of successful VoNR calls and VoLTE calls by the terminal when the terminal supports the VoNR capability and completes the SA's NR network registration; and when the target number is greater than or equal to the preset number In the case of , stop counting the number of successful calls, and determine the VoNR capability of the NR network in the first time period based on the target number.
  • the NR network supports the VoNR capability within the first time period; or, if the target number is the number of times the terminal successfully conducts VoLTE times, the NR network does not support the VoNR capability within the first time period.
  • the terminal After the terminal that supports VoNR completes the NR network registration of the AS, the number of successful VoNR calls and long-term evolution voice VoLTE calls of the terminal can be counted, and based on this number, the terminal can be determined in the future.
  • the VoNR capability within a time period (for example, the first time period), thus allowing the terminal to accurately learn the VoNR capability of the network it accesses (ie, the NR network).
  • the above-mentioned processor 7010 is specifically used to determine whether the call process of each successful call includes the EPS-FB process when the terminal supports the VoNR capability and completes the SA's NR network registration, and /Or, based on the dedicated bearer type of each successful call, count the number of times the terminal successfully conducts VoNR calls and VoLTE calls respectively.
  • the above-mentioned processor 7010 is specifically configured to: when the terminal supports the VoNR capability and completes the SA's NR network registration, for each successful call:
  • the call process of the i-th successful call does not include the EPS-FB process, it is determined that the terminal successfully
  • the number of VoNR calls is M+1, where M is the number of times the terminal successfully made VoNR calls last counted by the processor 7010; or,
  • the call process of the i-th successful call includes the EPS-FB process, it is determined that the number of times the terminal has successfully made a VoLTE call is N+1, and N is the latest number of successful VoLTE calls counted by the processor 7010. number of times;
  • the above-mentioned processor 7010 is specifically used to: when the terminal supports the VoNR capability and completes the SA's NR network registration, if the dedicated bearer for the i-th successful call is created based on the NR network, then It is determined that the number of times the terminal has successfully made VoNR calls is M+1, where M is the most recent number of times the terminal has successfully made VoNR calls counted by the processor 7010; or,
  • the terminal determines that the number of times the terminal has successfully made a VoLTE call is N+1, and N is the latest successful count of the terminal by the processor 7010 Number of VoLTE calls made;
  • the above-mentioned processor 7010 is also configured to count the number of times the terminal successfully conducts VoNR calls and VoLTE calls based on the dedicated bearer type of each successful call.
  • the QoS level determines the dedicated bearer type for each successful call.
  • the above-mentioned processor 7010 is specifically used to re-calculate the successful progress of the terminal after the end of the second time period when the terminal supports the VoNR capability and completes the SA's NR network registration. Number of VoNR calls and VoLTE calls;
  • the second time period is a preset time period after the processor 7010 last determined the VoNR capability of the NR network.
  • the above-mentioned processor 7010 is configured to update the target capability information into the target database after determining the VoNR capability of the NR network in the first time period based on the target number of times,
  • the target capability information indicates the VoNR capability of the NR network within the first time period;
