WO2024005118A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2024005118A1
WO2024005118A1 PCT/JP2023/024112 JP2023024112W WO2024005118A1 WO 2024005118 A1 WO2024005118 A1 WO 2024005118A1 JP 2023024112 W JP2023024112 W JP 2023024112W WO 2024005118 A1 WO2024005118 A1 WO 2024005118A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
organic electroluminescent
ring
electroluminescent device
Prior art date
Application number
PCT/JP2023/024112
Other languages
English (en)
French (fr)
Inventor
内田直樹
上原史成
尾池華奈
高橋泰裕
野村真太朗
太田恵理子
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023088916A external-priority patent/JP2024007334A/ja
Priority claimed from JP2023088821A external-priority patent/JP2024007333A/ja
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2024005118A1 publication Critical patent/WO2024005118A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • C07D215/30Metal salts; Chelates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present disclosure relates to an organic electroluminescent device.
  • Organic electroluminescent devices can extract light of any wavelength by using appropriate light-emitting materials, and due to their usefulness, they are being applied not only to small display devices but also to lighting and other uses. , its development is being actively carried out. In any application, it is possible to express any color tone by combining red, green, and blue light emissions at appropriate intensities.
  • organic electroluminescent devices be driven at low voltage and emit light with high efficiency, and recent organic electroluminescent devices are disclosed.
  • organic electroluminescent devices be driven at low voltage and emit light with high efficiency, and materials for organic electroluminescent devices have been gradually improved in recent years.
  • Patent Documents 1 and 2 disclose organic electroluminescent elements with low driving voltage, high efficiency, and long life.
  • One aspect of the present disclosure is directed to providing an organic electroluminescent device that has excellent drive voltage characteristics and current efficiency characteristics, and small changes in efficiency and small changes in efficiency after continuous driving.
  • An organic electroluminescent device includes: [1] an anode; a cathode facing the anode; a light emitting layer disposed between the anode and the cathode; a hole transport region disposed between the anode and the light emitting layer; an electron transport region disposed between the light emitting layer and the cathode; The electron transport region contains a triazine compound represented by formula (2), An organic electroluminescent device that satisfies at least one or more of the following conditions (i) and (ii).
  • the light-emitting layer contains a boron compound represented by formula (1).
  • the hole transport region contains a radialene compound represented by formula (3).
  • Ar 1 represents a phenyl group, a naphthyl group, or a biphenylyl group, which may be substituted with an alkyl group having 1 to 6 carbon atoms
  • Ar 2 represents a phenyl group, a pyridyl group, a phenylpyridyl group, a pyridylphenyl group, or a biphenylyl group, which may be substituted with an alkyl group having 1 to 4 carbon atoms
  • Ar 3 represents a phenyl group or a biphenylyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • Ring A, Ring B, and Ring C may each independently have a substituent, aromatic hydrocarbon ring having 6 to 20 ring atoms; or represents an aromatic heterocycle having 5 to 20 ring atoms;
  • Ra, Rb, and Rc are each independently, deuterium, cyano group, an alkyl group having 1 to 20 carbon atoms, an optionally substituted amino group, aromatic hydrocarbon group having 6 to 20 ring atoms; or a heteroaromatic group having 5 to 20 ring atoms;
  • a, b, and c are each independently an integer of 0 to 4;
  • Ring A and ring B may be connected via an oxygen atom, a sulfur atom, NR', Ra or Rb,
  • R 1 , R 2 , R' may each independently have a substituent, an alkyl group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 ring atoms; or represents a heteroaromatic group having 5 to 20 ring atoms;
  • R 1 may be
  • R3 each independently represents a cyano group, a halogen atom, a fluoroalkyl group, an acyl group, a sulfonyl group, a phosphoryl group, an optionally substituted aromatic hydrocarbon group, or an optionally substituted aromatic heterocyclic group. represent.
  • the hole transport region includes a first hole transport layer; at least a second hole transport layer disposed between the first hole transport layer and the light emitting layer, The organic electroluminescent device according to [3] or [4], wherein the first hole transport layer contains a radialene compound represented by formula (3).
  • R 3 each independently represents a cyano group, a halogen atom, a fluoroalkyl group, an acyl group, a sulfonyl group, a phosphoryl group, an optionally substituted aromatic hydrocarbon group, an optionally substituted aromatic heterocyclic group .
  • Ar 4 each independently represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group.
  • the substituents of the optionally substituted aromatic hydrocarbon group and the optionally substituted aromatic heterocyclic group represented by R 3 and Ar 4 are each independently: selected from deuterium, cyano group, halogen atom, fluoroalkyl group, acyl group, sulfonyl group, and phosphoryl group.
  • R 3 and Ar 4 are each independently: selected from deuterium, cyano group, halogen atom, fluoroalkyl group, acyl group, sulfonyl group, and phosphoryl group.
  • Each R 31 is independently selected from deuterium, a cyano group, a halogen atom, a fluoroalkyl group, an acyl group, a sulfonyl group, and a phosphoryl group.
  • Each s is independently an integer from 1 to 5.
  • the organic electroluminescent device according to [3], [4], [10], [11], or [12], wherein the radialene compound represented by formula (3) has the following formula 3-1.
  • the electron transport region has at least a first electron transport layer and a second electron transport layer disposed between the first electron transport layer and the cathode,
  • the organic electroluminescent device according to [1] to [13], wherein the triazine compound represented by formula (2) is as follows.
  • An organic electroluminescent element that is an embodiment of the present disclosure has both excellent drive voltage characteristics and current efficiency characteristics, and can further reduce efficiency changes and efficiency changes after continuous driving, and can be used in display devices and lighting devices.
  • An element suitable for color tone reproduction can be realized.
  • FIG. 1 is a schematic cross-sectional view showing an example of a stacked structure of an organic electroluminescent element according to one embodiment of the present disclosure.
  • the organic electric field device includes: an anode; a cathode facing the anode; a light emitting layer disposed between the anode and the cathode; a hole transport region disposed between the anode and the light emitting layer; an electron transport region disposed between the light emitting layer and the cathode;
  • the electron transport region contains a triazine compound represented by formula (2), An organic electroluminescent device that satisfies at least one or more of the following conditions (i) and (ii).
  • the light-emitting layer contains a boron compound represented by formula (1).
  • the hole transport region contains a radialene compound represented by formula (3).
  • Ar 1 represents a phenyl group, a naphthyl group, or a biphenylyl group, which may be substituted with an alkyl group having 1 to 6 carbon atoms
  • Ar 2 represents a phenyl group, a pyridyl group, a phenylpyridyl group, a pyridylphenyl group, or a biphenylyl group, which may be substituted with an alkyl group having 1 to 4 carbon atoms
  • Ar 3 represents a phenyl group or a biphenylyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • Ring A, Ring B, and Ring C may each independently have a substituent, aromatic hydrocarbon ring having 6 to 20 ring atoms; or represents an aromatic heterocycle having 5 to 20 ring atoms;
  • Ra, Rb, and Rc are each independently, deuterium, cyano group, an alkyl group having 1 to 20 carbon atoms, an optionally substituted amino group, aromatic hydrocarbon group having 6 to 20 ring atoms; or a heteroaromatic group having 5 to 20 ring atoms;
  • a, b, and c are each independently an integer of 0 to 4;
  • Ring A and ring B may be connected via an oxygen atom, a sulfur atom, NR', Ra or Rb,
  • R 1 , R 2 , R' may each independently have a substituent, an alkyl group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 ring atoms; or represents a heteroaromatic group having 5 to 20 ring atoms;
  • R 1 may be
  • R3 each independently represents a cyano group, a halogen atom, a fluoroalkyl group, an acyl group, a sulfonyl group, a phosphoryl group, an optionally substituted aromatic hydrocarbon group, or an optionally substituted aromatic heterocyclic group. represent.
  • the region between the anode and the light emitting layer is defined as a hole transport region.
  • the hole transport region has a function of transmitting holes injected from the anode or holes generated within the hole transport region to the light emitting layer, and the hole transport region is connected between the anode and the light emitting layer. By intervening, many holes are injected into the light emitting layer with a lower electric field.
  • the hole transport region may be formed of multiple layers.
  • the hole transport region preferably has a laminated structure of two or more layers, more preferably a laminated structure of four or less layers, and particularly preferably a laminated structure of three layers.
  • the first hole transport layer, the second hole transport layer, and the third hole transport layer are formed in order from the anode side, and each of these layers independently performs hole injection. It is preferable to have one or more functions selected from the group consisting of a layer, a hole-generating layer, a hole-transporting layer, and an electron-blocking layer.
  • the region between the cathode and the light emitting layer is the electron transport region.
  • the electron transport region has the function of transmitting electrons injected from the cathode or electrons generated within the electron transport region to the light emitting layer, and by interposing this electron transport region between the light emitting layer and the cathode, more electrons are injected into the emissive layer at a lower electric field.
  • the electron transport region may be formed of multiple layers.
  • the electron transport region preferably has a laminated structure of two or more layers, more preferably a laminated structure of four or less layers, and particularly preferably a laminated structure of three or less layers.
  • the first electron transport layer, the second electron transport layer, and the third electron transport layer are formed in order from the anode side, and each of these layers is independently a hole blocking layer, an electron transport layer, and a third electron transport layer. layer, and an electron injection layer.
  • a charge generation layer may be provided between the anode and the cathode, and a light emitting layer, an electron transport region, etc. may be further provided as a separate unit.
  • the structure of the organic electroluminescent device according to one embodiment of the present disclosure is not particularly limited, and examples thereof include the following structures 1) to 6).
  • FIG. 1 is a schematic cross-sectional view showing an example of a stacked structure of an organic electroluminescent element according to one embodiment of the present disclosure.
  • the organic electroluminescent device according to one aspect of the present disclosure may have a bottom emission type device configuration, a top emission type device configuration, or any other known device configuration.
  • the organic electroluminescent device 100 includes a substrate 1, an anode 2, a hole transport region 3, a light emitting layer 4, an electron transport region 5, and a cathode 6 in this order.
  • the hole transport region 3 may have a laminated structure of a first hole transport layer 31, a second hole transport layer 32, and a third hole transport layer 33 in order from the anode side.
  • the electron transport region 5 may have a laminated structure of a first electron transport layer 51, a second electron transport layer 52, and a third electron transport layer 53 in this order from the anode 2 side. However, some of these layers and/or regions may be omitted, or other layers may be added.
  • a charge generation layer may be provided between the electron transport region 5 and the cathode 6, or the hole transport region 3 may be omitted and the light emitting layer 4 may be provided directly on the anode 2.
  • a single layer that has the functions of multiple layers such as an electron injection/transport layer that has both the functions of an electron injection layer and an electron transport layer in a single layer, may be used as a layer.
  • a configuration may be provided instead of.
  • the single-layer hole transport layer 5 and the single-layer electron transport layer 7 may each be composed of a plurality of layers.
  • the substrate is not particularly limited, and examples include glass plates, quartz plates, plastic plates, and plastic films.
  • the substrate 1 is transparent to the wavelength of light emitted from the light emitting layer 4. Furthermore, in the case of a configuration in which light is extracted from the cathode 6 side, the substrate 1 may be provided with a reflecting plate that reflects the light emitted from the light emitting layer 4 toward the cathode 6 side.
  • optically transparent plastic films examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate ( PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PC polyetherimide
  • PC polyarylate
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • the anode 2 is formed of a material that allows the light emission to pass through or substantially passes through it, or is formed with a film thickness that is sufficient to allow the light emission to pass through. Further, in the case of a configuration in which light is extracted from the cathode 6 side, the anode 2 may have a function of reflecting light emitted from the light emitting layer 4 to the cathode 6 side. Specifically, the anode 2 may be formed of a material that can sufficiently reflect the wavelength of light emitted from the light emitting layer 4, or a laminated structure of a material with high reflectance and an appropriate material with high transmittance may be formed.
  • the material used for the anode 2 is not particularly limited in the case of a configuration in which light emission is extracted from the substrate 1 side, but for example, indium-tin oxide (ITO), indium-zinc oxide, etc. (IZO; Indium Zinc Oxide), tin oxide, aluminum-doped tin oxide, magnesium-indium oxide, nickel-tungsten oxide, other metal oxides, metal nitrides such as gallium nitride, metals such as zinc selenide Examples include selenide and metal sulfides such as zinc sulfide.
  • ITO indium-tin oxide
  • IZO Indium Zinc Oxide
  • tin oxide aluminum-doped tin oxide
  • magnesium-indium oxide magnesium-indium oxide
  • nickel-tungsten oxide other metal oxides
  • metal nitrides such as gallium nitride
  • metals such as zinc selenide Examples include selenide and metal sulfides such as zinc sulfide.
  • a hole transport region 3 is provided between the anode 2 and a light emitting layer 4, which will be described later.
  • a laminated structure may be formed in which the transport layers 33 are provided in this order.
  • the first hole transport layer 31, the second hole transport layer 32, and the third hole transport layer 33 forming the hole transport region 3 are each independently a hole injection layer, a hole generation layer, and a hole transport layer. , an electron blocking layer. Details of these functions are described below.
  • the hole injection layer has a function of efficiently injecting holes from the anode 2, and also has a function of efficiently injecting holes into an adjacent layer.
  • materials for the hole injection layer include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, Examples include styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers (especially thiophene oligomers), porphyrin compounds, aromatic tertiary amine compounds, and styryl amine compounds.
  • the hole injection layer may contain a radialene compound (3) described below.
  • it may be a composition containing the above-mentioned materials and a radialene compound (3) described below.
  • the hole-generating layer obtains electrons from the occupied orbits of the compound forming the adjacent layer by applying an electric field, and generates holes in the adjacent layer (synonymous with injecting holes into the adjacent layer). , and has the function of transporting the electrons obtained by itself to the anode 2 side.
  • the material for the hole generation layer is dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN). , 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), 11, Examples include 11,12,12-tetracyano-2,6-naphthoquinodimethane (TNAP) and 15,15,16,16-tetracyanoanthraquinodimethane (TCAQ).
  • the hole generating layer may contain a radialene compound (3) described below. Alternatively, it may be a composition containing the above-mentioned materials and a radialene compound (3) described below.
  • the hole transport layer has the function of transporting holes injected from the anode 2, the hole injection layer, and the hole generation layer, and injecting the holes into the adjacent layer.
  • the electron blocking layer has the function of blocking electrons from being injected into the layer from an adjacent layer.
  • by blocking electron injection from the light-emitting layer it is possible to increase the total number of charges that contribute to light emission within the light-emitting layer, which in turn contributes to increasing the light-emitting efficiency of the organic electroluminescent device.
  • materials for the hole transport layer and electron blocking layer include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, and amino-substituted chalcone derivatives.
