WO2024007448A1 - 显示基板及显示装置 - Google Patents

显示基板及显示装置 Download PDF

Info

Publication number
WO2024007448A1
WO2024007448A1 PCT/CN2022/118555 CN2022118555W WO2024007448A1 WO 2024007448 A1 WO2024007448 A1 WO 2024007448A1 CN 2022118555 W CN2022118555 W CN 2022118555W WO 2024007448 A1 WO2024007448 A1 WO 2024007448A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
luminescent
thickness
emitting
Prior art date
Application number
PCT/CN2022/118555
Other languages
English (en)
French (fr)
Inventor
张晓晋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024007448A1 publication Critical patent/WO2024007448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate and a display device.
  • OLED Organic Light Emitting Diode, organic light emitting diode
  • OLED display device is a display device made of organic electric self-luminous diodes.
  • OLED display devices have excellent characteristics such as no need for backlight, high contrast, thin thickness, wide viewing angle, fast response speed, can be used in flexible panels, wide operating temperature range, simple structure and process, and are currently widely used.
  • the purpose of embodiments of the present disclosure is to provide a display substrate and a display device for improving the luminance and color purity of the display substrate.
  • a display substrate in one aspect, includes: a backplane and an anode layer, a first auxiliary layer, a first luminescent layer, a second auxiliary layer, and a plurality of second luminescent layers of at least two different colors that are stacked on the backplane in sequence.
  • a microcavity is formed between the anode layer and the cathode layer.
  • the first luminescent layer is disposed between the first auxiliary layer and the second auxiliary layer.
  • the plurality of second light-emitting layers are disposed between the second auxiliary layer and the third auxiliary layer.
  • the first auxiliary layer includes a film layer stacked in sequence, the optical thickness of the a film layer is L 1 , and L 1 satisfies:
  • a is a positive integer
  • n h is the refractive index of the h-th film layer among the a-film layers
  • r h is the thickness of the h-th film layer.
  • the second auxiliary layer includes b film layers stacked in sequence, the optical thickness of the b film layers is L 2 , and L 2 satisfies:
  • b is a positive integer
  • n i is the refractive index of the i-th film layer among the b film layers
  • r i is the thickness of the i-th film layer.
  • the third auxiliary layer includes c film layers stacked in sequence, the optical thickness of the c film layers is L 3 , and L 3 satisfies:
  • c is a positive integer
  • n j is the refractive index of the j-th film layer among the c film layers
  • r j is the thickness of the j-th film layer.
  • L 1 , L 2 , and L 3 satisfy the formula:
  • the luminous brightness of the display substrate can be increased.
  • a microcavity can be formed between the anode layer and the cathode layer of the display substrate. The light emitted by the first luminescent layer and the second luminescent layer can produce a microcavity effect in the microcavity, thereby enhancing the luminous intensity of the emitted light and narrowing the emitted light. spectrum and improve the luminous efficiency of light-emitting devices.
  • optical thickness L3 satisfies the formula:
  • the color purity of the light emitted by the light-emitting device in the display substrate can be improved. Therefore, the display substrate of the present disclosure can reduce the number of optical filters and improve luminous efficiency. Furthermore, the display substrate can also reduce power consumption and increase the luminous life of the light-emitting device when the luminous brightness is high.
  • the plurality of second light-emitting layers include: a plurality of second blue light-emitting layers, a plurality of second red light-emitting layers, and a plurality of second green light-emitting layers.
  • the wavelength of the light emitted by the first luminescent layer is smaller than the wavelength of the light emitted by the second luminescent layer of at least one color.
  • the first light emitting layer includes a first guest material and the second light emitting layer includes a second guest material.
  • the emission spectrum of the first guest material at least partially overlaps with the absorption spectrum of the second guest material of the second light-emitting layer of at least one color.
  • the overlap range of the emission spectrum of the first guest material and the absorption spectrum of the second guest material is greater than or equal to 60% of the wavelength range of the emission spectrum of the first guest material.
  • the overlapping range of the emission spectrum of the first guest material and the absorption spectrum of the second guest material is greater than or equal to 60% of the wavelength range of the absorption spectrum of the second guest material.
  • the peak of the emission spectrum of the first guest material is less than 600 nm.
  • the first guest material includes at least one luminescent material.
  • the distance between the emission spectrum peaks of the two luminescent materials is less than or equal to 30 nm.
  • the peak of the emission spectrum of the first guest material ranges from 465 nm to 475 nm
  • the peak of the absorption spectrum of the second guest material of the second green emitting layer ranges from 507 nm to 517 nm.
  • the emission spectrum peak of the first guest material ranges from 525 nm to 535 nm
  • the absorption spectrum peak of the second guest material of the second green emitting layer ranges from 510 nm to 520 nm
  • the second red emitting layer The peak of the absorption spectrum of the second guest material of the layer ranges from 595 nm to 605 nm.
  • the first guest material includes at least one luminescent material.
  • the first guest material includes two luminescent materials
  • at least one of the two luminescent materials is doped with boron element, and the doping ratio of the boron element ranges from 0.5% to 5 %.
  • the second guest material of the second luminescent layer of at least one color includes at least one luminescent material.
  • the distance between the emission spectrum peaks of the two luminescent materials is less than or equal to 30 nm.
  • the second guest material of the second luminescent layer of at least one color includes at least one luminescent material; in the case where the second guest material includes two luminescent materials, the two luminescent materials Among the three kinds of luminescent materials, at least one luminescent material is doped with boron element, and the doping ratio of the boron element ranges from 0.5% to 5%.
  • the first guest material includes: at least one of a fluorescent material, a phosphorescent material, and a thermally activated delayed fluorescent material; and/or the second guest material includes: a fluorescent material, At least one material selected from the group consisting of phosphorescent materials or thermally activated delayed fluorescent materials with multiple resonance characteristics.
  • the first light-emitting layer further includes a first host material, and the first host material includes a single host material or a PN hybrid host material.
  • the second luminescent layer material of at least one color further includes a second host material; the second host material includes a bipolar host material.
  • the second body material includes a single body material or a PN hybrid body material.
  • the N-type material has thermally activated delayed fluorescence characteristics.
  • the microcavity includes a plurality of sub-microcavities, and the plurality of sub-microcavities include a red sub-microcavity corresponding to the second red emitting layer, a green sub-microcavity corresponding to the second green emitting layer, and The blue sub-microcavity corresponding to the second blue light-emitting layer.
  • the number of film layers located between the anode layer and the cathode layer and corresponding to the sub-microcavity of any color is d, and the optical thickness of the d film layers is L, and L satisfies:
  • d is a positive integer
  • n m is the refractive index of the m-th film layer among the d film layers
  • r m is the thickness of the m-th film layer
  • k is a natural number
  • is the peak wavelength of the target spectrum
  • the length of the blue sub-microcavity is smaller than the length of the red sub-microcavity.
  • the length of the blue sub-microcavity is smaller than the length of the green sub-microcavity.
  • the thickness of the first luminescent layer ranges from 15 nm to 60 nm; and/or the thickness of the second luminescent layer ranges from 10 nm to 50 nm.
  • the first auxiliary layer includes a light-transmissive conductive layer, a hole injection layer, a first hole transport layer, and an electron blocking layer; and/or the second auxiliary layer includes a first hole blocking layer. layer, a first electron transport layer, a first charge generation layer, a second charge generation layer and a microcavity adjustment layer; and/or the third auxiliary layer includes: a second hole blocking layer, a second electron transport layer and electron injection layer.
  • the microcavity adjustment layer includes: a second hole transport layer, a red sub-microcavity adjustment layer disposed between the second hole transport layer and the second red light-emitting layer, a green sub-microcavity adjustment layer between the second hole transport layer and the second green light-emitting layer, and a blue sub-microcavity adjustment layer disposed between the second hole transport layer and the second blue light-emitting layer layer.
  • the lengths of the red sub-microcavity adjustment layer and the blue sub-microcavity adjustment layer are different, and the lengths of the green sub-microcavity adjustment layer and the blue sub-microcavity adjustment layer are different.
  • the red sub-microcavity adjustment layer includes a red hole transport layer and a red electron blocking layer that are stacked sequentially in a direction away from the backplate
  • the green sub-microcavity adjustment layer includes a red sub-microcavity adjustment layer that is stacked in a direction away from the backplate.
  • a green hole transport layer and a green electron blocking layer are stacked sequentially in the direction of the backplane.
  • the red hole transport layer and the green hole transport layer are used to adjust the length of the corresponding color sub-microcavity.
  • the thickness of the light-transmissive conductive layer is less than or equal to 10 nm; and/or the thickness of the hole injection layer is less than or equal to 10 nm; and/or the thickness of the electron blocking layer is less than or equal to 10nm; and/or, the thickness of the first hole blocking layer is less than or equal to 10nm; and/or, the thickness of the first electron transport layer ranges from 15nm to 50nm; and/or, the first charge generation The thickness of the layer is less than or equal to 10 nm; and/or, the thickness of the second charge generation layer is less than or equal to 10 nm; and/or, the thickness of the second hole blocking layer is less than or equal to 10 nm; and/or, the thickness of the second hole blocking layer is less than or equal to 10 nm; The thickness of the second electron transport layer ranges from 15 nm to 50 nm.
  • the number of the first light-emitting layers is multiple, and the second auxiliary layer is provided between any two adjacent first light-emitting layers; and/or, the plurality of second light-emitting layers They are located on the same layer and constitute a luminescent layer group.
  • the number of the luminescent layer groups is multiple.
  • the third auxiliary layer is provided between any two adjacent luminescent layer groups.
  • a display substrate includes: a backplane and an anode layer, a first auxiliary layer, a first luminescent layer, a second auxiliary layer, and a plurality of second luminescent layers of at least two different colors that are stacked on the backplane in sequence.
  • the third auxiliary layer and cathode layer A microcavity is formed between the anode layer and the cathode layer.
  • the first luminescent layer is disposed between the first auxiliary layer and the second auxiliary layer.
  • the plurality of second light-emitting layers are disposed between the second auxiliary layer and the third auxiliary layer.
  • the first auxiliary layer includes a film layer stacked in sequence
  • the second auxiliary layer includes b film layers stacked in sequence
  • the third auxiliary layer includes c film layers stacked in sequence
  • a, b , c are all positive integers.
  • the optical thickness of the a film layer, the optical thickness of the b film layer and the optical thickness of the c film layer satisfy the formula:
  • rh is the thickness of the h-th film layer among the a-th film layer
  • r i is the thickness of the i-th film layer among the b-film layers
  • rj is the thickness of the c-th film layer The thickness of j film layers.
  • a display substrate in another aspect, includes: a backplane and an anode layer, a first auxiliary layer, a first luminescent layer, a second auxiliary layer, and a plurality of second luminescent layers of at least two different colors that are stacked on the backplane in sequence.
  • the second auxiliary layer includes a charge generation layer, and a microcavity is formed between the anode layer and the cathode layer.
  • the first luminescent layer can emit at least two different colors of light.
  • the plurality of second luminescent layers include a plurality of second blue luminescent layers, a plurality of second red luminescent layers and a plurality of second green luminescent layers.
  • the first auxiliary layer includes a film layer stacked in sequence
  • the second auxiliary layer includes b film layers stacked in sequence
  • the third auxiliary layer includes c film layers stacked in sequence
  • a, b , c are all positive integers.
  • the optical thickness of the a film layer, the optical thickness of the b film layer and the optical thickness of the c film layer satisfy the formula:
  • r h is the thickness of the h-th film layer among the a-film layers
  • r i is the thickness of the i-th film layer among the b film layers
  • r j is the thickness of the h-th film layer among the b film layers
  • a display device in another aspect, includes: a display substrate as described in any one of the above embodiments; or, the display device includes: a display substrate as described in another embodiment; or, the display device includes: and A display substrate according to an embodiment of the invention.
  • the above display device has the same structure and beneficial technical effects as the display substrate provided in some of the above embodiments, which will not be described again here.
  • Figure 1 is a structural diagram of a display device according to some embodiments of the present disclosure.
  • Figure 2 is a structural diagram of a display substrate according to some embodiments of the present disclosure.
  • Figure 3 is a structural diagram of another display substrate according to some embodiments of the present disclosure.
  • Figure 4 is a structural diagram of a display substrate in the first method
  • Figure 5 is a structural diagram of a display substrate in the second method
  • Figure 6 is a structural diagram of yet another display substrate according to some embodiments of the present disclosure.
  • Figure 7 is a structural diagram of yet another display substrate according to some embodiments of the present disclosure.
  • Figure 8 is a structural diagram of yet another display substrate according to some embodiments of the present disclosure.
  • Figure 9 is a structural diagram of yet another display substrate according to some embodiments of the present disclosure.
  • Figure 10 is a spectrum diagram of part of the luminescent layer in Verification Example 1;
  • Figure 11 is a spectrum diagram of part of the luminescent layer in Verification Example 2.
  • Figure 12 is a structural diagram of yet another display substrate according to some embodiments of the present disclosure.
  • Figure 13 is a structural diagram of yet another display substrate according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection and its derivatives may be used.
  • some embodiments may be described using the term “connected” to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A Combinations with B, combinations of A and C, combinations of B and C, and combinations of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • Some embodiments of the present disclosure provide a display substrate and a display device.
  • the display substrate 100 and the display device 1000 are introduced below with reference to the accompanying drawings.
  • the display device 1000 may be any device that displays images, whether moving (eg, video) or stationary (eg, still images), and whether text or text. More specifically, it is contemplated that the embodiments may be implemented in or in association with a variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs) , handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, television monitors, flat panel displays, computer monitors, automotive displays (e.g., odometer display, etc.), navigator, cockpit controller and/or display, camera view display (e.g. display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, building structures, packaging and aesthetic structure (for example, for the display of an image of a piece of jewelry), etc.
  • PDAs personal data assistants
  • GPS receivers/navigators cameras
  • MP4 video players camcorders
  • the above-mentioned display device 1000 includes a frame, a display substrate 100 disposed within the frame, a circuit board, a data driver IC (Integrated Circuit, integrated circuit), and other electronic accessories.
  • a data driver IC Integrated Circuit, integrated circuit
  • the above display substrate 100 can be, for example, an organic light emitting diode display substrate, a quantum dot light emitting diode (Quantum Dot Light Emitting Diodes, QLED for short) display substrate, a micro light emitting diode (Micro Light Emitting Diodes, Micro LED for short) display substrate or a mini light emitting diode. (Mini Light Emitting Diodes, Mini LED for short) display substrate, etc., this disclosure does not specifically limit this.
  • the above-mentioned display substrate 100 includes: a backplane 1 .
  • the above-mentioned backplane 1 includes a substrate 11 and a plurality of pixel driving circuits 12 disposed on the substrate 11 .
  • the substrate 11 may be a rigid substrate.
  • the material of the rigid substrate may include, for example, glass, quartz or plastic.
  • the substrate 11 may be a flexible substrate.
  • the material of the flexible substrate may include, for example, PET (Polyethylene terephthalate, polyethylene terephthalate), PEN (Polyethylene naphthalate two formic acid glycol ester, polyethylene naphthalate) or PI (Polyimide, polyethylene naphthalate). imide) etc.
  • the plurality of pixel driving circuits 12 are arranged in an array, for example.
  • the above-mentioned pixel driving circuit 12 has a variety of structures, and can be selected and arranged according to actual needs.
  • the structure of the pixel driving circuit 12 may include a "3T1C”, “4T1C”, “6T1C”, “7T1C”, “6T2C”, “7T2C” or “8T2C” structure.
  • T represents the transistor
  • the number in front of “T” represents the number of transistors
  • C represents the storage capacitor
  • the number in front of "C” represents the number of storage capacitors.
  • FIG. 3 uses a transistor 121 to represent the pixel driving circuit 12 .
  • the above-mentioned display substrate 100 further includes: a light-emitting device layer 2 .
  • the above-mentioned light-emitting device layer 2 includes a plurality of light-emitting devices 2 a. As shown in FIG. 2 , the plurality of light-emitting devices 2 a are arranged in an array, for example. Among them, the light-emitting device 2a is, for example, an OLED.
  • the above-mentioned pixel driving circuit 12 and the light-emitting device 2a are electrically connected. There are many types of electrical connection relationships between the two, which can be selected and set according to actual needs, and this disclosure does not limit this.
  • the above-mentioned pixel driving circuit 12 and the light-emitting device 2a may be electrically connected in one-to-one correspondence.
  • one pixel driving circuit 12 may be electrically connected to multiple light emitting devices 2a.
  • multiple pixel driving circuits 12 may be electrically connected to one light-emitting device 2a.
  • the structure of the display substrate 100 will be schematically explained, taking as an example that the pixel driving circuit 12 and the light-emitting device 2a can be electrically connected in a one-to-one correspondence.
  • the pixel driving circuit 12 can generate a driving signal and transmit the driving signal to the corresponding light-emitting device 2a to control the light-emitting state of the light-emitting device 2a.
  • the light-emitting state includes, for example, whether the light-emitting device 2a emits light, or the light-emitting brightness of the light-emitting device 2a.
  • the plurality of pixel driving circuits 12 jointly control the light-emitting states of the plurality of light-emitting devices 2a, thereby enabling the display substrate 100 to realize screen display.
  • each pixel driving circuit 12 and the light-emitting device 2a electrically connected thereto can be called a sub-pixel.
  • providing a full-color display solution through an R/G/B single light-emitting unit means that the light-emitting device mainly includes an anode, a light-emitting layer, and a cathode that are sequentially stacked in a direction away from the substrate.
  • the light-emitting layer may be a red light-emitting layer, a green light-emitting layer or a blue light-emitting layer.
  • the light-emitting device may be a red light-emitting device, a green light-emitting device or a blue light-emitting device.
  • the red light-emitting device can emit red light under the control of the corresponding pixel drive circuit
  • the green light-emitting device can emit green light under the control of the corresponding pixel drive circuit
  • the blue light-emitting device can emit blue light under the control of the corresponding pixel drive circuit.
  • Color light Multiple light-emitting devices cooperate to achieve full-color display. However, in this solution, the luminous efficiency and luminous brightness of the light-emitting device are low.
  • the light-emitting device 2 a ′ is a series bottom-emitting light-emitting device, and the light-emitting device is used to emit white light.
  • the display substrate also includes a color filter CF disposed on the side of the substrate 11' away from the light-emitting device 2a'.
  • the white light emitted by the light-emitting device 2a' is converted into red light, green light or blue light after passing through the color filter CF. , thereby achieving full-color display.
  • due to the structure of bottom-emitting light-emitting devices it is difficult to increase the brightness at front viewing angles.
  • top-emitting light-emitting devices are used, there will be problems such as increased process complexity and excessive light loss in certain wavelength bands. .
  • the light-emitting device 2a' is a series top-emitting light-emitting device, and the light-emitting device 2a' is used to emit blue light.
  • the display substrate also includes a red quantum dot conversion layer R-CC and a green quantum dot conversion layer G-CC disposed on the side of the light-emitting device 2a' away from the substrate 11'. Blue light passing through the red quantum dot conversion layer R-CC can be converted into red light, and blue light passing through the green quantum dot conversion layer G-CC can be converted into green light, thereby achieving full-color display.
  • the light sheet for example, needs to be provided with a red filter R-CF on the side of the red quantum dot conversion layer R-CC away from the substrate 11', and a red filter R-CF on the side of the green quantum dot conversion layer G-CC away from the substrate 11'. Set the green filter G-CF to improve color purity. This will increase the process complexity of the display substrate and increase the power consumption of the display substrate.
  • the light-emitting device layer 2 includes an anode layer 21 , a first auxiliary layer 22 , a first light-emitting layer 23 , and a second auxiliary layer disposed on the back plate 1 24.
  • the above-mentioned anode layer 21 includes a plurality of anodes 211 , and the plurality of anodes 211 are arranged in an array, for example.
  • one anode 211 corresponds to one light-emitting device 2a, and each light-emitting device 2a is electrically connected to the corresponding pixel driving circuit 12, for example, through the anode 211.
  • the anode 211 can receive the driving signal of the corresponding pixel driving circuit 12, and is driven by the corresponding pixel.
  • the circuit 12 cooperates to realize individual control of the light-emitting device 2a.
  • the material of the anode layer 21 includes a conductive material with a higher work function.
  • the structure of the anode layer 21 may be, for example, a single-layer structure, or may be a structure in which multiple film layers are stacked in sequence.
  • the single-layer structure has better light reflection performance and can reflect the light directed to the anode layer 21 .
  • the film layer far away from the back plate 1 among the multi-layered film layers is a film layer with better light reflection performance, which can reflect the direction of the light.
  • the light from the anode layer 21 is reflected, and the material of the film layer with good light reflectivity may include, for example, at least one of Al (aluminum), Ag (silver), or Mg (magnesium).
  • the film layer close to the backplate 1 in the multi-layer film layer may be, for example, a film layer with better light transmittance.
  • the material of the film layer with better light transmittance may include, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide, indium zinc oxide), etc.
  • the method of forming the anode 211 includes: forming (for example, using a sputtering process) a layer of conductive film on the back plate 1 (the conductive film has a single-layer structure or a structure of multiple layers of films stacked in sequence), and then The conductive film is patterned (for example, etching the conductive film using a photolithography process) to obtain multiple independent anodes 211 .
  • the display substrate 100 may also include a pixel definition layer disposed on the side of the anode layer 21 away from the substrate 11 .
  • the pixel definition layer has a plurality of openings. The plurality of openings are arranged in one-to-one correspondence with the plurality of anodes 211. Each opening exposes a part of the corresponding anode 211, so as to facilitate the anode 211 and the film layer located on its side away from the substrate 11. contact to form an electrical connection.
  • the above-mentioned first auxiliary layer 22 is provided on a side of the anode layer 21 away from the substrate 11 .
  • the first auxiliary layer 22 is located on a side of the above-mentioned pixel definition layer away from the substrate 11 .
  • the first auxiliary layer 22 may contact the anode 211 through the opening of the pixel definition layer to form an electrical connection.
  • the first auxiliary layer 22 includes a film layer stacked in sequence, where a is a positive integer.
  • the number of film layers included in the first auxiliary layer 22 is one, two, three or four.
  • the first auxiliary layer 22 covers the anode layer 21 . That is, different light emitting devices 2a share the first auxiliary layer 22.
  • the first auxiliary layer 22 includes at least two film layers
  • at least one film layer covers the anode layer 21 . That is, different light-emitting devices 2a share the at least one film layer.
  • the present disclosure may use an evaporation process to form the first auxiliary layer 22 .
  • first auxiliary layer 22 By allowing different light-emitting devices 2 a to share the film layer in the first auxiliary layer 22 , patterning of the first auxiliary layer 22 can be avoided, which is beneficial to simplifying the preparation process of the first auxiliary layer 22 and the display substrate 100 .
  • the above-mentioned first light-emitting layer 23 is provided on a side of the first auxiliary layer 22 away from the substrate 11 .
  • the first light-emitting layer 23 is provided as a whole layer, and different light-emitting devices 2a share the first light-emitting layer 23.
  • the first auxiliary layer 22 is located between the anode layer 21 and the first light-emitting layer 23.
  • the first auxiliary layer 22 is mainly used to increase hole mobility and lower the injection barrier of holes, so as to increase the migration rate to
  • the amount of holes in the first light-emitting layer 23 increases the recombination rate of holes and electrons that migrate to the first light-emitting layer 23 , thereby improving the luminous efficiency of the first light-emitting layer 23 .
  • the second auxiliary layer 24 is disposed on a side of the first light-emitting layer 23 away from the substrate 11 . That is, the plurality of first light-emitting layers 23 are provided between the first auxiliary layer 22 and the second auxiliary layer 24 . Among them, the second auxiliary layer 24 is in contact with the first light-emitting layer 23 to form an electrical connection.
  • the second auxiliary layer 24 includes b film layers stacked in sequence, where b is a positive integer.
  • the number of film layers included in the second auxiliary layer 24 is one, two, three or four.
  • different light-emitting devices 2a share the second auxiliary layer 24.
  • the present disclosure may use an evaporation process to form the second auxiliary layer 24 .
  • the plurality of second light-emitting layers 25 are disposed on a side of the second auxiliary layer 24 away from the substrate 11 .
  • the plurality of second light-emitting layers 25 are located on the same layer, and each second light-emitting layer 25 is in contact with the second auxiliary layer 24 to form an electrical connection.
  • at least two second light-emitting layers 25 can also be stacked. This disclosure takes an example in which the plurality of second light-emitting layers 25 are located on the same layer.
  • the plurality of second light-emitting layers 25 have at least two different colors.
  • the above-mentioned plurality of second light-emitting layers 25 have two different colors.
  • the plurality of second luminescent layers 25 include a plurality of second blue luminescent layers 25B and a plurality of second red luminescent layers 25R.
  • the plurality of second light-emitting layers 25 include a plurality of second blue light-emitting layers 25B and a plurality of second green light-emitting layers 25G.
  • the plurality of second light-emitting layers 25 include a plurality of second red light-emitting layers 25R and a plurality of second green light-emitting layers 25G.
  • the plurality of second light-emitting layers 25 have three different colors.
  • the plurality of second luminescent layers 25 include a plurality of second blue luminescent layers 25B, a plurality of second red luminescent layers 25R and a plurality of second green luminescent layers 25G.
  • the plurality of second luminescent layers 25 need to be prepared and formed in different processes, wherein the second luminescent layers 25 of one color may correspond to one process.
  • the plurality of second light-emitting layers 25 are formed using an evaporation process.
  • the second light-emitting layers 25 of one color can be evaporated in one process, and then evaporated to form another color in another process. the second luminescent layer 25.
  • the above-mentioned second auxiliary layer 24 is located between the plurality of first luminescent layers 23 and the plurality of second luminescent layers 25.
  • the second auxiliary layer 24 is mainly used to combine the first luminescent layers 23 and the second luminescent layers 25. connected in series to form a series light-emitting device.
  • the third auxiliary layer 26 is provided on a side of the plurality of second light-emitting layers 25 away from the substrate 11 . That is, the plurality of second light-emitting layers 25 are provided between the second auxiliary layer 24 and the third auxiliary layer 26 . Among them, the third auxiliary layer 26 is in contact with each second light-emitting layer 25 to form an electrical connection.
  • the third auxiliary layer 26 includes c film layers stacked in sequence, where c is a positive integer.
  • the number of film layers included in the third auxiliary layer 26 is one, two, or three.
  • different light-emitting devices 2a share the third auxiliary layer 26.
  • the present disclosure may use an evaporation process to form the third auxiliary layer 26 .
  • the cathode layer 27 is disposed on a side of the third auxiliary layer 26 away from the substrate 11 and is in contact with the third auxiliary layer 26 to form an electrical connection.
  • the cathode layer 27 has a whole-layer structure.
  • the present disclosure may use an evaporation process to form the cathode layer 27 .
  • the above-mentioned third auxiliary layer 26 is located between the plurality of second light-emitting layers 25 and the cathode layer 27.
