WO2024007755A1 - 一种高抗渗低导热无机轻质泡沫混凝土及制备方法 - Google Patents

一种高抗渗低导热无机轻质泡沫混凝土及制备方法 Download PDF

Info

Publication number
WO2024007755A1
WO2024007755A1 PCT/CN2023/095696 CN2023095696W WO2024007755A1 WO 2024007755 A1 WO2024007755 A1 WO 2024007755A1 CN 2023095696 W CN2023095696 W CN 2023095696W WO 2024007755 A1 WO2024007755 A1 WO 2024007755A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
thermal conductivity
foam
low thermal
foam concrete
Prior art date
Application number
PCT/CN2023/095696
Other languages
English (en)
French (fr)
Inventor
贾海林
邹茜
杨玉中
李延河
李建委
崔博
潘荣锟
Original Assignee
河南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南理工大学 filed Critical 河南理工大学
Priority to US18/530,477 priority Critical patent/US20240124367A1/en
Publication of WO2024007755A1 publication Critical patent/WO2024007755A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0046Premixtures of ingredients characterised by their processing, e.g. sequence of mixing the ingredients when preparing the premixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/068Specific natural sands, e.g. sea -, beach -, dune - or desert sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/304Air-entrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00293Materials impermeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of building exterior wall heat insulation and water insulation, in particular to a high-impermeability and low thermal conductivity inorganic lightweight foam concrete and a preparation method.
  • nanosilica is an inorganic chemical material that is ultra-fine nanometer-sized with a size of about 20nm. It has many excellent properties and is an important raw material for improving the performance of concrete.
  • He et al. found that the incorporation of nano-SiO 2 can increase the compactness and compressive strength of hydration products of concrete pore walls.
  • Abhilash et al. added 3% nano-SiO 2 to concrete, which can improve the compressive strength and durability of concrete.
  • She et al. pointed out that nano-SiO 2 can increase the compactness of concrete structures and improve the compressive strength of concrete.
  • Hu Jiancheng and others found that by incorporating nano-SiO 2 into concrete, its 3d and 28d compressive strength could be improved.
  • the Chinese patent with the authorized publication number CN108585941A proposes a high-strength foam concrete formula, but due to its high density, it cannot be applied to building exterior walls in a lighter weight.
  • the Chinese patent with the publication number CN114057449A proposes a lightweight foam concrete formula, but its main purpose is to adsorb formaldehyde and polluting organic matter, etc. It does not make relevant measurements on pressure resistance and thermal conductivity.
  • the Chinese patent with publication number CN113511873A provides a method for preparing high-strength lightweight foam concrete.
  • foam concrete not only meets the requirements for dry density and compressive strength, but its impermeability and thermal insulation properties are crucial in terms of thermal insulation. If the impermeability is low, it will largely affect the water absorption and durability of the building's exterior wall insulation panels; high water absorption will cause its thermal conductivity to increase, and the insulation effect will drop sharply, which is not conducive to building houses. energy saving and emission reduction.
  • the present invention provides a kind of inorganic lightweight foam concrete with high impermeability and low thermal conductivity, which is used in the thermal insulation of building envelopes; the purpose is to improve the foam concrete's resistance to the infiltration of external moisture and harmful ions, and improve its resistance to The permeability performance, more importantly, is to further reduce the thermal conductivity and optimize the thermal insulation performance.
  • most of the existing foam compounding solutions contain PFOS components. Especially after the promulgation of the international environmental convention "Stockholm Convention on Persistent Organic Pollutants", the practical problem of fluorocarbon foams needing to gradually withdraw from the stage has become a practical issue for practice.
  • the foam compounding scheme in the patent of this invention avoids fluorocarbon surfactants and selects silicone surfactants, hydrocarbon surfactants, nano-silica, ammonium polyphosphate and urea. Fluorine-free foam solution.
  • a kind of high impermeability and low thermal conductivity inorganic lightweight foam concrete including the following mass fraction of raw materials: 1260 ⁇ 1540 parts of ordinary Portland cement, 20 ⁇ 60 parts of nano-silica, 460 ⁇ 740 parts of fly ash, and 360 parts of aggregate ⁇ 440 parts, 9 ⁇ 11 parts of redispersible latex powder, 7.2 ⁇ 8.8 parts of polypropylene fiber, 27 ⁇ 33 parts of quick-setting agent, 500 parts of fluorine-free foam, 900 ⁇ 1100 parts of water;
  • the fluorine-free foam is composed of silicone surfactant, hydrocarbon surfactant, nano-silica, ammonium polyphosphate, urea and water.
  • the silicone surfactant, hydrocarbon surfactant The proportions of agent, nano-silica, ammonium polyphosphate and urea are 0.06%-0.1%, 0.06%-0.1%, 0.06%-0.1%, 0.1%-0.2%, 0.3%-0.4% respectively, and the remainder is water;
  • the compound fluorine-free foam of the present application eliminates the bioaccumulation effect and environmental damage of existing fluorocarbon foams; on the other hand, the fluorine-free foam has strong stability and liquid-holding capacity, which is beneficial to foam concrete. foaming;
  • the average particle size of the nano-silica is 20-30nm, and the SiO 2 content is 99.99%; it has highly active pozzolanic effect, crystal nucleation effect and morphological effect, etc. It can not only interact with the alkaline substance Ca in cement (OH) 2 reacts and can also undergo a secondary hydration reaction with the hydration product C 3 S to generate a continuous chain CSH cementitious material that can be used to increase the internal density of foam concrete. These chains are intertwined to form The network structure can form a water-resistant barrier layer inside the foam concrete to effectively prevent the penetration of external moisture and harmful ions.
  • nano-SiO 2 is fully mixed with Portland cement in advance to make nano-SiO 2 particles Uniformly adsorbed on the surface of cement particles;
  • nano-silica serves as a foam stabilizer.
  • Highly active nano-silica particles can be adsorbed and gathered on the air-liquid interface of bubbles after sufficient stirring, and interspersed among the surface-active ion groups in the liquid film. time, changing the arrangement structure of adsorbed molecules on the bubble surface, effectively reducing its surface energy and surface tension, forming a denser mixed film structure, effectively improving the adhesion of the air/liquid interface, preventing the loss of liquid in the bubble, and thus effectively slowing down
  • the liquid separation process of bubbles increases the stability of the foam and reduces the breakage rate of the bubbles;
  • the aggregate is river sand produced in Zhengzhou, with a fineness modulus of 2.4-2.8 and a particle size of 0.4-0.5mm;
