WO2024005527A1 - 리튬 이차전지용 양극 및 이의 제조방법 - Google Patents

리튬 이차전지용 양극 및 이의 제조방법 Download PDF

Info

Publication number
WO2024005527A1
WO2024005527A1 PCT/KR2023/008994 KR2023008994W WO2024005527A1 WO 2024005527 A1 WO2024005527 A1 WO 2024005527A1 KR 2023008994 W KR2023008994 W KR 2023008994W WO 2024005527 A1 WO2024005527 A1 WO 2024005527A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
insulating layer
material layer
lithium secondary
Prior art date
Application number
PCT/KR2023/008994
Other languages
English (en)
French (fr)
Inventor
강호준
김성명
이민지
박상환
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230082429A external-priority patent/KR20240002213A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024005527A1 publication Critical patent/WO2024005527A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for lithium secondary batteries and a method of manufacturing the same.
  • lithium secondary batteries have been widely applied not only to small devices such as portable electronic devices, but also to medium-to-large devices such as battery packs of hybrid vehicles or electric vehicles or power storage devices.
  • This lithium secondary battery is a power generating device capable of charging and discharging composed of a stacked structure of positive electrode/separator/negative electrode.
  • the positive electrode contains lithium metal oxide as a positive electrode active material
  • the negative electrode contains a carbon-based negative electrode active material such as graphite.
  • lithium secondary batteries when charging, lithium ions released from the positive electrode are inserted into the carbon-based negative electrode active material of the negative electrode, and when discharging, lithium ions contained within the carbon-based negative electrode active material are inserted into the lithium metal oxide of the positive electrode, thereby preventing charging and discharging. It has a repetitive structure.
  • the capacity ratio of each electrode active material can be expressed as N/P ratio.
  • the N/P ratio is a value calculated by dividing the total capacity of the negative electrode calculated by taking into account the area and/or capacity per weight of the negative electrode by the total capacity of the positive electrode obtained by taking into account the area and/or capacity per weight of the positive electrode. Because it has a significant impact on safety and capacity, it is generally adjusted to have a value of 1 or more.
  • the tab portion of the manufactured negative electrode becomes narrow, which not only causes interference problems during notching or welding of the tabs, but also makes it difficult to control the electrode position when stacking electrodes such as zigzag-skinning. Therefore, there are limitations that limit applicable battery models.
  • the purpose of the present invention is to provide an electrode for a lithium secondary battery that can easily control the N/P ratio of the positive and negative electrodes, has high fairness and productivity, and can be applied to various battery models, and a method of manufacturing the same.
  • the present invention in one embodiment, the present invention
  • It includes a positive electrode current collector, an insulating layer provided on at least one surface of the positive electrode current collector, and a positive electrode active material layer provided on the insulating layer;
  • the insulating layer is discontinuously disposed on the positive electrode current collector based on a cross-sectional structure crossing from one side where the positive electrode tab is disposed to the other side where the positive electrode tab is not disposed, and is a lithium secondary layer having a structure completely covered by the positive electrode active material layer. Provides electrodes for batteries.
  • the positive electrode active material layer is located in the central area based on the cross-sectional structure crossing from one side on which the positive electrode tab is placed to the other side on which the positive electrode tab is not located, a flat portion whose thickness is maintained constant, and is located at the edge of the flat portion and has a thickness of It is divided into a sliding part with a gradient and a boundary part located between the flat part and the sliding part;
  • the insulating layer may be located inside one or more of the sliding portion and the boundary portion.
  • the insulating layer may have a length of 30 mm or less based on the cross-sectional structure crossing from one side where the positive electrode tab is disposed to the other side where the positive electrode tab is not disposed.
  • the insulating layer may have a thickness ratio of 30% or less based on the average thickness of the flat portion.
  • the insulating layer includes one or more metal oxides among Al 2 O 3 , Cr 2 O 3 , TiO 2 , SiO 2 , ZrO 2 and Fe 2 O 3 ; and polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer, polyvinyl alcohol, polyethylene oxide, cellulose acetate, polyacrylonitrile, polyacrylate rubber, polymethacrylate, polyvinylacetate, and styrene-butadiene.
  • the rubber may contain one or more binders.
  • the insulating layer contains 50% by weight or less of metal oxide; And it may include 50% by weight or more of a binder.
  • the sliding portion of the active material layer may further include an auxiliary insulating layer on the outside.
  • the auxiliary insulating layer includes at least one metal oxide selected from Al 2 O 3 , Cr 2 O 3 , TiO 2 , SiO 2 , ZrO 2 and Fe 2 O 3 ; and polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer, polyvinyl alcohol, polyethylene oxide, cellulose acetate, polyacrylonitrile, polyacrylate rubber, polymethacrylate, polyvinylacetate, and styrene-butadiene.
  • the rubber may include one or more binders, and the metal oxide and binder in the auxiliary insulating layer may be the same as or different from the metal oxide and binder included in the insulating layer.
  • It includes forming a positive electrode active material layer on the formed insulating layer,
  • the insulating layer is patterned along the running direction of the positive electrode current collector, and is discontinuously disposed on the positive electrode current collector based on a cross-sectional structure crossing from one side on which the positive electrode tab is disposed to the other side on which the positive electrode tab is not disposed, and the positive electrode active material layer
  • a method for manufacturing a positive electrode for a lithium secondary battery having a structure completely covered by is provided.
  • the step of forming the insulating layer may be performed using a slot die coater, slot nozzle coater, or gravure coater.
  • the insulating layer is formed using an insulating layer coating composition containing a metal oxide and a binder, and the insulating layer coating composition may have a viscosity of 1,000 to 10,000 cps at 25°C.
  • forming the active material layer includes a wet process using a positive electrode slurry containing a positive electrode active material and a binder; Alternatively, it may be performed by a dry process using a positive electrode film containing a positive electrode active material and a binder.
  • forming the active material layer may further include forming an auxiliary insulating layer outside the sliding portion of the formed active material layer.
  • the positive electrode of the present invention described above; cathode; and a separator disposed between the positive electrode and the negative electrode.
  • the positive electrode for a lithium secondary battery according to the present invention has a cross-sectional structure that sequentially includes an insulating layer and a positive electrode active material layer on at least one side of the positive electrode current collector, and the inside edge of the positive active material layer is completely covered with the insulating layer. Accordingly, it is easy to control the shape of the edge (or end) of the positive electrode active material layer, and the capacity per unit area/weight of the end of the positive active material layer is significantly reduced. Therefore, the positive electrode has the advantage of being applicable to various battery models because the N/P ratio can be easily controlled when assembled with the negative electrode.
  • FIG. 1 is a plan view and cross-sectional view showing the location and cross-sectional structure of an insulating layer and a positive active material layer formed on a positive electrode current collector when manufacturing a positive electrode in an embodiment according to the present invention.
  • Figures 2 and 3 are a plan view and a cross-sectional view showing a positive electrode structure manufactured when punching (or notching) a positive electrode current collector on which an insulating layer and an active material layer are formed, as shown in Figure 1.
  • FIG 4 and 5 are cross-sectional views schematically showing the structure of the positive electrode assembly according to the present invention.
  • the present invention in one embodiment, the present invention
  • It includes a positive electrode current collector, an insulating layer provided on at least one surface of the positive electrode current collector, and a positive electrode active material layer provided on the insulating layer;
  • the insulating layer is discontinuously disposed on the positive electrode current collector based on a cross-sectional structure crossing from one side where the positive electrode tab is disposed to the other side where the positive electrode tab is not disposed, and is a lithium secondary layer having a structure completely covered by the positive electrode active material layer. Provides electrodes for batteries.
  • the electrode for a lithium secondary battery according to the present invention is an electrode applied to a lithium secondary battery and may be a positive electrode or a negative electrode that requires a small capacity per area/weight at the end of the active material layer.
  • the positive electrode for a lithium secondary battery includes a positive electrode active material layer provided on at least one side of a positive electrode current collector, and includes an insulating layer between the positive electrode active material layer and the positive electrode current collector.
  • the insulating layer is located in an area where the thickness of the active material layer becomes thinner, specifically, at the edge of the active material layer, so that the N/P ratio of the electrode itself can be easily controlled.
  • the N/P ratio has the advantage of being controllable even during the anode manufacturing process using a coating pattern or when stacking the manufactured anode.
  • Figure 1 shows a surface view and a cross-sectional view showing a positive electrode current collector on which an insulating layer and a positive electrode active material layer are formed when manufacturing a positive electrode according to the present invention.
  • FIGS. 2 and 3 are cross-sectional views showing the structure of the positive electrode manufactured when the positive electrode current collector shown in FIG. 1 is punched (or notched).
  • the positive electrode 1 for a lithium secondary battery according to the present invention has a cross-sectional structure in which a positive electrode active material layer 30 is provided on a positive electrode current collector 10, and an insulating layer 20 is disposed between them. That is, the positive electrode 1 for a lithium secondary battery has a structure in which an insulating layer 20 and a positive electrode active material layer 30 are sequentially stacked on a positive electrode current collector 10.
  • the positive electrode active material layer 30 is a layer that realizes the electrical activity of the positive electrode 1, and a positive electrode slurry containing a positive electrode active material that implements an electrochemical redox reaction during charging and discharging of a lithium secondary battery is used as a positive electrode current collector ( It is manufactured by applying it to at least one surface of 10) and then drying and rolling it. As shown in FIGS. 1 to 3, the positive electrode active material layer 30 manufactured in this way crosses from one side (A') where the positive electrode tab 50 is placed to the other side (A) where the positive electrode tab 50 is not placed.
  • the positive electrode active material layer 30 includes a flat portion 31b having a ratio of 90% or more of the total length of the positive active material layer 30 in the cross-sectional structure (A-A').
  • the flat portion 31b refers to an area where the thickness is maintained constant and the surface is flat.
  • the flat portion 31b is an area that constitutes most of the positive electrode active material layer 30, and includes 93% or more of the total length of the positive active material layer 30; More than 95%; More than 97%; Alternatively, it may have a length ratio of 96% to 99%.
  • the present invention can further increase the energy density of the positive electrode by adjusting the length ratio of the flat portion 31b in the positive electrode active material layer 30 to the above range.
  • the average thickness may be equal to or may be equal to the average thickness of the positive active material layer 30.
  • the average thickness of the positive active material layer 30 may be 50 ⁇ m to 500 ⁇ m, specifically 50 ⁇ m to 400 ⁇ m; 50 ⁇ m to 300 ⁇ m; 50 ⁇ m to 200 ⁇ m; 50 ⁇ m to 150 ⁇ m; 100 ⁇ m to 300 ⁇ m; 150 ⁇ m to 450 ⁇ m; 200 ⁇ m to 400 ⁇ m; 250 ⁇ m to 500 ⁇ m; 80 ⁇ m to 190 ⁇ m; 80 ⁇ m to 140 ⁇ m; 100 ⁇ m to 250 ⁇ m; 100 ⁇ m to 250 ⁇ m; Or it may be 130 ⁇ m to 190 ⁇ m.
  • a boundary portion 31a is located outside the flat portion 31b, and a sliding portion 32 is located outside the boundary portion 31a.
  • the border portion 31a and the sliding portion 32 may be sequentially disposed on both sides of the flat portion 31b as shown in FIG. 2 .
  • the boundary portion 31a and the sliding portion 32 are on one side of the flat portion 31b, specifically the positive electrode, due to the punching (or notching) of the positive electrode sheet performed during the positive electrode manufacturing process as shown in FIG. They may be sequentially disposed only on the side on which the tabs 50 are provided, and only some or none of them may exist on the other side where the positive electrode tabs 50 are not provided.
  • the sliding portion 32 refers to an area located at the edge of the positive active material layer 30 and having a thickness gradient.
  • the sliding portion 30 may have a ratio of 3% or less of the total length of the positive active material layer 30 based on the cross-sectional structure (A-A').
  • the sliding part 32 has a shape where the thickness decreases from the area adjacent to the boundary part 31a to the outer edge of the positive active material layer 30.
  • this sliding portion 32 is 2% or less of the total length based on the cross-sectional structure (A-A') of the positive electrode active material layer 30; 1% or less; 0.5% or less; 0.01% to 1%; Or it may have a ratio of 0.01% to 0.5%.
  • the length ratio is the overall length ratio provided based on the cross-sectional structure (A-A') of the positive active material layer 30, and sliding portions 32 are provided on both sides of the flat portion 121 as shown in FIG. 1.
  • the length ratio of each sliding portion may be halved to 1/2 of the length ratio.
  • the boundary portion 31a is an area located between the flat portion 31b and the sliding portion 32 and forms a boundary between them. Like the flat portion 31b, the boundary portion 31a is maintained at a constant thickness so that the surface can have a flat shape. there is.
  • the boundary portion 31a may occupy the remaining length excluding the length ratio of the previously mentioned flat portion 31b and the sliding portion 32.
  • the boundary portion 31a is less than 7% of the total length of the positive electrode active material layer 30 based on the cross-sectional structure (A-A') of the positive active material layer 30; less than 5%; less than 4%; less than 2.5%; 0.09% ⁇ 3%; Or it may have a ratio of 0.5 to 1%.
  • the boundary portion 31a may be halved to 1/2 of the length ratio of each boundary portion when the boundary portion 32 is provided on both sides of the flat portion 121.
  • the reference length of the cross-sectional structure (A-A') of the boundary portion 31a may have a ratio of 50% to 300%, specifically 50% to 200%, with respect to the average thickness of the positive active material layer 30. ; 50% to 150%; 50% to 100%; 100% to 300%; 100% to 200%; Or it may have a ratio of 150% to 300%.
  • boundary portion 31a may have a length of 0.8 to 1.2 times the length of the sliding portion 32 based on the cross-sectional structure (A-A'), and in some cases, may be the same as the length of the sliding portion 32. can do.
  • the present invention can control the position of the insulating layer provided inside the positive electrode active material layer more accurately by controlling the length ratio of the boundary portion 31a of the positive electrode active material layer 30 as described above. Through this, the present invention can prevent the N/P ratio of the electrode assembly from being reduced to less than 1 even if the end of the anode deviates from the end of the cathode when assembling the anode and the cathode.
  • an insulating layer 20 is provided inside the edge of the positive electrode active material layer 30.
  • the insulating layer 20 is located inside the edge of the active material layer 30, causing a decrease in capacity per unit area/weight at the end of the positive active material layer 30 based on the cross-sectional structure (A-A'). And, at the same time, it has the function of adjusting the inclination angle (or sliding angle) and/or shape of the sliding part 32.
  • the insulating layer 20 is selectively disposed only inside the edge of the positive electrode active material layer 30 based on the cross-sectional structure (A-A'), so that when analyzing the cross-sectional structure (A-A') of the positive electrode 1 It may have a structure provided discontinuously on the positive electrode current collector 10.
  • the energy density of the positive electrode 1 is realized to be higher compared to the case where the insulating layer 20 is continuously disposed on the positive electrode current collector 10 to form one layer.
  • the insulating layer 20 is provided inside the edge of the positive electrode active material layer 30, and its position can be appropriately adjusted to adjust the energy density of the positive electrode and the N/P ratio when assembling the electrode.
  • the insulating layer 20 may be located inside one or more of the boundary portion 31a and the sliding portion 32 of the positive active material layer 30.
  • the insulating layer 20 may be located inside the boundary portion 31a or the sliding portion 32 of the positive active material layer 30, and in some cases, one insulating layer 20 may be located inside the boundary portion 31a. and may be located on the inside of the sliding portion 32.
  • the electrode 1 for a lithium secondary battery according to the present invention is formed by sequentially stacking the insulating layer 20 and the active material layer 30 on the electrode current collector 10 and then punching ( or notching).
  • the insulating layer 20 may be disposed on the edge of the side where the positive electrode tab 50 is located, that is, the tab portion (A' side) among the edges of the positive active material layer 30 of the punched positive electrode.
  • the insulating layer 20 may be optionally further disposed on the edge of the other side of the tab portion, that is, the bottom portion (side A).
  • lithium secondary batteries may precipitate on the surface of the negative electrode end when charging and discharging.
  • One of the causes of lithium precipitation occurs when the N/P ratio, which represents the capacity per unit area/weight of the positive and negative electrodes included in the electrode assembly, falls below 1 at the ends. Therefore, in order to suppress lithium precipitation on the surface of the cathode end, it is desirable to prevent the N/P ratio at the end of the electrode assembly from falling below 1.
  • the present invention is characterized by lowering the capacity per unit area/weight of the end of the positive electrode active material layer 30 by introducing an insulating layer 20 at the end of the positive electrode active material layer 30. Accordingly, the anode 1 can maintain the N/P ratio at 1 or more at the end of the electrode assembly when assembled with the cathode.
  • the end of the positive electrode active material layer 30 corresponds to the side of the positive active material layer 30 in the cross-sectional structure (A-A') and is included in the sliding portion 32.
  • the positive electrode 1 according to the present invention may include an insulating layer 20 inside the sliding portion 32 including the end of the positive electrode active material layer 30.
  • the average thickness or loading amount of the positive electrode active material layer 30 of the positive electrode 1 varies depending on the model or product standard of the lithium secondary battery to which the electrode assembly is applied.
  • the average thickness or loading amount of the positive electrode active material layer 30 may be adjusted by the viscosity of the positive electrode slurry used when forming the positive active material layer 30.
  • the degree to which the positive electrode slurry is pushed out of the edge of the applied positive electrode slurry varies depending on the viscosity (in other words, 'flowability'), so the sliding portion 32 of the positive electrode active material layer 30 varies depending on the viscosity.
  • the inclination angle (or sliding angle) or shape may be different.
  • the sliding portion 32 of the positive active material layer 30 may cause various safety problems, such as causing an internal short circuit, depending on the inclination angle or shape, so control of the inclination angle or shape is necessary.
  • the present invention includes an insulating layer 20 inside the boundary portion 31a of the positive active material layer 30, so that the inclination angle (or sliding angle) and/or shape of the sliding portion 32 can be adjusted.
  • the shape of the insulating layer 20 can be controlled by increasing the inclination angle of the sliding part 31a inside the boundary part 31a and shortening the length ratio of the sliding part 31a when forming the positive active material layer 30.
  • the positive electrode 1 may include the insulating layer 20 solely inside the boundary portion 31a or the sliding portion 32 of the positive electrode active material layer 30.
  • the anode 1 may include one insulating layer 20 on the inside across the boundary portion 31a and the sliding portion 32, as shown in FIG. 1.
  • the insulating layer 20 according to the present invention may have a structure that is completely covered by the positive electrode active material layer 30 based on the cross-sectional structure (A-A') and is not exposed to the outside.
  • the positive electrode 1 of the present invention includes an insulating layer 20 completely covered with the positive electrode active material layer 30, and regardless of the manufacturing method or process, the loading amount or per unit area/weight of the positive active material layer 30 is Capacity can be controlled effectively.
