WO2024007724A1 - 煤岩光谱感知装置及包括其的采煤机 - Google Patents

煤岩光谱感知装置及包括其的采煤机 Download PDF

Info

Publication number
WO2024007724A1
WO2024007724A1 PCT/CN2023/093195 CN2023093195W WO2024007724A1 WO 2024007724 A1 WO2024007724 A1 WO 2024007724A1 CN 2023093195 W CN2023093195 W CN 2023093195W WO 2024007724 A1 WO2024007724 A1 WO 2024007724A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
rock
laser
spectrometer
spectrum sensing
Prior art date
Application number
PCT/CN2023/093195
Other languages
English (en)
French (fr)
Inventor
刘聪
戴建平
庄德玉
郑立波
朱胜强
Original Assignee
中煤科工集团上海有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中煤科工集团上海有限公司 filed Critical 中煤科工集团上海有限公司
Publication of WO2024007724A1 publication Critical patent/WO2024007724A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Definitions

  • the present invention relates to the technical field of coal mining; specifically, the present invention relates to a coal and rock spectrum sensing device and a coal shearer including the same.
  • the present invention provides a coal rock spectrum sensing device and a coal shearer including the same, thereby solving or at least alleviating one or more of the above problems and other problems existing in the prior art.
  • a first aspect of the present invention provides a coal and rock spectrum sensing device, wherein the coal and rock spectrum sensing device includes:
  • a spectrometer that receives the laser reflection spectrum from the sampling point on the coal mining working surface and obtains the element composition and content of the sampling point based on the laser reflection spectrum analysis;
  • a mobile platform, the laser and the spectrometer are loaded on the mobile platform and can move with the mobile platform;
  • the scan execution device includes a first sliding rail mechanism, the first sliding rail mechanism includes a lateral slide rail and a vertical slide rail, so that the mobile platform can move on the first sliding rail mechanism
  • the lateral and vertical movement enables the laser and the spectrometer to move laterally and vertically with the mobile platform to achieve scanning of the coal mining face;
  • Focus execution device the focus execution device is used to execute the focusing of the laser beam on the coal mining working surface
  • control module communicates with the laser, the spectrometer and the driving mechanism of the scan execution device and the focus execution device and controls the laser, the spectrometer, the scan execution device and the focus To execute the operation of the device, the control module also communicates with the control system of the coal shearer to control the operation of the coal shearer according to the analyzed element composition and content.
  • the laser and the spectrometer are integrated into a laser-induced breakdown spectrum analyzer.
  • the focus execution device is an adjustable optical system.
  • the focusing execution device is a second sliding track mechanism
  • the second sliding track mechanism includes a front and rear sliding rail
  • the mobile platform can move on the The second sliding rail mechanism moves forward and backward
  • the laser and the spectrometer can move forward and backward with the moving platform to achieve focusing of the laser beam on the coal mining working surface.
  • control module controls the distribution of the sampling points on the coal mining working face.
  • the spectrometer feedback shows that the gangue content of the coal becomes larger, Shorten the distance between adjacent sampling points, otherwise increase the distance between adjacent sampling points.
  • the spectrometer uses a coal and rock binary classification model as a coal and rock identification model to determine whether the material at the sampling point is coal or rock.
  • the coal and rock two-classification model is a single spectral line coal and rock identification model
  • the single spectral line coal and rock identification model is given by the following formula:
  • the coal and rock spectrum sensing device includes an alarm, the alarm is communicatively connected with the control module, and the control module sends out an alarm when coal mining is abnormal. Alarm to control the start and stop of the shearer.
  • the breakdown intensity threshold of the laser beam is:
  • a second aspect of the present invention provides a coal shearer, wherein the coal shearer includes the coal rock spectrum sensing device as described in any one of the foregoing first aspects.
  • coal and rock spectrum sensing device of the present invention adopts laser-induced breakdown spectrum analysis and is not sensitive to environmental interference such as dust and background light, and actively performs coal and rock identification, which is safe and reliable.
  • Figure 1 is a schematic block diagram of an embodiment of a coal and rock spectrum sensing device according to the present invention
  • FIG. 2 is a schematic diagram of another embodiment of the coal and rock spectrum sensing device according to the present invention.
  • Figure 3 is a schematic diagram of an embodiment of a coal shearer according to the present invention.
  • FIG. 1 is a schematic block diagram of an embodiment of a coal and rock spectrum sensing device according to the present invention. Based on its own application scenarios and technical elements, this coal and rock spectrum sensing device can be used in unmanned mining face environments in coal mines to meet coal and rock sensing requirements.
  • the coal spectrum sensing device 1 can be installed on the body 14 of the shearer 10 (see Figure 3) or independently set up in front of the shearer 10 to scan the coal before cutting. surface and analyze the coal-rock distribution, finally depict the coal-rock interface, and control the cutting drum of the shearer 10 to cut along the coal-rock interface, or along the planned cutting path along the coal side near the coal-rock interface. cut.
  • This coal and rock spectrum sensing device uses laser-induced breakdown spectroscopy analysis to perform active coal and rock identification in real time based on differences in coal and rock material composition, and is not sensitive to environmental interference.
  • active coal and rock identification can avoid sparks and damage caused by shearers cutting rocks, making it safe and reliable.
  • the coal and rock spectrum sensing device 1 includes a laser 2, a spectrometer 3, a mobile platform 4, a control module 5, a scan execution device 6, and a focus execution device 7.
  • the control module 5 communicates with the driving mechanisms of the laser 2, the spectrometer 3, the scanning execution device 6, and the focus execution device 7 respectively, so that the control module 5 controls the laser 2, the spectrometer 3, and the mobile platform 4. run.
  • the control module 5 can control the driving motor (not shown) to drive the scanning execution device 6 and the focus execution device 7 to drive the mobile platform 4 to move, thereby controlling the laser beam focusing, laser scanning, etc. on the coal mining face.