  • the target capability information in the target database is used for the target device to query the VoNR capability of the NR network within the first time period.
  • the call capability monitoring device can count the number of successful VoNR calls and long-term evolution voice VoLTE calls made by the terminal, and Based on the number of times, the VoNR capability of the terminal in a future time period (for example, the first time period) is determined, so that the terminal can accurately learn the VoNR capability of the network it accesses (that is, the NR network), so that the terminal can
  • the VoNR capability of the integrated network can optimize the scene experience of voice services, thereby improving the user experience.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above call capability statistics embodiment can be implemented and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage media includes computer-readable storage media, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above embodiment of the call capability monitoring method. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请公开了一种通话能力监测方法、装置、终端和可读存储介质,属于通信技术领域。该方法包括:在终端支持VoNR通话,且完成SA的NR网络注册的情况下,所述终端分别统计所述终端成功进行VoNR通话和VoLTE通话的次数;在目标次数大于或等于预设次数的情况下,终端停止统计成功通话的次数,根据所述目标次数,确定该NR网络在第一时间段内的VoNR能力;其中,若目标次数为终端成功进行VoNR通话的次数,则该NR网络在第一时间段内支持VoNR能力;或者,若目标次数为终端成功进行VoLTE的次数,则该NR网络在第一时间段内不支持VoNR能力。

Description

通话能力监测方法、装置、终端和可读存储介质
相关申请的交叉引用
本申请主张在2022年07月07日在中国提交申请号为202210803425.0的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种通话能力监测方法、装置、终端和可读存储介质。
背景技术
随着通信技术的发展,电子设备的功能越来越丰富,例如,电子设备可以具有新空口语音(Voice over New Radio,VoNR)能力。
其中,当前网络覆盖情况下,VoNR能力与演进分组系统回退(Evolved Packet System-Fall Back,EPS-FB)语音能力将在网络侧长期并存。
然而,由于网络侧设备仅在注册响应消息中携带指示其支持互联网协议多媒体子系统(IP(Internet Protocol,IP)Multimedia Subsystem,IMS)语音能力,而不指示网络侧设备具体支持IMS语音中的哪些语音能力,因此终端无法得知接入的网络(例如NR网络)是否支持VoNR能力,从而导致支持VoNR的终端无法对语音业务的场景体验进行优化。
发明内容
本申请实施例的目的是提供一种通话能力监测方法、装置、终端和可读存储介质,能够解决因终端无法得知接入的网络是否支持VoNR能力,而导致终端无法对语音业务的场景体验进行优化的问题。
第一方面,本申请实施例提供了一种通话能力监测方法,该方法包括:在终端支持新空口语音VoNR通话,且完成独立组网(Stan Dalone,SA)的NR网络注册的情况下,所述终端分别统计所述终端成功进行VoNR通话和长期演进语音(Voice over Long-Term Evolution,VoLTE)通话的次数;在目标次数大于或等于预设次数的情况下,终端停止统计成功通话的次数,并根据所述目标次数,确定该NR网络在第一时间段内的VoNR能力;其中,若目标次数为终端成功进行VoNR通话的次数,则该NR网络在第一时间段内支持VoNR能力;或者,若目标次数为终端成功进行VoLTE的次数,则该NR网络在第一时间段内不支持VoNR能力。
第二方面,本申请实施例提供了一种通话能力监测装置,所述通话能力监测装置包括:统计模块和确定模块。所述统计模块,用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数;统计模块,还用于在目标次数大于或等于预设次数的情况下,停止统计成功通话的次数;所述确定模块,用于在所述统计模块停止统计成功通话的次数后,根据所述目标次数,确定所述NR网络在第一时间段内的VoNR能力;其中,若所述目标次数为所述终端成功进行VoNR通话的次数,则所述NR网络在所述第一时间段内支持VoNR能力;或者,若所述目标次数为所述终端成功进行VoLTE的次数,则所述NR网络在所述第一时间段内不支持VoNR能力。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,由于支持VoNR的终端在完成AS的NR网络注册后,可以统计该终端成功进行VoNR通话和长期演进语音VoLTE通话的次数,并基于该次数,确定终端在未来的一个时间段(例如第一时间段)内的VoNR能力,因此使得终端可以准确获知其接入的网络的VoNR能力,从而终端可以根据接入的NR网络的VoNR能力,对语音业务的场景体验进行优化,进而可以提高用户体验感。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图之一;
图2是本申请实施例可应用的一种无线通信系统的框图之二;
图3是本申请实施例可应用的一种无线通信系统的框图之三;
图4是本申请实施例提供的通话能力监测方法的流程示意图;
图5为VoNR主叫流程的流程示意图;
图6为VoNR被叫流程的流程示意图;
图7为EPS FB主叫流程的流程示意图;
图8为EPS FB被叫流程的流程示意图;
图9是本申请实施例提供的通话能力监测装置的结构示意图;
图10是本申请实施例提供的终端的结构示意图之一;
图11是本申请实施例提供的终端的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal  computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。结合图1,如图2所示,网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面首先对本申请的权利要求书和说明书中涉及的一些名词或者术语进行解释说明。
在第五代移动通信技术(5th Generation Mobile Communication Technology,5G)术语中,“NR”则指“New Radio”,通常翻译成“新空口”,可以理解5G网络也可以称为“NR”网络。
与4G(4th Generation Mobile Communication Technology,4G)中的VoLTE相比,5G中的VoNR通话质量更高、连接更加稳定。
5G网络刚开始铺设时,就有非独立组网(On Stand Alone,NSA)和SA两种组网方式。前者主干网基于4G基站,成本低、铺设快,但低延迟等优势发挥不出来;后者主干网基于另起炉灶的5G基站,拥有真正的各项技术优势,算是5G的完全体。而VoNR的推广和普及,前提得是SA实现广泛覆盖。
截至2021年年底,我国累计建成并开通5G基站142.5万个,覆盖所有地级市城区,超过98%的县城城区和80%的乡镇镇区,我国已经建成全球最大的SA网络。至此,我们可以认为,VoNR推广普及的硬件基础已经初步具备了。
当前网络覆盖情况下,VoNR与EPS-FB将长期并存,无法将EPS-FB退网而只支持VoNR,因为有一部分用户的终端出厂就不支持VoNR,还是要在运营商的网络下 使用的,此时就只能使用EPS-FB;另外一部分就是终端出厂支持VoNR,网络有同时支持VoNR+EPS-FB和只支持EPS-FB两种,具体选择哪种由网络决定。