  • the positive electrode active material layer 30 has a problem in that it is difficult to control the inclination angle (or sliding angle) or shape of the sliding portion 32 when the insulating layer 20 is not completely covered by the positive active material layer 30. .
  • the size of the insulating layer 20 may be controlled so as to have a structure that is completely covered by the positive electrode active material layer 30 without reducing the energy density of the positive electrode active material layer 30.
  • the length (or width) of the insulating layer 20 may satisfy a predetermined range based on the cross-sectional structure (A-A').
  • the insulating layer 20 may have a length of 30 mm or less based on the cross-sectional structure (A-A'), specifically 0.2 to 30 mm; 0.5 to 30 mm; 1 to 30 mm; 5 to 30 mm; 10 to 30 mm; 15 to 25 mm; 5 to 20 mm; 10 to 25 mm; 1 to 20 mm; 0.5 to 5 mm; 0.5 to 10 mm; 0.2 to 1 mm; Alternatively, it may have a length of 10 to 15 mm.
  • the sliding portion 32 is 5 to 18 mm when the boundary between the uncoated portion of the electrode current collector and the sliding portion 32 is clear as shown in Figure 1; Alternatively, it may have a length of 1 to 4 mm.
  • the present invention can easily control the shape of the sliding portion 32 and the developed capacity of the positive active material layer 30 by adjusting the length (or width) of the insulating layer 20 within the above-described range.
  • the insulating layer 20 may have a thickness of 30% or less compared to the thickness of the flat portion. Specifically, the insulating layer 20 has a thickness of 1 to 30% compared to the thickness of the flat portion; 1 to 25%; 1 to 20%; 5 to 20%; 10 to 25%; 15 to 30%; 20 to 30%; 13 to 22%; Alternatively, it may have a thickness of 8 to 20%.
  • the present invention adjusts the average thickness of the insulating layer 20 to the above range to prevent the insulating effect of the insulating layer 20 and the capacity lowering effect at the end of the positive active material layer 30 from being insufficiently realized due to the significantly thinner thickness. You can.
  • the present invention can prevent the sliding angle and/or shape control of the end of the positive active material layer 30 from becoming difficult due to excessive thickness of the insulating layer 20.
  • the insulating layer 20 may be made of a material that does not exhibit electrochemical charge/discharge capacity in order to provide insulation and at the same time lower the capacity per unit area/weight of the end portion of the positive active material layer 30.
  • the insulating layer 20 may have a structure in which inorganic particles exhibiting insulating properties and a binder are mixed.
  • the insulating layer 20 is one or more metal oxides among Al 2 O 3 , Cr 2 O 3 , TiO 2 , SiO 2 , ZrO 2 and Fe 2 O 3 ; and polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer, polyvinyl alcohol, polyethylene oxide, cellulose acetate, polyacrylonitrile, polyacrylate rubber, polymethacrylate, polyvinylacetate, and styrene-butadiene.
  • the rubber may contain one or more binders.
  • the metal oxides have the advantage of not developing electrochemical capacity while providing insulation, and at the same time being able to realize mechanical properties similar to those of the active material layer 30.
  • the binder has high miscibility with the binder applied to the positive electrode active material layer 30, so it can provide high adhesion to the positive electrode active material layer 30.
  • the insulating layer 20 may include metal oxide and binder at a constant weight ratio. Specifically, the insulating layer 20 may contain 50% by weight or less of metal oxide and 50% by weight or more of a binder.
  • the insulating layer 20 includes 1 to 50% by weight, 1 to 40% by weight, 1 to 30% by weight, 1 to 20% by weight, or 1 to 10% by weight of metal oxide; 50-99% by weight, 60-99% by weight, 70-99% by weight; It may contain 80 to 99% by weight, or 90 to 99% by weight, of a binder.
  • the present invention can improve the adhesion between the insulating layer 20 and the positive electrode active material layer 30 by adjusting the weight ratio of the metal oxide and binder contained in the insulating layer 20 to the above range.
  • the capacity per unit area/weight at the end of the positive electrode active material layer 30 can be lowered within a range that does not deteriorate the electrical properties of the electrode.
  • the positive electrode 1 for a lithium secondary battery according to the present invention may further include an auxiliary insulating layer 40 outside the sliding portion 32 of the positive electrode active material layer 30.
  • the auxiliary insulating layer 40 may be disposed in contact with the sliding portion of the positive electrode active material layer 30.
  • the auxiliary insulating layer 32 may have a shape provided continuously with the sliding part of the positive electrode active material layer 30 in the cross-sectional structure of the positive electrode 1, and the sliding part has a side end of the auxiliary insulating layer 32. ) can be obscured by .
  • the positive electrode 1 can prevent contact between the positive electrode and the negative electrode due to shrinkage of the separator that occurs at the end of the positive electrode active material layer 30 when the battery is exposed to high temperature.
  • the auxiliary insulating layer 40 may have a function of preventing contact between the anode and the cathode due to shrinkage of the separator when the electrode assembly including the anode 1 according to the present invention is exposed to high temperature.
  • the auxiliary insulating layer 40 is made of a material with low electrochemical electrical conductivity and low thermal conductivity in order to implement insulation and at the same time prevent heat generated in the positive active material layer 30 from being transferred to the separator through the end portion. It can be configured. Specifically, the auxiliary insulating layer 40 may have a structure in which inorganic particles exhibiting insulating properties and low thermal conductivity are mixed with a binder.
  • the auxiliary insulating layer 40 is one or more metal oxides among Al 2 O 3 , Cr 2 O 3 , TiO 2 , SiO 2 , ZrO 2 and Fe 2 O 3 ; and polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer, polyvinyl alcohol, polyethylene oxide, cellulose acetate, polyacrylonitrile, polyacrylate rubber, polymethacrylate, polyvinylacetate, and styrene-butadiene.
  • the rubber may contain one or more binders.
  • the auxiliary insulating layer 40 may include metal oxide and binder at a constant weight ratio. Specifically, the auxiliary insulating layer 40 may contain 50% by weight or less of metal oxide and 50% by weight or more of a binder.
  • the auxiliary insulating layer 40 includes 1 to 50% by weight, 1 to 40% by weight, 1 to 30% by weight, 1 to 20% by weight, or 1 to 10% by weight of metal oxide; 50-99% by weight, 60-99% by weight, 70-99% by weight; It may contain 80 to 99% by weight, or 90 to 99% by weight, of a binder.
  • the metal oxide and binder of the auxiliary insulating layer 40 may have the same or different components and contents from the insulating layer 20 included in the active material layer 30.
  • the length (or width) of the auxiliary insulating layer 40 may satisfy a predetermined range based on the cross-sectional structure (A-A').
  • the insulating layer 20 may have a length (or width) of 30 mm or less based on the cross-sectional structure (A-A'), specifically 0.1 mm to 20 mm; 0.5 mm to 15 mm; 0.5 mm to 10 mm; 1 mm to 5 mm; 10 mm to 20 mm; 5 mm to 10 mm; Or it may have a length (or width) of 3 mm to 8 mm.
  • the present invention can minimize the contact area between the positive electrode active material layer 30 and the separator by controlling the length (or width) of the auxiliary insulating layer 40 within the above-described range, thereby preventing shrinkage of the separator when exposed to high temperatures.
  • the economic efficiency and fairness of manufactured anodes can be improved.
  • the positive electrode active material layer 30 includes a positive electrode active material and, in some cases, may further include a conductive material, binder, and other additives.
  • the positive electrode active material is an active material capable of reversibly intercalating and deintercalating lithium ions, and includes at least one of lithium metal complex oxide represented by the following formula (1) and lithium iron phosphate represented by the following formula (2) can do:
  • M 1 is composed of W, Cu, Fe, V, Cr, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B and Mo.
  • x, y, z, w, v and u are 1.0 ⁇ x ⁇ 1.30, 0.6 ⁇ y ⁇ 0.95, 0.01 ⁇ z ⁇ 0.5, .01 ⁇ w ⁇ 0.5, 0 ⁇ v ⁇ 0.2, 1.5 ⁇ u ⁇ 4.5 ,
  • M 2 is one or more doping elements selected from the group consisting of Ni, Co, Mn and V,
  • p and q are 0.05 ⁇ p ⁇ 0.2 and 2 ⁇ q ⁇ 6, respectively.
  • the lithium metal complex oxide represented by Formula 1 is silver Li(Ni 0.6 Co 0.2 Mn 0.2 )O 2 , Li(Ni 0.7 Co 0.15 Mn 0.15 )O 2 , Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 , Li(Ni 0.9 Co 0.05 Mn 0.05 )O 2 , Li(Ni 0.6 Co 0.2 Mn 0.1 Zr 0.1 )O 2 , Li(Ni 0.6 Co 0.2 Mn 0.15 Zr 0.05 )O 2 and Li(Ni 0.7 Co 0.1 Mn 0.1 It may include one or more species selected from the group consisting of Zr 0.1 )O 2 . Additionally, the lithium iron phosphate represented by Formula 2 may include LiFePO 4 and the like.
  • the positive electrode active material may be 85 to 95 parts by weight, specifically 88 to 95 parts by weight, 90 to 95 parts by weight, 86 to 90 parts by weight, or 92 to 95 parts by weight, based on the total 100 parts by weight of the positive electrode active material layer 30. It could be wealth.
  • the conductive material is used to improve the electrical performance of the anode 1, and may be those commonly used in the industry, but specifically, natural graphite, artificial graphite, carbon black, acetylene black, Denka black, It may include one or more types selected from the group consisting of Ketjen Black, Super-P, Channel Black, Furnace Black, Lamp Black, Summer Black, graphene, and carbon nanotubes.
  • the conductive material may be included in an amount of 0.1 to 5 parts by weight, specifically 0.1 to 4 parts by weight, based on a total of 100 parts by weight of the positive electrode active material layer 30; 2 to 4 parts by weight; 1.5 to 5 parts by weight; 1 to 3 parts by weight; 0.1 to 2 parts by weight; Alternatively, it may be included in 0.1 to 1 part by weight.
  • the binder serves to bind the positive electrode active material and the conductive material to each other, and any binder that has this function can be used without particular restrictions.
  • the binder includes polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-co-HFP), polyvinylidenefluoride (PVdF), polyacrylonitrile, and polymethyl methacryl. It may contain one or more resins selected from the group consisting of polymethylmethacrylate and copolymers thereof.
  • the binder may include polyvinylidenefluoride.
  • the binder may be included in an amount of 1 to 10 parts by weight, specifically 2 to 8 parts by weight, based on a total of 100 parts by weight of the positive electrode active material layer 30; Alternatively, it may contain 1 to 5 parts by weight of the conductive material.
  • the positive electrode 1 may be a positive electrode current collector 10 that has high conductivity without causing chemical changes in the battery.
  • a positive electrode current collector 10 that has high conductivity without causing chemical changes in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, etc. can be used, and in the case of aluminum or stainless steel, surface treatment with carbon, nickel, titanium, silver, etc. can also be used.
  • the average thickness of the positive electrode current collector can be appropriately applied in the range of 3 to 500 ⁇ m considering the conductivity and total thickness of the positive electrode being manufactured.
  • the positive electrode for a lithium secondary battery according to the present invention has the above-described configuration, thereby significantly reducing the capacity per unit area/weight of the positive electrode active material loaded on the edge (or end) of the positive electrode active material layer. Therefore, the positive electrode has a high safety feature because the N/P ratio is reduced to less than 1, preventing lithium from being deposited on the surface of the negative electrode during charging and discharging of a lithium secondary battery. In addition, the positive electrode has the advantage of being applicable to various battery models because the N/P ratio can be easily controlled when assembled with the negative electrode.
  • It includes forming a positive electrode active material layer on the formed insulating layer,
  • the insulating layer is patterned along the traveling direction of the positive electrode current collector, and is discontinuous on the positive electrode current collector based on the cross-sectional structure crossing from one side where the positive electrode tab 50 is disposed to the other side where the positive electrode tab 50 is not disposed.
  • a method of manufacturing an electrode for a lithium secondary battery having a structure arranged and completely covered by a positive electrode active material layer is provided.
  • the method of manufacturing a positive electrode for a lithium secondary battery according to the present invention relates to the method of manufacturing the positive electrode for a lithium secondary battery of the present invention described above.
  • the method for manufacturing a positive electrode according to the present invention preemptively forms an insulating layer at a position corresponding to the edge of the positive electrode active material layer before forming the positive electrode active material layer on the positive electrode current collector, and then completely covers the formed insulating layer. It has a configuration to form a positive electrode active material layer. Accordingly, the above manufacturing method can easily control the inclination angle (or sliding angle) and/or shape of the edge end of the positive electrode active material layer while minimizing changes in electrochemical properties of the positive electrode active material layer.
  • the step of forming the insulating layer can be applied without particular limitations as long as it is possible to form the insulating layer before forming the positive electrode active material layer.
  • the above step may be performed using one or more coating devices among a slot die coater, a slot nozzle coater, and a gravure coater.
  • the insulating layer coating composition may be made of a material that does not exhibit electrochemical charge/discharge capacity in order to provide insulation and lower the capacity per unit area/weight of the end portion of the positive electrode active material layer.
  • the insulating layer coating composition may be a mixture of inorganic particles exhibiting insulating properties and a binder.
  • the insulating layer coating composition includes one or more metal oxides among Al 2 O 3 , Cr 2 O 3 , TiO 2 , SiO 2 , ZrO 2 and Fe 2 O 3 ; and polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer, polyvinyl alcohol, polyethylene oxide, cellulose acetate, polyacrylonitrile, polyacrylate rubber, polymethacrylate, polyvinylacetate, and styrene-butadiene.
  • the rubber may contain one or more binders.
  • the metal oxides have the advantage of not developing electrochemical capacity while providing insulation, and at the same time being able to realize mechanical properties similar to those of the active material layer after drying.
  • the binder has high miscibility with the binder applied to the active material layer, so it can provide high adhesion to the active material layer.
  • the insulating layer coating composition may include a metal oxide and a binder at a constant weight ratio.
  • the insulating layer coating composition may contain 50% by weight or less of metal oxide and 50% by weight or more of a binder.
  • the insulating layer coating composition includes 1 to 50% by weight, 1 to 40% by weight, 1 to 30% by weight, 1 to 20% by weight, or 1 to 10% by weight of a metal oxide; 50-99% by weight, 60-99% by weight, 70-99% by weight; It may contain 80 to 99% by weight, or 90 to 99% by weight, of a binder.
  • the present invention can improve the adhesion between the insulating layer and the active material layer by adjusting the weight ratio of the metal oxide and the binder contained in the insulating layer coating composition to the above range, and can be used at the end of the active material layer within a range that does not deteriorate the electrical properties of the electrode. capacity can be lowered.
  • the insulating layer coating composition may have a viscosity of 1,000 to 10,000 cps at 25°C, specifically 1,000 to 8,000 cps at 25°C; 1,000 to 5,000 cps; 1,000 to 3,000 cps; 5,000 to 10,000 cps; 3,000 to 8,000 cps; Alternatively, it may have a viscosity of 2,000 to 5,000 cps.
  • the length (or width) and average thickness of the manufactured insulating layer can be formed to satisfy predetermined values by controlling the viscosity of the insulating layer coating composition to the above viscosity, and through this, the inclination angle or shape of the end of the positive electrode active material layer can be adjusted to the above viscosity. can be easily controlled.
  • the step of forming the active material layer may be performed through a wet process or a dry process.
  • a positive electrode slurry containing a positive electrode active material and a binder is applied on a positive electrode current collector provided with an insulating layer, and the applied positive electrode slurry is dried. It can be done.
  • a positive electrode film containing a positive electrode active material and a binder may be performed by placing and pressurizing a positive electrode current collector provided with an insulating layer.
  • the positive electrode slurry and the positive electrode film may include a positive electrode active material and a binder, and may further include a conductive material and other additives.
  • the cathode active material is a cathode active material capable of reversibly intercalating and deintercalating lithium ions, and is composed of at least one of lithium metal complex oxide represented by Formula 1 below and lithium iron phosphate represented by Formula 2 below. May include:
  • M 1 is composed of W, Cu, Fe, V, Cr, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B and Mo.
  • x, y, z, w, v and u are 1.0 ⁇ x ⁇ 1.30, 0.6 ⁇ y ⁇ 0.95, 0.01 ⁇ z ⁇ 0.5, .01 ⁇ w ⁇ 0.5, 0 ⁇ v ⁇ 0.2, 1.5 ⁇ u ⁇ 4.5 ,
  • M 2 is one or more doping elements selected from the group consisting of Ni, Co, Mn and V,
  • p and q are 0.05 ⁇ p ⁇ 0.2 and 2 ⁇ q ⁇ 6, respectively.
  • the lithium metal complex oxide represented by Formula 1 is silver Li(Ni 0.6 Co 0.2 Mn 0.2 )O 2 , Li(Ni 0.7 Co 0.15 Mn 0.15 )O 2 , Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 , Li(Ni 0.9 Co 0.05 Mn 0.05 )O 2 , Li(Ni 0.6 Co 0.2 Mn 0.1 Zr 0.1 )O 2 , Li(Ni 0.6 Co 0.2 Mn 0.15 Zr 0.05 )O 2 and Li(Ni 0.7 Co 0.1 Mn 0.1 It may include one or more species selected from the group consisting of Zr 0.1 )O 2 . Additionally, the lithium iron phosphate represented by Formula 2 may include LiFePO 4 and the like.
  • the positive electrode active material may be 85 to 95 parts by weight, specifically 88 to 95 parts by weight, 90 to 95 parts by weight, 86 to 90 parts by weight, or 92 to 95 parts by weight, based on 100 parts by weight of the total positive electrode active material layer. there is.
  • the conductive material is used to improve the electrical performance of the anode, and those commonly used in the industry can be applied, but specifically, natural graphite, artificial graphite, carbon black, acetylene black, Denka black, Ketjen black, It may include one or more types selected from the group consisting of Super-P, channel black, furnace black, lamp black, summer black, graphene, and carbon nanotubes.
  • the conductive material may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the total positive electrode active material layer, and specifically, 0.1 to 4 parts by weight; 2 to 4 parts by weight; 1.5 to 5 parts by weight; 1 to 3 parts by weight; 0.1 to 2 parts by weight; Alternatively, it may be included in 0.1 to 1 part by weight.
  • the binder serves to bind the positive electrode active material and the conductive material to each other, and any binder that has this function can be used without particular restrictions.
  • the binder includes polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-co-HFP), polyvinylidenefluoride (PVdF), polyacrylonitrile, and polymethyl methacryl. It may contain one or more resins selected from the group consisting of polymethylmethacrylate and copolymers thereof.
  • the binder may include polyvinylidenefluoride.
  • the binder may be included in an amount of 1 to 10 parts by weight, specifically 2 to 8 parts by weight, based on 100 parts by weight of the total positive electrode active material layer; Alternatively, it may contain 1 to 5 parts by weight of the conductive material.
  • forming the positive electrode active material layer may further include forming an auxiliary insulating layer outside the sliding portion of the formed positive electrode active material layer.
  • an electrode slurry containing an electrode active material is applied on the electrode current collector and at the same time, an auxiliary insulating layer coating composition for forming an auxiliary insulating layer is applied.
  • An auxiliary insulating layer can be formed on the outside of the sliding portion of the active material layer by applying the auxiliary insulating layer coating composition or continuously applying the auxiliary insulating layer coating composition after applying the electrode slurry and drying it.
  • a positive electrode film is laminated on the positive electrode current collector on which the insulating layer is formed so that the insulating layer is completely covered, and then an auxiliary insulating layer is formed.
  • An auxiliary insulating layer can be formed by applying and drying the auxiliary insulating layer coating composition to the outer end of the positive electrode film.
  • the present invention can prevent the positive electrode slurry applied on the positive electrode current collector from being pushed out to the uncoated portion and lowering the inclination angle of the sliding portion by applying the auxiliary insulating layer coating composition in the same manner as described above.
  • the step of forming the active material layer When the step of forming the active material layer is performed in a wet process, it may be performed in a manner commonly applied in the art, but specifically, it is performed using one or more coating devices among a slot die coater, a slot nozzle coater, and a gravure coater. It can be.
  • the method of manufacturing a positive electrode for a lithium secondary battery according to the present invention may further include the step of forming an active material layer or the step of forming an auxiliary insulating layer on the sliding portion of the active material layer and then punching.