  • the redispersible latex powder has a pH value of 7, an average particle size of 70-80 ⁇ m, and a solid content of 98%;
  • polypropylene fiber phase diameter is 0.04-0.05mm, the length is 10-12mm, and the apparent density is 0.90g/cm 3 ;
  • a method for preparing high-impermeability and low thermal conductivity inorganic lightweight foam concrete including the following steps:
  • the first step is to pour the ordinary Portland cement weighed by the electronic balance into the mixing barrel, mix the nano-silica particles into the Portland cement, and use the mixer to dry-mix the Portland cement. Thoroughly mixed with nano-silica particles in advance;
  • the second step add the weighed fly ash, aggregate, polypropylene fiber, dispersible latex powder and accelerator in sequence to the Portland cement and nano-silica that were fully mixed in the first step.
  • the third step add the weighed water into the mixing barrel after mixing in the second step, and use a mixer to fully stir to obtain a cement-based slurry with reasonable fluidity and uniformity;
  • the fourth step is to mix the foam prepared in the second step into the cement slurry evenly stirred in the third step, and use a mixer to fully stir the foam so that the foam is fully and evenly dispersed in the cement slurry;
  • the cement-based slurry mixed evenly in the fourth step is poured into the triple steel test mold, and is pre-cured for 1 to 2 days and cured for 28 days before demoulding to obtain foam concrete with high impermeability and low thermal conductivity.
  • the high-impermeability and low thermal conductivity inorganic lightweight foam concrete and its preparation method of the present invention have the following beneficial effects:
  • the fluorine-free foam prepared by the invention has adjustable foaming multiple and long 25% liquid drainage time.
  • Highly active nanosilica particles can be adsorbed and accumulated on the air-liquid interface of bubbles, interspersed between surface active ion groups in the liquid film, changing the arrangement structure of adsorbed molecules on the bubble surface, effectively reducing its surface energy and surface tension.
  • Forming a denser mixed membrane structure effectively improving the adhesion of the air/liquid interface, preventing the loss of liquid in the bubbles, making the foam less likely to break under the dual effects of cement slurry gravity extrusion and surface tension drainage, which is beneficial to the Non-connected closed pores are formed inside the foam concrete, which helps to improve its pore structure.
  • nanosilica is incorporated into cement-based slurry as a highly active modifier. Its particle size is small and nanoscale, only 20-30nm, and can effectively fill in tiny holes and cracks in cement slurry. , and reacts with the alkaline substance Ca(OH) 2 in the cement slurry to form CSH cementitious material, which can be used to strengthen its structural density. Moreover, nano-silica particles have ultra-high surface energy and can be adsorbed on foam concrete in large quantities. On the inner wall of the bubble pores, it is easy to react with other raw material particles and unsaturated bonds to form a more stable structure, and the surface of nanosilica contains many different bonding states of hydroxyl groups (-OH) and unsaturated residual bonds. They can combine and react with each other, and are closely arranged on the surface of the cement-based slurry to form a water-resistant barrier layer, which can effectively prevent the penetration of external moisture and harmful ions, and improve the anti-permeability and durability of foam concrete.
  • -OH hydroxyl groups
  • the formula for preparing the foam concrete with high impermeability and low thermal conductivity is simple, has good workability, is lightweight and has low thermal conductivity, and is suitable for the construction of thermal insulation systems of building exterior walls.
  • Figure 1 is a schematic diagram of the foam stabilizing effect of nanosilica of the present invention.
  • Figure 2 is a scanning electron microscope demonstration diagram of the water-resistant barrier layer of the present invention.
  • Figure 3 is a diagram of the formation mechanism of the water-resistant barrier layer of nano-silica particles of the present invention.
  • Figure 4 is a flow chart of the production of cement slurry of the present invention.
  • Figure 5 is a flow chart for the introduction of the fluorine-free foam of the present invention.
  • Figure 6 is a comparison chart of the moisture penetration depth of foam concrete in Examples 1-3 of the present invention.
  • Figure 7 is a comparison chart of moisture surface penetration between the benchmark group of the present invention and the foam concrete in Example 3.
  • Example 1 A kind of high impermeability and low thermal conductivity inorganic lightweight foam concrete.
  • the preparation method is as follows:
  • the first step is to use an electronic balance to weigh 1260g of ordinary Portland cement in parts by mass and pour it into a mixing barrel; then weigh 20g of nano-silica, mix it into Portland cement, and use a mixer to dry-prepare it. Stir for 1 minute to fully mix the nano-silica particles and cement, which will help the nano-silica particles to adsorb on the surface of the cement particles and better exert their volcanic ash effect, crystal nucleation effect and morphological effect, which will help improve the performance of foam concrete. ; Nano-silica is used as a foam stabilizer.
  • Highly active nano-silica particles can be adsorbed and gathered on the air-liquid interface of bubbles after sufficient stirring, and interspersed between surface-active ion groups in the liquid film, changing the surface adsorption of bubbles.
  • the arrangement structure of molecules effectively reduces its surface energy and surface tension, forming a denser mixed film structure, effectively improving the adhesion of the air/liquid interface, preventing the loss of liquid in the bubbles, and thus effectively slowing down the liquid separation process of the bubbles. Increase the stability of the foam and reduce the breakage rate of the bubbles.
  • FIG. 1 The schematic diagram of the foam stabilizing effect of nano-silica is shown in Figure 1; the large amount of SiO 2 contained inside can not only react with the alkaline substance Ca(OH) 2 in the cement, It can also undergo a secondary hydration reaction with the hydration product C3S to generate a continuous chain CSH cementitious material that can be used to increase the internal density of foam concrete. These chains are intertwined to form a network structure, which can be used inside the foam concrete.
  • a layer of water-resistant barrier layer is formed.
  • Figure 3 shows the formation mechanism of the water-resistant barrier layer of nano-silica particles.
  • the crystal nucleation effect can also form more crystal nucleation hydration on the surface of the cement-based slurry.
  • nano-SiO 2 is fully mixed with ordinary Portland cement in advance, so that nano-SiO 2 particles are evenly adsorbed on the surface of cement particles. ;
  • the second step pour 740g of weighed fly ash, 360g of aggregate, 7.2g of polypropylene fiber, 9g of dispersible latex powder, and 27g of quick-setting agent into the mixing barrel of the first step, and then add 500g of fluorine-free foam Prepare foam through air compressor and foaming machine for later use;