  • the hole transport layer or the electron transport layer may contain a radialene compound (3) described below.
  • the first hole transport layer 31 preferably functions as a hole injection layer and/or a hole generation layer, and more preferably functions as a hole injection layer.
  • the second hole transport layer 32 preferably functions as a hole generation layer, a hole transport layer, and/or an electron blocking layer, and more preferably functions as a hole transport layer.
  • the third hole transport layer 33 preferably functions as a hole transport layer and/or an electron blocking layer, and more preferably functions as an electron blocking layer.
  • aromatic tertiary amine compounds and styrylamine compounds used in the hole injection layer, hole transport layer, and electron blocking layer include N,N,N',N'-tetraphenyl-4,4' -diaminophenyl, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD), 2,2-bis(4 -di-p-tolylaminophenyl)propane, 1,1-bis(4-di-p-tolylaminophenyl)cyclohexane, N,N,N',N'-tetra-p-tolyl-4,4'- Diaminobiphenyl, 1,1-bis(4-di-p-tolylaminophenyl)-4-phenylcyclohexane, bis(4-dimethylamino-2-methylphenyl)phenylmethane
  • the radialene compound included in the hole transport region according to one embodiment of the present disclosure is represented by formula (3):
  • R3 each independently represents a cyano group, a halogen atom, a fluoroalkyl group, an acyl group, a sulfonyl group, a phosphoryl group, an optionally substituted aromatic hydrocarbon group, or an optionally substituted aromatic heterocyclic group. represent.
  • radialene compound (3) the radialene compound represented by formula (3) may be referred to as radialene compound (3).
  • Preferred forms, definitions of substituents, and preferred specific examples of the radialene compound (3) are as follows.
  • Examples of the halogen atom represented by R 3 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom and a chlorine atom are preferred, and a fluorine atom is more preferred.
  • the acyl group represented by R 3 is preferably an acyl group having 2 to 10 carbon atoms containing a carbon at the carbonyl site, more preferably an acyl group having 2 to 10 carbon atoms substituted with a fluorine atom, and all hydrogen atoms are substituted with a fluorine atom.
  • An acyl group having 2 to 10 carbon atoms in which is substituted with a fluorine atom is more preferable, and an acyl group having 2 to 6 carbon atoms in which all hydrogen atoms are substituted with fluorine atoms is particularly preferable.
  • the fluoroalkyl group represented by R 3 is an alkyl group having 1 to 20 carbon atoms in which one or more hydrogen atoms of the alkyl group are substituted with fluorine atoms, and all hydrogen atoms are substituted with fluorine atoms.
  • a fluoroalkyl group having 1 to 20 carbon atoms is preferred, a fluoroalkyl group having 1 to 10 carbon atoms is more preferred, a fluoroalkyl group having 1 to 6 carbon atoms is even more preferred, and a fluoroalkyl group having 1 to 3 carbon atoms is particularly preferred. .
  • the optionally substituted aromatic hydrocarbon group represented by R 3 has 6 to 6 ring carbon atoms and may be substituted with one or more cyano group, halogen atom, acyl group, sulfonyl group, or phosphoryl group.
  • An aromatic hydrocarbon group having 20 carbon atoms which may be connected or fused together is preferable, and an aromatic hydrocarbon group which may be connected or fused to a ring having 6 to 20 ring carbon atoms which may be substituted with a cyano group and/or a halogen atom.
  • a hydrogen group is more preferable, and a phenyl group and a biphenylyl group substituted with a cyano group and/or a fluorine atom are particularly preferable.
  • the optionally substituted aromatic heterocyclic group represented by R 3 has 6 to 6 ring atoms that may be substituted with one or more cyano group, halogen atom, acyl group, sulfonyl group, or phosphoryl group.
  • An aromatic heterocyclic group having 20 atoms, which may be connected or condensed, is preferable, and an aromatic heterocyclic group having 6 to 20 ring members, which may be substituted with a cyano group and/or a halogen atom, which may be connected or condensed.
  • the radialene compound (3) preferably has a structure represented by formula (3-a).
  • Ar 4 each independently represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group.
  • the substituents of the optionally substituted aromatic hydrocarbon group and the optionally substituted aromatic heterocyclic group represented by R 3 and Ar 4 are each independently: selected from deuterium, cyano group, halogen atom, fluoroalkyl group, acyl group, sulfonyl group, and phosphoryl group.
  • R 3 is the same as in formula (3).
  • the substituted aromatic hydrocarbon group represented by Ar 4 has 6 to 20 ring carbon atoms which may be substituted with one or more cyano group, halogen atom, acyl group, sulfonyl group, or phosphoryl group.
  • An aromatic hydrocarbon group which may be linked or fused together is preferable, and an aromatic hydrocarbon group having 6 to 20 ring carbon atoms which may be substituted with a cyano group and/or a halogen atom, which may be linked or fused together.
  • the group is more preferable, and a phenyl group and a biphenylyl group substituted with a cyano group and/or a fluorine atom are particularly preferable.
  • the optionally substituted aromatic heterocyclic group represented by Ar 4 has 6 to 6 ring atoms that may be substituted with one or more cyano group, halogen atom, acyl group, sulfonyl group, or phosphoryl group.
  • An aromatic heterocyclic group having 20 atoms, which may be connected or condensed, is preferable, and an aromatic heterocyclic group having 6 to 20 ring members, which may be substituted with a cyano group and/or a halogen atom, which may be connected or condensed.
  • a cyclic group is more preferable, and a pyridyl group, pyrimidyl group, pyrazyl group, and triazinyl group substituted with a cyano group and/or a fluorine atom are particularly preferable.
  • Radialene compounds (3) and (3-a) preferably have a structure represented by formula (3-b).
  • Each R 31 is independently selected from deuterium, a cyano group, a halogen atom, a fluoroalkyl group, an acyl group, a sulfonyl group, and a phosphoryl group.
  • Each s is independently an integer from 1 to 5.
  • halogen atom fluoroalkyl group
  • acyl group represented by R 31 Preferred forms of the halogen atom, fluoroalkyl group, and acyl group represented by R 31 are the same as those for R 3 .
  • R 31 is preferably selected from a cyano group, a fluorine atom, and a fluoroalkyl group, more preferably a cyano group and/or a fluorine atom, and even more preferably a cyano group and a fluorine atom.
  • radialene compounds (3), (3-a) and (3-b) The radialene compound (3) which is one embodiment of the present disclosure is more preferably a radialene compound represented by any one of the following compounds 3-1 to 3-148.
  • the radialene compound represented by formula 3-1 is particularly preferred in that it provides excellent driving voltage characteristics, current efficiency characteristics, and efficiency change characteristics of the device.
  • the radialene compound (3) according to one embodiment of the present disclosure is used in the hole transport region. It is preferable that the hole transport region forms a laminated structure consisting of a plurality of layers, and among these, the layer containing the radialene compound (3) is preferably used as a layer not in contact with the light emitting layer. It is more preferable to use it as a layer functioning as a hole injection layer, a hole generation layer, or a hole transport layer, and even more preferable to use it as a hole injection layer or a hole generation layer.
  • the layer containing the radialene compound (3) may be formed only from the radialene compound (3), or may be formed from a composition of another compound and the radialene compound (3).
  • it is preferably formed of a composition with other compounds, and in this case, the composition ratio of the radialene compound is more preferably 0.1 to 20%, more preferably 0.5 to 20%. 10% is more preferred, and 0.5 to 5% is particularly preferred.
  • the layer formed by the composition of the radialene compound (3) and another compound may be formed by a co-evaporation method in which the radialene compound (3) and the other compound are heated and simultaneously vapor-deposited. A mixture of compound (3) and another compound may be heated and deposited. From the viewpoint of controlling the composition ratio of the radialene compound (3) in the formed layer, it is preferable to form the layer by co-evaporation.
  • a light emitting layer 4 is provided between the hole transport region 3 and the electron transport region 5, which will be described later.
  • Examples of materials for the light-emitting layer include phosphorescent materials, fluorescent materials, and thermally activated delayed fluorescent materials.
  • excitons are electrically generated by recombination of electron-hole pairs, and light is generated when the excitons are deactivated.
  • the emissive layer 4 may consist of a single low molecule material or a single polymeric material, but more commonly it consists of a host material doped with a guest compound.
  • the guest material include fluorescent compounds, phosphorescent compounds, delayed fluorescent compounds, and the like.
  • the light emission primarily comes from the guest material and can emit any color. Further, the light emitting layer 4 may contain a boron compound (1) whose details will be described later.
  • Examples of the host material include compounds having a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, a dibenzofuryl group, a dibenzothienyl group, and an anthryl group.
  • DPVBi 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl
  • BCzVBi 4,4'-bis(9-ethyl-3-carbazovinylene) 1, 1'-biphenyl
  • TBADN (2-tert-butyl-9,10-di(2-naphthyl)anthracene)
  • ADN 9,10-di(2-naphthyl)anthracene
  • CBP 4,4'-bis (carbazol-9-yl)biphenyl
  • CDBP 4,4'-bis(carbazol-9-yl)-2,2'-dimethylbiphenyl
  • Examples of the fluorescent compound include boron compound (1), anthracene, pyrene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyran compound, thiopyran compound, polymethine compound, pyrylium, thiapyrylium compound, and fluorene compound. , periflanthene compounds, indenoperylene compounds, bis(azinyl)amine boron compounds, bis(azinyl)methane compounds, carbostyryl compounds, and the like.
  • the fluorescent dopant may be a combination of two or more selected from these.
  • Examples of the phosphorescent compound include metal complexes such as iridium complexes, platinum complexes, palladium complexes, and osmium complexes.
  • fluorescent compounds and phosphorescent compounds include Alq3 (tris(8-hydroxyquinolinolato)aluminum), DPAVBi (4,4'-bis[4-(di-p-tolylamino)styryl]biphenyl), perylene, bis[2-(4-n-hexylphenyl)quinoline](acetylacetonato)iridium(III), Ir(PPy) 3 (tris(2-phenylpyridine)iridium(III)), and FIrPic(bis( 3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III)) and the like.
  • the thermally activated delayed fluorescence emitting material can be used as either the host material or the guest material described above.
  • the thermally activated delayed fluorescence emitting material does not itself emit light, but can play the role of efficiently transferring excitation energy to the fluorescent compound that forms the emissive layer at the same time as the thermally activated delayed fluorescence emitting material. .
  • thermally activated delayed fluorescence examples include boron compound (1), 4Cz-IPN (2,4,5,6-tetra(9-carbazolyl)-isophthalonitrile), 5Cz-BN (2,3, 4,5,6-penta(9-carbazolyl)-benzonitrile), DACTII(2-[3,6-bis(diphenylamino)carbazol-9-ylphenyl]-4,6-diphenyl-1,3,5 -triazine), etc.
  • the luminescent material is not limited to being contained only in the luminescent layer.
  • the luminescent material may be contained in a layer adjacent to the luminescent layer (hole transport layer 5 or electron transport layer 7). This further increases the current efficiency of the organic electroluminescent device.
  • the light-emitting layer may have a single layer structure made of one or more kinds of materials, or may have a laminated structure made of multiple layers having the same composition or different compositions.
  • ⁇ Boron compound> A boron compound included in the light emitting layer according to one embodiment of the present disclosure is represented by formula (1).
  • Ring A, Ring B, and Ring C may each independently have a substituent, aromatic hydrocarbon ring having 6 to 20 ring atoms; or represents an aromatic heterocycle having 5 to 20 ring atoms;
  • Ra, Rb, and Rc are each independently, deuterium, cyano group, an alkyl group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 ring atoms; or represents a heteroaromatic group having 5 to 20 ring atoms;
  • a, b, c are each independently an integer of 0 to 4
  • Ring A and ring B may be connected via an oxygen atom, a sulfur atom, NR', Ra or Rb,
  • R 1 , R 2 , R' may each independently have a substituent, an alkyl group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 ring atoms; or represents a heteroaromatic group having 5 to 20 ring atoms
  • R 1 may be linked to ring A or ring C via
  • Ring A, Ring B, and Ring C may each independently have a substituent, aromatic hydrocarbon ring having 6 to 20 ring atoms; It is selected from aromatic heterocycles having 5 to 20 ring atoms.
  • Ring A, Ring B, and Ring C are each independently an aromatic hydrocarbon ring having 6 to 18 ring atoms or an aromatic heterocycle having 5 to 18 ring atoms, which may have a substituent. is preferable, an aromatic hydrocarbon ring having 6 to 12 ring atoms or an aromatic heterocycle having 5 to 12 ring atoms, more preferably an aromatic hydrocarbon ring having 6 to 9 ring atoms or an aromatic heterocycle having 6 to 9 ring atoms.
  • Aromatic heterocycles having a number of 5 to 9 are more preferred, benzene, benzofuran, benzothiophene, indole, benzimidazole, benzothiazole, and benzoxazole are more preferred, and benzene is particularly preferred.
  • Ring A and ring B may be connected via an oxygen atom, a sulfur atom, NR', Ra or Rb described below, and ring A and ring B may be connected through NR' or not connected.
  • a structure in which ring A and ring B are not connected is preferable, and a structure in which ring A and ring B are not connected is more preferable.
  • Ra, Rb, and Rc are each independently, deuterium, cyano group, an alkyl group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 ring atoms; It is selected from heteroaromatic groups having 5 to 20 ring atoms.
  • Ra, Rb, and Rc are each independently preferably deuterium, an alkyl group having 1 to 20 carbon atoms, or a heteroaromatic group having 5 to 20 ring atoms; More preferred is an alkyl group having 1 to 20 carbon atoms.
  • [About a, b, c] a, b, and c are each independently an integer of 0 to 4, each independently preferably 0 to 2, each independently more preferably 0 to 1, and even more preferably 1.
  • R 1 , R 2 , R' may each independently have a substituent, an alkyl group having 1 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 20 ring atoms; or represents a heteroaromatic group having 5 to 20 ring atoms; R 1 , R 2 , and R' are each independently an aromatic hydrocarbon group having 6 to 20 ring atoms that may have a substituent, or a ring atom that may have a substituent.
  • a heteroaromatic group having 5 to 20 ring atoms is preferable, an aromatic hydrocarbon group having 6 to 20 ring atoms which may have a substituent is more preferable, and a heteroaromatic group having 6 to 20 ring atoms substituted with an alkyl group is more preferable.
  • 20 aromatic hydrocarbon groups are more preferred, and phenyl groups substituted with alkyl groups are particularly preferred.
  • R 1 may be linked to ring A or ring C via an oxygen atom, a sulfur atom, an optionally substituted nitrogen atom, Ra, or Rc to form a ring structure
  • R 2 may be bonded to ring B or ring C via an oxygen atom, a sulfur atom, an optionally substituted nitrogen atom, Rb, or Rc to form a ring structure.
  • boron compound (1) A boron compound represented by any one of compounds 1-1 to 1-54 is more preferred in terms of achieving both excellent drive voltage characteristics and current efficiency characteristics.
  • the boron compounds shown by 1-1, 1-2, 1-11, 1-12, 1-17, 1-18, 1-21, and 1-22 have particularly excellent driving voltage characteristics and current Preferred in terms of achieving both efficiency characteristics and efficiency change characteristics, 1-1, 1-11, and 1-17 are more preferred, and 1-1 is particularly preferred.
  • An electron transport layer 5 is provided between the light emitting layer 4 and a cathode 6 to be described later, and from the anode 2 side, a first electron transport layer 51, a second electron transport layer 52, and a third electron transport layer 53 are arranged. A laminated structure provided in this order may be formed.
  • the electron transport region 5 contains a triazine compound represented by formula (2).
  • the triazine compound may be included in multiple layers present in the electron transport region.
  • the first electron transport layer 51, second electron transport layer 52, and third electron transport layer 53 forming the electron transport region 5 each independently include an electron injection layer, an electron generation layer, an electron transport layer, and a hole blocking layer. one or more functions selected from the group. Details of these functions will be described later.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode 6 or the charge generation layer, and also has a function of efficiently injecting electrons into an adjacent layer.
  • materials for the electron injection layer include metals such as lithium (Li), potassium (K), cesium (Cs), and ytterbium (Yb), lithium fluoride (LiF), sodium fluoride (NaF), and fluoride.
  • Inorganic salts such as potassium (KF), lithium carbonate (Li2CO3), sodium carbonate (Na2CO3), potassium carbonate (K2CO3), cesium carbonate (Cs2CO3), 8-hydroxyquinolinolatolithium (Liq), bis(8-hydroxyquino Examples include organometallic complexes such as zinc linolato, and compositions of these and a triazine compound represented by formula (2).
