CN115010514B - 一种高抗渗低导热无机轻质泡沫混凝土及制备方法 - Google Patents

一种高抗渗低导热无机轻质泡沫混凝土及制备方法 Download PDF

Info

Publication number
CN115010514B
CN115010514B CN202210782294.2A CN202210782294A CN115010514B CN 115010514 B CN115010514 B CN 115010514B CN 202210782294 A CN202210782294 A CN 202210782294A CN 115010514 B CN115010514 B CN 115010514B
Authority
CN
China
Prior art keywords
parts
foam concrete
foam
silicon dioxide
nano silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210782294.2A
Other languages
English (en)
Other versions
CN115010514A (zh
Inventor
贾海林
崔博
陈杰
牛国庆
李建委
曾锦祥
赵浩浩
贾洋柳
潘荣锟
邵翔宇
晁江坤
鲁来祥
符峥
潘仕利
邹茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202210782294.2A priority Critical patent/CN115010514B/zh
Publication of CN115010514A publication Critical patent/CN115010514A/zh
Application granted granted Critical
Publication of CN115010514B publication Critical patent/CN115010514B/zh
Priority to PCT/CN2023/095696 priority patent/WO2024007755A1/zh
Priority to US18/530,477 priority patent/US20240124367A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0046Premixtures of ingredients characterised by their processing, e.g. sequence of mixing the ingredients when preparing the premixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/068Specific natural sands, e.g. sea -, beach -, dune - or desert sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • C04B38/106Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam by adding preformed foams
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/304Air-entrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00293Materials impermeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00517Coating or impregnation materials for masonry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明公开了一种高抗渗低导热无机轻质泡沫混凝土及其制备方法,包括以下质量分数的原料:普通硅酸盐水泥1260~1540份、纳米二氧化硅20~60份、粉煤灰460~740份、骨料360~440份、可再分散性乳胶粉9~11份、聚丙烯纤维7.2~8.8份、速凝剂27~33份、无氟泡沫500份、水900~1100份;所述无氟泡沫由硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵、尿素和水复配而成,所述硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵和尿素配比分别为0.06%‑0.1%、0.06%‑0.1%、0.06%‑0.1%、0.1%‑0.2%、0.3%‑0.4%、剩余为水;本发明制备的高抗渗低导热无机轻质泡沫混凝土的配方简易,工作性好,具有轻质、低导热性,适用于建筑外墙的隔热系统构造。