  • the third auxiliary layer 26 is mainly used to increase the electron mobility to increase the electron mobility transferred to the first light-emitting layer 23.
  • the amount of holes increases the recombination rate of holes and electrons that migrate to the first light-emitting layer 23, and prevents holes or excitons formed by recombination of holes and electrons from leaking from the second light-emitting layer 25, improving the first light-emitting layer. Luminous efficiency of 23.
  • the anode layer 21 has high reflectivity
  • the cathode layer 27 is a film layer with semi-transparent and semi-reflective properties.
  • semi-transparent and semi-reflective means that the cathode layer 27 can both transmit light and reflect light, and the specific transmittance and reflectivity are not limited.
  • the light-emitting device 2a in the embodiment of the present disclosure is a top-emitting light-emitting device.
  • the reflectivity of the anode layer 21 is greater than or equal to 80%.
  • the thickness of the cathode layer 27 ranges from 10 nm to 20 nm. In this way, the light transmittance of the cathode layer 27 can be enhanced while ensuring the conductive performance of the cathode layer 27 pair, and the luminous efficiency of the display substrate 100 can be improved.
  • the thickness of the cathode layer 27 may be: 10 nm, 12 nm, 14 nm, 17 nm or 20 nm, etc.
  • the transmittance of the cathode layer 27 to light with a wavelength of 530 nm ranges from 45% to 60%.
  • the above transmittance may be: 45%, 50%, 53%, 57% or 60%, etc.
  • a microcavity A can be formed between the anode layer 21 and the cathode layer 27 .
  • the light emitted by the first light-emitting layer 23 and the second light-emitting layer 25 can be reflected, interfered, etc. in the microcavity A, producing a microcavity effect, enhancing the luminous intensity of the outgoing light, narrowing the spectrum of the outgoing light, and improving the efficiency of the light-emitting device.
  • Luminous efficiency of 2a For example, the luminous intensity of blue light can be enhanced and the spectrum of blue light can be narrowed.
  • the optical thickness of a film layer included in the first auxiliary layer 22 is L 1 , and L 1 satisfies:
  • n h is the refractive index of the h-th film layer among the above-mentioned a-th film layer
  • r h is the thickness of the above-mentioned h-th film layer.
  • the optical thickness of the b film layers included in the second auxiliary layer 24 is L 2 , and L 2 satisfies:
  • n i is the refractive index of the i-th film layer among the above-mentioned b film layers
  • r i is the thickness of the above-mentioned i-th film layer.
  • the optical thickness of the c film layers included in the third auxiliary layer 26 is L 3 , and L 3 satisfies:
  • n j is the refractive index of the j-th film layer among the above-mentioned c film layers, and r j is the thickness of the above-mentioned j-th film layer.
  • L 1 , L 2 , L 3 satisfy the formula:
  • the value of can be, for example: 0.7, 0.83, 0.9, 1.1 or 1.3, etc.
  • the display substrate 100 of the present disclosure can reduce the number of optical filters, thereby reducing the blocking of the light emitted by the light-emitting device 2a by the optical filter. , improve the luminous efficiency in the display substrate 100 of the present disclosure. Furthermore, the present disclosure can achieve the same brightness as in the above-mentioned first implementation manner and the second implementation manner while reducing the driving voltage of the pixel driving circuit 12 in the display substrate 100, thereby reducing the power of the display substrate 100. consumption and increase the luminous life of the light-emitting device 2a.
  • the refractive index range of the above-mentioned h-th film layer, i-th film layer, and j-th film layer for light with a wavelength of 460 nm is: 1.7 to 2.0.
  • the refractive index of the h-th film layer, i-th film layer, and j-th film layer for light with a wavelength of 460 nm may be the same or different.
  • the refractive index of the above-mentioned h-th film layer, i-th film layer, and j-th film layer for light with a wavelength of 460 nm is: 1.7, 1.75, 1.8, 1.9, and 2.0.
  • the plurality of second light-emitting layers 25 include: a plurality of second blue light-emitting layers 25B, a plurality of second red light-emitting layers 25R and a plurality of second green light-emitting layers 25G.
  • the wavelength of the light emitted by the first luminescent layer 23 is smaller than the wavelength of the light emitted by the second luminescent layer 25 of at least one color.
  • the wavelength of the light emitted by the first luminescent layer 23 is smaller than the wavelength of the light emitted by the second blue luminescent layer 25B; or, the wavelength of the light emitted by the first luminescent layer 23 is smaller than the wavelength of the light emitted by the second red luminescent layer 25R. or, the wavelength of the light emitted by the first luminescent layer 23 is smaller than the wavelength of the light emitted by the second green luminescent layer 25G.
  • the wavelength of the light emitted by the first light emitting layer 23 is smaller than the wavelength of the light emitted by the second red light emitting layer 25R and smaller than the wavelength of the light emitted by the second green light emitting layer 25G, which is not limited in this disclosure.
  • the first light-emitting layer 23 can emit blue light or yellow light, or the like.
  • the light emitted by the first light-emitting layer 23 can be directed to the plurality of second light-emitting layers 25 In this case, at least one of the second red emitting layer 25R, the second green emitting layer 25G and the second blue emitting layer 25B is excited to emit light of the corresponding color, thereby increasing the luminous brightness and luminous efficiency of the display substrate 100 .
  • the second red emitting layer 25R, the second green emitting layer 25G and the second blue emitting layer 25B is excited to emit light of the corresponding color, thereby increasing the luminous brightness and luminous efficiency of the display substrate 100 .
  • the light emitted by the first light-emitting layer 23 can also be reflected multiple times in the microcavity A, so that the light emitted by the first light-emitting layer 23 can be directed to the plurality of second light-emitting layers 25 multiple times. , further increasing the excitation effect of the light emitted by the first luminescent layer 23 on at least one of the plurality of second luminescent layers 25 , further increasing the luminous brightness and luminous efficiency of the display substrate 100 .
  • the above n h is The refractive index of the h-th film layer among the above-mentioned a film layers to the central wavelength of red light, green light or blue light
  • the above n i is the refractive index of the i-th film layer among the above-mentioned b film layers to red light, green light or blue light.
  • the wavelength range of red light is 615nm-630nm
  • the wavelength range of green light is 515nm-535nm
  • the wavelength range of blue light is 460nm-475nm.
  • the first light emitting layer 23 includes a first guest material and the second light emitting layer 25 includes a second guest material.
  • the emission spectrum of the first guest material at least partially overlaps with the absorption spectrum of the second guest material of the second light-emitting layer 25 of at least one color.
  • the materials of the first luminescent layer 23 and the second luminescent layer 25 include a host material and a guest material doped in the host material.
  • the above-mentioned host material itself has good film-forming properties and can be mixed with other materials with excellent luminescent properties; the guest material itself has excellent luminescent properties.
  • the first luminescent layer 23 or the second luminescent layer 25 is formed by using the host material and the guest material doped therein, since the host material includes molecules in a high excitation energy state, and the molecules in the high excitation energy state The energy can be transferred to the guest material, which can change the wavelength of the light emitted by the first luminescent layer 23 or the second luminescent layer 25 and at the same time improve the luminous efficiency of the first luminescent layer 23 or the second luminescent layer 25 .
  • the first guest material is a material mainly used for emitting light in the first emitting layer 23
  • the second guest material is a material mainly used for emitting light in the second emitting layer 25 .
  • the above “at least partially overlaps” means that the emission spectrum of the first guest material partially overlaps with the absorption spectrum of the second guest material of the second light-emitting layer 25 of at least one color, or that the emission spectrum of the first guest material overlaps with at least one color.
  • the absorption spectra of the second guest materials of the second light-emitting layer 25 of three colors all overlap.
  • the emission spectrum of the first guest material of the first light-emitting layer 23 and the absorption spectrum of the second guest material of the second red light-emitting layer 25R at least partially overlap; or, the first guest material of the first light-emitting layer 23
  • the emission spectrum at least partially overlaps with the absorption spectrum of the second guest material of the second green light-emitting layer 25G.
  • the emission spectrum of the first guest material of the first luminescent layer 23 and the absorption spectrum of the second guest material of the second blue luminescent layer 25B at least partially overlap; or, the emission spectrum of the first guest material of the first luminescent layer 23
  • the spectrum not only at least partially overlaps with the absorption spectrum of the second guest material of the second red emitting layer 25R, but also at least partially overlaps with the absorption spectrum of the second guest material of the second green emitting layer 25G. This disclosure does not limit this.
  • the first light-emitting layer 23 can be made A part of the light emitted by the guest material is absorbed by the second guest material of the second luminescent layer 25 of at least one color, so that the second guest material of the second luminescent layer 25 of at least one color is emitted by the first guest material. It emits light when excited by light, thereby improving the luminous efficiency of the second guest material of the second luminescent layer 25 .
  • another part of the light emitted by the first guest material of the first light-emitting layer 23 can be emitted through the cathode layer 27 and form a series light-emitting device with the light emitted by the second light-emitting layer 25 to enhance the luminous brightness of the display substrate 100 .
  • the second luminescent layer 25 can absorb the light emitted by the first luminescent layer 23 and excite the corresponding color. of light.
  • the first light-emitting layer 23 and the second light-emitting layer 25 themselves can also form a series light-emitting component. The above two light-emitting mechanisms work together, and the display substrate 100 will obtain higher luminous efficiency.
  • the overlapping range of the emission spectrum of the first guest material of the first light-emitting layer 23 and the absorption spectrum of the second guest material of the second light-emitting layer 25 is greater than or equal to the wavelength range of the emission spectrum of the first guest material. 60%.
  • the overlapping range of the emission spectrum of the first guest material and the absorption spectrum of the second guest material may be 60%, 70%, 80%, 90% or 99% of the wavelength range of the emission spectrum of the first guest material.
  • the overlapping range of the emission spectrum of the first guest material of the first light-emitting layer 23 and the absorption spectrum of the second guest material of the second light-emitting layer 25 is greater than or equal to the wavelength range of the absorption spectrum of the second guest material. 60%.
  • the overlapping range of the emission spectrum of the first guest material and the absorption spectrum of the second guest material may be 60%, 70%, 80%, 90% or 99% of the wavelength range of the absorption spectrum of the second guest material.
  • the peak of the emission spectrum of the first guest material of the first light-emitting layer 23 is less than 600 nm.
  • the peak of the emission spectrum of the first guest material of the first light-emitting layer 23 may be 465 nm, 500 nm, 515 nm, 560 nm or 595 nm, etc.
  • the shorter the wavelength of light the higher the energy the light has.
  • the second guest material in the second light-emitting layer 25 can be better excited to emit light.
  • the first guest material of first luminescent layer 23 includes at least one luminescent material.
  • the distance between the emission spectrum peaks of the two luminescent materials is less than or equal to 30 nm.
  • the type of luminescent material included in the first guest material may be: one type or two types, etc., which is not limited in this disclosure.
  • different luminescent materials can emit light of different colors.
  • the first luminescent layer 23 can emit one color of light; in the first When the first guest material of the light-emitting layer 23 includes two kinds of light-emitting materials, the first light-emitting layer 23 can emit two colors of light.
  • the distance between the emission spectrum peaks of the two luminescent materials may be: 1 nm, 10 nm, 19 nm, 25 nm or 30 nm, etc. .
  • the colors of the light emitted by the two luminescent materials of the first guest material can be made more similar, thereby improving the emission of the first luminescent layer 23 The color purity of light.
  • the emission spectrum of the first guest material of the first light emitting layer 23 overlaps with the absorption spectrum of the second guest material of the second green light emitting layer 25G.
  • the light emitted by the first guest material is blue light.
  • the peak value of the emission spectrum of the first guest material ranges from 465 nm to 475 nm
  • the peak value of the absorption spectrum of the second guest material of the second green emitting layer 25G ranges from 507 nm to 517 nm.
  • the peak of the emission spectrum of the first guest material may be: 465 nm, 467 nm, 469 nm, 471 nm or 475 nm, etc.
  • the peak of the absorption spectrum of the second guest material of the second green light-emitting layer 25G may be: 507 nm, 509 nm, 512 nm, 514 nm or 517 nm, etc.
  • the emission spectrum of the first guest material and the absorption spectrum of the second guest material can have a larger overlap range, thereby improving the luminous efficiency of the second guest material of the second luminescent layer 25 .
  • the emission spectrum of the first guest material of the first luminescent layer 23 and the absorption spectrum of the second guest material of the second luminescent layer 25 of the two colors overlap.
  • the light emitted by the first guest material is green light.
  • the peak range of the emission spectrum of the above-mentioned first guest material is 525 nm ⁇ 535 nm
  • the peak range of the absorption spectrum of the second guest material of the second green emitting layer 25G is 510 nm ⁇ 520 nm
  • the range of the second red emitting layer 25R The peak of the absorption spectrum of the second guest material ranges from 595nm to 605nm.
  • the peak of the emission spectrum of the above-mentioned first guest material may be: 525nm, 527nm, 529nm, 531nm or 535nm, etc.
  • the peak of the absorption spectrum of the second guest material of the second green light-emitting layer 25G may be: 510 nm, 514 nm, 516 nm, 518 nm or 520 nm, etc.
  • the peak of the absorption spectrum of the second guest material of the second red emitting layer 25R may be: 595 nm, 597 nm, 600 nm, 602 nm or 605 nm, etc.
  • the emission spectrum of the first guest material of the first light-emitting layer 23 and the absorption spectrum of the second guest materials of the plurality of second light-emitting layers 25 can have a larger overlapping range, thereby improving the efficiency of the second light-emitting layer 25 .
  • Luminous efficiency of the second guest material is a measure of efficiency of the second guest material.
  • the first guest material of the first light-emitting layer 23 includes two light-emitting materials
  • at least one of the two light-emitting materials is doped with boron element, and the doping ratio of the boron element is The range is 0.5% to 5%.
  • the doping ratio of boron element can be: 0.5%, 1.5%, 3.5%, 4% or 5%, etc.
  • the first guest material of the first light-emitting layer 23 includes: at least one of a fluorescent material, a phosphorescent material, and a thermally activated delayed fluorescent material.
  • Examples of fluorescent materials include: pyrenes, dense carbazoles, and boron-containing materials.
  • Phosphorescent materials include iridium (Ir) and platinum (Pt) complexes.
  • the thermally activated delayed fluorescent material generally has a D-A structure, and the S1-T1 of the thermally activated delayed fluorescent material is ⁇ 0.3eV, where S1 represents the energy level of the excited singlet state of the material, and T1 represents the energy level of the triplet electronic excited state of the material.
  • the first light emitting layer 23 further includes a first host material.
  • the first host material of the first light-emitting layer 23 is a single host material or a PN mixed host material.
  • the first host material includes at least one of anthracene materials, fluorene materials, pyrene materials, and carbazole derivative materials.
  • the thickness of the first light-emitting layer 23 ranges from 15 nm to 60 nm.
  • the thickness of the first light-emitting layer 23 may be: 15 nm, 20 nm, 35 nm, 45 nm or 60 nm, etc.
  • the second guest material of the second luminescent layer 25 of at least one color includes at least one luminescent material.
  • the distance between the emission spectrum peaks of the two luminescent materials is less than or equal to 30 nm.
  • the second red emitting layer may include at least one emitting material
  • the second green emitting layer may include at least one emitting material
  • the second blue emitting layer may include at least one emitting material.
  • both the second red emitting layer and the second green emitting layer may include at least one emitting material.
  • the type of luminescent material included in the above-mentioned second guest material may be: one type, two types, etc. This disclosure does not limit this.
  • different luminescent materials can emit light of different colors.
  • the second guest material of the second luminescent layer 25 includes a luminescent material
  • the above-mentioned second luminescent layer 25 can emit light of one color
  • the second guest material of the second light-emitting layer 25 includes two kinds of light-emitting materials
  • the second light-emitting layer 25 can emit two colors of light.
  • the emission spectrum of one of the two luminescent materials has an overlapping range with the absorption spectrum of the other luminescent material. , such an arrangement can increase the luminous efficiency of the above two luminescent materials.
  • the distance between the emission spectrum peaks of the two luminescent materials may be: 1 nm, 10 nm, 19 nm, 25 nm or 30 nm, etc. .
  • the colors of the light emitted by the two luminescent materials of the second guest material can be made closer to each other.
  • the color purity of the light emitted by the second light-emitting layer 25 is improved.
  • the second guest material of the second luminescent layer 25 of at least one color includes two luminescent materials
  • at least one of the two luminescent materials is doped with a boron element, and the boron element
  • the doping ratio ranges from 0.5% to 5%.
  • the doping ratio of boron element can be: 0.5%, 1.5%, 3.5%, 4% or 5%, etc.
  • the above-mentioned second guest material includes: at least one of a fluorescent material, a phosphorescent material, and a thermally activated delayed fluorescent material with multiple resonance characteristics.
  • the second luminescent layer 25 of at least one color further includes a second host material.
  • the above-mentioned second host material includes a bipolar host material.
  • the second host material is a single host material or a PN hybrid host material.
  • the N-type component when the second host material is a PN hybrid host material, the N-type component has thermally activated delayed fluorescence characteristics.
  • the luminous efficiency of the second guest material in the second light-emitting layer 25 can be improved.
  • the thickness of the second light-emitting layer 25 ranges from 10 nm to 50 nm.
  • the thickness of the second light-emitting layer 25 may be: 10 nm, 20 nm, 28 nm, 38 nm or 50 nm, etc.
  • the microcavity A includes a plurality of sub-microcavities A1.
  • the plurality of sub-microcavities A1 include red sub-microcavities A1-R corresponding to the second red emitting layer 25R, and second green emitting layers A1-R.
  • the green sub-microcavity A1-G corresponding to the layer 25G
  • the blue sub-microcavity A1-B corresponding to the second blue light-emitting layer 25B.
  • the number of film layers located between the anode layer 21 and the cathode layer 27 and corresponding to the sub-microcavity A1 of any color is d.
  • the optical thickness of the above d film layers is L, and L satisfies:
  • d is a positive integer
  • n m is the refractive index of the m-th film layer among the above d film layers
  • r m is the thickness of the m-th film layer
  • k is a natural number
  • is the peak wavelength of the target spectrum
  • the above n m is The refractive index of the m-th film layer among the above-mentioned d film layers to the central wavelength of red light, green light or blue light.
  • the above ⁇ is the wavelength of blue light
  • red light is required to interfere
  • green light is required to interfere
  • the above ⁇ is the wavelength of green light.
  • the red light emitted by the second red light-emitting layer 25R can produce a microcavity effect in the red sub-microcavity A1-R, thereby increasing the red light brightness and increase the color purity of red light.
  • the green light emitted by the second green emitting layer 25G and the blue light emitted by the second blue emitting layer 25B can also produce a microcavity effect in the corresponding sub-microcavity A1, thereby increasing the brightness of the green light and the blue light and increasing the Color purity of green and blue light.
  • the length of the blue sub-microcavity A1-B is smaller than the length of the red sub-microcavity A1-R.
  • the length of the blue sub-microcavity A1-B is smaller than the length of the green sub-microcavity A1-G.
  • the wavelength range of red light is 615nm-630nm
  • the wavelength range of green light is 515nm-535nm
  • the wavelength range of red light is 460nm-475nm. Therefore, when red light, green light, and blue light can all produce microcavity effects, the length of the blue sub-microcavity A1-B is the smallest.
  • any one of the first auxiliary layer 22, the second auxiliary layer 24, and the third auxiliary layer 26 may include one film layer or a plurality of film layers stacked in sequence.
  • each film layer may have different functions, so that the first auxiliary layer 22 , the second auxiliary layer 24 , and the third auxiliary layer 26 may have different functions.
  • the three auxiliary layers 26 can have multiple functions.
  • the first auxiliary layer 22 includes a light-transmissive conductive layer 221 , a hole injection layer 222 , a first hole transport layer 223 and an electron blocking layer 224 .
  • the light-transmitting conductive layer 221 has good light-transmitting and electrical conductivity. When light hits the light-transmitting conductive layer 221, the light can pass through the light-transmitting conductive layer 221 and hit the anode layer 21. The light reflection performance of the anode layer 21 Better, so the light can be reflected on the anode layer 21 and the light-transmitting conductive layer 221.
  • the material of the light-transmitting conductive layer 221 may include ITO (Indium Tin Oxide, indium tin oxide), IZO (Indium Zinc Oxide, indium zinc oxide), etc.
  • the thickness of the light-transmitting conductive layer 221 is less than or equal to 10 nm.
  • the thickness of the light-transmitting conductive layer 221 ranges from 5 nm to 10 nm.
  • the thickness of the light-transmitting conductive layer 221 may be: 5 nm, 6.5 nm, 8 nm, 9 nm or 10 nm, etc.
  • the hole injection layer 222 can be formed by doping the material of the first hole transport layer 223 with a P-type dopant (such as MnO 3 , F4TCNQ, etc.), and the P-type dopant doping ratio is less than or equal to 5. %, the thickness of the hole injection layer 222 is less than or equal to 10 nm.
  • a P-type dopant such as MnO 3 , F4TCNQ, etc.
  • the doping proportion of the P-type dopant in the material of the first hole transport layer 223 may be: 1%, 2%, 3%, 4% or 5%.
  • the thickness of the hole injection layer 222 may be: 1 nm, 3 nm, 5 nm, 8 nm or 10 nm, etc.
  • the material of the first hole transport layer 223 includes carbazole-based materials with high hole mobility.
  • the first hole transport layer 223 can be formed through an evaporation process.
  • the thickness of the electron blocking layer 224 is less than or equal to 10 nm.
  • the thickness of the electron blocking layer 224 may be: 1 nm, 3 nm, 5 nm, 8 nm or 10 nm, etc.
  • the HOMO (Highest Occupied Molecular Orbital, highest occupied molecular orbital) energy level of the hole injection layer 222 material, the HOMO energy level of the first hole transport layer 223 material, and the HOMO energy level of the electron blocking layer 224 material increase in sequence. Large, such an arrangement can reduce the hole injection barrier, improve the hole mobility, facilitate hole injection from the anode layer 21 and sequentially transport to the first light-emitting layer 23, thereby increasing the number of holes in the first light-emitting layer 23. The accumulated amount improves the luminous efficiency and luminous life of the first luminescent layer 23 .
  • the HOMO energy level of the material of the first hole transport layer 223 ranges from -5.2eV to -5.6eV.
  • the HOMO energy level of the material of the first hole transport layer 223 may be: -5.2eV, -5.3eV, -5.4eV, -5.5eV or -5.6eV, etc.
  • the HOMO energy level of the electron blocking layer 224 material ranges from -5.5eV to -5.9eV.
  • the HOMO energy levels of the electron blocking layer 224 material include: -5.5eV, -5.6eV, -5.7eV, -5.8eV, -5.9eV, etc.
  • the T1 of the material of the electron blocking layer 224 is greater than the T1 of the luminescent material in the first luminescent layer 23 , which can prevent electrons and/or excitons from leaking from the first luminescent layer 23 and keep the electrons and/or excitons in the first luminescent layer 23 .
  • the concentration of excitons ensures the luminous efficiency of the first luminescent layer 23 .
  • T1 of the material of the electron blocking layer 224 is at least 0.2 eV higher than T1 of the luminescent material in the first luminescent layer 23 .
  • the second auxiliary layer 24 includes a first hole blocking layer 241 , a first electron transport layer 242 , a first charge generation layer 243 , a second charge generation layer 244 and a microcavity adjustment layer. 245.
  • the absolute value of the HOMO energy level of the material of the first hole blocking layer 241 is greater than the absolute value of the HOMO energy level of the material of the first light-emitting layer 23 .
  • the first hole blocking layer 241 is used to prevent holes and/or excitons from leaking from the first light emitting layer 23 .
  • the absolute value of the HOMO energy level of the material of the first hole blocking layer 241 is at least 0.2 eV greater than the absolute value of the HOMO energy level of the material of the first light-emitting layer 23 .
  • T1 of the material of the first hole blocking layer 241 is higher than T1 of the light-emitting material included in the first light-emitting layer 23 .
  • T1 of the material of the first hole blocking layer 241 is at least 0.2 eV higher than T1 of the light-emitting material included in the first light-emitting layer 23 .
  • the material of the first hole blocking layer 241 includes triazine-based materials and the like.
  • the thickness of the first hole blocking layer 241 is less than or equal to 10 nm.
  • the thickness of the first hole blocking layer 241 is: 1 nm, 3 nm, 5 nm, 8 nm or 10 nm, etc.
  • the material of the first electron transport layer 242 includes: at least one material selected from the group consisting of thiophene-based materials, imidazole-based materials, azine-based derivative materials, and lithium quinolate.
  • the first electron transport layer 242 can be prepared by blending thiophenes, imidazoles, or azine derivatives with lithium quinolate, where the mass proportion of lithium quinolate ranges from 30% to 70%.
  • the mass proportion of the above-mentioned lithium quinolate is: 30%, 40%, 50%, 60% or 70%, etc.
  • the thickness of the first electron transport layer 242 ranges from 15 nm to 50 nm.
  • the thickness of the first electron transport layer 242 is: 15 nm, 23 nm, 35 nm, 40 nm or 50 nm, etc.
  • the first charge generation layer 243 and the second charge generation layer 244 are used to cause the first luminescent layer 23 and the second luminescent layer 25 in the light emitting device layer 2 to emit light in series, thereby increasing the overall luminous brightness of the display substrate 100 .
  • the first charge generation layer 243 can be formed by doping the material of the first electron transport layer 242 with a low-function metal (such as lithium (Li), ytterbium (Yb), calcium (Ca), etc.), and the above-mentioned doping ratio is less than or equal to 5%.
  • the thickness of the first charge generation layer 243 is less than or equal to 10 nm.
  • the doping ratio of the above-mentioned low-function metal can be: 1%, 2%, 3%, 4% or 5%, etc.
  • the thickness of the first charge generation layer 243 may be: 1 nm, 3 nm, 5 nm, 8 nm or 10 nm, etc.
  • the second charge generation layer 244 can be formed by doping the second hole transport layer 245 material described below with a P-type dopant (such as MnO 3 or F4TCNQ, etc.), and the above doping ratio is less than or equal to 5%.
  • the thickness of the first charge generation layer 243 is less than or equal to 10 nm.
  • the doping ratio of the above-mentioned P-type dopant may be: 1%, 2%, 3%, 4% or 5%, etc.
  • the thickness of the second charge generation layer 244 may be: 1 nm, 3 nm, 5 nm, 8 nm or 10 nm, etc.
  • the first charge generation layer 243 may also be called an N-type charge generation layer (N-CGL), and the second charge generation layer 244 may also be called a P-type charge generation layer (P-CGL).
  • N-CGL N-type charge generation layer
  • P-CGL P-type charge generation layer
  • the thickness of the microcavity adjustment layer 245 is adjustable.
  • the thickness of the microcavity adjustment layer 245 the lengths of multiple sub-microcavities A1 can be adjusted, so that the light corresponding to the multiple sub-microcavities A1 can produce a microcavity effect.
  • the microcavity adjustment layer 245 includes: a second hole transport layer 2451 and a red sub-microcavity disposed between the second hole transport layer 2451 and the second red light-emitting layer 25R.
  • the blue sub-microcavity adjustment layer 245B between them.
  • the thickness of the red sub-microcavity adjustment layer 245R and the blue sub-microcavity adjustment layer 245B is different, and the thickness of the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B is different.
  • the material of the second hole transport layer 245 includes carbazole-based materials with high hole mobility.
  • the second hole transport layer 245 can be formed through an evaporation process.
  • the second hole transport layer 245 is used to lower the hole injection barrier, increase the mobility of holes, and facilitate hole transport to the second light-emitting layer 25, thereby improving the hollowness of the second light-emitting layer 25.
  • the accumulated amount of holes increases the luminous efficiency and luminescent lifetime of the second light-emitting layer 25 .
  • the HOMO energy level of the material of the second hole transport layer 245 ranges from -5.2eV to -5.6eV.
  • the HOMO energy levels of the material of the second hole transport layer 245 include: -5.2eV, -5.3eV, -5.4eV, -5.5eV, -5.6eV, etc.
  • the T1 of the material of the red sub-microcavity adjustment layer 245R, the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B is higher than the T1 of the light-emitting material of the second light-emitting layer 25 .
  • the T1 of the material of the red sub-microcavity adjustment layer 245R, the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B is at least 0.2 eV higher than the T1 of the light-emitting material of the second light-emitting layer 25 .
  • the thickness of the blue sub-microcavity adjustment layer 245B is less than or equal to 10 nm.
  • the thickness of the blue sub-microcavity adjustment layer 245B may be: 1 nm, 3 nm, 5 nm, 7 nm or 10 nm, etc.