其中,如图3所示,图3中的(a)为终端11进行VoLTE通话(即具有EPS-FB流程)时应用的一种无线通信系统的框图;图3中的(b)为终端11进行VoNR通话时应用的一种无线通信系统的框图。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的通话能力监测方法、装置、终端和可读存储介质进行详细地说明。
目前,网络可以通过AMF判决网络是否支持VoNR,以及是否具有N26接口,其中,N26接口是4G核心网和5G核心网之间的接口(MME和AMF之间),用于4G和5G的互操作。虽然终端会在上行专用控制信道(UL_DCCH)和/或/UE能力信息(UE Capability Information)中携带指示UE支持VoNR能力的信息,但网络在登记接受(Registration accept)信息中仅携带ims_Vops_3GPP=1,以指示网络支持IMS Voice(3gpp)能力,不具体指示网口支持VoNR能力和EPS FB能力中的具体哪些通话能力,故终端无法得知网络是否支持VoNR。
在很多实际场景中,应运营商入网要求(2021年10月1日起,所有新增终端必选支持,且不允许在用户界面设置VoNR开关)终端可能默认都上报VoNR能力,有些网络因为覆盖原因,暂时未支持VoNR;但是也有些是VoNR网络异常,出现严重市场投诉后运营商短暂关闭VoNR。
为了便于终端知晓其接入的网络是否支持VoNR能力,本申请实施例提供一种基于接入的网络行为或者终端成功进行的通话的承载类型,自动判断其接入的网络是否支持VoNR能力。可以理解,终端通过收集的网络行为和终端成功进行的通话的承载类型信息,可以了解到网络的VoNR部署情况,根据网络是否支持VoNR做一些业务场景的优化;也可以在获取网络VoNR能力后针对该场景做一些体验优化。
本申请实施例提供了一种通话能力监测方法,图4示出了本申请实施例提供的通话能力监测方法的一种可能的流程示意图,如图4所示,本申请实施例提供的通话能力监测方法可以包括下述的步骤401和步骤402。
步骤401、在终端支持VoNR通话,且完成SA的NR网络注册的情况下,终端分别统计终端成功进行VoNR通话和VoLTE通话的次数。
可选地,本申请实施例中,“终端完成SA的NR网络注册”具体可以包括:终端注册NR网络,并注册该NR网络的IMS成功。
可以理解,在终端完成SA的NR网络的注册后,若终端支持VoNR能力,则可以继续执行步骤401;若终端不支持VoNR能力,则终端无需执行步骤401。或者,若终端完成的是NSA的NR网络的注册,则终端也无需执行步骤401。如此,可以节省终端的功耗。
本申请实施例中,终端分别统计终端成功进行VoNR通话和VoLTE通话的次数的目的是监测NR网络的VoNR能力。
可以理解,上述NR网络的VoNR能力可以表征终端接入的核心网的VoNR能力。即,若终端确定上述NR网络支持VoNR能力,则终端可以认为该NR网络的核心网也支持VoNR能力;若终端确定上述NR网络不支持VoNR能力,则终端可以认为该NR网络的核心网也不支持VoNR能力。
可选地,本申请实施例中,在终端完成SA的NR网络的注册后,终端可以间隔地监测NR网络的VoNR能力。且终端在每个VoNR能力统计流程开始前,先对终端前一次统计的全部通话次数清零。
示例性地,假设LTE_Call_Count和NR_Call_Count分别为终端成功进行VoLTE通话和VoNR通话的次数,那么:在终端开始统计终端成功进行VoLTE通话和VoNR 通话的次数前,将LTE_Call_Count和NR_Call_Count的值均设置为0。
可选地,本申请实施例中的“通话”包括:终端发起的主叫通话和NR网络下发的被叫通话。
需要说明的是,除特别说明外,下述实施例中的“NR网络”均是指SA的NR网络,两者意思相同,可以互换。
除特别说明外,下述实施例中均以“终端”为“支持VoNR能力”的终端且“NR网络”为“SA”的NR网络为例,对本申请实施例提供的通话能力监测方法进行说明。
可选地,本申请实施例中,在终端分别统计终端成功进行VoNR通话和VoLTE通话的次数的过程中,若终端进行的某次通话未成功,例如,建立VoNR通话不成功,则终端可以对终端成功进行VoNR通话的次数进行更新。
步骤402、在目标次数大于或等于预设次数的情况下,终端停止统计成功通话的次数,并根据目标次数,确定NR网络在第一时间段内的VoNR能力。
其中,若目标次数为终端成功进行VoNR通话的次数,则NR网络在第一时间段内支持VoNR能力;或者,若目标次数为终端成功进行VoLTE的次数,则NR网络在第一时间段内不支持VoNR能力。
本申请实施例中,预设次数可以为预先设置的任意可能的次数。
可以理解,对于当目标次数大于或等于预设次数后,即表示目标次数足够判断NR网络是否支持VoNR能力了。
本申请实施例中,终端停止统计成功通话的次数可以理解为:终端停止统计终端成功进行VoNR通话的次数和终端成功进行VoLTE通话的次数。
本申请实施例中,当终端确定终端成功进行VoNR通话的次数或者终端成功进行VoLTE通话的次数大于或等于预设次数时,终端即停止统计终端成功进行的VoNR通话和VoLTE通话的次数,如此可以确保终端统计的终端成功进行的VoNR通话和VoLTE通话的次数中,有且只有一个次数能够大于或等于预设次数。
例如,假设预设次数为4,且已统计到LTE_Call_Count=2,NR_Call_Count=3,那么,当终端再成功进行一次通话后,若该通话为VoNR通话,则终端确定NR_Call_Count=4(即目标次数),从而终端可以停止统计终端成功进行VoNR通话和VoLTE通话的次数;也就是说,终端成功进行VoNR通话的次数为4,终端成功进行VoLTE通话的次数为3;否则,终端确定LTE_Call_Count=3。
可选地,上述预设次数可以为任意可能的次数,例如,预设次数可以为:2次、3次、4次等,具体可以根据实际使用需求确定。
可选地,可以不限定统计终端成功进行VoLTE通话和VoLTE通话的次数的时长,即每次监测NR网络的VoNR能力的流程,从终端从开始统计时次数开始,直至目标次数大于或等于预设次数结束。
当然,实际实现中,也可以限定统计终端成功进行VoLTE通话和VoLTE通话的次数的时长,例如可以设置统计时长为24h,28h或30h等,若超过该统计时长时,目标次数未大于或等于预设次数,则确定监测NR网络的VoNR能力失败,然后终端可以重新监测。
可选地,终端确定目标次数大于或等于预设次数后,终端可以将终端成功进行VoNR通话的次数和终端成功进行VoLTE通话的次数清零,以便于终端后续可以下一次进入循环判断(重新监测NR网络的VoNR能力的流程)。
例如,终端在确定目标次数大于或等于预设次数后,终端可以将LTE_Call_Count或者NR_Call_Count重置为0。
可选地,本申请实施例中,第一时间段可以为从终端确定目标次数大于或等于预设次数的时间开始,延续预设时长的时间段;其中,预设时长可以为任意可能的时长, 例如,预设时长可以为72h,48h或24h。
例如,假设预设时长为72h,预设次数为3次,那么,若终端确定终端成功进行VoNR通话的次数(即目标次数)大于或等于预设次数时的时间为03月24上午8时,则终端可以立即开始启动定时器T1,定时器T1的定时时长为72h,可以看出,第一时间段的开始时间为03月24上午8时,第一时间段的结束时间为03月27上午8时。进一步地,终端可以从03月24上午8时开始,停止统计终端成功进行VoNR通话的次数和VoLTE通话的次数。
可选地,本申请实施例中,上述步骤401具体可以通过下述的步骤A实现。
步骤A、在终端支持VoNR通话,且完成SA的NR网络注册的情况下,终端基于每次成功通话的呼叫流程中是否包括EPS-FB流程(一种可能的实现方式),和/或,基于每次成功通话的专用承载类型(另一种可能的实现方式),分别统计终端成功进行VoNR通话和VoLTE通话的次数。
需要说明的是,步骤A中的“每次成功通话”是指在终端支持VoNR通话,且完成SA的NR网络注册的情况下,终端进行的每次成功通话。
例如,终端在t1时刻开始分别终端成功进行VoNR通话和VoLTE通话的次数,那么:终端可以对终端在t1时刻后成功进行的每次通话均进行统计。
本申请实施例中,“通话的呼叫流程”可以理解为:开始发起通话至通话建立成功之间,终端与网络(可以包括上述NR网络)之间的信令流程。
可选地,终端可以通过接收的每次成功通话的服务质量(Quality of Service,QoS)标识,确定该通话的专用承载基于NR网络还是LTE网络创建的,从而可以确定该通话是VoNR通话还是VoLTE通话。其中,该QoS标识可以携带在每次成功通话对应的协议数据单元(Protocol Data Unit,PDU)会话修改命令中,每个QoS标识的值即为对应通话的服务质量等级。
例如,若一次成功通话对应的PDU修改命令中包括:“5QI=1”,则表示该通话的专用承载是基于NR网络创建的。其中,“5QI=1”为NR网络的PDU为VoNR语音通话创建的QoS流(flow)等级;“5QI”为QoS标识,“1”为QoS标识的值。
又例如,若一个成功通话对应的PDU修改命令中包括:“QCI=1”,则表示该通话的专用承载是基于LTE网络创建的,其中,“QCI=1”为基于LTE EPS承载为VoLTE语音通话创建的QoS等级,“5QI”为QoS标识,“1”为QoS标识的值。
