WO2024007453A1 - 一种降低异质钎焊接头残余应力的方法 - Google Patents

一种降低异质钎焊接头残余应力的方法 Download PDF

Info

Publication number
WO2024007453A1
WO2024007453A1 PCT/CN2022/119836 CN2022119836W WO2024007453A1 WO 2024007453 A1 WO2024007453 A1 WO 2024007453A1 CN 2022119836 W CN2022119836 W CN 2022119836W WO 2024007453 A1 WO2024007453 A1 WO 2024007453A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling
residual stress
heterogeneous
cycle
Prior art date
Application number
PCT/CN2022/119836
Other languages
English (en)
French (fr)
Inventor
龙伟民
钟素娟
宋晓国
傅玉灿
张雷
纠永涛
罗灵杰
贾连辉
郭鹏
郑永光
Original Assignee
中国机械总院集团宁波智能机床研究院有限公司
郑州机械研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国机械总院集团宁波智能机床研究院有限公司, 郑州机械研究所有限公司 filed Critical 中国机械总院集团宁波智能机床研究院有限公司
Publication of WO2024007453A1 publication Critical patent/WO2024007453A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of welding technology and relates to a method for reducing residual stress in heterogeneous brazed joints.
  • the heterogeneous material with a small shrinkage will prevent the heterogeneous material with a large shrinkage from continuing to shrink.
  • the heterogeneous material with a large shrinkage will be subject to tensile stress along the direction of the brazing interface.
  • Dissimilar materials with small shrinkage will be subject to compressive stress along the direction of the brazing interface. Therefore, after the brazing joint is welded, it is easy to generate large residual stress on the interface, leading to cracks or other types of defects in the joint, thereby reducing the bonding strength and service life.
  • the purpose of the present invention is to propose a method for significantly reducing the residual stress of heterogeneous brazed joints in view of the above-mentioned problems existing in the prior art.
  • the object of the present invention can be achieved through the following technical solutions: a method for reducing residual stress in heterogeneous brazed joints.
  • the method includes brazing.
  • Brazing includes heating, insulation, and cooling cycle processing.
  • the cooling cycle processing includes: cooling, At least 2 cycles of heat preservation, heating, and heat preservation, and the temperature after cooling is not higher than the temperature after cooling in the previous cooling cycle, and the temperature after heating is not higher than the temperature after heating in the previous cooling cycle.
  • the temperature after cooling in the first cooling cycle is (0.5 ⁇ 0.7) Ts, and the temperature after heating is (0.7 ⁇ 0.9 )Ts, the temperature after cooling in the last cooling cycle is (0.1 ⁇ 0.2)Ts, and the temperature after heating is (0.15 ⁇ 0.3)Ts, Ts is the solidus temperature of the solder.
  • the structural distortion caused by uneven cooling and phase change causes a large amount of residual stress in the joint.
  • the temperature is raised first to increase the diffusion driving force of solid solution elements in the tissue, promote the occurrence of micro-plastic deformation and micro-precipitation processes in the structure, and can release the internal cooling of the tissue.
  • Residual stress caused by structural distortion caused by solid solution of elements increases structural stability.
  • the residual stress generated after cooling down again can be reduced by raising the temperature again, so that the joint temperature is gradually reduced during the cycle to achieve the purpose of reducing the residual stress in the joint.
  • the temperature after cooling in the first cooling cycle is (0.6 ⁇ 0.7)Ts, and the temperature after heating again is (0.8 ⁇ 0.9)Ts: the temperature after cooling in the last cooling cycle is (0.1 ⁇ 0.2)Ts, the temperature after heating is (0.2 ⁇ 0.3)Ts.
  • the cooling cycle treatment also includes a cryogenic cycle treatment.
  • the cryogenic cycle treatment includes at least two cycles of cooling, heat preservation, heating, and heat preservation.
  • the cryogenic cycle treatment In the cycle process, the temperature after cooling is T1, and the temperature after heating is T2.
  • the range of T1 is -(75 ⁇ 150)°C, and the range of T2 is (0.2 ⁇ 0.3)Ts.
  • the temperature In the last cycle, the temperature is cooled to T1 and then kept and raised to room temperature. Or cool to room temperature after the last cycle.
  • the cooling rate in both the cooling cycle process and the cryogenic cycle process is 5 to 20°C/min.
  • the heat preservation time in both the cooling cycle process and the cryogenic cycle process is 1 to 5 hours.
  • the two holding times of a single cycle in cooling cycle processing or cryogenic cycle processing may be the same or different.
  • the temperature rise rate in both the cooling cycle process and the cryogenic cycle process is 5 to 20°C/min.
  • the cryogenic cycle treatment of the present invention uses a temperature rise and fall cycle between (0.1 ⁇ 0.4) Ts and - (75 ⁇ 150)°C.