  • the electron transport layer has the function of transporting electrons injected from the charge generation layer, the cathode, and the electron injection layer, and injecting the electrons into the adjacent layer.
  • the hole blocking layer has the function of blocking holes from being injected into the layer from an adjacent layer.
  • by blocking hole injection from the light-emitting layer it is possible to increase the total number of charges that contribute to light emission within the light-emitting layer, which in turn contributes to increasing the light-emitting efficiency of the organic electroluminescent device.
  • the electron transport layer and the hole blocking layer may contain a triazine compound represented by formula (2).
  • specific examples of the materials for the electron transport layer and the hole blocking layer may further contain conventionally known electron transport materials.
  • Conventionally known electron transport materials include, for example, 8-hydroxyquinolinolatolithium (Liq), bis(8-hydroxyquinolinolato)zinc, bis(8-hydroxyquinolinolato)copper, and bis(8-hydroxyquinolinolato).
  • Ar 1 represents a phenyl group, a naphthyl group, or a biphenylyl group, which may be substituted with an alkyl group having 1 to 6 carbon atoms
  • Ar 2 represents a phenyl group, a pyridyl group, a phenylpyridyl group, a pyridylphenyl group, or a biphenylyl group, which may be substituted with an alkyl group having 1 to 4 carbon atoms
  • Ar 3 represents a phenyl group or a biphenylyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • triazine compound (2) may be referred to as triazine compound (2).
  • Definitions of the substituents in the triazine compound (2) and preferred specific examples thereof are as follows.
  • Ar 1 is selected from phenyl, naphthyl, biphenylyl.
  • Ar 1 is preferably a phenyl group or a biphenylyl group, more preferably a phenyl group or a biphenyl-4-yl group, from the viewpoint of achieving both excellent drive voltage characteristics and current efficiency characteristics.
  • Ar 2 is selected from a phenyl group, a pyridyl group, a phenylpyridyl group, a pyridylphenyl group, and a biphenylyl group, which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • Ar 2 is preferably a phenyl group, a pyridyl group, or a biphenylyl group, more preferably a phenyl group or a biphenylyl group, and particularly preferably a phenyl group, from the viewpoint of achieving both excellent drive voltage characteristics and current efficiency characteristics.
  • Ar 3 is selected from a phenyl group and a biphenylyl group, which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • Ar 3 is preferably a phenyl group, a biphenyl-2-yl group, or a biphenyl-4-yl group in terms of achieving both excellent drive voltage characteristics and current efficiency characteristics.
  • the triazine compound (2) which is one embodiment of the present disclosure, is more preferably a triazine compound represented by any one of the following compounds 2-1 to 2-80.
  • the triazine compounds represented by formulas 2-1, 2-2, 2-4, 2-5, 2-9, 2-22, and 2-24 are particularly suitable for providing excellent driving voltage characteristics, current efficiency characteristics, and This is preferable in terms of achieving both efficiency change characteristics.
  • the triazine compound (2) according to one embodiment of the present disclosure is used in the electron transport region. It is preferable that the electron transport region forms a laminated structure consisting of a plurality of layers, and among these, the triazine compound (2) is more preferably used in the layer that functions as the above-mentioned electron transport layer and hole blocking layer. , more preferably used in the electron transport layer.
  • the electron transport layer may be formed only from the triazine compound (2) or may be formed from a composition with other compounds.
  • the electron transport layer is preferably formed of a composition with other compounds.
  • the weight composition ratio of the triazine compound (2) is more preferably 20 to 80%, more preferably 30 to 80%. 70% is more preferred, and 40 to 60% is particularly preferred.
  • the layer formed by the composition of the triazine compound (2) and another compound may be formed by a co-evaporation method in which the triazine compound (2) and the other compound are heated and vapor-deposited simultaneously. A mixture of compound (2) and another compound may be heated and deposited. From the viewpoint of controlling the composition ratio of the triazine compound (2) in the formed layer, it is preferable to form the layer by co-evaporation.
  • the compounds shown as specific examples of the materials used for the electron transport and hole blocking layer described above or Liq are preferable, and Liq is more preferable.
  • triazine compound (2) according to one embodiment of the present disclosure can be synthesized by appropriately combining known reactions (for example, Suzuki-Miyaura cross-coupling reaction, etc.).
  • the triazine compound (2) according to one embodiment of the present disclosure can be synthesized according to the production method shown in any one of reaction formulas (a) to (c) shown below, but these examples do not impose any limitations. It is not intended to be interpreted as such.
  • Each X independently represents a leaving group.
  • the leaving group include, but are not limited to, a chlorine atom, a bromine atom, an iodine atom, a trifluoromethanesulfonyloxy group, and the like.
  • bromine atom or chlorine atom is preferred from the viewpoint of good reaction yield.
  • M each independently represents a metal-containing group ZnR 1 , MgR 2 , or Sn(R 3 ) 3 ; or a boron-containing group B(OR 4 ) 2 ;
  • R 1 and R 2 each independently represent a chlorine atom, a bromine atom, or an iodine atom
  • R 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group
  • R 4 represents a hydrogen atom, a carbon number Represents 1 to 4 alkyl groups or phenyl groups
  • two R 4 of B(OR 4 ) 2 may be the same or different.
  • two R 4s can be combined to form a ring containing an oxygen atom and a boron atom.
  • ZnR 1 and MgR 2 examples include ZnCl, ZnBr, ZnI, MgCl, MgBr, MgI, and the like.
  • Sn(R 3 ) 3 examples include Sn(Me) 3 and Sn(Bu) 3 .
  • B(OR 4 ) 2 examples include B(OH) 2 , B(OMe) 2 , B(O i Pr) 2 , and B(OBu) 2 .
  • examples of B(OR 4 ) 2 in which two R 4 are combined to form a ring containing an oxygen atom and a boron atom include, but are not limited to, the following (I). Examples include groups represented by (VI), and the group represented by (II) is preferred in terms of good yield.
  • reaction formulas (a) to (c) The production methods shown by reaction formulas (a) to (c) will be explained in more detail by taking the production method shown by reaction formula (b) as an example.
  • the production method shown by reaction formula (b) represents obtaining the triazine compound (2) by sequentially using an organometallic compound containing Ar 2 or Ar 3 in a reaction in the presence of a palladium catalyst.
  • the organometallic compound containing Ar 2 or Ar 3 used in the reaction can be used simultaneously for the reaction, or the intermediate product obtained by the reaction using the organometallic compound containing Ar 2 can be isolated once.
  • the triazine compound (2) can also be obtained by subsequently reacting with an organometallic compound containing Ar 3 in the presence of a palladium catalyst.
  • the triazine compound (2) can also be obtained by first using an organometallic compound containing Ar 3 in the reaction.
  • Cathode 6 A cathode 6 opposing the anode 2 is provided with the electron transport region 5 interposed therebetween. The cathode 6 can function as a cathode when current is passed through the organic electroluminescent element, which is one embodiment of the present disclosure.
  • the cathode 6 can be formed from any conductive material.
  • Materials for the cathode 6 include lithium, sodium, sodium-potassium alloy, magnesium, silver, magnesium/copper mixture, magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (Al 2 O 3 ).
  • Examples include mixtures of indium, indium-zinc oxide (IZO), lithium/aluminum mixtures, and rare earth metals such as ytterbium.
  • a transparent electrode material such as indium zinc oxide (IZO) or a metal such as silver, aluminum, or a silver/magnesium mixture is used.
  • IZO indium zinc oxide
  • a metal such as silver, aluminum, or a silver/magnesium mixture
  • An example of this is to form the material to a thickness that allows sufficient transmission of the emitted light.
  • Each layer except for the electrodes (anode, cathode) described above is prepared by applying the material for each layer (along with materials such as binder resin and solvent as necessary) using, for example, vacuum evaporation, spin coating, casting, LB ( It can be formed by forming a thin film using a known method such as the Langmuir-Blodgett method.
  • each layer formed in this way is not particularly limited and can be appropriately selected depending on the situation, but is usually in the range of 1 nm to 5 ⁇ m.
  • the anode 2 and the cathode 6 can be formed by thinning the electrode material by a method such as vapor deposition or sputtering.
  • a pattern may be formed through a mask having a desired shape during vapor deposition or sputtering, or a thin film may be formed by vapor deposition or sputtering, and then a pattern having a desired shape may be formed by photolithography.
  • the film thickness of the anode 2 and the cathode 6 is preferably 1 ⁇ m or less, and more preferably 5 nm or more and 200 nm or less.
  • the transmittance can be ensured by forming a film with a thickness of 30 nm or less, and the material can function as a transparent electrode.
  • the organic electroluminescent device may be used as a type of lamp for illumination or as an exposure light source, or may be used as a type of projection device that projects an image, or for direct viewing of still images or moving images. It may also be used as a type of display device.
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Further, by using two or more types of organic electroluminescent elements of this embodiment having different emission colors, it is possible to produce a full-color display device.
  • triazine compound 2-4 was synthesized by the same method as the production method shown in Synthesis Example-1.
  • Example-1 (see Figure 1) (Preparation of substrate 1 and anode 2) A glass substrate with an ITO transparent electrode on which a 2 mm wide indium-tin oxide (ITO) film (film thickness: 110 nm) was patterned in stripes was prepared as a substrate having an anode on its surface. Next, this substrate was cleaned with isopropyl alcohol, and then surface-treated by ozone ultraviolet cleaning. (Preparation for vacuum deposition) Each layer was vacuum-deposited using a vacuum evaporation method on the surface-treated substrate after cleaning, and each layer was laminated.
  • ITO indium-tin oxide
  • first hole transport layer 31 A 10 nm film of HTL-1 purified by sublimation and Compound 3-1, which is an embodiment of the present disclosure, was formed at a rate of 0.15 nm/sec to produce a first hole transport layer 31.
  • Preparation of second hole transport layer 32 HTL-1 purified by sublimation was deposited to a thickness of 85 nm at a rate of 0.15 nm/sec to produce a second hole transport layer 32.
  • EBL-1 purified by sublimation was deposited to a thickness of 5 nm at a rate of 0.15 nm/sec to produce a third hole transport layer 33.
  • BH-1 purified by sublimation and Compound 1-1 which is an embodiment of the present disclosure, were formed into a 20 nm film at a ratio of 95:5 (mass ratio) to produce a light-emitting layer 4. The film deposition rate was 0.18 nm/sec.
  • HBL-1 purified by sublimation was deposited to a thickness of 6 nm at a rate of 0.05 nm/sec to produce the first electron transport layer 51.
  • the cathode had a two-layer structure by forming silver/magnesium (mass ratio 9/1) and silver in this order to have a thickness of 12 nm and a thickness of 90 nm, respectively.
  • the deposition rate of silver/magnesium was 0.5 nm/sec, and the deposition rate of silver was 0.2 nm/sec.
  • an organic electroluminescent device 100 having a light emitting area of 4 mm 2 as shown in FIG. 1 was manufactured.
  • the thickness of each film was measured using a stylus-type film thickness meter (DEKTAK, manufactured by Bruker).
  • this device was sealed in a nitrogen atmosphere glove box with an oxygen and moisture concentration of 1 ppm or less. Sealing was performed using a glass sealing cap and a film-forming substrate (element) using bisphenol F type epoxy resin (manufactured by Nagase ChemteX).
  • a direct current was applied to the organic electroluminescent device produced as described above, and its luminescence characteristics were evaluated using a luminance meter (product name: BM-9, manufactured by Topcon Technohouse).
  • a luminance meter product name: BM-9, manufactured by Topcon Technohouse.
  • V driving voltage
  • cd/A current efficiency
  • the driving voltage and current efficiency are relative values with the results in Comparative Example-1 described later as a reference value (100).
  • the efficiency change was calculated based on the following definition.
  • Efficiency change (current efficiency at 1000 cd/m 2 o'clock) / (current efficiency at 10 cd/m 2 o'clock)
  • voltage was applied again and the current efficiency (cd/A) after continuous driving was measured when a brightness of 1000 cd/m 2 was obtained. did.
  • the change in efficiency after continuous driving was calculated based on the following definition.
  • Example-4 In Device Example 1, an organic electroluminescent device was produced and evaluated in the same manner as in Example 1, except that Compound 2-24 was used instead of Compound 2-1. The measurement results obtained are shown in Table 1.
  • Example-5 In Device Example 1, an organic electroluminescent device was produced and evaluated in the same manner as in Example 1, except that Compound 2-4 was used instead of Compound 2-1. The measurement results obtained are shown in Table 1.
  • Comparative example-1 In Device Example 1, an organic electroluminescent device was produced and evaluated in the same manner as in Example 1, except that ETL-1 was used instead of Compound 2-1. The measurement results obtained are shown in Table 1.
  • Comparative example-3 In Device Example 1, an organic electroluminescent device was produced and evaluated in the same manner as in Example 1, except that ETL-2 was used instead of Compound 2-1.
  • Comparative example-4 In Device Example 1, an organic electroluminescent device was produced and evaluated in the same manner as in Example 1, except that ETL-3 was used instead of Compound 2-1. The measurement results obtained are shown in Table 1. Comparative example-5 In Device Example 1, an organic electroluminescent device was produced and evaluated in the same manner as in Example 1, except that ETL-4 was used instead of Compound 2-1. The measurement results obtained are shown in Table 1. Comparative example-6 In Device Example 1, an organic electroluminescent device was produced and evaluated in the same manner as in Example 1, except that ETL-5 was used instead of Compound 2-1. The measurement results obtained are shown in Table 1. Comparative example-7 In device example 1, an organic electroluminescent device was produced and evaluated in the same manner as in example 1, except that ETL-6 was used instead of compound 2-1. The measurement results obtained are shown in Table 1.
  • Example-6 In Example-1, EBL-2 was used instead of EBL-1, BD-1 was used instead of compound 1-1, compound 2-4 was used instead of compound 2-1, and Liq was used instead of ytterbium. Except for this, an organic electroluminescent device was produced and evaluated in the same manner as in Device Example-1. The measurement results obtained are shown in Table 2.
  • Example-7 In Example-6, an organic electroluminescent device was produced and evaluated in the same manner as Device Example-1 except that 2-24 was used instead of Compound 2-4. The results obtained are shown in Table 2.
  • Comparative example-8 In Example-6, an organic electroluminescent device was produced and evaluated in the same manner as Device Example-1 except that ETL-2 was used instead of Compound 2-4. The results obtained are shown in Table 2. Comparative example-9 In Example-6, an organic electroluminescent device was produced and evaluated in the same manner as Device Example-1 except that ETL-3 was used instead of Compound 2-4. The results obtained are shown in Table 2. Comparative example-10 In Example 6, an organic electroluminescent device was produced and evaluated in the same manner as Device Example 1, except that HIL-1 was used instead of BD-1. The results obtained are shown in Table 2. Comparative example-11 In Example-6, an organic electroluminescent device was produced and evaluated in the same manner as Device Example-1, except that HIL-1 was used instead of BD-1 and 2-24 was used instead of compound 2-4. did. The results obtained are shown in Table 2.
  • Tables 1 and 2 show that the electron transport region according to one embodiment of the present disclosure contains the triazine compound represented by the above formula (2), and the light emitting layer according to one embodiment of the present disclosure contains the triazine compound represented by the above formula (1).
  • the configuration in which the boron compound and/or the hole transport region contains the radialene compound represented by the formula (3) has not only superior drive voltage characteristics and current efficiency characteristics compared to conventionally known configurations, but also improved efficiency change and It is possible to provide an organic electroluminescent device that exhibits small changes in efficiency after continuous driving.
  • Substrate 2 Anode 3 Hole transport region 31 First hole transport layer 32 Second hole transport layer 33 Third hole transport layer 4 Light emitting layer 5 Electron transport region 51 First electron transport layer 52 Second electron transport layer 53 Third electron transport layer 6 Cathode 100 Organic electroluminescent device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

