WO2024007502A1 - 一种非机械光扫描光纤光刻机 - Google Patents

一种非机械光扫描光纤光刻机 Download PDF

Info

Publication number
WO2024007502A1
WO2024007502A1 PCT/CN2022/131026 CN2022131026W WO2024007502A1 WO 2024007502 A1 WO2024007502 A1 WO 2024007502A1 CN 2022131026 W CN2022131026 W CN 2022131026W WO 2024007502 A1 WO2024007502 A1 WO 2024007502A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
laser
optical scanning
light source
laser light
Prior art date
Application number
PCT/CN2022/131026
Other languages
English (en)
French (fr)
Inventor
李西军
Original Assignee
西湖大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西湖大学 filed Critical 西湖大学
Publication of WO2024007502A1 publication Critical patent/WO2024007502A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Definitions

  • the present disclosure relates to the field of manufacturing chips or integrated circuits, and in particular, to a non-mechanical light scanning fiber lithography machine.
  • the photolithography machine uses photons of purple or ultraviolet light to irradiate the photoresist (photoresist) coated on the surface of the wafer or sample to change the size of the photoresist molecules to obtain a certain contrast due to its solubility in a specific solvent.
  • the solvent is used to develop the selectively exposed photoresist coated on the wafer/sample surface to form a pattern.
  • the lithography machine is the core equipment of the chip production line.
  • the minimum line width that can be obtained after exposing the photoresist is the most important indicator of the lithography machine and represents the advanced level of the chip production line.
  • a state-of-the-art chip production line usually configures one or more machines with various processing precisions in its transistor manufacturing process (front-end) and inter-transistor interconnection process (back-end) according to the level of transistor integration and chip wiring requirements. Lithography.
  • Photolithography machines are divided into two categories based on the way patterns are formed on the photoresist.
  • the first type is to pass a light spot with uniform intensity distribution through a photolithography mask with a transparent and opaque area pattern to form an image on the photoresist that is highly fidelity to the mask pattern.
  • This type of photolithography machine is widely used in semiconductor production lines.
  • the second type of lithography machine uses a focused beam of light to scan the area that needs to be exposed on the photosensitive film, or uses a spatial light modulator to modulate the light intensity of a uniform light spot regionally to form a pattern of spatial contrast between light and dark, and then scans the photosensitive film.
  • this type of lithography machine is called a maskless lithography machine because it does not require a photolithography mask.
  • the former is also called laser direct writing, and the latter is also called LDI.
  • the above two types of lithography machines are designed to adopt free space optical structures, that is, when the light emitted from the light source reaches the photoresist surface, the light is exposed in the air or vacuum.
  • embodiments of the present disclosure propose a non-mechanical light scanning fiber lithography machine to solve the problems in the existing technology.
  • the present disclosure provides a non-mechanical optical scanning fiber lithography machine, including a control device, a laser light source, an optical scanning system and an electrically driven workpiece stage.
  • the control device is connected to the laser light source, the optical scanning system and the The electrically driven workpiece table is connected, and the control device can control the optical scanning system to deflect and scan the laser emitted by the laser light source and control the movement of the electrically driven worktable based on the design layout.
  • control device can decompose the design layout into multi-layer patterns according to the processing technology, generate photolithography data based on each layer pattern, and generate light for the optical scanning system based on the photolithography data. Deflection control signals and workpiece stage control signals for the electrically driven console.
  • the optical scanning system is an electro-optical scanning system or an acousto-optical scanning system.
  • the optical scanning system includes an incident focusing lens system, an optical scanner and an exit lens focusing system, and the laser emitted by the laser light source is focused on the optical scanner after passing through the incident focusing lens system,
  • the exit lens focusing system focuses the laser light on the optical scanner at a set position.
  • the laser light source includes a transmission fiber and a metasurface lens
  • the optical scanning system includes an optical scanner and an exit lens focusing system
  • the laser emitted by the laser light source passes through the transmission fiber.
  • the metasurface lens is then focused on the optical scanner, and the exit lens focusing system focuses the laser on the optical scanner at a set position.
  • the laser light source further includes a light intensity modulator
  • the light intensity modulator is connected to the control device, and the control device can control the light intensity modulator to control the light intensity modulator based on the design layout. The intensity of the laser emitted by the laser light source is adjusted.
  • the light intensity modulator is an electro-optic modulator or an acousto-optic modulator.
  • the laser light source adopts any one of a solid laser, a semiconductor laser, a gas laser, or a laser array composed of multiple identical or different continuous lasers.
  • the laser light source includes a plurality of transmission optical fibers, all of the transmission optical fibers are distributed in an array, the optical scanning system includes a plurality of optical scanners, and each of the optical scanners is connected to at least one of the transmission optical fibers.
  • Optical fiber corresponding settings.
  • the electrically driven workpiece stage includes a plurality of driving devices to achieve positioning and control of the exposure position on the photolithographic material in the three axes of XYZ, where the X-axis and Y-axis are located on the light focusing array.
  • the Z-axis is along the direction perpendicular to the focal plane.
  • Embodiments of the present disclosure simplify the optical path adjustment of the laser light source and the optical scanning system by using optical fibers, thereby avoiding the difficulty of using multiple optical lenses or lens groups in the design and production of lithography machines that emit lasers in free space, making the optical path design of fiber lithography machines,
  • the installation is simple, and the manufacturing and maintenance costs are greatly reduced;
  • the optical fiber is used to connect the laser light source and the optical scanning system, because the lens group is avoided to eliminate the phase difference, the length of the optical path can be greatly shortened, and the geometric size of the lithography machine is effectively reduced; electro-optical or acousto-optical are used