  • FIG. 4 is the flow chart for making the cement slurry; then pour it into the triple steel test mold (the surface is evenly coated with engine oil), and After pre-curing for 1 to 2 days and curing for 28 days, demoulding was performed to prepare 1# foam concrete with high impermeability and low thermal conductivity.
  • 500g of fluorine-free foam consists of 0.5g of silicone surfactant LS-99, 0.5g of anionic sodium dodecyl sulfate SDS, 0.5g of nanosilica, 0.75g of ammonium polyphosphate APP and 1.5g It is compounded of urea and appropriate amount of water.
  • the air compressor is used to foam the fluorine-free foam liquid through the foaming machine.
  • the foam produced by the fluorine-free foam has high stability, high liquid film toughness and mechanical strength, and is not easy to be mixed in the cement slurry. Bursting or excessive deformation under heavy weight extrusion is conducive to the formation of non-connected closed pores inside the foam concrete.
  • the bubble diameter of the foam is between 0.1 ⁇ 1mm and the pore diameter is uniform;
  • Figure 5 is the flow chart for the introduction of fluorine-free foam.
  • Example 2 A kind of high impermeability and low thermal conductivity inorganic lightweight foam concrete.
  • the preparation method is as follows:
  • the first step is to use an electronic balance to weigh 1,400g of ordinary Portland cement in parts by mass and pour it into a mixing barrel; then weigh 30g of nano-silica, mix it into Portland cement, and use a mixer to dry-prepare it. Stir for 1 minute to fully mix the nano-silica particles and cement;
  • the second step pour 600g of weighed fly ash, 400g of aggregate, 8g of polypropylene fiber, 10g of dispersible latex powder, and 30g of quick-setting agent into the mixing barrel of the first step; then, pour 500g of fluorine-free foam through The air compressor and foaming machine prepare foam for later use;
  • the third step pour 1000g of the weighed water into the mixing bucket in the second step, and use a mixer to evenly stir for 62 minutes to obtain a cement slurry with reasonable fluidity and uniformity. Then introduce the foam prepared in the second step into the cement slurry. into the body and stir thoroughly for 2 minutes to finally obtain a uniform and reasonable cement-based slurry. Then it was poured into a triple steel test mold (the surface was evenly coated with engine oil), pre-cured for 1 to 2 days, cured for 28 days and then demoulded to prepare 2# foam concrete with high impermeability and low thermal conductivity.
  • 500g of fluorine-free foam consists of 0.5g of silicone surfactant LS-99, 0.5g of anionic sodium dodecyl sulfate SDS, 0.5g of nanosilica, 0.75g of ammonium polyphosphate APP and 1.5g It is compounded of urea and appropriate amount of water. After the stirring rod is fully mixed and balanced, the fluorine-free foam liquid is foamed through the foaming machine using an air compressor.
  • Example 3 A kind of high impermeability and low thermal conductivity inorganic lightweight foam concrete.
  • the preparation method is as follows:
  • the first step is to use an electronic balance to weigh 1540g of ordinary Portland cement in parts by mass and pour it into a mixing barrel; then weigh 50g of nano-silica, mix it into Portland cement, and use a mixer to dry-prepare it. Stir for 1 minute to fully mix the nano-silica particles and cement;
  • the second step pour 460g of weighed fly ash, 440g of aggregate, 11g of dispersible latex powder, 8.8g of polypropylene fiber, and 33g of quick-setting agent into the mixing barrel of the first step; then add 500g of fluorine-free
  • the foam is prepared through an air compressor and foaming machine for later use;
  • the third step pour 1100g of weighed water into the mixing bucket in the second step, and use a mixer to evenly stir for 2 minutes to obtain a cement slurry with reasonable fluidity and uniformity. Then mix the foam prepared in the second step into the cement. into the slurry and stir thoroughly for 2 minutes to finally obtain a uniform and reasonable cement-based slurry. Then it was poured into a Sanlian steel test mold (the surface was evenly coated with engine oil), pre-cured for 1 to 2 days, cured for 28 days and then demoulded to prepare 3# foam concrete with high impermeability and low thermal conductivity.
  • 500g of fluorine-free foam consists of 0.5g of silicone surfactant LS-99, 0.5g of anionic sodium dodecyl sulfate SDS, 0.5g of nanosilica, 0.75g of ammonium polyphosphate APP and 1.5g It is compounded of urea and appropriate amount of water. After the stirring rod is fully mixed and balanced, the fluorine-free foam liquid is foamed through the foaming machine using an air compressor.
  • Foam concrete is prepared as follows:
  • the first step use an electronic balance to weigh 1260g of ordinary Portland cement in parts by mass and pour it into a mixing bucket. Then add 600g of fly ash, 360g of aggregate, 8g of polypropylene fiber, and dispersible latex powder. Pour 10g and 30g of quick-setting agent into the mixing barrel in sequence; then pass 500g of fluorine-free foam through an air compressor and foaming machine to prepare foam for later use;
  • the second step pour 900g of weighed water into the mixing bucket from the first step, and use a mixer to evenly stir for 2 minutes to obtain a cement slurry with reasonable fluidity and uniformity. Then mix the foam prepared in the first step into the cement. In the slurry, stir thoroughly for 2 minutes to finally obtain a uniform and reasonable cement-based slurry. Then it was poured into the triple steel test mold (the surface was evenly coated with engine oil), and pre-cured for 1 to 2 days, cured for 28 days and then demoulded to prepare the base group of foam concrete.
  • test method of the anti-permeability performance of lightweight foam concrete designed a self-designed method for measuring the anti-permeability performance of foam concrete.
  • the test method is to use a needle to drip water at the center point above the sample. When the water completely penetrates the sample for 60 seconds, use a hacksaw to cut the sample along the center line of the sample surface where the water penetrates, and use a scale to measure the penetration depth of the water inside the sample to characterize the impermeability of the sample. Performance,test results are shown in Table 1.
  • Example 3# foam concrete The test data of 1#, 2#, and 3# foam concrete were prepared based on the benchmark group and Examples 1 to 3. Among them, the dry density of Example 2 foam concrete was the lowest 387kg/m3, and the thermal conductivity was the lowest 0.1310 (W/m ⁇ K ), the optimal impermeability performance of Example 3 is 13mm, which has excellent impermeability and heat insulation capabilities, and has certain application value in the field of building exterior wall insulation boards.
  • the physical diagram of the impermeability test of the sample is as follows: Shown in Figures 6 and 7. From the figure, it can be verified that incorporating nano-silica can improve the anti-permeability performance of foam concrete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