  • the uneven deformation caused by the thermal expansion and contraction effect eliminates the movable dislocations in the tissue and fixes them. Dislocations entangle and add value, reducing residual stress within the organization.
  • the present invention can significantly reduce the residual stress of the brazed joint through two-stage cooling treatment, and improve the joint's strength and stress fracture resistance.
  • brazing specifically includes brazing the first base material and the second base material using brazing material.
  • the brazing connection satisfies the following calculation formula:
  • ⁇ 1 is the expansion coefficient of the first base metal
  • T is the welding temperature of the brazed joint
  • ⁇ 1 is the stress applied parallel to the brazing interface of the first base metal
  • E1 is the elastic modulus of the first base metal
  • ⁇ 2 is the expansion of the second base metal Coefficient
  • ⁇ 2 is the stress applied parallel to the brazing interface of the second base metal
  • E2 is the elastic modulus of the second base metal
  • t room temperature
  • the first base metal and the second base metal of heterogeneous materials have the same length L, and they have different linear expansion coefficients.
  • the linear expansion coefficient of the first base metal is ⁇ 1, and the linear expansion coefficient of the second base metal is ⁇ 1.
  • the linear expansion coefficient is ⁇ 2, and ⁇ 1 is greater than ⁇ 2.
  • the first base metal and the second base metal are heated to the brazing temperature T.
  • prestress ⁇ 1 and prestress ⁇ 2 are applied to the first base material with elastic modulus E1 and the second base material with elastic modulus E2 during heating.
  • the prestress ⁇ 1 is compressive stress, which reduces the linear deformation amount ⁇ L1/L.
  • the prestress ⁇ 1 is the tensile stress, which increases the linear deformation ⁇ L2/L.
  • the brazing connection satisfies the following calculation formula:
  • the brazing connection satisfies the following calculation formula:
  • the present invention can also apply prestress ⁇ 1 to one of the base materials during heating. Stress is applied to the base metal so that the linear deformations of the two are close to each other, thereby achieving the purpose of reducing the residual stress of the joint after welding.
  • the solder material includes at least one of nickel-based, copper-based, silver-based, aluminum-based, zinc-based and tin-based solder materials.
  • the first base material includes at least one of carbon steel, alloy steel, aluminum alloy, and copper alloy.
  • the second base material includes at least one of cemented carbide, ceramics, carbon steel, alloy steel, and copper alloy.
  • the second base material is one of cemented carbide, ceramics, alloy steel, and copper alloy.
  • the second base material is one of cemented carbide, ceramics, carbon steel, and copper alloy.
  • the second base material is one of cemented carbide, ceramics, carbon steel, alloy steel, and copper alloy.
  • the second base material is one of cemented carbide, ceramics, carbon steel, and alloy steel.
  • the welding surface of the first base metal or the second base metal includes at least one of a groove and a hole.
  • the cross section of the groove or hole includes at least one of an arc shape and a square shape.
  • grooves or holes are processed on the brazing surface of the first base material or the second base material.
  • the cross-sections of the grooves and holes can be arc-shaped or square.
  • the grooves or holes in the present invention can be cut off during the cooling shrinkage deformation process. stress integrity, thereby reducing residual stress.
  • the present invention has the following beneficial effects:
  • the cryogenic cycle treatment of the present invention passes through a temperature rising and cooling cycle between (0.1 ⁇ 0.4)T and -(75 ⁇ 150)°C.
  • the uneven deformation caused by the thermal expansion and contraction effect eliminates the movable dislocations in the tissue. Fixed dislocations entangle and add value, reducing residual stress within the structure of the brazed joint.
  • prestress ⁇ 1 and prestress ⁇ 2 are applied to the first base material with elastic modulus E1 and the second base material with elastic modulus E2 during heating, and finally the linear deformation of the two is increased during brazing. close, thereby achieving the purpose of reducing the residual stress after welding of the joint.
  • the present invention cuts off the integrity of the stress generated during the cooling shrinkage deformation process by arranging grooves or holes on the brazing surfaces of the first base material and the second base material, thereby reducing residual stress.
  • Figure 1 is an electron microscope picture of the brazing interface of the 316L stainless steel and alumina ceramic brazing samples in Example 5; in the figure, 100, alumina ceramic, 200, 316L stainless steel, 300, Ag71Cu26Ti3 brazing material.