  • the process of laser-induced breakdown spectrum acquisition and analysis can be as follows: (1) The control module and various equipment are operated cooperatively (laser, spectrometer, mobile platform, etc.); (2) The laser generates laser pulses and focuses on Coal rock surface; (3) The coal rock surface is ablated to form plasma and emit spectra; (4) The spectrometer collects the spectrum and transmits it to the detector to generate spectral data; (5) The spectral data is stored in the memory for subsequent recall or Download to the control module.
  • control module 5 can also communicate with the control system of the shearer 10 (see Figure 3) to control the operation of the shearer 10 according to the analyzed element composition and content.
  • the shearer 10 is controlled to cut along the coal-rock interface or the coal side of the coal-rock interface; when abnormal cutting occurs, an alarm can be issued and/or the start and stop of the shearer can be controlled.
  • the control module 5 is the guarantee for the function of the entire coal and rock spectrum sensing device. It is responsible for effectively controlling the shearer based on coal and rock sensing, laying the foundation for the realization of a remote intelligent control platform for unmanned coal mining working faces in coal mines.
  • the mobile platform 4 is installed on the scanning execution device 6 and the focus execution device 7.
  • the laser 2 and the spectrometer 3 are loaded on the mobile platform 4.
  • the driving mechanisms of the scan execution device 6 and the focus execution device 7 can be, for example, but not limited to servo motors. By driving the scan execution device 6 and/or the focus execution device 7 respectively, they drive the mobile platform 4 to move in various directions, thereby adjusting the laser on it. 2 and the location of the spectrometer 3.
  • the scanning and/or focusing process is realized through a high-precision position servo control mobile platform.
  • the device has a simple structure, is easy to implement, has high response speed and accuracy, and does not need to adjust the laser energy value of the laser source. Therefore, such a focusing method is more feasible. sex.
  • Laser 2 is used to emit laser beams to the coal mining face.
  • the spectrometer 3 receives the laser reflection spectrum from the sampling point on the coal mining working surface and obtains the element composition and content of the sampling point based on laser reflection spectrum analysis. Since there are obvious statistical differences between the laser-induced breakdown spectrum lines of coal and rock, it provides a method to find the classification rules of the two types of coal and rock samples from a statistical perspective to classify the coal and rock spectral data. Later A detailed description will be given in conjunction with the coal and rock identification model.
  • FIG. 2 is a schematic diagram of another embodiment of the coal and rock spectrum sensing device according to the present invention. This figure shows the laser-induced breakdown spectrum analyzer of the coal and rock spectrum sensing device, the mobile platform, the first sliding rail mechanism, the second sliding rail mechanism, etc.
  • a laser and a spectrometer are integrated into a laser-induced breakdown spectrometer.
  • FIG. 2 only the laser-induced breakdown spectrometer analyzer is shown as a whole, and the laser and the spectrometer therein are not clearly shown separately.
  • the laser-induced breakdown spectrometer analyzer may also include other components required to achieve the function.
  • the scan execution device 6 is a first sliding track mechanism 8, which includes a lateral slide rail and a vertical slide rail, so that the mobile platform 4 can move laterally (direction perpendicular to the drawing plane) and vertically (Fig. (in the direction of the vertical arrow). Since the laser-induced breakdown spectrometer analyzer including the laser 2 and the spectrometer 3 is mounted on the mobile platform 4, it can move laterally and vertically with the mobile platform 4 to achieve scanning of the coal mining face. By reasonably distributing sampling points on the coal mining working surface and achieving dynamic identification resolution for different areas, the effective utilization of sampling points can be improved, and the coal-rock interface can be more accurately depicted with the same number of sampling points.
  • the focus execution device 7 is a second sliding rail mechanism 9, which includes a forward and backward slide rail, so that the mobile platform 4 can also move forward and backward (in the direction of the horizontal arrow in the illustration). Therefore, the laser-induced breakdown spectrum analyzer including the laser 2 and the spectrometer 3 can move forward and backward with the moving platform 4 to achieve focusing of the laser beam on the sampling point.
  • the irregular surface of the coal wall causes difficulty in laser focusing, focusing on the sampling point is achieved through adjustment of the mobile platform 4, which can ensure the quality of spectral collection.
  • the coal and rock spectrum sensing device 1 has a first sliding track mechanism 6, which includes corresponding lateral and vertical moving slide rails to specifically implement the aforementioned lateral movement. It also includes corresponding forward and backward moving slide rails to realize the aforementioned forward and backward movement.
  • the mobile platform 4 is installed on the first and second sliding track mechanisms, and the first sliding track mechanism includes lateral slide rails and vertical slide rails to provide lateral sliding and vertical sliding for the mobile platform respectively; the mobile platform 4
  • the forward and backward movement can be realized through the front and rear slide rails of the second sliding track mechanism, such as the horizontal slide rails as shown in the figure.
  • the coal and rock spectrum sensing device of this embodiment achieves automatic, fast and accurate focusing of the laser-induced breakdown spectrum analyzer on the irregular surface of the coal wall by maintaining a stable object distance, that is, without Change the focal length of the original laser-induced breakdown spectrometer, mount the laser-induced breakdown spectrometer on a mobile platform, and use the movement of the mobile platform on the track to offset changes in object distance, so that the laser emitted by the laser source can always be focused.
  • the ideal location of the sampling point dynamic and precise focusing on irregular surfaces is achieved.
  • an adjustable optical system can be used as the focus execution device.
  • the optical system can include but is not limited to an optical path composed of a mirror, a concave and/or a convex lens, and the like.
  • the coal and rock identification requires in-situ measurement of the sampling points in the area to be measured to determine whether the sampling points are coal or rock.
  • the purpose is to determine whether the sampling points are coal or rock based on the coal and rock identification results of each sampling point and
  • the location information of the sampling point in the area to be measured depicts the distribution of coal and rock in the entire area.