一种高抗渗低导热无机轻质泡沫混凝土及其制备方法,包括以下质量份数的原料:普通硅酸盐水泥1260~1540份、纳米二氧化硅20~60份、粉煤灰460~740份、骨料360~440份、可再分散性乳胶粉9~11份、聚丙烯纤维7.2~8.8份、速凝剂27~33份、无氟泡沫500份、水900~1100份。制备的高抗渗低导热无机轻质泡沫混凝土的配方简易,工作性好,具有轻质、低导热性,适用于建筑外墙的隔热系统构造。

Description

一种高抗渗低导热无机轻质泡沫混凝土及制备方法 技术领域
本发明涉及建筑外墙隔热和隔水技术领域,特别是一种高抗渗低导热无机轻质泡沫混凝土及制备方法。
背景技术
建筑能耗在社会总能耗中占比较大,已超过1/3且将达到40%左右,这不仅给能源供应带来巨大负担,还会严重危害生态环境,推进建筑节能工作已刻不容缓。在此背景下,提高建筑围护结构的隔热保温性能,有助于减少室内外温差造成的热损失,利于房间环境稳定。泡沫混凝土作为一种新型建筑外墙隔热保温材料,其内部含有大量闭孔,闭孔中滞留的空气是一种优良的隔热媒介,能有效阻止热量传递,被应用于外墙隔热系统。随着建筑节能诉求的提高,建筑领域对泡沫混凝土隔热性能的要求也在逐渐提级,低密度、低导热、高抗渗等成为优化的主要指标。面对这一新要求,常规外加剂已显得力不从心,亟需寻求其他高性能的外加剂和掺和料。
20世纪90年代,学者们逐渐察觉到纳米材料的优异性能,并开始了纳米材料在混凝土中的应用研究。这其中,纳米二氧化硅是一种无机化工材料,呈超细纳米级,尺寸在20nm左右,具有众多优异性能,是提升混凝土性能的重要原料。He等研究发现纳米SiO 2的掺入可增加混凝土孔壁水化产物的密实度和抗压强度。Abhilash等将掺量为3%的纳米SiO 2加入混凝土中,可提高混凝土的抗压强度和耐久性。She等指出纳米SiO 2可增加混凝土结构的密实性,提高混凝土抗压强度。胡建城等通过将纳米SiO 2掺入混凝土,发现可提升其3d和28d的抗压强度。
总结上述综献发现,前人对纳米SiO 2的研究多集中于改良混凝土的抗压强度、抗冻性能和耐久性。而系统利用纳米SiO 2改善泡沫混凝土的抗渗性能、隔热性能及细观结构研究并不多,尤其在提升抗渗机理方面还不够完善。基于此,基于单一变量法设计不同掺量纳米SiO 2的泡沫混凝土复配实验,研究纳米SiO 2对泡沫混凝土宏观性能和微观形貌的影响规律,尤其对抗渗性能提升效能的分析,结合SEM分析揭示抗渗性能的增强机理,以期获得一种高抗渗低导热无机轻质泡沫混凝土。
通过检索相关专利,发现已有一些发明人开展了不同复配方案下泡沫混凝土抗压强度和密度的研究工作。如授权公布号为CN108585941A的中国专利,提出了一种高强度泡沫混凝土配方,但因其密度较大,无法更加轻质的应用于建筑外墙上。又如公开号为CN114057449A的中国专利,提出了一种轻质泡沫混凝土配方,但其主要目的是吸附甲醛及污染有机物等,其未对抗压性能及导热系数做出相关测定。公开号为CN113511873A的中国专利,提供了一种高强度轻质泡沫混凝土的制备方法,指出当气孔率减少时,可改善其抗强度和抗渗性能,但并没有数据证实其优良的抗渗性能。泡沫混凝土作为一种新型建筑外墙隔热保温材料,除干密度、抗压强度等满足要求外,其抗渗性能、隔热性能在隔热保温方面至关重要。如抗渗性能低,很大程度上会影响着建筑外墙隔热板的吸水量、耐久性等;吸水率较高会导致其导热系数增大,隔热效果将急剧下降,不利于建筑房屋的节能减排。
发明内容
为了克服上述不足,本发明提供一种高抗渗低导热无机轻质泡沫混凝土,应用于建筑围护结构的隔热保温方面;目的在于提升泡沫混凝土抵御外界水分和有害离子的浸入,提高其抗渗性能,更主要的是进一步降低导热系数,优化提升隔热保温性能。同时现有泡沫复配方案多含有PFOS组分,尤其是在国际环境公约《关于持久性有机污染物的斯德哥尔摩公约》出台后,氟碳类泡沫需要逐步退出舞台的这一现实问题,为践行绿色、低碳发展理念,本发明专利中泡沫复配方案避开氟碳类表面活性剂,选择硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵和尿素复配的无氟泡沫方案。
为达到上述目的,本发明是按照以下技术方案实施的:
一种高抗渗低导热无机轻质泡沫混凝土,包括以下质量分数的原料:普通硅酸盐水泥1260~1540份、纳米二氧化硅20~60份、粉煤灰460~740份、骨料360~440份、可再分散性乳胶粉9~11份、聚丙烯纤维7.2~8.8份、速凝剂27~33份、无氟泡沫500份、水900~1100份;
进一步的,所述无氟泡沫由硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵、尿素和水复配而成,所述硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵和尿素配比分别为0.06%-0.1%、0.06%-0.1%、0.06%-0.1%、0.1%-0.2%、0.3%-0.4%、剩余为水;本申请的复配无氟泡沫一方面杜绝了现有氟碳类泡沫的生物积累效应和对环境的破坏影响;另一方面该无氟泡沫具有较强的稳定性及持液能力,利于泡沫混凝土的发泡;