  • the electrode may be punched so that the insulating layer disposed on the bottom is completely covered by the active material layer, as shown in FIG. 2, and as shown in FIG. 3, the insulating layer disposed on the bottom may be partially notched.
  • the electrode can be punched out so that the end of the insulating layer is exposed.
  • the method of manufacturing an electrode for a lithium secondary battery according to the present invention has the above-described configuration to implement a cross-sectional structure that sequentially includes an insulating layer and a positive electrode active material layer on a positive electrode current collector, but the insulating layer is completely covered inside the edge of the positive electrode active material layer. You can. Through this, the manufactured positive electrode has a significantly reduced capacity per unit area/weight of the positive electrode active material loaded on the edge (or end) of the positive electrode active material layer. Therefore, the positive electrode has the advantage of being applicable to various battery models because the N/P ratio can be easily controlled when assembled with the negative electrode.
  • the present invention provides an electrode assembly for a lithium secondary battery including the electrode according to the present invention described above.
  • the electrode assembly for a lithium secondary battery according to the present invention has a structure including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, where the positive electrode includes the positive electrode according to the present invention described above. Since the anode provided in the electrode assembly has the same structure as the previously described anode, detailed description will be omitted.
  • the electrode assembly according to the present invention may include a cathode 200 and an anode 100 according to the present invention, and may have a structure in which a separator 300 is provided between them.
  • the positive electrode 100 includes a positive electrode current collector 110, an insulating layer 120 provided on the positive electrode current collector, and a positive electrode active material layer 130 provided on the insulating layer.
  • the active material layer 130 is located in the center area and has a constant thickness based on the cross-sectional structure (A-A') crossing from one side where the positive electrode tab 50 is disposed to the other side where the positive electrode tab 50 is not disposed.
  • the insulating layer 120 is located inside at least one of the sliding portion and the boundary portion of the active material layer and may have a structure completely covered by them.
  • the positive electrode 100 of this structure has a significantly reduced capacity per unit area/weight of the positive electrode active material loaded on the edge (or end) of the positive electrode active material layer 130, so the N/P ratio is controlled when assembled with the negative electrode 200. Since it is easy to use, it has the advantage of being applicable to various battery models. In addition, the electrode assembly including this has a significantly low possibility of the N/P ratio being lowered to less than 1, and thus can effectively prevent safety problems caused by lithium precipitation on the negative electrode surface during charging and discharging of a lithium secondary battery.
  • the positive electrode 100 may further include an auxiliary insulating layer 140 outside the sliding portion of the positive electrode active material layer 130.
  • the auxiliary insulating layer 140 may be disposed in contact with the sliding portion of the positive electrode active material layer 130.
  • the auxiliary insulating layer 140 may have a shape provided continuously with the sliding part of the positive electrode active material layer 130 in the cross-sectional structure of the positive electrode 100, and the sliding part has a side end of the auxiliary insulating layer 140. ) can be obscured by .
  • the positive electrode 100 can prevent contact between the positive electrode 100 and the negative electrode 200 due to shrinkage of the separator 300 that occurs at the end of the positive electrode active material layer 130 when the battery is exposed to high temperature. there is.
  • the negative electrode 200 includes a negative electrode active material layer 220 containing a negative electrode active material on at least one surface of the negative electrode current collector 210.
  • the negative electrode active material layer 220 includes a carbon-based negative electrode active material to realize electrical activity through a reversible redox reaction when charging and discharging the battery.
  • the carbon-based negative electrode active material refers to a material containing carbon atoms as a main component, and such carbon-based negative electrode active material may include graphite.
  • the graphite may include any one or more of natural graphite and artificial graphite.
  • the carbon-based negative electrode active material may include mixed graphite, which is a mixture of natural graphite and artificial graphite.
  • the mixed graphite may be a mixture of natural graphite and artificial graphite in a weight ratio of 10 to 50:50 to 90, or 10 to 30:70 to 90.
  • the mixed graphite adjusts the content ratio of natural graphite and artificial graphite as described above, so that the adhesion between the negative electrode current collector 210 and the negative electrode active material layer 220 is reduced due to less than 10 parts by weight of natural graphite relative to the total weight. It is possible to prevent the charge and discharge capacity of the negative electrode from being reduced due to natural graphite exceeding 50 parts by weight.
  • the carbon-based negative electrode active material is not particularly limited in its form, but preferably has the form of a spherical graphite granule formed by gathering a plurality of flaky graphite.
  • flaky graphite in addition to natural graphite and artificial graphite, mesophase calcined carbon (bulk mesophase) made from tar and pitch, cokes (raw coke, green coke, pitch coke, needle coke, petroleum coke, etc.) are used as graphite. Things like being angry can be mentioned.
  • the carbon-based negative electrode active material is preferably one assembled using a plurality of highly crystalline natural graphites.
  • one graphite granulated product may be formed by gathering 2 to 100 pieces of scale-shaped graphite, preferably 3 to 20 pieces.
  • the carbon-based negative active material may have an average particle diameter (D 50 ) of 0.5 ⁇ m to 20 ⁇ m, specifically 0.5 ⁇ m to 15 ⁇ m; 0.5 ⁇ m to 10 ⁇ m; 5 ⁇ m to 20 ⁇ m; 10 ⁇ m to 20 ⁇ m; 12 ⁇ m to 18 ⁇ m; 2 ⁇ m to 7 ⁇ m; 0.5 ⁇ m to 5 ⁇ m; Alternatively, it may have an average particle diameter (D 50 ) of 1 ⁇ m to 3 ⁇ m.
  • the average particle size of the carbon-based negative active material may be advantageous to make the average particle size of the carbon-based negative active material smaller in order to maximize the degree of disorder in the direction of expansion of each particle to prevent expansion of the particles due to charging of lithium ions.
  • the particle size of graphite is less than 0.5 ⁇ m, a large amount of binder may be required due to an increase in the number of particles per unit volume.
  • the maximum particle diameter exceeds 20 ⁇ m, expansion becomes severe and as charging and discharging are repeated, the cohesion between particles and the cohesion between particles and the current collector deteriorate, which can greatly reduce cycle characteristics.
  • the negative electrode 200 may include a predetermined silicon-based negative electrode active material along with a carbon-based negative electrode active material in the negative electrode active material layer 220.
  • the silicon-based negative electrode active material is a material containing silicon (Si) as a main component, and may contain silicon (Si), silicon carbide (SiC), silicon monoxide (SiO), or silicon dioxide (SiO2) alone or in combination. .
  • silicon monoxide (SiO) and silicon dioxide (SiO2) are uniformly mixed or complexed as the silicon-based negative electrode active material and included in the negative electrode active material layer 220, they are converted into silicon oxide (SiO q , with 0.8 ⁇ q ⁇ 2.5). can be displayed.
  • the negative electrode active material may be included in an amount of 85 parts by weight or more based on the total weight of the negative electrode active material layer 220, and specifically, it may be included in an amount of 90 parts by weight or more, 93 parts by weight or more, or 95 parts by weight or more.
  • the silicon-based negative electrode active material may be included in an amount of 0.1 to 30% by weight based on the total weight of the negative electrode active material, specifically 0.5 to 20% by weight, 1 to 9% by weight, 5 to 15% by weight, and 3 to 7% by weight. It may be included in weight percent, 11 to 19 weight%, 13 to 17 weight%, 15 to 20 weight%, 10 to 30 weight%, 20 to 30 weight%, 15 to 25 weight%, or 9 to 22 weight%.
  • the present invention reduces lithium consumption and irreversible capacity loss during initial charging and discharging of a lithium secondary battery by adjusting the content of the carbon-based negative electrode active material and the silicon-based negative electrode active material contained in the negative electrode active material to the above range, while reducing the charging capacity per unit mass.
  • the structural stability of the anode active material layer 220 can be improved by minimizing the change in volume of the anode active material layer 220 during charging and discharging of the lithium secondary battery, thereby increasing the lifespan of the lithium secondary battery.
  • the negative electrode active material layer 220 may optionally further include a conductive material, binder, and other additives, if necessary, along with the carbon-based negative electrode active material as the main component.
  • the conductive material includes carbon black such as acetylene black and Ketjen black; carbon nanotubes; It may include one or more types of carbon fiber, etc., but is not limited thereto.
  • the anode active material layer 220 may contain carbon black, carbon nanotubes, carbon fiber, etc. as a conductive material alone or in combination.
  • the content of the conductive material may be 0.1 to 10 parts by weight based on 100 parts by weight of the total negative electrode active material layer, specifically 0.1 to 8 parts by weight, 0.1 to 5 parts by weight, 0.1 to 3 parts by weight, and 2 to 6 parts by weight. Or it may be 0.5 to 2 parts by weight.
  • the present invention can prevent the charge capacity from decreasing due to an increase in the resistance of the negative electrode due to a low content of the conductive material, and the content of the negative electrode active material decreases due to an excessive amount of the conductive material. This can prevent the problem of a decrease in charging capacity or a decrease in fast charging characteristics due to an increase in the loading amount of the anode active material layer 220.
  • the binder is a component that assists the bonding of the negative electrode active material and the conductive material and the bonding to the current collector, and can be appropriately applied as long as it does not deteriorate the electrical properties of the electrode.
  • the binder is vinylidene fluoride-hexafluoride.
  • Propylene copolymer PVDF-co-HFP
  • PVdF polyvinylidenefluoride
  • CMC carboxymethyl cellulose
  • Starch hydroxypropylcellulose, regenerated cellulose
  • polyvinylpyrrolidone polytetrafluoroethylene
  • polyethylene polypropylene
  • SBR polyacrylic acid
  • ethylene-propylene-diene monomer sulfonated ethylene-propylene-diene monomer
  • SBR Styrene butadiene rubber
  • the content of the binder may be 0.1 to 10 parts by weight, specifically 0.1 to 8 parts by weight, 0.1 to 5 parts by weight, 0.1 to 3 parts by weight, or 2 to 6 parts by weight, based on the total 100 parts by weight of the negative electrode active material layer 220. It could be wealth.
  • the present invention controls the content of the binder contained in the negative electrode active material layer 220 within the above range to prevent the adhesion of the negative electrode active material layer 220 from being reduced due to a low content of the binder or the electrical properties of the electrode from being reduced due to an excessive amount of binder. can be prevented.
  • the average thickness of the negative electrode active material layer 220 may be 100 ⁇ m to 300 ⁇ m, specifically 100 ⁇ m to 250 ⁇ m; 100 ⁇ m to 250 ⁇ m; Alternatively, it may be 130 ⁇ m to 190 ⁇ m, and the average thickness may be the same as the average thickness of the flat area.
  • the present invention can improve the high-rate charge/discharge performance and energy density of a battery including a negative electrode by adjusting the average thickness of the negative electrode active material layer 220 to the above range.
  • the negative electrode current collector 210 is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, nickel, titanium, calcined carbon, etc. can be used.
  • surface treatment with carbon, nickel, titanium, silver, etc. can be used.
  • the average thickness of the negative electrode current collector 210 can be appropriately applied in the range of 1 to 500 ⁇ m considering the conductivity and total thickness of the negative electrode being manufactured.
  • the separator 300 is an insulating thin film with high ion permeability and mechanical strength, and is not particularly limited as long as it is commonly used in the industry, and specifically includes chemical resistant and hydrophobic polypropylene; polyethylene; Among polyethylene-propylene copolymers, those containing one or more types of polymers can be used.
  • the separator 300 may have the form of a porous polymer substrate, such as a sheet or non-woven fabric containing the above-described polymer. In some cases, it may be a composite separator in which organic or inorganic particles are coated with an organic binder on the porous polymer substrate. It may have a shape. In addition, the separator 300 may have an average pore diameter of 0.01 to 10 ⁇ m and an average thickness of 5 to 300 ⁇ m.
  • the electrode assembly according to the present invention is not particularly limited, but includes: a stack type; zigzag; Alternatively, it can be applied to a lithium secondary battery that may include a zigzag-stacked electrode assembly. As an example, the electrode assembly according to the present invention can be applied to a zigzag type lithium secondary battery or a zigzag-stack type lithium secondary battery.
  • Zigzag type lithium secondary batteries and/or zigzag-stack type lithium secondary batteries have the advantage of high productivity and high usability in terms of energy density because they can pack unit cells of lithium secondary batteries at high density within a limited space. .
  • a thin aluminum plate (length 20 cm, width 20 cm, and thickness 10 ⁇ m) was prepared, and an insulating layer coating composition, anode slurry, and auxiliary insulating layer coating composition were prepared, respectively.
  • the insulating layer coating composition and the auxiliary insulating layer coating composition were prepared by weighing 30 parts by weight of aluminum oxide (Al 2 O 3 ) and 70 parts by weight of PVDF, respectively, and mixing them evenly. At this time, the insulating layer coating composition and the auxiliary insulating layer coating composition were each adjusted to have a solid content of 3 to 10%.
  • the positive electrode slurry contains 97.5 parts by weight of positive electrode active material, LiNi 0.7 Co 0.1 Mn 0.2 O 2 ; 1 part by weight of carbon nanotubes as a conductive material; 1.5 parts by weight of PVdF, a binder, was weighed and mixed with N-methylpyrrolidone. At this time, the solid content of the prepared positive electrode slurry was about 65%.
  • the insulating layer coating composition was first patterned on the prepared aluminum sheet, and then the anode slurry and the auxiliary insulating layer coating composition were simultaneously coated on the aluminum sheet on which the insulating layer coating composition was continuously applied. It was then dried in a vacuum oven at 120°C and then rolled. The rolled electrode sheet was punched to produce a positive electrode for a lithium secondary battery in which an insulating layer was formed on the boundary portion of the positive electrode active material layer and the inside of the sliding portion as shown in FIG. 2.
  • the flat portion included in the positive electrode active material layer was formed to have a total length of about 27 cm based on the cross-sectional structure (A-A').
  • the average thickness of the flat portion is about 120 ⁇ m based on the cross-sectional structure (A-A');
  • the lengths of the sliding portion and border portion were 5 mm and 5 mm, respectively, based on the cross-sectional structure (A-A').
  • the length was 5 mm based on the cross-sectional structure (A-A') of the auxiliary insulating layer.
  • the length and average thickness of the insulating layer included in the sliding part and whether or not an auxiliary insulating layer is formed are shown in Table 1.
  • insulating layer Includes auxiliary insulation layer length [mm] Height [ ⁇ m] Example 1 4 6 X Example 2 4 12 X Example 3 6 6 X Example 4 4 12 O Example 5 2 12 X Example 6 35 12 X Example 7 4 2 X Example 8 4 40 X Example 9 2 2 X Example 10 35 40 X Comparative Example 1 - - X Comparative Example 2 - - O
  • a positive electrode for a lithium secondary battery was manufactured in the same manner as in Example 1, except that the insulating layer was formed only on the inside of the sliding portion of the positive active material layer. At this time, the length of the insulating layer provided on the anode was 2 mm and the height was 2 ⁇ m.
  • a negative electrode active material in which natural graphite and artificial graphite are mixed at a weight ratio of 1:1, mix 97 parts by weight of the negative electrode active material and 3 parts by weight of styrene butadiene rubber (SBR) with water to form a slurry, and form a slurry into a thin copper plate (150 cm in length). , 22 cm in width and 10 ⁇ m in thickness), dried in a vacuum oven at 130°C, and then rolled to prepare a cathode.
  • the average thickness and capacity per unit area of the negative electrode active material layer were adjusted to be equal to the average thickness and capacity per unit area of the positive electrode active material layer of the positive electrode.
  • the length and height of the boundary and sliding portion of the negative electrode active material layer were adjusted to be the same as the length and height of the boundary and sliding portion of the positive electrode active material layer.
  • An electrode assembly was manufactured by stacking the five manufactured cathodes and five each of the anodes manufactured in Examples 1 to 11 and Comparative Examples 1 to 2 alternately, with an 18 ⁇ m thick polypropylene separator interposed between them. At this time, the negative electrode was assembled so that the sliding part of the negative electrode active material layer was disposed about 2 mm outside the sliding part of the positive electrode active material layer based on the cross-sectional structure (A-A').
  • the outside i.e., corresponding to the boundary portion and sliding portion of the negative electrode active material layer
  • the end of the electrode assembly is defined as The capacity per unit area (N/P ratio)
  • N/P ratio The capacity per unit area
  • 1 First based on the cross-sectional structure (A-A'), the location of the border of the positive active material layer included at the end of the electrode assembly and the arbitrary point of the sliding portion. A natural log graph regression equation representing was derived.
  • 2 the area of the negative and positive active material layers in contact at the end of the electrode assembly was calculated through integration, and the capacity per unit area (N/P ratio) was calculated by subtracting the area of the insulating layer at the corresponding position.
  • the electrolyte solution was a liquid electrolyte in which LiPF 6 as a lithium salt was added to an organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3:7.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a pouch-type lithium secondary battery was manufactured by sealing the pouch case injected with electrolyte, and the manufactured lithium secondary battery was maintained at 45°C in CC (Constant Current) mode at 0.33C until the voltage reached 4.8V. Charged.
  • CC Constant Current
  • a pouch-type lithium secondary battery was manufactured using the same method as the previously manufactured lithium secondary batteries, and each manufactured lithium secondary battery was charged and discharged to analyze the energy per unit volume. At this time, the charging and discharging was performed between 2.5V and 4.2V, and charging was measured in CC/CV and discharge was measured in CC.
  • the C-rate measurement standard confirmed the energy of 3C when 1C was set to 60A, and a relative comparison of each energy density measured based on the energy density of Example 1 was performed and is shown in Table 2.
  • the positive electrode for a lithium secondary battery according to the present invention is easy to control the angle and/or shape of the sliding part included at the edge of the active material layer, is easy to adjust the N/P ratio of the electrode assembly, and has a high energy density.
  • the positive electrodes prepared in Examples 1 to 8 and 10 were found to have a high inclination angle of the sliding portion of 75° or more (specifically, about 80° or more or about 84° or more).
  • lithium secondary batteries containing these batteries maintained an N/P ratio of 1 or more, so that lithium did not precipitate from the negative electrode during charging and discharging.
  • the lithium secondary battery including the positive electrode prepared in the examples had excellent energy density.
  • the positive electrode for a lithium secondary battery according to the present invention sequentially includes an insulating layer and a positive electrode active material layer on a positive electrode current collector, but has a cross-sectional structure where the inside edge of the positive active material layer is completely covered with the insulating layer, so that the positive electrode active material layer It can be seen that it is easy to control the shape of the edge (or end) of the electrode assembly, and the capacity per unit area/weight of the end of the positive active material layer is significantly reduced, making it easy to control the N/P ratio of the electrode assembly.
  • auxiliary insulating layer 50 uncoated region
  • anode auxiliary insulating layer 200 cathode
  • negative electrode current collector 220 negative electrode active material layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 양극 및 이의 제조방법에 관한 것으로서, 상기 양극은 양극 집전체 상에 절연층과 양극 활물질층을 순차적으로 포함하되 양극 활물질층의 가장자리 내측에 절연층이 완전히 덮인 단면 구조를 갖는다. 이에 따라, 상기 양극은 양극 활물질층의 가장자리(또는 단부)의 형상 제어가 쉽고, 양극 활물질층 단부의 단위 면적당/중량당 용량이 현저히 저감된다. 따라서, 상기 양극은 음극과의 조립 시 N/P ratio 제어가 용이하므로 다양한 리튬 이차전지 모델에 적용이 가능한 이점이 있다.