  • the thickness of the second hole transport layer 2451, the thickness of the red sub-microcavity adjustment layer 245R, the thickness of the green sub-microcavity adjustment layer 245G and the thickness of the blue sub-microcavity adjustment layer 245B are individually adjustable, by By adjusting the thickness of the second hole transport layer 2451, the thickness of the red sub-microcavity adjustment layer 245R, the thickness of the green sub-microcavity adjustment layer 245G and the thickness of the blue sub-microcavity adjustment layer 245B, the multiple sub-microcavities A1 can be adjusted. length, so that the light corresponding to multiple sub-microcavities A1 can produce microcavity effects.
  • red light, green light, and blue light have different wavelengths.
  • red light, green light, and blue light can all produce microcavity effects, the difference between the red photon microcavity A1-R and the blue photon microcavity A1-B
  • the lengths of the green photon microcavity A1-G and the blue photon microcavity A1-B are different.
  • multiple sub-microcavities A1 share the first auxiliary layer 22 , the first light-emitting layer 23 , part of the second auxiliary layer 24 and the third auxiliary layer 26 .
  • the thickness of the sub-microcavity adjustment layer 245R and the blue sub-microcavity adjustment layer 245B is different, so that the thickness of the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B in the second auxiliary layer 24 is different,
  • the plurality of sub-microcavities A1 can meet the required length by only adjusting the thickness of the red sub-microcavity adjustment layer 245R, the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B, and the blue sub-microcavity A1 can be -B, the thickness of the above-mentioned common film layers (such as the first auxiliary layer 22, the first luminescent layer 23 and the third auxiliary layer 26, etc.) in the red sub-microcavity A1-R and the green sub-microcavity A1-G is the same, so that The manufacturing process of the above-mentioned common film layer is simplified, and
  • the thickness of the second hole transport layer 2451, the red sub-microcavity adjustment layer 245R, the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B affects the electrical properties of the light-emitting device layer 2 in the display substrate 100.
  • the performance impact is small.
  • the thickness of the second hole transport layer 2451, the red sub-microcavity adjustment layer 245R, the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B the lengths of the multiple sub-microcavities A1 are adjusted. , the impact on the electrical performance of the light-emitting device layer 2 in the display substrate 100 can be reduced.
  • any one of the red sub-microcavity adjustment layer 245R, the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B may include a film layer, or the red sub-microcavity adjustment layer 245R, Either one of the green sub-microcavity adjustment layer 245G and the blue sub-microcavity adjustment layer 245B may include a plurality of film layers stacked in sequence.
  • the red sub-microcavity adjustment layer 245R includes a red hole transport layer 245R-1 and a red electron blocking layer 245R-2 that are stacked sequentially in the direction away from the backplate 1 .
  • the microcavity adjustment layer 245G includes a green hole transport layer 245G-1 and a green electron blocking layer 245G-2 that are stacked in sequence in a direction away from the back plate 1 .
  • the red hole transport layer 245R-1 can lower the injection barrier of holes, which facilitates the injection and transmission of holes from the second auxiliary layer 24 to the second red emitting layer 25G, thereby improving the efficiency of the second red emitting layer.
  • the accumulation of holes in 25G improves the luminous efficiency and luminescent lifetime of the second red luminescent layer 25G.
  • the green hole transport layer 245G-1 can lower the injection barrier of holes, which is beneficial to the injection and transmission of holes from the second auxiliary layer 24 to the second green light-emitting layer 25G, thereby improving the hole injection rate in the second green light-emitting layer 25G.
  • the cumulative amount improves the luminous efficiency and luminous lifetime of the second green luminescent layer 25G.
  • the red electron blocking layer 245R-2 is used to block electrons and/or excitons from overflowing from the second red emitting layer 25G, and can confine electrons and/or excitons in the second red emitting layer 25G, thereby improving
  • the concentration of electrons and/or excitons in the second red light-emitting layer 25G further improves the luminous brightness and luminous efficiency of the second red light-emitting layer 25G.
  • the green electron blocking layer 245G-2 is used to block electrons and/or excitons from overflowing from the second green emitting layer 25G, and can confine electrons and/or excitons in the second green emitting layer 25G, thereby improving the second green emission.
  • the concentration of electrons and/or excitons in the layer 25G thereby improves the luminous brightness and luminous efficiency of the second green light-emitting layer 25G.
  • the red hole transport layer 245R-1 and the green hole transport layer 245G-1 are respectively used to adjust the length of the sub-microcavity A1.
  • the thickness of other film layers (such as the first auxiliary layer 22, the first light-emitting layer 23, etc.) remains unchanged, by changing the red hole transport layer 245R-1 and the green hole transport layer 245G-
  • the thickness of 1 can change the length of the corresponding red sub-microcavity A1-R and green sub-microcavity A1-G.
  • the length of the red sub-microcavity A1-R can be changed; thus, the red light can produce a microcavity effect in the red sub-microcavity A1-R, increasing the red light brightness and color purity.
  • the wavelength of the light that can produce the microcavity effect in the red sub-microcavity A1-R can also be changed, so that the color of the light emitted from the red sub-microcavity A1-R can be adjusted.
  • the length of the green sub-microcavity A1-G can be changed; in turn, the green light can produce a microcavity effect in the green sub-microcavity A1-G, increasing the brightness and color of the green light. purity.
  • the wavelength of the light that can produce the microcavity effect in the green sub-microcavity A1-G can also be changed, so that the color of the light emitted from the green sub-microcavity A1-G can be adjusted.
  • the third auxiliary layer 26 includes: a second hole blocking layer 261 , a second electron transport layer 262 and an electron injection layer 263 .
  • the absolute value of the HOMO energy level of the material of the second hole blocking layer 261 is greater than the absolute value of the HOMO energy level of the material of the second light-emitting layer 25.
  • the second hole blocking layer 261 is used to prevent holes and/or excitons from leaking from the second light-emitting layer 25 .
  • the absolute value of the HOMO energy level of the material of the second hole blocking layer 261 is at least 0.2 eV greater than the absolute value of the HOMO energy level of the material of the second light-emitting layer 25 .
  • the T1 of the material of the second hole blocking layer 261 is higher than the T1 of the light-emitting material included in the second light-emitting layer 25 .
  • T1 of the material of the second hole blocking layer 261 is at least 0.2 eV higher than T1 of the light-emitting material included in the second light-emitting layer 25 .
  • the material of the second hole blocking layer 261 includes triazine-based materials and the like.
  • the thickness of the second hole blocking layer 261 is less than or equal to 10 nm.
  • the thickness of the second hole blocking layer 261 may be: 1 nm, 3 nm, 5 nm, 8 nm or 10 nm, etc.
  • the material of the second electron transport layer 262 includes: at least one of thiophene-based materials, imidazole-based materials, azine-based derivative materials, and lithium quinolate.
  • the second electron transport layer 262 can be prepared by blending thiophene-based materials, imidazole-based materials or azine-based derivative materials with quinoline lithium, in which the mass proportion of quinoline lithium ranges from 30% to 70%. .
  • the mass proportion of the above-mentioned lithium quinolate can be: 30%, 40%, 50%, 60% or 70%, etc.
  • the thickness of the second electron transport layer 262 ranges from 15 nm to 50 nm.
  • the thickness of the second electron transport layer 262 may be: 15 nm, 23 nm, 35 nm, 40 nm or 50 nm, etc.
  • the electron injection layer 263 is used to lower the injection barrier of electrons, which facilitates the injection and transmission of electrons from the cathode layer 27 to the second light-emitting layer 25, thereby increasing the accumulation of electrons in the second light-emitting layer 25 and improving the The luminous efficiency and luminous lifetime of the second luminescent layer 25.
  • the material of the electron injection layer 263 includes lithium fluoride (LiF), ytterbium (Yb) or calcium (Ca).
  • the electron injection layer 263 can be formed through an evaporation process.
  • the thickness of the electron injection layer 263 ranges from 0.5 nm to 2 nm.
  • the thickness of the electron injection layer 263 may be: 0.5 nm, 0.8 nm, 1.2 nm, 1.7 nm or 2 nm, etc.
  • the display substrate 100 further includes: an optical covering layer 3 and/or an encapsulating layer 4 sequentially stacked on the cathode layer 27 .
  • the material of the optical covering layer 3 includes a high refractive index organic material.
  • the refractive index of the optical covering layer 3 for light with a wavelength of 530 nm is greater than 1.9.
  • the thickness of the optical covering layer 3 is less than or equal to 100 nm.
  • the thickness of the optical covering layer 3 may be: 10 nm, 30 nm, 50 nm, 80 nm or 100 nm, etc.
  • the encapsulation layer 4 can prevent the film layers (such as the first luminescent layer 23, the second luminescent layer 25, etc.) in the display substrate 100 from coming into contact with water and oxygen in the air, so as to reduce the aging rate of the above-mentioned film layers and prolong the display.
  • the service life of the substrate 100 can prevent the film layers (such as the first luminescent layer 23, the second luminescent layer 25, etc.) in the display substrate 100 from coming into contact with water and oxygen in the air, so as to reduce the aging rate of the above-mentioned film layers and prolong the display. The service life of the substrate 100.
  • the encapsulation type of the encapsulation layer 4 includes: sealant encapsulation or film encapsulation, etc.
  • the plurality of second luminescent layers 25 are located on the same layer and constitute a luminescent layer group.
  • This disclosure does not limit the number of the first light-emitting layers 23 and the number of the light-emitting layer groups. That is, the number of the first light-emitting layers 23 and the number of the light-emitting layer groups can be one or more.
  • FIG. 8 there are multiple first light-emitting layers 23 , and a second auxiliary layer 24 is provided between any two adjacent first light-emitting layers 23 ; and/or, as shown in FIG. 9 shows that there are multiple light-emitting layer groups, and a third auxiliary layer 26 is provided between any two adjacent light-emitting layer groups.
  • the number of first light-emitting layers 23 is: 2, 3, 4, 5 or 6, etc.
  • the total intensity of light emitted by the first light-emitting layer 23 can be increased, thereby increasing the intensity of the excitation light of the second light-emitting layer 25, and increasing the luminous brightness of the display substrate 100.
  • the total intensity of the light that the light-emitting layer group can emit can be increased, thereby increasing the absorption of the light emitted by the first light-emitting layer 23 by the light-emitting layer group, and thus increasing the intensity of the excitation light of the light-emitting layer group. , increasing the luminous brightness of the display substrate 100.
  • the second auxiliary layer 24 between any two adjacent first light-emitting layers 23 and the third auxiliary layer 26 between any two adjacent light-emitting layer groups it can be ensured that holes and electrons can be transported to multiple Excitons are generated in the first luminescent layer 23 and the luminescent layer group, thereby causing the first luminescent layer 23 and the luminescent layer group to emit light.
  • the inventor of the present disclosure verified the color purity and luminous efficiency of the display substrate 100 of the present disclosure.
  • Verification Example 1 includes Comparative Example 1 and Example 1.
  • One display substrate of Comparative Example 1 has a red light-emitting device, a green light-emitting device, and a blue light-emitting device, and the other display substrate has a first blue light-emitting device.
  • Both display substrates include an anode layer, a light-transmitting conductive layer, a hole injection layer, a hole transport layer, an electron blocking layer, and a light-emitting layer (such as a red light-emitting layer, a green light-emitting layer, or a blue light-emitting layer) stacked in sequence. Hole blocking layer, electron transport layer, electron injection layer, cathode layer.
  • the red luminescent layer in the red luminescent device includes a red host material and a red phosphorescent luminescent material, and the mass proportion of the red phosphorescent luminescent material is 5%;
  • the green luminescent layer in the green luminescent device includes a green host material and a red phosphorescent luminescent material.
  • Green phosphorescent luminescent material with multiple resonance characteristics, and the mass proportion of green phosphorescent luminescent material is 5%;
  • the blue luminescent layer in the blue luminescent device includes a blue host material and a deep blue fluorescent material (the peak of the emission spectrum is 460nm), And the mass proportion of dark blue fluorescent material is 5%.
  • the blue light-emitting layer of the first blue light-emitting device includes a common P-type blue host material, a blue light-emitting material with thermally activated delayed fluorescence characteristics (the peak of the emission spectrum is 500nm), and a boron-containing blue material with multiple resonance characteristics. Fluorescent materials (the peak of the emission spectrum is 470nm), and the mass proportions of the above three materials are 79%, 20%, and 1% respectively.
  • each film layer corresponding to the light-emitting device in each display substrate of Comparative Example 1 is shown in Table 1 below.
  • the display substrate 100 of Example 1 has a red light-emitting device, a green light-emitting device, and a blue light-emitting device.
  • the display substrate 100 includes: an anode layer, a light-transmitting conductive layer, a hole injection layer, a first hole transport layer, an electron blocking layer, a first light emitting layer, a first hole blocking layer, a first electron transport layer, and a first charge layer.
  • the material of the first luminescent layer 23 is the same as the luminescent layer material of the first blue luminescent device in Comparative Example 1, including ordinary P-type blue host material and blue luminescent material with thermally activated delayed fluorescence characteristics (The peak of the emission spectrum is 500nm), and the boron-containing blue fluorescent material with multiple resonance characteristics (the peak of the emission spectrum is 470nm), and the mass proportions of the above three materials are 79%, 20%, and 1% respectively.
  • the second luminescent layer 25 in the red light-emitting device includes a red host material and a red phosphorescent luminescent material, and the mass proportion of the red phosphorescent luminescent material is 5%;
  • the second luminescent layer 25 in the green light-emitting device includes Green host material and green phosphorescent material with multiple resonance characteristics, and the mass proportion of green phosphorescent material is 5%;
  • the second luminescent layer 25 in the blue light-emitting device includes a blue host material and a deep blue fluorescent material (emission spectrum The peak value is 460nm), and the mass proportion of deep blue fluorescent material is 5%.
  • each film layer corresponding to each light-emitting device in the display substrate 100 of Embodiment 1 is shown in Table 2 below.
  • the P-type doping ratio of the hole injection layer is 3%.
  • the material of the cathode layer is magnesium-silver alloy, and the mass ratio of magnesium and silver in the magnesium-silver alloy is 1:9.
  • the material of the electron transport layer is (8-hydroxyquinoline)lithium.
  • the abscissa in the graph is the wavelength in nm, and the ordinate is the relative intensity of the spectrum.
  • the luminescent layer of the first blue light-emitting device of Comparative Example 1 and the blue light-emitting device of Example 1 The emission spectrum p1 of the first luminescent layer 23 obviously has bimodal characteristics. The above bimodal characteristics are caused by the blue luminescent material with thermally activated delayed fluorescence characteristics in the material of the first luminescent layer 23 (the peak of the emission spectrum is 500 nm). And the superposition of emission spectra of boron-containing blue fluorescent materials with multiple resonance characteristics (the peak of the emission spectrum is 470nm).
  • the absorption spectrum p2 of the red phosphorescent light-emitting material of the second light-emitting layer 25 of the red light-emitting device of Embodiment 1 overlaps with the emission spectrum p1 of the first light-emitting layer 23 of the blue light-emitting device.
  • Table 3 The comparative relationship between each relevant quantity and the first blue light-emitting device in Comparative Example 1 and Example 1 is shown in Table 3.
  • the driving voltage of the first blue light-emitting device is 4.5V
  • the luminous brightness is 1000
  • the color coordinates are (0.17, 0.32)
  • the luminous efficiency is 38cd/A.
  • the red light-emitting devices of the second light-emitting layer 25 maintain the original efficiency level, and due to microcavity adjustment, The color purity of the red light emitted by the red light-emitting layer is also not affected. Although the lifespan of the red emitting layer has declined, it remains at a high level.
  • Verification Example 2 includes Comparative Example 2 and Example 2.
  • One display substrate of Comparative Example 2 has a red light-emitting device, a green light-emitting device, and a blue light-emitting device, and the other display substrate has a first green light-emitting device.
  • the two display substrates include the same film layers as the display substrate in Comparative Example 1.
  • the light-emitting layer in the red light-emitting device includes a P-type red host material, an N-type red host material with thermally activated delayed fluorescence characteristics, and a red fluorescent light-emitting material, and the mass proportions of the above three materials are 69% and 69%, respectively. 30%, 1%;
  • the luminescent layer in the green light-emitting device includes a green host material and a green fluorescent luminescent material with multiple resonance characteristics, and the mass proportion of the green fluorescent luminescent material is 1%;
  • the luminescent layer in the blue light-emitting device includes Blue host material and deep blue fluorescent material (the peak of the emission spectrum is 460nm), and the mass proportion of the dark blue fluorescent material is 5%.
  • each film layer corresponding to each light-emitting device in the display substrate of Comparative Example 2 is shown in Table 4 below.
  • the structure of the display substrate 100 of Embodiment 2 is the same as that of the display substrate 100 of Embodiment 1.
  • the material of the first luminescent layer 23 is the same as the material of the luminescent layer of the first green light-emitting device in Comparative Example 2, including ordinary P-type green host material, green luminescent material with thermally activated delayed fluorescence characteristics (emission spectrum (peak value is 460 nm), and the mass proportion of the above-mentioned green luminescent material with thermally activated delayed fluorescence characteristics is 30%.
  • the second light-emitting layer 25 in the red light-emitting device includes a P-type red host material, an N-type red host material with thermally activated delayed fluorescence characteristics, and a red fluorescent light-emitting material, and the above three materials are in the second light-emitting layer.
  • the mass proportions of 25 materials are 69%, 30%, and 1% respectively;
  • the second luminescent layer 25 in the green light-emitting device includes a green host material and a green fluorescent luminescent material with multiple resonance characteristics, and the quality of the green fluorescent luminescent material The proportion is 1%;
  • the second luminescent layer 25 in the blue light-emitting device includes a blue host material and a deep blue fluorescent material (the peak of the emission spectrum is 460 nm), and the mass of the deep blue fluorescent material in the second luminescent layer 25 material accounts for Ratio is 5%.
  • each film layer corresponding to each light-emitting device in the display substrate 100 of Embodiment 2 is shown in Table 5 below.
  • the P-type doping ratio of the hole injection layer is 3%.
  • the material of the cathode layer is magnesium-silver alloy, and the mass ratio of magnesium and silver in the magnesium-silver alloy is 1:9.
  • the material of the electron transport layer is (8-hydroxyquinoline)lithium.
  • the abscissa in the graph is the wavelength in nm, and the ordinate is the relative intensity of the spectrum.
  • the emission spectrum p3 of the first green light-emitting device in Comparative Example 2 and the first light-emitting layer 23 in Example 2 obviously has The single-peak feature overlaps with the absorption spectrum p4 of the second light-emitting layer 25 of the red light-emitting device in Embodiment 2 and the absorption spectrum p5 of the second light-emitting layer 25 of the green light-emitting device.
  • the comparative relationship between each relevant quantity and the first green light-emitting device in Comparative Example 2 and Example 2 is shown in Table 6.
  • the driving voltage of the first green light-emitting device in Comparative Example 2 is 3.6V
  • the luminous brightness is 10000
  • the color coordinates are (0.34, 0.60)
  • the luminous efficiency is 53cd/A.
  • Verification Example 3 including Example 3-1 and Example 3-2.
  • the display substrate 100 of Example 3-1 and Example 3-2 both has a red light-emitting device, a green light-emitting device, and a blue light-emitting device.
  • the display substrate 100 of Embodiment 3-1 and Embodiment 3-2 both includes an anode layer, a light-transmitting conductive layer, a hole injection layer, a first hole transport layer, an electron blocking layer, a first light-emitting layer, and are stacked in sequence.
  • each film layer in the display substrate 100 of Embodiment 3-1 is shown in Table 7 below.
  • each film layer in the display substrate 100 of Embodiment 3-2 is shown in Table 8 below.
  • the P-type doping ratio of the hole injection layer in the above-mentioned Embodiment 3-1 and Embodiment 3-2 is 3%.
  • the material of the cathode layer is magnesium-silver alloy, and the mass ratio of magnesium and silver in the magnesium-silver alloy is 1:9.
  • the material of the electron transport layer is (8-hydroxyquinoline)lithium.
  • the thickness of the second hole transport layer of layer 21 is 15 nm smaller than the thickness of the second hole transport layer away from the anode layer 21 of Example 3-1.
  • Example 3-1 The results of the luminescence purity and luminescence efficiency of the above-mentioned Example 3-1 relative to Example 3-2 are shown in Table 9.
  • the blue light-emitting device in Example 3-2 has low luminous efficiency and low color purity. Mainly because the size deviation of the above-mentioned L 1 , L 2 , and L 3 distance optimization corresponding to the blue light-emitting device is too large and does not meet the formula: The long-wavelength mode component of the resonance in the blue sub-microcavity A1-B is too high.
  • the display substrate 100 includes: a backplane 1 and a light emitting device layer 2.
  • the light emitting device layer 2 includes an anode layer 21 disposed on the back plate 1 , a first auxiliary layer 22 , a first light emitting layer 23 , a second auxiliary layer 24 , a plurality of second light emitting layers. layer 25, a third auxiliary layer 26 and a cathode layer 27.
  • a microcavity A is formed between the anode layer 21 and the cathode layer 27 .
  • the plurality of second light emitting layers 25 includes a plurality of second blue light emitting layers 25B, a plurality of second red light emitting layers 25R, and a plurality of second green light emitting layers 25G.
  • the first auxiliary layer includes a film layers stacked in sequence
  • the second auxiliary layer includes b film layers stacked in sequence
  • the third auxiliary layer includes c film layers stacked in sequence.
  • a, b, c are all positive integers.
  • optical thickness of the above-mentioned a film layer, the optical thickness of the above-mentioned b film layer and the optical thickness of the above-mentioned c film layer satisfy the formula:
  • r h is the thickness of the h-th film layer among the above-mentioned a film layers
  • r i is the thickness of the i-th film layer among the above-mentioned b film layers
  • r j is the j-th film among the above-mentioned c film layers The thickness of the layer.
  • the value of can be, for example: 0.7, 0.83, 0.9, 1.1 or 1.3, etc.
  • the above average refractive index is: the sum of the optical thicknesses of the film layers located between the anode layer 21 and the cathode layer 27 divided by the actual thickness of the film layers located between the anode layer 21 and the cathode layer 27 Sum.
  • the average refractive index of the film layer between the anode layer 21 and the cathode layer 27 can be directly measured by a refractive index testing device (such as a refractometer or ellipsometer).
  • the value of can be, for example: 1.7, 1.75, 1.8, 1.9 or 2.0, etc.
  • the difference between the refractive index of any two film layers located between the anode layer 21 and the cathode layer 27 is less than or equal to 0.32. Such arrangement can make the refractive index of any two of the film layers located between the anode layer 21 and the cathode layer 27 closer, so that any two of the film layers located between the anode layer 21 and the cathode layer 27 can be closer to each other.
  • the difference between the refractive indexes of the film layers is small, which can reduce the sudden change in the refractive index between the film layers, so that the light-emitting device 2a has good light extraction efficiency and reduces the dispersion of the light emitted by the light-emitting device 2a.
  • the structure of the display substrate 100 in this embodiment is the same as the structure of the display substrate 100 in some of the above embodiments.
  • the backplane 1 in this embodiment has the same structure as the backplane in some of the above embodiments.
  • the light-emitting device layer 2 in this embodiment has the same features as the light-emitting device layer 2 in some of the above embodiments. For details, please refer to the above description and will not be described again here.
  • the display substrate 100 includes: a backplane 1 and a light emitting device layer 2.
  • the light emitting device layer 2 includes an anode layer 21 disposed on the back plate 1 , a first auxiliary layer 22 , a first light emitting layer 23 , a second auxiliary layer 24 , a plurality of second light emitting layers. layer 25, a third auxiliary layer 26 and a cathode layer 27.
  • a microcavity A is formed between the anode layer 21 and the cathode layer 27 .
  • second auxiliary layer 24 includes charge generation layer 247 .
  • the charge generation layer 247 may include an N-type charge generation layer (N-CGL) and a P-type charge generation layer (P-CGL).
  • N-CGL N-type charge generation layer
  • P-CGL P-type charge generation layer
  • the first light emitting layer 23 can emit at least two different colors of light.
  • the first luminescent layer 23 may emit red light and blue light, or the first luminescent layer 23 may emit green light and blue light, or the first luminescent layer 23 may emit red light, green light and blue light.
  • the first luminescent layer 23 Since the first luminescent layer 23 has two different colors, the first luminescent layer 23 needs to be prepared and formed in different processes, wherein the first luminescent layer 23 of one color can correspond to one process.
  • the above-mentioned first luminescent layer 23 is formed by an evaporation process.
  • the first luminescent layer 23 of one color can be evaporated in one process, and then the first luminescent layer 23 of another color can be evaporated in another process. a luminescent layer 23.
  • the plurality of second light emitting layers 25 includes a plurality of second blue light emitting layers 25B, a plurality of second red light emitting layers 25R, and a plurality of second green light emitting layers 25G.
  • the first auxiliary layer 22 includes a film layer stacked in sequence
  • the second auxiliary layer 24 includes b film layers stacked in sequence
  • the third auxiliary layer 26 includes c film layers stacked in sequence
  • a, b, c are all positive integer.
  • optical thickness of the above-mentioned a film layer, the optical thickness of the above-mentioned b film layer and the optical thickness of the above-mentioned c film layer satisfy the formula:
  • r h is the thickness of the h-th film layer among the a-film layers
  • r i is the thickness of the i-th film layer among the b film layers
  • r j is the thickness of the h-th film layer among the b film layers
  • the value of can be, for example: 0.7, 0.83, 0.9, 1.1 or 1.3, etc.
  • the above average refractive index is: the sum of the optical thicknesses of the film layers located between the anode layer 21 and the cathode layer 27 divided by the actual thickness of the film layers located between the anode layer 21 and the cathode layer 27 Sum.
  • the average refractive index of the film layer between the anode layer 21 and the cathode layer 27 can be directly measured by a refractive index measuring device (such as a refractometer or an ellipsometer).
  • the value of can be, for example: 1.7, 1.75, 1.8, 1.9 or 2.0, etc.
  • the difference between the refractive index of any two film layers located between the anode layer 21 and the cathode layer 27 is less than or equal to 0.32. Such arrangement can make the refractive index of any two of the film layers located between the anode layer 21 and the cathode layer 27 closer, so that any two of the film layers located between the anode layer 21 and the cathode layer 27 can be closer to each other.
  • the difference between the refractive indexes of the film layers is small, which can reduce the sudden change in the refractive index between the film layers, so that the light-emitting device 2a has good light extraction efficiency and reduces the dispersion of the light emitted by the light-emitting device 2a.
  • the structure of the display substrate 100 in this embodiment is the same as the structure of the display substrate 100 in some of the above embodiments.
  • the backplane 1 in this embodiment has the same structure as the backplane in some of the above embodiments.
  • the light-emitting device layer 2 in this embodiment has the same features as the light-emitting device layer 2 in some of the above embodiments. For details, please refer to the above description and will not be described again here.
  • the material types of the film layers between the anode layer 21 and the cathode layer 27 and the refractive index of each film layer to blue light with a wavelength of 460 nm are shown in Table 10 below. .
  • Film layer name Material type refractive index hole injection layer Carbazole-doped axene 1.74 first hole transport layer carbazole 1.74 electron blocking layer carbazole 1.87 first hole blocking layer Triazines 1.88 first electron transport layer Triazines 2.00 first charge generation layer Phosphorus oxygen 1.82 second charge generation layer Carbazole-doped axene 1.74 second hole transport layer carbazole 1.74 Various sub-microcavity adjustment layers carbazole 1.87 second hole blocking layer Triazines 1.86 second electron transport layer Triazines 1.79 electron injection layer metal complex 1.68
  • the difference between the refractive index of any two film layers located between the anode layer 21 and the cathode layer 27 is less than or equal to 0.32, which means that the difference between the refractive index of the anode layer 21 and the cathode layer 27 is less than or equal to 0.32.
  • the refractive index of any two of the layers between 27 and 27 is closer.
  • the difference between the refractive indexes can further reduce the sudden change in refractive index between the film layers, so that the light-emitting device 2a has good light extraction efficiency and reduces the dispersion of the light emitted by the light-emitting device 2a.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示基板包括:背板、阳极层、第一辅助层、第一发光层、第二辅助层、至少两种不同颜色的多个第二发光层、第三辅助层和阴极层。第一辅助层包括依次层叠的a个膜层,a个膜层的光学厚度为L1,L1满足:(aa)。第二辅助层包括依次层叠的b个膜层,b个膜层的光学厚度为L2,L2满足:(bb)。第三辅助层包括依次层叠的c个膜层,c个膜层的光学厚度为L3,L3满足:(cc)。L1、L2、L3满足公式(dd)。