进一步的,所述纳米二氧化硅的平均粒径为20-30nm,SiO 2含量为99.99%;具备高活性火山灰效应、晶核效应和形态作用等,其不仅可与水泥中的碱性物质Ca(OH) 2发生反应,还能和水化产物C 3S发生二次水化反应,生成一种可用于增加泡沫混凝土内部密实度的连续链状C-S-H胶凝材料,这些链状体相互交织成网状结构,在泡沫混凝土内部可形成一层耐水阻隔层,有效防止外界水分和有害离子的渗入,纳米SiO 2作为一种改性剂预先和硅酸盐水泥进行充分混合,使纳米SiO 2颗粒均匀吸附在水泥颗粒表面;纳米二氧化硅作为稳泡剂,高活性的纳米二氧化硅颗粒经充分搅拌可吸附聚集在气泡的气液界面上,并穿插在液膜中的表面活性离子团之间,改变气泡表面吸附分子的排列结构,有效降低其表面能和表面张力,形成更为致密的混合膜结构,有效提高气/液界面的粘合度,阻止气泡内液体的流失,进而有效减缓气泡的析液进程,增加泡沫的稳定性和降低气泡的破损率;
进一步的,所述骨料为郑州产地河沙,细度模数为2.4-2.8,粒径为0.4-0.5mm;
进一步的,所述可再分散性乳胶粉PH值为7,平均粒径为70-80μm,固含量为98%;
进一步的,所述聚丙烯纤维相量直径为0.04-0.05mm,长度为10-12mm,表观密度为0.90g/cm 3
一种高抗渗低导热无机轻质泡沫混凝土的制备方法,包括以下步骤:
第一步,将通过电子天平称取的普通硅酸盐水泥倒入搅拌桶中,并将纳米二氧化硅颗粒掺入到硅酸盐水泥中,利用搅拌机进行干式搅拌,使硅酸盐水泥和纳米二氧化硅颗粒预先充分混合;
第二步,将称取的粉煤灰、骨料、聚丙烯纤维、可分散性乳胶粉和速凝剂依次加入到第一步充分混合的硅酸盐水泥和纳米二氧化硅中,同时将无氟泡沫原液和适量水混合,通过空压机驱动制备实验所需的无氟泡沫备用;
第三步,将称取的水加入到第二步混合后的搅拌桶中,利用搅拌机进行充分搅拌,得到流动性和均匀性合理的水泥基浆体;
第四步,将第二步制备的泡沫掺入第三步搅拌均匀的水泥浆体中,利用搅拌机进行充分搅拌,使泡沫充分均匀的分散在水泥浆体中;
第五步,将第四步搅拌均匀的水泥基浆体浇注至三联钢制试模中,并进行预养护1~2d、养护28d后脱模得到具有高抗渗和低导热性的泡沫混凝土。
与现有技术相比,本发明的高抗渗低导热无机轻质泡沫混凝土及其制备方法具备以下有益效果:
本发明制备的无氟泡沫具有发泡倍数可调,25%析液时间长。高活性的纳米二氧化硅颗粒可吸附聚集在气泡的气液界面上,穿插在液膜中的表面活性离子团之间,改变气泡表面吸附分子的排列结构,有效降低其表面能和表面张力,形成更为致密的混合膜结构,有效提高气/液界面的粘合度,阻止气泡内液体的流失,可使泡沫在水泥浆体重力挤压和表面张力排液双重作用下不易破裂,利于在泡沫混凝土内部形成互不相连的封闭孔,有助于改善其孔隙结构。
本发明将纳米二氧化硅作为高活性改性剂掺入水泥基浆体中,其粒径微小,呈纳米级,仅为20-30nm,可有效填充于水泥浆体中的微小空洞和裂缝处,并与水泥浆体中的碱性物质Ca(OH) 2反应生成C-S-H胶凝材料,可用于加强其结构密实度,而且纳米二氧化硅粒子具有超高的表面能,可大量吸附在泡沫混凝土气泡孔隙的内壁上,易与其他原料微粒及不饱和键反应形成更为稳定的结构,且纳米二氧化硅表面含有较多不同键合状态羟基(-OH)和不饱和残键,它们之间可相互结合、相互反应,并在水泥基浆体表面紧密排列,形成一层耐水阻隔层,可有效阻止外界水分和有害离子的渗入,提高泡沫混凝土的抗渗性能和耐久性。
本发明的制备高抗渗和低导热性泡沫混凝土的配方简易,工作性好,具有轻质、低导热性,适用于建筑外墙的隔热系统构造。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的纳米二氧化硅的稳泡作用示意图;
图2为本发明的耐水阻隔层的扫描电镜证明图;
图3为本发明的纳米二氧化硅颗粒耐水阻隔层的形成机理图;
图4为本发明的水泥浆体的制作流程图;
图5为本发明的无氟泡沫的引入流程图;
图6为本发明的实施例1-3的泡沫混凝土水分渗透深度对比图;
图7为本发明的基准组和实施例3泡沫混凝土水分表面渗透的对比图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1:一种高抗渗低导热无机轻质泡沫混凝土,制备方法如下:
第一步,首先利用电子天平按质量份数称取普通硅酸盐水泥1260g,倒入搅拌桶中;然后称取纳米二氧化硅20g,掺入硅酸盐水泥中,利用搅拌机进行干式预搅拌1min,使纳米二氧化硅颗粒和水泥充分混合,有助于纳米二氧化硅颗粒吸附在水泥颗粒表面,更好的发挥其火山灰效应、晶核作用和形态效应等,利于改善泡沫混凝土的性能;纳米二氧化硅作为稳泡剂,高活性的纳米二氧化硅颗粒经充分搅拌可吸附聚集在气泡的气液界面上,并穿插在液膜中的表面活性离子团之间,改变气泡表面吸附分子的排列结构,有效降低其表面能和表面张力,形成更为致密的混合膜结构,有效提高气/液界面的粘合度,阻止气泡内液体的流失,进而有效减缓气泡的析液进程,增加泡沫的稳定性和降低气泡的破损率,纳米二氧化硅的稳泡作用示意图如图1所示;内部含有的大量SiO 2不仅可与水泥中的碱性物质Ca(OH) 2发生反应,还能和水化产物C3S发生二次水化反应,生成一种可用于增加泡沫混凝土内部密实度的连续链状CSH胶凝材料,这些链状体相互交织成网状结构,在泡沫混凝土内部可形成一层耐水阻隔层,如微观形貌如图2所示,图3为纳米二氧化硅颗耐水阻隔层的形成机理,晶核效应还可在水泥基浆体表面形成较多晶核水化位点,促进水泥的早期水化。耐水阻隔层的形成在很大程度上阻止外界水分和有害离子的渗入,纳米SiO 2作为一种改性剂预先和普通硅酸盐水泥进行充分混合,使纳米SiO 2颗粒均匀吸附在水泥颗粒表面;