Description

리튬 이차전지용 양극 및 이의 제조방법
본 발명은 리튬 이차전지용 양극 및 이의 제조방법에 관한 것이다.
본 출원은 2022. 06. 28일자 대한민국 특허출원 제10-2022-0079042호 및 2023.6.27일자 대한민국 특허출원 제10-2023-0082429호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 하이브리드 자동차나 전기 자동차의 배터리 팩 또는 전력저장장치와 같은 중대형 장치에도 리튬 이차전지가 널리 적용되고 있다.
이러한 리튬 이차전지는 양극/분리막/음극의 적층 구조로 이루어진 충방전이 가능한 발전소자로서, 일반적으로 양극은 리튬 금속 산화물을 양극활물질로 포함하고, 음극은 흑연 등의 탄소계 음극활물질을 포함한다. 또한, 리튬 이차전지는 충전 시 양극에서 방출된 리튬 이온이 음극의 탄소계 음극활물질 내부로 흡장되고, 방전 시 탄소계 음극활물질 내부에 함유된 리튬 이온이 양극의 리튬 금속 산화물로 흡장되어 충방전이 반복되는 구성을 갖는다.
리튬 이차전지의 성능을 좌우하는 요소 중 하나로 양극과 음극에 각각 포함된 활물질의 용량 비율을 들 수 있다. 각 전극활물질의 용량 비율은 N/P ratio로 표현될 수 있다. 상기 N/P ratio는 음극의 면적 및/또는 중량당 용량을 감안하여 산출한 음극의 총 용량을, 양극의 면적 및/또는 중량당 용량을 감안하여 얻은 양극의 총 용량으로 나눈 값으로서, 전지의 안전성 및 용량에 중대한 영향을 미치므로 일반적으로 1 이상의 값을 갖도록 조절된다.
그러나, 양극과 음극 제조 시 활물질을 포함하는 전극 합재층 단부에서는 슬라이딩 현상이 유도된다. 따라서, N/P ratio는 양극과 음극의 각 단부에서 일정하게 만족되기 어렵다. 특히, N/P ratio가 1보다 작아지는 경우 전지의 충전 시 리튬 이온이 음극활물질에 모두 인터칼레이션(intercalation)되지 못해 음극 표면에 석출되므로 수지상(dendrite)을 형성하게 된다. 이렇게 형성된 수지상은 전지의 내부 단락을 유발할 수 있으므로 전지의 안전성이 감소될 수 있다.
또한, 전극의 제조 시 생산성 향상을 위하여 전극 합재층의 코팅 패턴에 따라 슬리팅하여 전극을 생산하는 경우, N/P ratio 역전 현상이 빈번하게 발생되는 문제가 있다. 이를 방지하기 위해 종래에는 음극 합재층의 코팅 폭을 양극 합재층의 코팅폭보다 넓게 형성하는 방식이 적용되고 있다. 그러나, 이와 같이 음극 합재층을 넓은 폭으로 형성하는 경우 음극 합재층 형성을 위한 슬러리 양이 증가되므로 공정 비용이 증가되는 한계가 있다. 또한, 음극 집전체 상에 넓은 폭으로 음극 슬러리를 도포하면, 제조되는 음극의 탭부가 좁아져 노칭이나 탭의 웰딩 시 간섭 문제가 발생될 뿐만 아니라, 지그재그-스킹과 같은 전극 적층 시 전극 위치 제어 어려우므로 적용 가능한 전지 모델이 제한되는 한계가 있다.
따라서, 양극과 음극의 N/P ratio를 보다 쉽게 제어하면서 공정성 및 생산성이 우수하여 다양한 전지 모델에 적용 가능한 전극 기술의 개발이 요구되고 있다.
[선행기술문헌]
대한민국 공개특허공보 제10-2015-0028457호
대한민국 공개특허공보 제10-2016-0125720호
이에, 본 발명의 목적은 양극과 음극의 N/P ratio를 용이하게 제어할 수 있으면서 높은 공정성 및 생산성을 가져 다양한 전지 모델에 적용 가능한 리튬 이차전지용 전극 및 이의 제조방법을 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
양극 집전체, 상기 양극 집전체의 적어도 일면에 마련된 절연층, 및 상기 절연층 상에 마련된 양극 활물질층을 포함하고;
상기 절연층은 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 양극 집전체 상에 불연속적으로 배치되고 양극 활물질층에 의해 완전히 덮이는 구조를 갖는 리튬 이차전지용 전극을 제공한다.
이때, 상기 양극 활물질층은 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 중심 영역에 위치하고 두께가 일정하게 유지되는 평탄부, 상기 평탄부의 가장자리에 위치하며 두께 구배를 갖는 슬라이딩부, 및 상기 평탄부와 상기 슬라이딩부의 사이에 위치하는 경계부로 구분되고; 상기 절연층은 슬라이딩부 및 경계부 중 어느 하나 이상의 내측에 위치할 수 있다.
아울러, 상기 절연층은 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준 30 mm 이하의 길이를 가질 수 있다.
또한, 상기 절연층은 평탄부의 평균 두께 기준 30% 이하의 두께 비율을 가질 수 있다.
이와 더불어, 상기 절연층은 Al2O3, Cr2O3, TiO2, SiO2, ZrO2 및 Fe2O3 중 1종 이상의 금속 산화물; 및 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리비닐알콜, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 폴리아크릴로니트릴, 폴리아크릴레이트 고무, 폴리메타크릴레이트, 폴리비닐아세테이트 및 스티렌-부타디엔 고무 중 1종 이상의 바인더를 포함할 수 있다.
또한, 상기 절연층은 50 중량% 이하의 금속 산화물; 및 50 중량% 이상의 바인더를 포함할 수 있다.
아울러, 상기 활물질층의 슬라이딩부는 외측에 보조 절연층을 더 포함할 수 있다.
또한, 상기 보조 절연층은 Al2O3, Cr2O3, TiO2, SiO2, ZrO2 및 Fe2O3 중 1종 이상의 금속 산화물; 및 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리비닐알콜, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 폴리아크릴로니트릴, 폴리아크릴레이트 고무, 폴리메타크릴레이트, 폴리비닐아세테이트 및 스티렌-부타디엔 고무 중 1종 이상의 바인더를 포함할 수 있으며, 보조 절연층의 금속 산화물 및 바인더는 절연층에 포함된 금속 산화물 및 바인더와 동일하거나 상이할 수 있다.
또한, 본 발명은 일실시예에서,
양극 집전체의 적어도 일면에 마련된 절연층을 형성하는 단계; 및
형성된 절연층 상에 양극 활물질층을 형성하는 단계를 포함하고,
상기 절연층은 양극 집전체의 주행 방향을 따라 패터닝되어, 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 양극 집전체 상에 불연속적으로 배치되고 양극 활물질층에 의해 완전히 덮이는 구조를 갖는 리튬 이차전지용 양극의 제조방법을 제공한다.
여기서, 상기 절연층을 형성하는 단계는 슬롯 다이코터, 슬롯 노즐코터 또는 그라비아 코터를 이용하여 수행될 수 있다.
또한, 상기 절연층은 금속 산화물 및 바인더를 포함하는 절연층 코팅 조성물을 이용하여 형성되고, 상기 절연층 코팅 조성물은 25℃에서 1,000 내지 10,000 cps의 점도를 가질 수 있다.
아울러, 상기 활물질층을 형성하는 단계는 양극활물질 및 바인더를 포함하는 양극 슬러리를 이용하는 습식 공정; 또는 양극활물질 및 바인더를 포함하는 양극용 필름을 이용하는 건식 공정에 의해 수행될 수 있다.
또한, 상기 활물질층을 형성하는 단계는 형성된 활물질층의 슬라이딩부는 외측에 보조 절연층을 형성하는 단계를 더 포함할 수 있다.
나아가, 본 발명은 일실시예에서,
상술된 본 발명의 양극; 음극; 및 상기 양극과 음극 사이에 배치되는 분리막을 포함하는 리튬 이차전지용 전극 조립체를 제공한다.
본 발명에 따른 리튬 이차전지용 양극은 양극 집전체의 적어도 일면에 절연층과 양극 활물질층을 순차적으로 포함하되 양극 활물질층의 가장자리 내측에 절연층이 완전히 덮인 단면 구조를 갖는다. 이에 따라, 상기 양극은 양극 활물질층의 가장자리(또는 단부)의 형상 제어가 쉽고, 양극 활물질층 단부의 단위 면적당/중량당 용량이 현저히 저감된다. 따라서, 상기 양극은 음극과의 조립 시 N/P ratio 제어가 용이하므로 다양한 전지 모델에 적용이 가능한 이점이 있다.
도 1은 본 발명에 따른 일실시예에서, 양극의 제조 시, 양극 집전체 상에 형성되는 절연층 및 양극 활물질층의 위치 및 단면 구조를 나타낸 평면도 및 단면도이다.
도 2 및 도 3은 도 1과 같이 절연층 및 활물질층이 형성된 양극 집전체의 타발(또는 노칭) 시 제조되는 양극 구조를 나타낸 평면도 및 단면도이다.
도 4 및 도 5는 본 발명에 따른 양극 조립체의 구조를 개략적으로 나타낸 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
리튬 이차전지용 양극
본 발명은 일실시예에서,
양극 집전체, 상기 양극 집전체의 적어도 일면에 마련된 절연층, 및 상기 절연층 상에 마련된 양극 활물질층을 포함하고;
상기 절연층은 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 양극 집전체 상에 불연속적으로 배치되고 양극 활물질층에 의해 완전히 덮이는 구조를 갖는 리튬 이차전지용 전극을 제공한다.
본 발명에 따른 리튬 이차전지용 전극은 리튬 이차전지에 적용되는 전극으로 양극이나 음극 중 활물질층 단부의 면적당/중량당 용량이 적게 요구되는 양극일 수 있다.
상기 리튬 이차전지용 양극은 양극 집전체의 적어도 일면에 마련되는 양극 활물질층을 포함하고, 양극 활물질층과 양극 집전체 사이에 절연층을 포함한다. 이때, 상기 절연층은 활물질층의 두께가 얇아지는 영역, 구체적으로, 활물질층의 가장자리에 위치함으로써 전극 자체의 N/P ratio를 쉽게 제어할 수 있다. 상기 N/P ratio는 코팅 패턴을 이용한 양극 제조 공정이나 제조된 양극을 스태킹하는 경우에도 제어가 가능한 이점이 있다.
도 1은 본 발명에 따른 양극의 제조 시, 절연층 및 양극 활물질층이 형성된 양극 집전체를 나타내는 표면도 및 단면도를 나타낸 것이다.
또한, 도 2 및 도 3은 도 1 에 나타낸 양극 집전체를 타발(또는 노칭(notching))하는 경우 제조되는 양극의 구조를 나타낸 단면도이다.
이하, 도 1 내지 도 3을 참고하여, 본 발명에 따른 리튬 이차전지용 양극의 구조를 설명한다.
본 발명에 따른 리튬 이차전지용 양극(1)은 양극 집전체(10) 상에 양극 활물질층(30)이 마련되고, 이들 사이에는 절연층(20)이 배치된 단면 구조를 갖는다. 즉, 상기 리튬 이차전지용 양극(1)은 양극 집전체(10) 상에 절연층(20) 및 양극 활물질층(30)이 순차적으로 적층된 구조를 갖는다.
이때, 상기 양극 활물질층(30)은 양극(1)의 전기적 활성을 구현하는 층으로서, 리튬 이차전지의 충방전 시 전기화학적 산화환원 반응을 구현하는 양극활물질을 포함하는 양극 슬러리를 양극 집전체(10)의 적어도 일면에 도포한 후 이를 건조 및 압연함으로써 제조된다. 이렇게 제조된 양극 활물질층(30)은 도 1 내지 도 3에 나타낸 바와 같이, 양극탭(50)이 배치된 일측(A')에서 양극탭(50)이 배치되지 않는 타측(A)으로 가로지르는 단면 구조(A-A', 이하 "단면 구조(A-A')"라 함)를 기준으로 중심 영역에 위치하고 두께가 일정하게 유지되는 평탄부(31b), 상기 평탄부의 가장자리에 위치하며 두께 구배를 갖는 슬라이딩부(32), 및 상기 평탄부와 상기 슬라이딩부에 위치하는 경계부(31a)로 구분된다.
구체적으로, 상기 양극 활물질층(30)은 단면 구조(A-A')에서 양극 활물질층(30) 전체 길이의 90% 이상의 비율을 갖는 평탄부(31b)를 포함한다. 상기 평탄부(31b)는 두께가 일정하게 유지되어 표면이 평탄한 영역을 말한다. 상기 평탄부(31b)는 양극 활물질층(30)의 대부분을 구성하는 영역으로서, 양극 활물질층(30)의 전체 길이 93% 이상; 95% 이상; 97% 이상; 또는 96% 내지 99%의 길이 비율을 가질 수 있다. 본 발명은 양극 활물질층(30)에서 평탄부(31b)의 길이 비율을 상기 범위로 조절함으로써 양극의 에너지 밀도를 보다 증가시킬 수 있다.
아울러, 상기 평탄부(31b)는 양극 활물질층(30) 전체 길이의 90% 이상을 차지하므로, 평균 두께가 양극 활물질층(30)의 평균 두께와 동일하거나 동일 시 될 수 있다.
이때, 상기 양극 활물질층(30)의 평균 두께는 50 ㎛ 내지 500 ㎛일 수 있으며, 구체적으로는 50 ㎛ 내지 400 ㎛; 50 ㎛ 내지 300 ㎛; 50 ㎛ 내지 200 ㎛; 50 ㎛ 내지 150 ㎛; 100 ㎛ 내지 300 ㎛; 150 ㎛ 내지 450 ㎛; 200 ㎛ 내지 400 ㎛; 250 ㎛ 내지 500 ㎛; 80 ㎛ 내지 190 ㎛; 80 ㎛ 내지 140 ㎛; 100 ㎛ 내지 250 ㎛; 100 ㎛ 내지 250 ㎛; 또는 130 ㎛ 내지 190 ㎛일 수 있다.
또한, 상기 평탄부(31b)의 외측에는 경계부(31a)가 위치하고, 상기 경계부(31a)의 외측에는 슬라이딩부(32)이 위치한다.
하나의 예로서, 상기 경계부(31a)과 슬라이딩부(32)는 도 2와 같이 평탄부(31b)의 양측에 순차적으로 연속 배치될 수 있다.
다른 하나의 예로서, 상기 경계부(31a)과 슬라이딩부(32)는 도 3과 같이 양극 제조 과정에 수행되는 양극 시트의 타발(또는 노칭)로 인해 평탄부(31b)의 일측, 구체적으로는 양극탭(50)이 제공되는 측면에만 순차적으로 연속 배치될 수 있고, 양극탭(50)이 제공되지 않는 타측에는 이들의 일부만 존재하거나 존재하지 않을 수 있다.
상기 슬라이딩부(32)는 양극 활물질층(30)의 가장자리에 위치하여 두께 구배를 갖는 영역을 의미한다. 상기 슬라이딩부(30)는 단면 구조(A-A')를 기준으로 양극 활물질층(30) 전체 길이의 3% 이하의 비율을 가질 수 있다. 구체적으로, 상기 슬라이딩부(32)는 경계부(31a)과 인접한 영역에서 양극 활물질층(30)의 외측 가장자리로 두께가 감소하는 형태를 갖는다. 이러한 슬라이딩부(32)는 양극의 에너지 밀도를 고려하여 양극 활물질층(30)의 단면 구조(A-A')를 기준으로 전체 길이의 2% 이하; 1% 이하; 0.5% 이하; 0.01% 내지 1%; 또는 0.01% 내지 0.5% 비율을 가질 수 있다. 이때, 상기 길이 비율은 양극 활물질층(30)의 단면 구조(A-A')를 기준으로 마련되는 전체 길이 비율로서 도 1과 같이 평탄부(121)의 양측으로 슬라이딩부(32)이 마련되는 경우 각 슬라이딩부의 길이 비율이 상기 길이 비율의 1/2로 반감될 수 있다.
상기 경계부(31a)는 평탄부(31b)와 슬라이딩부(32)의 사이에 위치하여 이들의 경계를 이루는 영역으로서, 평탄부(31b)와 같이 두께가 일정하게 유지되어 표면이 평탄한 형태를 가질 수 있다. 상기 경계부(31a)는 앞서 언급된 평탄부(31b)와 슬라이딩부(32)의 길이 비율을 제외한 잔부 길이를 차지할 수 있다. 예컨대, 상기 경계부(31a)는 양극 활물질층(30)의 단면 구조(A-A')를 기준으로 양극 활물질층(30) 전체 길이의 7% 미만; 5% 미만; 4% 미만; 2.5% 미만; 0.09%~3%; 또는 0.5 내지 1%의 비율을 가질 수 있다. 상기 경계부(31a)는 슬라이딩부(32)와 마찬가지로 평탄부(121)의 양측으로 경계부(32)가 마련되는 경우 각 경계부의 상기 길이 비율이 상기 길이 비율의 1/2로 반감될 수 있다.
또한, 상기 경계부(31a)의 단면 구조(A-A') 기준 길이는 양극 활물질층(30)의 평균 두께에 대하여 50% 내지 300%의 비율을 가질 수 있으며, 구체적으로는 50% 내지 200%; 50% 내지 150%; 50% 내지 100%; 100% 내지 300%; 100% 내지 200%; 또는 150% 내지 300%의 비율을 가질 수 있다.
나아가, 상기 경계부(31a)는 단면 구조(A-A') 기준 슬라이딩부(32)의 길이에 대하여 0.8 내지 1.2배의 길이를 가질 수 있으며, 경우에 따라서는 슬라이딩부(32)의 길이와 동일할 수 있다.
본 발명은 양극 활물질층(30)의 경계부(31a)의 길이 비율을 상술된 바와 같이 제어함으로써 양극 활물질층 내측에 마련되는 절연층의 위치를 보다 정확하게 제어할 수 있다. 이를 통해, 본 발명은 양극과 음극의 조립 시 양극의 단부가 음극 단부를 벗어나더라도 전극 조립체의 N/P ratio가 1 미만으로 저감되는 것을 방지할 수 있다.
이를 위하여, 양극 활물질층(30)의 가장자리 내측에는 절연층(20)이 마련된다. 이때, 상기 절연층(20)은 활물질층(30)의 가장자리 내측에 위치하여, 단면 구조(A-A')를 기준으로 양극 활물질층(30) 단부에서의 단위 면적당/중량당 용량 저하를 유도하고, 동시에 슬라이딩부(32)의 경사각(또는 슬라이딩 각도) 및/또는 형상을 조절하는 기능을 갖는다.
구체적으로, 상기 절연층(20)은 단면 구조(A-A')를 기준으로 양극 활물질층(30)의 가장자리 내측에만 선택적으로 배치되어 양극(1)의 단면 구조(A-A') 분석 시 양극 집전체(10) 상에 불연속적으로 마련된 구조를 가질 수 있다. 이 경우, 절연층(20)이 양극 집전체(10) 상에 연속적으로 배치되어 하나의 층을 이루는 경우와 비교하여 양극(1)의 에너지 밀도가 보다 높게 구현되는 이점이 있다.