優れた駆動電圧特性および電流効率特性を両立し、効率変化および連続駆動後効率変化が小さい有機電界発光素子を提供することを目的とする。 陽極と、陽極に対向する陰極と、 前記陽極と陰極との間に配置された発光層と、前記陽極と発光層との間に配置された正孔輸送領域を有し、前記発光層と陰極との間に配置された電子輸送領域を有し、前記電子輸送領域が式(2)で表されるトリアジン化合物を含有し、下記の(i)および(ii)のうち少なくとも1つ以上の条件を満たす有機電界発光素子。 (i)前記発光層が式(1)で表されるホウ素化合物を含有する。 (ii)前記正孔輸送領域が式(3)で表されるラジアレン化合物を含有する。

Description

有機電界発光素子
 本開示は、有機電界発光素子に関する。
 有機電界発光素子は、適切な発光材料を使用することで、任意の波長の光を取り出すことが可能であり、その有用性から小型の表示機器だけでなく照明等の用途へ応用展開されており、その開発が精力的に行われている。いずれの用途においても、赤色、緑色、青色の発光を、適切な強度で組み合わせることで任意の色調を表現することが可能となる。
 従来から、有機電界発光素子は低い電圧で駆動し、高い効率で発光することが望まれており、近年の有機電界発光素子を開示している。
 従来から、有機電界発光素子は低い電圧で駆動し、高い効率で発光することが望まれており、近年の有機電界発光素子用材料は徐々に改良されている。
 例えば特許文献1および2は、駆動電圧が低く、効率が高く、長寿命な有機電界発光素子を開示している。
国際公開第2020/117026号 日本国特開2020-033264
 ところが、近年の有機電界発光素子に対する市場からの要求は益々高くなり、優れた駆動電圧特性および電流効率特性のみならず、色調の精密な制御が可能な有機電界発光素子の開発が求められている。そして、色調の細かい調整や制御を可能とするためには、低輝度から高輝度に至るまで幅広い領域においても効率が高く、且つ効率の変化が小さいことが望まれる(以下、当該効率の変化を単に「効率変化」ともいう)。さらに色調の細かい調整や制御を可能とするためには素子を連続で駆動させた前後で効率に変化がないことが望まれている(以下、当該効率の変化を単に「連続駆動後効率変化」ともいう)
 本開示の一態様は、優れた駆動電圧特性および電流効率特性、ならびに効率変化および連続駆動後効率変化が小さい有機電界発光素子を提供することに向けられている。
 本開示の一態様による有機電界発光素子は、
[1]
 陽極と、
 陽極に対向する陰極と、
 前記陽極と陰極との間に配置された発光層と、
 前記陽極と発光層との間に配置された正孔輸送領域を有し、
 前記発光層と陰極との間に配置された電子輸送領域を有し、
 前記電子輸送領域が式(2)で表されるトリアジン化合物を含有し、
 下記の(i)および(ii)のうち少なくとも1つ以上の条件を満たす有機電界発光素子。
 (i)前記発光層が式(1)で表されるホウ素化合物を含有する。
 (ii)前記正孔輸送領域が式(3)で表されるラジアレン化合物を含有する。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、
 Arは、炭素数1~6のアルキル基で置換されてもよい、フェニル基、ナフチル基、またはビフェニリル基を表し、
 Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、ピリジル基、フェニルピリジル基、ピリジルフェニル基、またはビフェニリル基を表す。
Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、またはビフェニリル基を表す。
Figure JPOXMLDOC01-appb-C000011
 式(1)中、
 環A、環B、環Cは、各々独立に、置換基を有していてもよい、
環構成原子数6~20の芳香族炭化水素環、
または環構成原子数5~20の芳香族複素環を表す;
 Ra、Rb、Rcは、各々独立に、
  重水素、
  シアノ基、
  炭素数1~20のアルキル基、
  置換されてもよいアミノ基、
  環構成原子数6~20の芳香族炭化水素基、
  または環構成原子数5~20の複素芳香族基;を表す
 a、b、cは、各々独立に、0~4の整数であり、
 環Aと環Bは、酸素原子、硫黄原子、N-R’、RaまたはRbを介して連結してもよく、
 R、R、R’は、各々独立に、置換基を有していてもよい、
  炭素数1~20のアルキル基、
  環構成原子数6~20の芳香族炭化水素基、
  または環構成原子数5~20の複素芳香族基を表し;
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Ra、またはRcを介して環Aまたは環Cと連結して環構造を形成してもよく、
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Rb、またはRcを介して環Bまたは環Cと連結して環構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000012
 式(3)中、
  Rは、各々独立に、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、置換されてもよい芳香族炭化水素基、または置換されてもよい芳香族複素環基を表す。
[2]
 前記(i)および(ii)のうち、(i)の条件を満たす、[1]に記載の有機電界発光素子。
[3]
 前記(i)および(ii)のうち、(ii)の条件を満たす、[1]に記載の有機電界発光素子。
[4]
 前記(i)および(ii)のうち、(i)および(ii)の両方の条件を満たす、[1]に記載の有機電界発光素子。
[5]
 式(1)において、環A~Cの少なくとも一つが置換基を有していてもよいベンゼン環である、[2]または[4]に記載の有機電界発光素子。
[6]
 式(1)において、環A~Cが置換基を有していてもよいベンゼン構造を含む環である、[2]、[4]、または[5]に記載の有機電界発光素子。
[7]
 式(1)において、Ra、Rb、Rcの少なくとも一つが炭素数1~4のアルキル基である、[2]、[4]、[5]、または[6]に記載の有機電界発光素子。
[8]
 式(1)で表されるホウ素化合物が下記から選択される、[2]、[4]、[5]、[6]、または[7]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000013
[9]
 式(1)で表されるホウ素化合物が前記1-1の化合物である、[2]、[4]、[5]、[6]、[7]、または[8]に記載の有機電界発光素子。
[10]
 前記正孔輸送領域が、第1の正孔輸送層と、
 第1の正孔輸送層と発光層との間に配置された第2の正孔輸送層とを少なくとも有し、
 前記第1の正孔輸送層が式(3)で表されるラジアレン化合物を含有する[3]または[4]に記載の有機電界発光素子。
[11]
 式(3)で表されるラジアレン化合物が式(3-a)である[3]、[4]、または[10]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000014
 式(3-a)中、
 Rは、各々独立に、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、置換されてもよい芳香族炭化水素基、置換されてもよい芳香族複素環基を表す。
 Arは、各々独立に、置換されてもよい芳香族炭化水素基、または置換されてもよい芳香族複素環基を表す。
 RおよびArで表される置換されてもよい芳香族炭化水素基、置換されてよい芳香族複素環基が有する置換基は、各々独立に、
  重水素、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、から選択される。
[12]
 式(3)で表されるラジアレン化合物が式(3-b)である[3]、[4]、[10]、または[11]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000015
 式(3-b)中、
 R31は、各々独立に、重水素、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、から選択される。
 sは各々独立に、1~5の整数である。
[13]
 式(3)で表されるラジアレン化合物が下記式3-1である、[3]、[4]、[10]、[11]、または[12]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000016
[14]
 前記電子輸送領域が、第1の電子輸送層と、第1の電子輸送層と陰極との間に配置された第2の電子輸送層とを少なくとも有し、
 前記第2の電子輸送層が式(2)で表されるトリアジン化合物を含有する[1]~[13]に記載の有機電界発光素子。
[15]
 式(2)で表されるトリアジン化合物が下記である、[1]~[13]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000017
[16]
 前記第2電子輸送層が式(2)で表される化合物と、リチウムキノラート(Liq)とを含有する、[1]~[15]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000018
 本開示の一態様である有機電界発光素子は、優れた駆動電圧特性および電流効率特性を両立し、更には、効率変化および連続駆動後効率変化を小さくすることができ、表示装置や照明装置における色調の再現に好適な素子を実現することができる。
本開示の一態様にかかる有機電界発光素子の積層構成の一例を示す概略断面図である。
 以下、本開示の一態様にかかる有機電界発光素子について詳細に説明する。
<有機電界発光素子>
 本開示の一態様にかかる有機電界素子は、
 陽極と、
 陽極に対向する陰極と、
 前記陽極と陰極との間に配置された発光層と、
 前記陽極と発光層との間に配置された正孔輸送領域を有し、
 前記発光層と陰極との間に配置された電子輸送領域を有し、
 前記電子輸送領域が式(2)で表されるトリアジン化合物を含有し、
 下記の(i)および(ii)のうち少なくとも1つ以上の条件を満たす有機電界発光素子。
 (i)前記発光層が式(1)で表されるホウ素化合物を含有する。
 (ii)前記正孔輸送領域が式(3)で表されるラジアレン化合物を含有する。
Figure JPOXMLDOC01-appb-C000019
 式(2)中、
 Arは、炭素数1~6のアルキル基で置換されてもよい、フェニル基、ナフチル基、またはビフェニリル基を表し、
 Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、ピリジル基、フェニルピリジル基、ピリジルフェニル基、またはビフェニリル基を表す。
Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、またはビフェニリル基を表す。
Figure JPOXMLDOC01-appb-C000020
 式(1)中、
 環A、環B、環Cは、各々独立に、置換基を有していてもよい、
環構成原子数6~20の芳香族炭化水素環、
または環構成原子数5~20の芳香族複素環を表す;
 Ra、Rb、Rcは、各々独立に、
  重水素、
  シアノ基、
  炭素数1~20のアルキル基、
  置換されてもよいアミノ基、
  環構成原子数6~20の芳香族炭化水素基、
  または環構成原子数5~20の複素芳香族基;を表す
 a、b、cは、各々独立に、0~4の整数であり、
 環Aと環Bは、酸素原子、硫黄原子、N-R’、RaまたはRbを介して連結してもよく、
 R、R、R’は、各々独立に、置換基を有していてもよい、
  炭素数1~20のアルキル基、
  環構成原子数6~20の芳香族炭化水素基、
  または環構成原子数5~20の複素芳香族基を表し;
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Ra、またはRcを介して環Aまたは環Cと連結して環構造を形成してもよく、
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Rb、またはRcを介して環Bまたは環Cと連結して環構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000021
 式(3)中、
  Rは、各々独立に、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、置換されてもよい芳香族炭化水素基、または置換されてもよい芳香族複素環基を表す。
[有機電界発光素子の構成について]
 陽極と発光層の間の領域を、正孔輸送領域とする。正孔輸送領域は、陽極より注入された正孔、または正孔輸送領域内で発生させた正孔を発光層に伝達する機能を有し、この正孔輸送領域を陽極と発光層との間に介在させることによって、より低い電界で多くの正孔が発光層に注入される。
 正孔輸送領域は複数の層によって形成されていてもよい。正孔輸送領域は2層以上の積層構造であることが好ましく、4層以下の積層構造であることが更に好ましく、3層の積層構造であることが特に好ましい。正孔輸送領域が3層の積層構造を形成する場合、陽極側から順に、第1正孔輸送層、第2正孔輸送層、第3正孔輸送層とし、これらは各々独立に正孔注入層、正孔発生層、正孔輸送層、電子阻止層からなる群から選択される1つ以上の機能を有することが好ましい。
 陰極と発光層の間の領域を、電子輸送領域とする。電子輸送領域は、陰極より注入された電子、または電子輸送領域内で発生させた電子を発光層に伝達する機能を有し、この電子輸送領域を発光層と陰極との間に介在させることによって、より低い電界で多くの電子が発光層に注入される。
 電子輸送領域は複数の層によって形成されていてもよい。電子輸送領域は2層以上の積層構造であることが好ましく、4層以下の積層構造であることが更に好ましく、3層以下の積層構造であることが特に好ましい。電子輸送領域が3層の積層構造を形成する場合、陽極側から順に、第1電子輸送層、第2電子輸送層、第3電子輸送層とし、これらは各々独立に正孔阻止層、電子輸送層、電子注入層からなる群から選択される1つ以上の機能を有する。
 また、陽極と陰極との間に電荷発生層を有し、別のユニットとして更に発光層や電子輸送領域などを有してもよい。
 本開示の一態様にかかる有機電界発光素子の構成については特に限定されるものではないが、例えば、以下に示す1)~6)の構成等が挙げられる。
 1):陽極/発光層/電子輸送領域/陰極
 2):陽極/正孔輸送層/発光層/電子輸送層/陰極
 3):陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 4):陽極/正孔注入層/正孔発生層/正孔輸送層/発光層/電子輸送層/陰極
 5):陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 6):陽極/正孔輸送領域/発光層/電子輸送領域/電荷発生層/正孔輸送領域/発光層/電子輸送領域/陰極
 以下、本開示の一態様にかかる有機電界発光素子を、図1を参照しながらより詳細に説明する。図1は、本開示の一態様にかかる有機電界発光素子の積層構成の一例を示す概略断面図である。
本開示の一態様にかかる有機エレクトロルミネッセンス素子は、ボトムエミッション型の素子構成であっても、トップエミッション型の素子構成であってもよく、その他の公知の素子構成であってもよい。
 有機電界発光素子100は、基板1、陽極2、正孔輸送領域3、発光層4、電子輸送領域5、および陰極6をこの順で備える。正孔輸送領域3は、陽極側から順に第1正孔輸送層31、第2正孔輸送層32、第3正孔輸送層33の積層構造を形成してもよい。電子輸送領域5は、陽極2側から順に第1電子輸送層51、第2電子輸送層52、第3電子輸送層53の積層構造を形成してもよい。
ただし、これらの層および/または領域のうちの一部の層および/または領域が省略されていてもよく、また逆に他の層が追加されていてもよい。例えば、電子輸送領域5と陰極6との間に電荷発生層が設けられていてもよく、正孔輸送領域3が省略され、陽極2の上に発光層4が直接設けられていてもよい。また、例えば電子注入層の機能と電子輸送層の機能とを単一の層で併せ持つ電子注入・輸送層のような、複数の層が有する機能を併せ持った単一の層を、当該複数の層の代わりに備えた構成であってもよい。さらに、例えば単層の正孔輸送層5、単層の電子輸送層7が、それぞれ複数層からなっていてもよい。
[基板1]