Description

一种高抗渗低导热无机轻质泡沫混凝土及制备方法
技术领域
本发明涉及建筑外墙隔热和隔水技术领域,特别是一种高抗渗低导热无机轻质泡沫混凝土及制备方法。
背景技术
建筑能耗在社会总能耗中占比较大,已超过1/3且将达到40%左右,这不仅给能源供应带来巨大负担,还会严重危害生态环境,推进建筑节能工作已刻不容缓。在此背景下,提高建筑围护结构的隔热保温性能,有助于减少室内外温差造成的热损失,利于房间环境稳定。泡沫混凝土作为一种新型建筑外墙隔热保温材料,其内部含有大量闭孔,闭孔中滞留的空气是一种优良的隔热媒介,能有效阻止热量传递,被应用于外墙隔热系统。随着建筑节能诉求的提高,建筑领域对泡沫混凝土隔热性能的要求也在逐渐提级,低密度、低导热、高抗渗等成为优化的主要指标。面对这一新要求,常规外加剂已显得力不从心,亟需寻求其他高性能的外加剂和掺和料。
20世纪90年代,学者们逐渐察觉到纳米材料的优异性能,并开始了纳米材料在混凝土中的应用研究。这其中,纳米二氧化硅是一种无机化工材料,呈超细纳米级,尺寸在20nm左右,具有众多优异性能,是提升混凝土性能的重要原料。He等研究发现纳米SiO2的掺入可增加混凝土孔壁水化产物的密实度和抗压强度。Abhilash等将掺量为3%的纳米SiO2加入混凝土中,可提高混凝土的抗压强度和耐久性。She等指出纳米SiO2可增加混凝土结构的密实性,提高混凝土抗压强度。胡建城等通过将纳米SiO2掺入混凝土,发现可提升其3d和28d的抗压强度。
总结上述综献发现,前人对纳米SiO2的研究多集中于改良混凝土的抗压强度、抗冻性能和耐久性。而系统利用纳米SiO2改善泡沫混凝土的抗渗性能、隔热性能及细观结构研究并不多,尤其在提升抗渗机理方面还不够完善。基于此,基于单一变量法设计不同掺量纳米SiO2的泡沫混凝土复配实验,研究纳米SiO2对泡沫混凝土宏观性能和微观形貌的影响规律,尤其对抗渗性能提升效能的分析,结合SEM分析揭示抗渗性能的增强机理,以期获得一种高抗渗低导热无机轻质泡沫混凝土。
通过检索相关专利,发现已有一些发明人开展了不同复配方案下泡沫混凝土抗压强度和密度的研究工作。如授权公布号为CN108585941A的中国专利,提出了一种高强度泡沫混凝土配方,但因其密度较大,无法更加轻质的应用于建筑外墙上。又如公开号为CN114057449A的中国专利,提出了一种轻质泡沫混凝土配方,但其主要目的是吸附甲醛及污染有机物等,其未对抗压性能及导热系数做出相关测定。公开号为CN113511873A的中国专利,提供了一种高强度轻质泡沫混凝土的制备方法,指出当气孔率减少时,可改善其抗压强度和抗渗性能,但并没有数据证实其优良的抗渗性能。泡沫混凝土作为一种新型建筑外墙隔热保温材料,除干密度、抗压强度等满足要求外,其抗渗性能、隔热性能在隔热保温方面至关重要。如抗渗性能低,很大程度上会影响着建筑外墙隔热板的吸水量、耐久性等;吸水率较高会导致其导热系数增大,隔热效果将急剧下降,不利于建筑房屋的节能减排。
发明内容
为了克服上述不足,本发明提供一种高抗渗低导热无机轻质泡沫混凝土,应用于建筑围护结构的隔热保温方面;目的在于提升泡沫混凝土抵御外界水分和有害离子的浸入,提高其抗渗性能,更主要的是进一步降低导热系数,优化提升隔热保温性能。同时现有泡沫复配方案多含有PFOS组分,尤其是在国际环境公约《关于持久性有机污染物的斯德哥尔摩公约》出台后,氟碳类泡沫需要逐步退出舞台的这一现实问题,为践行绿色、低碳发展理念,本发明专利中泡沫复配方案避开氟碳类表面活性剂,选择硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵和尿素复配的无氟泡沫方案。
为达到上述目的,本发明是按照以下技术方案实施的:
一种高抗渗低导热无机轻质泡沫混凝土,包括以下质量分数的原料:普通硅酸盐水泥1260~1540份、纳米二氧化硅20~60份、粉煤灰460~740份、骨料360~440份、可再分散性乳胶粉9~11份、聚丙烯纤维7.2~8.8份、速凝剂27~33份、无氟泡沫500份、水900~1100份;