第二步,将称取的粉煤灰740g、骨料360g、聚丙烯纤维7.2g、可分散性乳胶粉9g、速凝剂27g依次倒入第一步的搅拌桶,然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第三步,将称取的水900g倒入第二步的搅拌桶中,利用搅拌机进行均匀搅拌2min,得到流动性和均匀性合理的水泥浆体,随后将第二步制备的泡沫掺入水泥浆体中,并充分搅拌2min,最后得到均匀合理的水泥基浆体,图4为水泥浆体的制作流程图;随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出1#高抗渗和低导热性的泡沫混凝土。
其中,500g的无氟泡沫由0.5g的硅系表面活性剂LS-99,0.5g的阴离子十二烷基硫酸钠SDS,0.5g的纳米二氧化硅,0.75g的聚磷酸铵APP和1.5g的尿素加适量水复合而成。经搅拌棒充分搅拌混合均衡后,利用空气压缩机将无氟泡沫液通过发泡机发泡,无氟泡沫所制取的泡沫稳定性高,液膜坚韧度和机械强度高,不易在水泥浆体重力挤压下破灭或过度变形,利于在泡沫混凝土内部形成互不相连的封闭孔,泡沫的泡径在0.1~1mm之间,孔径均匀;图5位无氟泡沫的引入流程图。
实施例2:一种高抗渗低导热无机轻质泡沫混凝土,制备方法如下:
第一步,首先利用电子天平按质量份数称取普通硅酸盐水泥1400g,倒入搅拌桶中;然后称取纳米二氧化硅30g,掺入硅酸盐水泥中,利用搅拌机进行干式预搅拌1min,使纳米二氧化硅颗粒和水泥充分混合;
第二步,将称取的粉煤灰600g、骨料400g、聚丙烯纤维8g、可分散性乳胶粉10g、速凝剂30g依次倒入第一步的搅拌桶;然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第三步,将称取的水1000g倒入第二步的搅拌桶中,利用搅拌机进行均匀搅拌62min,得到流动性和均匀性合理的水泥浆体,随后将第二步制备的泡沫引入水泥浆体中,并充分搅拌2min,最后得到均匀合理的水泥基浆体。随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出2#高抗渗和低导热性的泡沫混凝土。
其中,500g的无氟泡沫由0.5g的硅系表面活性剂LS-99,0.5g的阴离子十二烷基硫酸钠SDS,0.5g的纳米二氧化硅,0.75g的聚磷酸铵APP和1.5g的尿素加适量水复合而成。经搅拌棒充分搅拌混合均衡后,利用空气压缩机将无氟泡沫液通过发泡机发泡。
实施例3:一种高抗渗低导热无机轻质泡沫混凝土,制备方法如下:
第一步,首先利用电子天平按质量份数称取普通硅酸盐水泥1540g,倒入搅拌桶中;然后称取纳米二氧化硅50g,掺入硅酸盐水泥中,利用搅拌机进行干式预搅拌1min,使纳米二氧化硅颗粒和水泥充分混合;
第二步,将称取的粉煤灰460g、骨料440g、可分散性乳胶粉11g、聚丙烯纤维8.8g、速凝剂33g依次倒入第一步的搅拌桶中;然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第三步,将称取的水1100g倒入第二步的搅拌桶中,利用搅拌机进行均匀搅拌2min,得到流动性和均匀性合理的水泥浆体,随后将第二步制备的泡沫掺入水泥浆体中,并充分搅拌2min,最后得到均匀合理的水泥基浆体。随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出3#高抗渗和低导热性的泡沫混凝土。
其中,500g的无氟泡沫由0.5g的硅系表面活性剂LS-99,0.5g的阴离子十二烷基硫酸钠SDS,0.5g的纳米二氧化硅,0.75g的聚磷酸铵APP和1.5g的尿素加适量水复合而成。经搅拌棒充分搅拌混合均衡后,利用空气压缩机将无氟泡沫液通过发泡机发泡。
基准组:泡沫混凝土的制备方法如下:
第一步,利用电子天平按质量份数称取普通硅酸盐水泥1260g,倒入搅拌桶中,随后将称取的粉煤灰600g、骨料360g、聚丙烯纤维8g、可分散性乳胶粉10g、速凝剂30g依次倒入搅拌桶;然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第二步,将称取的水900g倒入第一步的搅拌桶中,利用搅拌机进行均匀搅拌2min,得到流动性和均匀性合理的水泥浆体,随后将第一步制备的泡沫掺入水泥浆体中,充分搅拌2min,最后得到均匀合理的水泥基浆体。随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出基准组泡沫混凝土。
将基准组和实施例1~3制备出的1#、2#、3#泡沫混凝土试样按照JG/T 266-2011泡沫混凝土标准规范和《绝热材料稳态热阻及有关特性的测定防护热板法》GB10294-2008进行干密度和导热系数的测试。图6为实施例13与基准组的泡沫混凝土水分渗透深度对比图;图7为基准组和实施例3泡沫混凝土水分表面渗透的对比图。
目前,我国对轻质泡沫混凝土抗渗性能的试验方法尚无明确统一的标准规范,本实验自行设计泡沫混凝土抗渗性能的测定方法,测试方法是在试样上方中心点位置用针管滴入水量为3ml,当水分完全渗透试样60s后,利用钢锯沿试样表面水分渗入的中心线位置切开试样,使用刻度尺测量试样内部水分的渗透深度,用于表征试样的抗渗性能,测试结果如表1所示。
 表1 基准组和实施例试样的性能测试结果
综合基准组和实施例1~3制备出1#、2#、3#泡沫混凝土的测试数据,其中实施例2泡沫混凝土干密度最低为387kg/m3,导热系数最低为0.1310(W/m·K),实施例3的抗渗性能最优为13mm,具备优良的抗渗和隔热能力,在建筑外墙隔热板领域具有一定的应用价值,试样的抗渗性能测试实体图,分别如图6和7所示。从图中可验证掺入纳米二氧化硅可提升泡沫混凝土的抗渗性能。
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。