  • Modulation realizes the switching of laser light energy for photolithography, and combines non-mechanical light scanning and the movement of an electrically driven stage to realize the patterning function of photolithography;
  • an array is formed using multiple optical fibers, and is composed of a single or multiple non-mechanical light scanners. The array is formed into a multi-beam optical fiber lithography machine to improve
  • Figure 1 is a schematic diagram of the principle of a non-mechanical light scanning fiber lithography machine according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a non-mechanical light scanning fiber lithography machine according to an embodiment of the present disclosure
  • Figure 3 is a schematic module diagram of a control device in a non-mechanical light scanning fiber lithography machine according to an embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of a transmission fiber in a non-mechanical light scanning fiber lithography machine according to an embodiment of the present disclosure
  • Figure 5 is another structural schematic diagram of a non-mechanical light scanning fiber lithography machine according to an embodiment of the present disclosure
  • FIG. 6 is another structural schematic diagram of a non-mechanical light scanning fiber lithography machine according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure relate to a non-mechanical light scanning fiber lithography machine, which is used to implement photolithography operations on the photolithography material of the wafer through exposure based on a preset design layout for photolithography.
  • Figure 1 shows a schematic structural diagram of the non-mechanical light scanning fiber lithography machine.
  • the non-mechanical light scanning fiber lithography machine includes a control device 1, a laser light source 2, an optical scanning system 3 and an electrically driven workpiece. Stage 4, the control device 1 is connected to the laser light source 2, the optical scanning system 3 and the electrically driven workpiece stage 4, and the control device 1 can control the optical scanning system 3 to all objects based on the design layout.
  • the laser light emitted by the laser light source 2 performs deflection scanning and controls the movement of the electrically driven workbench.
  • the photolithographic material here is, for example, a wafer or other materials.
  • the wafer is placed on the electrically driven workpiece table 4 and is coated on the wafer by using spin coating, spray glue or other processes.
  • Photoresist The laser light source 2 is used to emit laser light to the photolithography material located on the electrically driven workbench to achieve exposure based on a pre-designed design layout.
  • the laser light source 2 is a laser light source 2 output by an optical fiber.
  • the exposed light energy is scanned point by point in the writing field on the wafer coated with photoresist on the electric drive workbench after passing through the optical scanning system 3.
  • the laser light source 2 can output laser pulses matching the light energy required for exposure to realize the exposure function to complete the photolithography operation.
  • the laser light source 2 for emitting laser includes a power supply and a laser.
  • the laser light source 2 here can use a variety of lasers, such as solid lasers, semiconductor lasers or gas lasers, or can be multiple identical or different lasers.
  • An array laser composed of lasers.
  • the wavelength of the laser emitted by the laser light source 2 here can be in the range of 193nm to 436nm, and the power of the emitted laser can be in the range of 1mW to 100W.
  • the laser emission mode of the laser light source 2 It can be a way of emitting to free space or a way of coupling fiber output.
  • the transmission optical fiber 21 of the laser light source 2 is an ultraviolet optical fiber, which can be a single-film or multi-mode optical fiber, and its material can be an organic optical fiber or a quartz optical fiber, preferably a single-mode quartz optical fiber.
  • the transmission optical fiber 21 is preferably an optical fiber with a focusing function on its output end face.
  • control device 1 can be controlled using a human-machine interface.
  • First for example, use graphics software to design the design layout of the integrated circuit/chip that meets the target function, or input the design layout of the integrated circuit that meets the requirements based on third-party design software, and decompose the design layout into multiple layers according to the processing technology.
  • Exposure pattern based on the exposure pattern of each layer and according to the type of photoresist (such as positive or negative resist, exposure sensitivity of the photoresist), the exposure parameters are converted into photolithography data.
  • the photolithography data here refers to the The data related to the photolithography material and the exposure are finally generated based on the photolithography data.
  • the light deflection control signal 11 for the optical scanning system 3 and the workpiece stage control signal 12 for the electrically driven workpiece stage 4 are generated.
  • the control device 1 can control the optical scanning system 3 to deflect the laser light emitted by the laser light source 2 based on the light deflection control signal 11, so that the laser light can be exposed on the corresponding pixel point; the control device 1 is controlled by the workpiece stage control signal 12
  • the electrically driven workpiece table 4 moves to the exposure position each time to implement the exposure operation.
  • the control device 1 can synchronously control the optical scanning system 3 and the electrically driven workpiece stage 4 through the light deflection control signal 11 and the workpiece stage control signal 12, thereby achieving the desired configuration on the electrically driven workpiece stage. Exposure operations are performed on the photoresist on the photolithography material on the workbench, ultimately achieving precise photolithography functions.
  • the control device 1 obtains the exposure-related data required by the photolithography material based on, for example, the design layout, and decomposes the exposure-related data into DAC modules or ADC modules.
  • the light deflection control signal set 11 at least includes the corresponding Laser deflection data for each exposure position.
  • the laser light source 2 further includes a light intensity modulator, the light intensity modulator is connected to the control device 1, and the control device 1 can control the light intensity modulation based on the design layout.
  • the device adjusts the intensity of the laser light emitted by the laser light source 2.
  • the photolithography data also includes a light modulation signal 13.
  • the control device 1 can modulate the laser light source 2 based on the light modulation signal 13 so that it outputs the light energy required for exposure. Matching laser pulses to achieve exposure function.