  • the distribution of sampling points on the coal mining working face is very critical. As mentioned earlier, by reasonably distributing sampling points on the coal mining working face and achieving dynamic identification resolution for different areas, the effective utilization of sampling points can be improved. With the same number of sampling points, the coal-rock interface can be characterized more accurately.
  • the control module 5 can also be used to control the distribution of sampling points on the coal mining working surface.
  • the distribution rule can be that when the spectrometer feedback shows that the coal gangue content becomes larger, the distance between adjacent sampling points is shortened, and vice versa, the distance between adjacent sampling points is increased. In this way, compared with the reduction in the number of sampling points using a fixed recognition resolution, the distribution of sampling points is more intelligent, and the coal-rock interface is more accurately depicted. When actually planning the cutting trajectory of the shearer, it can effectively reduce The shearer has the possibility of "over-mining" and "missing mining".
  • the spectrometer uses the coal and rock binary classification model as the coal and rock identification model to determine whether the material at the sampling point is coal or rock. Specifically, it is based on the fact that there are obviously different characteristics in the laser-induced breakdown spectrum between coal and rock, which can reflect the considerable fact that there are large differences between coal and rock in element content and material composition. Since coal and rock have different elemental contents and material structures, laser-induced breakdown spectroscopy can be used to quantitatively analyze the elements of the sample to determine the elemental composition and content of the sample, thereby determining what kind of material the sample is. By analyzing the statistical characteristics of laser-induced breakdown spectra of two materials, coal and rock, and using statistical analysis methods to find the relationship between variables (spectral lines) and classification results (coal or rock), coal and rock can be directly classified.
  • the coal and rock binary classification model can achieve the purpose of identifying coal and rock at unknown sampling points by obtaining spectral lines that are significantly different between samples of the "coal" group and the "rock” group, and constructing an identification model based on these spectral lines. .
  • the coal and rock binary classification model is a single spectral line coal and rock identification model. It has the characteristics of simple model, small calculation amount, and low implementation cost. It is suitable for coal mining working faces with large sample volume data conditions, or for geological conditions with similar geological conditions. For each coal mining face, a single spectral line coal and rock identification model can be quickly established through sampling data sharing based on the sampling data of the mining face.
  • the single spectral line coal and rock identification model can be given by the following formula:
  • the coal and rock spectrum sensing device 1 may also include an alarm (not shown).
  • the alarm can be installed on the mobile platform 4, or at other locations of the coal and rock spectrum sensing device, or installed on the shearer 10.
  • the alarm can be communicated with the control module 5.
  • the control module 5 can integrate the coal and rock distribution and the shearer operating parameter information as an alarm signal for cutting rocks to issue an alarm, so as to control the start and stop of the shearer. , terminate or resume the operation of the shearer automatically or with manual intervention.
  • laser like other ignition sources, such as friction, static electricity, switches, open flames, etc., can detonate gas within the explosion limit.
  • the energy intensity of the laser source directly determines whether it can induce a gas explosion.
  • the mechanism for igniting gas is that the laser induces an increase in activity of CH4 molecules that are originally in a stable state, exciting them into highly active free radicals, and finally breaking down the gas.
  • the breakdown intensity threshold of the laser beam can be obtained as:
  • the laser intensity threshold is 6.3 ⁇ 10 9 W/cm 2 ; when the gas concentration is 10%, The laser intensity threshold is 3.0 ⁇ 10 8 W/cm 2 .
  • the laser energy intensity used for plasma formation is usually around 10 7 W/cm 2. When the laser energy is too high, a plasma shielding effect will be formed.
  • the plasma generated in the front part of the laser pulse can absorb energy from the back part of the laser pulse, so that the laser plasma already has enough energy to heat the medium around itself, preventing the back part of the laser pulse from reaching the excitation point to form a new plasma.
  • the laser used in laser-induced breakdown spectroscopy technology irradiates a sampling point for a very short time (nanosecond level) when collecting spectra. Therefore, reasonable control of laser intensity can ensure the quality of laser-induced breakdown spectroscopy and the safety of laser use.
  • FIG. 3 is a schematic diagram of an embodiment of a coal shearer according to the present invention.
  • the shearer 10 includes a left cutting drum 11, a left rocker arm 12, a left traction part 13, a shearer body 14, a right traction part 15, a right rocker arm 16, a right cutting drum 17, etc.
  • the shearer moves back and forth for cutting, the left cutting drum 11 and the right cutting drum 17 cut the top coal and the bottom coal respectively.
  • the coal is mined at the working face, it is transferred to the belt through the scraper and transfer machine.
  • the belt transports the coal to the bottom of the wellbore, and finally lifts it to the ground through the wellbore.
  • the coal shearer 10 may include the coal and rock spectrum sensing device 1 as described in any of the foregoing embodiments.
  • the coal and rock spectrum sensing device 1 can be disposed at an intermediate position on the shearer body.
  • the coal and rock spectrum sensing device 1 reciprocates and scans between the two ends of the coal mining face, and analyzes the actual distribution of coal and rock on the coal wall of the working face.
  • the spectrum is collected to obtain the laser-induced breakdown spectrum of the sampling point, analyzed, and the "point" coal and rock identification results are used to describe the "face" coal and rock distribution.
  • the control module then communicates with the shearer's control system to control the shearer's cutting trajectory. Cut along the coal-rock interface, and the cutting motor can automatically start and stop or manual intervention can avoid cutting rocks when coal mining is abnormal.
  • the coal and rock spectrum sensing device can also be independently arranged in front of the shearer.
  • it can be installed in front of the shearer to reduce the impact of dust on the laser, scan the coal mining face back and forth between the shearers, and pre-characterize the coal and rock distribution.