또한, 상기 절연층(20)은 양극 활물질층(30)의 가장자리 내측에 마련되되, 양극의 에너지 밀도와 전극 조립 시 N/P ratio 조절을 위하여 그 위치가 적절히 조절될 수 있다. 구체적으로, 상기 절연층(20)은 양극 활물질층(30)의 경계부(31a)와 슬라이딩부(32) 중 어느 하나 이상의 내측에 위치할 수 있다. 예컨대, 상기 절연층(20)은 양극 활물질층(30)의 경계부(31a) 내측 또는 슬라이딩부(32) 내측에 위치할 수 있으며, 경우에 따라서는 하나의 절연층(20)이 경계부(31a)와 슬라이딩부(32)의 내측에 걸쳐서 위치할 수 있다.
아울러, 도 2 및 도 3을 참고하면, 본 발명에 따른 리튬 이차전지용 전극(1)은 전극 집전체(10) 상에 절연층(20) 및 활물질층(30)을 순차적으로 적층한 후 타발(또는 노칭)하여 제조된다. 이때 상기 절연층(20)은 타발된 양극의 양극 활물질층(30) 가장자리 중 양극탭(50)이 위치하는 측면의 가장자리, 즉 탭부(A' 측면)에 배치될 수 있다. 또한, 경우에 따라서, 상기 절연층(20)은 선택적으로 상기 탭부의 타측면 가장자리, 즉 바닥부(A 측면)에 더 배치될 수 있다.
일반적으로 리튬 이차전지는 충방전 시 음극 단부의 표면에서 리튬이 석출될 수 있다. 리튬 석출의 원인 중 하나는 전극 조립체에 포함된 양극과 음극의 단위 면적당/중량당 용량을 나타내는 N/P ratio가 단부에서 1 미만으로 떨어질 때 발생된다. 따라서, 음극 단부 표면에서의 리튬 석출을 억제하기 위해서는 전극 조립체 단부에서의 N/P ratio가 1 미만으로 떨어지는 것을 방지하는 것이 바람직하다.
본 발명은 양극 활물질층(30)의 단부에 절연층(20)을 도입하여 양극 활물질층(30) 단부의 단위 면적당/중량당 용량을 낮춘 것을 특징으로 한다. 이에 따라, 상기 양극(1)은 음극과의 조립 시 전극 조립체 단부에서 N/P ratio를 1 이상으로 유지할 수 있다. 여기서, 상기 양극 활물질층(30)의 단부는 단면 구조(A-A')에서 양극 활물질층(30)의 측면에 해당하는 부분으로, 슬라이딩부(32)에 포함된다. 따라서, 본 발명에 따른 양극(1)은 양극 활물질층(30)의 단부를 포함하는 슬라이딩부(32)의 내측에 절연층(20)을 포함할 수 있다.
또한, 상기 양극(1)은 전극 조립체가 적용되는 리튬 이차전지의 모델이나 제품 규격에 따라 양극 활물질층(30)의 평균 두께나 로딩량이 달라진다. 양극 활물질층(30)의 평균 두께나 로딩량은 양극 활물질층(30) 형성 시 사용되는 양극 슬러리의 점도가 조절될 수 있다. 이때, 상기 양극 슬러리는 점도(다시 말해, '흐름성')에 따라 도포된 양극 슬러리의 가장자리 외측으로 밀려나는 정도가 달라지게 되므로, 점도에 따라 양극 활물질층(30)의 슬라이딩부(32)가 갖는 경사각(또는 슬라이딩 각도)나 형상이 상이할 수 있다. 양극 활물질층(30)의 슬라이딩부(32)는 경사각이나 형상에 따라 내부 단락 유발 등의 다양한 안전상의 문제를 야기시킬 수 있으므로 경사각이나 형상의 제어가 필요하다. 그러나, 슬라이딩부(32)의 경사각이나 형상 등은 슬라이딩부(32)가 양극탭(50)이 배치된 탭부(A' 측면)에 존재할 경우 제어하기 어려운 한계가 있다. 이에, 본 발명은 양극 활물질층(30)의 경계부(31a) 내측에 절연층(20)을 포함하여 슬라이딩부(32)의 경사각(또는 슬라이딩 각) 및/또는 형상을 조절할 수 있다. 상기 절연층(20)은 양극 활물질층(30) 형성 시 경계부(31a) 내측에서 슬라이딩부(31a)의 경사각을 높이고 슬라이딩부(31a)의 길이 비율을 짧게 유도하여 그 형상을 제어할 수 있다.
따라서, 본 발명에 따른 양극(1)은 절연층(20)을 양극 활물질층(30)의 경계부(31a) 내측 또는 슬라이딩부(32) 내측에 단독으로 포함할 수 있다. 바람직하게, 상기 양극(1)은 도 1에 나타낸 바와 같이 하나의 절연층(20)을 경계부(31a)와 슬라이딩부(32)를 걸쳐서 내측에 포함할 수 있다.
나아가, 본 발명에 따른 절연층(20)은 단면 구조(A-A')를 기준으로 양극 활물질층(30)에 의해 완전히 덮여 외부로 노출되지 않는 구조를 가질 수 있다. 상기 절연층(20)은 이러한 구조를 가짐으로써 전극 제조 과정에서 타발(또는 노칭) 후 전극 조립체의 조립 과정을 수행하더라도 활물질층(30) 내부의 절연층(20)을 유지할 수 있다. 따라서, 본 발명의 양극(1)은 양극 활물질층(30)으로 완전히 덮인 절연층(20)을 포함하여 제조 방식이나 공정에 상관없이 양극 활물질층(30)이 갖는 로딩량 또는 단위 면적당/중량당 용량을 효과적으로 제어할 수 있다. 또한, 상기 양극 활물질층(30)은 절연층(20)이 양극 활물질층(30)에 의해 완전히 덮이지 않는 경우 슬라이딩부(32)가 갖는 경사각(또는 슬라이딩 각도)나 형상 제어가 어려운 문제가 있다.
또한, 상기 절연층(20)은 양극 활물질층(30)의 에너지 밀도를 저감시키지 않으면서 양극 활물질층(30)에 완전히 덮인 구조를 갖기 위하여, 그 크기가 제어될 수 있다.
구체적으로, 상기 절연층(20)은 단면 구조(A-A')를 기준으로 길이(또는 폭)이 소정의 범위를 만족할 수 있다. 하나의 예로서, 상기 절연층(20)은 단면 구조(A-A') 기준 30 mm 이하의 길이를 가질 수 있으며, 구체적으로는 0.2 내지 30 mm; 0.5 내지 30 mm; 1 내지 30 mm; 5 내지 30 mm; 10 내지 30 mm; 15 내지 25 mm; 5 내지 20 mm; 10 내지 25 mm; 1 내지 20 mm; 0.5 내지 5 mm; 0.5 내지 10 mm; 0.2 내지 1 mm; 또는 10 내지 15 mm의 길이를 가질 수 있다.
하나의 예로서, 상기 슬라이딩부(32)는 도 1과 같이 전극 집전체의 무지부와 슬라이딩부(32)의 경계가 명확한 경우 5~18mm; 또는 1~4mm의 길이를 가질 수 있다.
상기 절연층(20)의 길이(또는 폭)은 경계부(31a) 및/또는 슬라이딩부(32) 내측에 포함되어야 하므로 슬라이딩부(32)의 길이(또는 폭)와 두께에 영향을 받는다. 따라서, 본 발명은 상술된 범위로 절연층(20)의 길이(또는 폭)를 조절함으로써 슬라이딩부(32)의 형상과 양극 활물질층(30)의 발현 용량을 용이하게 제어할 수 있다.
나아가, 상기 절연층(20)은 평탄부의 두께와 대비하여 30% 이하의 두께를 가질 수 있다. 구체적으로, 상기 절연층(20)은 평탄부의 두께와 대비하여 1 내지 30%; 1 내지 25%; 1 내지 20%; 5 내지 20%; 10 내지 25%; 15 내지 30%; 20 내지 30%; 13 내지 22%; 또는 8 내지 20%의 두께를 가질 수 있다.
본 발명은 절연층(20)의 평균 두께를 상기 범위로 조절함으로써 현저히 얇은 두께로 인해 절연층(20)의 절연 효과 및 양극 활물질층(30) 단부의 용량 저하 효과를 충분히 구현하지 못하는 것을 방지할 수 있다. 또한, 본 발명은 절연층(20)의 과도한 두께로 인해 양극 활물질층(30) 단부의 슬라이딩 각도 및/또는 형상 제어가 어려워지는 것을 막을 수 있다.
또한, 상기 절연층(20)은 절연성을 구현하고, 동시에 양극 활물질층(30) 단부의 단위 면적당/중량당 용량을 낮추기 위하여 전기 화학적으로 충방전 용량을 발현하지 않는 물질로 이루어질 수 있다. 구체적으로, 상기 절연층(20)은 절연성을 나타내는 무기 입자와 바인더가 혼합된 구조를 가질 수 있다. 하나의 예로서, 절연층(20)은 Al2O3, Cr2O3, TiO2, SiO2, ZrO2 및 Fe2O3 중 1종 이상의 금속 산화물; 및 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리비닐알콜, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 폴리아크릴로니트릴, 폴리아크릴레이트 고무, 폴리메타크릴레이트, 폴리비닐아세테이트 및 스티렌-부타디엔 고무 중 1종 이상의 바인더를 포함할 수 있다.
상기 금속 산화물들은 절연성을 구현하면서 전기 화학적 용량을 발현하지 않을 수 있고, 동시에 활물질층(30)과 유사한 기계적 물성을 구현할 수 있는 이점이 있다. 또한, 상기 바인더는 양극 활물질층(30)에 적용되는 바인더와 혼화성이 높아 양극 활물질층(30)과의 높은 접착력을 부여할 수 있다.
아울러, 상기 절연층(20)은 금속 산화물과 바인더를 일정한 중량 비율을 갖도록 포함할 수 있다. 구체적으로, 상기 절연층(20)은 금속 산화물을 50 중량% 이하로 포함하고, 바인더를 50 중량% 이상으로 포함할 수 있다.
하나의 예로서, 상기 절연층(20)은 1~50 중량%, 1~40 중량%, 1~30 중량%, 1~20 중량%, 또는 1~10 중량%의 금속 산화물과; 50~99 중량%, 60~99 중량%, 70~99 중량%; 80~99 중량%, 또는 90~99 중량%의 바인더를 포함할 수 있다.
본 발명은 절연층(20)에 포함된 금속 산화물과 바인더의 중량 비율을 상기 범위로 조절함으로써 절연층(20)과 양극 활물질층(30)의 접착력을 향상시킬 수 있다. 아울러, 금속 산화물과 바인더의 중량 비율을 상기 범위로 조절하여 전극의 전기적 물성을 저하시키지 않는 범위에서 양극 활물질층(30) 단부에서의 단위 면적당/중량당 용량을 낮출 수 있다.
나아가, 본 발명에 따른 리튬 이차전지용 양극(1)은 양극 활물질층(30)의 슬라이딩부(32) 외측에 보조 절연층(40)을 더 포함할 수 있다. 상기 보조 절연층(40)은 양극 활물질층(30)의 슬라이딩부와 맞닿는 형태로 배치될 수 있다. 이에 따라, 상기 보조 절연층(32)은 양극(1)의 단면 구조에서 양극 활물질층(30)의 슬라이딩부와 연속적으로 제공되는 형태를 가질 수 있으며, 상기 슬라이딩부는 측면 단부가 보조 절연층(32)에 의해 가려질 수 있다. 이를 통해, 상기 양극(1)은 전지가 고온에 노출되는 경우 양극 활물질층(30)의 단부에서 발생되는 분리막의 수축으로 인해 양극과 음극의 접촉을 방지할 수 있다. 즉, 상기 보조 절연층(40)은 본 발명에 따른 양극(1)을 포함하는 전극 조립체가 고온에 노출되는 경우 분리막 수축으로 인해 양극과 음극의 접촉을 방지하는 기능을 가질 수 있다.
이를 위하여, 상기 보조 절연층(40)은 절연성을 구현하고, 동시에 양극 활물질층(30)에서 발생된 열이 단부를 통해 분리막으로 전달되는 것을 막기 위하여 전기 화학적으로 전기 전도성과 열 전도성이 낮은 물질로 구성될 수 있다. 구체적으로, 상기 보조 절연층(40)은 절연성 및 낮은 열 전도성을 나타내는 무기 입자와 바인더가 혼합된 구조를 가질 수 있다. 하나의 예로서, 보조 절연층(40)은 Al2O3, Cr2O3, TiO2, SiO2, ZrO2 및 Fe2O3 중 1종 이상의 금속 산화물; 및 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리비닐알콜, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 폴리아크릴로니트릴, 폴리아크릴레이트 고무, 폴리메타크릴레이트, 폴리비닐아세테이트 및 스티렌-부타디엔 고무 중 1종 이상의 바인더를 포함할 수 있다.
또한, 상기 보조 절연층(40)은 금속 산화물과 바인더를 일정한 중량 비율을 갖도록 포함할 수 있다. 구체적으로, 상기 보조 절연층(40)은 금속 산화물을 50 중량% 이하로 포함하고, 바인더를 50 중량% 이상으로 포함할 수 있다.
하나의 예로서, 상기 보조 절연층(40)은 1~50 중량%, 1~40 중량%, 1~30 중량%, 1~20 중량%, 또는 1~10 중량%의 금속 산화물과; 50~99 중량%, 60~99 중량%, 70~99 중량%; 80~99 중량%, 또는 90~99 중량%의 바인더를 포함할 수 있다.
여기서, 상기 보조 절연층(40)의 금속 산화물과 바인더는 활물질층(30) 내에 포함된 절연층(20)과 성분 및 함량이 동일하거나 상이할 수 있다.
이와 더불어, 상기 보조 절연층(40)은 단면 구조(A-A')를 기준으로 길이(또는 폭)이 소정의 범위를 만족할 수 있다. 하나의 예로서, 상기 절연층(20)은 단면 구조(A-A') 기준으로 30mm 이하의 길이(또는 폭)을 가질 수 있으며, 구체적으로는 0.1 mm 내지 20 mm; 0.5 mm 내지 15 mm; 0.5 mm 내지 10 mm; 1 mm 내지 5 mm; 10 mm 내지 20 mm; 5 mm 내지 10 mm; 또는 3 mm 내지 8 mm의 길이(또는 폭)을 가질 수 있다.
본 발명은 보조 절연층(40)의 길이(또는 폭)을 상술된 범위로 제어함으로써, 양극 활물질층(30)과 분리막의 접촉 면적을 최소화할 수 있으므로 고온 노출 시 분리막 수축을 방지할 수 있고, 제조되는 양극의 경제성 및 공정성을 높일 수 있다.
한편, 상기 양극 활물질층(30)은 양극활물질을 포함하고, 경우에 따라서 도전재, 바인더, 기타 첨가제를 더 포함할 수 있다.
구체적으로, 상기 양극활물질은 가역적으로 리튬 이온의 인터칼레이션 및 디인터칼레이션이 가능한 활물질로서, 하기 화학식 1로 나타내는 리튬 금속 복합 산화물과 하기 화학식 2로 나타내는 리튬 철 인산화물 중 1종 이상을 포함할 수 있다:
[화학식 1]
Lix[NiyCozMnwM1 v]Ou
[화학식 2]
LiFe1-pM2 pPOq
상기 화학식 1 및 2에서,
M1는 W, Cu, Fe, V, Cr, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo로 이루어진 군에서 선택되는 1종 이상의 도핑 원소이고,
x, y, z, w, v 및 u는 각각 1.0≤x≤1.30, 0.6≤y<0.95, 0.01<z≤0.5, .01<w≤0.5, 0≤v≤0.2, 1.5≤u≤4.5이며,
M2는 Ni, Co, Mn 및 V로 이루어진 군에서 선택되는 1종 이상의 도핑 원소이고,
p 및 q는 각각 0.05≤p≤0.2, 2≤q≤6이다.
하나의 예로서, 상기 화학식 1로 나타내는 리튬 금속 복합 산화물은 은 Li(Ni0.6Co0.2Mn0.2)O2, Li(Ni0.7Co0.15Mn0.15)O2, Li(Ni0.8Co0.1Mn0.1)O2, Li(Ni0.9Co0.05Mn0.05)O2, Li(Ni0.6Co0.2Mn0.1Zr0.1)O2, Li(Ni0.6Co0.2Mn0.15Zr0.05)O2 및 Li(Ni0.7Co0.1Mn0.1Zr0.1)O2로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 또한, 상기 화학식 2로 나타내는 리튬 철 인산화물은 LiFePO4 등을 포함할 수 있다.
상기 양극활물질은 양극 활물질층(30)의 전체 100 중량부에 대하여 85 내지 95 중량부일 수 있고, 구체적으로는 88 내지 95 중량부, 90 내지 95 중량부, 86 내지 90 중량부 또는 92 내지 95 중량부일 수 있다.
또한, 상기 도전재는 양극(1)의 전기적 성능을 향상시키기 위해 사용되는 것으로서, 당업계에서 통상적으로 사용되는 것을 적용할 수 있으나, 구체적으로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 케첸 블랙, 수퍼-P, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 그래핀 및 탄소나노튜브로 루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
아울러, 상기 도전재는 양극 활물질층(30)의 전체 100 중량부에 대하여 0.1~5 중량부로 포함할 수 있고, 구체적으로는 0.1~4 중량부; 2~4 중량부; 1.5~5 중량부; 1~3 중량부; 0.1~2 중량부; 또는 0.1~1 중량부로 포함할 수 있다.
또한, 상기 바인더는 양극활물질 및 도전재가 서로 결착되게 하는 역할을 수행하며, 이러한 기능을 갖는 것이면 특별히 제한되지 않고 사용될 수 있다. 구체적으로, 상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVdF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 및 이들의 공중합체로 이루어진 군으로부터 선택되는 1종 이상의 수지를 포함할 수 있다. 하나의 예로서, 상기 바인더는 폴리비닐리덴플루오라이드(polyvinylidenefluoride)를 포함할 수 있다.
아울러, 상기 바인더는 양극 활물질층(30)의 전체 100 중량부에 대하여, 1~10 중량부로 포함할 수 있고, 구체적으로는 2~8 중량부; 또는 도전재 1~5 중량부로 포함할 수 있다.
나아가, 상기 양극(1)은 양극 집전체(10)로서 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것을 사용할 수 있다. 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 등을 사용할 수 있으며, 알루미늄이나 스테인리스 스틸의 경우 카본, 니켈, 티탄, 은 등으로 표면 처리된 것을 사용할 수도 있다. 아울러, 상기 양극 집전체의 평균 두께는 제조되는 양극의 도전성과 총 두께를 고려하여 3~500 ㎛에서 적절하게 적용될 수 있다.