  • the light intensity modulator is an electro-optic modulator or an acousto-optic modulator, and its modulation frequency ranges from 1 MHz to 100 GHz.
  • control device 1 can decompose the design layout into multi-layer patterns according to the processing technology, generate photolithography data based on each layer pattern, and generate light deflection for the optical scanning system 3 based on the photolithography data.
  • the control device 1 can sequentially control the laser light source 2, the optical scanning system 3 and the electric drive console according to different photolithography data, so as to simultaneously realize the exposure of the corresponding positions and further increase the exposure accuracy.
  • the optical scanning system 3 is an electro-optical scanning system 3 or an acousto-optical scanning system 3 .
  • the preferred acousto-optic scanning system 3 has a scanning frequency of 1MHz-5GHz.
  • the optical scanning system 3 includes an incident focusing lens system, an optical scanner 31 and an exit lens focusing system.
  • the laser light emitted by the laser light source 2 is focused on the optical scanning system after passing through the incident focusing lens system.
  • the exit lens focusing system focuses the laser on the optical scanner 31 at a set position.
  • the laser light source 2 includes a transmission fiber 21 and a metasurface lens 22.
  • the optical scanning system 3 includes an optical scanner 31 and an exit lens focusing system. The laser light emitted by the laser light source 2 is transmitted through the transmission fiber.
  • the optical fiber 21 is transmitted through the metasurface lens 22 and then focused on the optical scanner 31 .
  • the exit lens focusing system focuses the laser on the optical scanner 31 at a set position.
  • the laser light source 2 includes a plurality of transmission fibers 21 , all of the transmission fibers 21 are distributed in an array, the optical scanning system 3 includes a plurality of optical scanners 31 , and each of the optical scanners 31 It is provided corresponding to at least one of the transmission optical fibers 21 .
  • a plurality of optical fibers are spatially distributed in an array, and their exposure lasers cover several writing fields at the same time under the action of the corresponding optical scanner 31.
  • the control device 1 decomposes the lithography data that the wafer needs to be exposed into multiple writing field information, the light deflection control signal 11 of each optical fiber and its corresponding pixel point in the writing field, and the light intensity of each optical fiber at the corresponding pixel point. control signal.
  • the number of optical fibers is determined by the lowest frequency among the frequencies of the light intensity modulator and the optical scanning system 3 .
  • Multiple transmission optical fibers 21 are distributed in a spatial array so that their exposure pulses cover the same or adjacent writing field covered by the scanning range of the optical scanning system 3.
  • the control device 1 decomposes the data that needs to be exposed on the wafer into writing fields.
  • Field information (corresponding to the workpiece stage control signal 12), the position information of each optical fiber and its corresponding pixel point in the writing field (corresponding to the light deflection control signal 11 of the optical scanning system 3) and each optical fiber at the corresponding pixel point exposure light intensity information (corresponding to the light intensity control signal).
  • the electric drive motor positions the corresponding writing field on the wafer required for photolithography in this process to the bottom of the non-mechanical light scanning system 3; the corresponding writing field on the wafer reaches the non-mechanical light scanning system
  • the light deflection control signal 11 of the control device 1 controls the non-mechanical light scanning system 3, so that the exposure light pulse of each optical fiber is deflected at each respective pixel position in turn. point, the control device 1 uses the light intensity modulation signal to control the light pulse reaching the pixel point to complete the photolithography of the exposure point.
  • the control device 1 After completing the scanning control of all pixel positions on the writing field this time, the control device 1 then controls the movement of the motor stage, transports the wafer to the next writing field position that needs to be exposed, and repeats the scanning and light intensity modulation required for exposure to complete the process. A single exposure across the entire wafer. If a total of 100 optical fibers are used at 10x10, in principle, the exposure yield of 300nm resolution can be increased to 200 square centimeters per minute, which can meet the needs of chip production and chip packaging production lines.
  • the transmission optical fiber 21 includes an optical fiber core 211 for transmitting light beams, and an optical fiber cladding 212 is provided around the outside of the optical fiber core 211; here the optical fiber core 211 and the optical fiber
  • the cladding 212 may be made of any suitable material that has a small absorption coefficient for light beams in the wavelength range of 193 nm to 2 um.
  • the optical fiber core 211 here can be made of doped quartz material.
  • the optical fiber core 211 is made of CaF2 or doped CaF2.
  • the optical fiber cladding 212 here can be non-doped. It is made of quartz material.
  • the optical fiber cladding 212 is made of quartz or CaF2 material.
  • a lens structure 213 is provided outside the exit end of the fiber cladding 212.
  • the lens structure 213 may have an arc-shaped convex structure.
  • the lens structure 213 is used for The exposure laser is caused to form a Gaussian beam spot of a highly focused photolithography beam on the focal plane 214 of the lens structure 213 .
  • the lens structure 213 here may be, for example, a focusing lens for optical fiber exposure; specifically, the lens structure 213 may be a fiber lens formed on the end surface of the optical fiber core 211 using chemical etching or the like, or it may be A metasurface lens is formed on the end surface of the optical fiber cladding 212 using, for example, micro-nano processing technology.
  • the present invention reveals that the non-mechanical light scanning fiber lithography machine can even use a plurality of optical fibers to form a plurality of arrays, and each array consists of a plurality of optical fibers; the optical scanning system 3 uses a plurality of acousto-optic scanners 31 to form an array. Each scanner corresponds to a fiber array. As shown in Figure 6. If there are 10x10 acousto-optic scanners31, and each scanner has 10x10 optical fibers, the processing yield of 300nm resolution can reach 2 square meters per minute, which can meet the production needs of various large displays and high-end chip packaging needs .
  • the electrically driven workpiece stage 4 includes multiple driving devices to position and control the exposure position on the photolithographic material in the three axes of XYZ.