 基板としては特に限定はなく、例えばガラス板、石英板、プラスチック板、プラスチックフィルムなどが挙げられる。また、基板1側から発光が取り出される構成の場合、基板1は発光層4からの発光の波長に対して透明である。また、陰極6側から発光が取り出される構成の場合、基盤1は発光層4からの発光を陰極6側に反射する反射板を備えていてもよい。
 光透過性を有するプラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。
[陽極2]
 基板1と正孔輸送領域3との間には陽極2が設けられている。陽極2は本開示の一態様である有機電界発光素子に電流を流す際の陽極としての機能を為しえる。
 基板1側から発光が取り出される構成の場合、陽極2は当該発光を通すかまたは実質的に通す材料、または当該発光を十分で透過できる膜厚に形成される。また、陰極6側から発行が取り出される構成の場合、陽極2は発光層4からの発光を陰極6側に反射する機能を備えていてもよい。具体的には、発光層4からの発光波長を十分に反射出来る材料で陽極2を形成するか、反射率の高い材料と適切な透過率の高い材料との積層構造を形成してもよい。
 陽極2に用いられる材料としては、基盤1側から発光が取り出される構成の場合、特に限定されるものではないが、例えば、インジウム-錫酸化物(ITO;Indium Tin Oxide)、インジウム-亜鉛酸化物(IZO;Indium Zinc Oxide)、酸化錫、アルミニウム・ドープ型酸化錫、マグネシウム-インジウム酸化物、ニッケル-タングステン酸化物、その他の金属酸化物、窒化ガリウム等の金属窒化物、セレン化亜鉛等の金属セレン化物、および硫化亜鉛等の金属硫化物などが挙げられる。
 なお、陰極6側のみから光を取り出す構成の有機電界発光素子の場合、陽極の透過特性は重要ではない。したがって、この場合の陽極に用いられる材料の一例としては、金、銀、イリジウム、モリブデン、パラジウム、白金、またはこれらの合金が挙げられる。
[正孔輸送領域3]
 陽極2と後述する発光層4との間には、正孔輸送領域3が設けられており、陽極2側から、第1正孔輸送層31、第2正孔輸送層32、第3正孔輸送層33がこの順に設けられた積層構造を形成してもよい。
 正孔輸送領域3を形成する第1正孔輸送層31、第2正孔輸送層32、第3正孔輸送層33は各々独立に、正孔注入層、正孔発生層、正孔輸送層、電子阻止層からなる群から選択される1つ以上の機能を有する。これらの機能について詳細を以下に述べる。
 正孔注入層は、陽極2から効率よく正孔を注入する機能を有し、且つ隣接する層に効率的に正孔を注入する機能を担う。
 正孔注入層の材料の具体例としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物などが挙げられる。これらの中でも、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物が好ましく、特に芳香族第三級アミン化合物が好ましい。また、正孔注入層に後述のラジアレン化合物(3)が含まれていてもよい。また上記材料と後述のラジアレン化合物(3)を含む組成物であってもよい。
 正孔発生層は、電界を印加することで隣接層を形成する化合物の被占軌道から電子を得て、当該隣接層内に正孔を発生し(当該隣接層に正孔を注入すると同義)、かつ自身が得た電子を陽極2側に輸送する機能を担う。
 正孔発生層の材料の具体例としては、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)、7,7,8,8-テトラシアノキノジメタン(TCNQ)、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)、11,11,12,12-テトラシアノ-2,6-ナフトキノジメタン(TNAP)、15,15,16,16-テトラシアノアントラキノジメタン(TCAQ)などが挙げられる。また正孔発生層に後述のラジアレン化合物(3)が含まれていてもよい。また上記材料と後述のラジアレン化合物(3)を含む組成物であってもよい。
 正孔輸送層は、陽極2、正孔注入層、正孔発生層から注入された正孔を輸送し、隣接する層に正孔を注入する機能を担う。
 電子阻止層は、隣接層から当該層内に電子が注入されることを阻止する機能を担う。特に発光層からの電子注入を阻止することで、発光層内で発光に寄与する電荷の総数を多くすることが可能であり、ひいては有機電界発光素子の発光効率を高めることに寄与する。
 正孔輸送層および電子阻止層の材料の具体例としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物などが挙げられる。これらの中でも、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物が好ましく、特に芳香族第三級アミン化合物が好ましい。また正孔輸送層または電子輸送層に後述のラジアレン化合物(3)が含まれていてもよい。
 第1正孔輸送層31は正孔注入層および/または正孔発生層の機能を担うことが好ましく、正孔注入層の機能を担うことが更に好ましい。
 第2正孔輸送層32は正孔発生層、正孔輸送層および/または電子阻止層の機能を担うことが望ましく、正孔輸送層の機能を担うことが更に好ましい。
 第3正孔輸送層33は正孔輸送層および/または電子阻止層の機能を担うことが好ましく、電子阻止層の機能を担うことが更に好ましい。
 正孔注入層、正孔輸送層、電子阻止層に用いられる芳香族第三級アミン化合物およびスチリルアミン化合物の具体例としては、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、4,4’,4’’-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)および下記化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
<ラジアレン化合物>
 本開示の一態様にかかる正孔輸送領域に含まれるラジアレン化合物は、式(3)で示される:
Figure JPOXMLDOC01-appb-C000024
 式(3)中、
 Rは、各々独立に、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、置換されてもよい芳香族炭化水素基、または置換されてもよい芳香族複素環基を表す。
 以下、式(3)で示されるラジアレン化合物を、ラジアレン化合物(3)と称することもある。ラジアレン化合物(3)の好ましい形態、置換基の定義、およびその好ましい具体例は、それぞれ以下のとおりである。
 Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、この内、フッ素原子、塩素原子が好ましく、フッ素原子がより好ましい。
 Rで表されるアシル基としては、カルボニル部位の炭素を含む炭素数2~10のアシル基が好ましく、フッ素原子で置換された炭素数2~10のアシル基がより好ましく、全ての水素原子がフッ素原子で置換された炭素数2~10のアシル基が更に好ましく、全ての水素原子がフッ素原子で置換された炭素数2~6のアシル基が特に好ましい。
 Rで表されるフルオロアルキル基としては、アルキル基の水素原子が1つ以上フッ素原子で置換された炭素数1~20のアルキル基であり、全ての水素原子がフッ素原子に置換された、炭素数1~20のフルオロアルキル基が好ましく、炭素数1~10のフルオロアルキル基がより好ましく、炭素数1~6のフルオロアルキル基が更に好ましく、炭素数1~3のフルオロアルキル基が特に好ましい。
 Rで表される置換されてもよい芳香族炭化水素基としては、1つ以上のシアノ基、ハロゲン原子、アシル基、スルホニル基、またはホスフォリル基で置換されてもよい環構成炭素数6~20の連結または縮環してもよい芳香族炭化水素基が好ましく、シアノ基および/またはハロゲン原子で置換されてもよい環構成炭素数6~20の連結または縮環してもよい芳香族炭化水素基がより好ましく、シアノ基および/またはフッ素原子で置換されたフェニル基、ビフェニリル基が特に好ましい。
 Rで表される置換されてもよい芳香族複素環基としては、1つ以上のシアノ基、ハロゲン原子、アシル基、スルホニル基、またはホスフォリル基で置換されてもよい環構成原子数6~20の連結または縮環してもよい芳香族複素環基が好ましく、シアノ基および/またはハロゲン原子で置換されてもよい環構成原子数6~20の連結または縮環してもよい芳香族複素環基がより好ましく、シアノ基および/またはフッ素原子で置換されたピリジル基、ピリミジル基、ピラジル基、トリアジニル基が特に好ましい。
[式(3-a)について]
 ラジアレン化合物(3)は式(3-a)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(3-a)中、
 Arは、各々独立に、置換されてもよい芳香族炭化水素基、または置換されてもよい芳香族複素環基を表す。
 R、およびArで表される置換されてもよい芳香族炭化水素基、置換されてよい芳香族複素環基が有する置換基は、各々独立に、
  重水素、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、から選択される。
 Rの好ましい形態は式(3)と同じである。
 Arで表される置換されて基芳香族炭化水素基としては、1つ以上のシアノ基、ハロゲン原子、アシル基、スルホニル基、またはホスフォリル基で置換されてもよい環構成炭素数6~20の連結または縮環してもよい芳香族炭化水素基が好ましく、シアノ基および/またはハロゲン原子で置換されてもよい環構成炭素数6~20の連結または縮環してもよい芳香族炭化水素基がより好ましく、シアノ基および/またはフッ素原子で置換されたフェニル基、ビフェニリル基が特に好ましい。
 Arで表される置換されてもよい芳香族複素環基としては、1つ以上のシアノ基、ハロゲン原子、アシル基、スルホニル基、またはホスフォリル基で置換されてもよい環構成原子数6~20の連結または縮環してもよい芳香族複素環基が好ましく、シアノ基および/またはハロゲン原子で置換されてもよい環構成原子数6~20の連結または縮環してもよい芳香族複素環基がより好ましく、シアノ基および/またはフッ素原子で置換されたピリジル基、ピリミジル基、ピラジル基、トリアジニル基が特に好ましい。
[式(3-b)について]
 ラジアレン化合物(3)および(3-a)は、式(3-b)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(3-b)中、
 R31は、各々独立に、重水素、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、から選択される。
 sは各々独立に、1~5の整数である。
 R31で表されるハロゲン原子、フルオロアルキル基、アシル基の好ましい形態はRと同様である。
 R31はシアノ基、フッ素原子、フルオロアルキル基から選択されることが好ましく、シアノ基および/またはフッ素原子であることがより好ましく、シアノ基およびフッ素原子であることが更に好ましい。
[ラジアレン化合物(3)、(3-a)および(3-b)の好ましい例]
 本開示の一態様であるラジアレン化合物(3)は下記化合物3-1から3-148のいずれか1つで表されるラジアレン化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 中でも、式3-1で示されるラジアレン化合物は、特に素子の優れた駆動電圧特性、電流効率特性、効率変化特性を両立する点で好ましい。
[ラジアレン化合物(3)の有機電界発光素子への適用について]
 本開示の一態様にかかるラジアレン化合物(3)は、正孔輸送領域に用いられる。正孔輸送領域は複数の層からなる積層構造を形成していることが好ましく、この内、ラジアレン化合物(3)を含む層は発光層に接していない層に用いられることが好ましく、前述の正孔注入層、正孔発生層、正孔輸送層として機能する層に用いられることがより好ましく、正孔注入層、正孔発生層に用いられることが更に好ましい。
 ラジアレン化合物(3)を含む層は、ラジアレン化合物(3)のみで形成されてもよく、他の化合物とラジアレン化合物(3)との組成物で形成されてもよい。特に素子の優れた駆動電圧を示す点で、他の化合物との組成物で形成されていることが好ましく、その際ラジアレン化合物の組成率は0.1~20%がより好ましく、0.5~10%が更に好ましく、0.5~5%が特に好ましい。
 ラジアレン化合物(3)と他の化合物との組成物によって形成される層は、ラジアレン化合物(3)と他の化合物のそれぞれ単体を加熱し、同時に蒸着する共蒸着法で形成されてもよく、ラジアレン化合物(3)と他の化合物との混合物を加熱して蒸着してもよい。形成した層内のラジアレン化合物(3)の組成率を制御する観点で、共蒸着法で層を形成することが好ましい。
 ラジアレン化合物(3)と共に蒸着され、組成物を形成する化合物としては、前述の正孔注入材料、正孔輸送材料の具体例として示した化合物が好ましく、芳香族第三級アミン化合物がより好ましい。
[発光層4]
 正孔輸送領域3と後述する電子輸送領域5との間には、発光層4が設けられている。
 発光層の材料としては、燐光発光材料、蛍光発光材料、熱活性化遅延蛍光発光材料が挙げられる。発光層では電子・正孔対が再結合することで電気的に励起子が発生し、その励起子が失活する際に光が生じる。
 発光層4は、単一の低分子材料または単一のポリマー材料からなっていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料からなっている。ゲスト材料としては蛍光性化合物、燐光性化合物、遅延蛍光性化合物等が挙げられる。発光は主としてゲスト材料から生じ、任意の色を発することができる。また発光層4は、詳細を後述するホウ素化合物(1)を含み得る。
 ホスト材料としては、例えば、ビフェニル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、ジベンゾフリル基、ジベンゾチエニル基、アントリル基を有する化合物が挙げられる。より具体的には、DPVBi(4,4’-ビス(2,2-ジフェニルビニル)-1,1’-ビフェニル)、BCzVBi(4,4’-ビス(9-エチル-3-カルバゾビニレン)1,1’-ビフェニル)、TBADN(2-ターシャルブチル-9,10-ジ(2-ナフチル)アントラセン)、ADN(9,10-ジ(2-ナフチル)アントラセン)、CBP(4,4’-ビス(カルバゾール-9-イル)ビフェニル)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、2-(9-フェニルカルバゾール-3-イル)-9-[4-(4-フェニルフェニルキナゾリン-2-イル)カルバゾール、9,10-ビス(ビフェニル)アントラセン等が挙げられる。
 蛍光性化合物としては、例えば、ホウ素化合物(1)、アントラセン、ピレン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン、キナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム、チアピリリウム化合物、フルオレン化合物、ペリフランテン化合物、インデノペリレン化合物、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、カルボスチリル化合物、等が挙げられる。蛍光ドーパントはこれらから選ばれる2種以上を組み合わせたものであってもよい。
 燐光性化合物としては、例えば、イリジウム錯体、白金錯体、パラジウム錯体、オスミウム錯体等の金属錯体が挙げられる。
 蛍光性化合物、燐光性化合物の具体例としては、Alq3(トリス(8-ヒドロキシキノリノラト)アルミニウム)、DPAVBi(4,4’-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル)、ペリレン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトナート)イリジウム(III)、Ir(PPy)(トリス(2-フェニルピリジン)イリジウム(III))、およびFIrPic(ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム(III)))等が挙げられる。
 熱活性化遅延蛍光発光材料は、前述のホスト材料またはゲスト材料いずれとしても用いることができる。また、熱活性化遅延蛍光発光材料は、それ自身が発光せず、熱活性化遅延蛍光発光材料と同時に発光層を形成する蛍光性化合物に効率的に励起エネルギーを受け渡す役割を担うこともできる。
 熱活性化遅延蛍光発光の具体例としては、ホウ素化合物(1)、4Cz-IPN(2,4,5,6-テトラ(9-カルバゾリル)-イソフタロニトリル)、5Cz-BN(2,3,4,5,6-ペンタ(9-カルバゾリル)-ベンゾニトリル)、DACTII(2-[3,6-ビス(ジフェニルアミノ)カルバゾール-9-イルフェニル]-4,6-ジフェニル-1,3,5-トリアジン)等が挙げられる。