Abstract

本发明涉及煤岩光谱感知装置及包括其的采煤机。在该煤岩光谱感知装置中:激光器用于发射激光光束至采煤工作面;光谱仪接收激光反射光谱并基于其分析得到采样点的元素成分及含量;激光器和光谱仪装载于移动平台并且能够随其移动位置;扫描执行装置包括第一滑动轨道机构,使得激光器和光谱仪能够实现对采煤工作面的扫描;对焦执行装置用于执行激光光束在采煤工作面上的对焦;以及控制模块与激光器、光谱仪以及扫描执行装置和对焦执行装置的驱动机构通信并且控制它们的运行,控制模块还与采煤机的控制系统通信以控制采煤机的运行。本发明的煤岩光谱感知装置及采煤机智能、安全、可靠。

Description

煤岩光谱感知装置及包括其的采煤机 技术领域
本发明涉及采煤技术领域;具体而言,本发明涉及煤岩光谱感知装置及包括其的采煤机。
背景技术
我国是当今世界第一产煤大国,煤炭产量占世界的35%以上。我国煤矿总开采量中,人工开采量占到90%以上,是世界上人工开采比例最高的国家。
为了有效提高开采效率、减少危险环境作业人员数量、提高煤矿安全性、提高煤矿行业科技水平,发展智能化采煤技术具有重要意义。
发明内容
有鉴于此,本发明提供了煤岩光谱感知装置及包括其的采煤机,从而解决或者至少缓解了现有技术中存在的上述问题和其它方面的问题中的一个或多个。
为了实现前述目的,本发明的第一方面提供了一种煤岩光谱感知装置,其中,所述煤岩光谱感知装置包括:
激光器,所述激光器用于发射激光光束至采煤工作面;
光谱仪,所述光谱仪接收来自所述采煤工作面上的采样点的激光反射光谱并基于所述激光反射光谱分析得到所述采样点的元素成分及含量;
移动平台,所述激光器和所述光谱仪装载于所述移动平台并且能够随所述移动平台移动位置;
扫描执行装置,所述扫描执行装置包括第一滑动轨道机构,所述第一滑动轨道机构包括侧向滑轨和竖向滑轨,从而所述移动平台能够在所述第一滑动轨道机构上侧向和竖向移动使得所述激光器和所述光谱仪能够随所述移动平台侧向移动和竖向移动从而实现对所述采煤工作面的扫描;
对焦执行装置,所述对焦执行装置用于执行激光光束在所述采煤工作面上的对焦;以及
控制模块,所述控制模块与所述激光器、所述光谱仪以及所述扫描执行装置和所述对焦执行装置的驱动机构通信并且控制所述激光器、所述光谱仪、所述扫描执行装置以及所述对焦执行装置的运行,所述控制模块还与采煤机的控制系统通信以根据所分析得到的元素成分及含量控制所述采煤机的运行。
在如前所述的煤岩光谱感知装置中,可选地,所述激光器及所述光谱仪集成于一体的激光诱导击穿光谱分析仪。
在如前所述的煤岩光谱感知装置中,可选地,所述对焦执行装置为能够调节的光学系统。
在如前所述的煤岩光谱感知装置中,可选地,所述对焦执行装置为第二滑动轨道机构,所述第二滑动轨道机构包括前后向滑轨,所述移动平台能够在所述第二滑动轨道机构上前后移动,所述激光器和所述光谱仪能够随所述移动平台前后移动从而实现所述激光光束在所述采煤工作面上的对焦。
在如前所述的煤岩光谱感知装置中,可选地,所述控制模块控制所述采样点在所述采煤工作面上的分布,当所述光谱仪反馈显示煤质含矸量变大时缩短相邻采样点之间的距离,反之则增大相邻采样点之间的距离。
在如前所述的煤岩光谱感知装置中,可选地,所述光谱仪以煤岩二分类模型作为煤岩识别模型,判定所述采样点处的物质是否为煤或岩。
在如前所述的煤岩光谱感知装置中,可选地,所述煤岩二分类模型为单谱线煤岩识别模型,所述单谱线煤岩识别模型由下式给出:
其中,在247.95nm谱线的光谱强度下,如果所述采样点247.95nm的谱线对应的光谱强度在区间[2031.43,2142.43]内,则判定所述采样点处为煤,否则判定所述采样点处为岩。
在如前所述的煤岩光谱感知装置中,可选地,所述煤岩光谱感知装置包括警报器,所述警报器与所述控制模块通信连接,所述控制模块在采煤异常时发出警报,以便于控制所述采煤机的启停。
在如前所述的煤岩光谱感知装置中,可选地,所述激光光束的击穿强度阈值为:
为了实现前述目的,本发明的第二方面提供了一种采煤机,其中,所述采煤机包括如前述第一方面中任一项所述的煤岩光谱感知装置。
根据本发明的前述煤岩光谱感知装置及包括其的采煤机,其采用激光诱导击穿光谱分析,不敏感于粉尘、背景光等的环境干扰,主动进行煤岩识别、安全可靠。
附图说明
参照附图,本发明的公开内容将更加显然。应当了解,这些附图仅仅用于说明的目的,而并非意在对本发明的保护范围构成限制。在各附图中,相同的附图标记表示相同或相应的技术特征。图中:
图1为根据本发明的煤岩光谱感知装置的一个实施例的示意性框图;
图2为根据本发明的煤岩光谱感知装置的另一实施例的示意图;以及
图3为根据本发明的采煤机的一个实施例的示意图。
附图标记:1-煤岩光谱感知装置;2-激光器;3-光谱仪;4-移动平台;5-控制模块;6-扫描执行装置;7-对焦执行装置;8-第一滑动轨道机构;9-第二滑动轨道机构;10-采煤机;11-左切割滚筒、12-左摇臂、13-左牵引部、14-采煤机本体、15-右牵引部、16-右摇臂、17-右切割滚筒。
具体实施方式
参照附图和具体实施例,下面将以示例方式来说明根据本发明的煤岩光谱感知装置及包括其的采煤机的结构组成、特点和优点等,然而所有描述说明不应认为是用于对本发明的范围形成任何限制。
此外,对于在本文提及的实施例中予以描述或隐含的任意单个技术特征,或者被显示或隐含在各附图中的任意单个技术特征,本发明仍然允许在这些技术特征(或其等同物)之间继续进行任意组合或者删减而不存在任何的技术障碍,从而应当认为这些根据本发明的更多实施例也是在本文的记载范围之内。
图1为根据本发明的煤岩光谱感知装置的一个实施例的示意性框图。该煤岩光谱感知装置针对自身应用场景和技术要素,能够应用于煤矿井下无人采煤工作面环境、满足煤岩感知要求。
在煤矿井下采煤时,该煤岩光谱感知装置1可以安装在采煤机10本体14(见图3)上或者独立地设置在采煤机10前方,用于在截割之前扫描采煤工作面并分析其煤岩分布,最终刻画煤岩分界面,以及控制采煤机10的切割滚筒沿煤岩分界面截割,或者在沿煤岩分界面附近的煤侧的规划出的截割路径截割。
该煤岩光谱感知装置采用激光诱导击穿光谱分析,依据煤岩物质成分的差异实时进行主动式煤岩识别,不敏感于环境干扰。另外,通过主动式煤岩识别,能够避免采煤机切割岩石引起火花及破坏,安全可靠。
从图中可以看出,该煤岩光谱感知装置1包括激光器2、光谱仪3、移动平台4、控制模块5以及扫描执行装置6、对焦执行装置7。
在该煤岩光谱感知装置1中,控制模块5分别与激光器2、光谱仪3以及扫描执行装置6、对焦执行装置7的驱动机构通信,从而控制模块5控制激光器2、光谱仪3以及移动平台4的运行。例如,控制模块5可以通过控制驱动电机(未图示)驱动扫描执行装置6、对焦执行装置7带动移动平台4移动,从而控制对采煤工作面的激光光束对焦、激光扫描等。