Description

显示基板及显示装置
本申请要求于2022年07月08日提交的、申请号为202210798416.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及显示装置。
背景技术
OLED(Organic Light Emitting Diode,有机发光二极管)显示装置是利用有机电自发光二极管制成的显示装置。OLED显示装置具有不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异特性,目前被广泛使用。
发明内容
本公开的实施例的目的在于提供一种显示基板及显示装置,用于提高显示基板的发光亮度及色纯度。
为达到上述目的,本公开的实施例提供了如下技术方案:
一方面,提供一种显示基板。所述显示基板包括:背板及依次层叠设置在所述背板上的阳极层、第一辅助层、第一发光层、第二辅助层、至少两种不同颜色的多个第二发光层、第三辅助层和阴极层。所述阳极层和所述阴极层之间形成微腔。所述第一发光层设置在所述第一辅助层和所述第二辅助层之间。所述多个第二发光层设置在所述第二辅助层和所述第三辅助层之间。其中,所述第一辅助层包括依次层叠的a个膜层,所述a个膜层的光学厚度为L 1,L 1满足:
Figure PCTCN2022118555-appb-000001
a为正整数,n h为所述a个膜层中的第h个膜层的折射率,r h为所述第h个膜层的厚度。
所述第二辅助层包括依次层叠的b个膜层,所述b个膜层的光学厚度为L 2,L 2满足:
Figure PCTCN2022118555-appb-000002
b为正整数,n i为所述b个膜层中的第i个膜层的折射率,r i为所述第i个膜层的厚度。
所述第三辅助层包括依次层叠的c个膜层,所述c个膜层的光学厚度为L 3,L 3满足:
Figure PCTCN2022118555-appb-000003
c为正整数,n j为所述c个膜层中的第j个膜层的折射率,r j为所述第j个膜层的厚度。
在蓝色光的第一光学干涉周期,L 1、L 2、L 3满足公式:
Figure PCTCN2022118555-appb-000004
本公开的一些实施例所提供的显示基板,通过设置第一辅助层、第二辅助层和第三辅助层使第一发光层和第二发光层形成串联发光器件,可以增加显示基板的发光亮度。并且显示基板的阳极层和阴极层之间可以形成微腔,第一发光层和第二发光层发出的光能够在微腔内产生微腔效应,从而增强出射光的发光强度、窄化出射光的光谱、提高发光器件的发光效率。通过使第一辅助层所包括的a个膜层的光学厚度为L 1、第二辅助层所包括的b个膜层的光学厚度为L 2及第三辅助层所包括的c个膜层的光学厚度为L 3满足公式:
Figure PCTCN2022118555-appb-000005
可以提高显示基板中发光器件发出的光线的色纯度。因此,本公开的显示基板可以减少滤光片的设置,提高发光效率。进一步的,显示基板还可以在发光亮度较高的情况下降低功耗,增加发光器件的发光寿命。
在一些实施例中,所述多个第二发光层包括:多个第二蓝色发光层、多个第二红色发光层及多个第二绿色发光层。所述第一发光层发出的光的波长,小于至少一种颜色的第二发光层发出的光的波长。
在一些实施例中,所述第一发光层包括第一客体材料,第二发光层包括第二客体材料。所述第一客体材料的发射光谱,与至少一种颜色的第二发光层的第二客体材料的吸收光谱,至少部分重叠。
在一些实施例中,所述第一客体材料的发射光谱与所述第二客体材料的吸收光谱的重叠范围,大于或等于所述第一客体材料的发射光谱波长范围的60%。
在一些实施例中,所述第一客体材料的发射光谱与所述第二客体材料的吸收光谱的重叠范围,大于或等于所述第二客体材料的吸收光谱波长范围的60%。
在一些实施例中,所述第一客体材料的发射光谱的峰值小于600nm。
在一些实施例中,所述第一客体材料包括至少一种发光材料。在所述第一客体材料包括两种发光材料的情况下,所述两种发光材料的发射光谱峰值之间的间距小于或等于30nm。
在一些实施例中,所述第一客体材料的发射光谱的峰值的范围为465nm~475nm,第二绿色发光层的第二客体材料的吸收光谱的峰值的范围为507nm~517nm。
在一些实施例中,所述第一客体材料的发射光谱的峰值的范围为525nm~535nm,第二绿色发光层的第二客体材料的吸收光谱的峰值的范围为510nm~520nm,第二红色发光层的第二客体材料的吸收光谱的峰值的范围为595nm~605nm。
在一些实施例中,所述第一客体材料包括至少一种发光材料。在所述第一客体材料包括两种发光材料的情况下,所述两种发光材料中,至少一种发光材料掺杂有硼元素,所述硼元素的掺杂比例的范围为0.5%~5%。
在一些实施例中,至少一种颜色的所述第二发光层的所述第二客体材料包括至少一种发光材料。在所述第二客体材料包括两种发光材料的情况下,所述两种发光材料的发射光谱峰值之间的间距小于或等于30nm。
在一些实施例中,至少一种颜色的所述第二发光层的所述第二客体材料包括至少一种 发光材料;在所述第二客体材料包括两种发光材料的情况下,所述两种发光材料中,至少一种发光材料掺杂有硼元素,所述硼元素的掺杂比例的范围为0.5%~5%。
在一些实施例中,所述第一客体材料包括:荧光类材料、磷光类材料以及热活化延迟荧光材料中的至少一种材料;和/或,所述第二客体材料包括:荧光类材料、磷光类材料或具有多重共振特性的热活化延迟荧光材料中的至少一种材料。
在一些实施例中,所述第一发光层还包括第一主体材料,所述第一主体材料包括单一主体材料或PN混合型主体材料。
在一些实施例中,至少一种颜色的所述第二发光层材料还包括第二主体材料;所述第二主体材料包括双极性主体材料。
在一些实施例中,所述第二主体材料包括单一主体材料或PN混合型主体材料。在所述第二主体材料为PN混合型主体材料的情况下,N型材料具有热活化延迟荧光特性。
在一些实施例中,所述微腔包括多个子微腔,所述多个子微腔包括与第二红色发光层对应的红色子微腔、与第二绿色发光层对应的绿色子微腔、与第二蓝色发光层对应的蓝色子微腔。位于所述阳极层和所述阴极层之间的、且与任一种颜色的子微腔相对应的膜层数量为d,d个膜层的光学厚度为L,L满足:
Figure PCTCN2022118555-appb-000006
其中,d为正整数,n m所述d个膜层中的第m个膜层的折射率,r m为所述第m个膜层的厚度,k为自然数,λ为目标光谱峰值波长,
Figure PCTCN2022118555-appb-000007
为目标光在所述阳极层反射后引起的相移。
在一些实施例中,所述蓝色子微腔的长度小于所述红色子微腔的长度。所述蓝色子微腔的长度小于所述绿色子微腔的长度。
在一些实施例中,所述第一发光层的厚度范围为15nm~60nm;和/或,第二发光层的厚度范围为10nm~50nm。
在一些实施例中,所述第一辅助层包括透光导电层、空穴注入层、第一空穴传输层及电子阻挡层;和/或,所述第二辅助层包括第一空穴阻挡层、第一电子传输层、第一电荷产生层、第二电荷产生层及微腔调节层;和/或,所述第三辅助层包括:第二空穴阻挡层、第二电子传输层及电子注入层。
在一些实施例中,所述微腔调节层包括:第二空穴传输层、设置在所述第二空穴传输层和第二红色发光层之间的红色子微腔调节层、设置在所述第二空穴传输层和第二绿色发光层之间的绿色子微腔调节层、及设置在所述第二空穴传输层和第二蓝色发光层之间的蓝色子微腔调节层。其中,所述红色子微腔调节层和所述蓝色子微腔调节层之间的长度不同,所述绿色子微腔调节层和所述蓝色子微腔调节层之间的长度不同。
在一些实施例中,所述红色子微腔调节层包括沿远离所述背板的方向依次层叠设置的红色空穴传输层和红色电子阻挡层,所述绿色子微腔调节层包括沿远离所述背板的方向依次层叠设置的绿色空穴传输层和绿色电子阻挡层。其中,红色空穴传输层和绿色空穴传输层分别用于调节相应颜色子微腔长度。
在一些实施例中,所述透光导电层的厚度小于或等于10nm;和/或,所述空穴注入层的厚度小于或等于10nm;和/或,所述电子阻挡层的厚度小于或等于10nm;和/或,所述第 一空穴阻挡层的厚度小于或等于10nm;和/或,所述第一电子传输层的厚度范围为15nm~50nm;和/或,所述第一电荷产生层的厚度小于或等于10nm;和/或,所述第二电荷产生层的厚度小于或等于10nm;和/或,所述第二空穴阻挡层的厚度小于或等于10nm;和/或,所述第二电子传输层的厚度范围为15nm~50nm。
在一些实施例中,所述第一发光层的数量为多个,任意相邻两个第一发光层之间设置有所述第二辅助层;和/或,所述多个第二发光层位于同一层、并构成一发光层组,所述发光层组的数量为多个,任意相邻两个发光层组之间设置有所述第三辅助层。
另一方面,提供一种显示基板。所述显示基板包括:背板及依次层叠设置在所述背板上的阳极层、第一辅助层、第一发光层、第二辅助层、至少两种不同颜色的多个第二发光层、第三辅助层和阴极层。所述阳极层和所述阴极层之间形成微腔。所述第一发光层设置在所述第一辅助层和所述第二辅助层之间。所述多个第二发光层设置在所述第二辅助层和所述第三辅助层之间。其中,所述第一辅助层包括依次层叠的a个膜层,所述第二辅助层包括依次层叠的b个膜层,所述第三辅助层包括依次层叠的c个膜层,a、b、c均为正整数。所述a个膜层的光学厚度、所述b个膜层的光学厚度及所述c个膜层的光学厚度满足公式:
Figure PCTCN2022118555-appb-000008
Figure PCTCN2022118555-appb-000009
为所述阳极层和所述阴极层之间的膜层的平均折射率,
Figure PCTCN2022118555-appb-000010
的范围为1.7~2.0。r h为所述a个膜层中的第h个膜层的厚度,r i为为所述b个膜层中的第i个膜层的厚度,rj为所述c个膜层中的第j个膜层的厚度。
又一方面,提供一种显示基板。所述显示基板包括:背板及依次层叠设置在所述背板上的阳极层、第一辅助层、第一发光层、第二辅助层、至少两种不同颜色的多个第二发光层、第三辅助层和阴极层。所述第二辅助层包括电荷产生层,所述阳极层和所述阴极层之间形成微腔。所述第一发光层能发出至少两种不同颜色光。所述多个第二发光层包括多个第二蓝色发光层、多个第二红色发光层和多个第二绿色发光层。其中,所述第一辅助层包括依次层叠的a个膜层,所述第二辅助层包括依次层叠的b个膜层,所述第三辅助层包括依次层叠的c个膜层,a、b、c均为正整数。所述a个膜层的光学厚度、所述b个膜层的光学厚度及所述c个膜层的光学厚度满足公式:
Figure PCTCN2022118555-appb-000011
Figure PCTCN2022118555-appb-000012
为所述阳极层和所述阴极层之间的膜层的平均折射率,
Figure PCTCN2022118555-appb-000013
的范围为1.7~2.0;r h为所述a个膜层中的第h个膜层的厚度,r i为所述b个膜层中的第i个膜层的厚度,r j为所述c个膜层中的第j个膜层的厚度。
又一方面,提供一种显示装置。所述显示装置包括:如上述一方面的任一实施例所述的显示基板;或,所述显示装置包括:另一方面的实施例所述的显示基板;或,所述显示装置包括:又一方面的实施例所述的显示基板。
上述显示装置具有与上述一些实施例中提供的显示基板相同的结构和有益技术效果, 在此不再赘述。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例的一种显示装置的结构图;
图2为根据本公开一些实施例的一种显示基板的结构图;
图3为根据本公开一些实施例的另一种显示基板的结构图;
图4为第一种方式中一种显示基板的结构图;
图5为第二种方式中一种显示基板的结构图;
图6为根据本公开一些实施例的又一种显示基板的结构图;
图7为根据本公开一些实施例的又一种显示基板的结构图;
图8为根据本公开一些实施例的又一种显示基板的结构图;
图9为根据本公开一些实施例的又一种显示基板的结构图;
图10为验证例1中的部分发光层的光谱图;
图11为验证例2中的部分发光层的光谱图;
图12为根据本公开一些实施例的又一种显示基板的结构图;
图13为根据本公开一些实施例的又一种显示基板的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一者”与“A、B或C中的至少一者”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供了一种显示基板及显示装置,以下结合附图,分别对显示基板100及显示装置1000进行介绍。
如图1所示,本公开的一些实施例提供一种显示装置1000。该显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
在一些示例中,上述显示装置1000包括框架、设置于框架内的显示基板100、电路板、数据驱动IC(Integrated Circuit,集成电路)以及其他电子配件等。
上述显示基板100例如可以为:有机发光二极管显示基板、量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)显示基板、微发光二极管(Micro Light Emitting Diodes,简称Micro LED)显示基板或迷你发光二极管(Mini Light Emitting Diodes,简称Mini LED)显示基板等,本公开对此不做具体限定。
下面以上述显示基板100为OLED显示基板为例,对本公开的一些实施例进行示意性说明。
在一些实施例中,如图2所示,上述显示基板100包括:背板1。
在一些示例中,上述背板1包括衬底11和设置在衬底11上的多个像素驱动电路12。
上述衬底11的类型包括多种,可以根据是实际需要选择设置。
示例性的,衬底11可以为刚性衬底。该刚性衬底的材料例如可以包括玻璃、石英或塑料等。
示例性的,衬底11可以为柔性衬底。该柔性衬底的材料例如可以包括PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)或PI(Polyimide,聚酰亚胺)等。
在一些示例中,上述多个像素驱动电路12例如呈阵列状排布。
上述像素驱动电路12的结构包括多种,可以根据实际需要选择设置。例如,像素驱动电路12的结构可以包括“3T1C”、“4T1C”、“6T1C”、“7T1C”、“6T2C”、“7T2C”或“8T2C”等结构。其中,“T”表示为晶体管,位于“T”前面的数字表示为晶体管的数量,“C”表示为存储电容器,位于“C”前面的数字表示为存储电容器的数量。
示例性的,图3以一个晶体管121代表像素驱动电路12。
在一些实施例中,如图3所示,上述显示基板100还包括:发光器件层2。
在一些示例中,如图3所示,上述发光器件层2包括多个发光器件2a,如图2所示,该多个发光器件2a例如呈阵列状排布。其中,发光器件2a例如为OLED。
上述像素驱动电路12和发光器件2a电连接。其中,两者之间的电连接关系包括多种,具体可以根据实际需要选择设置,本公开对此不作限定。
例如,上述像素驱动电路12和发光器件2a可以一一对应地电连接。又如,一个像素驱动电路12可以与多个发光器件2a电连接。又如,多个像素驱动电路12可以与一个发光器件2a电连接。
下面,以像素驱动电路12和发光器件2a可以一一对应地电连接为例,对显示基板100的结构进行示意性说明。
可以理解的是,像素驱动电路12能够生成驱动信号,并将该驱动信号传输至相应的发光器件2a,以控制发光器件2a的发光状态。该发光状态例如包括发光器件2a是否发光,或者发光器件2a的发光亮度。多个像素驱动电路12共同控制上述多个发光器件2a的发光状态,进而可以使得显示基板100实现画面显示。
此处,每个像素驱动电路12及与其电连接的发光器件2a,可以称为子像素。
需要说明的是,显示基板实现全彩显示的方式主要包括两种,例如,其中一种方式为:通过R/G/B单独发光单元提供全彩显示方案,另一种方式为:通过色转换或色过滤方式提供全彩方案。
在一种实现方式中,通过R/G/B单独发光单元提供全彩显示方案指的是,发光器件主要包括沿远离衬底的方向依次层叠的阳极、发光层和阴极。其中,该发光层可以为红色发光层、绿色发光层或蓝色发光层,相应的,发光器件可以为红色发光器件、绿色发光器件或蓝色发光器件。红色发光器件能够在相应的像素驱动电路的控制下发出红色光,绿色发光器件能够在相应的像素驱动电路的控制下发出绿色光,蓝色发光器件能够在相应的像素驱动电路的控制下发出蓝色光。多个发光器件相配合,从而可以实现全彩显示。但是,在此方案中,发光器件的发光效率及发光亮度较低。
在另一种实现方式中,通过色转换或色过滤方式提供全彩方案的方式主要包括两种。
如图4所示,在第一种方式中,发光器件2a'为串联式底发射的发光器件,且该发光器件用于发出白色光。显示基板还包括设置在衬底11'远离发光器件2a'一侧的彩色滤光片CF, 发光器件2a'发出的白色光穿过彩色滤光片CF后转变为红色光、绿色光或蓝色光,从而实现全彩显示。但是,由于底发射的发光器件的结构也导致了正视角下亮度的提升较为困难;另外,如果采用顶发射的发光器件,又会出现工艺复杂度提升、且某些波段光损耗过大的问题。
如图5所示,在第二种方式中,发光器件2a'为串联式顶发射的发光器件,且该发光器件2a'用于发出蓝色光。显示基板还包括设置在发光器件2a'远离衬底11'一侧的红色量子点转换层R-CC和绿色量子点转换层G-CC。穿过红色量子点转换层R-CC的蓝色光可以转变为红色光,穿过绿色量子点转换层G-CC的蓝色光可以转变为绿色光,从而实现全彩显示。但是,受到红色量子点转换层R-CC和绿色量子点转换层G-CC本身的光转化率的影响,导致所转变的红色光和绿色光的色纯度较低,因此,需要匹配相应的滤光片,例如,需要在红色量子点转换层R-CC远离衬底11'的一侧设置红色滤光片R-CF,并在绿色量子点转换层G-CC远离衬底11'的一侧设置绿色滤光片G-CF,以便于提高色纯度。这样就会提升显示基板的工艺复杂度,提高显示基板的功耗。
基于此,如图3所示,在本公开的一些实施例中,发光器件层2包括设置在背板1上的阳极层21、第一辅助层22、第一发光层23、第二辅助层24、多个第二发光层25、第三辅助层26和阴极层27。
在一些示例中,如图3所示,上述阳极层21包括多个阳极211,该多个阳极211例如呈阵列状排布。其中,一个阳极211对应一个发光器件2a,每个发光器件2a例如通过阳极211与相应的像素驱动电路12电连接,阳极211可以接收相应的像素驱动电路12的驱动信号,与该相应的像素驱动电路12相配合,实现对发光器件2a的单独控制。
示例性的,阳极层21的材料包括具有较高功函数的导电材料。阳极层21的结构例如可以为单层结构,又如可以为多层膜层依次层叠的结构。
示例性的,在阳极层21的结构为单层结构的情况下,该单层结构对光线的反射性能较好,能够对射向阳极层21的光线进行反射。
示例性的,在阳极层21的结构为多层膜层依次层叠的结构的情况下,该多层膜层中远离背板1的膜层为光反射性能较好的膜层,能够对射向阳极层21的光线进行反射,上述光反射性较好的膜层的材料例如可以包括Al(铝)、Ag(银)或Mg(镁)中的至少一者。该多层膜层中靠近背板1的膜层例如可以是透光性较好的膜层,上述透光性较好的膜层的材料例如可以包括ITO(Indium Tin Oxide,氧化铟锡)、IZO(Indium Zinc Oxide,氧化铟锌)等。
示例性的,形成阳极211的方法包括:在背板1上形成(例如采用溅射工艺)一层导电薄膜(该导电薄膜为单层结构或为多层薄膜依次层叠的结构),然后对该导电薄膜进行图案化处理(例如采用光刻工艺对导电薄膜进行刻蚀),得到相互独立的多个阳极211。
需要说明的是,显示基板100还可以包括设置在阳极层21远离衬底11一侧的像素界定层。该像素界定层具有多个开口,多个开口和上述多个阳极211一一对应设置,每个开口暴露相应的阳极211的一部分,以便于阳极211和位于其远离衬底11一侧的膜层接触,形成电连接。
在一些示例中,如图3所示,上述第一辅助层22设置在阳极层21远离衬底11的一侧。可选地,第一辅助层22位于上述像素界定层远离衬底11的一侧。
示例性的,第一辅助层22可以通过像素界定层的开口与阳极211接触,形成电连接。
示例性的,第一辅助层22包括依次层叠的a个膜层,a为正整数。例如,第一辅助层22所包括的膜层的数量为一个、两个、三个或四个等。
可选地,在第一辅助层22包括一个膜层的情况下,第一辅助层22覆盖阳极层21。也即,不同的发光器件2a共用第一辅助层22。
可选地,在第一辅助层22包括至少两个膜层的情况下,至少一个膜层覆盖阳极层21。也即,不同的发光器件2a共用该至少一个膜层。
示例性的,本公开可以采用蒸镀工艺形成第一辅助层22。
通过使得不同发光器件2a共用第一辅助层22中的膜层,可以避免对第一辅助层22进行图案化处理,有利于简化第一辅助层22及显示基板100的制备工艺。
在一些示例中,如图3所示,上述第一发光层23设置在第一辅助层22远离衬底11的一侧。
示例性的,第一发光层23例如整层设置,不同的发光器件2a共用第一发光层23。
需要说明的是,第一辅助层22位于阳极层21和第一发光层23之间,第一辅助层22主要用于提高空穴迁移率,降低空穴的注入势垒,以增大迁移至第一发光层23的空穴的量,增大空穴和迁移至第一发光层23的电子的复合率,提高第一发光层23的发光效率。
在一些示例中,如图3所示,上述第二辅助层24设置在上述第一发光层23远离衬底11的一侧。也即,上述多个第一发光层23设置在第一辅助层22和第二辅助层24之间。其中,第二辅助层24和第一发光层23接触,形成电连接。
示例性的,第二辅助层24包括依次层叠的b个膜层,b为正整数。例如,第二辅助层24所包括的膜层的数量为一个、两个、三个或四个等。
示例性的,不同的发光器件2a共用第二辅助层24。
示例性的,本公开可以采用蒸镀工艺形成第二辅助层24。
通过使得不同发光器件2a共用第二辅助层24中的膜层,可以避免对第二辅助层24进行图案化处理,有利于简化第二辅助层24及显示基板100的制备工艺。
在一些示例中,如图3所示,上述多个第二发光层25设置在第二辅助层24远离衬底11的一侧。例如,该多个第二发光层25位于同一层,每个第二发光层25均与第二辅助层24接触,形成电连接。当然,至少两个第二发光层25也可以层叠设置。本公开以该多个第二发光层25位于同一层为例进行说明。
示例性的,上述多个第二发光层25具有至少两种不同颜色。