 また、発光材料は発光層のみに含有されることに限定されるものではない。例えば、発光材料は、発光層に隣接した層(正孔輸送層5、または電子輸送層7)が含有していてもよい。これによってさらに有機電界発光素子の電流効率を高めることができる。
 発光層は、一種または二種以上の材料からなる単層構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。
<ホウ素化合物>
 本開示の一態様にかかる、発光層に含まれるホウ素化合物は式(1)で示される。
Figure JPOXMLDOC01-appb-C000040
 式(1)中、
 環A、環B、環Cは、各々独立に、置換基を有していてもよい、
環構成原子数6~20の芳香族炭化水素環、
または環構成原子数5~20の芳香族複素環を表す;
 Ra、Rb、Rcは、各々独立に、
  重水素、
  シアノ基、
  炭素数1~20のアルキル基、
  環構成原子数6~20の芳香族炭化水素基、
  または環構成原子数5~20の複素芳香族基を表す;
 a、b、cは、各々独立に、0~4の整数であり、
 環Aと環Bは、酸素原子、硫黄原子、N-R’、RaまたはRbを介して連結してもよく、
 R、R、R’は、各々独立に、置換基を有していてもよい、
  炭素数1~20のアルキル基、
  環構成原子数6~20の芳香族炭化水素基、
  または環構成原子数5~20の複素芳香族基を表す;
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Ra、またはRcを介して環Aまたは環Cと連結して環構造を形成してもよく、
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Rb、またはRcを介して環Bまたは環Cと連結して環構造を形成してもよい。
 以下、式(1)で示されるホウ素化合物を、化合物(1)と称することもある。化合物(1)に形成する環構造、置換基の定義、およびその好ましい具体例は、それぞれ以下のとおりである。
[環A~Cについて]
 環A、環B、環Cは、各々独立に、置換基を有していてもよい、
環構成原子数6~20の芳香族炭化水素環、
環構成原子数5~20の芳香族複素環から選択される。
 環A、環B、環Cは、各々独立に、置換基を有していてもよい、環構成原子数6~18の芳香族炭化水素環または環構成原子数5~18の芳香族複素環が好ましく、環構成原子数6~12の芳香族炭化水素環または環構成原子数5~12の芳香族複素環がより好ましく、環構成原子数6~9の芳香族炭化水素環または環構成原子数5~9の芳香族複素環が更に好ましく、ベンゼン、ベンゾフラン、ベンゾチオフェン、インドール、ベンゾイミダゾール、ベンゾチアゾール、ベンゾオキサゾールがより好ましく、ベンゼンが特に好ましい。
 環Aと環Bは、酸素原子、硫黄原子、N-R’、後述のRaまたはRbを介して連結してもよく、環Aと環BはN-R’で連結しているか、連結されていない状態が好ましく、環Aと環Bは連結されていない構造がより好ましい。
[Ra、Rb、Rcについて]
 Ra、Rb、Rcは、各々独立に、
  重水素、
  シアノ基、
  炭素数1~20のアルキル基、
  環構成原子数6~20の芳香族炭化水素基、
  環構成原子数5~20の複素芳香族基から選択される。
 Ra、Rb、Rcは、各々独立に、重水素、炭素数1~20のアルキル基、環構成原子数5~20の複素芳香族基が好ましく、重水素、炭素数1~20のアルキル基がより好ましく、炭素数1~20のアルキル基が更に好ましい。
[a、b、cについて]
a、b、cは、各々独立に、0~4の整数であり、各々独立に0~2が好ましく、各々独立に0~1がより好ましく、1が更に好ましい。
[R、R、R’について]
、R、R’は、各々独立に、置換基を有していてもよい、
  炭素数1~20のアルキル基、
  環構成原子数6~20の芳香族炭化水素基、
  または環構成原子数5~20の複素芳香族基を表す;
 R、R、R’は、各々独立に、置換基を有していてもよい環構成原子数6~20の芳香族炭化水素基、または置換基を有していてもよい環構成原子数5~20の複素芳香族基が好ましく、置換基を有していてもよい環構成原子数6~20の芳香族炭化水素基がより好ましく、アルキル基で置換された環構成原子数6~20の芳香族炭化水素基が更に好ましく、アルキル基で置換されたフェニル基が特に好ましい。
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Ra、またはRcを介して環Aまたは環Cと連結して環構造を形成してもよく、
 Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Rb、またはRcを介して環Bまたは環Cと連結して環構造を形成してもよい。
[ホウ素化合物(1)の好ましい例]
 優れた駆動電圧特性および電流効率特性を両立する点で、化合物1-1から1-54のいずれか1つで表されるホウ素化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 中でも、1-1、1-2、1-11、1-12、1-17、1-18、1-21、1-22で示されるホウ素化合物は、特に素子の優れた駆動電圧特性、電流効率特性、効率変化特性を両立する点で好ましく、1-1、1-11、1-17が更に好ましく、1-1が特に好ましい。
[電子輸送領域5]
 発光層4と後述する陰極6との間には、電子輸送層5が設けられており、陽極2側から、第1電子輸送層51、第2電子輸送層52、第3電子輸送層53がこの順に設けられた積層構造を形成してもよい。
 電子輸送領域5には、式(2)で表されるトリアジン化合物が含まれる。当該トリアジン化合物は、電子輸送領域に存在する複数の層にわたって含まれていてもよい。
 電子輸送領域5を形成する第1電子輸送層51、第2電子輸送層52、第3電子輸送層53は各々独立に、電子注入層、電子発生層、電子輸送層、正孔阻止層からなる群から選択される1つ以上の機能を有する。これらの機能について詳細を後述する。
 電子注入層は、陰極6または電荷発生層から効率よく電子を注入する機能を有し、且つ隣接する層に効率的に電子を注入する機能を担う。
 電子注入層の材料の具体例としては、リチウム(Li)、カリウム(K)、セシウム(Cs)、イッテルビウム(Yb)等の金属、フッ化リチウム(LiF)、フッ化ナトリウム(NaF),フッ化カリウム(KF)、炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸セシウム(Cs2CO3)等の無機塩、8-ヒドロキシキノリノラトリチウム(Liq)、ビス(8-ヒドロキシキノリノラト)亜鉛等の有機金属錯体、またはこれらと式(2)で表されるトリアジン化合物との組成物が挙げられる。
 電子輸送層は、電荷発生層、陰極、電子注入層から注入された電子を輸送し、隣接する層に電子を注入する機能を担う。
 正孔阻止層は、隣接層から当該層内に正孔が注入されることを阻止する機能を担う。特に発光層からの正孔注入を阻止することで、発光層内で発光に寄与する電荷の総数を多くすることが可能であり、ひいては有機電界発光素子の発光効率を高めることに寄与する。
 電子輸送層および正孔阻止層は式(2)で表されるトリアジン化合物を含み得る。電子輸送層および正孔阻止層の材料の具体例としては、式(2)で表されるトリアジン化合物に加えてさらに従来公知の電子輸送材料を含んでいてもよい。従来公知の電子輸送材料としては、例えば、8-ヒドロキシキノリノラトリチウム(Liq)、ビス(8-ヒドロキシキノリノラト)亜鉛、ビス(8-ヒドロキシキノリノラト)銅、ビス(8-ヒドロキシキノリノラト)マンガン、トリス(8-ヒドロキシキノリノラト)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリノラト)アルミニウム、トリス(8-ヒドロキシキノリノラト)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリノラト)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリノラト)亜鉛、ビス(2-メチル-8-キノリノラト)クロロガリウム、ビス(2-メチル-8-キノリノラト)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリノラト)-1-ナフトラートアルミニウム、またはビス(2-メチル-8-キノリノラト)-2-ナフトラートガリウム、2-[3-(9-フェナントレニル)-5-(3-ピリジニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン、および2-(4,’’-ジ-2-ピリジニル[1,1’:3’,1’’-テルフェニル]-5-イル)-4,6-ジフェニル-1,3,5-トリアジン、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)、Bphen(4,7-ジフェニル-1,10-フェナントロリン)、BAlq(ビス(2-メチル-8-キノリノラト)-4-(フェニルフェノラート)アルミニウム)、およびビス(10-ヒドロキシベンゾ[h]キノリノラト)ベリリウム)、およびこれらの組成物等が挙げられる。また、これらの化合物とLiqをドープした組成物であってもよい。
<トリアジン化合物>
 本開示の一態様にかかる、電子輸送領域に含まれるトリアジン化合物は、式(2)で示される:
Figure JPOXMLDOC01-appb-C000045
 式(2)中、
 Arは、炭素数1~6のアルキル基で置換されてもよい、フェニル基、ナフチル基、またはビフェニリル基を表し、
 Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、ピリジル基、フェニルピリジル基、ピリジルフェニル基、またはビフェニリル基を表す。
Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、またはビフェニリル基を表す。
 以下、式(2)で示されるトリアジン化合物を、トリアジン化合物(2)と称することもある。トリアジン化合物(2)における置換基の定義、およびその好ましい具体例は、それぞれ以下のとおりである。
[Arについて]
 Arは、フェニル基、ナフチル基、ビフェニリル基から選択される。
Arは、優れた駆動電圧特性および電流効率特性を両立する点で、フェニル基、ビフェニリル基が好ましく、フェニル基、ビフェニル-4-イル基が更に好ましい。
[Arについて]
Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、ピリジル基、フェニルピリジル基、ピリジルフェニル基、ビフェニリル基から選択される。
Arは、優れた駆動電圧特性および電流効率特性を両立する点で、フェニル基、ピリジル基、ビフェニリル基が好ましく、フェニル基、ビフェニリル基が更に好ましく、フェニル基が特に好ましい。
[Arについて]
Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、ビフェニリル基から選択される。
Arは、優れた駆動電圧特性および電流効率特性を両立する点で、フェニル基、ビフェニル-2-イル基、ビフェニル-4-イル基が好ましい。
[トリアジン化合物(2)の好ましい例]
 本開示の一態様であるトリアジン化合物(2)は下記化合物2-1から2-80のいずれか1つで表されるトリアジン化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 中でも、式2-1、2-2、2-4、2-5、2-9、2-22、2-24で示されるトリアジン化合物は、特に素子の優れた駆動電圧特性、電流効率特性および効率変化特性を両立する点で好ましい。
[トリアジン化合物(2)の有機電界発光素子への適用について]
 本開示の一態様にかかるトリアジン化合物(2)は、電子輸送領域に用いられる。電子輸送領域は複数の層からなる積層構造を形成していることが好ましく、この内、トリアジン化合物(2)は前述の電子輸送層、正孔阻止層として機能する層に用いられることがより好ましく、電子輸送層に用いられることが更に好ましい。
 トリアジン化合物(2)が電子輸送層に用いられる際、電子輸送層はトリアジン化合物(2)のみで形成されてもよく、他の化合物との組成物によって形成されてもよい。特に素子の優れた駆動電圧を示す点で、他の化合物との組成物で形成されていることが好ましく、その際トリアジン化合物(2)の重量組成率は20~80%がより好ましく、30~70%が更に好ましく、40~60%が特に好ましい。
 トリアジン化合物(2)と他の化合物との組成物によって形成される層は、トリアジン化合物(2)と他の化合物のそれぞれ単体を加熱し、同時に蒸着する共蒸着法で形成されてもよく、トリアジン化合物(2)と他の化合物との混合物を加熱して蒸着してもよい。形成した層内のトリアジン化合物(2)の組成率を制御する観点で、共蒸着法で層を形成することが好ましい。
 トリアジン化合物(2)と共に蒸着され、組成物を形成する化合物としては、前述の電子輸送および正孔阻止層に用いられる材料の具体例として示した化合物またはLiqが好ましく、Liqがより好ましい。
 なお、本開示の一態様にかかるトリアジン化合物(2)は、既知の反応(例えば、鈴木-宮浦クロスカップリング反応など)を適切に組み合わせることにより合成可能である。
 例えば、本開示の一態様にかかるトリアジン化合物(2)は、以下に示す反応式(a)~(c)のいずれか1つで示される製法に従って合成可能であるが、これらの例により何ら限定して解釈されるものではない。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 反応式(a)~(c)中、Ar、Ar、およびArは、式(1)と同じ定義である。
 Xは、各々独立して、脱離基を表す。脱離基としては、特に限定されるものではないが、例えば塩素原子、臭素原子、ヨウ素原子、トリフルオロメタンスルホニルオキシ基等が挙げられる。このうち、反応収率がよい点で臭素原子または塩素原子が好ましい。但し、原料の入手性からトリフルオロメタンスルホニルオキシ基を用いた方が好ましい場合もある。
 Mは、各々独立して、金属含有基であるZnR、MgR、もしくはSn(R;または、ホウ素含有基であるB(OR;を表す。但し、RおよびRは、各々独立に、塩素原子、臭素原子またはヨウ素原子を表し;Rは、炭素数1から4のアルキル基またはフェニル基を表し;Rは水素原子、炭素数1から4のアルキル基またはフェニル基を表し;B(ORの2つのRは同一または異なっていてもよい。また、2つのRは一体となって酸素原子およびホウ素原子を含んで環を形成することもできる。
 ZnR、MgRとしては、ZnCl、ZnBr、ZnI、MgCl、MgBr、MgI等が例示できる。
 Sn(Rとしては、Sn(Me)、Sn(Bu)等が例示できる。
 B(ORとしては、B(OH)、B(OMe)、B(OPr)、B(OBu)等が例示できる。また、2つのRが一体となって酸素原子およびホウ素原子を含んで環を形成した場合のB(ORの例としては、特に限定されるものではないが、次の(I)~(VI)で表される基が例示でき、収率がよい点で(II)で表される基が望ましい。
Figure JPOXMLDOC01-appb-C000053
 反応式(a)~(c)で示される製法について、反応式(b)で示される製法を例に挙げて、より詳細に説明する。反応式(b)で示される製法は、パラジウム触媒存在下、ArまたはArを含む有機金属化合物を順次反応に用いることでトリアジン化合物(2)を得ることを表している。ここで反応に用いるArまたはArを含む有機金属化合物は同時に用いて反応することも可能であり、またArを含む有機金属化合物用いて反応することで得られる中間生成物を一度単離し、その後、パラジウム触媒存在下、Arを含む有機金属化合物を用いて反応することでトリアジン化合物(2)を得ることもできる。また、Arを含む有機金属化合物を先に反応に用いることでもトリアジン化合物(2)を得ることもできる。
[陰極6]
 電子輸送領域5を挟んで、陽極2と対抗する陰極6が設けられている。陰極6は本開示の一態様である有機電界発光素子に電流を流す際の陰極としての機能を為しえる。
 陽極2を通過した発光のみが取り出される構成の有機電界発光素子の場合、陰極6は任意の導電性材料から形成することができる。