  • Figure 2 is a macro picture of the 316L stainless steel and alumina ceramic brazing sample in Comparative Example 2 and a surface electron microscope picture of the alumina ceramic.
  • Figure 3 is an electron microscope picture of the brazing interface of the 316L stainless steel and alumina ceramic brazing samples in Comparative Example 2 at different magnifications; in the figure, 100, alumina ceramic, 200, 316L stainless steel, 300, Ag71Cu26Ti3 brazing filler metal.
  • Figure 4 is a schematic diagram of the cooling cycle process during brazing in Example 1.
  • FIG. 5 is a schematic diagram of the cryogenic cycle process during brazing in Example 1.
  • Figure 6 is a schematic diagram of the groove in Embodiment 7; 1. YG20 cemented carbide, 2. 316L stainless steel, 3. Groove.
  • the cooling cycle processing specifically includes the following steps:
  • brazed joint was cooled to -75°C at a cooling rate of 10°C/min and kept for 2 hours, and then heated to room temperature at a heating rate of 10°C/min.
  • Example 1 The only difference from Example 1 is that no cryogenic cycle treatment was performed.
  • Example 1 The only difference from Example 1 is that when brazing at 750°C, a compressive stress of 50 MPa parallel to the brazing interface is loaded on the 316L stainless steel.
  • the cooling cycle processing specifically includes the following steps:
  • brazed joint was cooled to -75°C at a cooling rate of 10°C/min and kept for 2 hours, and then heated to room temperature at a heating rate of 10°C/min.
  • step S2 The brazing process of step S2 is all performed in a vacuum furnace with a vacuum degree of 10-3MPa.
  • Example 5 The only difference from Example 5 is that when brazing at 860°C, a compressive stress of 50 MPa parallel to the brazing interface is loaded on the 316L stainless steel.
  • Embodiment 1 The only difference from Embodiment 1 is that the YG20 cemented carbide brazing interface is provided with a groove as shown in Figure 6.
  • Grooves are generally set in larger base materials and are suitable for use in the preparation of large-scale brazed joints. They can fully release stress, improve the performance of the brazed joints, and extend the service life.
  • Example 5 The only difference from Example 5 is that the cyclic cooling process and the cryogenic cycle process are not performed, and the brazed joint after brazing is directly cooled to room temperature at a cooling rate of 10° C./min.
  • Example First base material Second base material Residual stress/MPa Example 1 316L stainless steel YG20 carbide 35 Example 2 316L stainless steel YG20 carbide 33 Example 3 316L stainless steel YG20 carbide 46 Example 4 316L stainless steel YG20 carbide 32 Example 5 316L stainless steel Alumina ceramic 46 Example 6 316L stainless steel Alumina ceramic 42 Comparative example 1 316L stainless steel YG20 carbide 134 Comparative example 2 316L stainless steel Alumina ceramic crack
  • Figure 1 is an electron microscope picture of the brazing interface of the 316L stainless steel and alumina ceramic brazing sample in Example 4. It can be seen from the figure that the interface of the brazed joint after cooling cycle treatment and cryogenic cycle treatment is intact and no cracks occur, indicating that the residual stress is extremely small and has almost no significant impact on the strength and stress fracture resistance of the joint.
  • Figure 2 is a macro picture of the 316L stainless steel and alumina ceramic brazing specimen in Comparative Example 2 and a surface electron microscope picture of alumina ceramic
  • Figure 3 is a diagram of the brazing interface of the 316L stainless steel and alumina ceramic brazing specimen in Comparative Example 2 at different magnifications. Electron microscope pictures. It can be seen from the figure that the brazed joint without cyclic cooling treatment and cryogenic cycle treatment has cracks on the ceramic surface and inside, indicating that the residual stress exceeds the fracture strength of the alumina ceramic base material.
  • the present invention eliminates movable dislocations in the structure through cooling cycle processing and cryogenic cycle processing to eliminate uneven deformation caused by thermal expansion and contraction effects, entangle fixed dislocations, add value, and reduce internal distortion of the brazed joint structure. Residual Stress.
  • each parameter in the same embodiment only represents an example of its technical solution (that is, a feasible solution), and there is no difference between the various parameters.
  • each parameter can be replaced with each other unless it violates the axioms and requirements of the present invention, unless otherwise stated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Products (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种降低异质钎焊接头残余应力的方法,在钎焊接头降低到某个温度时,通过先升温处理,产生微塑性变形及微析出,消减残余应力,再次降温,产生残余应力,再通过升温消减应力,在循环过程中降低接头温度,同时消减接头的残余应力。