  • the driving device here may be a motor unit, for example.
  • the X-axis and the Y-axis are located on the focal plane where the light focusing array achieves optical signal focusing or a plane parallel to the focal plane, and the Z-axis is along the direction perpendicular to the focal plane.
  • the positioning and control accuracy of the electrically driven workpiece stage 4 in the Z-axis direction is on the order of 100nm-10um.
  • the motion control in the Z-axis direction can preferably be achieved by using a stepper motor or a piezoelectric motor.
  • the maximum displacement amount of the motor unit here to control the movement of the electrically driven workpiece table 4 is between 5 mm and 50 mm. between;
  • the movement of the electrically driven workpiece table 4 in the X-axis and Y-axis directions is controlled by two independent groups of motor units.
  • Each group of the motor units includes at least a stepper motor and a piezoelectric motor.
  • Each group of the motor units The positioning accuracy can be achieved, for example, by a laser interferometer.
  • the positioning signal emitted by the laser interferometer and the drive signal of the piezoelectric motor are used to form a closed-loop control signal to control the positioning accuracy.
  • the X-axis and Y-axis located in the focal plane
  • the positioning and control accuracy of each axis is controlled between 2nm and 1um, and the motor unit controls the movement of the electrically driven workpiece table 4 to a maximum displacement of 50mm to 320mm.
  • the electrically driven workpiece stage 4 may also have the ability to rotate within the focal plane and tilt the XY plane normal to deviate from the focused light, positioning and controlling it.
  • Embodiments of the present disclosure can realize the formation of large-area and high-precision micro-nano structures on the surface of photolithographic materials such as wafers or other materials, thereby meeting the research, development and production needs of integrated circuits and other micro-nano systems.
  • the optical fiber array lithography machine involved in the embodiment of the present disclosure uses a laser light source 2 in the range of 193nm to 436nm.
  • the laser is modulated by using an electro-optical or acousto-optic modulator for light intensity and switching.
  • the frequency of modulation can reach 100GHz.
  • the synchronization of the modulation and non-mechanical light scanning systems 3 enables the formation of large-area micron and nanoscale patterns on photoresist-coated semiconductor wafers or other R&D samples to meet the needs of chip production.
  • the non-mechanical light scanning fiber lithography machine involved in the embodiment of the present disclosure realizes the lithography function through the following solution.
  • the electrically driven workpiece stage 4 realizes movement and positioning in the Z-axis direction through a driving device that controls the movement in the Z-axis direction, wherein the photoresist is positioned on the surface formed by the optical scanning system 3 within the focal plane.
  • control device 1 Design the design layout for the chip or micro-nano system on the built-in design software of the control device 1, or convert the design layout obtained through third-party software design and import it into the control device 1; wherein , the control device 1 decomposes the design layout for a chip or micro-nano system into multi-layer patterns according to the processing technology, and generates photolithography data based on each layer of patterns.
  • control device 1 obtains the photolithography data required for the photolithography operation and related to the exposure based on the design layout, and decomposes each photolithography data into several writing fields as needed.
  • the control device 1 decomposes the data that the wafer needs to be exposed into a light deflection control signal 11, a workbench control signal and a light intensity control signal, wherein the workbench control signal at least includes the wafer and other lithography to meet the needs of the process lithography.
  • the light modulation signal 13 at least includes modulation of the laser light source 2 so that it outputs laser pulses that match the light energy required for exposure.
  • control device 1 controls the signal based on the workpiece stage 12.
  • Control the electric drive workpiece stage 4 to move in the X-axis and Y-axis directions, and move the photolithography material to the initial exposure point position, according to the laser deflection data corresponding to each exposure position in the light deflection control signal 11 , thereby deflecting based on the light deflection control signal 11, and finally completing the photolithography operation at the current exposure position;
  • the control device 1 continues to control the electrically driven workpiece stage 4 to move within the focal plane, move the semiconductor wafer coated with photoresist to the next exposure position in this photolithography data, and perform light deflection
  • the deflection data in the control signal 11 and the light intensity adjustment of the light modulation signal 13 complete the photolithography of the current wafer.
  • the photolithography materials such as the wafer exit the fiber lithography machine through the electric drive workpiece stage 4 and enter other etching or coating or ion implantation, annealing or other processes after development and fixation. After other related processes, this will complete all the process steps of this photolithography operation.
  • the embodiment of the present disclosure uses a laser light source 2 in the range of 193nm to 436nm as the photolithography light, and uses an electro-optical or acousto-optical modulator to modulate the light intensity and switching of the laser.
  • the frequency of modulation can reach 100GHz; further, an array is formed in parallel by multiple optical fibers. Processing to further improve exposure yield; use the synchronization of light intensity modulation and non-mechanical light scanning to form large-area micron and nanoscale patterns on photoresist-coated semiconductor wafers or other R&D samples.
  • an optical fiber array is used to realize multi-beam parallel lithography, thereby improving the productivity of the lithography machine.
  • Embodiments of the present disclosure can directly implement photolithography from the chip design layout without requiring a photolithography mask, thereby realizing digital production of chips.
  • the embodiments of the present disclosure are suitable for research, development and production of integrated circuits or other similar integrated micro-nano systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本公开实施例提出一种非机械光扫描光纤光刻机, 包括控制装置, 激光光源, 光扫描系统以及电驱动工件台. 本公开实施例通过采用光纤将激光光源和光扫描系统简化光路调整, 避免自由空间发射激光的光刻机在设计和生产上采用复数个光学透镜或透镜组的困难, 使得光纤光刻机光路设计, 安装简单, 制造和维护成本都大大降低; 采用光纤连接激光光源和光扫描系统, 有效减小光刻机的几何尺寸; 采用电光或声光调制实现对光刻的激光光能的开关, 结合非机械光扫描和电驱动位移台的移动, 实现光刻的图案化功能; 采用复数根光纤组成阵列, 单个或复数个非机械光扫描器组成阵列, 形成为多束光纤光刻机, 提高光刻机的加工速率.