具体而言,激光诱导击穿光谱采集分析的过程可以为如下所述:(1)由控制模块及各设备协同运行(激光器、光谱仪、移动平台等);(2)激光器产生激光脉冲并聚焦于煤岩表面;(3)煤岩表面烧蚀形成等离子体并发射光谱;(4)光谱仪采集光谱并传送到检测器,产生光谱数据;(5)光谱数据被存储在存储器中,以便后续调用或下载至控制模块。
另外,虽然未在图1中示出,控制模块5还可以与采煤机10(见图3)的控制系统通信以根据所分析得到的元素成分及含量控制采煤机10的运行。具体地,控制采煤机10沿煤岩分界面或者煤岩分界面的煤侧截割;在出现截割异常时,可以发出警报和/或控制采煤机的启停。
控制模块5是整个煤岩光谱感知装置功能发挥的保障,负责基于煤岩感知对采煤机进行有效控制,为煤矿无人采煤工作面远程智能化操控平台的实现奠定了基础。
移动平台4安装于扫描执行装置6、对焦执行装置7,激光器2和光谱仪3装载在移动平台4上。扫描执行装置6和对焦执行装置7的驱动机构可以例如但不限于伺服电机,通过分别驱动扫描执行装置6和/或对焦执行装置7而带动移动平台4的各向移动,从而调整其上的激光器2和光谱仪3的位置。通过高精度位置伺服控制移动平台实现的扫描和/或对焦过程,其装置结构简单、实现方便,响应速度和精度高,且不需要调节激光源的激光能量值,因此这样的对焦方式更具可行性。
激光器2用于发射激光光束至采煤工作面。光谱仪3接收来自采煤工作面上采样点的激光反射光谱并基于激光反射光谱分析得到采样点的元素成分及含量。由于煤和岩的激光诱导击穿光谱谱线之间存在明显的统计学特征差异,从而提供了从统计学的角度寻找煤岩两类样品的分类规律对煤岩光谱数据进行分类的方法,后面将结合煤岩识别模型进行具体描述。
图2为根据本发明的煤岩光谱感知装置的另一实施例的示意图。在该图中示出了煤岩光谱感知装置的激光诱导击穿光谱分析仪、移动平台、第一滑动轨道机构、第二滑动轨道机构等。
在该实施例中,激光器及光谱仪集成于一体的激光诱导击穿光谱分析仪。在图2中仅整体地示出了激光诱导击穿光谱分析仪,而未分别独立地明确示出其中的激光器及光谱仪。除激光器及光谱仪外,激光诱导击穿光谱分析仪还可以包括实现功能所需要的其它部件。
如图中所示,扫描执行装置6为第一滑动轨道机构8,其包括侧向滑轨和竖向滑轨,从而移动平台4能够侧向(垂直于图面的方向)和竖向(图示的竖向箭头方向)移动。由于包括激光器2和光谱仪3的激光诱导击穿光谱分析仪装载于移动平台4,所以其能够随移动平台4侧向移动和竖向移动从而实现对采煤工作面的扫描。通过在采煤工作面上合理地分布采样点,对不同区域实现动态识别分辨率,能够提高采样点有效利用率,在相同采样点数量情况下可以更精确地刻画煤岩分界面。
另外,在图示示例中,对焦执行装置7为第二滑动轨道机构9,其包括前后向滑轨,从而移动平台4还能够前后(图示的水平箭头方向)移动。因而,包括激光器2和光谱仪3的激光诱导击穿光谱分析仪能够随移动平台4前后移动从而实现激光光束在采样点上的对焦。在煤壁不规则表面引起激光对焦困难情况下,通过移动平台4调整实现对采样点的对焦,能够保证光谱采集质量。
具体地,从图2中可以更清楚地看出,该煤岩光谱感知装置1具有第一滑动轨道机构6,其包括相应的侧向、竖向移动滑轨,用来具体地实现前述的侧向及竖向移动,其还包括相应的前后移动滑轨,用来实现前述的前后向移动。移动平台4安装在第一、第二滑动轨道机构上,并且第一滑动轨道机构包括侧向滑轨和竖向滑轨从而分别为移动平台提供侧向滑移和竖向滑移;移动平台4的前后移动可以通过第二滑动轨道机构的前后滑轨实现,如图中所示的水平方向滑轨。
通过移动平台4及相应的滑动轨道机构,该实施例的煤岩光谱感知装置以保持物距稳定的方法,实现激光诱导击穿光谱分析仪对煤壁不规则表面的自动快速精准对焦,即不改变原本激光诱导击穿光谱分析仪的焦距,将激光诱导击穿光谱分析仪装载在移动平台上,利用移动平台在轨道上的移动抵消物距的变化,使激光源发出的激光总是能够聚焦在采样点的理想位置,实现对不规则表面的动态精准对焦。
在另一种实施例中,可以采用能够调节的光学系统作为对焦执行装置,例如该光学系统可以包括但不限于反射镜、凹和/或凸透镜等构成的光路。
根据本发明该实施例的煤岩光谱感知装置,其煤岩识别需要对待测区域的采样点进行原位测量,判定该采样点是煤还是岩,目的是根据每个采样点煤岩识别结果和采样点在待测区域的位置信息,刻画整个区域内煤岩的分布情况。此时,采煤工作面上采样点的分布非常关键,如前面所述,通过在采煤工作面上合理地分布采样点,对不同区域实现动态识别分辨率,能够提高采样点有效利用率,在相同采样点数量情况下可以更精确地刻画煤岩分界面。
因此,在该实施例中,控制模块5还可以用以控制采样点在采煤工作面上的分布。具体地分布规则可以是,当光谱仪反馈显示煤质含矸量变大时,缩短相邻采样点之间的距离,反之则增大相邻采样点之间的距离。这样,相比于采用固定识别分辩率的采样点个数减少,采样点的分布更为智能,对煤岩分界面的刻画更为精确,在实际规划采煤机截割轨迹时,可有效降低采煤机出现“过采”和“漏采”的可能性。
在光谱采集后的光谱分析中,光谱仪以煤岩二分类模型作为煤岩识别模型,判定采样点处的物质是否为煤或岩。具体地,其基于煤与岩之间在激光诱导击穿光谱上存在明显的不同特征这一现象能够反映在元素含量和物质构成上煤炭与岩石存在较大差异的可观事实。由于煤和岩石的元素含量和物质结构不同,因此可通过激光诱导击穿光谱对样品进行元素定量分析,确定该样品的元素组成和含量,从而确定该样品是何种物质。通过分析煤岩两种物质的激光诱导击穿光谱统计学特征,利用统计分析方法找出变量(谱线)与分类结果(煤或岩石)之间的关系,直接对煤岩进行分类。
煤岩二分类模型可以通过获取在“煤”组和“岩”组的样本之间存在显著差异的谱线,以该谱线构造识别模型,即可达到对未知采样点进行煤岩识别的目的。煤岩二分类模型为单谱线煤岩识别模型,其具有模型简单、运算量小、实现成本低的特点,适用于具有大样本量数据条件的采煤工作面,或对于地质条件相近的几个采煤工作面,可以基于已经开采的工作面采样数据,通过采样数据共享快速建立单谱线煤岩识别模型。另外,在实现煤矿大数据技术后,基于大数据构建的单谱线煤岩识别模型的识别准确率会得到保障,其模型结构简单的优势会突显。单谱线煤岩识别模型可以由下式给出:
对待测采样点进行煤岩识别,以为参考谱线247.95nm例,观测该采样点的247.95nm谱线的光谱强度,如果该采样点247.95nm的谱线对应的光谱强度在区间[2031.43,2142.43]内,则判定该采样点处为煤,其余判定为岩。上述模型的具体数值应当针对不同的工作面地质情况和激光器光谱仪等器材性能做调整,不做赘述。
煤岩光谱感知装置1还可以包括警报器(未图示)。该警报器可以安装在移动平台4上,或者煤岩光谱感知装置的其它位置处,或者安装在采煤机10上。警报器可以与控制模块5通信连接,控制模块5在采煤异常时能够综合煤岩分布、采煤机运行参数信息作为截割岩石的警报信号以发出警报,以便于控制采煤机的启停,自动或在人工干预下终止或恢复采煤机的运行。