Claims (6)

  1. 一种高抗渗低导热无机轻质泡沫混凝土,其特征在于,包括以下质量份数的原料:
    普通硅酸盐水泥1260~1540份;
    纳米二氧化硅20~60份;
    粉煤灰460~740份;
    骨料360~440份;
    可再分散性乳胶粉9~11份;
    聚丙烯纤维7.2~8.8份;
    速凝剂27~33份;
    无氟泡沫500份;
    水900~1100份;
    所述无氟泡沫由硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵、尿素和水复配而成,所述硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵和尿素配比分别为0.06%-0.1%、0.06%-0.1%、0.06%-0.1%、0.1%-0.2%、0.3%-0.4%、剩余为水;
    所述硅系表面活性剂为LS-99,所述碳氢表面活性剂为阴离子十二烷基硫酸钠SDS。
  2. 根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述纳米二氧化硅的平均粒径为20-30nm,SiO 2含量为99.99%。
  3. 根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述骨料为郑州产地河沙,细度模数为2.4-2.8,粒径为0.4-0.5mm。
  4. 根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述可再分散性乳胶粉pH值为7,平均粒径为70-80μm,固含量为98%。
  5. 根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述聚丙烯纤维相量直径为0.04-0.05mm,长度为10-12mm,表观密度为0.90g/cm 3
  6. 一种如权利要求1所述的高抗渗低导热无机轻质泡沫混凝土的制备方法,其特征在于,包括以下步骤:
    第一步,将通过电子天平称取的普通硅酸盐水泥倒入搅拌桶中,并将纳米二氧化硅颗粒掺入到硅酸盐水泥中,利用搅拌机进行干式搅拌,使硅酸盐水泥和纳米二氧化硅颗粒预先充分混合;
    第二步,将称取的粉煤灰、骨料、聚丙烯纤维、可分散性乳胶粉和速凝剂依次加入到第一步充分混合的硅酸盐水泥和纳米二氧化硅中,同时将无氟泡沫原液和适量水混合,通过空压机驱动制备实验所需的无氟泡沫备用;
    第三步,将称取的水加入到第二步混合后的搅拌桶中,利用搅拌机进行充分搅拌,得到流动性和均匀性合理的水泥基浆体;
    第四步,将第二步制备的泡沫掺入第三步搅拌均匀的水泥浆体中,利用搅拌机进行充分搅拌,使泡沫充分均匀的分散在水泥浆体中;
    第五步,将第四步搅拌均匀的水泥基浆体浇注至三联钢制试模中,并进行预养护1~2d、养护28d后脱模得到具有高抗渗和低导热性的泡沫混凝土。
PCT/CN2023/095696 2022-07-05 2023-05-23 一种高抗渗低导热无机轻质泡沫混凝土及制备方法 WO2024007755A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/530,477 US20240124367A1 (en) 2022-07-05 2023-12-06 Kind of high impermeability low thermal conductivity inorganic lightweight foam concrete and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210782294.2 2022-07-05
CN202210782294.2A CN115010514B (zh) 2022-07-05 2022-07-05 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/530,477 Continuation US20240124367A1 (en) 2022-07-05 2023-12-06 Kind of high impermeability low thermal conductivity inorganic lightweight foam concrete and preparation method

Publications (1)

Publication Number Publication Date
WO2024007755A1 true WO2024007755A1 (zh) 2024-01-11

Family

ID=83079858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095696 WO2024007755A1 (zh) 2022-07-05 2023-05-23 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Country Status (3)