Description

一种降低异质钎焊接头残余应力的方法 技术领域
本发明属于焊接技术领域,涉及一种降低异质钎焊接头残余应力的方法。
背景技术
异质材料钎焊接头钎焊完成后,收缩量小的异质材料会阻止收缩量大的异质材料继续收缩,此时缩量大的异质材料会受到沿钎焊界面方向的拉应力,收缩量小的异质材料会受到沿钎焊界面方向的压应力,因此钎焊接头焊接后容易在界面上产生较大的残余应力,导致接头出现裂纹或其他类型的缺陷,从而降低结合强度和使用寿命。
再者,接头在冷却过程中,由于冷却不均、线膨胀系数不同导致的变形不均和相变变形会产生残余应力,大大降低了接头的强度和抗应力断裂能力,所以急需提出一种能够降低接头残余应力,提高接头综合性能的新型冷却处理方法。
发明内容
本发明的目的是针对现有技术存在的上述问题,提出了一种大幅度降低异质钎焊接头残余应力的方法。
本发明的目的可通过下列技术方案来实现:一种降低异质钎焊接头残余应力的方法,所述方法包括钎焊,钎焊包括升温、保温、冷却循环处理,冷却循环处理包括:降温、保温、升温、保温的至少2次循环,且降温后的温度不高于前一次冷却循环中降温后的温度,升温后的温度不高于前一次冷却循环中升温后的温度。
在上述的一种降低异质钎焊接头残余应力的方法中,冷却循环处理过程中,第一次冷却循环中降温后的温度为(0.5~0.7)Ts,升温后的温度为(0.7~0.9)Ts,最后一次冷却循环中降温后的温度为(0.1~0.2)Ts,升温后的温度为(0.15~0.3)Ts,Ts为钎料的固相线温度。
相比于传统降温处理方式,接头在冷却过程中,由于冷却不均和相变等导致组织结构畸变,使接头产生大量残余应力。本发明冷却循环处理中在接头降低到某个温度时,通过先升温处理,增加组织中固溶元素的扩散驱动力,促进结构中微塑性变形及微析出过程的发生,能够释放组织内部由于冷却和元素固溶导致结构畸变产生的残余应力,增加结构稳定性。再次降温后产生的残余应力,可以通过再升温来消减,如此在循环过程中逐步降低接头温度,达到消减接头残余应力的目的。
作为优选,冷却循环处理过程中,第一次冷却循环中降温后的温度为(0.6~0.7)Ts,再升温后的温度为(0.8~0.9)Ts:最后一次冷却循环中降温后的温度为(0.1~0.2)Ts,升温后的温度为(0.2~0.3)Ts。
在上述的一种降低异质钎焊接头残余应力的方法中,冷却循环处理后还包括深冷循环处理,所述深冷循环处理包括降温、保温、升温、保温的至少2次循环,深冷循环处理中降温后的温度为T1,升温后的温度为T2,T1范围为-(75~150)℃,T2范围为(0.2~0.3)Ts,最后一次循环中降温至T1后保温升温至室温或最后一次循环结束后降温至室温。
作为优选,冷却循环处理中、深冷循环处理中的降温速率均为5~20℃/min。
作为优选,冷却循环处理中、深冷循环处理中的保温时间均为1~5h。冷却循环处理或深冷循环处理中的单次循环的两次保温时间可以相同,也可以不相同。
作为优选,冷却循环处理中、深冷循环处理中的升温速率均为5~20℃/min。
本发明深冷循环处理通过(0.1~0.4)Ts和-(75~150)℃之间的升降温循环处理,由热胀冷缩效应产生的不均匀变形使组织中可动位错消弭,固定位错纠缠、增值,消减组织内部的残余应力。
本发明通过两阶段的冷却处理可以大幅减少钎焊接头残余应力,提高接头的强度和抗应力断裂能力。
在上述的一种降低异质钎焊接头残余应力的方法中,钎焊具体包括利用钎料将第一母材和第二母材钎焊连接,钎焊连接满足以下计算公式:
Figure PCTCN2022119836-appb-000001
其中α1为第一母材膨胀系数,T为钎焊接头焊接温度,σ1为施加平行于第一母材钎焊界面的应力,E1为第一母材弹性模量,α2为第二母材膨胀系数,σ2为施加平行于第二母材钎焊界面的应力,E2为第二母材弹性模量,t为室温。
作为优选,
Figure PCTCN2022119836-appb-000002
进一步优选,
Figure PCTCN2022119836-appb-000003
更进一步优选,
Figure PCTCN2022119836-appb-000004
室温20℃条件下,异质材料的第一母材和第二母材具有相同的长度L,两者具有不同的线膨胀系数,第一母材的线膨胀系数为α1,第二母材的线膨胀系数为α2,α1大于α2,钎焊时,第一母材和第二母材被加热到钎焊温度T,此时两者的线膨胀量分别为ΔL1/L=α1×(T-20),ΔL2/L=α2×(T-20),ΔL1/L大于ΔL2/L,加入钎料钎焊完成后,第一母材和第二母材形成一个整体接头,当冷却到室温,两者理论上需要分别产生线收缩量ΔL1/L=α1×(T-20),ΔL2/L=α2×(T-20),但焊后第一母材和第二母材形成一个整体,收缩量小的第二母材会阻止第一母材继续收缩,此时第一母材会受到沿钎焊界面方向的拉应力,第二母材会受到沿钎焊界面方向的压应力,因此钎焊接头焊接后会产生残余应力。本发明在加热时对弹性模量为E1的第一母材和弹性模量为E2的第二母材施加预应力σ1和预应力σ2。第一母材的线变形量为ΔL1/L=α1×(T-20)+σ1/E1,预应力σ1为压应力,使线变形量ΔL1/L减少。第二母材的线变形量为ΔL2/L=α2×(T-20)+σ2/E2,预应力σ1为拉应力,使线变形量ΔL2/L增加,最后通过控制