 陰極6の材料としては、リチウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、銀、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、インジウム-亜鉛酸化物(IZO;Indium Zinc Oxide)、リチウム/アルミニウム混合物、イッテルビウム等の希土類金属等が挙げられる。
 陰極6側のみから光を取り出す構成の有機電界発光素子の場合、インジウム-亜鉛酸化物(IZO;Indium Zinc Oxide)等の透明電極材料を用いるか、もしくは銀、アルミニウム、銀/マグネシウム混合物等の金属材料を、当該発光を十分に透過できる膜厚に形成することが挙げられる。
[各層の形成方法]
 以上説明した電極(陽極、陰極)を除く各層は、それぞれの層の材料(必要に応じて結着樹脂などの材料、溶剤と共に)を、例えば真空蒸着法、スピンコート法、キャスト法、LB(Langmuir-Blodgett method)法などの公知の方法によって薄膜化することにより、形成することができる。
 このようにして形成された各層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は1nm~5μmの範囲である。
 陽極2および陰極6は、電極材料を蒸着やスパッタリングなどの方法によって薄膜化することにより、形成することができる。蒸着やスパッタリングの際に所望の形状のマスクを介してパターンを形成してもよく、蒸着やスパッタリングなどによって薄膜を形成した後、フォトリソグラフィーで所望の形状のパターンを形成してもよい。
 陽極2および陰極6の膜厚は、1μm以下であることが好ましく、5nm以上200nm以下であることがより好ましい。一般的に透過率の低い材料を、発光を取り出す側の電極に用いる場合、30nm以下に成膜することで透過率を確保でき、透明電極として作用させることが可能である。
 本開示の一態様にかかる有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また、異なる発光色を有する本態様の有機電界発光素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
 以下、本開示を実施例に基づきさらに詳細に説明するが、本開示はこれらの実施例により何ら限定して解釈されるものではない。
 H-NMRスペクトルの測定は、Gemini200(バリアン社製)またはBruker ASCEND 400(400MHz;BRUKER製)を用いて行った。
 有機電界発光素子の発光特性は、室温下、作製した素子に直流電流を印加し、輝度計(製品名:BM-9,トプコンテクノハウス社製)を用いて評価した。
合成例-1(化合物2-1の合成)
Figure JPOXMLDOC01-appb-C000054
 アルゴン雰囲気下、2-クロロ-4,6-ビス(ビフェニル-4-イル)-1,3,5-トリアジン(11.0g,26.2mmol)、5’-(5,5-ジメチル-1,3,2-ジオキサボリナン-2-イル)-1,1’:3’,1’’:2’’,1’’’-クアテルフェニル(12.1g,28.8mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0.91g,0.79mmol)および2M-リン酸カリウム水溶液(39.3mL)、をTHF(349mL)に懸濁し、3時間還流した。放冷後、反応混合物に水およびメタノールを加えて固体をろ取し、水およびメタノールで洗浄することで2-(1,1’:3’,1’’:2’’,1’’’-クアテルフェニル-5’-イル)-4,6-ビス(ビフェニル-4-イル)-1,3,5-トリアジン(2-1)を得た(収量17.9g,収率99%)。
合成例-2(化合物2-2の合成)
Figure JPOXMLDOC01-appb-C000055
 アルゴン雰囲気下、2-(3-ブロモ-5-クロロフェニル)-4,6-ビス(ビフェニル-4-イル)-1,3,5-トリアジン(5.75g,10.0mmol)、2-ビフェニルボロン酸(4.75g,24.0mmol)、3M-炭酸カリウム水溶液(16mL)、酢酸パラジウム(22.4mg,0.1mmol)および2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(XPhos,95.3mg,0.2mmol)をTHF(100mL)に懸濁し、96時間還流した。放冷後、反応混合物に水およびメタノールを加えて固体をろ取し、水およびメタノールで洗浄することで2-(1,1’:2’,1’’:3’’,1’’’:2’’’,1’’’’-クインクフェニル-5’’-イル)-4,6-ビス(ビフェニル-4-イル)-1,3,5-トリアジン(2-2)を得た(収量7.18g,収率94%)。
合成例-3(化合物2-22の合成)
Figure JPOXMLDOC01-appb-C000056
 アルゴン雰囲気下、1,3-ジブルモ-5-クロロベンゼン(20.0g,74.0mmol)、2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-ビフェニル(42.5g,151.7mmol)、3M-炭酸カリウム水溶液(110mL)およびテトラキストリフェニルホスフィンパラジウム(2.56g,2.22mmol)をTHF(245mL)に懸濁し、122時間還流した。放冷後、反応混合物にトルエンを加えて有機層を分液抽出した。得られた有機層を減圧留去し、を得られた固体をトルエンで再結晶することですることで5’’-クロロ-(1,1’:2’,1’’:3’’,1’’’:2’’’,1’’’’-クインクフェニルを得た(収量29.7g,収率96%)。
Figure JPOXMLDOC01-appb-C000057
 アルゴン雰囲気下、5’’-クロロ-(1,1’:2’,1’’:3’’,1’’’:2’’’,1’’’’-クインクフェニル(29.7g,71.2mmol)、ビス(ネオペンチルグリコラート)ジボロン(17.7g,78.3mmol)、酢酸カリウム(0.16g,0.71mmol)、酢酸パラジウム(20.9g,213.5mmol)および2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(XPhos,0.67mg,1.42mmol)をTHF(356mL)に懸濁し、27時間還流した。その後、溶媒を減圧留去し、得られた残差にメタノールで加えた。得られた固体をろ取し、減圧乾燥することで、目的の5’’-(5,5-ジメチル-1,3,2-ジオキサボリナン-2-イル)-1,1’:2’,1’’:3’’,1’’’:2’’’,1’’’’-クインクフェニルを得た(収量14.7g、収率42%)。
Figure JPOXMLDOC01-appb-C000058
 アルゴン雰囲気下、2-クロロ-4-(ビフェニル-4-イル)-6-フェニル-1,3,5-トリアジン(5.56g,16.2mmol)、5’’-(5,5-ジメチル-1,3,2-ジオキサボリナン-2-イル)-1,1’:2’,1’’:3’’,1’’’:2’’’,1’’’’-クインクフェニル(24.0g,48.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0.56g,0.49mmol)および2M-リン酸カリウム水溶液(24.0mL)、をTHF(324mL)に懸濁し、23時間還流した。放冷後、反応混合物に水およびメタノールを加えて固体をろ取し、水およびメタノールで洗浄した。得られた固体をトルエンで再結晶することで2-(1,1’:2’,1’’:3’’,1’’’:2’’’,1’’’’-クインクフェニル-5’’-イル)-4-(ビフェニル-4-イル)-6-フェニル-1,3,5-トリアジン(2-22)を得た(収量11.1g,収率99%)。
合成例-4(化合物2-24の合成)
Figure JPOXMLDOC01-appb-C000059
 アルゴン雰囲気下、3-ブロモ-5-クロロ-1,1’:2’,1’’-ターフェニル(g,mmol)、4-ビフェニルボロン酸(g,mmol)、テトラキストリフェニルホスフィンパラジウム(g,mmol)および2M-リン酸カリウム水溶液(58.9mL)、をTHF(393mL)に懸濁し、21時間還流した。放冷後、有機層を分液抽出し、得られた有機層を減圧留去した。得られた残差にエタノールを添加して得られた固体をろ取することで、目的の5’’-クロロ-1,1’:2’,1’’:3’’,1’’’:4’’’,1’’’’-クインクフェニルを得た(収量24g、収率100%)
Figure JPOXMLDOC01-appb-C000060
 アルゴン雰囲気下、5’’-クロロ-1,1’:2’,1’’:3’’,1’’’:4’’’,1’’’’-クインクフェニル(23.1g,55.5mmol)、ビス(ピナコラート)ジボロン(16.9g,66.5mmol)、酢酸カリウム(16.3g,166.4mmol)、酢酸パラジウム(0.25g,1.11mmol)および2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(XPhos,1.06mg,2.22mmol)をTHF(555mL)に懸濁し、19時間還流した。その後、溶媒を減圧留去し、得られた残差にメタノールで加えた。得られた固体をろ取し、減圧乾燥することで、目的の5’’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,1’:2’,1’’:3’’,1’’’:4’’’,1’’’’-クインクフェニルを得た(収量22.0g、収率78%)
Figure JPOXMLDOC01-appb-C000061
 アルゴン雰囲気下、2-クロロ-4-(ビフェニル-4-イル)-6-フェニル-1,3,5-トリアジン(13.5g,39.3mmol)、5’’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,1’:2’,1’’:3’’,1’’’:4’’’,1’’’’-クインクフェニル(22.0g,43.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0.91g,0.79mmol)および2M-リン酸カリウム水溶液(58.9mL)、をTHF(393mL)に懸濁し、21時間還流した。放冷後、反応混合物に水およびメタノールを加えて固体をろ取し、水およびメタノールで洗浄した。得られた固体をトルエンで再結晶することで2-(1,1’:2’,1’’:3’’,1’’’:4’’’,1’’’’-クインクフェニル-5’’-イル)-4-(ビフェニル-4-イル)-6-フェニル-1,3,5-トリアジン(2-24)を得た(収量21.1g,収率85%)。
 また、トリアジン化合物2-4については、合成例-1で示される製造法と同様の手段により合成した。
 有機電界発光素子の作製と性能評価に用いる化合物の構造式およびその略称を以下に示した。
Figure JPOXMLDOC01-appb-C000062
実施例-1(図1参照)
(基板1、陽極2の用意)
 陽極をその表面に備えた基板として、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用意した。ついで、この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。
(真空蒸着の準備)
 洗浄後の表面処理が施された基板上に、真空蒸着法で各層の真空蒸着を行い、各層を積層形成した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。そして、以下の順で、各層の成膜条件に従ってそれぞれ作製した。
(第1正孔輸送層31の作製)
 昇華精製したHTL-1と本開示の一態様である化合物3-1を0.15nm/秒の速度で10nm成膜し、第1正孔輸送層31を作製した。
(第2正孔輸送層32の作製)
 昇華精製したHTL-1を0.15nm/秒の速度で85nm成膜し、第2正孔輸送層32を作製した。
(第3正孔輸送層33の作製)
 昇華精製したEBL-1を0.15nm/秒の速度で5nm成膜し、第3正孔輸送層33を作製した。
(発光層4の作製)
 昇華精製したBH-1と本開示の一態様である化合物1-1とを95:5(質量比)の割合で20nm成膜し、発光層4を作製した。成膜速度は0.18nm/秒であった。
(第1電子輸送層51の作製)
 昇華精製したHBL-1を0.05nm/秒の速度で6nm成膜し、第1電子輸送層51を作製した。
(第2電子輸送層52の作製)
 化合物2-1およびLiqを50:50(質量比)の割合で25nm成膜し、第2電子輸送層52を作製した。成膜速度は0.15nm/秒であった。
(第3電子輸送層53の作製)
 イッテルビウムを2nm成膜し、第3電子輸送層53を作製した。成膜速度は0.01nm/秒であった。
(陰極6の作製)
 最後に、基板上のITOストライプと直交するようにメタルマスクを配し、陰極6を成膜した。陰極は、銀/マグネシウム(質量比9/1)と銀とを、この順番で、それぞれ12nmと90nmとで成膜し、2層構造とした。銀/マグネシウムの成膜速度は0.5nm/秒、銀の成膜速度は成膜速度0.2nm/秒であった。
 以上により、図1に示すような発光面積4mm有機電界発光素子100を作製した。なお、それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Bruker社製)で測定した。
 さらに、この素子を酸素および水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと成膜基板(素子)とを、ビスフェノールF型エポキシ樹脂(ナガセケムテックス社製)を用いて行った。
 上記のようにして作製した有機電界発光素子に直流電流を印加し、輝度計(製品名:BM-9、トプコンテクノハウス社製)を用いて発光特性を評価した。発光特性として、電圧を印加し、輝度1000cd/mを示した時の駆動電圧(V)、電流効率(cd/A)を測定した。なお、駆動電圧および電流効率は、後述の比較例-1における結果を基準値(100)とした相対値である。また、下記定義に基づいて効率変化を算出した。
  効率変化=(1000cd/m時の電流効率)/(10cd/m時の電流効率)
 上式で算出される数値が1.0に近いほど広い輝度領域において効率の変化が小さいことを示している。
さらに上記のようにして作製した素子を輝度1000cd/mから50時間連続駆動した後に、再度電圧を印加し、輝度1000cd/mを示した時の連続駆動後電流効率(cd/A)測定した。また、下記定義に基づいて連続駆動後効率変化を算出した。
  連続駆動後効率変化=
  (1000cd/m時の連続駆動後電流効率)/(1000cd/m時の電流効率)
 上式で算出される数値が1.0に近いほど連続駆動させた前後で素子の効率の変化が小さいことを示している。
得られた測定結果を表1に示す。
実施例-2
 素子実施例-1において、化合物2-1代わりに化合物2-2を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
実施例-3
 素子実施例-1において、化合物2-1代わりに化合物2-22を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
実施例-4
 素子実施例-1において、化合物2-1代わりに化合物2-24を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
実施例-5
 素子実施例-1において、化合物2-1代わりに化合物2-4を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
比較例-1
 素子実施例-1において、化合物2-1代わりにETL-1を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
比較例-3
 素子実施例-1において、化合物2-1代わりにETL-2を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
比較例-4
 素子実施例-1において、化合物2-1代わりにETL-3を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
比較例-5
 素子実施例-1において、化合物2-1代わりにETL-4を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
比較例-6
 素子実施例-1において、化合物2-1代わりにETL-5を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
比較例-7
 素子実施例-1において、化合物2-1代わりにETL-6を用いた以外は、実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000063