例如,上述多个第二发光层25具有两种不同颜色。可选地,该多个第二发光层25包括多个第二蓝色发光层25B和多个第二红色发光层25R。或者,该多个第二发光层25包括多个第二蓝色发光层25B和多个第二绿色发光层25G。或者,该多个第二发光层25包括多个第二红色发光层25R和多个第二绿色发光层25G。
又如,上述多个第二发光层25具有三种不同颜色。可选地,该多个第二发光层25包括多个第二蓝色发光层25B、多个第二红色发光层25R和多个第二绿色发光层25G。
由于上述多个第二发光层25具有两种不同颜色,因此,该多个第二发光层25需要在不同的工序中制备形成,其中,一种颜色的第二发光层25可以对应一道工序。例如,上述多个第二发光层25采用蒸镀工艺形成,此时,可以在一道工序中蒸镀形成一种颜色的第二发光层25,然后在另一道工序中蒸镀形成另一种颜色的第二发光层25。
需要说明的是,上述第二辅助层24位于多个第一发光层23和多个第二发光层25之 间,第二辅助层24主要用于将第一发光层23和第二发光层25串联,以形成串联式发光器件。
在一些示例中,如图3所示,上述第三辅助层26设置在上述多个第二发光层25远离衬底11的一侧。也即,上述多个第二发光层25设置在第二辅助层24和第三辅助层26之间。其中,第三辅助层26和每个第二发光层25接触,形成电连接。
示例性的,第三辅助层26包括依次层叠的c个膜层,c为正整数。例如,第三辅助层26所包括的膜层的数量为一个、两个或三个等。
可选地,不同的发光器件2a共用第三辅助层26。
示例性的,本公开可以采用蒸镀工艺形成第三辅助层26。
通过使得不同发光器件2a共用第三辅助层26,可以避免对第三辅助层26进行图案化处理,有利于简化第三辅助层26及显示基板100的制备工艺。
在一些示例中,如图3所示,上述阴极层27设置在上述第三辅助层26远离衬底11的一侧,且与第三辅助层26接触,形成电连接。
示例性的,不同的发光器件2a共用阴极层27。也即,阴极层27为整层结构。
示例性的,本公开可以采用蒸镀工艺形成阴极层27。
通过使得不同发光器件2a共用阴极层27,可以避免对阴极层27进行图案化处理,有利于简化阴极层27及显示基板100的制备工艺。
需要说明的是,上述第三辅助层26位于多个第二发光层25和阴极层27之间,第三辅助层26主要用于提高电子迁移率,以增大迁移至第一发光层23的空穴的量,增大空穴和迁移至第一发光层23的电子的复合率,并且避免空穴或空穴与电子复合而成的激子从第二发光层25泄漏,提高第一发光层23的发光效率。
在一些示例中,阳极层21具有较高的反射率,阴极层27为具有半透半反特性的膜层。其中,“半透半反”指的是阴极层27既能够透过光线,又能够反射光线,并未对具体的透射率和反射率进行限定。这也就意味着,本公开实施例中的发光器件2a为顶发射的发光器件。
示例性的,阳极层21的反射率大于或等于80%。
示例性的,阴极层27的厚度范围为10nm~20nm。这样可以在保证阴极层27对的导电性能的基础上增强阴极层27对光线的透过率,提高显示基板100的发光效率。
例如,阴极层27的厚度可以为:10nm、12nm、14nm、17nm或20nm等。
示例性的,阴极层27对波长为530nm的光的透过率范围为45%~60%。
例如,上述透过率可以为:45%、50%、53%、57%或60%等。
可以理解的是,如图6所示,基于阳极层21和阴极层27的性质,可以在阳极层21和阴极层27之间形成微腔A。这样,第一发光层23和第二发光层25发出的光能够在微腔A内发生反射、干涉等,产生微腔效应,增强出射光的发光强度、窄化出射光的光谱、提高发光器件2a的发光效率。例如,可以增强蓝色光的发光强度、窄化蓝色光的光谱。
在一些示例中,第一辅助层22所包括的a个膜层的光学厚度为L 1,L 1满足:
Figure PCTCN2022118555-appb-000014
其中,n h为上述a个膜层中的第h个膜层的折射率,r h为上述第h个膜层的厚度。
第二辅助层24所包括的b个膜层的光学厚度为L 2,L 2满足:
Figure PCTCN2022118555-appb-000015
其中,n i为上述b个膜层中的第i个膜层的折射率,r i为上述第i个膜层的厚度。
第三辅助层26所包括的c个膜层的光学厚度为L 3,L 3满足:
Figure PCTCN2022118555-appb-000016
n j为上述c个膜层中的第j个膜层的折射率,r j为上述第j个膜层的厚度。
L 1、L 2、L 3满足公式:
Figure PCTCN2022118555-appb-000017
示例性的,
Figure PCTCN2022118555-appb-000018
的值例如可以为:0.7、0.83、0.9、1.1或1.3等。
通过上述设置,可以提高显示基板100中发光器件2a发出的光线的色纯度,因此,本公开显示基板100可以减少滤光片的设置,从而可以减少滤光片对发光器件2a发出的光线的阻挡,提高本公开显示基板100中的发光效率。进一步的,本公开可以在减小显示基板100中像素驱动电路12的驱动电压的情况下实现与上述第一种实现方式和第二种实现方式中相同的亮度,进而可以降低显示基板100的功耗,增加发光器件2a的发光寿命。
需要说明的是,上述第h个膜层、第i个膜层、第j个膜层对波长为460nm光的折射率范围均为:1.7~2.0。
示例性的,上述第h个膜层、第i个膜层、第j个膜层对波长为460nm光的折射率可以相同,也可以不同。
例如,上述第h个膜层、第i个膜层、第j个膜层对波长为460nm光的折射率为:1.7、1.75、1.8、1.9、2.0。
在一些实施例中,如图3所示,多个第二发光层25包括:多个第二蓝色发光层25B、多个第二红色发光层25R及多个第二绿色发光层25G。第一发光层23发出的光的波长,小于至少一种颜色的第二发光层25发出的光的波长。
示例性的,第一发光层23发出的光的波长小于第二蓝色发光层25B发出的光的波长;或者,第一发光层23发出的光的波长小于第二红色发光层25R发出的光的波长;或者,第一发光层23发出的光的波长小于第二绿色发光层25G发出的光的波长。或者,第一发光层23发出的光的波长小于第二红色发光层25R发出的光的波长,且小于第二绿色发光层25G发出的光的波长,本公开对此不做限定。
示例性的,第一发光层23能够发出蓝光或黄光等。
通过使第一发光层23发出的光的波长,小于至少一种颜色的第二发光层25发出的光的波长,可以使第一发光层23发出的光在射向多个第二发光层25的情况下,至少激发第二红色发光层25R、第二绿色发光层25G及第二蓝色发光层25B中的至少一者发出相应颜 色的光,从而增加显示基板100的发光亮度和发光效率。并且,如图5所示,第一发光层23发出的光还能够在微腔A内多次反射,从而使第一发光层23发出的光能够多次射向上述多个第二发光层25,进一步增加了第一发光层23发出的光对多个第二发光层25中的至少一者的激发效果,进一步增加了显示基板100的发光亮度和发光效率。
需要说明的是,在多个第二发光层25包括:多个第二蓝色发光层25B、多个第二红色发光层25R及多个第二绿色发光层25G的情况下,上述n h为上述a个膜层中的第h个膜层对红光、绿光或蓝光的中心波长的折射率,上述n i为上述b个膜层中的第i个膜层对红光、绿光或蓝光的中心波长的折射率。
示例性的,红光的波长范围为615nm~630nm,绿光的波长范围为515nm~535nm,蓝光的波长范围为460nm~475nm。
在一些实施例中,第一发光层23包括第一客体材料,第二发光层25包括第二客体材料。第一客体材料的发射光谱,与至少一种颜色的第二发光层25的第二客体材料的吸收光谱,至少部分重叠。
需要说明的是,第一发光层23和第二发光层25的材料包括主体材料和掺杂于主体材料中的客体材料。上述主体材料自身的成膜性好,可以与其他发光性能优异的材料混合使用;客体材料自身发光性能优异。由此,在采用主体材料和掺杂于其中的客体材料共同形成第一发光层23或第二发光层25时,由于主体材料中包括高激发能态的分子,且该高激发能态的分子可以将其能量转移至客体材料中,这样可以改变第一发光层23或第二发光层25发出的光的波长,同时可以提高第一发光层23或第二发光层25的发光效率。
示例性的,第一客体材料为第一发光层23中主要用于发光的材料,第二客体材料为第二发光层25中主要用于发光的材料。
上述“至少部分重叠”表示第一客体材料的发射光谱,与至少一种颜色的第二发光层25的第二客体材料的吸收光谱重叠一部分,或者,第一客体材料的发射光谱,与至少一种颜色的第二发光层25的第二客体材料的吸收光谱全部重叠。
示例性的,第一发光层23的第一客体材料的发射光谱与第二红色发光层25R的第二客体材料的吸收光谱,至少部分重叠;或者,第一发光层23的第一客体材料的发射光谱与第二绿色发光层25G的第二客体材料的吸收光谱,至少部分重叠。或者,第一发光层23的第一客体材料的发射光谱与第二蓝色发光层25B的第二客体材料的吸收光谱,至少部分重叠;或者,第一发光层23的第一客体材料的发射光谱,不仅与第二红色发光层25R的第二客体材料的吸收光谱,至少部分重叠,还与第二绿色发光层25G的第二客体材料的吸收光谱,至少部分重叠。本公开对此不做限定。
通过将第一发光层23的第一客体材料的发射光谱,与至少一种颜色的第二发光层25的第二客体材料的吸收光谱,至少部分重叠,可以使第一发光层23的第一客体材料发出的光线的一部分被至少一种颜色的第二发光层25的第二客体材料的吸收,从而使至少一种颜色的第二发光层25的第二客体材料在第一客体材料发出的光的激发下发光,从而提高第二发光层25的第二客体材料的发光效率。其中,第一发光层23的第一客体材料发出的光线的另一部分可以经过阴极层27射出,与第二发光层25发出的光形成串联发光器件,增强显示基板100的发光亮度。
需要说明的是,显示基板100中的第一发光层23发出的光在射向第二发光层25的情况下,第二发光层25可以吸收第一发光层23发出的光并激发出相应颜色的光。并且,由 于第一发光层23和第二发光层25本身也可以形成串联发光组件。上述两种发光机制共同作用,显示基板100将获得更高的发光效率。
可以理解的是,第一客体材料的发射光谱,与第二发光层25的第二客体材料的吸收光谱的重叠部分越多,第一客体材料发出的光线可以激发第二客体材料发出更多的光线,第二发光层25的第二客体材料的发光效率也越高。
在一些实施例中,第一发光层23的第一客体材料的发射光谱与第二发光层25的第二客体材料的吸收光谱的重叠范围,大于或等于第一客体材料的发射光谱波长范围的60%。
例如,第一客体材料的发射光谱与第二客体材料的吸收光谱的重叠范围,可以为第一客体材料的发射光谱波长范围的60%、70%、80%、90%或99%等。
这样设置,可以使第一客体材料的发射的所有光中大于或等于60%的部分被第二客体材料吸收,提高第二客体材料对第一客体材料发出的光的利用率。
在一些实施例中,第一发光层23的第一客体材料的发射光谱与第二发光层25的第二客体材料的吸收光谱的重叠范围,大于或等于第二客体材料的吸收光谱波长范围的60%。
例如,第一客体材料的发射光谱与第二客体材料的吸收光谱的重叠范围,可以为第二客体材料的吸收光谱波长范围的60%、70%、80%、90%或99%等。
这样设置,可以使第一客体材料发出的光线更多能被第二客体材料吸收,提高第二客体材料对第一客体材料发出的光的利用率。
在一些实施例中,第一发光层23的第一客体材料的发射光谱的峰值小于600nm。
示例性的,第一发光层23的第一客体材料的发射光谱的峰值可以为465nm、500nm、515nm、560nm或595nm等。
如上所述,光的波长越短,光具有的能量越高。通过上述设置,可以确保第一发光层23发出的光线具有较高的能量,从而可以更好地激发第二发光层25中的第二客体材料发光。
在一些实施例中,第一发光层23的第一客体材料包括至少一种发光材料。在第一客体材料包括两种发光材料的情况下,两种发光材料的发射光谱峰值之间的间距小于或等于30nm。
示例性的,第一客体材料包括的发光材料的种类可以为:一种或者两种等,本公开对此不做限定。
可以理解的,不同发光材料可以发出不同颜色的光,在第一发光层23的第一客体材料包括一种发光材料的情况下,第一发光层23可以发出一种颜色的光;在第一发光层23的第一客体材料包括两种发光材料的情况下,第一发光层23可以发出两种颜色的光。
示例性的,在第一发光层23的第一客体材料包括两种发光材料的情况下,上述两种发光材料的发射光谱峰值之间的间距可以为:1nm、10nm、19nm、25nm或30nm等。
通过使第一客体材料的两种发光材料的发射光谱峰值之间的间距小于或等于30nm,可以使第一客体材料的两种发光材料发出的光线的颜色更加相近,提高第一发光层23发出光线的色纯度。
在一些实施例中,第一发光层23的第一客体材料的发射光谱与第二绿色发光层25G的第二客体材料的吸收光谱具有重叠。
示例性的,上述第一客体材料发出的光为蓝光。
示例性的,上述第一客体材料的发射光谱的峰值的范围为465nm~475nm,第二绿色发 光层25G的第二客体材料的吸收光谱的峰值的范围为507nm~517nm。
示例性的,第一客体材料的发射光谱的峰值可以为:465nm、467nm、469nm、471nm或475nm等。第二绿色发光层25G的第二客体材料的吸收光谱的峰值可以为:507nm、509nm、512nm、514nm或517nm等。
这样设置,可以使第一客体材料的发射光谱和第二客体材料的吸收光谱具有更大的重叠范围,进而可以提高第二发光层25的第二客体材料的发光效率。
在一些实施例中,第一发光层23的第一客体材料的发射光谱和两种颜色的第二发光层25的第二客体材料的吸收光谱具有重叠。
示例性的,上述第一客体材料发出的光为绿光。
示例性的,上述第一客体材料的发射光谱的峰值的范围为525nm~535nm,第二绿色发光层25G的第二客体材料的吸收光谱的峰值的范围为510nm~520nm,第二红色发光层25R的第二客体材料的吸收光谱的峰值的范围为595nm~605nm。
示例性的,上述第一客体材料的发射光谱的峰值可以为:525nm、527nm、529nm、531nm或535nm等。第二绿色发光层25G的第二客体材料的吸收光谱的峰值可以为:510nm、514nm、516nm、518nm或520nm等。第二红色发光层25R的第二客体材料的吸收光谱的峰值可以为:595nm、597nm、600nm、602nm或605nm等。
这样设置,可以使第一发光层23的第一客体材料的发射光谱和多个第二发光层25的第二客体材料的吸收光谱具有更大的重叠范围,进而可以提高第二发光层25的第二客体材料的发光效率。
在一些实施例中,在第一发光层23的第一客体材料包括两种发光材料的情况下,两种发光材料中,至少一种发光材料掺杂有硼元素,硼元素的掺杂比例的范围为0.5%~5%。
示例性的,硼元素的掺杂比例可以为:0.5%、1.5%、3.5%、4%或5%等。
在一些实施例中,第一发光层23的第一客体材料包括:荧光类材料、磷光类材料和热活化延迟荧光材料中的至少一种材料。
示例性的,荧光类材料包括:芘类、稠咔唑类及含硼类材料等。磷光类材料包括铱(Ir)及铂(Pt)络合物等。热活化延迟荧光材料一般具有D-A结构,且热活化延迟荧光材料的S1-T1<0.3eV,其中,S1表示材料的激发单重态的能级,T1表示材料的三重电子激发态的能级。
在一些实施例中,第一发光层23还包括第一主体材料。第一发光层23的第一主体材料为单一主体材料或PN混合型主体材料。
示例性的,第一主体材料包括蒽类材料、芴类材料、芘类材料和咔唑类衍生物材料中的至少一种材料。在一些实施例中,第一发光层23的厚度范围为15nm~60nm。
示例性的,第一发光层23的厚度可以为:15nm、20nm、35nm、45nm或60nm等。
在一些实施例中,至少一种颜色的第二发光层25的第二客体材料包括至少一种发光材料。在上述第二客体材料包括两种发光材料的情况下,两种发光材料的发射光谱峰值之间的间距小于或等于30nm。
可选地,第二红色发光层可以包括至少一种发光材料,或者,第二绿色发光层可以包括至少一种发光材料,或者,第二蓝色发光层可以包括至少一种发光材料。可选地,第二红色发光层和第二绿色发光层均可以包括至少一种发光材料。
示例性的,上述第二客体材料包括的发光材料的种类可以为:一种或两种等。本公开 对此不做限定。
可以理解的,不同发光材料可以发出不同颜色的光,在第二发光层25的第二客体材料包括一种发光材料的情况下,上述第二发光层25可以发出一种颜色的光;在第二发光层25的第二客体材料包括两种发光材料的情况下,上述第二发光层25可以发出两种颜色的光。
示例性的,在第二发光层25的第二客体材料包括两种发光材料的情况下,两种发光材料中,其中一种发光材料的发射光谱与另一种发光材料的吸收光谱具有重叠范围,这样设置,可以增加上述两种发光材料的发光效率。
示例性的,在第二发光层25的第二客体材料包括两种发光材料的情况下,上述两种发光材料的发射光谱峰值之间的间距可以为:1nm、10nm、19nm、25nm或30nm等。
通过使第二发光层25的第二客体材料中的两种发光材料的发射光谱峰值之间的间距小于或等于30nm,可以使第二客体材料的两种发光材料发出的光线的颜色更加相近,提高第二发光层25发出光线的色纯度。
在一些实施例中,在至少一种颜色的第二发光层25的第二客体材料包括两种发光材料的情况下,两种发光材料中,至少一种发光材料掺杂有硼元素,硼元素的掺杂比例的范围为0.5%~5%。
示例性的,硼元素的掺杂比例可以为:0.5%、1.5%、3.5%、4%或5%等。
在一些实施例中,上述第二客体材料包括:荧光类材料、磷光类材料及具有多重共振特性的热活化延迟荧光材料中的至少一种材料。
在一些实施例中,至少一种颜色的第二发光层25还包括第二主体材料。上述第二主体材料包括双极性主体材料。
在一些实施例中,上述第二主体材料为单一主体材料或PN混合型主体材料。
在一些示例中,在上述第二主体材料为PN混合型主体材料的情况下,N型组分具有热活化延迟荧光特性。
需要说明的是,在上述N型组分具有热活化延迟荧光特性的情况下,可以提高第二发光层25中第二客体材料的发光效率。
在一些实施例中,第二发光层25的厚度范围为10nm~50nm。
示例性的,第二发光层25的厚度可以为:10nm、20nm、28nm、38nm或50nm等。
在一些实施例中,如图6所示,微腔A包括多个子微腔A1,多个子微腔A1包括与第二红色发光层25R对应的红色子微腔A1-R、与第二绿色发光层25G对应的绿色子微腔A1-G、与第二蓝色发光层25B对应的蓝色子微腔A1-B。位于阳极层21和阴极层27之间的、且与任一种颜色的子微腔A1相对应的膜层数量为d,上述d个膜层的光学厚度为L,L满足:
Figure PCTCN2022118555-appb-000019
其中,d为正整数,n m为上述d个膜层中的第m个膜层的折射率,r m为第m个膜层的厚度,k为自然数,λ为目标光谱峰值波长,
Figure PCTCN2022118555-appb-000020
为目标光在阳极层21反射后引起的相移。
需要说明的是,在多个第二发光层25包括:多个第二蓝色发光层25B、多个第二红色发光层25R及多个第二绿色发光层25G的情况下,上述n m为上述d个膜层中的第m个膜 层对红光、绿光或蓝光的中心波长的折射率。
示例性的,在需要蓝光发生干涉的情况下,上述λ为蓝光的波长;在需要红光发生干涉的情况下,上述λ为红光的波长;在需要绿光发生干涉的情况下,上述λ为绿光的波长。
示例性的,在红色子微腔A1-R的L满足上述公式的情况下,第二红色发光层25R发出的红光能够在红色子微腔A1-R产生微腔效应,从而可以增加红光的亮度及增加红光的色纯度。
同样的,第二绿色发光层25G发出的绿光和第二蓝色发光层25B发出的蓝光也能够在相应的子微腔A1中产生微腔效应,从而可以增加绿光和蓝光的亮度及增加绿光和蓝光的色纯度。
在一些实施例中,蓝色子微腔A1-B的长度小于红色子微腔A1-R的长度。蓝色子微腔A1-B的长度小于绿色子微腔A1-G的长度。
示例性的,红光的波长的范围为615nm~630nm,绿光的波长的范围为515nm~535nm,红光的波长的范围为460nm~475nm。因此,在红光、绿光、蓝光均能产生微腔效应的情况下,蓝色子微腔A1-B的长度最小。
需要说明的是,第一辅助层22、第二辅助层24、第三辅助层26中的任一者可以包括一个膜层或者依次层叠设置的多个膜层,在第一辅助层22、第二辅助层24、第三辅助层26中的任一者包括多个膜层的情况下,每个膜层可以具有不同的功能,从而可以使第一辅助层22、第二辅助层24、第三辅助层26可以具有多种功能。
在一些示例中,如图7所示,第一辅助层22包括透光导电层221、空穴注入层222、第一空穴传输层223以及电子阻挡层224。
透光导电层221透光性和导电性较好,在光线射向透光导电层221的情况下,光线可以穿过透光导电层221并射向阳极层21,阳极层21的光反射性能较好,因此光线能够在阳极层21和透光导电层221发生反射。
示例性的,透光导电层221的材料例如可以包括ITO(Indium Tin Oxide,氧化铟锡)、IZO(Indium Zinc Oxide,氧化铟锌)等。
示例性的,透光导电层221的厚度小于或等于10nm。可选的,透光导电层221的厚度范围为5nm~10nm。
例如,透光导电层221的厚度可以为:5nm、6.5nm、8nm、9nm或10nm等。
示例性的,空穴注入层222可以在第一空穴传输层223的材料中掺杂P型掺杂剂(例如MnO 3、F4TCNQ等)形成,P型掺杂剂掺杂比例小于或等于5%,空穴注入层222的厚度小于或等于10nm。
例如,上述第一空穴传输层223的材料中P型掺杂剂掺杂比例可以为:1%、2%、3%、4%或5%等。空穴注入层222的厚度可以为:1nm、3nm、5nm、8nm或10nm等。
示例性的,第一空穴传输层223的材料包括空穴迁移率较高的咔唑类材料。第一空穴传输层223可以通过蒸镀工艺制作形成。
示例性的,电子阻挡层224的厚度小于或等于10nm。例如,电子阻挡层224的厚度可以为:1nm、3nm、5nm、8nm或10nm等。
示例性的,空穴注入层222材料的HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)能级、第一空穴传输层223材料的HOMO能级、电子阻挡层224材料的HOMO能级依次增大,这样设置可以降低空穴的注入势垒,提高空穴的迁移率,有利于空 穴从阳极层21注入并依次传输至第一发光层23中,进而可以提高第一发光层23中空穴的累积量,提高第一发光层23的发光效率和发光寿命。
示例性的,第一空穴传输层223材料的HOMO能级范围为-5.2eV~-5.6eV。例如,第一空穴传输层223材料的HOMO能级可以为:-5.2eV、-5.3eV、-5.4eV、-5.5eV或-5.6eV等。