另外,在井下采煤环境中,需要注意的是,激光与其它点燃源,诸如摩擦、静电、开关、明火等点燃源一样,能够使处于爆炸界限范围内的瓦斯得以引爆。激光源的能量强度直接决定了其能否诱发瓦斯爆炸。
对于激光诱导击穿光谱所使用的脉冲式激光器,其点燃瓦斯的机理是激光诱导原本处于稳定状态CH4分子的活跃性增强,将其激发为高活性的自由基,最终击穿瓦斯气体。根据气体击穿相关理论推导,可得到激光光束的击穿强度阈值为:
在瓦斯浓度取5%,照射时间取8 s,激光参数取波长1064 nm、脉冲宽度8 ns的照射条件下的激光强度阈值是6.3×10 W/cm 2;当瓦斯浓度取10%时,激光强度阈值是3.0×10 W/cm 2。用于等离子体形成的激光能量强度通常在10 7W/cm 2附近即可,当激光能量太大时,反而会形成等离子体屏蔽效应。这是因为激光脉冲前段产生的等离子体可从激光脉冲后段吸收能量,使激光等离子体已经具有足够的能量去加热自身周围的介质,阻碍了激光脉冲后段到达激发点形成新的等离子体。并且激光诱导击穿光谱技术采用的激光在采集光谱时照射一个采样点的时间很短(纳秒级),因此合理控制激光强度可以保证激光诱导击穿光谱质量和激光使用的安全性。
图3为根据本发明的采煤机的一个实施例的示意图。从图中可以看出,该采煤机10包括左切割滚筒11、左摇臂12、左牵引部13、采煤机本体14、右牵引部15、右摇臂16、右切割滚筒17等。在采煤机往复行走采割时,左切割滚筒11和右切割滚筒17分别切割顶煤和底煤。在工作面开采出煤炭后,通过刮板机、转载机传输给皮带,皮带一直将煤炭运到井筒底部,最后通过井筒提升到地面。
如图中所示,该采煤机10可以包括如前述各实施例中任一项所述的煤岩光谱感知装置1。例如,该煤岩光谱感知装置1可以设置在采煤机本体上的中间位置处。
在这种实施例的情况下,随着采煤机10的左右运行,该煤岩光谱感知装置1在采煤工作面的两端之间往复移动、扫描,对工作面煤壁煤岩实际分布进行光谱采集获得采样点激光诱导击穿光谱、分析并由“点”煤岩识别结果刻画“面”煤岩分布,然后由控制模块与采煤机的控制系统通信从而控制采煤机截割轨迹沿煤岩分界面截割,并且截割电机能够在采煤异常时由截割电机自动启停或人工干预避免截割岩石。
在另一种设置中,煤岩光谱感知装置也可以独立地布置在采煤机的前方。例如,其可以安装于采煤机前方,降低粉尘对激光的影响,在采煤机之间往复扫描采煤工作面,预先刻画煤岩分布。
本发明的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1. 一种煤岩光谱感知装置(1),其特征在于,所述煤岩光谱感知装置(1)包括:
    激光器(2),所述激光器(2)用于发射激光光束至采煤工作面;
    光谱仪(3),所述光谱仪(3)接收来自所述采煤工作面上的采样点的激光反射光谱并基于所述激光反射光谱分析得到所述采样点的元素成分及含量;
    移动平台(4),所述激光器(2)和所述光谱仪(3)装载于所述移动平台(4)并且能够随所述移动平台(4)移动位置;
    扫描执行装置(6),所述扫描执行装置(6)包括第一滑动轨道机构(8),所述第一滑动轨道机构(8)包括侧向滑轨和竖向滑轨,从而所述移动平台能够在所述第一滑动轨道机构上侧向和竖向移动,使得所述激光器(2)和所述光谱仪(3)能够随所述移动平台(4)侧向移动和竖向移动从而实现对所述采煤工作面的扫描;
    对焦执行装置(7),所述对焦执行装置用于执行激光光束在所述采煤工作面上的对焦;以及
    控制模块(5),所述控制模块(5)与所述激光器(2)、所述光谱仪(3)以及所述扫描执行装置(6)和所述对焦执行装置(7)的驱动机构通信并且控制所述激光器(2)、所述光谱仪(3)、所述扫描执行装置(6)以及所述对焦执行装置(7)的运行,所述控制模块(5)还与采煤机(10)的控制系统通信以根据所分析得到的元素成分及含量控制所述采煤机(10)的运行。
  2. 如权利要求1所述的煤岩光谱感知装置(1),其中,所述激光器(2)及所述光谱仪(3)集成于一体的激光诱导击穿光谱分析仪。
  3. 如权利要求1或2所述的煤岩光谱感知装置(1),其中,所述对焦执行装置为能够调节的光学系统。
  4. 如权利要求1或2所述的煤岩光谱感知装置(1),其中,所述对焦执行装置为第二滑动轨道机构(9),所述第二滑动轨道机构(9)包括前后向滑轨,所述移动平台(4)能够在所述第二滑动轨道机构(9)上前后移动,所述激光器(2)和所述光谱仪(3)能够随所述移动平台(4)前后移动从而实现所述激光光束在所述采煤工作面上的对焦。
  5. 如权利要求1或2所述的煤岩光谱感知装置(1),其中,所述控制模块(5)控制所述采样点在所述采煤工作面上的分布,当所述光谱仪(3)反馈显示煤质含矸量变大时缩短相邻采样点之间的距离,反之则增大相邻采样点之间的距离。
  6. 如权利要求1或2所述的煤岩光谱感知装置(1),其中,所述光谱仪(3)以煤岩二分类模型作为煤岩识别模型,判定所述采样点处的物质是否为煤或岩。
  7. 如权利要求6所述的煤岩光谱感知装置(1),其中,所述煤岩二分类模型为单谱线煤岩识别模型,所述单谱线煤岩识别模型由下式给出:
    其中,在247.95nm谱线的光谱强度下,如果所述采样点247.95nm的谱线对应的光谱强度在区间[2031.43,2142.43]内,则判定所述采样点处为煤,否则判定所述采样点处为岩。
  8. 如权利要求1或2所述的煤岩光谱感知装置(1),其中,所述煤岩光谱感知装置(1)包括警报器,所述警报器与所述控制模块(5)通信连接,所述控制模块(5)在采煤异常时发出警报,以便于控制所述采煤机(10)的启停。
  9. 如权利要求1或2所述的煤岩光谱感知装置(1),其中,所述激光光束的击穿强度阈值为:
  10. 一种采煤机(10),其特征在于,所述采煤机包括如前述权利要求1至9中任一项所述的煤岩光谱感知装置(1)。
PCT/CN2023/093195 2022-07-07 2023-05-10 煤岩光谱感知装置及包括其的采煤机 WO2024007724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210802700.7A CN115165847A (zh) 2022-07-07 2022-07-07 煤岩光谱感知装置及包括其的采煤机
CN202210802700.7 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024007724A1 true WO2024007724A1 (zh) 2024-01-11