可以理解,上述示例是以QoS等级均为1为例进行示意的,实际实现中,QoS等级还可以为其他等级,具体可以参见相关技术。
下面分别对终端建立VoNR通话和VoLTE通话的呼叫流程进行示例性地说明。
示例1,图5为VoNR主叫流程的流程示意图。如图5所示,VoNR主叫流程包括下述的步骤51至步骤58。
步骤51、终端向NR网络发送通话请求。
步骤52、NR网络向终端发送通话请求响应,例如,“100trying”,该响应用于指示NR网络正在进行通话请求处理。
步骤53、终端向NR网络发送NR无线资源控制(Radio Resource Control,RRC)重配置消息,并开始进行NR-RRC重配置流程;该重配置消息用于请求添加无线电承载(add radio bearer)。
步骤54、终端向NR网络发送NR-RRC重配置完成消息,以指示终端已完成NR-RRC重配置。
步骤55、NR网络向终端发送PDU会话修改命令,例如“NR_RRC Reconfiguration(add Radio Bearer)”,该PDU会话修改命令用于指示终端基于5QI=1建立专用承载。
步骤56、终端向NR网络发送PDU会话修改命令完成消息,该响应消息用于指示终端已完成专用承载的建立。
步骤57、NR网络向终端发送通话进度消息,例如“183Session Progress”,该通话进度消息用于指示建立通话的进度。
步骤58、终端进行VoNR通话,即“VoLTE NR Process”。
示例2,图6为VoNR被叫流程的流程示意图。如图6所示,VoNR被叫流程包括下述的步骤61至步骤68。
步骤61、NR网络向终端发送通话请求。
步骤62、终端向NR网络发送通话请求响应,例如,“100trying”,该响应用于指示终端正在进行通话请求处理。
步骤63、终端向NR网络发送通话进度消息,例如“183Session Progress”,该通话进度消息用于指示建立通话的进度。
步骤64、终端向NR网络发送NR-RRC重配置消息,并开始进行NR-RRC重配置流程;该重配置消息用于请求添加无线电承载(add radio bearer)。
步骤65、终端向NR网络发送NR-RRC重配置完成消息,以指示终端已完成NR-RRC重配置。
步骤66、NR网络向终端发送PDU会话修改命令,例如“NR_RRC Reconfiguration(add Radio Bearer)”,该PDU会话修改命令用于指示终端基于5QI=1建立专用承载。
步骤67、终端向NR网络发送PDU会话修改命令完成消息,该响应消息用于指示终端已完成专用承载的建立。
步骤68、终端进行VoNR通话,即“VoLTE NR Process”。
示例3,图7为EPS FB主叫流程的流程示意图。如图7所示,EPS FB主叫流程包括下述的步骤71至步骤83。
步骤71、终端向NR网络发送通话请求。
步骤72、NR网络向终端发送通话请求响应,例如,“100trying”,该响应用于指示NR网络正在进行通话请求处理。
步骤73、终端向NR网络发送NR_RRC重配置请求消息,例如,“NR_RRC Reconfiguration(Measurement Control info)”,该重配置请求消息用于请求重新配置NR-RRC。
步骤74、终端向NR网络发送NR-RRC重配置完成消息,以指示终端已完成NR-RRC重配置。
步骤75、终端向NR网络发送NR网络的测量报告。
步骤76、NR网络向终端发送重定向消息,该重定向消息指示终端进行语音通话重定向,例如“Hanover or Redirection”。
步骤77、终端向NR网络发送重定向完成消息,以指示NR网络终端已完成语音通话重定向。
步骤78、LTE网络向终端发送LTE-RRC重配置消息,该重配置消息用于请求添加无线电承载,即“add radio bearer”。
步骤79、终端向LTE网络发送LTE-RRC重配置完成消息,以指示终端已完成LTE-RRC重配置。
步骤80、LTE网络向终端发送承载激活消息,例如“ESM_MSG_ACTIVATE_DEDICATED_EPS_BEARER_CONTEXT_REQUEST(setup QCI=1 Bearer)”,该激活消息用于终端激活激活专用EPS承载,具体用于终端建立QCI=1的专用承载。
步骤81、终端向LTE网络发送激活承载完成消息,以通知LTE网络终端已经完 成QCI=1的专用承载的建立。
步骤82、LTE网络向终端发送通话进度消息,例如“183Session Progress”,该通话进度消息用于指示建立通话的进度。
步骤83、终端进行EPS FB通话。
示例4,图8为EPS FB被叫流程的流程示意图。如图8所示,EPS FB被叫流程包括下述的步骤84至步骤94。
步骤84、NR网络向终端发送通话请求。
步骤85、终端向NR网络发送通话请求响应,例如,“100trying”,该响应用于指示终端正在进行通话请求处理。
步骤86、终端向NR网络发送NR_RRC重配置请求消息,例如,“NR_RRC Reconfiguration(Measurement Control info)”,该重配置请求消息用于请求重新配置NR-RRC。
步骤87、终端向NR网络发送NR-RRC重配置完成消息,以指示终端已完成NR-RRC重配置。
步骤88、终端向NR网络发送NR网络的测量报告。
步骤89、NR网络向终端发送重定向消息,该重定向消息指示终端进行语音通话重定向,例如“Hanover or Redirection”。
步骤90、终端向NR网络发送重定向完成消息,以指示NR网络终端已完成语音通话重定向。
步骤91、终端向LTE网络发送通话进度消息,例如“183Session Progress”,该通话进度消息用于指示建立通话的进度。
步骤92、LTE网络向终端发送LTE-RRC重配置消息,该重配置消息用于请求添加无线电承载,即“add radio bearer”。
步骤93、终端向LTE网络发送LTE-RRC重配置完成消息,以指示终端已完成LTE-RRC重配置。
步骤94、LTE网络向终端发送承载激活消息,例如,“ESM_MSG_ACTIVATE_DEDICATED_EPS_BEARER_CONTEXT_REQUEST(setup QCI=1 Bearer)”,该激活消息用于终端激活激活专用EPS承载,具体用于终端建立QCI=1的专用承载。
步骤95、终端向LTE网络发送激活承载完成消息,以通知LTE网络终端已经完成QCI=1的专用承载的建立。
步骤96、终端进行EPS FB通话。
可选地,本申请实施例中,在上述一种可能的实现方式中,在终端支持VoNR通话,且完成SA的NR网络注册的情况下,可以通过对终端进行的每次成功通话执行下述的步骤A1和步骤A2,或步骤A1和步骤A3。
步骤A1、终端判断终端进行的第i次成功通话的呼叫流程中是否包括EPS-FB流程。
本申请实施例中,对于上述第i次成功通话,终端设备可以先判断第i次成功通话的呼叫流程中是否包括EPS-FB流程,若第i次成功通话的呼叫流程中不包括EPS-FB流程,则终端可以继续执行下述的步骤A2,若第i次成功通话的呼叫流程中包括EPS-FB流程,则终端可以继续执行下述的步骤A3。
需要说明的是,第i次成功通话为终端正在检测和统计的成功通话。
步骤A2、终端设备确定终端成功进行VoNR通话的次数为M+1。
步骤A3、终端设备确定终端成功进行VoLTE通话的次数为N+1。
其中,M为终端最近一次统计的终端成功进行VoNR通话的次数,M为大于0的整数,N为终端最近一次统计的终端成功进行VoLTE通话的次数,N为大于或等于0 的整数;M+N=i-1,i为正整数。可以看出,i为终端在当前的通话能力统计过程中,成功通话的总次数。
可以理解,M为终端对第i次成功通话进行统计之前,终端统计的终端成功进行VoNR通话的次数,N为终端对第i次成功通话进行统计之前,终端统计的终端成功进行VoLTE通话的次数。
下面对一种可能的实现方式的具体过程进行示例性地说明。
步骤a01、开始进入程序;
步骤a02、终端注册NR网络,并注册IMS成功;
步骤a03、终端判断终端是否支持VoNR能力,只有在终端支持VoNR能力的情况下,终端才进行下述的步骤a04,否则结束;
步骤a04、设置终端记录成功进行VoLTE通话的次数的参数为LTE_Call_Count,记录终端成功进行VoNR通话的次数的参数为NR_Call_Count,LTE_Call_Count和NR_Call_Count用于判断NR网络是否支持VoNR。
其中,在开始第一次计数前,在开始第一次计数前,将参数LTE_Call_Count和NR_Call_Count均设置为0。
其中,终端统计的通话包括终端主动发起主叫通话(终端发送通话邀请(invite)的通话)即和网络下发的被叫通话(终端接收通话邀请的通话)。
步骤a05、对于终端进行的每次通话,检查终端发送通话邀请或者接收通话邀请后,NR网络是否触发NR->LTE的重定向或者切换过程(EPS FB流程)即,通过这点可以确认NR网络是否支持VoNR能力。
若终端和网络都支持VoNR能力,NR网络一般会建立VoNR通话,而不会触发EPS FB流程。当然也可能NR网络临时异常导致VoNR通话创建失败,从而出现EPS Fallback,所以要进一步确认当前无线接入技术(radio access technology RAT)建立的通话是否成功。