본 발명에 따른 리튬 이차전지용 양극은 상술된 구성을 가짐으로써 양극 활물질층의 가장자리(또는 단부)에 로딩되는 양극활물질의 단위 면적당/중량당 용량을 현저히 저감시킬 수 있다. 따라서, 상기 양극은 N/P ratio이 1 미만으로 저감되어 리튬 이차전지의 충방전 시 음극 표면에서 리튬이 석출되는 방지할 수 있으므로 안전성이 높은 특징을 갖는다. 또한, 상기 양극은 음극과의 조립 시 N/P ratio 제어가 용이하므로 다양한 전지 모델에 적용이 가능한 이점이 있다.
리튬 이차전지용 전극의 제조방법
또한, 본 발명은 일실시예에서,
양극 집전체 상에 절연층을 형성하는 단계; 및
형성된 절연층 상에 양극 활물질층을 형성하는 단계를 포함하고,
상기 절연층은 양극 집전체의 주행 방향을 따라 패터닝되어, 양극탭(50)이 배치된 일측에서 양극탭(50)이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 양극 집전체 상에 불연속적으로 배치되고 양극 활물질층에 의해 완전히 덮이는 구조를 갖는 리튬 이차전지용 전극의 제조방법을 제공한다.
본 발명에 따른 리튬 이차전지용 양극의 제조방법은 상술된 본 발명의 리튬 이차전지용 양극을 제조하는 방법에 관한 것이다.
종래, 양극 활물질층의 가장자리, 즉 양극 활물질층 단부에 형성되는 슬라이딩부는 리튬 이차전지의 안전성 측면에서 경사각(또는 슬라이딩 각도)이나 형상을 제어하기 위한 노력이 이어졌다. 그 예로서 심 오프셋(shim off-set)이나 심 형상을 조절하거나, 활물질층을 구성하는 슬러리 도포 시 전극 집전체와 코터(coater) 사이의 간격을 조절하는 방법 등이 적용되었다. 그러나, 심 오프셋이나 형상을 조절하는 경우 인-라인(In-line) 제어가 불가하고, 심(shim) 적용 시 체결을 위한 기계적 한계가 있는 문제가 있으며, 전극 집전체와 코터 사이의 간격을 조절하는 방식은 슬러리 조성에 따른 간격 조절 인자가 많아 제조되는 활물질층의 신뢰성이 저하되는 한계가 있다.
그러나, 본 발명에 따른 양극의 제조방법은 양극 집전체 상에 양극 활물질층을 형성하기 이전에 선제적으로 양극 활물질층의 가장자리에 대응하는 위치에 절연층을 형성하고, 이후 형성된 절연층을 완전히 덮도록 양극 활물질층을 형성하는 구성을 갖는다. 이에 따라, 상기 제조방법은 양극 활물질층의 전기 화학적 물성 변화를 최소화하면서 양극 활물질층의 가장자리 단부의 경사각(또는 슬라이딩 각도) 및/또는 형상을 용이하게 제어할 수 있다.
여기서, 상기 절연층을 형성하는 단계는 양극 활물질층을 형성하기 이전에 절연층을 형성할 수 있는 방법이라면 특별히 제한되지 않고 적용될 수 있다. 구체적으로는 상기 단계는 슬롯 다이코터, 슬롯 노즐코터 및 그라비아 코터 중 하나 이상의 코팅장치를 이용하여 수행될 수 있다.
상기 절연층 코팅 조성물은 절연성을 구현하고, 양극 활물질층 단부의 단위 면적당/중량당 용량을 낮추기 위하여 전기 화학적으로 충방전 용량을 발현하지 않는 물질로 이루어질 수 있다. 구체적으로, 상기 절연층 코팅 조성물은 절연성을 나타내는 무기 입자와 바인더가 혼합된 것일 수 있다.
하나의 예로서, 절연층 코팅 조성물은 Al2O3, Cr2O3, TiO2, SiO2, ZrO2 및 Fe2O3 중 1종 이상의 금속 산화물; 및 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리비닐알콜, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 폴리아크릴로니트릴, 폴리아크릴레이트 고무, 폴리메타크릴레이트, 폴리비닐아세테이트 및 스티렌-부타디엔 고무 중 1종 이상의 바인더를 포함할 수 있다.
상기 금속 산화물들은 절연성을 구현하면서 전기 화학적 용량을 발현하지 않을 수 있고, 동시에 건조 후 활물질층과 유사한 기계적 물성을 구현할 수 있는 이점이 있다. 또한, 상기 바인더는 활물질층에 적용되는 바인더와 혼화성이 높아 활물질층과의 높은 접착력을 부여할 수 있다.
아울러, 상기 절연층 코팅 조성물은 금속 산화물과 바인더를 일정한 중량 비율을 갖도록 포함할 수 있다. 구체적으로, 상기 절연층 코팅 조성물은 금속 산화물을 50 중량% 이하로 포함하고, 바인더를 50 중량% 이상으로 포함할 수 있다.
하나의 예로서, 상기 절연층 코팅 조성물은 1~50 중량%, 1~40 중량%, 1~30 중량%, 1~20 중량%, 또는 1~10 중량%의 금속 산화물과; 50~99 중량%, 60~99 중량%, 70~99 중량%; 80~99 중량%, 또는 90~99 중량%의 바인더를 포함할 수 있다.
본 발명은 절연층 코팅 조성물에 포함된 금속 산화물과 바인더의 중량 비율을 상기 범위로 조절함으로써 절연층과 활물질층의 접착력을 향상시킬 수 있으며, 전극의 전기적 물성을 저하시키지 않는 범위에서 활물질층 단부에서의 용량을 낮출 수 있다.
또한, 상기 절연층 코팅 조성물은 25℃에서 1,000 내지 10,000 cps의 점도를 가질 수 있으며, 구체적으로는 25℃에서 1,000 내지 8,000 cps; 1,000 내지 5,000 cps; 1,000 내지 3,000 cps; 5,000 내지 10,000 cps; 3,000 내지 8,000 cps; 또는 2,000 내지 5,000 cps의 점도를 가질 수 있다.
본 발명은 절연층 코팅 조성물의 점도를 상기 점도로 제어함으로써 제조되는 절연층의 길이(또는 폭)와 평균 두께가 소정의 값을 만족하도록 형성할 수 있으며, 이를 통해 양극 활물질층 단부의 경사각이나 형상을 용이하게 제어할 수 있다.
이와 더불어, 상기 활물질층을 형성하는 단계는 습식 공정 또는 건식 공정으로 수행될 수 있다.
하나의 예로서, 상기 활물질층을 형성하는 단계는 습식 공정으로 수행되는 경우, 양극활물질 및 바인더를 포함하는 양극 슬러리를, 절연층이 마련된 양극 집전체 상에 도포하고, 도포된 양극 슬러리를 건조시킴으로써 수행될 수 있다.
다른 하나의 예로서, 상기 활물질층을 형성하는 단계는 건식 공정으로 수행되는 경우, 양극활물질 및 바인더를 포함하는 양극용 필름을, 절연층이 마련된 양극 집전체 상에 배치 및 가압 적층함으로써 수행될 수 있다.이때, 상기 양극 슬러리 및 양극용 필름은 양극활물질 및 바인더를 포함할 수 있고, 이와 함께 도전재, 기타 첨가제 등을 더 포함할 수 있다.
구체적으로, 상기 양극활물질은 리튬 이온이 가역적으로 인터칼레이션 및 디인터칼레이션이 가능한 양극활물질로서, 하기 화학식 1로 나타내는 리튬 금속 복합 산화물과 하기 화학식 2로 나타내는 리튬 철 인산화물 중 1종 이상을 포함할 수 있다:
[화학식 1]
Lix[NiyCozMnwM1 v]Ou
[화학식 2]
LiFe1-pM2 pPOq
상기 화학식 1 및 2에서,
M1는 W, Cu, Fe, V, Cr, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 및 Mo로 이루어진 군에서 선택되는 1종 이상의 도핑 원소이고,
x, y, z, w, v 및 u는 각각 1.0≤x≤1.30, 0.6≤y<0.95, 0.01<z≤0.5, .01<w≤0.5, 0≤v≤0.2, 1.5≤u≤4.5이며,
M2는 Ni, Co, Mn 및 V로 이루어진 군에서 선택되는 1종 이상의 도핑 원소이고,
p 및 q는 각각 0.05≤p≤0.2, 2≤q≤6이다.
하나의 예로서, 상기 화학식 1로 나타내는 리튬 금속 복합 산화물은 은 Li(Ni0.6Co0.2Mn0.2)O2, Li(Ni0.7Co0.15Mn0.15)O2, Li(Ni0.8Co0.1Mn0.1)O2, Li(Ni0.9Co0.05Mn0.05)O2, Li(Ni0.6Co0.2Mn0.1Zr0.1)O2, Li(Ni0.6Co0.2Mn0.15Zr0.05)O2 및 Li(Ni0.7Co0.1Mn0.1Zr0.1)O2로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 또한, 상기 화학식 2로 나타내는 리튬 철 인산화물은 LiFePO4 등을 포함할 수 있다.
또한, 상기 양극활물질은 양극 활물질층 전체 100 중량부에 대하여 85 내지 95 중량부일 수 있고, 구체적으로는 88 내지 95 중량부, 90 내지 95 중량부, 86 내지 90 중량부 또는 92 내지 95 중량부일 수 있다.
또한, 상기 도전재는 양극의 전기적 성능을 향상시키기 위해 사용되는 것으로서, 당업계에서 통상적으로 사용되는 것을 적용할 수 있으나, 구체적으로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 케첸 블랙, 수퍼-P, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 그래핀 및 탄소나노튜브로 루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
아울러, 상기 도전재는 양극 활물질층 전체 100 중량부에 대하여 0.1~5 중량부로 포함할 수 있고, 구체적으로는 0.1~4 중량부; 2~4 중량부; 1.5~5 중량부; 1~3 중량부; 0.1~2 중량부; 또는 0.1~1 중량부로 포함할 수 있다.
또한, 상기 바인더는 양극활물질 및 도전재가 서로 결착되게 하는 역할을 수행하며, 이러한 기능을 갖는 것이면 특별히 제한되지 않고 사용될 수 있다. 구체적으로, 상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVdF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 및 이들의 공중합체로 이루어진 군으로부터 선택되는 1종 이상의 수지를 포함할 수 있다. 하나의 예로서, 상기 바인더는 폴리비닐리덴플루오라이드(polyvinylidenefluoride)를 포함할 수 있다.
아울러, 상기 바인더는 양극 활물질층 전체 100 중량부에 대하여, 1~10 중량부로 포함할 수 있고, 구체적으로는 2~8 중량부; 또는 도전재 1~5 중량부로 포함할 수 있다.
나아가, 상기 양극 활물질층을 형성하는 단계는 형성된 양극 활물질층의 슬라이딩부 외측에 보조 절연층을 형성하는 단계를 더 포함할 수 있다. 하나의 예로서, 상기 활물질층을 형성하는 단계는 습식 공정으로 수행되는 경우, 전극 집전체 상에 전극활물질을 포함하는 전극 슬러리를 도포함과 동시에 보조 절연층을 형성하기 위한 보조 절연층 코팅 조성물을 도포하거나, 전극 슬러리를 도포한 후 연속적으로 보조 절연층 코팅 조성물을 도포하고 건조함으로써 활물질층의 슬라이딩부 외측에 보조 절연층을 형성할 수 있다.
다른 하나의 예로서, 상기 활물질층을 형성하는 단계는 건식 공정으로 수행되는 경우, 절연층이 형성된 양극 집전체 상에 상기 절연층이 완전히 덮히도록 양극용 필름을 적층하고, 이후 보조 절연층을 형성하기 위한 보조 절연층 코팅 조성물을 양극용 필름의 외측 단부에 도포 및 건조함으로써 보조 절연층을 형성할 수 있다.
본 발명은 상기와 같은 방식으로 보조 절연층 코팅 조성물을 도포함으로써 양극 집전체 상에 도포된 양극 슬러리가 도포되지 않은 무지부로 밀려나 슬라이딩부의 경사각이 낮아지는 것을 방지할 수 있다.
상기 활물질층을 형성하는 단계는 습식 공정으로 수행되는 경우 당업계에서 통상적으로 적용되는 방식으로 수행될 수 있으나, 구체적으로는 슬롯 다이코터, 슬롯 노즐코터 및 그라비아 코터 중 하나 이상의 코팅장치를 이용하여 수행될 수 있다.
한편, 본 발명에 따른 리튬 이차전지용 양극의 제조방법은 활물질층을 형성하는 단계 또는 활물질층의 슬라이딩부에 보조 절연층을 형성하는 단계 이후에 타발하는 단계를 더 포함할 수 있다.
이때, 상기 타발하는 단계는 도 2에 나타낸 바와 같이 바닥부에 배치된 절연층이 활물질층에 완전히 덮히도록 전극을 타발할 수 있고, 도 3에 나타낸 바와 같이 바닥부에 배치된 절연층이 일부 노칭되어 절연층의 단부가 노출되도록 전극을 타발할 수 있다.
본 발명에 따른 리튬 이차전지용 전극의 제조방법은 상술된 구성을 가짐으로써 양극 집전체 상에 절연층과 양극 활물질층을 순차적으로 포함하되 양극 활물질층의 가장자리 내측에 절연층이 완전히 덮인 단면 구조를 구현할 수 있다. 이를 통해, 제조된 양극은 양극 활물질층의 가장자리(또는 단부)에 로딩되는 양극활물질의 단위 면적당/중량당 용량이 현저히 저감된다. 따라서, 상기 양극은 음극과의 조립 시 N/P ratio 제어가 용이하므로 다양한 전지 모델에 적용이 가능한 이점이 있다.
리튬 이차전지용 전극 조립체
나아가, 본 발명은 상술된 본 발명에 따른 전극을 포함하는 리튬 이차전지용 전극 조립체를 제공한다.
본 발명에 따른 리튬 이차전지용 전극 조립체는 양극, 음극 및 상기 양극과 음극 사이에 배치되는 분리막을 구비하는 구조를 가지며, 이때 상기 양극은 앞서 설명된 본 발명에 따른 양극을 포함한다. 상기 전극 조립체에 구비되는 양극은 앞서 설명된 양극과 동일한 구조를 가지므로 구체적인 설명은 생략한다.
도 4 및 도 5는 상기 전극 조립체의 구조를 개략적으로 나타낸 단면도이다. 도 4 및 도 5는 참고하면, 본 발명에 따른 전극 조립체는 음극(200)과 본 발명에 따른 양극(100)을 포함하고, 이들 사이에는 분리막(300)이 마련된 구조를 가질 수 있다. 이때, 상기 양극(100)은 양극 양극 집전체(110), 상기 양극 집전체 상에 마련된 절연층(120), 및 상기 절연층 상에 마련된 양극 활물질층(130)을 포함한다. 상기 활물질층(130)은 양극탭(50)이 배치된 일측에서 양극탭(50)이 배치되지 않는 타측으로 가로지르는 단면 구조(A-A')를 기준으로, 중심 영역에 위치하고 두께가 일정하게 유지되는 평탄부; 상기 평탄부의 가장자리에 위치하며 두께 구배를 갖는 슬라이딩부; 및 상기 평탄부와 상기 슬라이딩부의 사이에 위치하는 경계부를 포함한다. 여기서, 상기 절연층(120)은 활물질층의 슬라이딩부 및 경계부 중 어느 하나 이상의 내측에 위치하고, 이들에 의해 완전히 덮이는 구조를 가질 수 있다.
이러한 구조의 양극(100)은 양극 활물질층(130)의 가장자리(또는 단부)에 로딩되는 양극활물질의 단위 면적당/중량당 용량이 현저히 저감되므로, 음극(200)과의 조립 시 N/P ratio 제어가 용이하므로 다양한 전지 모델에 적용이 가능한 이점이 있다. 또한, 이를 포함하는 전극 조립체는 N/P ratio가 1 미만으로 저하될 가능성이 현저히 낮아 리튬 이차전지의 충방전 시 음극 표면에서의 리튬 석출로 인한 안전성 문제를 효과적으로 방지할 수 있다.
또한, 상기 양극(100)은 양극 활물질층(130)의 슬라이딩부의 외측에 보조 절연층(140)을 더 포함할 수 있다. 이때, 상기 보조 절연층(140)은 양극 활물질층(130)의 슬라이딩부와 맞닿는 형태로 배치될 수 있다. 이에 따라, 상기 보조 절연층(140)은 양극(100)의 단면 구조에서 양극 활물질층(130)의 슬라이딩부와 연속적으로 제공되는 형태를 가질 수 있으며, 상기 슬라이딩부는 측면 단부가 보조 절연층(140)에 의해 가려질 수 있다. 이를 통해, 상기 양극(100)은 전지가 고온에 노출되는 경우 양극 활물질층(130)의 단부에서 발생되는 분리막(300)의 수축으로 인해 양극(100)과 음극(200)의 접촉을 방지할 수 있다.
상기 음극(200)은 양극(100)과 마찬가지로, 음극 집전체(210)의 적어도 일면에 음극활물질을 포함하는 음극 활물질층(220)을 구비한다.
상기 음극 활물질층(220)은 전지의 충방전 시 가역적 산화환원 반응을 통해 전기적 활성을 구현하기 위하여 음극활물질로서 탄소계 음극활물질을 포함한다.
상기 탄소계 음극활물질은 탄소 원자를 주성분으로 하는 소재를 의미하며, 이러한 탄소계 음극활물질로는 흑연을 포함할 수 있다. 상기 흑연은 천연 흑연, 인조 흑연 중 어느 하나 이상을 포함할 수 있다.
하나의 예로서, 탄소계 음극활물질은 천연 흑연과 인조 흑연을 혼합한 혼합 흑연을 포함할 수 있다. 이 경우, 상기 혼합 흑연은 천연 흑연과 인조 흑연을 10~50:50~90, 또는 10~30:70~90 중량 비율로 혼합한 것일 수 있다. 상기 혼합 흑연은 천연 흑연과 인조 흑연의 함량 비율을 상기와 같이 조절함으로써 전체 중량에 대하여 10 중량부 미만의 천연 흑연을 인해 음극 집전체(210)와 음극 활물질층(220)의 접착력이 저감되는 것을 방지할 수 있으며, 50 중량부를 초과하는 천연 흑연으로 인해 음극의 충방전 용량이 저감되는 것을 방지할 수 있다.
또한, 상기 탄소계 음극활물질은 그 형태가 특별히 제한되는 것은 아니나, 복수의 인편상 흑연이 집합하여 형성된 구형의 흑연 조립물의 형태를 갖는 것이 바람직하다. 인편상 흑연으로서는 천연 흑연, 인조 흑연 이외, 타르·피치를 원료로 한 메소페이즈 소성 탄소(벌크 메소페이즈), 코크스류(생 코크스, 그린 코크스, 피치 코크스, 니들 코크스, 석유 코크스 등) 등을 흑연화한 것 등을 들 수 있다. 특히, 상기 탄소계 음극활물질로는 결정성이 높은 천연 흑연을 복수 이용하여 조립된 것이 바람직하다. 아울러, 1개의 흑연 조립물은 인편 형상의 흑연이 2~100개, 바람직하게는 3~20개 집합하여 형성될 수 있다.