示例性的,电子阻挡层224材料的HOMO能级范围为-5.5eV~-5.9eV。例如,电子阻挡层224材料的HOMO能级包括:-5.5eV、-5.6eV、-5.7eV、-5.8eV、-5.9eV等。
示例性的,电子阻挡层224材料的T1大于第一发光层23中发光材料的T1,这样可以阻止电子和/或激子从第一发光层23泄露,保持第一发光层23中电子和/或激子的浓度,保证第一发光层23的发光效率。
例如,电子阻挡层224材料的T1比第一发光层23中发光材料的T1至少高0.2eV。
在一些示例中,如图7所示,第二辅助层24包括第一空穴阻挡层241、第一电子传输层242、第一电荷产生层243、第二电荷产生层244以及微腔调节层245。
示例性的,第一空穴阻挡层241的材料的HOMO能级绝对值大于第一发光层23的材料的HOMO能级绝对值。第一空穴阻挡层241用于防止空穴和/或激子从第一发光层23泄露。
例如,第一空穴阻挡层241的材料的HOMO能级绝对值比第一发光层23的材料的HOMO能级绝对值至少大0.2eV。
示例性的,第一空穴阻挡层241的材料的T1高于第一发光层23中包含的发光材料的T1。
例如,第一空穴阻挡层241的材料的T1比第一发光层23中包含的发光材料的T1至少高0.2eV。
示例性的,第一空穴阻挡层241的材料包括三嗪类材料等。
示例性的,第一空穴阻挡层241的厚度小于或等于10nm。例如,第一空穴阻挡层241的厚度为:1nm、3nm、5nm、8nm或10nm等。
示例性的,第一电子传输层242的材料包括:噻吩类材料、咪唑类材料、吖嗪类衍生物材料、喹啉锂中的至少一种材料。第一电子传输层242可以用噻吩类、咪唑类、或吖嗪类衍生物等,与喹啉锂共混的方式制备得到,其中喹啉锂的质量占比范围为30%~70%。
例如,上述喹啉锂的质量占比为:30%、40%、50%、60%或70%等。
示例性的,第一电子传输层242的厚度范围为15nm~50nm。例如,第一电子传输层242的厚度为:15nm、23nm、35nm、40nm或50nm等。
示例性的,第一电荷产生层243和第二电荷产生层244用于使发光器件层2中的第一发光层23和第二发光层25形成串联发光,从而增加显示基板100的整体发光亮度。
示例性的,第一电荷产生层243可在第一电子传输层242材料中掺杂低函数金属(如锂(Li)、镱(Yb)、钙(Ca)等)形成,上述掺杂比例小于或等于5%。第一电荷产生层243的厚度小于或等于10nm。
例如,上述低函数金属的掺杂比例可以为:1%、2%、3%、4%或5%等。第一电荷产生层243的厚度可以为:1nm、3nm、5nm、8nm或10nm等。
示例性的,第二电荷产生层244可在下述的第二空穴传输层245材料中掺杂P型掺杂剂(如MnO 3或F4TCNQ等)形成,上述掺杂比例小于或等于5%。第一电荷产生层243的 厚度小于或等于10nm。
例如,上述P型掺杂剂的掺杂比例可以为:1%、2%、3%、4%或5%等。第二电荷产生层244的厚度可以为:1nm、3nm、5nm、8nm或10nm等。
可选地,第一电荷产生层243又可以称为N型电荷产生层(N-CGL),第二电荷产生层244又可以称为P型电荷产生层(P-CGL)。
示例性的,微腔调节层245的厚度可调,通过调整微腔调节层245的厚度,可以调整多个子微腔A1的长度,使多个子微腔A1对应的光线均能产生微腔效应。
在一些实施例中,如图6所示,微腔调节层245包括:第二空穴传输层2451、设置在第二空穴传输层2451和第二红色发光层25R之间的红色子微腔调节层245R、设置在第二空穴传输层2451和第二绿色发光层25G之间的绿色子微腔调节层245G、及设置在第二空穴传输层2451和第二蓝色发光层25B之间的蓝色子微腔调节层245B。其中,红色子微腔调节层245R和蓝色子微腔调节层245B之间的厚度不同,绿色子微腔调节层245G和蓝色子微腔调节层245B之间的厚度不同。
示例性的,第二空穴传输层245的材料包括空穴迁移率较高的咔唑类材料。第二空穴传输层245可以通过蒸镀工艺制作形成。
示例性的,第二空穴传输层245用于降低空穴的注入势垒,提高空穴的迁移率,有利于空穴传输至第二发光层25中,进而可以提高第二发光层25中空穴的累积量,提高第二发光层25的发光效率和发光寿命。
例如,第二空穴传输层245材料的HOMO能级范围为-5.2eV~-5.6eV。例如,第二空穴传输层245材料的HOMO能级包括:-5.2eV、-5.3eV、-5.4eV、-5.5eV、-5.6eV等。
示例性的,红色子微腔调节层245R、绿色子微腔调节层245G及蓝色子微腔调节层245B的材料的T1高于第二发光层25的发光材料的T1。
例如,红色子微腔调节层245R、绿色子微腔调节层245G及蓝色子微腔调节层245B的材料的T1比第二发光层25的发光材料的T1至少高0.2eV。
示例性的,蓝色子微腔调节层245B的厚度小于或等于10nm。
例如,蓝色子微腔调节层245B的厚度可以为:1nm、3nm、5nm、7nm或10nm等。
示例性的,第二空穴传输层2451的厚度、红色子微腔调节层245R的厚度、绿色子微腔调节层245G的厚度及蓝色子微腔调节层245B的厚度均单独可调,通过调整第二空穴传输层2451的厚度、红色子微腔调节层245R的厚度、绿色子微腔调节层245G的厚度及蓝色子微腔调节层245B的厚度,可以调整多个子微腔A1的长度,使多个子微腔A1对应的光线均能产生微腔效应。
如上所述,红光、绿光、蓝光的波长不同,在红光、绿光、蓝光均能产生微腔效应的情况下,红光子微腔A1-R和蓝光子微腔A1-B之间的长度不同,绿光子微腔A1-G和蓝光子微腔A1-B之间的长度不同。如图6所示,多个子微腔A1共用第一辅助层22、第一发光层23、第二辅助层24中的部分膜层及第三辅助层26,通过使第二辅助层24中红色子微腔调节层245R和蓝色子微腔调节层245B之间的厚度不同,使第二辅助层24中绿色子微腔调节层245G和蓝色子微腔调节层245B之间的厚度不同,可以通过仅调整红色子微腔调节层245R、绿色子微腔调节层245G及蓝色子微腔调节层245B的厚度使多个子微腔A1满足所需的长度,可以使蓝色子微腔A1-B、红色子微腔A1-R、绿色子微腔A1-G中上述共用的膜层(例如第一辅助层22、第一发光层23及第三辅助层26等)厚度相同,这样 可以简化上述共用的膜层的制作工艺,相应的,简化了显示基板100的制作工艺。
需要说明的是,第二空穴传输层2451、红色子微腔调节层245R、绿色子微腔调节层245G及蓝色子微腔调节层245B的厚度对显示基板100中发光器件层2的电学性能影响较小,通过调整第二空穴传输层2451、红色子微腔调节层245R、绿色子微腔调节层245G及蓝色子微腔调节层245B的厚度从而调整多个子微腔A1的长度,可以减小对显示基板100中发光器件层2的电学性能影响。
可以理解的是,红色子微腔调节层245R、绿色子微腔调节层245G及蓝色子微腔调节层245B中的任一者可以包括一个膜层,或者,红色子微腔调节层245R、绿色子微腔调节层245G及蓝色子微腔调节层245B中任一者可以包括依次层叠设置的多个膜层。
在一些实施例中,如图3所示,红色子微腔调节层245R包括沿远离背板1的方向依次层叠设置的红色空穴传输层245R-1和红色电子阻挡层245R-2,绿色子微腔调节层245G包括沿远离背板1的方向依次层叠设置的绿色空穴传输层245G-1和绿色电子阻挡层245G-2。
示例性的,红色空穴传输层245R-1可以降低空穴的注入势垒,有利于空穴从第二辅助层24注入传输至第二红色发光层25G中,进而可以提高第二红色发光层25G中空穴的累积量,提高第二红色发光层25G的发光效率和发光寿命。绿色空穴传输层245G-1可以降低空穴的注入势垒,有利于空穴从第二辅助层24注入传输至第二绿色发光层25G中,进而可以提高第二绿色发光层25G中空穴的累积量,提高第二绿色发光层25G的发光效率和发光寿命。
示例性的,红色电子阻挡层245R-2用于阻挡电子和/或激子从第二红色发光层25G中溢出,可以将电子和/或激子限制在第二红色发光层25G中,从而提高第二红色发光层25G中的电子和/或激子的浓度,进而提高第二红色发光层25G的发光亮度及发光效率。绿色电子阻挡层245G-2用于阻挡电子和/或激子从第二绿色发光层25G中溢出,可以将电子和/或激子限制在第二绿色发光层25G中,从而提高第二绿色发光层25G中的电子和/或激子的浓度,进而提高第二绿色发光层25G的发光亮度及发光效率。
在一些示例中,红色空穴传输层245R-1和绿色空穴传输层245G-1分别用于调节子微腔A1长度。
可以理解的是,在其他膜层(例如第一辅助层22、第一发光层23等)的厚度不变的情况下,通过改变红色空穴传输层245R-1和绿色空穴传输层245G-1的厚度,可以改变相应的红色子微腔A1-R和绿色子微腔A1-G的长度。
示例性的,通过改变红色空穴传输层245R-1的厚度,可以改变红色子微腔A1-R的长度;进而可以使红光在红色子微腔A1-R产生微腔效应,增加红光的亮度及色纯度。进一步的,还可以改变在红色子微腔A1-R中能够产生微腔效应的光的波长,从而可以对在红色子微腔A1-R处射出的光的颜色进行调整。通过改变绿色空穴传输层245G-1的厚度,可以改变绿色子微腔A1-G的长度;进而可以使绿光在绿色子微腔A1-G产生微腔效应,增加绿光的亮度及色纯度。进一步的,还可以改变在绿色子微腔A1-G中能够产生微腔效应的光的波长,从而可以对在绿色子微腔A1-G处射出的光的颜色进行调整。
在一些示例中,如图7所示,第三辅助层26包括:第二空穴阻挡层261、第二电子传输层262以及电子注入层263。
示例性的,第二空穴阻挡层261的材料的HOMO能级绝对值大于第二发光层25的材 料的HOMO能级绝对值。第二空穴阻挡层261用于防止空穴和/或激子从第二发光层25的泄露。
例如,第二空穴阻挡层261的材料的HOMO能级绝对值比第二发光层25的材料的HOMO能级绝对值至少大0.2eV。
示例性的,第二空穴阻挡层261的材料的T1高于第二发光层25中包含的发光材料的T1。
例如,第二空穴阻挡层261的材料的T1比第二发光层25中包含的发光材料的T1至少高0.2eV。
示例性的,第二空穴阻挡层261的材料包括三嗪类材料等。
示例性的,第二空穴阻挡层261的厚度小于或等于10nm。例如,第二空穴阻挡层261的厚度可以为:1nm、3nm、5nm、8nm或10nm等。
示例性的,第二电子传输层262的材料包括:噻吩类材料、咪唑类材料、吖嗪类衍生物材料、喹啉锂中的至少一种。第二电子传输层262的可以用噻吩类材料、咪唑类材料或吖嗪类衍生物材料,与喹啉锂共混的方式制备得到,其中喹啉锂的质量占比范围为30%~70%。
例如,上述喹啉锂的质量占比可以为:30%、40%、50%、60%或70%等。
示例性的,第二电子传输层262的厚度范围为15nm~50nm。例如,第二电子传输层262的厚度可以为:15nm、23nm、35nm、40nm或50nm等。
示例性的,电子注入层263用于降低电子的注入势垒,有利于电子从阴极层27注入并传输至第二发光层25中,进而可以提高第二发光层25中电子的累积量,提高第二发光层25的发光效率和发光寿命。
示例性的,电子注入层263的材料包括氟化锂(LiF)、镱(Yb)或钙(Ca)等。电子注入层263可以通过蒸镀工艺制作形成。
示例性的,电子注入层263的厚度范围为0.5nm~2nm。例如,电子注入层263的厚度可以为:0.5nm、0.8nm、1.2nm、1.7nm或2nm等。
在一些示例中,如图7所示,显示基板100还包括:依次层叠设置在所述阴极层27上的光学覆盖层3和/或封装层4。
示例性的,光学覆盖层3的材料包括高折射率有机材料。例如,光学覆盖层3对光波长为530nm的光的折射率大于1.9。
示例性的,光学覆盖层3的厚度小于或等于100nm。例如,光学覆盖层3的厚度可以为:10nm、30nm、50nm、80nm或100nm等。
示例性的,封装层4可以避免显示基板100中的膜层(例如第一发光层23、第二发光层25等)与空气中的水氧接触,以降低上述膜层的老化速率,延长显示基板100的使用寿命。
示例性的,封装层4的封装类型包括:框胶封装或薄膜封装等。
需要说明的是,上述多个第二发光层25位于同一层,并构成一发光层组。本公开对第一发光层23的数量和发光层组的数量不做限定,也即第一发光层23的数量和发光层组的数量可以为一个或多个。
在一些示例中,如图8所示,第一发光层23的数量为多个,任意相邻两个第一发光层23之间设置有第二辅助层24;和/或,如图9所示,发光层组的数量为多个,任意相邻两 个发光层组之间设置有第三辅助层26。
示例性的,第一发光层23的数量为:2个、3个、4个、5个或6个等。
通过设置多个第一发光层23,可以增加第一发光层23能够发出的光的总强度,进而可以增加第二发光层25的激发光的强度,增加了显示基板100的发光亮度。
通过设置多个发光层组,可以增加发光层组能够发出的光的总强度,进而可以增加发光层组对第一发光层23发出的光的吸收,进而可以增加发光层组的激发光的强度,增加了显示基板100的发光亮度。
通过在任意相邻两个第一发光层23之间设置第二辅助层24,以及在任意相邻两个发光层组之间设置第三辅助层26,可以保证空穴和电子能够传输至多个第一发光层23和发光层组中产生激子进而使第一发光层23和发光层组发光。
本公开的发明人对本公开的显示基板100的色纯度和发光效率进行了验证。
验证例1:包括对比例1和实施例1。
对比例1的一种显示基板具有红色发光器件、绿色发光器件、蓝色发光器件,另一种显示基板具有第一蓝色发光器件。两种显示基板均包括依次层叠设置的阳极层、透光导电层、空穴注入层、空穴传输层、电子阻挡层、发光层(例如红色发光层、绿色发光层或蓝色发光层)、空穴阻挡层、电子传输层、电子注入层、阴极层。
上述对比例1中红色发光器件中的红色发光层包括红色主体材料和红色磷光发光材料,且红色磷光发光材料的质量占比为5%;绿色发光器件中的绿色发光层包括绿色主体材料和具有多重共振特性的绿色磷光发光材料,且绿色磷光发光材料的质量占比为5%;蓝色发光器件中的蓝色发光层包括蓝色主体材料和深蓝荧光材料(发射光谱的峰值为460nm),且深蓝荧光材料的质量占比为5%。第一蓝色发光器件的蓝色发光层包括普通P型蓝色主体材料、具有热活化延迟荧光特性的蓝色发光材料(发射光谱的峰值为500nm)、以及具有多重共振特性的含硼蓝色荧光材料(发射光谱的峰值为470nm),且上述三种材料的质量占比分别为79%、20%、1%。
对比例1的各显示基板中发光器件对应的各膜层的厚度见下表1。
表1
Figure PCTCN2022118555-appb-000021
实施例1的显示基板100具有红色发光器件、绿色发光器件、蓝色发光器件。显示基板100包括:阳极层、透光导电层、空穴注入层、第一空穴传输层、电子阻挡层、第一发 光层、第一空穴阻挡层、第一电子传输层、第一电荷产生层、第二电荷产生层、第二空穴传输层、各色微腔调节层、各色第二发光层、第二空穴阻挡层、第二电子传输层、电子注入层、阴极层。
实施例1中,第一发光层23的材料与对比例1中第一蓝色发光器件的发光层材料相同,包括普通P型蓝色主体材料、具有热活化延迟荧光特性的蓝色发光材料(发射光谱的峰值为500nm)、以及具有多重共振特性的含硼蓝色荧光材料(发射光谱的峰值为470nm),且上述三种材料的质量占比分别为79%、20%、1%。
且上述实施例1中红色发光器件中的第二发光层25包括红色主体材料和红色磷光发光材料,且红色磷光发光材料的质量占比为5%;绿色发光器件中的第二发光层25包括绿色主体材料和具有多重共振特性的绿色磷光发光材料,且绿色磷光发光材料的质量占比为5%;蓝色发光器件中的第二发光层25包括蓝色主体材料和深蓝荧光材料(发射光谱的峰值为460nm),且深蓝荧光材料的质量占比为5%。
实施例1的显示基板100中各发光器件对应的各膜层的厚度见下表2。
表2
项目 红色发光器件 绿色发光器件 蓝色发光器件
阳极层厚度(nm) 100 100 100
透光导电层厚度(nm) 8 8 8
空穴注入层厚度(nm) 10 10 10
第一空穴传输层厚度(nm) 25 25 25
电子阻挡层厚度(nm) 5 5 5
第一发光层厚度(nm) 30 30 30
第一空穴阻挡层厚度(nm) 6 6 6
第一电子传输层厚度(nm) 10 10 10
第一电荷产生层厚度(nm) 10 10 10
第二电荷产生层厚度(nm) 10 10 10
第二空穴传输层厚度(nm) 40 40 40
各色子微腔调节层厚度(nm) 15 15 15
第二发光层厚度(nm) 25 30 30
第二空穴阻挡层厚度(nm) 10 10 10
第二电子传输层厚度(nm) 35 35 35
电子注入层厚度(nm) 1 1 1
阴极层厚度(nm) 15 15 15
光学覆盖层厚度(nm) 75 75 75
其中,对比例1和实施例1中,空穴注入层的P型掺杂比例为3%。阴极层的材料为镁银合金,且镁银合金中镁和银的质量比为1∶9,电子传输层的材料为(8-羟基喹啉)锂。
如图10所示,该曲线图中的横坐标为波长,单位为nm,纵坐标为光谱相对强度,对比例1的第一蓝色发光器件的发光层和实施例1的蓝色发光器件的第一发光层23的发射光谱p1明显具有双峰特征,上述双峰特征产生的原因是第一发光层23材料中具有热活化延迟荧光特性的蓝色发光材料(发射光谱的峰值为500nm)、以及具有多重共振特性的含 硼蓝色荧光材料(发射光谱的峰值为470nm)发射光谱的叠加。实施例1的红色发光器件的第二发光层25的红色磷光发光材料的吸收光谱p2与蓝色发光器件的第一发光层23的发射光谱p1具有重叠。对比例1和实施例1中各相关量与第一蓝色发光器件的对比关系见表3。
其中,第一蓝色发光器件的驱动电压为4.5V,发光亮度为1000,色坐标为(0.17,0.32),发光效率为38cd/A。
表3
Figure PCTCN2022118555-appb-000022
由上述结果可知,实施例1中的发光器件通过串联方式结合了第一发光层23和第二发光层25后,与对比例1相比,蓝色发光器件和绿色发光器件均表现出数倍提升的效率和相同亮度下数倍提升的寿命。第二发光层25的红色发光器件中不含有可以被第一发光层23发出的光激发的发光材料,因此第二发光层25的红色发光器件维持原有效率水准,且因为微腔调节原因,红色发光层发出的红光的色纯度也未受影响。红色发光层的寿命虽有所下降,但仍保持较高水平。
验证例2:包括对比例2和实施例2。
对比例2的一种显示基板具有红色发光器件、绿色发光器件、蓝色发光器件,另一种显示基板具有第一绿色发光器件。两种显示基板所包括的膜层与对比例1中的显示基板所包括的膜层相同。
对比例2中红色发光器件中的发光层包括P型红色主体材料、具有热活化延迟荧光特性的N型红色主体材料以及红色荧光发光材料,且上述三种材料的质量占比分别为69%、30%、1%;绿色发光器件中的发光层包括绿色主体材料和具有多重共振特性的绿色荧光发光材料,且绿色荧光发光材料的质量占比为1%;蓝色发光器件中的发光层包括蓝色主体材料和深蓝荧光材料(发射光谱的峰值为460nm),且深蓝荧光材料的质量占比为5%。
对比例2的显示基板中各发光器件对应的各膜层的厚度见下表4。
表4
Figure PCTCN2022118555-appb-000023
实施例2的显示基板100的结构与实施例1中的显示基板100的结构相同。
实施例2中,第一发光层23的材料与对比例2中第一绿色发光器件的发光层的材料相同,包括普通P型绿色主体材料、具有热活化延迟荧光特性的绿色发光材料(发射光谱的峰值为460nm),且上述具有热活化延迟荧光特性的绿色发光材料的质量占比为30%。
实施例2中,红色发光器件中的第二发光层25包括P型红色主体材料、具有热活化延迟荧光特性的N型红色主体材料以及红色荧光发光材料,且上述三种材料在第二发光层25材料中的质量占比分别为69%、30%、1%;绿色发光器件中的第二发光层25包括绿色主体材料和具有多重共振特性的绿色荧光发光材料,且绿色荧光发光材料的质量占比为1%;蓝色发光器件中的第二发光层25包括蓝色主体材料和深蓝荧光材料(发射光谱的峰值为460nm),且深蓝荧光材料在第二发光层25材料中的质量占比为5%。
实施例2的显示基板100中各发光器件对应的各膜层的厚度见下表5。
表5
项目 红色发光器件 绿色发光器件 蓝色发光器件
阳极层厚度(nm) 100 100 100
透光导电层厚度(nm) 8 8 8
空穴注入层厚度(nm) 10 10 10
第一空穴传输层厚度(nm) 25 25 25
电子阻挡层厚度(nm) 5 5 5
第一发光层厚度(nm) 30 30 30
第一空穴阻挡层厚度(nm) 8 8 8
第一电子传输层厚度(nm) 10 10 10
第一电荷产生层厚度(nm) 8 8 8
第二电荷产生层厚度(nm) 10 10 10
第二空穴传输层厚度(nm) 40 40 40
各色子微腔调节层厚度(nm) 15 15 15
第二发光层厚度(nm) 20 20 20
第二空穴阻挡层厚度(nm) 10 10 10
第二电子传输层厚度(nm) 35 35 35
电子注入层厚度(nm) 1 1 1
阴极层厚度(nm) 15 15 15
其中,上述空穴注入层的P型掺杂比例为3%。阴极层的材料为镁银合金,且镁银合金中镁和银的质量比为1∶9,电子传输层的材料为(8-羟基喹啉)锂。
如图11所示,该曲线图中横坐标为波长,单位为nm,纵坐标为光谱相对强度,对比例2中第一绿色发光器件及实施例2第一发光层23的发射光谱p3明显具有单峰特征,与实施例2红色发光器件的第二发光层25的吸收光谱p4和绿色发光器件的第二发光层25的吸收光谱p5具有重叠。对比例2和实施例2中各相关量与第一绿色发光器件的对比关系见表6。
其中,对比例2中第一绿色发光器件的驱动电压为3.6V,发光亮度为10000,色坐标为(0.34,0.60),发光效率为53cd/A。
表6
Figure PCTCN2022118555-appb-000024
由上述结果可知,实施例2中将第一发光层23与第二发光层25串联后,与对比例2 相比,红色发光器件和绿色发光器件均表现出更高的效率和相同亮度下更好的寿命水平。蓝色发光器件的第二发光层25无法从第一发光层23获得额外增益,保持了和对比例1中蓝色发光器件相似的效率和寿命水平。
验证例3:包括实施例3-1和实施例3-2。
实施例3-1和实施例3-2的显示基板100均具有红色发光器件、绿色发光器件、蓝色发光器件。实施例3-1和实施例3-2的显示基板100均包括依次层叠设置的阳极层、透光导电层、空穴注入层、第一空穴传输层、电子阻挡层、第一发光层、第一空穴阻挡层、第一电子传输层、第一电荷产生层、第二电荷产生层、第二空穴传输层、各色微腔调节层、各色第二发光层、第二空穴阻挡层、第二电子传输层、电子注入层、阴极层、光学覆盖层。