步骤a06、只有当前RAT的通话建立成功,才进行LTE_Call_Count或者NR_Call_Count的值加1;否则重新在下一次通话进行判断。
步骤a07、LTE_Call_Count或者NR_Call_Count的值大于或等于预设次数K之后,就认为当前的最大次数足够判断网络是否支持VoNR;
步骤a08、如果LTE_Call_Count大于或等于K,说明NR网络每次通话都是EPS fallback,则判断为NR网络不支持VoNR;如果NR_Call_Count大于K,说明NR网络每次通话都是VoNR通话,则判断为网络支持VoNR。
本申请实施例中,在终端支持VoNR通话,且完成SA的NR网络注册的情况下,由于在只有在NR网络不支持VoNR能力的情况下,才会触发EPS FB流程,因此通过统计终端每次成功通话的呼叫流程中是否包括EPS FB流程可以提高统计的终端成功进行VoNR通话和VoLTE通话的次数准确性,从而可以提高终端监测NR网络的VoNR能力的准确性。
可选地,本申请实施例中,在上述另一种可能的实现方式中,在终端支持VoNR通话且完成SA的NR网络注册的情况下,终端可以通过对终端进行的每次成功通话执行下述的步骤A4和步骤A5,或步骤A4和步骤A6,以实现上述的步骤A。
步骤A4、终端确定第i次成功通话的专用承载类型。
本申请实施例中,对于上述第i次成功通话,终端设备可以先判断第i次成功通话的专用承载类型,若第i次成功通话的专用承载类型是基于NR网络创建的,则终端可以继续执行下述的步骤A5,若第i次成功通话的专用承载类型是基于LTE网络创建的,则终端可以继续执行下述的步骤A6。
步骤A5、终端设备确定终端成功进行VoNR通话的次数为M+1。
步骤A6、终端设备确定终端成功进行VoNR通话的次数为N+1。
对于步骤A5和步骤A6的描述可以参见上是一种可能的实现方式中对步骤A2和步骤A3的相关描述。
下面对另一种可能的实现方式的具体过程进行示例性地说明。
步骤b01、开始进入程序;
步骤b02、终端注册NR网络,并注册IMS成功;
步骤b03、终端判断终端是否支持VoNR能力,只有在终端支持VoNR能力的情况下,终端才进行下述的步骤b04,否则结束;
步骤b04、设置终端记录成功进行VoLTE通话的次数的参数为LTE_Call_Count,记录终端成功进行VoNR通话的次数的参数为NR_Call_Count,LTE_Call_Count和NR_Call_Count用于判断NR网络是否支持VoNR。
其中,在开始第一次计数前,在开始第一次计数前,将参数LTE_Call_Count和NR_Call_Count均设置为0。
其中,终端统计的通话包括终端主动发起主叫通话(终端发送通话邀请(invite)的通话)即和网络下发的被叫通话(终端接收通话邀请的通话)。
步骤b05、对于终端进行的每次通话,终端建立专用承载是通过是LTE(EPS Bearer)建立的还是通过NR(PDU Session PDU会话控制)建立的,通过这点可以确认网络是否支持VoNR。
正常情况下,若终端和NR网络都支持VoNR,NR网络一般会建立5QI=1的PDU会话。当然也可能网络临时异常导致VoNR Call失败,从而出现EPS Fallback,所以要进一步确认当前RAT建立的通话是否成功。
步骤b06、只有当前RAT的通话建立成功,才进行LTE_Call_Count或者
NR_Call_Count的值加1;否则重新在下一次通话进行判断。
步骤b07、LTE_Call_Count或者NR_Call_Count的值大于或等于预设次数K之后,就认为当前的最大次数足够判断网络是否支持VoNR;
步骤b08、如果LTE_Call_Count大于或等于K,说明NR网络每次通话都是EPS fallback,则判断为NR网络不支持VoNR;如果NR_Call_Count大于K,说明NR网络每次通话都是VoNR通话,则判断为网络支持VoNR。
本申请实施例中,在终端支持VoNR通话,且完成SA的NR网络注册的情况下,由于在只有在NR网络不支持VoNR能力的情况下,才会基于LET建立通话的专用承载,而在NR网络支持VoNR能力的情况下,终端直接可以基于NR建立通话承载,因此通过统计终端每次成功通话的专用承载类型,可以提高统计的终端成功进行VoNR通话和VoLTE通话的次数准确性,从而可以提高终端监测NR网络的VoNR能力的准确性。
本申请实施例中,由于终端可以基于每次成功通话的呼叫流程中是否包括EPS FB流程,或每次成功通话的专用承载类型,统计终端成功进行VoNR通话和VoLTE通话的次数,因此可以提高终端统计通话次数的灵活性和准确性。
可选地,本申请实施例中,上述步骤401具体可以通过下述的步骤B实现。
步骤B、在终端支持VoNR通话,且完成SA的NR网络注册的情况下,终端在第二时间段结束后,分别重新统计所述终端成功进行VoNR通话和VoLTE通话的次数。
其中,第二时间段为终端最近一次确定NR网络的VoNR能力后预设时长的时间段。需要说明的是,此处的“最近一次”是指终端完成该NR网络注册后的最近一次。
例如,假设终端在该NR网络注册后,在执行步骤B之前,终端已经对NR网络的VoNR能力确定了3次,且第1次确定NR网络在时间段1内支持VoNR能力、第2次确定NR网络在时间段2内支持VoNR能力,第3次确定NR网络在时间段3内不 支持VoNR能力;那么,时间段3即为上述的第二时间段。
本申请实施例中,由于终端可以在大于或等于最近一次确定的NR网络的VoNR能力的有效时间结束后,再重新统计终端成功进行VoNR通话和VoLTE通话的次数,并基于统计的次数再次确定NR网络的VoNR能力,因此一方面可以使得终端能够持续获知NR网络的VoNR能力,另一方面可以节省终端的功耗。
在本申请实施例提供的通话能力监测方法中,由于支持VoNR的终端在完成AS的NR网络注册后,可以统计该终端成功进行VoNR通话和长期演进语音VoLTE通话的次数,并基于该次数,确定终端在未来的一个时间段(例如第一时间段)内的VoNR能力,因此使得终端可以准确获知其接入的网络(即该NR网络)的VoNR能力,从而终端可以根据接入的NR网络的VoNR能力,对语音业务的场景体验进行优化,进而可以提高用户体验感。
可选地,本申请实施例中,在上述另一种可能的实现方式中,在上述步骤A之前,本申请实施例提供的通话能力监测方法还可以包括下述的步骤403。
步骤403、终端根据每次成功通话的QoS标识,确定每次成功通话的专用承载类型。
其中,通话的QoS标识指示该通话的专用承载类型。对于QoS标识的描述参见上述实施例中对QoS标识的相关描述。
本申请实施例中,由于通话的QoS标识可以指示该通话的专用承载类型,因此通过终端每次成功通话的QoS标识,可以准确确定该每次成功通话的专用承载类型并简化确定通话的专用承载类型的操作流程,从而可以准确确定终端成功进行VoNR通话和VoLTE通话的次数。
可选地,本申请实施例中,在上述步骤401之后,本申请实施例提供的通话能力监测方法还可以包括下述的步骤404。
步骤404、终端将目标能力信息更新至目标数据库中。
其中,目标能力信息指示NR网络在第一时间段内的VoNR能力;该目标数据库中的目标能力信息用于供目标设备在第一时间段内查询NR网络的VoNR能力。
可选地,本申请实施例中,目标设备可以包括以下至少一项:终端,终端的上层设备(如上述NR网络)。
可选地,申请实施例中,在第二时间段内,终端可以直接从目标数据库“NW_VoNRCap Cache”中读取NR网络的VoNR能力。如此可以提高终端获取NR网络的VoNR能力操作。
本申请实施例中,由于终端每次确定NR网络的VoNR能力后,可以同步更新目标数据库中用于指示NR网络的目标能力信息,因此可以使得目标设备可以在第一时间段内查询NR网络的VoNR能力,从而可以提高查询NR网络的VoNR能力的操作便捷性。
需要说明的是,本申请实施例提供的通话能力监测方法,执行主体可以为通话能力监测装置,或者该通话能力监测装置中的用于执行通话能力监测方法的控制模块。本申请实施例中以通话能力监测装置执行通话能力监测方法为例,说明本申请实施例提供的通话能力监测方法。
本申请实施例提供了一种通话能力监测装置,图9示出了本申请实施例提供的通话能力监测装置900的一种可能的结构示意图,如图9所示,该通话能力监测装置900可以包括:统计模块901和确定模块902。
所述统计模块901,用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数;
统计模块,还用于在目标次数大于或等于预设次数的情况下,停止统计成功通话 的次数;
所述确定模块,用于统计模块停止统计成功通话的次数后,根据所述目标次数,确定所述NR网络在第一时间段内的VoNR能力;
其中,若所述目标次数为所述终端成功进行VoNR通话的次数,则所述NR网络在所述第一时间段内支持VoNR能力;或者,若所述目标次数为所述终端成功进行VoLTE的次数,则所述NR网络在所述第一时间段内不支持VoNR能力。
一种可能的实现方式中,上述统计模块901,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,基于每次成功通话的呼叫流程中是否包括EPS-FB流程,和/或,基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数。