実施例-6
 実施例-1において、EBL-1の代わりにEBL-2を、化合物1-1の代わりにBD-1を、化合物2-1の代わりに化合物2-4を、イッテルビウムの代わりにLiqを用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表2に示す。
実施例-7
 実施例-6において、化合物2-4の代わりに2-24を用いた以外は素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた結果を表2に示す。
比較例-2
 実施例-6において、化合物2-4の代わりにETL-1を用いた以外は素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた結果を表2に示す。
比較例-8
 実施例-6において、化合物2-4の代わりにETL-2を用いた以外は素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた結果を表2に示す。
比較例-9
 実施例-6において、化合物2-4の代わりにETL-3を用いた以外は素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた結果を表2に示す。
比較例-10
 実施例-6において、BD-1の代わりにHIL-1を用いた以外は素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた結果を表2に示す。
比較例-11
 実施例-6において、BD-1の代わりにHIL-1を、化合物2-4の代わりに2-24を用いた以外は素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた結果を表2に示す。

 表1~2より、本開示の一態様にかかる電子輸送領域が前記式(2)で表されるトリアジン化合物を含有し、本開示の一態様にかかる発光層が前記式(1)で表されるホウ素化合物または/および正孔輸送領域が前記式(3)で表されるラジアレン化合物を含有する構成は従来公知の構成と比べて優れた駆動電圧特性および電流効率特性だけでなく、効率変化および連続駆動後効率変化が小さいことを両立する有機電界発光素子を提供することができる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2022年7月1日に出願された日本特許出願2022-106807号、および日本特許出願2022-106810、ならびに2023年5月30日に出願された日本特許出願2023-088821号、および日本特許出願2023-088916号、の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
  1   基板
  2   陽極
  3   正孔輸送領域
 31    第1正孔輸送層
 32    第2正孔輸送層
 33    第3正孔輸送層
4   発光層
  5   電子輸送領域
 51    第1電子輸送層
 52    第2電子輸送層
 53    第3電子輸送層
  6   陰極
100 有機電界発光素子

Claims (16)

  1.  陽極と、
     陽極に対向する陰極と、
     前記陽極と陰極との間に配置された発光層と、
     前記陽極と発光層との間に配置された正孔輸送領域を有し、
     前記発光層と陰極との間に配置された電子輸送領域を有し、
     前記電子輸送領域が式(2)で表されるトリアジン化合物を含有し、
     下記の(i)および(ii)のうち少なくとも1つ以上の条件を満たす有機電界発光素子。
     (i)前記発光層が式(1)で表されるホウ素化合物を含有する。
     (ii)前記正孔輸送領域が式(3)で表されるラジアレン化合物を含有する。
     式(2)中、
     Arは、炭素数1~6のアルキル基で置換されてもよい、フェニル基、ナフチル基、またはビフェニリル基を表し、
     Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、ピリジル基、フェニルピリジル基、ピリジルフェニル基、またはビフェニリル基を表す。
    Arは、炭素数1~4のアルキル基で置換されてもよい、フェニル基、またはビフェニリル基を表す。
    Figure JPOXMLDOC01-appb-C000002
     式(1)中、
     環A、環B、環Cは、各々独立に、置換基を有していてもよい、
    環構成原子数6~20の芳香族炭化水素環、
    または環構成原子数5~20の芳香族複素環を表す;
     Ra、Rb、Rcは、各々独立に、
      重水素、
      シアノ基、
      炭素数1~20のアルキル基、
      置換されてもよいアミノ基、
      環構成原子数6~20の芳香族炭化水素基、
      または環構成原子数5~20の複素芳香族基;を表す
     a、b、cは、各々独立に、0~4の整数であり、
     環Aと環Bは、酸素原子、硫黄原子、N-R’、RaまたはRbを介して連結してもよく、
     R、R、R’は、各々独立に、置換基を有していてもよい、
      炭素数1~20のアルキル基、
      環構成原子数6~20の芳香族炭化水素基、
      または環構成原子数5~20の複素芳香族基を表し;
     Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Ra、またはRcを介して環Aまたは環Cと連結して環構造を形成してもよく、
     Rは、酸素原子、硫黄原子、置換してもよい窒素原子、Rb、またはRcを介して環Bまたは環Cと連結して環構造を形成してもよい。
    Figure JPOXMLDOC01-appb-C000003
     式(3)中、
      Rは、各々独立に、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、置換されてもよい芳香族炭化水素基、または置換されてもよい芳香族複素環基を表す。
  2.  前記(i)および(ii)のうち、(i)の条件を満たす、請求項1に記載の有機電界発光素子。
  3.  前記(i)および(ii)のうち、(ii)の条件を満たす、請求項1に記載の有機電界発光素子。
  4.  前記(i)および(ii)のうち、(i)および(ii)の両方の条件を満たす、請求項1に記載の有機電界発光素子。
  5.  式(1)において、環A~Cの少なくとも一つが置換基を有していてもよいベンゼン環である、請求項2または4に記載の有機電界発光素子。
  6.  式(1)において、環A~Cが置換基を有していてもよいベンゼン構造を含む環である、請求項2または4に記載の有機電界発光素子。
  7.  式(1)において、Ra、Rb、Rcの少なくとも一つが炭素数1~4のアルキル基である、請求項2または4に記載の有機電界発光素子。
  8.  式(1)で表されるホウ素化合物が下記から選択される、請求項2または4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
  9.  式(1)で表されるホウ素化合物が前記1-1の化合物である、請求項2または4に記載の有機電界発光素子。
  10.  前記正孔輸送領域が、第1の正孔輸送層と、
     第1の正孔輸送層と発光層との間に配置された第2の正孔輸送層とを少なくとも有し、
     前記第1の正孔輸送層が式(3)で表されるラジアレン化合物を含有する請求項3または4に記載の有機電界発光素子。
  11.  式(3)で表されるラジアレン化合物が式(3-a)である請求項3または4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005
     式(3-a)中、
     Rは、各々独立に、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、置換されてもよい芳香族炭化水素基、置換されてもよい芳香族複素環基を表す。
     Arは、各々独立に、置換されてもよい芳香族炭化水素基、または置換されてもよい芳香族複素環基を表す。
     RおよびArで表される置換されてもよい芳香族炭化水素基、置換されてよい芳香族複素環基が有する置換基は、各々独立に、
      重水素、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、から選択される。
  12.  式(3)で表されるラジアレン化合物が式(3-b)である請求項3または4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000006
     式(3-b)中、
     R31は、各々独立に、重水素、シアノ基、ハロゲン原子、フルオロアルキル基、アシル基、スルホニル基、ホスフォリル基、から選択される。
     sは各々独立に、1~5の整数である。
  13.  式(3)で表されるラジアレン化合物が下記式3-1である、請求項3または4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000007
  14.  前記電子輸送領域が、第1の電子輸送層と、第1の電子輸送層と陰極との間に配置された第2の電子輸送層とを少なくとも有し、
     前記第2の電子輸送層が式(2)で表されるトリアジン化合物を含有する請求項1~4に記載の有機電界発光素子。
  15.  式(2)で表されるトリアジン化合物が下記である、請求項1~4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000008
  16.  前記第2電子輸送層が式(2)で表される化合物と、リチウムキノラート(Liq)とを含有する、請求項14に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000009
PCT/JP2023/024112 2022-07-01 2023-06-29 有機電界発光素子 WO2024005118A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022106807 2022-07-01
JP2022-106807 2022-07-01
JP2022106810 2022-07-01
JP2022-106810 2022-07-01
JP2023-088916 2023-05-30
JP2023-088821 2023-05-30
JP2023088916A JP2024007334A (ja) 2022-07-01 2023-05-30 有機電界発光素子
JP2023088821A JP2024007333A (ja) 2022-07-01 2023-05-30 有機電界発光素子

Publications (1)

Publication Number Publication Date
WO2024005118A1 true WO2024005118A1 (ja) 2024-01-04

Family

ID=89382448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024112 WO2024005118A1 (ja) 2022-07-01 2023-06-29 有機電界発光素子

Country Status (1)

Country Link
WO (1) WO2024005118A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016233A1 (en) * 2018-07-18 2020-01-23 Novaled Gmbh Compound and organic semiconducting layer, organic electronic device, display device and lighting device comprising the same
WO2020117026A1 (ko) * 2018-12-07 2020-06-11 주식회사 엘지화학 유기 발광 소자
CN113929709A (zh) * 2020-06-29 2022-01-14 江苏三月科技股份有限公司 一种含硼氮有机化合物及包含其的有机电致发光器件
JP2022509303A (ja) * 2018-11-29 2022-01-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子素子
JP2022044037A (ja) * 2020-09-04 2022-03-16 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネセントデバイス
CN115536636A (zh) * 2021-06-29 2022-12-30 江苏三月科技股份有限公司 一种含三嗪结构的化合物及包含其的有机电致发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016233A1 (en) * 2018-07-18 2020-01-23 Novaled Gmbh Compound and organic semiconducting layer, organic electronic device, display device and lighting device comprising the same
JP2022509303A (ja) * 2018-11-29 2022-01-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 電子素子
WO2020117026A1 (ko) * 2018-12-07 2020-06-11 주식회사 엘지화학 유기 발광 소자
CN113929709A (zh) * 2020-06-29 2022-01-14 江苏三月科技股份有限公司 一种含硼氮有机化合物及包含其的有机电致发光器件
JP2022044037A (ja) * 2020-09-04 2022-03-16 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネセントデバイス
CN115536636A (zh) * 2021-06-29 2022-12-30 江苏三月科技股份有限公司 一种含三嗪结构的化合物及包含其的有机电致发光器件

Similar Documents

Publication Publication Date Title
KR102245875B1 (ko) 유기 전계발광소자용 재료, 이것을 이용한 유기 전계발광소자 및 전자 기기
US9306175B2 (en) Organic electroluminescent device
KR101990553B1 (ko) 신규한 유기 발광 소자용 화합물 및 이를 포함한 유기 발광 소자
US9306174B2 (en) Organic electroluminescent device
US10326079B2 (en) Organic electroluminescent device
KR20150014778A (ko) 유기 발광 소자
KR20140144064A (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR102154705B1 (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20140102562A (ko) 화합물 및 이를 포함한 유기 발광 소자
KR20140144999A (ko) 이리듐 착물 및 이를 포함한 유기 발광 소자
KR102159148B1 (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
JP2023501966A (ja) 有機化合物、それを含む有機発光ダイオード、及び該有機発光ダイオードを含む表示装置
JP7243268B2 (ja) 環状アジン化合物、有機電界発光素子用材料、有機電界発光素子用電子輸送材料、及び有機電界発光素子
TW201840811A (zh) 有機電致發光元件
JP7273159B2 (ja) 環状アジン化合物、有機電界発光素子用材料、有機電界発光素子用電子輸送材料、および有機電界発光素子
KR102173042B1 (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20140146950A (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20140055140A (ko) 화합물 및 이를 포함한 유기 발광 소자
WO2024005118A1 (ja) 有機電界発光素子
KR20150022288A (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
JP2022132782A (ja) 新規なアダマンタン化合物およびその化合物を含む有機電界発光素子
JP2023501280A (ja) 有機化合物、それを含む有機発光ダイオード、及び該有機発光ダイオードを含む表示装置
JP2024007333A (ja) 有機電界発光素子
JP2024007334A (ja) 有機電界発光素子
WO2023022233A1 (ja) 縮合環化合物、撮像素子用光電変換素子用電荷輸送材料および撮像素子用光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831557

Country of ref document: EP

Kind code of ref document: A1