Figure PCTCN2022119836-appb-000005
使两者的线变形量接近,从而达到降低接头焊接后的残余应力的目的。
作为优选,当σ1=0时,钎焊连接满足以下计算公式:
Figure PCTCN2022119836-appb-000006
作为优选,当σ2=0时,钎焊连接满足以下计算公式:
Figure PCTCN2022119836-appb-000007
由于在加热时对弹性模量为E1的第一母材和弹性模量为E2的第二母材施加预应力σ1和预应力σ2操作具有一定难度,本发明还可以通过在加热时对其中一个母材进行施 加应力,使得两者的线变形量接近,实现降低接头焊接后的残余应力的目的。
在上述的一种降低异质钎焊接头残余应力的方法中,钎料包括镍基、铜基、银基、铝基、锌基和锡基钎料中的至少一种。
在上述的一种降低异质钎焊接头残余应力的方法中,第一母材包括碳钢、合金钢、铝合金、铜合金中的至少一种。
在上述的一种降低异质钎焊接头残余应力的方法中,第二母材包括硬质合金、陶瓷、碳钢、合金钢、铜合金中的至少一种。
作为优选,第一母材为碳钢时,第二母材为硬质合金、陶瓷、合金钢、铜合金中的一种。
作为优选,第一母材为合金钢时,第二母材为硬质合金、陶瓷、碳钢、铜合金中的一种。
作为优选,第一母材为铝合金时,第二母材为硬质合金、陶瓷、碳钢、合金钢、铜合金中的一种。
作为优选,第一母材为铜合金时,第二母材为硬质合金、陶瓷、碳钢、合金钢中的一种。
在上述的一种降低异质钎焊接头残余应力的方法中,第一母材或第二母材焊接面包括沟槽和孔洞中的至少一种。
在上述的一种降低异质钎焊接头残余应力的方法中,沟槽或孔洞截面包括弧形和方形中的至少一种。
本发明通过在第一母材或第二母材钎焊面上加工沟槽或孔洞,沟槽和孔洞的截面可以是弧形或方形,本发明沟槽或孔洞可以截断冷却收缩变形过程中产生的应力完整性,从而减少残余应力。
与现有技术相比,本发明具有以下有益效果:
1.本发明在接头降低到某个温度时,通过先升温处理,产生微塑性变形及微析出,消减残余应力,再次降温后,产生残余应力,通过再升温消减应力,在循环过程中逐步降低接头温度,相比于传统降温处理方式,本发明可以大幅度消减接头的残余应力。
2.本发明深冷循环处理通过(0.1~0.4)T和-(75~150)℃之间的升降温循环,由热胀冷缩效应产生的不均匀变形使组织中可动位错消弭,固定位错纠缠、增值,消减钎焊接头组织内部的残余应力。
3.本发明在加热时对弹性模量为E1的第一母材和弹性模量为E2的第二母材施加预应力σ1和预应力σ2,最终在钎焊时使两者的线变形量接近,从而达到降低接头焊接后的残余应力的目的。
4.本发明通过在第一母材和第二母材钎焊面设置沟槽或孔洞截断冷却收缩变形过程中产生的应力完整性,从而减少残余应力。
附图说明
图1为实施例5中316L不锈钢和氧化铝陶瓷钎焊试样钎焊界面的电镜图片;图中,100、氧化铝陶瓷,200、316L不锈钢,300、Ag71Cu26Ti3钎料。
图2为对比例2中316L不锈钢和氧化铝陶瓷钎焊试样宏观图片和氧化铝陶瓷表面电镜图片。
图3为对比例2中316L不锈钢和氧化铝陶瓷钎焊试样钎焊界面不同倍率下的电镜图片;图中,100、氧化铝陶瓷,200、316L不锈钢,300、Ag71Cu26Ti3钎料。
图4为实施例1钎焊中冷却循环处理示意图。
图5为实施例1钎焊中深冷循环处理示意图。
图6为实施例7中沟槽示意图;1、YG20硬质合金,2、316L不锈钢,3、沟槽。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1:
S1、将膨胀系数为α1=18×10-6/℃、弹性模量为E1=206GPa的316L不锈钢、将膨胀系数为α2=6×10-6/℃、弹性模量为E2=14.5GPa的YG20硬质合金进行打磨和超声清洗,去除表面氧化皮和杂质。
S2、将银钎剂分别涂于316L不锈钢和YG20硬质合金的钎焊面,然后在750℃下在钎焊界面添加BAg65CuZn钎料,待钎料熔化后保温5min,对钎焊完成的接头进行冷却消减应力处理,查国家标准GB/T 10046-2018银钎料,本实施例使用的钎料BAg65CuZn的固相线温度为Ts=670℃;
钎焊连接后的钎焊接头进行如图4所示的冷却循环处理,冷却循环处理具体包括如下步骤:
(1)以10℃/min的冷却速率冷却到0.6Ts=402℃保温2h,再以10℃/min的加热速率升温到0.8Ts=536℃保温2h。
(2)钎焊接头以10℃/min的冷却速率冷却到0.5Ts=335℃保温2h,再以10℃/min的加热速率升温到0.7Ts=469℃保温2h。
(3)接头以10℃/min的冷却速率冷却到0.4Ts=268℃保温2h,再以10℃/min的加热速率升温到0.6Ts=401℃保温2h。
(4)接头以10℃/min的冷却速率冷却到0.4Ts=268℃保温2h,再以10℃/min的加热速率升温到0.5Ts=335℃保温2h。
(5)接头以10℃/min的冷却速率冷却到0.3Ts=201℃保温2h,再以10℃/min的加热速率升温到0.4Ts=268℃保温2h。
(6)接头以10℃/min的冷却速率冷却到0.1Ts=67℃保温2h,再以10℃/min的加热速率升温到0.3Ts=201℃保温2h。