一种可能的实现方式中,上述统计模块901,具体用于在所述终端支持VoNR能力,且完成SA的NR网络注册的情况下,针对所述所述每次成功通话:
若第i次成功通话的呼叫流程中不包括EPS-FB流程,则确定所述终端成功进行VoNR通话的次数为M+1,M为所述统计模块901最近一次统计的所述终端成功进行VoNR通话的次数;或者,
若第i次成功通话的呼叫流程中包括EPS-FB流程,则确定所述终端成功进行VoLTE通话的次数为N+1,N为所述统计模块901最近一次统计的所述终端成功进行VoLTE通话的次数;
其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
一种可能的实现方式中,上述统计模块901,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,若第i次成功通话的专用承载是基于NR网络创建的,则确定所述终端成功进行VoNR通话的次数为M+1,M为所述统计模块901最近一次统计的所述终端成功进行VoNR通话的次数;或者,
若第i次成功通话的专用承载是基于LTE网络创建的,则所述终端确定所述终端成功进行VoLTE通话的次数为N+1,N为所述统计模块901最近一次统计的所述终端成功进行VoLTE通话的次数;
其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
一种可能的实现方式中,上述确定模块902,还用于在所述统计模块901基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数之前,根据所述每次成功通话的QoS等级,确定所述每次成功通话的专用承载类型。
一种可能的实现方式中,上述统计模块901,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,并在第二时间段结束后,分别重新统计所述终端成功进行VoNR通话和VoLTE通话的次数;
所述第二时间段为所述统计模块901最近一次确定所述NR网络的VoNR能力后预设时长的时间段。
一种可能的实现方式中,上述装置900还包括:更新模块。所述更新模块,用于在所述确定模块902根据所述目标次数,确定所述NR网络在所述第一时间段内的VoNR能力之后,将目标能力信息更新至目标数据库中,所述目标能力信息指示所述NR网络在所述第一时间段内的VoNR能力;
其中,所述目标数据库中的目标能力信息用于供目标设备在所述第一时间段内查询所述NR网络的VoNR能力。
在本申请实施例提供的通话能力监测装置900中,由于通话能力监测装置900在支持VoNR的终端在完成AS的NR网络注册后,可以统计该终端成功进行VoNR通话和长期演进语音VoLTE通话的次数,并基于该次数,确定终端在未来的一个时间段 (例如第一时间段)内的VoNR能力,因此使得终端可以准确获知其接入的网络(即该NR网络)的VoNR能力,以便于终端可以根据接入的网络的VoNR能力,对语音业务的场景体验进行优化,进而可以提高用户体验感。
本申请实施例中的通话能力监测装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的通话能力监测装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的通话能力监测装置能够实现图4的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图10所示,本申请实施例还提供一种通信设备5000,包括处理器5001和存储器5002,存储器5002上存储有可在所述处理器5001上运行的程序或指令,例如,该通信设备5000为终端时,该程序或指令被处理器5001执行时实现上述终端侧方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述,或者该通信设备5000为网络侧设备时,该程序或指令被处理器5001执行时实现上述方法实施例中终端执行的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图11为实现本申请实施例的一种电子设备的硬件结构示意图。
该终端7000包括但不限于:射频单元7001、网络模块7002、音频输出单元7003、输入单元7004、传感器7005、显示单元7006、用户输入单元7007、接口单元7008、存储器7009以及处理器7010等中的至少部分部件。
本领域技术人员可以理解,终端7000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器7010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元7004可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元7006可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元7007包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元7001接收来自网络侧设备的下行数据后,可以传输给处理器7010进行处理;另外,射频单元7001可以向网络侧设备发送上行数据。通常,射频单元7001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器7009可用于存储软件程序或指令以及各种数据。存储器7009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器7009可以包括易失性存储器或非易失性存储器,或者,存储器7009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器7009包括但不限于这些和任意其它适合类型的存储器。
处理器7010可包括一个或多个处理单元;可选地,处理器7010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器7010中。
应理解的是,本申请实施例中,输入单元7004可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元7006可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元7007包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
其中,处理器7010,用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数;并在目标次数大于或等于预设次数的情况下,停止统计成功通话的次数,并根据所述目标次数,确定所述NR网络在第一时间段内的VoNR能力。
其中,若所述目标次数为所述终端成功进行VoNR通话的次数,则所述NR网络在所述第一时间段内支持VoNR能力;或者,若所述目标次数为所述终端成功进行VoLTE的次数,则所述NR网络在所述第一时间段内不支持VoNR能力。
在本申请实施例提供的终端中,由于支持VoNR的终端在完成AS的NR网络注册后,可以统计该终端成功进行VoNR通话和长期演进语音VoLTE通话的次数,并基于该次数,确定终端在未来的一个时间段(例如第一时间段)内的VoNR能力,因此使得终端可以准确获知其接入的网络(即该NR网络)的VoNR能力。
一种可能的实现方式中,上述处理器7010,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,基于每次成功通话的呼叫流程中是否包括EPS-FB流程,和/或,基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数。
一种可能的实现方式中,上述处理器7010,具体用于在所述终端支持VoNR能力,且完成SA的NR网络注册的情况下,针对所述所述每次成功通话:
若第i次成功通话的呼叫流程中不包括EPS-FB流程,则确定所述终端成功进行 VoNR通话的次数为M+1,M为所述处理器7010最近一次统计的所述终端成功进行VoNR通话的次数;或者,
若第i次成功通话的呼叫流程中包括EPS-FB流程,则确定所述终端成功进行VoLTE通话的次数为N+1,N为所述处理器7010最近一次统计的所述终端成功进行VoLTE通话的次数;
其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
一种可能的实现方式中,上述处理器7010,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,若第i次成功通话的专用承载是基于NR网络创建的,则确定所述终端成功进行VoNR通话的次数为M+1,M为所述处理器7010最近一次统计的所述终端成功进行VoNR通话的次数;或者,
若第i次成功通话的专用承载是基于LTE网络创建的,则所述终端确定所述终端成功进行VoLTE通话的次数为N+1,N为所述处理器7010最近一次统计的所述终端成功进行VoLTE通话的次数;
其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