Description

一种非机械光扫描光纤光刻机 技术领域
本公开涉及一种芯片或者集成电路的制造领域,尤其涉及一种非机械光扫描光纤光刻机。
背景技术
光刻机是利用紫光或紫外光的光子照射涂覆在晶圆或试样表面的光刻胶(感光胶)使光刻胶分子大小产生变化得到其在特定溶剂中的溶解度产生一定的对比度。利用该溶剂对晶圆/试样表面上涂覆的经过选择性曝光的光刻胶进行显影形成图案。光刻机是芯片生产线的核心装备,曝光光刻胶后能得到的最小线宽是光刻机的最重要指标和代表芯片产线的先进程度。一条最先进的芯片产线,通常根据晶体管集成度高低和芯片布线要求,在其晶体管制造工艺(前道)和晶体管间互联工艺(后道)分别配置1台或多台各种不同加工精度的光刻机。
光刻机按光刻胶上形成图案的方式分为两大类。第一类是把强度分布均匀的光斑,通过具有透明和不透明区域图案的光刻掩模板后在光刻胶上形成与掩模板图案高度保真的像。这类光刻机广泛用于半导体的生产线上。第二类光刻机是利用一束聚焦后的光在感光胶上扫描需要曝光的区域,或利用空间光调制器对均匀的光斑分区域调制光强形成空间上明暗对比的图案后在感光胶上实现曝光,这类光刻机因不需要光刻掩模版被称为无掩模光刻机,前者也叫激光直写,后者也被称为LDI。上述两类光刻机的设计都采用自由空间光学结构,即从光源发出的光到达光刻胶表面的过程中,光线都裸露在空气或真空中。
发明内容
有鉴于此,本公开实施例提出了一种非机械光扫描光纤光刻机,以解决现有技术中的问题。
一方面,本公开提供一种非机械光扫描光纤光刻机,包括控制装置、激光光源、光扫描系统以及电驱动工件台,所述控制装置与所述激光光源、所述光扫描系统以及所述电驱动工件台连接,且所述控制装置能够基于设计版图控制所述光扫描系统对所述激光光源发射的激光进行偏转扫描以及控制所述电驱动工作台进行运动。
在一些实施例中,所述控制装置能够将所述设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据,基于所述光刻数据生成针对所述光扫描系统的光偏转控制信号以及针对所述电驱动控制台的工件台控制信号。
在一些实施例中,所述光扫描系统为电光光扫描系统或声光光扫描系统。
在一些实施例中,所述光扫描系统包括入射聚焦透镜系统、光扫描器和出射透镜聚焦系统,所述激光光源发射的激光经过所述入射聚焦透镜系统后聚焦于所述光扫描器上,所述出射透镜聚焦系统将所述光扫描器上的激光聚焦于设定位置。
在一些实施例中,所述激光光源包括传输光纤和超表面透镜,所述光扫描系统包括光扫描器和出射透镜聚焦系统,所述激光光源发射的激光在所述传输光纤的传输下经过所述超表面透镜后聚焦于所述光扫描器上,所述出射透镜聚焦系统将所述光扫描器上的激光聚焦于设定位置。
在一些实施例中,所述激光光源还包括光强度调制器,所述光强度调制器与所述控制装置相连,且所述控制装置能够基于所述设计版图控制所述光强度调制器对所述激光光源发出的激光进行强度调节。
在一些实施例中,所述光强度调制器为电光调制器或声光调制器。
在一些实施例中,所述激光光源采用固体激光器、半导体激光器、气体激光器中的任意一种或者采用多个相同或者不同的连续激光器组成的激光器阵列。
在一些实施例中,所述激光光源包括多根传输光纤,所有所述传输光纤阵列分布,所述光扫描系统包括多个光扫描器,且每一所述光扫描器与至少一个所述传输光纤对应设置。
在一些实施例中,所述电驱动工件台包括多个驱动装置以实现光刻材料 上的曝光位置在XYZ三个轴向的定位和控制,其中,X轴和Y轴位于所述光聚焦阵列实现光信号聚焦的焦平面或与所述焦平面平行的平面上,Z轴在沿与该焦平面垂直的方向。
本公开实施例通过采用光纤将激光光源和光扫描系统简化光路调整,避免自由空间发射激光的光刻机在设计和生产上采用复数个光学透镜或透镜组的困难,使得光纤光刻机光路设计、安装简单,制造和维护成本都大大降低;采用光纤连接激光光源和光扫描系统,因为避免采用透镜组消除相差,可以大大缩短光路的长度,有效减小光刻机的几何尺寸;采用电光或声光调制实现对光刻的激光光能的开关,结合非机械光扫描和电驱动位移台的移动,实现光刻的图案化功能;采用复数根光纤组成阵列,单个或复数个非机械光扫描器组成阵列,形成为多束光纤光刻机,提高光刻机的加工速率。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的非机械光扫描光纤光刻机的原理示意图;
图2为本公开实施例的非机械光扫描光纤光刻机的结构示意图;
图3为本公开实施例的非机械光扫描光纤光刻机中控制装置的模块示意图;
图4为本公开实施例的非机械光扫描光纤光刻机中传输光纤的结构示意图;
图5为本公开实施例的非机械光扫描光纤光刻机的另一结构示意图;
图6为本公开实施例的非机械光扫描光纤光刻机的另一结构示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
本公开实施例涉及一种非机械光扫描光纤光刻机,其用于基于预先设置的用于光刻的设计版图在晶圆的光刻材料上通过曝光的方式实现光刻操作。如图1所示,图1示出了所述非机械光扫描光纤光刻机的结构示意图,非机械光扫描光纤光刻机包括控制装置1、激光光源2、光扫描系统3以及电驱动工件台4,所述控制装置1与所述激光光源2、所述光扫描系统3以及所述电驱动工件台4连接,且所述控制装置1能够基于设计版图控制所述光扫描系统3对所述激光光源2发射的激光进行偏转扫描以及控制所述电驱动工作台进行运动。
其中,这里的所述光刻材料例如是晶圆或者其他材料,所述晶圆设置在所述电驱动工件台4上,通过采用旋涂、喷胶或其它工艺在所述晶圆上涂覆光刻胶。所述激光光源2用于向位于所述电驱动工作台上的所述光刻材料发射激光以基于预先设计的设计版图实现曝光。激光光源2是一个光纤输出的激光光源2,曝光的光能量经过光扫描系统3后在位于电驱动工作台上涂覆光刻胶的晶圆上的写场内逐点扫描,每个扫描电上,激光光源2均能够输出于曝光需要的光能量匹配的激光脉冲,实现曝光功能以完成光刻操作。