Country Link
US (1) US20240124367A1 (zh)
CN (1) CN115010514B (zh)
WO (1) WO2024007755A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117809768A (zh) * 2024-02-28 2024-04-02 内蒙古工业大学 基于密度评估粉煤灰泡沫混凝土抗压强度的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010514B (zh) * 2022-07-05 2023-04-25 河南理工大学 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344299A (zh) * 2011-07-12 2012-02-08 梁材 超低密度抗渗泡沫混凝土用发泡剂及其制备方法
US20140332217A1 (en) * 2013-05-13 2014-11-13 King Abdulaziz City For Science And Technology Portland saudi cement type-g with nanosilica additive for high pressure-high temperature applications
CN111499293A (zh) * 2020-03-20 2020-08-07 中建西部建设西南有限公司 一种抗裂防渗混凝土
CN112608119A (zh) * 2020-12-23 2021-04-06 武汉理工大学 3d打印掺杂轻质二氧化硅微球的泡沫混凝土及其制备方法
CN113599760A (zh) * 2021-08-06 2021-11-05 河南理工大学 一种三元体系泡沫灭火剂
CN115010514A (zh) * 2022-07-05 2022-09-06 河南理工大学 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199044A (zh) * 2011-03-07 2011-09-28 同济大学 一种复合纤维增强泡沫混凝土及其制备方法
CN102260065A (zh) * 2011-05-25 2011-11-30 南京工业大学 一种泡沫混凝土及其制备方法
CN107117852B (zh) * 2017-03-24 2020-01-14 广州纳达星建材科技有限公司 泡沫混凝土纳米发泡剂组合物及其砌块及其制造方法
CN107840612B (zh) * 2017-11-09 2020-11-06 四川艾珂新材料科技有限公司 一种高强度轻质无机节能保温建材及其制备方法
CN107936469A (zh) * 2017-12-14 2018-04-20 吴海 一种建筑外墙用的酚醛树脂泡沫保温板及其制备方法
CN108929083A (zh) * 2018-07-06 2018-12-04 东南大学 低导热系数抗裂轻质水泥基建筑保温材料及其制备方法
CN109081653A (zh) * 2018-09-19 2018-12-25 东南大学 一种轻质高强抗裂水泥基建筑保温材料及其制备方法
CN111995326B (zh) * 2020-08-31 2022-04-08 重庆黑曜科技有限公司 一种轻质发泡混凝土及其制备方法
CN112062500B (zh) * 2020-09-21 2022-12-27 中铁八局集团建筑工程有限公司 一种混凝土引气剂及其制备和应用
CN112551929A (zh) * 2020-12-29 2021-03-26 广东盛瑞科技股份有限公司 一种高性能泡沫轻质土发泡剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344299A (zh) * 2011-07-12 2012-02-08 梁材 超低密度抗渗泡沫混凝土用发泡剂及其制备方法
US20140332217A1 (en) * 2013-05-13 2014-11-13 King Abdulaziz City For Science And Technology Portland saudi cement type-g with nanosilica additive for high pressure-high temperature applications
CN111499293A (zh) * 2020-03-20 2020-08-07 中建西部建设西南有限公司 一种抗裂防渗混凝土
CN112608119A (zh) * 2020-12-23 2021-04-06 武汉理工大学 3d打印掺杂轻质二氧化硅微球的泡沫混凝土及其制备方法
CN113599760A (zh) * 2021-08-06 2021-11-05 河南理工大学 一种三元体系泡沫灭火剂
CN115010514A (zh) * 2022-07-05 2022-09-06 河南理工大学 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI HAORAN: "Optimization Design and Performance Study of High Stable Foaming Agent and Foamed Concrete", MASTER’S THESES, NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS, CHINA, no. 1, 1 March 2014 (2014-03-01), China, pages 1 - 96, XP009551739 *
YANG ZHANG, YAN YONG-LI;XI QI;YU CHANG-LONG;KOU WEI-WEI: "Effects of SiO2 nanoparticles on the stability of aqueous foams", CHINA SURFACTANT DETERGENT & COSMETICS, QINGGONGYE-BU KEXUE JISHU QINGBAO YANJIUSUO, CN, vol. 50, no. 1, 22 January 2020 (2020-01-22), CN , pages 26 - 31, XP093126190, ISSN: 1001-1803, DOI: 10.3969/j.issn.1001-1803.2020.01.005 *
YI LU, WANG TAO; TIAN ZHAOJUN; PANG MIN: "Test study on formation mechanism of cement-based foam and inhibition for spontaneous combustion of coal pile", JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY, vol. 13, no. 7, 19 July 2017 (2017-07-19), pages 87 - 91, XP093126191, ISSN: 1673-193X, DOI: 10.11731/j.issn.1673-193x.2017.07.014 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117809768A (zh) * 2024-02-28 2024-04-02 内蒙古工业大学 基于密度评估粉煤灰泡沫混凝土抗压强度的方法
CN117809768B (zh) * 2024-02-28 2024-05-24 内蒙古工业大学 基于密度评估粉煤灰泡沫混凝土抗压强度的方法

Also Published As

Publication number Publication date
CN115010514A (zh) 2022-09-06
CN115010514B (zh) 2023-04-25
US20240124367A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2024007755A1 (zh) 一种高抗渗低导热无机轻质泡沫混凝土及制备方法
Liu et al. Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete
Wang et al. Investigation of silica fume as foam cell stabilizer for foamed concrete
CN108585926A (zh) 一种泡沫混凝土的制备方法
CN108264276B (zh) 基于秸秆和固体废弃物的轻钢龙骨复合墙体填充用地聚合物基泡沫混凝土
CN102633526A (zh) 超轻质多孔保温材料及其制备方法
CN110950604A (zh) 一种基于sap的机制砂超高性能混凝土及其制备方法与应用
CN113024189B (zh) 高韧高粘结性c250超高强混杂纤维混凝土及制备方法
CN115124306B (zh) 一种大流态轻质高强eps混凝土及其制备方法
Zhang et al. Effect of nano-particle on durability of polyvinyl alcohol fiber reinforced cementitious composite
CN114538843B (zh) 一种低能耗生态型超高性能混凝土及其制备方法
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
Guo et al. Nanoparticle-stabilized foam with controllable structure for enhanced foamed concrete
CN115340344A (zh) 一种建筑物用纤维掺杂改性轻质泡沫混凝土及其制备方法
CN113024211B (zh) 高韧高粘结性c150强度超高强纤维混凝土及制备方法
He et al. Investigation on foam stability of multi-component composite foaming agent
CN116239362B (zh) 一种轻质泡沫混凝土免烧陶粒及其制备方法
CN109400066A (zh) 一种光伏用高强度再生混凝土管桩及其制备方法
CN112811870A (zh) 掺合铁尾矿-粉煤灰-聚苯乙烯的混凝土墙体材料及其制备方法
WO2024124508A1 (zh) 一种生态型易泵高填充性超高性能混凝土及其制备方法
CN109574700B (zh) 一种分散纤维泡沫混凝土及其制备方法
CN114772992B (zh) 一种含改性气凝胶的轻质保温地质聚合物及其制备方法
CN111362636A (zh) 一种c60碳纤维混凝土及其制备方法
CN113233832B (zh) 高韧高粘结性c180强度超高强纤维混凝土及制备方法
CN113185209B (zh) 高韧高粘结性c220超高强混杂纤维混凝土及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834529

Country of ref document: EP

Kind code of ref document: A1