또한, 상기 탄소계 음극활물질은 0.5㎛ 내지 20㎛의 평균 입경(D50)을 나타낼 수 있으며, 구체적으로는 0.5㎛ 내지 15㎛; 0.5㎛ 내지 10㎛; 5㎛ 내지 20㎛; 10㎛ 내지 20㎛; 12㎛ 내지 18㎛; 2㎛ 내지 7㎛; 0.5㎛ 내지 5㎛; 또는 1㎛ 내지 3㎛의 평균 입경(D50)을 나타낼 수 있다.
탄소계 음극활물질의 평균 입경은 리튬 이온의 충전에 의한 입자의 팽창을 막아줄 수 있도록 입자들 각각에 대한 팽창 방향의 무질서도를 최대화시키기 위해 입경을 작게 만들수록 유리할 수 있다. 그러나, 흑연의 입경이 0.5 ㎛ 미만인 경우 단위 부피당 입자의 수의 증가로 인하여 많은 양의 바인더가 필요할 수 있다. 반면, 최대 입경이 20 ㎛를 초과하면 팽창이 심해져서 충방전이 반복됨에 따라 입자간 결착성과 입자와 집전체의 결착성이 떨어지게 되어 사이클 특성이 크게 감소될 수 있다.
아울러, 상기 음극(200)은 음극 활물질층(220)에 탄소계 음극활물질과 함께 소정의 규소계 음극활물질을 포함할 수 있다. 상기 규소계 음극활물질은 규소(Si)를 주성분으로 포함하는 물질로서, 규소(Si), 탄화규소(SiC), 일산화규소(SiO) 또는 이산화규소 (SiO2)를 단독으로 포함하거나 또는 병용할 수 있다. 상기 규소계 음극활물질로서 일산화규소(SiO) 및 이산화규소 (SiO2)가 균일하게 혼합되거나 복합화되어 음극 활물질층(220)에 포함되는 경우 이들은 산화규소(SiOq, 단, 0.8≤q≤2.5)로 표시될 수 있다.
또한, 상기 음극활물질은 음극 활물질층(220) 전체 중량 기준 85 중량부 이상이 되도록 포함될 수 있으며, 구체적으로는 90 중량부 이상, 93 중량부 이상 또는 95 중량부 이상이 되도록 포함될 수 있다.
아울러, 이 중 상기 규소계 음극활물질은 음극활물질 전체 중량에 대하여 0.1 내지 30 중량%로 포함될 수 있으며, 구체적으로는 0.5 내지 20 중량%, 1 내지 9 중량%, 5 내지 15 중량%, 3 내지 7 중량%, 11 내지 19 중량%, 13 내지 17 중량%, 15 내지 20 중량%, 10 내지 30 중량%, 20 내지 30 중량%, 15 내지 25 중량%, 또는 9 내지 22 중량%로 포함될 수 있다. 본 발명은 음극활물질에 포함된 탄소계 음극활물질과 규소계 음극활물질의 함량을 상기와 같은 범위로 조절함으로써 리튬 이차전지의 초기 충방전 시 리튬 소모량과 비가역 용량 손실을 줄이면서 단위 질량당 충전 용량을 향상시킬 수 있다. 또한, 리튬 이차전지의 충방전 시 음극 활물질층(220)의 부피 변화를 최소화하여 음극 활물질층(220) 구조 안정성을 향상시킬 수 있으므로, 리튬 이차전지의 수명을 높일 수 있다.
한편, 상기 음극 활물질층(220)은 주성분인 탄소계 음극활물질과 함께, 필요에 따라 도전재, 바인더, 기타 첨가제 등을 선택적으로 더 포함할 수 있다.
상기 도전재는 아세틸렌 블랙, 케첸 블랙 등의 카본 블랙; 탄소나노튜브; 탄소섬유 등을 1종 이상 포함할 수 있으나, 이에 제한되는 것은 아니다.
하나의 예로서, 상기 음극 활물질층(220)은 도전재로서 카본 블랙, 탄소나노튜브, 탄소섬유 등을 단독으로 함유하거나 병용할 수 있다.
이때, 상기 도전재의 함량은 음극 활물질층 전체 100 중량부에 대하여 0.1 내지 10 중량부일 수 있으며, 구체적으로는 0.1 내지 8 중량부, 0.1 내지 5 중량부, 0.1 내지 3 중량부, 2 내지 6 중량부 또는 0.5 내지 2 중량부일 수 있다. 본 발명은 도전재의 함량을 상기와 같은 범위로 제어함으로써 낮은 함량의 도전재로 인해 음극의 저항이 증가하여 충전 용량이 저하되는 것을 방지할 수 있으며, 과량의 도전재로 인해 음극활물질의 함량이 저하되어 충전 용량이 저하되거나 음극 활물질층(220)의 로딩량 증가로 인해 급속 충전 특성이 떨어지는 문제를 예방할 수 있다.
아울러, 상기 바인더는 음극활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서 전극의 전기적 물성을 저하시키지 않는 범위에서 적절히 적용될 수 있으나, 구체적으로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머, 술폰화된 에틸렌-프로필렌-디엔 모노머, 스티렌 부타디엔 고무(SBR) 및 불소 고무로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
상기 바인더의 함량은 음극 활물질층(220) 전체 100 중량부에 대하여 0.1 내지 10 중량부일 수 있고, 구체적으로는 0.1 내지 8 중량부, 0.1 내지 5 중량부, 0.1 내지 3 중량부 또는 2 내지 6 중량부일 수 있다. 본 발명은 음극 활물질층(220)에 함유된 바인더의 함량을 상기 범위로 제어함으로써 낮은 함량의 바인더로 인해 음극 활물질층(220)의 접착력이 저하되거나 과량의 바인더로 인해 전극의 전기적 물성이 저하되는 것을 방지할 수 있다.
나아가, 상기 음극 활물질층(220)의 평균 두께는 100 ㎛ 내지 300 ㎛일 수 있으며, 구체적으로는 100 ㎛ 내지 250 ㎛; 100 ㎛ 내지 250 ㎛; 또는 130 ㎛ 내지 190 ㎛일 수 있으며, 상기 평균 두께는 평탄 영역의 평균 두께와 동일할 수 있다. 본 발명은 음극 활물질층(220)의 평균 두께를 상기 범위로 조절함으로써 음극을 포함하는 전지의 고율 충방전 성능 및 에너지 밀도를 향상시킬 수 있다.
또한, 상기 음극 집전체(210)는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 니켈, 티탄, 소성 탄소 등을 사용할 수 있으며, 구리나 스테인리스 스틸의 경우 카본, 니켈, 티탄, 은 등으로 표면처리된 것을 사용할 수도 있다. 이와 더불어, 상기 음극 집전체(210)의 평균 두께는 제조되는 음극의 도전성과 총 두께를 고려하여 1~500 ㎛에서 적절하게 적용될 수 있다.
이와 더불어, 상기 분리막(300)은 높은 이온 투과도와 기계적 강도를 갖는 절연성 박막으로서, 당업계에서 통상적으로 사용되는 것이라면 특별히 제한되지 않으나, 구체적으로는 내화학성 및 소수성의 폴리프로필렌; 폴리에틸렌; 폴리에틸렌-프로필렌 공중합체 중 1종 이상의 중합체를 포함하는 것을 사용할 수 있다. 상기 분리막(300)은 상술된 중합체를 포함하는 시트나 부직포 등의 다공성 고분자 기재 형태를 가질 수 있으며, 경우에 따라서는 상기 다공성 고분자 기재 상에 유기물 또는 무기물 입자가 유기 바인더에 의해 코팅된 복합 분리막의 형태를 가질 수도 있다. 아울러, 상기 분리막(300)은 기공의 평균 직경이 0.01~10㎛일 수 있고, 평균 두께는 5~300㎛일 수 있다.
한편, 본 발명에 따른 전극 조립체는 특별히 제한되는 것은 아니나, 스택형; 지그재그형; 또는 지그재그-스택형 전극 조립체를 포함할 수 있는 형태의 리튬 이차전지에 적용될 수 있다. 하나의 예로서, 본 발명에 따른 전극 조립체는 지그재그형 리튬 이차전지 또는 지그재그-스택형 리튬 이차전지에 적용될 수 있다.
지그재그형 리튬 이차전지 및/또는 지그재그-스택형 리튬 이차전지는 생산성이 높고, 제한된 공간 내에 높은 밀도로 리튬 이차전지의 단위셀을 패킹(packing)할 수 있으므로 에너지 밀도 측면에서 활용도가 높은 이점이 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 한정되는 것은 아니다.
실시예 1~10 및 비교예 1~2. 리튬 이차전지용 양극의 제조
알루미늄 박판(길이 20 ㎝, 폭 20 ㎝ 및 두께 10㎛)을 준비하고, 절연층 코팅 조성물, 양극 슬러리 및 보조 절연층 코팅 조성물을 각각 제조하였다.
구체적으로, 상기 절연층 코팅 조성물과 보조 절연층 코팅 조성물은 각각 산화알루미늄(Al2O3) 30 중량부와 PVDF 70 중량부를 칭량하고 균일하게 혼합하여 제조하였다. 이때, 상기 절연층 코팅 조성물과 보조 절연층 코팅 조성물은 각각 3 내지 10%의 고형분을 갖도록 조절되었다.
또한, 양극 슬러리는 양극활물질인 LiNi0.7Co0.1Mn0.2O2 97.5 중량부; 도전재인 카본나노튜브 1 중량부; 바인더인 PVdF 1.5 중량부를 칭량하고, 이를 N-메틸피롤리돈과 혼합하여 준비하였다. 이때, 준비된 양극 슬러리의 고형분은 약 65%였다.
그 후, 준비된 알루미늄 박판에 절연층 코팅 조성물을 먼저 패터닝하고, 연속적으로 절연층 코팅 조성물이 도포된 알루미늄 박판에 양극 슬러리와 보조 절연층 코팅 조성물을 동시 코팅하였다. 그런 다음 120℃ 진공 오븐에서 건조시킨 후 압연하였다. 압연된 전극 시트를 타발하여 도 2와 같이 양극 활물질층의 경계부 및 슬라이딩부의 내측에 절연층이 형성된 리튬 이차전지용 양극을 제조하였다.
이때, 양극 활물질층에 포함된 평탄부는 단면 구조(A-A') 기준으로 전체 길이가 약 27㎝가 되도록 형성되었다. 아울러, 상기 평탄부의 평균 두께는 단면 구조(A-A') 기준으로 약 120㎛이고; 슬라이딩부 및 경계부의 길이는 단면 구조(A-A') 기준으로 각각 5 mm 및 5 mm이었다. 또한, 보조 절연층이 형성된 경우, 보조 절연층의 단면 구조(A-A') 기준으로 길이는 5mm이었다. 아울러, 슬라이딩부 내부에 포함된 절연층의 길이 및 평균 두께와 보조 절연층의 형성 여부는 표 1에 나타낸 바와 같다.
절연층 보조 절연층 포함여부
길이 [mm] 높이 [㎛]
실시예 1 4 6 X
실시예 2 4 12 X
실시예 3 6 6 X
실시예 4 4 12 O
실시예 5 2 12 X
실시예 6 35 12 X
실시예 7 4 2 X
실시예 8 4 40 X
실시예 9 2 2 X
실시예 10 35 40 X
비교예 1 - - X
비교예 2 - - O
실시예 11. 리튬 이차전지용 양극의 제조
양극 활물질층의 슬라이딩부의 내측에만 절연층이 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 수행하여 리튬 이차전지용 양극을 제조하였다. 이때, 상기 양극에 구비된 절연층의 길이는 2 mm이었으며, 높이는 2 ㎛이었다.
실험예.
본 발명에 따라 제조된 양극에 대한 성능을 평가하기 위하여 하기와 같은 실험을 수행하였다.
가) 슬라이딩부의 경사각 측정
실시예 1~11 및 비교예 1~2에서 각각 제조된 양극의 단면에 대한 주사전자현미경(SEM) 촬영을 수행하여 활물질층의 슬라이딩부 경사각(또는 슬라이딩각)을 측정하였으며, 그 결과를 하기 표 2에 나타내었다.
나) 전극 조립체의 N/P ratio 및 리튬 석출 현상 평가
천연 흑연과 인조 흑연이 1:1의 중량 비율로 혼합된 음극활물질을 준비하고, 음극활물질 97 중량부와 스티렌부타디엔 고무(SBR) 3 중량부를 물과 혼합하여 슬러리를 형성하고 구리 박판(길이 150 ㎝, 폭 22 ㎝ 및 두께 10㎛) 상에 캐스팅하고 130℃ 진공 오븐에서 건조시킨 후 압연하여 음극을 제조하였다. 이때, 제조된 음극은 음극 활물질층의 평균 두께와 단위 면적당 용량이 양극의 양극 활물질층이 갖는 평균 두께 및 단위 면적당 용량과 동일하게 조절되었다. 또한, 상기 음극은 음극 활물질층의 경계부 및 슬라이딩부의 길이 및 높이가 양극 활물질층의 경계부 및 슬라이딩부가 갖는 길이 및 높이와 동일하게 조절되었다.
제조된 음극 5개와 실시예 1~11 및 비교예 1~2에서 제조된 각 양극 5개가 교대로 배치되고, 이들 사이에, 18㎛ 두께의 폴리프로필렌 분리막이 개재되도록 스태킹하여 전극 조립체를 제작하였다. 이때, 상기 음극은 단면 구조(A-A') 기준으로 음극 활물질층의 슬라이딩부가 양극 활물질층의 슬라이딩부 보다 약 2mm 외측에 배치되도록 조립되었다.
제작된 전극 조립체에 삽입된 음극 활물질층의 평탄부와 경계부의 경계를 기준으로 외측(즉, 음극 활물질층의 경계부 및 슬라이딩부에 해당)을 '전극 조립체의 단부'라 정의하고, 상기 전극 조립체 단부의 단위 면적당 용량(N/P ratio)을 측정하였다. 구체적으로, 단위 면적당 용량(N/P ratio)을 산출하기 위하여, ① 먼저, 단면 구조(A-A') 기준으로 전극 조립체 단부에 포함된 양극 활물질층의 경계부와 슬라이딩부의 임의의 지점에 대한 위치를 나타내는 자연 로그 그래프 회귀 방정식을 도출하였다. 그 후, ② 적분을 통해 전극 조립체 단부에서 맞닿는 음극 활물질층과 양극 활물질층의 면적을 계산하고, 해당 위치에 절연층의 넓이를 감산하여 단위 면적당 용량(N/P ratio)을 산출하였다.
그 후, 제작된 전극 조립체를 파우치 케이스에 삽입하고 전해액을 주입하였다. 상기 전해액은 에틸렌 카보네이트(EthyleneCarbonate, EC)와 에틸메틸 카보네이트(Ethyl Methyl Carbonate, EMC)가 3:7의 부피비로 혼합된 유기 용매에 리튬염으로서 LiPF6가 첨가된 액상 전해질을 사용하였다. 전해액이 주입된 파우치 케이스를 실링하여 파우치형 리튬 이차전지를 제작하고, 제작된 리튬 이차전지를 45℃로 유지한 상태에서 0.33C의 CC(Constant Current) 모드로 전압이 4.8V에 도달할 때까지 충전하였다. 이후, 0.33C의 CC(Constant Current) 모드로 전압이 2.5V에 도달할 때까지 방전한 다음, CV(Constant Voltage) 모드로 전류값이 초기 전류값의 0.05% 수준으로 감소되는 시점까지 추가 방전하여 리튬 이차전지를 활성화 시켰다.
그 후, 동일한 충방전 작업을 총 3,000회까지 진행한 후 리튬 이차전지를 분해하여 전극 조립체를 육안으로 관측하여 리튬 금속의 석출 여부를 확인하였다. 그 결과는 표 2에 나타내었다.
다) 전지의 에너지 밀도 평가
앞서 제조된 리튬 이차전지들과 동일한 방법을 수행하여 파우치형 리튬 이차전지를 제조하고, 제조된 각 리튬 이차전지들의 충방전을 수행하여 단위 부피당 에너지를 분석하였다. 이때, 상기 충방전은 2.5V 내지 4.2V 사이에서 진행하였으며, 충전은 CC/CV, 방전은 CC로 측정하였다. C-rate 측정 기준은 1C을 60A로 하였을 때 3C의 에너지를 확인하였으며, 실시예 1의 에너지 밀도를 기준으로 측정된 각 에너지 밀도의 상대 비교를 수행하여 표 2에 나타내었다.
슬라이딩 각도 리튬 금속
석출 여부
N/P ratio 실시예 1 대비 에너지 밀도 비율
실시예 1 약 85° X 약 1.00 약 100%
실시예 2 약 87° X 약 1.01 약 100%
실시예 3 약 86° X 약 1.01 약 100%
실시예 4 약 87° X 약 1.04 약 100%
실시예 5 약 75° X 약 1.04 약 100%
실시예 6 약 87° X 약 1.08 약 97%
실시예 7 약 77° X 약 1.01 약 100%
실시예 8 약 86° O 약 1.13 약 97%
실시예 9 약 71° O 약 0.99 약 100%
실시예 10 약 88° O 약 1.19 약 96%
실시예 11 약 74° O 약 0.98 약 101%
비교예 1 약 68° O 약 0.99 약 100%
비교예 2 약 71° O 약 0.99 약 100%
본 발명에 따른 리튬 이차전지용 양극은 활물질층 가장자리에 포함된 슬라이딩부의 각도 및/또는 형상 제어가 용이하며, 전극 조립체의 N/P ratio 조절이 쉽고, 높은 에너지 밀도를 갖는 것을 알 수 있다.
구체적으로, 실시예 1~8 및 10에서 제조된 양극은 슬라이딩부가 75° 이상(구체적으로는 약 80° 이상 또는 약 84° 이상)의 높은 경사각을 갖는 것으로 나타났다. 또한, 이들을 포함하는 리튬 이차전지는 N/P ratio가 1 이상으로 유지되어 충방전 시 음극에서 리튬이 석출되지 않는 것으로 확인되었다. 다만, 실시예 8 및 10의 양극은 절연층의 높은 두께로 인해 양극 활물질층 단부, 즉 슬라이딩부의 형상 제어가 어려워 전극 조립체의 조립 시 들뜸 현상이 발생하는 것으로 확인되었다.
또한, 실시예에서 제조된 양극을 포함하는 리튬 이차전지는 에너지 밀도가 우수한 것으로 확인되었다.
이러한 결과로부터, 본 발명에 따른 리튬 이차전지용 양극은 양극 집전체 상에 절연층과 양극 활물질층을 순차적으로 포함하되 양극 활물질층의 가장자리 내측에 절연층이 완전히 덮인 단면 구조를 가짐으로써, 양극 활물질층의 가장자리(또는 단부)의 형상 제어가 쉽고, 양극 활물질층 단부의 단위 면적당/중량당 용량이 현저히 저감되어 전극 조립체의 N/P ratio 제어가 용이한 것을 알 수 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.
[부호의 설명]
1: 리튬 이차전지용 양극 10: 전극 집전체
20: 절연층 30: 활물질층
31: 평탄부 31a: 제1 평탄부
31b: 제2 평탄부 32: 슬라이딩부
40: 보조 절연층 50: 무지부
100: 양극 110: 양극 집전체
120: 양극 절연층 130: 양극 활물질층
140: 양극 보조 절연층 200: 음극
210: 음극 집전체 220: 음극 활물질층
C: 절연층 및 활물질층 코팅 방향
S: 타발(또는 노칭) 시 절단선