然后进行如图5所示的深冷循环处理,循环次数为2,深冷循环处理具体包括如下步骤:钎焊接头以10℃/min的冷却速率降温到-75℃保温2h,再以10℃/min的加热速率升温到0.3Ts=201℃保温2h。
最后将钎焊接头以10℃/min的冷却速率降温到-75℃保温2h,再以10℃/min的加热速率升温到室温。
实施例2:
与实施例1的区别,仅在于,深冷循环处理循环次数为4。
实施例3:
与实施例1的区别,仅在于,未进行深冷循环处理。
实施例4:
与实施例1的区别,仅在于,在750℃下钎焊时在316L不锈钢加载平行于钎焊界面的50MPa的压应力。
实施例5:
S1、将膨胀系数为α1=18×10-6/℃、弹性模量为E1=206GPa的316L不锈钢、膨胀系数为α2=8×10-6/℃、弹性模量为E2=380GPa的氧化铝陶瓷进行打磨和超声清洗,去除表面氧化皮和杂质。
S2、在860℃下316L不锈钢和氧化铝陶瓷钎焊界面上添加Ag71Cu26Ti3钎料,待钎料熔化后保温5min,对钎焊完成的接头进行冷却消减应力处理,本实施例使用的Ag71Cu26Ti3钎料的固相线温度为Ts=773℃;
钎焊连接后的钎焊接头进行冷却循环处理,冷却循环处理具体包括如下步骤:
(1)以10℃/min的冷却速率冷却到0.6Ts=464℃保温2h,再以10℃/min的加热速率升温到0.8Ts=618℃保温2h。
(2)钎焊接头以10℃/min的冷却速率冷却到0.5Ts=387℃保温2h,再以10℃/min的加热速率升温到0.7Ts=541℃保温2h。
(3)接头以10℃/min的冷却速率冷却到0.4Ts=309℃保温2h,再以10℃/min的加热速率升温到0.6Ts=464℃保温2h。
(4)接头以10℃/min的冷却速率冷却到0.4Ts=309℃保温2h,再以10℃/min的加热速率升温到0.5Ts=387℃保温2h。
(5)接头以10℃/min的冷却速率冷却到0.3Ts=232℃保温2h,再以10℃/min的加热速率升温到0.4Ts=309℃保温2h。
(6)接头以10℃/min的冷却速率冷却到0.1Ts=77℃保温2h,再以10℃/min的加热速率升温到0.3Ts=232℃保温2h。
然后进行深冷循环处理,循环次数为2,深冷循环处理具体包括如下步骤:钎焊接头以10℃/min的冷却速率降温到-75℃保温2h,再以10℃/min的加热速率升温到0.3Ts=232℃保温2h。
最后将钎焊接头以10℃/min的冷却速率降温到-75℃保温2h,再以10℃/min的加热速率升温到室温。
步骤S2钎焊过程皆在真空度为10-3MPa的真空炉中进行。
实施例6:
与实施例5的区别,仅在于,在860℃下钎焊时在316L不锈钢加载平行于钎焊界面的50MPa的压应力。
实施例7:
与实施例1的区别,仅在于,YG20硬质合金钎焊界面设置有图6所示的沟槽。
沟槽一般设置于体积较大的母材,且适合大型钎焊接头制备时使用,能够充分释放应力,改善钎焊接头性能,提高使用年限。
对比例1:
与实施例1的区别,仅在于,未进行循环冷却处理和深冷循环处理,直接将钎焊连接后的钎焊接头以10℃/min的冷却速率冷却到0.3Ts=201℃保温2h。
对比例2:
与实施例5的区别,仅在于,未进行循环冷却处理和深冷循环处理,直接将钎焊连接后的钎焊接头以10℃/min的冷却速率冷却室温。
表1:实施例1-6、对比例1-2制备的钎焊接头残余应力结果
实施例 第一母材 第二母材 残余应力/MPa
实施例1 316L不锈钢 YG20硬质合金 35
实施例2 316L不锈钢 YG20硬质合金 33
实施例3 316L不锈钢 YG20硬质合金 46
实施例4 316L不锈钢 YG20硬质合金 32
实施例5 316L不锈钢 氧化铝陶瓷 46
实施例6 316L不锈钢 氧化铝陶瓷 42
对比例1 316L不锈钢 YG20硬质合金 134
对比例2 316L不锈钢 氧化铝陶瓷 开裂
图1为实施例4中316L不锈钢和氧化铝陶瓷钎焊试样钎焊界面的电镜图片。从图中可知,经过冷却循环处理和深冷循环处理的钎焊接头界面完整,没有裂纹产生,说明其残余应力极小,几乎对接头的强度和抗应力断裂能力无明显影响。
图2为对比例2中316L不锈钢和氧化铝陶瓷钎焊试样宏观图片和氧化铝陶瓷表面电镜图片;图3为对比例2中316L不锈钢和氧化铝陶瓷钎焊试样钎焊界面不同倍率下的电镜图片。从图中可知,未进行循环冷却处理和深冷循环处理的钎焊接头,陶瓷表面和内部都产生了裂纹,说明其残余应力超过了氧化铝陶瓷母材的断裂强度。
综上所述,本发明通过冷却循环处理和深冷循环处理由热胀冷缩效应产生的不均匀变形使组织中可动位错消弭,固定位错纠缠、增值,消减钎焊接头组织内部的残余应力。
本处实施例对本发明要求保护的技术范围中点值未穷尽之处以及在实施例技术方案中对单个或者多个技术特征的同等替换所形成的新的技术方案,同样都在本发明要求保护的范围内;同时本发明方案所有列举或者未列举的实施例中,在同一实施例中的各个参数仅仅表示其技术方案的一个实例(即一种可行性方案),而各个参数之间并不存在严格的配合与限定关系,其中各参数在不违背公理以及本发明述求时可以相互替换,特别声明的除外。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。以上所述是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (9)