实施例3-1的显示基板100中各膜层的厚度见下表7。
表7
项目 红色发光器件 绿色发光器件 蓝色发光器件
阳极层厚度(nm) 100 100 100
透光导电层厚度(nm) 8 8 8
空穴注入层厚度(nm) 10 10 10
第一空穴传输层厚度(nm) 25 25 25
电子阻挡层厚度(nm) 5 5 5
第一发光层厚度(nm) 30 30 30
第一空穴阻挡层厚度(nm) 6 6 6
第一电子传输层厚度(nm) 10 10 10
第一电荷产生层厚度(nm) 10 10 10
第二电荷产生层厚度(nm) 10 10 10
第二空穴传输层厚度(nm) 39 39 39
各色子微腔调节层厚度(nm) 15 15 15
第二发光层厚度(nm) 25 30 20
第二空穴阻挡层厚度(nm) 10 10 10
第二电子传输层厚度(nm) 35 35 35
电子注入层厚度(nm) 1 1 1
阴极层厚度(nm) 15 15 15
实施例3-2的显示基板100中各膜层的厚度见下表8。
表8
项目 红色发光器件 绿色发光器件 蓝色发光器件
阳极层厚度(nm) 100 100 100
透光导电层厚度(nm) 8 8 8
空穴注入层厚度(nm) 10 10 10
第一空穴传输层厚度(nm) 40 40 40
电子阻挡层厚度(nm) 5 5 5
第一发光层厚度(nm) 30 30 30
第一空穴阻挡层厚度(nm) 6 6 6
第一电子传输层厚度(nm) 10 10 10
第一电荷产生层厚度(nm) 8 8 8
第二电荷产生层厚度(nm) 8 8 8
第二空穴传输层厚度(nm) 24 24 24
各色子微腔调节层厚度(nm) 10 10 10
第二发光层厚度(nm) 25 30 20
第二空穴阻挡层厚度(nm) 10 10 10
第二电子传输层厚度(nm) 35 35 35
电子注入层厚度(nm) 1 1 1
阴极层厚度(nm) 15 15 15
光学覆盖层厚度(nm) 75 75 75
其中,上述实施例3-1和实施例3-2的空穴注入层的P型掺杂比例为3%。阴极层的材料为镁银合金,且镁银合金中镁和银的质量比为1∶9,电子传输层的材料为(8-羟基喹啉)锂。
实施例3-2相对于实施例3-1,通过调节靠近阳极层21的第一空穴传输层的厚度,可以调节L1光学厚度,同时通过调整远离阳极层21的第二空穴传输层厚度修正各个子微腔A1的长度。即实施例3-2靠近阳极层21的第一空穴传输层厚度比实施例3-1靠近阳极层21的第一空穴传输层厚度大40nm-25nm=15nm,实施例3-2远离阳极层21的第二空穴传输层厚度比实施例3-1远离阳极层21的第二空穴传输层厚度小15nm。
上述实施例3-1相对于实施例3-2的发光纯度及发光效率的结果见表9。
表9
Figure PCTCN2022118555-appb-000025
由上述结果可知,实施例3-2中蓝色发光器件发光效率低,色纯度低。主要是因为蓝色发光器件的对应的上述L 1、L 2、L 3距离优化的尺寸偏差过大,未满足公式:
Figure PCTCN2022118555-appb-000026
导致蓝色子微腔A1-B中谐振的长波模式组分过高。
本公开的另一些实施例还提供了一种显示基板100,如图12所示,显示基板100包括:背板1及发光器件层2。
在一些示例中,如图12所示,发光器件层2包括设置在背板1上的阳极层21、第一辅助层22、第一发光层23、第二辅助层24、多个第二发光层25、第三辅助层26和阴极层27。阳极层21和阴极层27之间形成微腔A。
在一些示例中,多个第二发光层25包括多个第二蓝色发光层25B、多个第二红色发光层25R和多个第二绿色发光层25G。
第一辅助层包括依次层叠的a个膜层,第二辅助层包括依次层叠的b个膜层,第三辅助层包括依次层叠的c个膜层。其中,a、b、c均为正整数。
上述a个膜层的光学厚度、上述b个膜层的光学厚度及上述c个膜层的光学厚度满足公式:
Figure PCTCN2022118555-appb-000027
Figure PCTCN2022118555-appb-000028
为阳极层21和阴极层27之间的膜层的平均折射率,
Figure PCTCN2022118555-appb-000029
的范围为1.7~2.0。r h为上述a个膜层中的第h个膜层的厚度;r i为上述b个膜层中的第i个膜层的厚度;r j为上述c个膜层中的第j个膜层的厚度。
示例性的,
Figure PCTCN2022118555-appb-000030
的值例如可以为:0.7、0.83、0.9、1.1或1.3等。
需要说明的是,上述平均折射率为:位于阳极层21和阴极层27之间的膜层的光学厚度之和,除以,位于阳极层21和阴极层27之间的膜层的的实际厚度之和。或者,上述阳极层21和阴极层27之间的膜层的平均折射率可以通过折射率测试设备(例如折光仪或椭 偏仪)直接测得。
示例性的,
Figure PCTCN2022118555-appb-000031
的值例如可以为:1.7、1.75、1.8、1.9或2.0等。
在一些示例中,在上述各实施例所提供的显示基板100中,位于阳极层21和阴极层27之间的膜层中任意两个膜层的折射率之间的差值小于或等于0.32。这样设置,可以使得位于阳极层21和阴极层27之间的各膜层中任意两个膜层的折射率较为接近,使得位于阳极层21和阴极层27之间的各膜层中任意两个膜层的折射率之间的差值较小,可以减小各膜层之间的折射率突变,使发光器件2a具有良好的出光效率,减少发光器件2a发出的光的色散。
需要说明的是,本实施例中显示基板100的结构,与上述一些实施例中显示基板100的结构相同,可选的,本实施例中的背板1具有与上述一些实施例中的背板1相同的特征,本实施例中的发光器件层2具有与上述一些实施例中的发光器件层2相同的特征,具体可以参见上文中的说明,此处不再赘述。
本公开的又一些实施例还提供了一种显示基板100,如图13所示,显示基板100包括:背板1及发光器件层2。
在一些示例中,如图13所示,发光器件层2包括设置在背板1上的阳极层21、第一辅助层22、第一发光层23、第二辅助层24、多个第二发光层25、第三辅助层26和阴极层27。阳极层21和阴极层27之间形成微腔A。
在一些示例中,第二辅助层24包括电荷产生层247。
示例性的,电荷产生层247可以包括N型电荷产生层(N-CGL)和P型电荷产生层(P-CGL)。
在一些示例中,第一发光层23能够发出至少两种不同颜色的光。
例如,第一发光层23可以发出红光和蓝光,或者,第一发光层23可以发出绿光和蓝光,或者,第一发光层23可以发出红光、绿光和蓝光。
由于上述第一发光层23具有两种不同颜色,因此,该第一发光层23需要在不同的工序中制备形成,其中,一种颜色的第一发光层23可以对应一道工序。例如,上述第一发光层23采用蒸镀工艺形成,此时,可以在一道工序中蒸镀形成一种颜色的第一发光层23,然后在另一道工序中蒸镀形成另一种颜色的第一发光层23。
在一些示例中,多个第二发光层25包括多个第二蓝色发光层25B、多个第二红色发光层25R和多个第二绿色发光层25G。
第一辅助层22包括依次层叠的a个膜层,第二辅助层24包括依次层叠的b个膜层,第三辅助层26包括依次层叠的c个膜层,a、b、c均为正整数。
上述a个膜层的光学厚度、上述b个膜层的光学厚度及上述c个膜层的光学厚度满足公式:
Figure PCTCN2022118555-appb-000032
Figure PCTCN2022118555-appb-000033
为所述阳极层和所述阴极层之间的膜层的平均折射率,
Figure PCTCN2022118555-appb-000034
的范围为1.7~2.0;r h为所述a个膜层中的第h个膜层的厚度,r i为所述b个膜层中的第i个膜层的厚度,r j为所述c个膜层中的第j个膜层的厚度。
示例性的,
Figure PCTCN2022118555-appb-000035
的值例如可以为:0.7、0.83、0.9、1.1或1.3等。
需要说明的是,上述平均折射率为:位于阳极层21和阴极层27之间的膜层的光学厚度之和,除以,位于阳极层21和阴极层27之间的膜层的的实际厚度之和。或者,上述阳极层21和阴极层27之间的膜层的平均折射率可以通过折射率测试设备(例如折光仪或椭偏仪)直接测得。
示例性的,
Figure PCTCN2022118555-appb-000036
的值例如可以为:1.7、1.75、1.8、1.9或2.0等。
在一些示例中,在上述各实施例所提供的显示基板100中,位于阳极层21和阴极层27之间的膜层中任意两个膜层的折射率之间的差值小于或等于0.32。这样设置,可以使得位于阳极层21和阴极层27之间的各膜层中任意两个膜层的折射率较为接近,使得位于阳极层21和阴极层27之间的各膜层中任意两个膜层的折射率之间的差值较小,可以减小各膜层之间的折射率突变,使发光器件2a具有良好的出光效率,减少发光器件2a发出的光的色散。
需要说明的是,本实施例中显示基板100的结构,与上述一些实施例中显示基板100的结构相同,可选的,本实施例中的背板1具有与上述一些实施例中的背板1相同的特征,本实施例中的发光器件层2具有与上述一些实施例中的发光器件层2相同的特征,具体可以参见上文中的说明,此处不再赘述。
在一些示例中,在上述各实施例所提供的显示基板100中,阳极层21和阴极层27之间的膜层的材料种类以及各膜层对波长为460nm的蓝光的折射率见下表10。
表10
膜层名称 材料种类 折射率
空穴注入层 咔唑类掺杂轴烯 1.74
第一空穴传输层 咔唑类 1.74
电子阻挡层 咔唑类 1.87
第一空穴阻挡层 三嗪类 1.88
第一电子传输层 三嗪类 2.00
第一电荷产生层 磷氧类 1.82
第二电荷产生层 咔唑类掺杂轴烯 1.74
第二空穴传输层 咔唑类 1.74
各色子微腔调节层 咔唑类 1.87
第二空穴阻挡层 三嗪类 1.86
第二电子传输层 三嗪类 1.79
电子注入层 金属络合物 1.68
由表10可知,位于阳极层21和阴极层27之间的膜层中任意两个膜层的折射率之间的差值小于或等于0.32,这也就意味着,位于阳极层21和阴极层27之间的各膜层中任意两个膜层的折射率更为接近。通过对位于阳极层21和阴极层27之间的各膜层的材料及折 射率进行选择,可以进一步减小位于阳极层21和阴极层27之间的各膜层中任意两个膜层的折射率之间的差值,可以进一步减小各膜层之间的折射率突变,使发光器件2a具有良好的出光效率,减少发光器件2a发出的光的色散。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种显示基板,包括:
    背板;
    依次层叠设置在所述背板上的阳极层、第一辅助层、第二辅助层、第三辅助层和阴极层;所述阳极层和所述阴极层之间形成微腔;
    设置在所述第一辅助层和所述第二辅助层之间的第一发光层;及,
    设置在所述第二辅助层和所述第三辅助层之间的至少两种不同颜色的多个第二发光层;
    其中,所述第一辅助层包括依次层叠的a个膜层,所述a个膜层的光学厚度为L 1,L 1满足:
    Figure PCTCN2022118555-appb-100001
    a为正整数,n h为所述a个膜层中的第h个膜层的折射率,r h为所述第h个膜层的厚度;
    所述第二辅助层包括依次层叠的b个膜层,所述b个膜层的光学厚度为L 2,L 2满足:
    Figure PCTCN2022118555-appb-100002
    b为正整数,n i为所述b个膜层中的第i个膜层的折射率,r i为所述第i个膜层的厚度;
    所述第三辅助层包括依次层叠的c个膜层,所述c个膜层的光学厚度为L 3,L 3满足:
    Figure PCTCN2022118555-appb-100003
    c为正整数,n j为所述c个膜层中的第j个膜层的折射率,r j为所述第j个膜层的厚度;
    L 1、L 2、L 3满足公式:
    Figure PCTCN2022118555-appb-100004
  2. 根据权利要求1所述的显示基板,其中,
    所述多个第二发光层包括:多个第二蓝色发光层、多个第二红色发光层及多个第二绿色发光层;
    所述第一发光层发出的光的波长,小于至少一种颜色的第二发光层发出的光的波长。
  3. 根据权利要求2所述的显示基板,其中,所述第一发光层包括第一客体材料,第二发光层包括第二客体材料;
    所述第一客体材料的发射光谱,与至少一种颜色的第二发光层的第二客体材料的吸收光谱,至少部分重叠。
  4. 根据权利要求3所述的显示基板,其中,所述第一客体材料的发射光谱与所述第二客体材料的吸收光谱的重叠范围,大于或等于所述第一客体材料的发射光谱波长范围的60%。
  5. 根据权利要求3所述的显示基板,其中,所述第一客体材料的发射光谱与所述第二客体材料的吸收光谱的重叠范围,大于或等于所述第二客体材料的吸收光谱波长范围的60%。
  6. 根据权利要求3~5中任一项所述的显示基板,其中,所述第一客体材料的发射光谱的峰值小于600nm。
  7. 根据权利要求3~6中任一项所述的显示基板,其中,所述第一客体材料包括至少一种发光材料;
    在所述第一客体材料包括两种发光材料的情况下,所述两种发光材料的发射光谱峰值之间的间距小于或等于30nm。
  8. 根据权利要求3~7中任一项所述的显示基板,其中,所述第一客体材料的发射光谱的峰值的范围为465nm~475nm,第二绿色发光层的第二客体材料的吸收光谱的峰值的范围为507nm~517nm。
  9. 根据权利要求3~7中任一项所述的显示基板,其中,所述第一客体材料的发射光谱的峰值的范围为525nm~535nm,第二绿色发光层的第二客体材料的吸收光谱的峰值的范围为510nm~520nm,第二红色发光层的第二客体材料的吸收光谱的峰值的范围为595nm~605nm。
  10. 根据权利要求3~9中任一项所述的显示基板,其中,所述第一客体材料包括至少一种发光材料;
    在所述第一客体材料包括两种发光材料的情况下,所述两种发光材料中,至少一种发光材料掺杂有硼元素,所述硼元素的掺杂比例的范围为0.5%~5%。
  11. 根据权利要求3~10中任一项所述的显示基板,其中,至少一种颜色的所述第二发光层的所述第二客体材料包括至少一种发光材料;
    在所述第二客体材料包括两种发光材料的情况下,所述两种发光材料的发射光谱峰值之间的间距小于或等于30nm。
  12. 根据权利要求3~11中任一项所述的显示基板,其中,至少一种颜色的所述第二发光层的所述第二客体材料包括至少一种发光材料;
    在所述第二客体材料包括两种发光材料的情况下,所述两种发光材料中,至少一种发光材料掺杂有硼元素,所述硼元素的掺杂比例的范围为0.5%~5%。
  13. 根据权利要求11或12所述的显示基板,其中,所述第一客体材料包括:荧光类材料、磷光类材料以及热活化延迟荧光材料中的至少一种材料;和/或,
    所述第二客体材料包括:荧光类材料、磷光类材料或具有多重共振特性的热活化延迟荧光材料中的至少一种材料。
  14. 根据权利要求3~13中任一项所述的显示基板,其中,所述第一发光层还包括第一主体材料,所述第一主体材料包括单一主体材料或PN混合型主体材料。
  15. 根据权利要求3~14中任一项所述的显示基板,其中,至少一种颜色的所述第二发光层材料还包括第二主体材料,所述第二主体材料包括双极性主体材料。
  16. 根据权利要求15所述的显示基板,其中,所述第二主体材料包括单一主体材料或PN混合型主体材料;
    在所述第二主体材料为PN混合型主体材料的情况下,N型材料具有热活化延迟荧光特性。
  17. 根据权利要求2~16中任一项所述的显示基板,其中,所述微腔包括多个子微腔,所述多个子微腔包括与第二红色发光层对应的红色子微腔、与第二绿色发光层对应的绿色子微腔、与第二蓝色发光层对应的蓝色子微腔;
    位于所述阳极层和所述阴极层之间的、且与任一种颜色的子微腔相对应的膜层数量为d,d个膜层的光学厚度为L,L满足:
    Figure PCTCN2022118555-appb-100005
    其中,d为正整数,n m为所述d个膜层中的第m个膜层的折射率,r m为所述第m个膜层的厚度,k为自然数,λ为目标光谱峰值波长,
    Figure PCTCN2022118555-appb-100006
    为目标光在所述阳极层反射后引起的相移。
  18. 根据权利要求17所述的显示基板,其中,
    所述蓝色子微腔的长度小于所述红色子微腔的长度;
    所述蓝色子微腔的长度小于所述绿色子微腔的长度。
  19. 根据权利要求1~18中任一项所述的显示基板,所述第一发光层的厚度范围为15nm~60nm;和/或,
    第二发光层的厚度范围为10nm~50nm。
  20. 根据权利要求2~19中任一项所述的显示基板,其中,所述第一辅助层包括透光导电层、空穴注入层、第一空穴传输层及电子阻挡层;
    和/或,
    所述第二辅助层包括第一空穴阻挡层、第一电子传输层、第一电荷产生层、第二电荷产生层及微腔调节层;
    和/或,
    所述第三辅助层包括:第二空穴阻挡层、第二电子传输层及电子注入层。
  21. 根据权利要求20所述的显示基板,其中,所述微腔调节层包括:
    第二空穴传输层;
    设置在所述第二空穴传输层和第二红色发光层之间的红色子微腔调节层;
    设置在所述第二空穴传输层和第二绿色发光层之间的绿色子微腔调节层;及,
    设置在所述第二空穴传输层和第二蓝色发光层之间的蓝色子微腔调节层;
    其中,所述红色子微腔调节层和所述蓝色子微腔调节层之间的长度不同,所述绿色子微腔调节层和所述蓝色子微腔调节层之间的长度不同。
  22. 根据权利要求21所述的显示基板,其中,所述红色子微腔调节层包括沿远离所述背板的方向依次层叠设置的红色空穴传输层和红色电子阻挡层,所述绿色子微腔调节层包括沿远离所述背板的方向依次层叠设置的绿色空穴传输层和绿色电子阻挡层;
    其中,红色空穴传输层和绿色空穴传输层分别用于调节相应颜色子微腔长度。
  23. 根据权利要求20~22中任一项所述的显示基板,其中,
    所述透光导电层的厚度小于或等于10nm;和/或,
    所述空穴注入层的厚度小于或等于10nm;和/或,
    所述电子阻挡层的厚度小于或等于10nm;和/或,
    所述第一空穴阻挡层的厚度小于或等于10nm;和/或,
    所述第一电子传输层的厚度范围为15nm~50nm;和/或,
    所述第一电荷产生层的厚度小于或等于10nm;和/或,
    所述第二电荷产生层的厚度小于或等于10nm;和/或,
    所述第二空穴阻挡层的厚度小于或等于10nm;和/或,
    所述第二电子传输层的厚度范围为15nm~50nm。
  24. 根据权利要求1~23中任一项所述的显示基板,其中,所述第一发光层的数量为多个,任意相邻两个第一发光层之间设置有所述第二辅助层;
    和/或,
    所述多个第二发光层位于同一层、并构成一发光层组,所述发光层组的数量为多个,任意相邻两个发光层组之间设置有所述第三辅助层。
  25. 一种显示基板,包括:
    背板;
    依次层叠设置在所述背板上的阳极层、第一辅助层、第二辅助层、第三辅助层和阴极层;所述阳极层和所述阴极层之间形成微腔;
    设置在所述第一辅助层和所述第二辅助层之间的第一发光层;及,
    设置在所述第二辅助层和所述第三辅助层之间的至少两种不同颜色的多个第二发光层;
    其中,所述第一辅助层包括依次层叠的a个膜层,所述第二辅助层包括依次层叠的b个膜层,所述第三辅助层包括依次层叠的c个膜层,a、b、c均为正整数;
    所述a个膜层的光学厚度、所述b个膜层的光学厚度及所述c个膜层的光学厚度满足公式:
    Figure PCTCN2022118555-appb-100007
    Figure PCTCN2022118555-appb-100008
    为所述阳极层和所述阴极层之间的膜层的平均折射率,
    Figure PCTCN2022118555-appb-100009
    的范围为1.7~2.0;
    r h为所述a个膜层中的第h个膜层的厚度;r i为所述b个膜层中的第i个膜层的厚度;r j为所述c个膜层中的第j个膜层的厚度。
  26. 一种显示基板,包括:
    背板;
    依次层叠设置在所述背板上的阳极层、第一辅助层、第二辅助层、第三辅助层和阴极层,所述第二辅助层包括电荷产生层,所述阳极层和所述阴极层之间形成微腔;
    设置在所述第一辅助层和所述第二辅助层之间且能发出至少两种不同颜色光的第一发光层;及,
    设置在所述第二辅助层和所述第三辅助层之间的多个第二发光层,所述多个第二发光层包括多个第二蓝色发光层、多个第二红色发光层和多个第二绿色发光层;
    其中,所述第一辅助层包括依次层叠的a个膜层,所述第二辅助层包括依次层叠的b个膜层,所述第三辅助层包括依次层叠的c个膜层,a、b、c均为正整数;
    所述a个膜层的光学厚度、所述b个膜层的光学厚度及所述c个膜层的光学厚度满足公式:
    Figure PCTCN2022118555-appb-100010
    Figure PCTCN2022118555-appb-100011
    为所述阳极层和所述阴极层之间的膜层的平均折射率,
    Figure PCTCN2022118555-appb-100012
    的范围为1.7~2.0;
    r h为所述a个膜层中的第h个膜层的厚度,r i为所述b个膜层中的第i个膜层的厚度,r j为所述c个膜层中的第j个膜层的厚度。
  27. 一种显示装置,包括:如权利要求1~24中任一项所述的显示基板;或,
    包括:如权利要求25所述的显示基板;或,
    包括:如权利要求26所述的显示基板。
PCT/CN2022/118555 2022-07-08 2022-09-13 显示基板及显示装置 WO2024007448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210798416.7 2022-07-08
CN202210798416.7A CN114864839B (zh) 2022-07-08 2022-07-08 显示基板及显示装置