进一步的,所述无氟泡沫由硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵、尿素和水复配而成,所述硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵和尿素配比分别为0.06%-0.1%、0.06%-0.1%、0.06%-0.1%、0.1%-0.2%、0.3%-0.4%、剩余为水;本申请的复配无氟泡沫一方面杜绝了现有氟碳类泡沫的生物积累效应和对环境的破坏影响;另一方面该无氟泡沫具有较强的稳定性及持液能力,利于泡沫混凝土的发泡;
进一步的,所述纳米二氧化硅的平均粒径为20-30nm,SiO2含量为99.99%;具备高活性火山灰效应、晶核效应和形态作用等,其不仅可与水泥中的碱性物质Ca(OH)2发生反应,还能和水化产物C3S发生二次水化反应,生成一种可用于增加泡沫混凝土内部密实度的连续链状C-S-H胶凝材料,这些链状体相互交织成网状结构,在泡沫混凝土内部可形成一层耐水阻隔层,有效防止外界水分和有害离子的渗入,纳米SiO2作为一种改性剂预先和硅酸盐水泥进行充分混合,使纳米SiO2颗粒均匀吸附在水泥颗粒表面;纳米二氧化硅作为稳泡剂,高活性的纳米二氧化硅颗粒经充分搅拌可吸附聚集在气泡的气液界面上,并穿插在液膜中的表面活性离子团之间,改变气泡表面吸附分子的排列结构,有效降低其表面能和表面张力,形成更为致密的混合膜结构,有效提高气/液界面的粘合度,阻止气泡内液体的流失,进而有效减缓气泡的析液进程,增加泡沫的稳定性和降低气泡的破损率;
进一步的,所述骨料为郑州产地河沙,细度模数为2.4-2.8,粒径为0.4-0.5mm;
进一步的,所述可再分散性乳胶粉PH值为7,平均粒径为70-80μm,固含量为98%;
进一步的,所述聚丙烯纤维相量直径为0.04-0.05mm,长度为10-12mm,表观密度为0.90g/cm3
一种高抗渗低导热无机轻质泡沫混凝土的制备方法,包括以下步骤:
第一步,将通过电子天平称取的普通硅酸盐水泥倒入搅拌桶中,并将纳米二氧化硅颗粒掺入到硅酸盐水泥中,利用搅拌机进行干式搅拌,使硅酸盐水泥和纳米二氧化硅颗粒预先充分混合;
第二步,将称取的粉煤灰、骨料、聚丙烯纤维、可分散性乳胶粉和速凝剂依次加入到第一步充分混合的硅酸盐水泥和纳米二氧化硅中,同时将无氟泡沫原液和适量水混合,通过空压机驱动制备实验所需的无氟泡沫备用;
第三步,将称取的水加入到第二步混合后的搅拌桶中,利用搅拌机进行充分搅拌,得到流动性和均匀性合理的水泥基浆体;
第四步,将第二步制备的泡沫掺入第三步搅拌均匀的水泥浆体中,利用搅拌机进行充分搅拌,使泡沫充分均匀的分散在水泥浆体中;
第五步,将第四步搅拌均匀的水泥基浆体浇注至三联钢制试模中,并进行预养护1~2d、养护28d后脱模得到具有高抗渗和低导热性的泡沫混凝土。
与现有技术相比,本发明的高抗渗低导热无机轻质泡沫混凝土及其制备方法具备以下有益效果:
本发明制备的无氟泡沫具有发泡倍数可调,25%析液时间长。高活性的纳米二氧化硅颗粒可吸附聚集在气泡的气液界面上,穿插在液膜中的表面活性离子团之间,改变气泡表面吸附分子的排列结构,有效降低其表面能和表面张力,形成更为致密的混合膜结构,有效提高气/液界面的粘合度,阻止气泡内液体的流失,可使泡沫在水泥浆体重力挤压和表面张力排液双重作用下不易破裂,利于在泡沫混凝土内部形成互不相连的封闭孔,有助于改善其孔隙结构。
本发明将纳米二氧化硅作为高活性改性剂掺入水泥基浆体中,其粒径微小,呈纳米级,仅为20-30nm,可有效填充于水泥浆体中的微小空洞和裂缝处,并与水泥浆体中的碱性物质Ca(OH)2反应生成C-S-H胶凝材料,可用于加强其结构密实度,而且纳米二氧化硅粒子具有超高的表面能,可大量吸附在泡沫混凝土气泡孔隙的内壁上,易与其他原料微粒及不饱和键反应形成更为稳定的结构,且纳米二氧化硅表面含有较多不同键合状态羟基(-OH)和不饱和残键,它们之间可相互结合、相互反应,并在水泥基浆体表面紧密排列,形成一层耐水阻隔层,可有效阻止外界水分和有害离子的渗入,提高泡沫混凝土的抗渗性能和耐久性。
本发明的制备高抗渗和低导热性泡沫混凝土的配方简易,工作性好,具有轻质、低导热性,适用于建筑外墙的隔热系统构造。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的纳米二氧化硅的稳泡作用示意图;