具体的,用于发射激光的所述激光光源2包括电源以及激光器,这里的所述激光光源2可以采用多种激光器,例如固体激光器、半导体激光器或气体激光器,也可以是多个相同或者不同的激光器组成的阵列激光器,这里的所述激光光源2发射的激光的波长可以在193nm到436nm的范围内,发射激光的功率可以在1mW到100W的范围内,所述激光光源2的激光发射的方式可以是以向自由空间发射的方式或者以耦合光纤输出的方式,这里优选地采用能够以光纤输出方式发射激光的激光器。
其中激光光源2的传输光纤21是紫外光纤,它可以是单膜或多模光纤,其材质可以是有机光纤或石英光纤,优选单模石英光纤。传输光纤21传优选为输出端面有聚焦功能的光纤。
进一步地,所述控制装置1可以采用人机界面的方式进行控制。首先,例如通过图形软件设计出符合目标功能的集成电路/芯片的设计版图,或者基于第三方设计软件输入符合要求的集成电路的设计版图,并把所述设计版图按照加工工艺分解成多层的曝光图案,基于每层的曝光图案并根据光刻胶的类型(例如正胶或负胶、光刻胶的曝光感度)将曝光参数转换为光刻数据,这里的所述光刻数据是指针对所述光刻材料与实现曝光相关的数据,最后基于所述光刻数据生成针对所述光扫描系统3的光偏转控制信号11以及针对所述电驱动工件台4的工件台控制信号12。
控制装置1能够基于光偏转控制信号11控制光扫描系统3对激光光源2发出的激光进行偏转,从而使激光能够在对应的像素点上进行曝光;控制装置1通过所述工件台控制信号12控制所述电驱动工件台4进行运动以移动到每次的曝光位置从而实现曝光操作。这样,所述控制装置1能够通过所述光偏转控制信号11和所述工件台控制信号12同步控制所述光扫描系统3和所述电驱动工件台4,从而实现在设置在所述电驱动工作台上的所述光刻材料上的光刻胶上执行曝光操作,最终实现精密的光刻功能。
其中,如图2所示,所述控制装置1基于例如通过所述设计版图获取所述光刻材料需要的与曝光相关的数据,并通过将与曝光相关的数据通过DAC模块或者ADC模块分解为工作台控制信号和对应的光偏转控制信号11,其中,所述工作台控制信号集至少包括为满足光刻工艺需要的晶圆等光刻材料上所有曝光位置和不需要曝光位置的位置信息、每个曝光位置和不需要曝光位置的位置对应的所述电驱动工件台4上所述晶圆的位置的定位信息和驱动装置 的移动控制数据;所述光偏转控制信号11集至少包括对应于每个曝光位置的激光偏转数据。
在一些实施例中,所述激光光源2还包括光强度调制器,所述光强度调制器与所述控制装置1相连,且所述控制装置1能够基于所述设计版图控制所述光强度调制器对所述激光光源2发出的激光进行强度调节。控制装置1在将曝光参数转换为光刻数据后,光刻数据中还包括光调制信号13,控制装置1能够基于光调制信号13对激光光源2进行调制,使其输出与曝光需要的光能量匹配的激光脉冲,实现曝光功能。
在一些实施例中,所述光强度调制器为电光调制器或声光调制器,其调制频率从1MHz到100GHz。
进一步地,所述控制装置1能够将所述设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据,基于所述光刻数据生成针对所述光扫描系统3的光偏转控制信号11以及针对所述电驱动控制台的工件台控制信号12。控制装置1能够根据不同的光刻数据依次对激光光源2、光扫描系统3及电驱动控制台进行控制,同步实现对应位置的曝光,进一步增加曝光精度。
在一些实施例中,所述光扫描系统3为电光光扫描系统3或声光光扫描系统3。优选为声光扫描系统3,其扫描频率是1MHz-5GHz。
在一些实施例中,所述光扫描系统3包括入射聚焦透镜系统、光扫描器31和出射透镜聚焦系统,所述激光光源2发射的激光经过所述入射聚焦透镜系统后聚焦于所述光扫描器31上,所述出射透镜聚焦系统将所述光扫描器31上的激光聚焦于设定位置。
在一些实施例中,所述激光光源2包括传输光纤21和超表面透镜22,所述光扫描系统3包括光扫描器31和出射透镜聚焦系统,所述激光光源2发射的激光在所述传输光纤21的传输下经过所述超表面透镜22后聚焦于所述光扫描器31上,所述出射透镜聚焦系统将所述光扫描器31上的激光聚焦于设定位置。
在一些实施例中,所述激光光源2包括多根传输光纤21,所有所述传输光纤21阵列分布,所述光扫描系统3包括多个光扫描器31,且每一所述光扫描器31与至少一个所述传输光纤21对应设置。其中多根光纤在空间上阵列分布,它们的曝光激光在对应的光扫描器31的作用下同时覆盖若干个写场。 控制装置1把晶圆需要曝光的光刻数据分解成多个写场信息、每根光纤和它对应的写场内的像素点的光偏转控制信号11和对应像素点上每根光纤的光强度控制信号。其中,光纤的数量由光强度调制器和光扫描系统3的频率中最低的频率进行确定。将多根传输光纤21在空间上阵列分布,使它们的曝光脉冲覆盖同一个或相邻的光扫描系统3的扫描范围覆盖的写场中,控制装置1把晶圆需要曝光的数据分解成写场信息(对应于工件台控制信号12),每根光纤和它对应的写场内的像素点的位置信息(对应于光扫描系统3的光偏转控制信号11)和对应像素点上每根光纤的曝光光强度信息(对应于光强度控制信号)。电驱动马达在工件台控制信号12的控制下,把本次工艺光刻需要的晶圆上对应的写场定位到非机械光扫描系统3下方;晶圆上对应的写场到达非机械光扫描系统3的焦平面位置后,控制装置1的光偏转控制信号11控制非机械光扫描系统3,使每根光纤的曝光光脉冲依次在各自的每个像素点位置偏转,在对每一个的像素点,控制装置1利用光强度调制信号控制到达该像素点的光脉冲,完成曝光点位的光刻。完成这一次写场上所有像素点位置的扫描控制后,控制装置1再控制马达台的移动,把晶圆运送到下一个需要曝光的写场位置,并重复曝光需要的扫描和光强度调制,完成整个晶圆上的当次曝光。如果由10x10共100根光纤,原则上可以把300nm分辨率的曝光产率提高到每分钟200平方厘米,能满足芯片生产和芯片封装产线的需要。
具体的,如图3所示,所述传输光纤21包括用于传输光束的光纤芯211,在所述光纤芯211的外侧包围设置光纤包层212;这里的所述光纤芯211和所述光纤包层212可以采用适合的例如对193nm-2um波长范围的光束的吸收系数小的任意材料制成。其中,这里的所述光纤芯211可以采用掺杂的石英材料制成,优选地,所述光纤芯211采用CaF2或掺杂的CaF2制成,这里的所述光纤包层212可以采用非掺杂的石英材料制成,优选地,所述光纤包层212采用石英或CaF2材料制成。