  1. 一种降低异质钎焊接头残余应力的方法,所述方法包括钎焊,钎焊包括升温、保温、冷却循环处理,其特征在于:钎焊具体包括利用钎料将第一母材和第二母材钎焊连接,钎焊连接满足以下计算公式:
    Figure PCTCN2022119836-appb-100001
    其中α1为第一母材膨胀系数,T为钎焊接头焊接温度,σ1为施加平行于第一母材钎焊界面的应力,E1为第一母材弹性模量,α2为第二母材膨胀系数,σ2为施加平行于第二母材钎焊界面的应力,E2为第二母材弹性模量,t为室温;
    冷却循环处理包括:降温、保温、升温、保温的至少2次循环,且降温后的温度不高于前一次冷却循环中降温后的温度,升温后的温度不高于前一次冷却循环中升温后的温度。
  2. 根据权利要求1所述的降低异质钎焊接头残余应力的方法,其特征在于:冷却循环处理过程中,第一次冷却循环中降温后的温度为(0.5~0.7)Ts,升温后的温度为(0.7~0.9)Ts,最后一次冷却循环中降温后的温度为(0.1~0.2)Ts,升温后的温度为(0.15~0.3)Ts,Ts为钎料的固相线温度。
  3. 根据权利要求2所述的降低异质钎焊接头残余应力的方法,其特征在于:冷却循环处理过程中,第一次冷却循环中降温后的温度为(0.6~0.7)Ts,升温后的温度为(0.8~0.9)Ts,最后一次冷却循环中降温后的温度为(0.1-0.2)Ts,升温后的温度为(0.2~0.3)Ts。
  4. 根据权利要求1所述的降低异质钎焊接头残余应力的方法,其特征在于:冷却循环处理后还包括深冷循环处理,所述深冷循环处理包括降温、保温、升温、保温的至少2次循环,深冷循环处理中降温后的温度为T1,升温后的温度为T2,T1范围为-(75~150)℃,T2范围为(0.2~0.3)Ts,最后一次循环中降温至T1后保温、升温至室温或最后一次循环结束后降温至室温。
  5. 根据权利要求1所述的降低异质钎焊接头残余应力的方法,其特征在于:钎焊连接满足以下计算公式:
    Figure PCTCN2022119836-appb-100002
  6. 根据权利要求1所述的降低异质钎焊接头残余应力的方法,其特征在于:钎料包括镍基、铜基、银基、铝基、锌基和锡基钎料中的至少一种。
  7. 根据权利要求1所述的降低异质钎焊接头残余应力的方法:其特征在于,第一母材包括碳钢、合金钢、铝合金、铜合金中的至少一种。
  8. 根据权利要求1所述的降低异质钎焊接头残余应力的方法:其特征在于,第二母材包括硬质合金、陶瓷、碳钢、合金钢、铜合金中的至少一种。
  9. 根据权利要求1所述的降低异质钎焊接头残余应力的方法:其特征在于,第一母材或第二母材焊接面包括沟槽和孔洞中的至少一种。
PCT/CN2022/119836 2022-07-05 2022-09-20 一种降低异质钎焊接头残余应力的方法 WO2024007453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210780917.2A CN114833410B (zh) 2022-07-05 2022-07-05 一种降低异质钎焊接头残余应力的方法
CN202210780917.2 2022-07-05