图2为本发明的耐水阻隔层的扫描电镜证明图;
图3为本发明的纳米二氧化硅颗粒耐水阻隔层的形成机理图;
图4为本发明的水泥浆体的制作流程图;
图5为本发明的无氟泡沫的引入流程图;
图6为本发明的实施例1-3的泡沫混凝土水分渗透深度对比图;
图7为本发明的基准组和实施例3泡沫混凝土水分表面渗透的对比图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1:一种高抗渗低导热无机轻质泡沫混凝土,制备方法如下:
第一步,首先利用电子天平按质量份数称取普通硅酸盐水泥1260g,倒入搅拌桶中;然后称取纳米二氧化硅20g,掺入硅酸盐水泥中,利用搅拌机进行干式预搅拌1min,使纳米二氧化硅颗粒和水泥充分混合,有助于纳米二氧化硅颗粒吸附在水泥颗粒表面,更好的发挥其火山灰效应、晶核作用和形态效应等,利于改善泡沫混凝土的性能;纳米二氧化硅作为稳泡剂,高活性的纳米二氧化硅颗粒经充分搅拌可吸附聚集在气泡的气液界面上,并穿插在液膜中的表面活性离子团之间,改变气泡表面吸附分子的排列结构,有效降低其表面能和表面张力,形成更为致密的混合膜结构,有效提高气/液界面的粘合度,阻止气泡内液体的流失,进而有效减缓气泡的析液进程,增加泡沫的稳定性和降低气泡的破损率,纳米二氧化硅的稳泡作用示意图如图1所示;内部含有的大量SiO2不仅可与水泥中的碱性物质Ca(OH)2发生反应,还能和水化产物C3S发生二次水化反应,生成一种可用于增加泡沫混凝土内部密实度的连续链状C-S-H胶凝材料,这些链状体相互交织成网状结构,在泡沫混凝土内部可形成一层耐水阻隔层,如微观形貌如图2所示,图3为纳米二氧化硅颗耐水阻隔层的形成机理,晶核效应还可在水泥基浆体表面形成较多晶核水化位点,促进水泥的早期水化。耐水阻隔层的形成在很大程度上阻止外界水分和有害离子的渗入,纳米SiO2作为一种改性剂预先和普通硅酸盐水泥进行充分混合,使纳米SiO2颗粒均匀吸附在水泥颗粒表面;
第二步,将称取的粉煤灰740g、骨料360g、聚丙烯纤维7.2g、可分散性乳胶粉9g、速凝剂27g依次倒入第一步的搅拌桶,然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第三步,将称取的水900g倒入第二步的搅拌桶中,利用搅拌机进行均匀搅拌2min,得到流动性和均匀性合理的水泥浆体,随后将第二步制备的泡沫掺入水泥浆体中,并充分搅拌2min,最后得到均匀合理的水泥基浆体,图4为水泥浆体的制作流程图;随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出1#高抗渗和低导热性的泡沫混凝土。
其中,500g的无氟泡沫由0.5g的硅系表面活性剂LS-99,0.5g的阴离子十二烷基硫酸钠SDS,0.5g的纳米二氧化硅,0.75g的聚磷酸铵APP和1.5g的尿素加适量水复合而成。经搅拌棒充分搅拌混合均衡后,利用空气压缩机将无氟泡沫液通过发泡机发泡,无氟泡沫所制取的泡沫稳定性高,液膜坚韧度和机械强度高,不易在水泥浆体重力挤压下破灭或过度变形,利于在泡沫混凝土内部形成互不相连的封闭孔,泡沫的泡径在0.1~1mm之间,孔径均匀;图5位无氟泡沫的引入流程图。
实施例2:一种高抗渗低导热无机轻质泡沫混凝土,制备方法如下:
第一步,首先利用电子天平按质量份数称取普通硅酸盐水泥1400g,倒入搅拌桶中;然后称取纳米二氧化硅30g,掺入硅酸盐水泥中,利用搅拌机进行干式预搅拌1min,使纳米二氧化硅颗粒和水泥充分混合;
第二步,将称取的粉煤灰600g、骨料400g、聚丙烯纤维8g、可分散性乳胶粉10g、速凝剂30g依次倒入第一步的搅拌桶;然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第三步,将称取的水1000g倒入第二步的搅拌桶中,利用搅拌机进行均匀搅拌2min,得到流动性和均匀性合理的水泥浆体,随后将第二步制备的泡沫引入水泥浆体中,并充分搅拌2min,最后得到均匀合理的水泥基浆体。随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出2#高抗渗和低导热性的泡沫混凝土。