Family

ID=83492504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093195 WO2024007724A1 (zh) 2022-07-07 2023-05-10 煤岩光谱感知装置及包括其的采煤机

Country Status (2)

Country Link
CN (1) CN115165847A (zh)
WO (1) WO2024007724A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115165847A (zh) * 2022-07-07 2022-10-11 中煤科工集团上海有限公司 煤岩光谱感知装置及包括其的采煤机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496004A (zh) * 2011-11-24 2012-06-13 中国矿业大学(北京) 一种基于图像的煤岩界面识别方法与系统
CN110080766A (zh) * 2019-04-30 2019-08-02 中国矿业大学 综采工作面煤岩识别装置及方法
CN110196247A (zh) * 2018-02-26 2019-09-03 成都艾立本科技有限公司 一种基于激光诱导击穿光谱的粉煤分类方法
CN111337883A (zh) * 2020-04-17 2020-06-26 中国矿业大学(北京) 一种矿井煤岩界面智能探测识别系统及方法
CN115165847A (zh) * 2022-07-07 2022-10-11 中煤科工集团上海有限公司 煤岩光谱感知装置及包括其的采煤机

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB177239A (en) * 1920-12-20 1922-03-20 Edward Barrs Improvements in or relating to low temperature distillation
CN101198845B (zh) * 2005-06-16 2012-11-14 赛默伽马-梅特里克斯有限责任公司 气流内被传输颗粒的流内光谱元素分析
US10195687B2 (en) * 2008-08-20 2019-02-05 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US20190178036A1 (en) * 2008-08-20 2019-06-13 Foro Energy, Inc. Downhole laser systems, apparatus and methods of use
AU2011235599A1 (en) * 2010-03-29 2012-10-04 Datatrace Dna Pty Limited A system for classification of materials using laser induced breakdown spectroscopy
CN101798927B (zh) * 2010-04-01 2011-12-07 中国矿业大学 近红外线光谱识别煤矸及含矸量控制方法
US8415626B1 (en) * 2010-08-25 2013-04-09 Airware, Inc. Intrinsically safe NDIR gas sensor in a can
WO2012031610A1 (de) * 2010-09-07 2012-03-15 Rag Aktiengesellschaft Steuerung der gewinnungsarbeit im untertägigen steinkohlenbergbau mittels einer lasermessvorrichtung
US10031024B2 (en) * 2011-04-07 2018-07-24 Gas Sensing Technology Corp. Evaluating hydrologic reservoir constraint in coal seams and shale formations
US8902422B2 (en) * 2011-10-21 2014-12-02 Chesner Engineering, Pc Bulk material sampling and laser targeting system
CN102425413B (zh) * 2011-12-07 2017-03-15 天地上海采掘装备科技有限公司 一种采煤机
DE102013011642B4 (de) * 2013-07-11 2021-07-01 Technische Universität Bergakademie Freiberg Verfahren zur Bestimmung carbochemisch relevanter Kennwerte von Braunkohlen mittels Fluoreszenz-Photometrie
US20150346103A1 (en) * 2014-05-29 2015-12-03 Bwt Property, Inc. Laser Induced Breakdown Spectroscopy (LIBS) Apparatus and Method for Performing Spectral Imaging of a Sample Surface
WO2016004577A1 (zh) * 2014-07-08 2016-01-14 国网浙江省电力公司电力科学研究院 一种基于火焰光谱强度在线辨识锅炉煤种的方法及系统
US9909923B2 (en) * 2014-09-05 2018-03-06 Bwt Property, Inc. Laser induced breakdown spectroscopy (LIBS) apparatus based on high repetition rate pulsed laser
CN204945054U (zh) * 2015-09-11 2016-01-06 中煤科工集团西安研究院有限公司 一种显微镜自动扫描平台装置
CN105718749B (zh) * 2016-01-29 2018-08-28 清华大学 一种基于大数据库辨识的煤质特性分析方法
CN106093011B (zh) * 2016-07-12 2019-06-04 宝瑞激光科技(常州)有限公司 煤质检测方法及其应用的煤质激光检测分析仪器
CA2950195A1 (en) * 2016-12-01 2018-06-01 Canadian Natural Resources Limited Process and apparatus for delivery of oil sands ore
CN106733684B (zh) * 2017-01-22 2023-01-03 杨宝祥 矿物干法分选系统及方法
CN107727592B (zh) * 2017-10-10 2020-10-09 中国矿业大学 一种基于煤岩高光谱反射特性的煤岩界面识别方法
CN208109689U (zh) * 2017-11-27 2018-11-16 宁夏广天夏电子科技有限公司 采煤工作面煤岩识别视频检测装置
CN108020540B (zh) * 2017-12-11 2020-10-20 中国科学院光电研究院 一种激光诱导击穿光谱检测系统
CN108458989B (zh) * 2018-04-28 2020-10-09 江苏建筑职业技术学院 一种基于太赫兹多参数谱的煤岩识别方法
CN108459013A (zh) * 2018-06-15 2018-08-28 北京协同创新研究院 基于激光诱导击穿光谱技术的样品检测装置