Publications (1)

Publication Number Publication Date
WO2024007453A1 true WO2024007453A1 (zh) 2024-01-11

Family

ID=82575222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119836 WO2024007453A1 (zh) 2022-07-05 2022-09-20 一种降低异质钎焊接头残余应力的方法

Country Status (3)

Country Link
JP (1) JP7381699B1 (zh)
CN (1) CN114833410B (zh)
WO (1) WO2024007453A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114833410B (zh) * 2022-07-05 2022-10-14 中机智能装备创新研究院(宁波)有限公司 一种降低异质钎焊接头残余应力的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052015A (ja) * 2008-08-28 2010-03-11 Nhk Spring Co Ltd 異材接合体の製造方法およびその方法による異材接合体
CN104084658A (zh) * 2014-07-01 2014-10-08 北京工业大学 一种镁合金与钢的接触反应扩散钎焊连接方法
CN106914673A (zh) * 2017-04-13 2017-07-04 中国石油大学(华东) 一种镍基材料钎焊接头成分与力学性能均匀化方法
CN108672965A (zh) * 2018-05-07 2018-10-19 中国工程物理研究院电子工程研究所 一种缓解陶瓷与金属钎焊接头残余应力的方法
CN114178640A (zh) * 2021-09-24 2022-03-15 中国航发北京航空材料研究院 一种耐热冲击的石墨与金属的钎焊方法
CN114833410A (zh) * 2022-07-05 2022-08-02 中机智能装备创新研究院(宁波)有限公司 一种降低异质钎焊接头残余应力的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386727A (en) * 1980-05-23 1983-06-07 Unde Madhav A Prevention of build up of residual stresses in welds during welding and subsequent reheat cycles
JPS6027472A (ja) * 1983-07-22 1985-02-12 Isao Shoda 超硬チツプロ−付けにおける加熱方法
JPH0659575B2 (ja) * 1985-11-27 1994-08-10 住友セメント株式会社 金属とセラミツクスとの接合方法
JP2861357B2 (ja) * 1990-10-17 1999-02-24 株式会社村田製作所 窒化アルミニウム―銅接合方法
JP3342329B2 (ja) * 1996-12-02 2002-11-05 三菱重工業株式会社 異種材料の接合方法
JP3511860B2 (ja) * 1997-09-10 2004-03-29 株式会社日立製作所 割れ補修方法
GB2429892B (en) * 2004-05-27 2008-05-21 Kyocera Corp Ceramic heater,and oxygen sensor and hair iron using the ceramic heater
US7276824B2 (en) * 2005-08-19 2007-10-02 U.I.T., L.L.C. Oscillating system and tool for ultrasonic impact treatment
CN102873447A (zh) * 2012-10-12 2013-01-16 天津冶金集团中兴盛达钢业有限公司 钢丝的连接方法
KR101367865B1 (ko) * 2013-05-29 2014-02-27 국방과학연구소 티타늄 합금과 스테인리스강의 브레이징 방법
CN107363358B (zh) * 2017-07-20 2019-03-29 吉林大学 一种提高钕铁硼与钢或钕铁硼与钕铁硼钎焊接头强度的方法
CN112164660B (zh) * 2020-09-07 2023-09-05 中国电子科技集团公司第十四研究所 一种快速校核t/r组件基板与封装材料热失配应力的方法
CN114395668A (zh) * 2020-12-07 2022-04-26 山西柴油机工业有限责任公司 临界固溶和临界多次降温变温时效与退火复合热处理方法
CN112620851B (zh) * 2020-12-24 2022-12-13 湘潭大学 一种复合梯度中间层高温钎焊连接石墨与不锈钢的方法
CN114672631B (zh) * 2022-03-25 2023-11-21 中国石油大学(华东) 大型加氢反应器超厚锻件全厚度组织-应力-性能均匀性调控方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052015A (ja) * 2008-08-28 2010-03-11 Nhk Spring Co Ltd 異材接合体の製造方法およびその方法による異材接合体
CN104084658A (zh) * 2014-07-01 2014-10-08 北京工业大学 一种镁合金与钢的接触反应扩散钎焊连接方法
CN106914673A (zh) * 2017-04-13 2017-07-04 中国石油大学(华东) 一种镍基材料钎焊接头成分与力学性能均匀化方法
CN108672965A (zh) * 2018-05-07 2018-10-19 中国工程物理研究院电子工程研究所 一种缓解陶瓷与金属钎焊接头残余应力的方法
CN114178640A (zh) * 2021-09-24 2022-03-15 中国航发北京航空材料研究院 一种耐热冲击的石墨与金属的钎焊方法
CN114833410A (zh) * 2022-07-05 2022-08-02 中机智能装备创新研究院(宁波)有限公司 一种降低异质钎焊接头残余应力的方法

Also Published As

Publication number Publication date
JP7381699B1 (ja) 2023-11-15
CN114833410A (zh) 2022-08-02
JP2024007308A (ja) 2024-01-18
CN114833410B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
JP4546318B2 (ja) Ni基合金部材とその製造法及びタービンエンジン部品並びに溶接材料とその製造法
US20230182187A1 (en) Tube and a method of manufacturing a tube
KR101734310B1 (ko) 고온에서 고강도를 갖는 열교환기의 얇은 스트립용 샌드위치 재료
CN112008180B (zh) 一种Ni3Al基单晶合金的高性能钎焊方法
JP6106748B2 (ja) アルミニウム合金ブレージングシート及びその製造方法
EP3363582A1 (en) Aluminum alloy brazing sheet, method for manufacturing same, aluminum alloy sheet, and heat exchanger
WO2024007453A1 (zh) 一种降低异质钎焊接头残余应力的方法
CN110394522B (zh) 一种变形镍基合金与铸造Ni3Al基合金的钎焊工艺
WO2023035773A1 (zh) 用于等温锻造的大型模具坯料的制备方法
JP2014208873A (ja) 耐酸化性に優れた高強度チタン合金及びこれを用いたコンプレッサー部品
JP2017075382A (ja) 無酸素銅板、無酸素銅板の製造方法およびセラミック配線基板
WO2017195729A1 (ja) 高温ロウ付け性に優れた銅合金管及びその製造方法
CN113245747B (zh) 一种高熵合金系高温钎料
KR102261029B1 (ko) 확산 접합용 니켈계 초내열 합금 및 이를 이용한 확산 접합 방법
CN111347146A (zh) 一种钨与热沉材料连接头及其制备方法
CN113478063B (zh) 以难熔金属为中间层的钛锆钼合金真空扩散连接方法
CN113681103B (zh) 一种保持镍基高温合金强度的多次钎焊及热处理工艺
CN113403559A (zh) Inconel 718与Rene’41异种高温合金焊接结构件的热处理强化方法
TWI719556B (zh) 金屬構件的接合方法及金屬構件接合體
CN112872652B (zh) 一种高Al、Ti、Ta含量的Ni基高温合金焊丝及其制备方法和应用
JP2019141910A (ja) 熱間圧延用チタン材
KR101039361B1 (ko) 저온 조건하에서 모재의 강도를 초과하는 티타늄 또는 티타늄계 합금 간 접합부의 제조방법
CN114799395A (zh) 提高接头强度稳定性的异种镍基高温合金真空钎焊方法
JP2022143790A (ja) 低熱膨張合金
JP2002248597A (ja) 高熱伝導性複合材料および金型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950014

Country of ref document: EP

Kind code of ref document: A1