Claims (14)

  1. 양극 집전체, 상기 양극 집전체의 적어도 일면에 마련된 절연층, 및 상기 절연층 상에 마련된 양극 활물질층을 포함하고;
    상기 절연층은 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 양극 집전체 상에 불연속적으로 배치되고 양극 활물질층에 의해 완전히 덮이는 구조를 갖는 리튬 이차전지용 양극.
  2. 제1항에 있어서,
    상기 양극 활물질층은 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 중심 영역에 위치하고 두께가 일정하게 유지되는 평탄부, 상기 평탄부의 가장자리에 위치하며 두께 구배를 갖는 슬라이딩부, 및 상기 평탄부와 상기 슬라이딩부의 사이에 위치하는 경계부로 구분되고;
    상기 절연층은 슬라이딩부 및 경계부 중 어느 하나 이상의 내측에 위치하는 리튬 이차전지용 양극.
  3. 제1항에 있어서,
    상기 절연층은 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 30 mm 이하의 길이를 갖는 리튬 이차전지용 양극.
  4. 제1항에 있어서,
    상기 절연층은 평탄부의 평균 두께 기준 30% 이하의 두께 비율을 갖는 리튬 이차전지용 양극.
  5. 제1항에 있어서,
    상기 절연층은,
    Al2O3, Cr2O3, TiO2, SiO2, ZrO2 및 Fe2O3 중 1종 이상의 금속 산화물; 및
    폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리비닐알콜, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 폴리아크릴로니트릴, 폴리아크릴레이트 고무, 폴리메타크릴레이트, 폴리비닐아세테이트 및 스티렌-부타디엔 고무 중 1종 이상의 바인더를 포함하는 리튬 이차전지용 양극.
  6. 제1항에 있어서,
    상기 절연층은 50 중량% 이하의 금속 산화물; 및 50 중량% 이상의 바인더를 포함하는 리튬 이차전지용 양극.
  7. 제1항에 있어서,
    상기 양극 활물질층의 슬라이딩부는 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 외측에 보조 절연층을 더 포함하고는 리튬 이차전지용 양극.
  8. 제7항에 있어서,
    상기 보조 절연층은,
    Al2O3, Cr2O3, TiO2, SiO2, ZrO2 및 Fe2O3 중 1종 이상의 금속 산화물; 및
    폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드 공중합체, 폴리비닐알콜, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 폴리아크릴로니트릴, 폴리아크릴레이트 고무, 폴리메타크릴레이트, 폴리비닐아세테이트 및 스티렌-부타디엔 고무 중 1종 이상의 바인더를 포함하는 리튬 이차전지용 양극.
  9. 양극 집전체의 적어도 일면에 마련된 절연층을 형성하는 단계; 및
    형성된 절연층 상에 마련된 양극 활물질층을 형성하는 단계를 포함하고,
    상기 절연층은 양극 집전체의 주행 방향을 따라 패터닝되어, 양극탭이 배치된 일측에서 양극탭이 배치되지 않는 타측으로 가로지르는 단면 구조를 기준으로 양극 집전체 상에 불연속적으로 배치되고 양극 활물질층에 의해 완전히 덮이는 구조를 갖는 리튬 이차전지용 양극의 제조방법.
  10. 제9항에 있어서,
    상기 절연층을 형성하는 단계는 슬롯 다이코터, 슬롯 노즐코터 또는 그라비아 코터를 이용하여 수행되는 리튬 이차전지용 양극의 제조방법.
  11. 제9항에 있어서,
    상기 절연층은 금속 산화물 및 바인더를 포함하는 절연층 코팅 조성물을 이용하여 형성되고,
    상기 절연층 코팅 조성물은 25℃에서 1,000 내지 10,000 cps의 점도를 갖는 리튬 이차전지용 양극의 제조방법.
  12. 제9항에 있어서,
    상기 활물질층을 형성하는 단계는,
    양극활물질 및 바인더를 포함하는 양극 슬러리를 이용하는 습식 공정; 또는
    양극활물질 및 바인더를 포함하는 양극용 필름을 이용하는 건식 공정에 의해 수행되는 리튬 이차전지용 양극의 제조방법.
  13. 제9항에 있어서,
    상기 활물질층을 형성하는 단계는 형성된 활물질층의 슬라이딩부에 보조 절연층을 형성하는 단계를 더 포함하는 리튬 이차전지용 양극의 제조방법.
  14. 제1항에 따른 양극; 음극; 및 상기 양극과 음극 사이에 배치되는 분리막을 포함하는 리튬 이차전지용 전극 조립체.
PCT/KR2023/008994 2022-06-28 2023-06-28 리튬 이차전지용 양극 및 이의 제조방법 WO2024005527A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0079042 2022-06-28
KR20220079042 2022-06-28
KR1020230082429A KR20240002213A (ko) 2022-06-28 2023-06-27 리튬 이차전지용 양극 및 이의 제조방법
KR10-2023-0082429 2023-06-27

Publications (1)

Publication Number Publication Date
WO2024005527A1 true WO2024005527A1 (ko) 2024-01-04

Family

ID=89381102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008994 WO2024005527A1 (ko) 2022-06-28 2023-06-28 리튬 이차전지용 양극 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2024005527A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081848A (ja) * 2014-10-21 2016-05-16 トヨタ自動車株式会社 リチウムイオン二次電池
JP2019003789A (ja) * 2017-06-14 2019-01-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池素子およびリチウムイオン二次電池
CN111326711A (zh) * 2020-04-02 2020-06-23 宁德新能源科技有限公司 电极极片、电化学装置及包含其的电子装置
JP2021026885A (ja) * 2019-08-05 2021-02-22 トヨタ自動車株式会社 非水電解質二次電池
WO2021210287A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081848A (ja) * 2014-10-21 2016-05-16 トヨタ自動車株式会社 リチウムイオン二次電池
JP2019003789A (ja) * 2017-06-14 2019-01-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池素子およびリチウムイオン二次電池
JP2021026885A (ja) * 2019-08-05 2021-02-22 トヨタ自動車株式会社 非水電解質二次電池
CN111326711A (zh) * 2020-04-02 2020-06-23 宁德新能源科技有限公司 电极极片、电化学装置及包含其的电子装置
WO2021210287A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 電池

Similar Documents

Publication Publication Date Title
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2017095151A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2020180160A1 (ko) 리튬 이차전지
WO2017074109A1 (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2021029650A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2024005527A1 (ko) 리튬 이차전지용 양극 및 이의 제조방법
WO2020180125A1 (ko) 리튬 이차전지
WO2021015488A1 (ko) 이차전지의 제조방법
WO2021256794A1 (ko) 양극 활물질의 제조방법
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021080384A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2021235818A1 (ko) 이차전지의 제조방법
WO2024049200A1 (ko) 양극 활물질 전구체, 이의 제조 방법, 이를 이용한 양극 활물질의 제조 방법 및 양극 활물질
WO2022139516A1 (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극재, 양극 및 리튬 이차 전지
WO2024054019A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831886

Country of ref document: EP

Kind code of ref document: A1