一种可能的实现方式中,上述处理器7010,还用于在基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数之前,根据所述每次成功通话的QoS等级,确定所述每次成功通话的专用承载类型。
一种可能的实现方式中,上述处理器7010,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,并在第二时间段结束后,分别重新统计所述终端成功进行VoNR通话和VoLTE通话的次数;
所述第二时间段为所述处理器7010最近一次确定所述NR网络的VoNR能力后预设时长的时间段。
一种可能的实现方式中,上述处理器7010,用于在根据所述目标次数,确定所述NR网络在所述第一时间段内的VoNR能力之后,将目标能力信息更新至目标数据库中,所述目标能力信息指示所述NR网络在所述第一时间段内的VoNR能力;
其中,所述目标数据库中的目标能力信息用于供目标设备在所述第一时间段内查询所述NR网络的VoNR能力。
在本申请实施例提供的通话能力监测装置中,由于通话能力监测装置在支持VoNR的终端在完成AS的NR网络注册后,可以统计该终端成功进行VoNR通话和长期演进语音VoLTE通话的次数,并基于该次数,确定终端在未来的一个时间段(例如第一时间段)内的VoNR能力,因此使得终端可以准确获知其接入的网络(即该NR网络)的VoNR能力,从而终端可以根据接入的网络的VoNR能力,对语音业务的场景体验进行优化,进而可以提高用户体验感。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述通话能力统计实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述通话能力监测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非 排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (18)

  1. 一种通话能力监测方法,所述方法包括:
    在终端支持新空口语音VoNR能力,且完成独立组网SA的NR网络注册的情况下,所述终端分别统计所述终端成功进行VoNR通话和长期演进语音VoLTE通话的次数;
    在目标次数大于或等于预设次数的情况下,所述终端停止统计成功通话的次数,并根据所述目标次数,确定所述NR网络在第一时间段内的VoNR能力;
    其中,若所述目标次数为所述终端成功进行VoNR通话的次数,则所述NR网络在所述第一时间段内支持VoNR能力;或者,
    若所述目标次数为所述终端成功进行VoLTE的次数,则所述NR网络在所述第一时间段内不支持VoNR能力。
  2. 根据权利要求1所述的方法,其中,所述终端分别统计所述终端成功进行VoNR通话和VoLTE通话的次数,包括:
    所述终端基于每次成功通话的呼叫流程中是否包括演进分组系统回退EPS-FB流程,和/或,基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数。
  3. 根据权利要求2所述的方法,其中,所述终端基于每次成功通话的呼叫流程中是否包括EPS-FB流程,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数,包括:
    若第i次成功通话的呼叫流程中不包括EPS-FB流程,则所述终端设备统计所述终端成功进行VoNR通话的次数为M+1,M为所述终端最近一次统计的所述终端成功进行VoNR通话的次数;或者,
    若第i次成功通话的呼叫流程中包括EPS-FB流程,则所述终端设备统计所述终端成功进行VoLTE通话的次数为N+1,N为所述终端最近一次统计的所述终端成功进行VoLTE通话的次数;
    其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
  4. 根据权利要求2所述的方法,其中,所述终端基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数,包括:
    若第i次成功通话的专用承载是基于NR网络创建的,则所述终端统计所述终端成功进行VoNR通话的次数为M+1,M为所述终端最近一次统计的所述终端成功进行VoNR通话的次数;或者,
    若第i次成功通话的专用承载是基于LTE网络创建的,则所述终端统计所述终端成功进行VoLTE通话的次数为N+1,N为所述终端最近一次统计的所述终端成功进行VoLTE通话的次数;
    其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
  5. 根据权利要求2或4所述的方法,其中,所述终端基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数之前,所述方法还包括:
    所述终端根据所述每次成功通话的服务质量QoS标识,确定所述每次成功通话的专用承载类型。
  6. 根据权利要求1至4中任一项所述的方法,其中,所述终端分别统计所述终端成功进行VoNR通话和VoLTE通话的次数,包括:
    所述终端在第二时间段结束后,分别重新统计所述终端成功进行VoNR通话和VoLTE通话的次数;
    其中,所述第二时间段为所述终端最近一次确定所述NR网络的VoNR能力后预 设时长的时间段。
  7. 根据权利要求1至4中任一项所述的方法,其中,所述根据所述目标次数,确定所述NR网络在第一时间段内的VoNR能力之后,所述方法还包括:
    所述终端将目标能力信息更新至目标数据库中,所述目标能力信息指示所述NR网络在所述第一时间段内的VoNR能力;
    其中,所述目标数据库中的目标能力信息用于供目标设备在所述第一时间段内查询所述NR网络的VoNR能力。
  8. 一种通话能力监测装置,所述装置包括:统计模块和确定模块;
    所述统计模块,用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数;
    所述统计模块,还用于在目标次数大于或等于预设次数的情况下,停止统计成功通话的次数;
    所述确定模块,用于所述统计模块停止统计成功通话的次数后,根据所述目标次数,确定所述NR网络在第一时间段内的VoNR能力;
    其中,若所述目标次数为所述终端成功进行VoNR通话的次数,则所述NR网络在所述第一时间段内支持VoNR能力;或者,
    若所述目标次数为所述终端成功进行VoLTE的次数,则所述NR网络在所述第一时间段内不支持VoNR能力。
  9. 根据权利要求8所述的装置,其中,所述统计模块,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,基于每次成功通话的呼叫流程中是否包括EPS-FB流程,和/或,基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数。
  10. 根据权利要求9所述的装置,其中,所述统计模块,具体用于在所述终端支持VoNR能力,且完成SA的NR网络注册的情况下,若第i次成功通话的呼叫流程中不包括EPS-FB流程,则确定所述终端成功进行VoNR通话的次数为M+1,M为所述统计模块最近一次统计的所述终端成功进行VoNR通话的次数;或者,
    若第i次成功通话的呼叫流程中包括EPS-FB流程,则确定所述终端成功进行VoLTE通话的次数为N+1,N为所述统计模块最近一次统计的所述终端成功进行VoLTE通话的次数;
    其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
  11. 根据权利要求9所述的装置,其中,所述统计模块,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,针对所述每次成功通话:
    若第i次成功通话的专用承载是基于NR网络创建的,则确定所述终端成功进行VoNR通话的次数为M+1,M为所述统计模块最近一次统计的所述终端成功进行VoNR通话的次数;或者,
    若第i次成功通话的专用承载是基于LTE网络创建的,则所述终端确定所述终端成功进行VoLTE通话的次数为N+1,N为所述统计模块最近一次统计的所述终端成功进行VoLTE通话的次数;
    其中,M,N均为大于或等于0的整数,M+N=i-1,i为正整数。
  12. 根据权利要求9或11所述的装置,其中,所述确定模块,还用于在所述统计模块基于每次成功通话的专用承载类型,分别统计所述终端成功进行VoNR通话和VoLTE通话的次数之前,根据所述每次成功通话的QoS标识,确定所述每次成功通话的专用承载类型。
  13. 根据权利要求8至11中任一项所述的装置,其中,所述统计模块,具体用于在终端支持VoNR能力,且完成SA的NR网络注册的情况下,在第二时间段结束后, 分别重新统计所述终端成功进行VoNR通话和VoLTE通话的次数;
    其中,所述第二时间段为所述统计模块最近一次确定所述NR网络的VoNR能力后预设时长的时间段。
  14. 根据权利要求8至11中任一项所述的装置,其中,所述装置还包括:更新模块;