其中,500g的无氟泡沫由0.5g的硅系表面活性剂LS-99,0.5g的阴离子十二烷基硫酸钠SDS,0.5g的纳米二氧化硅,0.75g的聚磷酸铵APP和1.5g的尿素加适量水复合而成。经搅拌棒充分搅拌混合均衡后,利用空气压缩机将无氟泡沫液通过发泡机发泡。
实施例3:一种高抗渗低导热无机轻质泡沫混凝土,制备方法如下:
第一步,首先利用电子天平按质量份数称取普通硅酸盐水泥1540g,倒入搅拌桶中;然后称取纳米二氧化硅50g,掺入硅酸盐水泥中,利用搅拌机进行干式预搅拌1min,使纳米二氧化硅颗粒和水泥充分混合;
第二步,将称取的粉煤灰460g、骨料440g、可分散性乳胶粉11g、聚丙烯纤维8.8g、速凝剂33g依次倒入第一步的搅拌桶中;然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第三步,将称取的水1100g倒入第二步的搅拌桶中,利用搅拌机进行均匀搅拌2min,得到流动性和均匀性合理的水泥浆体,随后将第二步制备的泡沫掺入水泥浆体中,并充分搅拌2min,最后得到均匀合理的水泥基浆体。随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出3#高抗渗和低导热性的泡沫混凝土。
其中,500g的无氟泡沫由0.5g的硅系表面活性剂LS-99,0.5g的阴离子十二烷基硫酸钠SDS,0.5g的纳米二氧化硅,0.75g的聚磷酸铵APP和1.5g的尿素加适量水复合而成。经搅拌棒充分搅拌混合均衡后,利用空气压缩机将无氟泡沫液通过发泡机发泡。
基准组:泡沫混凝土的制备方法如下:
第一步,利用电子天平按质量份数称取普通硅酸盐水泥1260g,倒入搅拌桶中,随后将称取的粉煤灰600g、骨料360g、聚丙烯纤维8g、可分散性乳胶粉10g、速凝剂30g依次倒入搅拌桶;然后将500g无氟泡沫通过空压机和发泡机制备出泡沫备用;
第二步,将称取的水900g倒入第一步的搅拌桶中,利用搅拌机进行均匀搅拌2min,得到流动性和均匀性合理的水泥浆体,随后将第一步制备的泡沫掺入水泥浆体中,充分搅拌2min,最后得到均匀合理的水泥基浆体。随之浇注至三联钢制试模中(表面用机油进行均匀涂抹),并进行预养护1~2d、养护28d后脱模,制备出基准组泡沫混凝土。
将基准组和实施例1~3制备出的1#、2#、3#泡沫混凝土试样按照JG/T 266-2011泡沫混凝土标准规范和《绝热材料稳态热阻及有关特性的测定防护热板法》GB10294-2008进行干密度和导热系数的测试。图6为实施例1-3与基准组的泡沫混凝土水分渗透深度对比图;图7 为基准组和实施例3泡沫混凝土水分表面渗透的对比图。
目前,我国对轻质泡沫混凝土抗渗性能的试验方法尚无明确统一的标准规范,本实验自行设计泡沫混凝土抗渗性能的测定方法,测试方法是在试样上方中心点位置用针管滴入水量为3ml,当水分完全渗透试样60s后,利用钢锯沿试样表面水分渗入的中心线位置切开试样,使用刻度尺测量试样内部水分的渗透深度,用于表征试样的抗渗性能,测试结果如表1所示。
表1 基准组和实施例试样的性能测试结果
实施例 <![CDATA[干密度(kg/m<sup>3</sup>)]]> 水分的渗透深度/mm 导热系数(W/m·K)
基准组 480.7 28 0.1725
实施例1 394.8 21 0.1558
实施例2 387 24 0.1310
实施例3 441.3 13 0.1626
综合基准组和实施例1~3制备出1#、2#、3#泡沫混凝土的测试数据,其中实施例2泡沫混凝土干密度最低为387kg/m3,导热系数最低为0.1310(W/m·K),实施例3的抗渗性能最优为13mm,具备优良的抗渗和隔热能力,在建筑外墙隔热板领域具有一定的应用价值,试样的抗渗性能测试实体图,分别如图6和7所示。从图中可验证掺入纳米二氧化硅可提升泡沫混凝土的抗渗性能。
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。