Publications (1)

Publication Number Publication Date
WO2024007448A1 true WO2024007448A1 (zh) 2024-01-11

Family

ID=82625929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118555 WO2024007448A1 (zh) 2022-07-08 2022-09-13 显示基板及显示装置

Country Status (2)

Country Link
CN (1) CN114864839B (zh)
WO (1) WO2024007448A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864839B (zh) * 2022-07-08 2022-11-01 京东方科技集团股份有限公司 显示基板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924123A (zh) * 2009-06-12 2010-12-22 索尼公司 有机发光元件、包括该有机发光元件的显示单元和照明装置
CN102709477A (zh) * 2011-03-28 2012-10-03 索尼公司 发光元件、照明装置和显示设备
CN103107288A (zh) * 2011-11-10 2013-05-15 乐金显示有限公司 白光有机发光器件和使用白光有机发光器件的显示装置
CN112768613A (zh) * 2021-01-11 2021-05-07 昆山国显光电有限公司 有机发光器件及显示面板
CN114864839A (zh) * 2022-07-08 2022-08-05 京东方科技集团股份有限公司 显示基板及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457847B2 (ja) * 2009-01-23 2014-04-02 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
KR102299891B1 (ko) * 2014-07-28 2021-09-07 엘지디스플레이 주식회사 유기 발광 소자의 제조 방법
CN104659067B (zh) * 2015-02-06 2018-12-18 京东方科技集团股份有限公司 一种显示基板及其制备方法和一种显示设备
CN106784363B (zh) * 2016-11-24 2018-11-09 上海天马有机发光显示技术有限公司 一种有机发光显示面板、电子设备以及制作方法
CN106684113A (zh) * 2016-12-27 2017-05-17 上海天马有机发光显示技术有限公司 一种有机发光显示面板、装置及其制作方法
CN106654050B (zh) * 2017-01-16 2019-07-30 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置
CN106981504B (zh) * 2017-05-27 2020-03-27 华南理工大学 一种显示面板及显示装置
KR102641027B1 (ko) * 2017-05-31 2024-02-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN111653679B (zh) * 2020-06-18 2023-07-04 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示面板和显示装置
CN111725290B (zh) * 2020-08-03 2022-07-22 昆山工研院新型平板显示技术中心有限公司 显示面板和显示装置
CN113871431A (zh) * 2021-09-17 2021-12-31 深圳市华星光电半导体显示技术有限公司 显示面板和移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924123A (zh) * 2009-06-12 2010-12-22 索尼公司 有机发光元件、包括该有机发光元件的显示单元和照明装置
CN102709477A (zh) * 2011-03-28 2012-10-03 索尼公司 发光元件、照明装置和显示设备
CN103107288A (zh) * 2011-11-10 2013-05-15 乐金显示有限公司 白光有机发光器件和使用白光有机发光器件的显示装置
CN112768613A (zh) * 2021-01-11 2021-05-07 昆山国显光电有限公司 有机发光器件及显示面板
CN114864839A (zh) * 2022-07-08 2022-08-05 京东方科技集团股份有限公司 显示基板及显示装置

Also Published As

Publication number Publication date
CN114864839A (zh) 2022-08-05
CN114864839B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
TWI721472B (zh) 有機發光二極體、有機發光二極體顯示裝置及使用該有機發光二極體顯示裝置的車輛用顯示裝置
US9640591B2 (en) Method of manufacturing organic light emitting display device
KR101429537B1 (ko) 유기발광소자
US11211574B2 (en) Light emitting device and fabrication method thereof, and electronic apparatus
CN106803540B (zh) 有机发光显示装置
KR20180025060A (ko) 유기발광소자 및 이를 구비한 유기발광 표시장치
WO2024007448A1 (zh) 显示基板及显示装置
CN115064647A (zh) 一种显示面板及显示装置
WO2024007449A1 (zh) 显示基板及显示装置
WO2022156313A1 (zh) 蓝色发光层形成用材料、发光器件、发光基板和发光装置
WO2024046281A1 (zh) 发光器件及其制作方法和显示面板
WO2024022202A1 (zh) 发光器件、显示基板及显示装置
Blochwitz‐Nimoth et al. PIN‐OLEDs for active‐matrix‐display use
US8872170B2 (en) Image display system
KR20100021281A (ko) 유기 발광 표시 장치
US20230337451A1 (en) Organic electroluminescent device and full-color display including the same
CN113785409A (zh) Oled显示基板及显示装置
US20210119160A1 (en) Light-emitting element and display device
WO2021203376A1 (zh) 显示基板与显示装置
WO2022077299A1 (zh) 发光器件及其制备方法、发光基板和发光装置
WO2023245436A1 (zh) 一种蓝色顶发射量子点发光器件及显示装置
WO2022179210A1 (zh) 发光器件、发光基板和发光装置
WO2024044873A1 (zh) 发光器件及其制备方法、显示面板、显示装置
CN116471862A (zh) 发光器件、显示基板及显示装置
WO2024000483A1 (zh) 显示面板、显示面板的制备方法和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950009

Country of ref document: EP

Kind code of ref document: A1