    所述更新模块,用于在所述确定模块根据所述目标次数,确定所述NR网络在所述第一时间段内的VoNR能力之后,将目标能力信息更新至目标数据库中,所述目标能力信息指示所述NR网络在所述第一时间段内的VoNR能力;
    其中,所述目标数据库中的目标能力信息用于供目标设备在所述第一时间段内查询所述NR网络的VoNR能力。
  15. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至7中任一项所述的通话能力监测方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至7中任一项所述的通话能力监测方法的步骤。
  17. 一种计算机软件产品,所述计算机软件产品被至少一个处理器执行以实现如权利要求1至7中任一项所述的通话能力监测方法。
  18. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至7中所述的通话能力监测方法。
PCT/CN2023/104411 2022-07-07 2023-06-30 通话能力监测方法、装置、终端和可读存储介质 WO2024007975A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210803425.0 2022-07-07
CN202210803425.0A CN115226089B (zh) 2022-07-07 2022-07-07 通话能力监测方法、装置、终端和可读存储介质

Publications (1)

Publication Number Publication Date
WO2024007975A1 true WO2024007975A1 (zh) 2024-01-11

Family

ID=83610228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104411 WO2024007975A1 (zh) 2022-07-07 2023-06-30 通话能力监测方法、装置、终端和可读存储介质

Country Status (2)

Country Link
CN (1) CN115226089B (zh)
WO (1) WO2024007975A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115226089B (zh) * 2022-07-07 2024-07-23 维沃移动通信有限公司 通话能力监测方法、装置、终端和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055856A (zh) * 2021-03-05 2021-06-29 展讯通信(上海)有限公司 支持VoWIFI的5G终端的网络驻留方法及装置、存储介质、终端
WO2022048375A1 (zh) * 2020-09-07 2022-03-10 华为技术有限公司 一种网络系统和终端设备
WO2022066253A1 (en) * 2020-09-23 2022-03-31 Innopeak Technology, Inc. Apparatus and method of pruning new radio cells that do not support voice over new radio from a measurement report
CN115226089A (zh) * 2022-07-07 2022-10-21 维沃移动通信有限公司 通话能力监测方法、装置、终端和可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428680B (zh) * 2017-08-24 2020-09-25 华为技术有限公司 发送或接收上行数据的方法和装置
WO2021261843A1 (en) * 2020-06-22 2021-12-30 Samsung Electronics Co., Ltd. Methods and systems for managing a voice over new radio call by a user equipment
CN114339111A (zh) * 2020-09-25 2022-04-12 华为技术有限公司 一种视频通话方法及装置
CN113784406B (zh) * 2021-08-24 2024-08-30 深圳市广和通无线股份有限公司 呼叫发起方法及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048375A1 (zh) * 2020-09-07 2022-03-10 华为技术有限公司 一种网络系统和终端设备
WO2022066253A1 (en) * 2020-09-23 2022-03-31 Innopeak Technology, Inc. Apparatus and method of pruning new radio cells that do not support voice over new radio from a measurement report
CN113055856A (zh) * 2021-03-05 2021-06-29 展讯通信(上海)有限公司 支持VoWIFI的5G终端的网络驻留方法及装置、存储介质、终端
CN115226089A (zh) * 2022-07-07 2022-10-21 维沃移动通信有限公司 通话能力监测方法、装置、终端和可读存储介质

Also Published As

Publication number Publication date
CN115226089A (zh) 2022-10-21
CN115226089B (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
US20200092802A1 (en) Method for selecting access network type, device, and system
WO2021057526A1 (zh) 一种网关设备容灾的方法及通信设备
WO2021031216A1 (zh) 切换处理方法及装置
WO2024007975A1 (zh) 通话能力监测方法、装置、终端和可读存储介质
WO2022194002A1 (zh) 语音业务切换方法、装置和用户设备
WO2023174222A1 (zh) 语音业务处理方法、设备及可读存储介质
KR20170021876A (ko) 코어 네트워크와 무선 노드 인증의 오프로딩
WO2022205046A1 (zh) 信息传输方法、装置、通信设备和存储介质
US12016068B2 (en) Method and apparatus for session management
US20240187844A1 (en) Method and apparatus for reducing interference, communication device and storage medium
US20230199896A1 (en) Method and apparatus for transferring service, communication device and storage medium
US20240205086A1 (en) Information processing method and apparatus, communication device, and readable storage medium
US20240089814A1 (en) Resource processing method and apparatus, electronic device, and storage medium
WO2024032543A1 (zh) 信息获取方法、终端及接入网设备
WO2024061085A1 (zh) 通信方法、装置及设备
WO2024078589A1 (zh) 信息上报方法、装置、通信设备及存储介质
WO2023179553A1 (zh) 终端不可用时期的协商方法、终端及网络侧设备
WO2024022389A1 (zh) 小区连接方法、装置及相关设备
WO2023207947A1 (zh) 小区重配置方法、装置、终端及网络侧设备
WO2023174321A1 (zh) 语音业务的实现方法、装置及终端
US20240040532A1 (en) Network Access Method, Network Side Device, and Terminal
WO2024022163A1 (zh) 定位方法、终端及网络设备
WO2023185877A1 (zh) 路由处理方法、终端及网络侧设备
WO2022151229A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023131286A1 (zh) 资源控制方法、装置、终端、网络侧设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834742

Country of ref document: EP

Kind code of ref document: A1