DE102019109051A1 (de) * 2019-04-05 2020-10-08 Rwe Power Ag Vorrichtungen und Verfahren zum Ermitteln einer Elementzusammensetzung eines Materials
CN110082307B (zh) * 2019-04-30 2023-08-29 中国矿业大学 模拟煤矿井下环境的煤岩反射光谱识别实验装置及方法
CN210317308U (zh) * 2019-07-15 2020-04-14 安徽理工大学 基于光谱技术的井下煤矸分离装置
US20230003918A1 (en) * 2019-12-02 2023-01-05 Plotlogic Pty Ltd Real Time Mine Monitoring System and Method
CN110924946A (zh) * 2019-12-23 2020-03-27 中国矿业大学 一种基于光谱识别技术的放顶煤装置及其使用方法
CN211777422U (zh) * 2019-12-23 2020-10-27 中国矿业大学 一种基于光谱识别技术的放顶煤装置
CN111411961A (zh) * 2020-05-08 2020-07-14 中煤科工集团重庆研究院有限公司 一种煤岩识别系统和装置
CN111982838A (zh) * 2020-08-25 2020-11-24 吉林大学 一种基于高光谱的煤岩识别检测方法
CN112129742A (zh) * 2020-09-10 2020-12-25 刘舆帅 一种煤炭元素检测仪
CN112525879B (zh) * 2020-11-16 2021-12-17 华中科技大学 一种煤岩显微组分原位识别与快速定量的方法
CN112814676A (zh) * 2020-12-31 2021-05-18 重庆大学 基于综采工作面煤层三维模型构建的割煤轨迹动态修正方法
CN113109320A (zh) * 2021-03-26 2021-07-13 山东萱源科学工程产业技术研究院有限公司 一种多源煤基固废中有害物质脱除技术
CN113840008A (zh) * 2021-09-28 2021-12-24 天地上海采掘装备科技有限公司 采煤机沉浸式远程操控装置、采煤机远程操控系统和方法
CN113909150A (zh) * 2021-10-09 2022-01-11 苏州西热节能环保技术有限公司 一种石子煤分离与回收装置及分离方法
CN216297174U (zh) * 2021-10-09 2022-04-15 苏州西热节能环保技术有限公司 一种石子煤分离与回收装置
CN115015223A (zh) * 2022-07-13 2022-09-06 国能南京煤炭质量监督检验有限公司 一种libs光谱分析的样品仓及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496004A (zh) * 2011-11-24 2012-06-13 中国矿业大学(北京) 一种基于图像的煤岩界面识别方法与系统
CN110196247A (zh) * 2018-02-26 2019-09-03 成都艾立本科技有限公司 一种基于激光诱导击穿光谱的粉煤分类方法
CN110080766A (zh) * 2019-04-30 2019-08-02 中国矿业大学 综采工作面煤岩识别装置及方法
CN111337883A (zh) * 2020-04-17 2020-06-26 中国矿业大学(北京) 一种矿井煤岩界面智能探测识别系统及方法
CN115165847A (zh) * 2022-07-07 2022-10-11 中煤科工集团上海有限公司 煤岩光谱感知装置及包括其的采煤机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU CONG, LUO YIMIN, ZHANG QIZHI: "Laser-Induced Breakdown Spectroscopy-Based Coal-Rock Recognition: An in Situ Sampling and Recognition Method", IEEE ACCESS, IEEE, USA, vol. 9, 21 December 2021 (2021-12-21), USA , pages 164732 - 164741, XP093126372, ISSN: 2169-3536, DOI: 10.1109/ACCESS.2021.3133886 *

Also Published As

Publication number Publication date
CN115165847A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024007724A1 (zh) 煤岩光谱感知装置及包括其的采煤机
CN101782517B (zh) 一种基于双激光光源的激光探针微区成分分析仪
CN103175808B (zh) 激光诱导击穿光谱分析系统及其方法
CN206974906U (zh) 传送带上块状物料libs技术在线检测装置
CN103123320B (zh) 基于单束光分束的激光诱导击穿光谱分析方法及实施装置
CN202916196U (zh) 基于单束光分束的激光诱导击穿光谱分析装置
CN102636464A (zh) 飞秒激光薄膜微纳加工实时监测装置
CN102661935A (zh) Libs粉状物料皮带式检测装置
CN107782715A (zh) 采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法
CN107764794A (zh) 利用可调谐共振激光诱导击穿光谱检测猪肉重金属分布的装置
US20230094973A1 (en) Detection method and device based on laser-induced breakdown spectroscopy enhanced by 2d plasma grating
CN104374751A (zh) 基于共线激光诱导击穿光谱作物营养元素快速检测的装置
CN203414408U (zh) 激光诱导击穿光谱分析系统
CN204287043U (zh) 基于激光诱导光谱技术的土壤重金属镉和铜含量检测装置
WO2014202618A2 (en) Method for determining the configuration of a structure
CN106338499A (zh) 元素激光检测分析仪器及矿物元素分析方法
CN201607406U (zh) 一种基于双激光光源的激光探针微区成分分析仪
CN204214779U (zh) 基于共线激光诱导击穿光谱作物营养元素快速检测的装置
CN207379928U (zh) 利用可调谐共振激光诱导击穿光谱检测猪肉重金属分布的装置
CN110082307B (zh) 模拟煤矿井下环境的煤岩反射光谱识别实验装置及方法
AU2007209544B2 (en) Sub-surface analysis of particulate substrates
CN1243233C (zh) 激光感生击穿光谱煤质分析仪
CN204214778U (zh) 一种多模式激光诱导击穿光谱装置
US11333555B2 (en) Laser-induced breakdown spectroscopy for determining a property of an oil sands ore sample
CA3085254C (en) Laser-induced breakdown spectroscopy for determining a property of an oil sands ore sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834498

Country of ref document: EP

Kind code of ref document: A1