在所述光纤包层212的出射端的外侧设置透镜结构213,所述透镜结构213可以具有弧形外凸的结构,在所述透镜结构213的外侧具有焦平面214,所述透镜结构213用于使所述曝光激光在所述透镜结构213的所述焦平面214上形成高度聚焦的光刻光束的高斯束斑。这里的所述透镜结构213例如可以是用于光纤曝光的聚焦透镜;具体地,所述透镜结构213可以是采用化 学刻蚀法等在所述光纤芯211的端面上形成光纤透镜,也可以是采用例如微纳加工技术在所述光纤包层212的端面上形成的超表面透镜。
本发明揭示非机械光扫描光纤光刻机甚至可以采用复数根光纤组成复数个阵列,每个阵列由复数根光纤;光扫描系统3采用复数个声光扫描器31组成阵列。每个扫描器对应与一个光纤阵列。如图6所示。如果有10x10个声光扫描器31,每个扫描器有10x10根光纤,那300nm分辨率的加工产率可以到达每分钟2平方米,能满足各类大型显示器的生产需要和高端芯片封装的需要。
在一些实施例中,所述电驱动工件台4包括多个驱动装置以实现光刻材料上的曝光位置在XYZ三个轴向的定位和控制,这里的所述驱动装置例如可以是电机单元,其中,X轴和Y轴位于所述光聚焦阵列实现光信号聚焦的焦平面或与所述焦平面平行的平面上,Z轴在沿与该焦平面垂直的方向。
进一步地,所述电驱动工件台4在Z轴方向上的定位和控制精度为100nm-10um量级。为此,对于Z轴方向上的运动控制可以优选采用步进电机,也可以采用压电电机实现,这里的所述电机单元控制所述电驱动工件台4运动的最大位移量在5mm到50mm之间;
所述电驱动工件台4的在X轴和Y轴方向上的运动分别由两组独立的电机单元控制,每组所述电机单元至少包括步进电机和压电电机,每组所述电机单元的定位精度例如可以由激光干涉器实现,例如利用激光干涉器发射的定位信号和压电电机的驱动信号组成闭环控制信号以控制定位精度,这样,使得位于焦平面内的X轴和Y轴两个轴向的定位和控制精度控制在2nm到1um之间,所述电机单元控制所述电驱动工件台4的运动最大位移量为50mm到320mm。当然,所述电驱动工件台4也可以具有焦平面内的转动和XY面法线偏离聚焦光线的倾斜定位和控制能力。
本公开实施例能够实现例如在晶圆或其他材料等光刻材料的表面形成大面积并且高精度的微纳结构,从而满足例如集成电路和其它微纳系统的研究、研发和生产需要。
本公开实施例涉及的所述光纤阵列光刻机采用193nm到436nm范围的激光光源2,通利用电光或声光调制器对激光进行光强度和开关调制,调制的频率可以达到100GHz,利用光强度调制和非机械光扫描系统3的同步实现在涂覆光刻胶的半导体晶圆或其他研发试样上形成大面积的微米纳米级图案, 满足芯片生产的需要。具体地,本公开实施例涉及的所述非机械光扫描光纤光刻机通过以下的方案实现光刻功能。
(1)在例如半导体晶圆或其它需要光刻的材料的表面涂覆上具有理想厚度的光刻胶,并经过烘烤等方式将光刻胶固化后将所述光刻材料设置在所述电驱动工件台4上,所述电驱动工件台4通过控制Z轴方向运动的驱动装置实现Z轴方向上的移动和定位,其中,将光刻胶定位在所述光扫描系统3所形成的焦平面内。
(2)在所述控制装置1内置的设计软件上设计用于芯片或微纳系统的设计版图,或者将通过第三方软件设计得到的设计版图经过转化后导入到所述控制装置1中;其中,所述控制装置1将用于芯片或者微纳系统的设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据。
其中,所述控制装置1基于所述设计版图获取光刻操作需要的与实现曝光相关的光刻数据,并按需要把每个光刻数据分解成若干个写场。控制装置1将晶圆需要曝光的数据分解成光偏转控制信号11、工作台控制信号和光强控制信号,其中,所述工作台控制信号至少包括为满足工艺光刻需要的晶圆等光刻材料上所有曝光位置和不需要曝光位置的位置信息、每个位置对应的所述电驱动工件台4上光刻材料的位置的定位和驱动装置的移动控制数据;所述光偏转控制信号11集至少包括对应于每个曝光位置的激光偏转数据;光调制信号13至少包括激光光源2进行调制,使其输出与曝光需要的光能量匹配的激光脉冲。
(3)当例如涂覆有光刻材料的晶圆等通过所述电驱动工件台4移动到所述光扫描系统3的焦平面的位置后,所述控制装置1基于所述工件台控制信号12控制所述电驱动工件台4在X轴和Y轴方向上移动,并把所述光刻材料移动到初始曝光点位置后,根据光偏转控制信号11中每个曝光位置对应的激光偏转数据,从而基于光偏转控制信号11进行偏转,最终完成在当前曝光位置的光刻操作;
所述控制装置1继续控制所述电驱动工件台4在焦平面内移动,把涂覆有光刻胶的半导体晶圆等移动到本次光刻数据中的下一个曝光位置,并执行光偏转控制信号11中的偏转数据和光调制信号13的光强调节,则完成当次晶圆的光刻。
(4)完成当次光刻后,晶圆等所述光刻材料通过所述电驱动工件台4 退出光纤光刻机后,进入显影、定影后其他的刻蚀或镀膜或离子注入、退火或其他相关工艺后,这样将完成本次光刻操作的所有工艺步骤。
(5)根据芯片或者微纳系统的设计版图或工艺线的实际情况,重复上述(1)-(3)的步骤,即可完成芯片或者微纳系统的光刻工艺。
本公开实施例采用193nm到436nm范围的激光光源2作为光刻光,利用电光或声光调制器对激光进行光强度和开关调制,调制的频率可以达到100GHz;进一步地由多根光纤构成阵列并行加工,进一步提高曝光产率;利用光强度调制和非机械光扫描的同步实现在涂覆光刻胶的半导体晶圆或其他研发试样上形成大面积的微米纳米级图案。尤其,在本实施例中采用光纤阵列实现多束并行光刻,提高光刻机的生产率。本公开实施例可以从芯片设计的版图直接实现光刻,不需要光刻掩模板,实现芯片的数字化生产。本公开实施例适用于集成电路或其它类似集成微纳系统研究、研发和生产。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上对本公开多个实施例进行了详细说明,但本公开不限于这些具体的实施例,本领域技术人员在本公开构思的基础上,能够做出多种变型和修改实施例,这些变型和修改都应落入本公开所要求保护的范围。