Claims (6)

1.一种高抗渗低导热无机轻质泡沫混凝土,其特征在于,包括以下质量份数的原料:
普通硅酸盐水泥1260~1540份;
纳米二氧化硅20~60份;
粉煤灰460~740份;
骨料360~440份;
可再分散性乳胶粉9~11份;
聚丙烯纤维7.2~8.8份;
速凝剂27~33份;
无氟泡沫500份;
水900~1100份;
所述无氟泡沫由硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵、尿素和水复配而成,所述硅系表面活性剂、碳氢表面活性剂、纳米二氧化硅、聚磷酸铵和尿素配比分别为0.06%-0.1%、0.06%-0.1%、0.06%-0.1%、0.1%-0.2%、0.3%-0.4%、剩余为水;
所述硅系表面活性剂为LS-99,所述碳氢表面活性剂为阴离子十二烷基硫酸钠SDS。
2.根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述纳米二氧化硅的平均粒径为20-30nm,SiO2含量为99.99%。
3.根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述骨料为郑州产地河沙,细度模数为2.4-2.8,粒径为0.4-0.5mm。
4.根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述可再分散性乳胶粉pH值为7,平均粒径为70-80μm,固含量为98%。
5.根据权利要求1所述的高抗渗低导热无机轻质泡沫混凝土,其特征在于,所述聚丙烯纤维相量直径为0.04-0.05mm,长度为10-12mm,表观密度为0.90g/cm3
6.一种如权利要求1所述的高抗渗低导热无机轻质泡沫混凝土的制备方法,其特征在于,包括以下步骤:
第一步,将通过电子天平称取的普通硅酸盐水泥倒入搅拌桶中,并将纳米二氧化硅颗粒掺入到硅酸盐水泥中,利用搅拌机进行干式搅拌,使硅酸盐水泥和纳米二氧化硅颗粒预先充分混合;
第二步,将称取的粉煤灰、骨料、聚丙烯纤维、可分散性乳胶粉和速凝剂依次加入到第一步充分混合的硅酸盐水泥和纳米二氧化硅中,同时将无氟泡沫原液和适量水混合,通过空压机驱动制备实验所需的无氟泡沫备用;
第三步,将称取的水加入到第二步混合后的搅拌桶中,利用搅拌机进行充分搅拌,得到流动性和均匀性合理的水泥基浆体;
第四步,将第二步制备的泡沫掺入第三步搅拌均匀的水泥浆体中,利用搅拌机进行充分搅拌,使泡沫充分均匀的分散在水泥浆体中;
第五步,将第四步搅拌均匀的水泥基浆体浇注至三联钢制试模中,并进行预养护1~2d、养护28d后脱模得到具有高抗渗和低导热性的泡沫混凝土。
CN202210782294.2A 2022-07-05 2022-07-05 一种高抗渗低导热无机轻质泡沫混凝土及制备方法 Active CN115010514B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210782294.2A CN115010514B (zh) 2022-07-05 2022-07-05 一种高抗渗低导热无机轻质泡沫混凝土及制备方法
PCT/CN2023/095696 WO2024007755A1 (zh) 2022-07-05 2023-05-23 一种高抗渗低导热无机轻质泡沫混凝土及制备方法
US18/530,477 US20240124367A1 (en) 2022-07-05 2023-12-06 Kind of high impermeability low thermal conductivity inorganic lightweight foam concrete and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210782294.2A CN115010514B (zh) 2022-07-05 2022-07-05 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Publications (2)