Claims (10)

  1. 一种非机械光扫描光纤光刻机,其特征在于,包括控制装置、激光光源、光扫描系统以及电驱动工件台,所述控制装置与所述激光光源、所述光扫描系统以及所述电驱动工件台连接,且所述控制装置能够基于设计版图控制所述光扫描系统对所述激光光源发射的激光进行偏转扫描以及控制所述电驱动工作台进行运动。
  2. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述控制装置能够将所述设计版图按照加工工艺分解成多层图案,并基于每层图案生成光刻数据,基于所述光刻数据生成针对所述光扫描系统的光偏转控制信号以及针对所述电驱动控制台的工件台控制信号。
  3. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述光扫描系统为电光光扫描系统或声光光扫描系统。
  4. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述光扫描系统包括入射聚焦透镜系统、光扫描器和出射透镜聚焦系统,所述激光光源发射的激光经过所述入射聚焦透镜系统后聚焦于所述光扫描器上,所述出射透镜聚焦系统将所述光扫描器上的激光聚焦于设定位置。
  5. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述激光光源包括传输光纤和超表面透镜,所述光扫描系统包括光扫描器和出射透镜聚焦系统,所述激光光源发射的激光在所述传输光纤的传输下经过所述超表面透镜后聚焦于所述光扫描器上,所述出射透镜聚焦系统将所述光扫描器上的激光聚焦于设定位置。
  6. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述激光光源还包括光强度调制器,所述光强度调制器与所述控制装置相连,且所述控制装置能够基于所述设计版图控制所述光强度调制器对所述激光光源发出的激光进行强度调节。
  7. 根据权利要求6所述的非机械光扫描光纤光刻机,其特征在于,所述光强度调制器为电光调制器或声光调制器。
  8. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述激光光源采用固体激光器、半导体激光器、气体激光器中的任意一种或者采用多个相同或者不同的连续激光器组成的激光器阵列。
  9. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述 激光光源包括多根传输光纤,所有所述传输光纤阵列分布,所述光扫描系统包括多个光扫描器,且每一所述光扫描器与至少一个所述传输光纤对应设置。
  10. 根据权利要求1所述的非机械光扫描光纤光刻机,其特征在于,所述电驱动工件台包括多个驱动装置以实现光刻材料上的曝光位置在XYZ三个轴向的定位和控制,其中,X轴和Y轴位于所述光聚焦阵列实现光信号聚焦的焦平面或与所述焦平面平行的平面上,Z轴在沿与该焦平面垂直的方向。
PCT/CN2022/131026 2022-07-08 2022-11-10 一种非机械光扫描光纤光刻机 WO2024007502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210805811.3 2022-07-08
CN202210805811.3A CN115128912A (zh) 2022-07-08 2022-07-08 一种非机械光扫描光纤光刻机

Publications (1)

Publication Number Publication Date
WO2024007502A1 true WO2024007502A1 (zh) 2024-01-11

Family

ID=83381005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131026 WO2024007502A1 (zh) 2022-07-08 2022-11-10 一种非机械光扫描光纤光刻机

Country Status (2)

Country Link
CN (1) CN115128912A (zh)
WO (1) WO2024007502A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128912A (zh) * 2022-07-08 2022-09-30 西湖大学 一种非机械光扫描光纤光刻机
CN115061338A (zh) * 2022-07-08 2022-09-16 西湖大学 一种声光扫描超分辨光纤光刻机
CN116626996A (zh) * 2023-05-23 2023-08-22 无锡物联网创新中心有限公司 一种基于光纤阵列的深紫外光刻机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189847A (zh) * 2021-04-21 2021-07-30 之江实验室 基于光纤选模耦合器的多通道并行式超分辨直写光刻系统
CN113189848A (zh) * 2021-04-21 2021-07-30 之江实验室 一种基于光纤阵列的多通道并行式超分辨直写式光刻系统
CN114488713A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光刻机以及物理光刻方法
CN114488715A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光纤阵列光刻机
CN115061338A (zh) * 2022-07-08 2022-09-16 西湖大学 一种声光扫描超分辨光纤光刻机
CN115128912A (zh) * 2022-07-08 2022-09-30 西湖大学 一种非机械光扫描光纤光刻机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440688B2 (ja) * 2004-03-31 2010-03-24 Hoya株式会社 レーザ描画装置、レーザ描画方法及びフォトマスクの製造方法
CN112631078A (zh) * 2019-10-08 2021-04-09 旭东机械工业股份有限公司 反射式无掩膜激光直写曝光机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189847A (zh) * 2021-04-21 2021-07-30 之江实验室 基于光纤选模耦合器的多通道并行式超分辨直写光刻系统
CN113189848A (zh) * 2021-04-21 2021-07-30 之江实验室 一种基于光纤阵列的多通道并行式超分辨直写式光刻系统
CN114488713A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光刻机以及物理光刻方法
CN114488715A (zh) * 2022-02-18 2022-05-13 西湖大学 一种光纤阵列光刻机
CN115061338A (zh) * 2022-07-08 2022-09-16 西湖大学 一种声光扫描超分辨光纤光刻机
CN115128912A (zh) * 2022-07-08 2022-09-30 西湖大学 一种非机械光扫描光纤光刻机

Also Published As

Publication number Publication date
CN115128912A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2024007502A1 (zh) 一种非机械光扫描光纤光刻机
WO2023155491A1 (zh) 一种光纤阵列光刻机
WO2024007501A1 (zh) 一种声光扫描超分辨光纤光刻机
US9268235B2 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
JP3052587B2 (ja) 露光装置
JP5988537B2 (ja) 荷電粒子線露光装置及びデバイス製造方法
JP5211487B2 (ja) 露光方法及び露光装置並びにマイクロデバイスの製造方法
US20090098479A1 (en) Exposure method and tool
JP2003255552A (ja) レーザ照射装置並びに走査レーザ光を用いた露光方法及び走査レーザ光を用いたカラーフィルタの製造方法
JP2010191127A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
US20220163894A1 (en) System and method for double-sided digital lithography or exposure
US10908507B2 (en) Micro LED array illumination source
CN113284989A (zh) 一种Micro LED芯片剥离装置、剥离机及剥离机使用方法
KR100816494B1 (ko) 마스크리스 노광기 및 이를 이용한 표시장치용 기판의 제조방법
CN114995073A (zh) 光电发射多束电子束曝光机
US20040240813A1 (en) Pattern writing apparatus
CN215008252U (zh) 一种Micro LED芯片剥离装置及剥离机
CN114488714B (zh) 一种光纤阵列光刻机
JP2003318096A (ja) 光ビーム照射装置
CN114488714A (zh) 一种光纤阵列光刻机
JP2003173949A (ja) 露光装置
CN114442440A (zh) 一种光刻机
JP7427352B2 (ja) 露光装置
KR100924280B1 (ko) 광역 레이저 패터닝 시스템
TWI715056B (zh) 用於空間光調變器的減少資料串流的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950060

Country of ref document: EP

Kind code of ref document: A1