Publication Number Publication Date
CN115010514A CN115010514A (zh) 2022-09-06
CN115010514B true CN115010514B (zh) 2023-04-25

Family

ID=83079858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210782294.2A Active CN115010514B (zh) 2022-07-05 2022-07-05 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Country Status (3)

Country Link
US (1) US20240124367A1 (zh)
CN (1) CN115010514B (zh)
WO (1) WO2024007755A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010514B (zh) * 2022-07-05 2023-04-25 河南理工大学 一种高抗渗低导热无机轻质泡沫混凝土及制备方法
CN117809768B (zh) * 2024-02-28 2024-05-24 内蒙古工业大学 基于密度评估粉煤灰泡沫混凝土抗压强度的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107936469A (zh) * 2017-12-14 2018-04-20 吴海 一种建筑外墙用的酚醛树脂泡沫保温板及其制备方法
CN113599760A (zh) * 2021-08-06 2021-11-05 河南理工大学 一种三元体系泡沫灭火剂

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199044A (zh) * 2011-03-07 2011-09-28 同济大学 一种复合纤维增强泡沫混凝土及其制备方法
CN102260065A (zh) * 2011-05-25 2011-11-30 南京工业大学 一种泡沫混凝土及其制备方法
CN102344299B (zh) * 2011-07-12 2013-04-03 梁材 超低密度抗渗泡沫混凝土用发泡剂及其制备方法
US20140332217A1 (en) * 2013-05-13 2014-11-13 King Abdulaziz City For Science And Technology Portland saudi cement type-g with nanosilica additive for high pressure-high temperature applications
CN107117852B (zh) * 2017-03-24 2020-01-14 广州纳达星建材科技有限公司 泡沫混凝土纳米发泡剂组合物及其砌块及其制造方法
CN107840612B (zh) * 2017-11-09 2020-11-06 四川艾珂新材料科技有限公司 一种高强度轻质无机节能保温建材及其制备方法
CN108929083A (zh) * 2018-07-06 2018-12-04 东南大学 低导热系数抗裂轻质水泥基建筑保温材料及其制备方法
CN109081653A (zh) * 2018-09-19 2018-12-25 东南大学 一种轻质高强抗裂水泥基建筑保温材料及其制备方法
CN111499293A (zh) * 2020-03-20 2020-08-07 中建西部建设西南有限公司 一种抗裂防渗混凝土
CN111995326B (zh) * 2020-08-31 2022-04-08 重庆黑曜科技有限公司 一种轻质发泡混凝土及其制备方法
CN112062500B (zh) * 2020-09-21 2022-12-27 中铁八局集团建筑工程有限公司 一种混凝土引气剂及其制备和应用
CN112608119A (zh) * 2020-12-23 2021-04-06 武汉理工大学 3d打印掺杂轻质二氧化硅微球的泡沫混凝土及其制备方法
CN112551929A (zh) * 2020-12-29 2021-03-26 广东盛瑞科技股份有限公司 一种高性能泡沫轻质土发泡剂
CN115010514B (zh) * 2022-07-05 2023-04-25 河南理工大学 一种高抗渗低导热无机轻质泡沫混凝土及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107936469A (zh) * 2017-12-14 2018-04-20 吴海 一种建筑外墙用的酚醛树脂泡沫保温板及其制备方法
CN113599760A (zh) * 2021-08-06 2021-11-05 河南理工大学 一种三元体系泡沫灭火剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙玉翠 ; .低聚合度聚磷酸铵制备过程中温度变化探究.磷肥与复肥.2018,(第02期),全文. *

Also Published As

Publication number Publication date
US20240124367A1 (en) 2024-04-18
CN115010514A (zh) 2022-09-06
WO2024007755A1 (zh) 2024-01-11

Similar Documents

Publication Publication Date Title
CN115010514B (zh) 一种高抗渗低导热无机轻质泡沫混凝土及制备方法
Wang et al. Investigation of silica fume as foam cell stabilizer for foamed concrete
CN108585926A (zh) 一种泡沫混凝土的制备方法
Ltifi et al. Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars
CN112694343B (zh) 一种高强保温隔音石膏基自流平砂浆及其制备方法
CN107098667B (zh) 石膏基轻质节能板及其制备方法
CN110372290B (zh) 一种大掺量火山灰发泡混凝土材料及其制备方法
CN110950604A (zh) 一种基于sap的机制砂超高性能混凝土及其制备方法与应用
CN114292073B (zh) 一种可3d打印风积沙抗冻混凝土及其制备方法和使用方法
CN102633526A (zh) 超轻质多孔保温材料及其制备方法
CN113800864B (zh) 一种高稳定性超轻泵送泡沫混凝土及其制备方法
CN113372069B (zh) 基于粉煤灰的轻质建筑隔音材料
CN105254241A (zh) 一种提高再生混凝土抗渗性能的方法
Zhang et al. Effect of nano-particle on durability of polyvinyl alcohol fiber reinforced cementitious composite
CN110803938A (zh) 气凝胶泡沫混凝土及其制备方法和应用
CN113831074A (zh) 含有聚氨酯颗粒的轻质隔音地坪浆料、制备方法及轻质隔音地坪
CN107673776B (zh) 一种石墨烯改性发泡石膏吸声材料及其制备方法
CN110395946A (zh) 一种用于外墙保温的气凝胶-玻化微珠复合砂浆的制备方法
Mydin et al. The use of inorganic ferrous–ferric oxide nanoparticles to improve fresh and durability properties of foamed concrete
CN112811870A (zh) 掺合铁尾矿-粉煤灰-聚苯乙烯的混凝土墙体材料及其制备方法
CN109574700B (zh) 一种分散纤维泡沫混凝土及其制备方法
CN112408876A (zh) 基于二氧化硅的水泥基多孔材料及其制备方法
CN115490474A (zh) 一种纳米改性高流动度玻化微珠保温砂浆
CN113185220A (zh) 一种轻质混凝土
CN115466084B (zh) 用于3d打印的高比强轻质eps保温混凝土材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant