WO2024004968A1 - 熱伝達抑制シート及び組電池 - Google Patents

熱伝達抑制シート及び組電池 Download PDF

Info

Publication number
WO2024004968A1
WO2024004968A1 PCT/JP2023/023682 JP2023023682W WO2024004968A1 WO 2024004968 A1 WO2024004968 A1 WO 2024004968A1 JP 2023023682 W JP2023023682 W JP 2023023682W WO 2024004968 A1 WO2024004968 A1 WO 2024004968A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer suppressing
suppressing sheet
particles
inorganic
Prior art date
Application number
PCT/JP2023/023682
Other languages
English (en)
French (fr)
Inventor
直己 高橋
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2024004968A1 publication Critical patent/WO2024004968A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a heat transfer suppressing sheet and an assembled battery having the heat transfer suppressing sheet.
  • This electric vehicle, hybrid vehicle, etc. is equipped with an assembled battery in which a plurality of battery cells are connected in series or in parallel to serve as a power source for a driving electric motor.
  • lithium ion secondary batteries which are capable of higher capacity and higher output than lead-acid batteries, nickel-metal hydride batteries, etc., are mainly used for these battery cells. If a battery cell suddenly rises in temperature due to an internal short circuit or overcharging of the battery, and a thermal runaway occurs that continues to generate heat, the heat from the battery cell that has experienced thermal runaway will , there is a risk of propagation to other adjacent battery cells, causing thermal runaway in other battery cells.
  • Patent Document 1 discloses a heat insulating material that has a composite layer containing a fiber sheet and a silica airgel, and in which the fiber sheet is folded back and laminated. Patent Document 1 described above describes that the heat insulating sheet can follow changes in the gap between battery cells due to expansion and contraction of the battery cells.
  • the present invention has been made in view of the above problems, and has excellent heat insulation properties and prevents moisture from entering, thereby preventing fires caused by short circuits between battery cells. It is an object of the present invention to provide a heat transfer suppressing sheet that can preferably prevent a decrease in heat insulation properties due to infiltration of an electrolytic solution, and a battery assembly having this heat transfer suppressing sheet.
  • [4] Contains inorganic particles, The liquid repellent substance is attached to at least a portion of the surface of the heat transfer suppressing sheet, the surface of the inorganic particles inside the heat transfer suppressing sheet, and the surface of the fibers inside the heat transfer suppressing sheet.
  • the liquid repellent substances include paraffin base oils, naphthene base oils, hydrocarbon-based synthetic oils, ester-based synthetic oils, animal and vegetable oils, silicone resins and fluorine resins, rosin-based sizing agents, and alkyl ketene dimer sizing agents.
  • the inorganic particles are particles made of at least one inorganic material selected from oxide particles, carbide particles, nitride particles, and inorganic hydrate particles, [4] or [ 5].
  • the heat transfer suppressing sheet of the present invention has a liquid repellent substance on at least a part of the surface and inside, and since the surface tension of this liquid repellent substance is smaller than the surface tension of water, the heat transfer suppressing sheet has a liquid repellent substance on the outside of the heat transfer suppressing sheet. It is possible to suppress generated condensed water and the like from entering the inside of the heat transfer suppressing sheet. Therefore, it is possible to prevent the insulation properties of the heat transfer suppressing sheet from decreasing and adjacent battery cells to short-circuit and ignite. In addition, if the surface tension of the liquid-repellent material is lower than that of the electrolyte used in the battery cell, it is possible to prevent the electrolyte from penetrating into the heat transfer suppressing sheet, which improves the heat insulation properties. It is possible to prevent a decrease in
  • the assembled battery of the present invention has excellent heat insulation properties as described above, and has a heat transfer suppressing sheet that suppresses the infiltration of condensed water and electrolyte, so that it is possible to prevent short circuits between battery cells in the assembled battery. , it is possible to suppress thermal runaway of the battery cells and spread of flame to the outside of the battery case.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a heat transfer suppressing sheet according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an assembled battery having a heat transfer suppressing sheet according to the first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the structure of a heat transfer suppressing sheet according to a second embodiment of the present invention.
  • FIG. 4 is a photograph substituted for a drawing showing a cross section of a heat insulating material that can be used in a heat transfer suppressing sheet according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a structure in which the heat transfer suppressing sheet according to the second embodiment has three-dimensionally connected pores.
  • FIG. 6 is a schematic cross-sectional view showing how the heat transfer suppressing sheet according to the second embodiment is arranged adjacent to a battery cell.
  • the present inventor conducted extensive research on a heat transfer suppressing sheet that can solve the above problems.
  • a liquid repellent substance is externally added to the surface of the heat transfer suppression sheet, or a liquid repellent substance is internally added to the inside, and a liquid repellent substance having a surface tension smaller than that of water is used. It has been found that by doing so, it is possible to prevent condensed water generated outside the heat transfer sheet from penetrating into the inside of the sheet.
  • a liquid-repellent material with a surface tension lower than that of the electrolyte filled inside the battery cell is used, leakage may occur from the battery cell. It has been found that it is possible to suppress the discharged electrolytic solution from penetrating into the interior of the heat transfer suppressing sheet, and to prevent a decrease in heat insulation properties.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a heat transfer suppressing sheet according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing an assembled battery having a heat transfer suppressing sheet according to the first embodiment of the present invention.
  • the heat transfer suppressing sheet 10 has a liquid repellent substance 2 attached to the surface of a heat insulating material 9.
  • the heat insulating material 9 includes nanosilica 4 and titania 3 as inorganic particles, and glass fiber 1 as fibers.
  • the liquid-repellent substance 2 has a surface tension smaller than that of water, and is, for example, a rosin-based sizing agent.
  • the assembled battery 100 is configured by storing the plurality of battery cells 20a, 20b, and 20c in a battery case 30 in a state in which they are connected in series or in parallel (the connected state is not shown).
  • the battery cells 20a, 20b, and 20c are preferably lithium ion secondary batteries, for example, but are not particularly limited thereto, and can be applied to other secondary batteries as well.
  • the temperature of the battery cells 20a, 20b, and 20c rises, and the temperature inside the battery case 30 also rises.
  • condensed water adheres to the battery cells 20a, 20b, 20c and the inner surface of the battery case 30.
  • a liquid repellent substance 2 having a surface tension smaller than that of water is attached to the surface thereof, and this liquid repellent substance 2 has a property of repelling water. Therefore, it is possible to suppress the dew condensation water 5 from entering the inside of the heat transfer suppressing sheet 10. Therefore, it is possible to suppress the insulation properties of the heat transfer suppressing sheet from deteriorating, and it is possible to prevent adjacent battery cells, for example, battery cells 20a and 20b, from short-circuiting and igniting.
  • the assembled battery 100 for example, when the battery cell 20c expands and breaks due to thermal runaway and the electrolyte filled in the battery cell 20c flows out, this electrolyte is exposed to the heat insulating material in a high temperature state. If it penetrates, the insulation properties of the insulation material will be significantly reduced, causing a chain reaction of thermal runaway.
  • a fluororesin is used as the liquid-repellent substance 2
  • the fluororesin will be more sensitive to the surface tension than the electrolyte, for example dimethyl carbonate (DMC), filled inside the battery cells 20a, 20b, 20c. also has a small surface tension. Therefore, it exhibits liquid repellency not only to the condensed water 5 but also to the electrolytic solution, and can suppress the electrolytic solution from penetrating into the heat transfer suppressing sheet 10, thereby preventing a chain of thermal runaway. Can be done.
  • DMC dimethyl carbonate
  • the heat transfer suppressing sheet 10 when the heat transfer suppressing sheet 10 has the liquid repellent substance 2 on its surfaces 10a and 10b, if the liquid repellent substance 2 is attached to at least part of the surfaces 10a and 10b, Compared to the case where the liquid repellent substance 2 is not attached, it is possible to obtain the effect of preventing condensed water and electrolyte from entering the inside of the heat transfer suppressing sheet 10.
  • the liquid repellent substance 2 is attached so as to completely cover the entire surfaces 10a and 10b. In this way, when the liquid repellent substance 2 is attached to the entire surfaces 10a and 10b of the heat transfer suppressing sheet 10, it is possible to reliably prevent condensed water and electrolyte from entering the inside of the heat transfer suppressing sheet 10. be able to.
  • a method for manufacturing the heat transfer suppressing sheet 10 according to the first embodiment will be described later.
  • the heat transfer suppressing sheet 10 according to the present embodiment has glass fibers 1 which are inorganic fibers as fibers, the glass fibers 1 act as an aggregate of the heat transfer suppressing sheet 10 and obtain high compressive strength. Can be done.
  • the heat transfer suppressing sheet 10 according to the present embodiment is interposed between a plurality of battery cells 20a, 20b, and 20c, but the heat transfer suppressing sheet 10 is interposed between a plurality of battery cells 20a, 20b, and 20c.
  • the cells 20a, 20b, and 20c expand or contract due to charging and discharging.
  • the heat transfer suppressing sheet 10 since the heat transfer suppressing sheet 10 has high compressive strength, it can maintain its shape without being significantly deformed even when pressed by the battery cells 20a, 20b, and 20c. Therefore, it is possible to prevent the heat transfer suppressing sheet 10 from being compressed and the thickness of the heat transfer suppressing sheet 10 becoming thin, or from deteriorating the heat insulation properties due to inorganic particles and the like falling off from the heat transfer suppressing sheet 10. Furthermore, since inorganic fibers have high high temperature strength, even when the heat transfer suppressing sheet 10 is exposed to high temperatures, it can maintain its shape.
  • the heat transfer suppressing sheet 10 according to the present embodiment contains nanosilica 4 and titania 3 as inorganic particles, and these inorganic particles exhibit heat insulating properties in a wide temperature range, thereby obtaining excellent heat insulating properties. be able to.
  • FIG. 3 is a schematic cross-sectional view showing the structure of a heat transfer suppressing sheet according to a second embodiment of the present invention.
  • the heat transfer suppressing sheet 10 according to the first embodiment has the liquid repellent substance 2 attached to the surface of the heat insulating material 9, but in the second embodiment, the liquid repellent substance 2 is attached to the surface of the heat insulating material 9.
  • This embodiment differs from the first embodiment in the area in which it is applied.
  • the second embodiment is similar to the first embodiment with respect to other materials, etc., in FIG. 3, the same components as in FIG. .
  • the heat transfer suppressing sheet 10 has at least part of the surface of the fibers (glass fibers 1) and inorganic particles (nanosilica 4 and titania 3) inside the heat insulating material 9. It has a so-called internally added structure in which a liquid repellent substance 2 is attached to the surface.
  • the liquid repellent substance 2 since the liquid repellent substance 2 is internally added, condensed water 5 and electrolytic water are prevented from the surfaces 10a and 10b to a certain depth. Liquid may seep in, but it can be completely prevented from penetrating. Therefore, it is possible to suppress the deterioration of the insulation properties of the heat transfer suppressing sheet, to prevent ignition due to short circuit between adjacent battery cells, and to prevent the deterioration of the insulation properties due to the infiltration of high-temperature electrolyte. Can be done.
  • a liquid repellent substance 2 is attached to at least a part of the surface of the fibers (glass fibers 1) and inorganic particles (nanosilica 4 and titania 3) inside the heat insulating material 9.
  • a heat transfer suppressing sheet having both of the excellent effects can be obtained.
  • the heat transfer suppressing sheet 10 according to the third embodiment does not have the liquid-repellent substance 2 attached to the surface as shown in FIG. 1, but uses liquid-repellent inorganic particles. That is, at least some of the inorganic particles in the heat insulating material 9 are liquid repellent. Examples of such inorganic particles include hydrophobic silica (fumed silica).
  • the heat transfer suppressing sheet 10 is manufactured using only inorganic particles made of the liquid repellent substance 2 without containing at least one type of fiber selected from inorganic fibers and organic fibers, When inorganic particles penetrate into the inside of the heat transfer suppressing sheet 10, the inorganic particles coagulate with each other and cracks are likely to occur.
  • fibers glass fibers 1 are included, aggregation of inorganic particles is suppressed, and generation of cracks can be prevented.
  • FIG. 4 is a photograph substituted for a drawing showing a cross section of a heat insulating material that can be used in a heat transfer suppressing sheet according to an embodiment of the present invention.
  • the heat insulating material 19 shown in FIG. 4 includes inorganic particles 14 and organic fibers 6.
  • the inorganic particles 14 nanosilica, titania, etc. can be used, as shown in the first and second embodiments.
  • the organic fiber 6 polyethylene terephthalate (PET) fiber or the like can be used.
  • PET polyethylene terephthalate
  • inorganic fibers such as glass fiber 1 may be included.
  • the heat insulating material 19 has a plurality of three-dimensionally connected pores 7 between the inorganic particles 14, between the inorganic particles 14 and the organic fibers 6, etc. Note that at least some of the holes 7 have openings 7a that communicate with the surface 19a of the heat insulating material 19 and open outward.
  • the inorganic particles 14 are exposed on the surface 19a of the heat insulating material 19 used in this embodiment, and extremely fine irregularities are formed, so the heat insulating material 19 originally has water repellency. It has a structure that has In addition, in the first and second embodiments, a liquid repellent substance is attached to the surface 19a of the heat insulating material 19, or a liquid repellent substance is attached to the surface of the inorganic particles 14 or organic fibers 6 inside the heat insulating material. A substance is attached thereto, and in the third embodiment, inorganic particles made of a liquid-repellent substance are used.
  • FIG. 5 is a schematic cross-sectional view showing a structure in which the heat transfer suppressing sheet according to the second embodiment has three-dimensionally connected pores.
  • FIG. 6 is a schematic cross-sectional view showing how the heat transfer suppressing sheet according to the second embodiment is arranged adjacent to a battery cell.
  • the openings 7a and the holes 7 are communicated.
  • An inlet/drainage path 8 is formed. Therefore, even if the condensed water 5 intrudes into the inside of the heat transfer suppression sheet 10 from the openings 7a of the holes 7 or other parts, the condensed water 5 is released to the outside through the inflow/drainage path 8. Can be discharged.
  • the liquid repellent substance 2 is an important component that has the effect of preventing dew condensation water 5 from entering the inside of the heat transfer suppressing sheet 10.
  • the surface tension of the liquid repellent substance 2 needs to be smaller than the surface tension of water. Furthermore, if the surface tension is lower than the surface tension of the electrolyte contained in the battery cells disposed near the heat transfer suppressing sheet 10, infiltration of the electrolyte can also be prevented.
  • the specific value of the surface tension of the liquid repellent material is, for example, 70.0 (mN/m) or less, and 65 (mN/m) or less. Furthermore, in order to suppress infiltration of the electrolyte, the surface tension of the liquid-repellent substance is more preferably 45 (mN/m) or less, and even more preferably 25 (mN/m) or less.
  • liquid repellent substances include commonly used water repellents, oil repellents, and sizing agents.
  • water repellents include paraffin base oils, naphthene base oils, hydrocarbon synthetic oils, ester synthetic oils, animal and vegetable oils, and the like.
  • oil repellents include silicone resins and fluororesins.
  • specific examples of the sizing agent include rosin type (pine resin), alkyl ketene dimer (AKD), and the like.
  • examples of liquid-repellent substances having a surface tension smaller than that of the electrolytic solution include silicone resins and fluororesins. Note that the surface tension of silicone resin is 16 to 30 (mN/m), and the surface tension of fluororesin is 10 to 25 (mN/m).
  • inorganic particles can be used as the liquid repellent substance.
  • examples of the liquid-repellent substance include hydrophobic silica (fumed silica).
  • the content of the liquid-repellent substance 2 is preferably 5% by mass or more, more preferably 10% by mass or more based on the total mass of the heat transfer suppressing sheet 10.
  • the content of the liquid repellent substance 2 must be It is preferably 35% by mass or less, more preferably 20% by mass or less, based on the total mass of the heat transfer suppressing sheet 10.
  • the inorganic particles a single inorganic particle may be used, or two or more types of inorganic particles may be used in combination.
  • the type of inorganic particles it is preferable to use particles made of at least one inorganic material selected from oxide particles, carbide particles, nitride particles, and inorganic hydrate particles from the viewpoint of heat transfer suppressing effect. , it is more preferable to use oxide particles.
  • the shape is not particularly limited, but it is preferable to include at least one selected from nanoparticles, hollow particles, and porous particles, and specifically, silica nanoparticles, metal oxide particles, microporous particles, and hollow particles.
  • Inorganic balloons such as silica particles, particles made of a thermally expandable inorganic material, particles made of a hydrous porous material, etc. can also be used.
  • the average secondary particle diameter of the inorganic particles is 0.01 ⁇ m or more, they are easily available and can suppress an increase in manufacturing costs. Further, when the thickness is 200 ⁇ m or less, a desired heat insulation effect can be obtained. Therefore, the average secondary particle diameter of the inorganic particles is preferably 0.01 ⁇ m or more and 200 ⁇ m or less, more preferably 0.05 ⁇ m or more and 100 ⁇ m or less.
  • the heating element can be cooled in multiple stages, and the endothermic effect can be exerted over a wider temperature range.
  • a mixture of large diameter particles and small diameter particles For example, as shown in the first and second embodiments, when nanoparticles (nanosilica 4) are used as one inorganic particle, inorganic particles made of metal oxide (titania 3) are used as the other inorganic particle. It is preferable to include.
  • the inorganic particles will be described in more detail, with small-diameter inorganic particles being referred to as first inorganic particles and large-diameter inorganic particles being referred to as second inorganic particles.
  • Oxide particles have a high refractive index and have a strong effect of diffusely reflecting light, so when oxide particles are used as the first inorganic particles, radiant heat transfer can be suppressed, particularly in high temperature regions such as abnormal heat generation.
  • oxide particles at least one particle selected from silica, titania, zirconia, zircon, barium titanate, zinc oxide, and alumina can be used. That is, among the above-mentioned oxide particles that can be used as inorganic particles, only one type or two or more types of oxide particles may be used.
  • silica is a component with high heat insulation properties
  • titania is a component with a high refractive index compared to other metal oxides, and is highly effective in diffusely reflecting light and blocking radiant heat in high temperature regions of 500 degrees Celsius or higher. Therefore, it is most preferable to use silica and titania as the oxide particles.
  • Average primary particle diameter of oxide particles 0.001 ⁇ m or more and 50 ⁇ m or less
  • the average primary particle diameter of the oxide particles is 0.001 ⁇ m or more, it is sufficiently larger than the wavelength of the light that contributes to heating, and in order to diffusely reflect light efficiently, it is difficult to transfer heat in the high temperature region of 500°C or more. The radiant heat transfer within the suppression sheet is suppressed, and the heat insulation properties can be further improved.
  • the average primary particle diameter of the oxide particles is 50 ⁇ m or less, the number of contact points between the particles does not increase even when the particles are compressed, and it is difficult to form a path for conductive heat transfer, so conductive heat transfer is particularly dominant. The influence on the heat insulation properties in the normal temperature range can be reduced.
  • the average primary particle diameter can be determined by observing the particles with a microscope, comparing them with a standard scale, and taking the average of 10 arbitrary particles.
  • nanoparticles refer to nanometer-order particles having a spherical or nearly spherical average primary particle diameter of less than 1 ⁇ m. Because nanoparticles have a low density, they suppress conductive heat transfer, and when nanoparticles are used as the first inorganic particles, the three-dimensionally connected pores 7 become even finer, resulting in excellent heat insulation that suppresses convective heat transfer. You can get sex. For this reason, it is preferable to use nanoparticles because they can suppress the conduction of heat between adjacent nanoparticles during normal use of the battery in the normal temperature range.
  • the heat transfer suppressing sheet will be compressed by the expansion caused by thermal runaway of the battery cell, and even if the internal density increases, the heat transfer will be reduced. It is possible to suppress an increase in conductive heat transfer of the suppression sheet. This is thought to be because nanoparticles tend to form fine voids between particles due to the repulsive force caused by static electricity, and because their bulk density is low, the particles are filled so as to provide cushioning properties.
  • the liquid repellent substance 2 is applied. By doing so, the liquid repellency obtained can be further improved.
  • the material when using nanoparticles as the first inorganic particles, is not particularly limited as long as it meets the above definition of nanoparticles.
  • silica nanoparticles in addition to being a highly insulating material, silica nanoparticles have small contact points between particles, so the amount of heat conducted by silica nanoparticles is smaller than when using silica particles with a large particle size.
  • commonly available silica nanoparticles have a bulk density of about 0.1 (g/cm 3 ), so for example, battery cells placed on both sides of the heat transfer suppressing sheet may thermally expand, resulting in heat transfer.
  • silica nanoparticles As the nanoparticles.
  • silica nanoparticles include wet silica, dry silica, and airgel, and silica nanoparticles that are particularly suitable for this embodiment will be described below.
  • wet silica particles are aggregated, whereas dry silica particles can be dispersed.
  • conductive heat transfer is dominant, so dry silica, which allows particles to be dispersed, provides better heat insulation performance than wet silica. can.
  • the heat transfer suppressing sheet according to the present embodiment preferably uses a manufacturing method in which a mixture containing the materials is processed into a sheet shape by a dry method. Therefore, as the inorganic particles, it is preferable to use dry silica, silica airgel, etc., which have low thermal conductivity. Furthermore, as shown in the heat transfer suppressing sheet according to the third embodiment, it is also preferable to use hydrophobic silica.
  • Average primary particle diameter of nanoparticles 1 nm or more and 100 nm or less
  • the average primary particle diameter of the nanoparticles is set to 1 nm or more and 100 nm or less, convective heat transfer and conductive heat transfer within the heat transfer suppressing sheet can be suppressed, especially in the temperature range below 500°C, and the heat insulation property is improved. can be further improved.
  • the voids remaining between nanoparticles and the many contact points between particles suppress conductive heat transfer, and the heat insulation properties of the heat transfer suppressing sheet can be maintained. .
  • the average primary particle diameter of the nanoparticles is more preferably 2 nm or more, and even more preferably 3 nm or more.
  • the average primary particle diameter of the nanoparticles is more preferably 50 nm or less, and even more preferably 10 nm or less.
  • Inorganic hydrate particles thermally decompose when they receive heat from a heating element and reach a thermal decomposition start temperature, releasing their own water of crystallization and lowering the temperature of the heating element and its surroundings, a so-called "endothermic action.” Express. Furthermore, after releasing the crystal water, it becomes a porous body and exhibits a heat insulating effect due to its countless air holes.
  • Specific examples of inorganic hydrates include aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), calcium hydroxide (Ca(OH) 2 ), and zinc hydroxide (Zn(OH)).
  • aluminum hydroxide has about 35% water of crystallization, and as shown in the following formula, it thermally decomposes to release water of crystallization and exhibits an endothermic action. After releasing the crystal water, it becomes porous alumina (Al 2 O 3 ), which functions as a heat insulator. 2Al(OH) 3 ⁇ Al 2 O 3 +3H 2 O
  • the heat transfer suppressing sheet 10 is preferably interposed between, for example, battery cells; however, in battery cells that have undergone thermal runaway, The temperature rises rapidly and continues to rise to around 700°C. Therefore, the inorganic particles are preferably composed of inorganic hydrates whose thermal decomposition initiation temperature is 200° C. or higher.
  • the thermal decomposition starting temperatures of the inorganic hydrates listed above are approximately 200°C for aluminum hydroxide, approximately 330°C for magnesium hydroxide, approximately 580°C for calcium hydroxide, approximately 200°C for zinc hydroxide, and approximately 200°C for iron hydroxide.
  • the average secondary particle diameter of the inorganic hydrate particles is preferably 0.01 ⁇ m or more and 200 ⁇ m or less, more preferably 0.05 ⁇ m or more and 100 ⁇ m or less.
  • thermally expandable inorganic material examples include vermiculite, bentonite, mica, pearlite, and the like.
  • Water-containing porous material particles made of water-containing porous material
  • water-containing porous material include zeolite, kaolinite, montmorillonite, acid clay, diatomaceous earth, wet silica, dry silica, aerogel, mica, and vermiculite.
  • the heat insulating material used in the present invention may contain an inorganic balloon as the first inorganic particles.
  • an inorganic balloon When an inorganic balloon is included, convection heat transfer or conductive heat transfer within the heat insulating material can be suppressed in a temperature range of less than 500° C., and the heat insulating properties of the heat insulating material can be further improved.
  • the inorganic balloon at least one selected from a shirasu balloon, a silica balloon, a fly ash balloon, a barite balloon, and a glass balloon can be used.
  • the content of the inorganic balloon is preferably 60% by mass or less based on the total mass of the heat transfer suppressing sheet.
  • the average particle diameter of the inorganic balloon is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the second inorganic particles are not particularly limited as long as they are different from the first inorganic particles in material, particle size, etc.
  • the second inorganic particles include oxide particles, carbide particles, nitride particles, inorganic hydrate particles, silica nanoparticles, metal oxide particles, inorganic balloons such as microporous particles and hollow silica particles, and thermally expandable inorganic materials. Particles made of a water-containing porous material, particles made of a water-containing porous material, etc. can be used, and the details thereof are as described above.
  • nanoparticles have extremely low conductive heat transfer and can maintain excellent heat insulation properties even when compressive stress is applied to the heat transfer suppressing sheet. Furthermore, metal oxide particles such as titania are highly effective in blocking radiant heat. Furthermore, when large-diameter inorganic particles and small-diameter inorganic particles are used, the small-diameter inorganic particles enter the gaps between the large-diameter inorganic particles, resulting in a more dense structure and improving the heat transfer suppression effect. can. Therefore, when nanoparticles, for example, are used as the first inorganic particles, particles made of a metal oxide having a larger diameter than the first inorganic particles are further used as the second inorganic particles to suppress heat transfer. It is preferable to include it in the sheet.
  • metal oxides examples include silicon oxide, titanium oxide, aluminum oxide, barium titanate, zinc oxide, zircon, and zirconium oxide.
  • titanium oxide titanium oxide (titania) is a component with a high refractive index compared to other metal oxides, and is highly effective in diffusely reflecting light and blocking radiant heat in the high temperature range of 500°C or higher, so titania can be used. Most preferred.
  • At least one particle selected from dry silica particles and silica aerogel was used as the first inorganic particle, and the second inorganic particle was selected from titania, zircon, zirconia, silicon carbide, zinc oxide, and alumina.
  • the first inorganic particles in order to obtain excellent heat insulation performance within a temperature range of 300°C or less, the first inorganic particles must be present in an amount of 50% by mass or more based on the total mass of the inorganic particles. It is preferably at least 60% by mass, more preferably at least 70% by mass.
  • the content of the first inorganic particles is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 80% by mass or less, based on the total mass of the inorganic particles.
  • the second inorganic particles are preferably 5% by mass or more, and 10% by mass or more based on the total mass of the inorganic particles. More preferably, it is 20% by mass or more. Further, the second inorganic particles account for preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less, based on the total mass of the inorganic particles.
  • the heat transfer suppressing sheet contains second inorganic particles made of a metal oxide, if the average primary particle diameter of the second inorganic particles is 1 ⁇ m or more and 50 ⁇ m or less, efficiency is improved in a high temperature region of 500°C or higher. Radiation heat transfer can be well suppressed.
  • the average primary particle diameter of the second inorganic particles is more preferably 5 ⁇ m or more and 30 ⁇ m or less, and most preferably 10 ⁇ m or less.
  • the total content of inorganic particles in the heat transfer suppressing sheet 10 is appropriately controlled, the heat insulation properties of the heat transfer suppressing sheet 10 can be sufficiently ensured.
  • the total content of inorganic particles is preferably 30% by mass or more, more preferably 50% by mass or more based on the total mass of the heat transfer suppressing sheet 10. Furthermore, if the total content of inorganic particles becomes too large, the content of fibers will decrease relatively, so in order to obtain appropriate strength of the heat transfer suppressing sheet 10, the total content of inorganic particles must be It is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the heat transfer suppressing sheet 10.
  • the heat transfer suppressing sheet 10 includes at least one type of fiber selected from inorganic fibers and organic fibers.
  • the organic fibers have the effect of imparting flexibility to the heat transfer suppressing sheet 10, retaining inorganic particles, and enhancing the effect of retaining the strength and shape of the sheet.
  • binder fibers having a core-sheath structure can also be used as a material for the organic fibers in the heat transfer suppressing sheet 10, in addition to single-component organic fibers.
  • a binder fiber having a core-sheath structure has a core portion extending in the longitudinal direction of the fiber and a sheath portion formed to cover the outer peripheral surface of the core portion.
  • the fibers are heated during the production of the heat transfer suppressing sheet 10. A portion of the surface is melted, and upon subsequent cooling, inorganic particles and other fibers are welded around the organic fibers. Therefore, excellent sheet strength can be obtained.
  • the first organic material constituting the core has a melting point higher than that of the sheath existing on the outer peripheral surface of the core, that is, the second organic material. If so, there are no particular limitations.
  • the first organic material includes at least one selected from polyethylene terephthalate, polypropylene, and nylon.
  • the second organic material constituting the sheath part is not particularly limited as long as it has a melting point lower than the first organic material constituting the core part.
  • the second organic material includes at least one selected from polyethylene terephthalate, polyethylene, polypropylene, and nylon. Note that the melting point of the second organic material is preferably 90°C or higher, more preferably 100°C or higher. Further, the melting point of the second organic material is preferably 150°C or lower, more preferably 130°C or lower.
  • the heat transfer suppressing sheet 10 contains organic fibers
  • the content of the organic fibers in the heat transfer suppressing sheet 10 is appropriately controlled, the effect of improving the strength of the heat transfer suppressing sheet 10 can be improved. You can get enough.
  • the content of organic fibers is preferably 2% by mass or more, more preferably 4% by mass or more based on the total mass of the heat transfer suppressing sheet 10.
  • the content of organic fibers must be It is preferably 10% by mass or less, more preferably 8% by mass or less based on the mass.
  • the fiber length of the organic fibers is not particularly limited, but from the viewpoint of ensuring moldability and processability, the average fiber length of the organic fibers is preferably 10 mm or less. On the other hand, from the viewpoint of improving the strength of the heat transfer suppressing sheet 10, the average fiber length of the organic fibers is preferably 0.5 mm or more.
  • the inorganic fiber Since the inorganic fiber has excellent strength, it acts as an aggregate of the heat transfer suppressing sheet 10 and can obtain high compressive strength. Therefore, the heat transfer suppressing sheet 10 is interposed between the battery cells 20a, 20b, and 20c, and can maintain its shape without being significantly deformed even when pressed by these battery cells. Moreover, since inorganic fibers have high high temperature strength, even when the heat transfer suppressing sheet 10 is exposed to high temperatures, it can maintain its shape.
  • inorganic fiber a single inorganic fiber may be used, or two or more types of inorganic fibers may be used in combination.
  • inorganic fibers include silica fibers, alumina fibers, alumina silicate fibers, zirconia fibers, carbon fibers, soluble fibers, refractory ceramic fibers, airgel composites, magnesium silicate fibers, alkali earth silicate fibers, potassium titanate fibers, Ceramic fibers such as silicon carbide fibers and potassium titanate whisker fibers, glass fibers such as glass fibers, glass wool, and slag wool, rock wool, basalt fibers, mullite fibers, mineral fibers other than the above, such as wollastonite, etc. Examples include natural mineral fibers.
  • inorganic fibers are preferable in terms of heat resistance, strength, easy availability, and the like.
  • inorganic fibers from the viewpoint of ease of handling, silica-alumina fibers, alumina fibers, silica fibers, rock wool, alkali earth silicate fibers, and glass fibers are particularly preferred.
  • the cross-sectional shape of the inorganic fiber is not particularly limited, and examples thereof include a circular cross-section, a flat cross-section, a hollow cross-section, a polygonal cross-section, a core cross-section, and the like.
  • irregular cross-section fibers having a hollow cross-section, a flat cross-section, or a polygonal cross-section can be preferably used because the heat insulation properties are slightly improved.
  • a preferable lower limit of the average fiber length of the inorganic fibers is 0.1 mm, and a more preferable lower limit is 0.5 mm.
  • a preferable upper limit of the average fiber length of the inorganic fibers is 50 mm, and a more preferable upper limit is 10 mm. If the average fiber length of the inorganic fibers is less than 0.1 mm, the inorganic fibers are unlikely to become entangled with each other, and the mechanical strength of the heat transfer suppressing sheet may decrease.
  • the inorganic fibers may not be tightly intertwined with each other, or a single inorganic fiber may curl up, which tends to create continuous voids, resulting in poor insulation. This may lead to a decrease in
  • a preferable lower limit of the average fiber diameter of the inorganic fibers is 1 ⁇ m, a more preferable lower limit is 2 ⁇ m, and an even more preferable lower limit is 3 ⁇ m.
  • a preferable upper limit of the average fiber diameter of the inorganic fibers is 15 ⁇ m, and a more preferable upper limit is 10 ⁇ m. If the average fiber diameter of the inorganic fibers is less than 1 ⁇ m, the mechanical strength of the inorganic fibers themselves may decrease. Further, from the viewpoint of the influence on human health, it is preferable that the average fiber diameter of the inorganic fibers is 3 ⁇ m or more.
  • the average fiber diameter of the inorganic fibers is larger than 15 ⁇ m, solid heat transfer using the inorganic fibers as a medium may increase, leading to a decrease in heat insulation properties, and the formability and strength of the heat transfer suppressing sheet may deteriorate. There is a risk of
  • the content of the inorganic fibers is preferably 3% by mass or more and 15% by mass or less based on the total mass of the heat transfer suppressing sheet.
  • the content of the inorganic fibers is more preferably 5% by mass or more and 10% by mass or less based on the total mass of the heat transfer suppressing sheet. With such a content, the shape retention, pressure resistance, wind pressure resistance, and inorganic particle retention ability of the inorganic fibers are expressed in a well-balanced manner. Further, when the heat transfer suppressing sheet 10 contains organic fibers and inorganic fibers as fibers, by appropriately controlling the content of the inorganic fibers, the organic fibers and inorganic fibers are entangled with each other to form a three-dimensional network. Therefore, the effect of retaining inorganic particles and the like can be further improved.
  • the heat transfer suppressing sheet according to the present embodiment may further contain a binder, a coloring agent, etc., if necessary. All of these are useful for purposes such as reinforcing the heat transfer suppressing sheet and improving formability, and the total amount is preferably 10% by mass or less based on the total mass of the heat transfer suppressing sheet.
  • Hot melt powder As a binder it is possible to use, for example, hot melt powder.
  • Hot melt powder is a powder that has the property of melting when heated. By incorporating hot melt powder into a mixture of materials and heating it, the hot melt powder melts, and then when cooled, it hardens while containing the fibers and inorganic particles that are the materials. Therefore, the shape retention of the heat transfer suppressing sheet can be improved.
  • Hot melt powders include those having various melting points, and therefore, a hot melt powder having an appropriate melting point may be selected depending on the manufacturing conditions of the heat transfer suppressing sheet.
  • the content of the hot melt powder is preferably 0.5% by mass or more, more preferably 1% by mass or more based on the total mass of the mixture.
  • the content of hot melt powder must be increased by the total mass of the mixture. It is preferably 5% by mass or less, more preferably 4% by mass or less.
  • Method for manufacturing heat transfer suppressing sheet ⁇ Method for manufacturing heat transfer suppressing sheet according to first embodiment> An example of the method for manufacturing the heat transfer suppressing sheet according to the first embodiment will be described below with reference to FIG. 1.
  • fibers glass fiber 1
  • inorganic particles titanium 3, nanosilica 4
  • a binder not shown
  • the obtained mixture is put into a predetermined mold and pressurized with a press or the like, and the obtained molded body is heated and then cooled to form the heat insulating material 9 processed into a sheet. can get.
  • the heat insulating material 9 is immersed in a solution containing the liquid repellent substance 2 and then dried, the liquid repellent substance 2 is formed between the fine inorganic particles on the sheet surface.
  • the liquid repellent substance 2 can be applied to the sheet surface without any gaps, and excellent liquid repellency can be obtained.
  • the inner wall portions of the holes 7 are liquid repellent, so that other liquids can be absorbed.
  • the dew condensation water 5 and the like are easily discharged from the opening 7a without penetrating into the portion.
  • the obtained mixture and a binder (not shown) are put into a predetermined mold, pressurized with a press, etc., and the obtained molded product is heated and cooled to be processed into a sheet.
  • a heat transfer suppressing sheet 10 is obtained.
  • the liquid-repellent substance is attached to the surface of the fibers and inorganic particles used as materials, even if some amount of condensed water 5 etc. infiltrates from the surface, it does not completely penetrate. Further infiltration can be prevented by the fibers and inorganic particles having the liquid-repellent substance 2 attached to their surfaces. Therefore, it is possible to prevent the insulation from deteriorating due to the intrusion of the dew condensed water 5, and by appropriately selecting the liquid-repellent material 2, it is possible to prevent the insulation from deteriorating due to the intrusion of the electrolytic solution.
  • the liquid repellent substance 2 is attached to the surface of the material in advance, and after processing this into a sheet shape, the method according to the first embodiment is performed. If a liquid repellent substance 2 is further attached to the surface of the sheet by following this manufacturing method, the liquid repellency can be further improved.
  • the heat transfer suppressing sheet 10 according to the first and second embodiments is preferably manufactured by a dry method.
  • the dry method it is preferable to use at least one selected from dry silica and silica aerogel suitable for the dry method as the inorganic particles.
  • Fibers (glass fiber 1), liquid-repellent inorganic particles (hydrophobic silica), a binder (not shown), etc. are placed in a predetermined ratio into a mixer such as a V-type mixer to prepare a mixture. Thereafter, the obtained mixture is put into a predetermined mold, pressurized with a press, etc., the obtained molded body is heated, and then cooled to form a heat transfer suppressing sheet. is obtained.
  • the inorganic particles used as the material have a liquid-repellent effect, after being processed into a sheet, the material stage or the heat insulating material processed into a sheet is repelled. It does not require liquid treatment and can be easily manufactured. Note that among the inorganic particles used as the material, only a part may be made of hydrophobic silica, and the remainder may be made of other inorganic particles, and even with such a configuration, a water repellent effect can be obtained.
  • liquid-repellent inorganic particles are used as the liquid-repellent substance 2 as shown in the method for manufacturing a heat transfer suppressing sheet according to the third embodiment, after processing the liquid-repellent material 2 into a sheet, If the liquid repellent substance 2 is further attached to the sheet surface following the manufacturing method according to the first embodiment, the liquid repellency can be further improved.
  • the manufacturing method of the present invention is not particularly limited as long as it can manufacture a heat transfer suppressing sheet that satisfies the requirements of the present invention.
  • a heat transfer suppressing sheet that satisfies the requirements of the present invention.
  • as inorganic particles, silicone, synthetic resin, etc. are attached to the surface of oxide particles to perform a liquid repellent treatment.
  • a heat transfer suppressing sheet having liquid repellency can be manufactured by a method similar to the method for manufacturing a heat transfer suppressing sheet according to the third embodiment.
  • Heating temperature When binder fibers with a core-sheath structure are used as the fibers, the melting point of the first organic material constituting the core is higher than the melting point of the second organic material constituting the sheath, so the mixture is heated. When doing so, select a heating temperature that melts the sheath while leaving the core intact. In this way, by appropriately adjusting the heating temperature, other fibers and inorganic particles can be adhered to the outer peripheral surface of the core after cooling, and the inorganic particles can be retained while also being three-dimensional and strong. A skeleton is formed. As a result, the shape of the entire heat transfer suppressing sheet can be maintained with even higher strength.
  • the thickness of the heat transfer suppressing sheet according to this embodiment is not particularly limited, it is preferably 0.05 mm or more and 10 mm or less. When the thickness is 0.05 mm or more, sufficient compressive strength can be obtained while ensuring heat insulation. On the other hand, when the thickness is 10 mm or less, a desired size of the assembled battery can be achieved.
  • FIG. 2 An example of an assembled battery to which the heat transfer suppressing sheet 10 according to the embodiment of the present invention is applied is as illustrated in FIG. 2 above. Here, the configuration and effects of the assembled battery will be specifically explained using FIG. 2. Note that, as described above, the heat transfer suppressing sheet 10 shown in FIG. 2 can be replaced with another heat transfer suppressing sheet within the scope of the present invention.
  • the assembled battery 100 includes a plurality of battery cells 20a, 20b, and 20c and a heat transfer suppression sheet according to the present embodiment, and the plurality of battery cells are connected in series or in parallel.
  • the heat transfer suppressing sheet 10 according to the present embodiment is interposed between a battery cell 20a and a battery cell 20b, and between a battery cell 20b and a battery cell 20c.
  • the battery cells 20a, 20b, 20c and the heat transfer suppression sheet 10 are housed in a battery case 30. Note that the heat transfer suppressing sheet 10 is as described above.
  • the assembled battery 100 configured in this way, when the temperature of a certain battery cell is repeatedly raised and cooled, and dew condensation water 5 is generated on the surface of the battery cell, there is a gap between the battery cells. Since the heat transfer suppressing sheet 10 that can prevent moisture from entering is present, short circuits between battery cells can be prevented. In addition, if the temperature of a certain battery cell increases significantly and is damaged due to expansion, if the liquid repellent material attached to the heat transfer suppression sheet 10 is appropriately selected, it will prevent the leaked electrolyte from entering. Therefore, it is possible to prevent a chain of thermal runaway from occurring due to the intrusion of high-temperature electrolyte.
  • the heat transfer suppressing sheet 10 disposed between the battery cells 20a, 20b, 20c and the battery case 30 and the battery cells are in contact, there is a gap between them. Good too. However, if there is a gap between the heat transfer suppression sheet 10 and the battery cells 20a, 20b, and 20c, the temperature of any one of the plurality of battery cells may rise and the volume may expand. Even in this case, the allowable amount of deformation of the battery cell can be increased.
  • the heat transfer suppressing sheet 10 according to the present embodiment can be manufactured into various shapes depending on the manufacturing method. Therefore, it is not affected by the shapes of the battery cells 20a, 20b, 20c and the battery case 30, and can be adapted to any shape. Specifically, it can be applied to cylindrical batteries, flat batteries, etc. in addition to square batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Thermal Insulation (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

優れた断熱性を有するとともに、水分の浸入を防止し、これにより、電池セル同士が短絡することによる発火等を防止することができ、好ましくは電解液の浸入による断熱性の低下を防止することができる熱伝達抑制シート及びこの熱伝達抑制シートを有する組電池を提供する。複数の電池セルの間に介在される熱伝達抑制シート(10)は、無機繊維及び有機繊維から選択された少なくとも1種の繊維(ガラス繊維(1))と、水の表面張力よりも小さい表面張力を有する撥液性物質(2)と、を含む。

Description

熱伝達抑制シート及び組電池
 本発明は、熱伝達抑制シート及び該熱伝達抑制シートを有する組電池に関する。
 近年、環境保護の観点から電動モータで駆動する電気自動車又はハイブリッド車等の開発が盛んに進められている。この電気自動車又はハイブリッド車等には、駆動用電動モータの電源となるための、複数の電池セルが直列又は並列に接続された組電池が搭載されている。
 また、この電池セルには、鉛蓄電池やニッケル水素電池等に比べて、高容量かつ高出力が可能なリチウムイオン二次電池が主に用いられている。そして、電池の内部短絡や過充電等が原因で、ある電池セルが急激に昇温し、その後も発熱を継続するような熱暴走を起こした場合、熱暴走を起こした電池セルからの熱が、隣接する他の電池セルに伝播することで、他の電池セルの熱暴走を引き起こすおそれがある。
 上記のような熱暴走を起こした電池セルからの類焼を抑制する方法として、電池セル間に断熱材を配置する方法が一般的に行われている。
 例えば、特許文献1には、繊維シートとシリカエアロゲルを含む複合層を有し、繊維シートは折り返されて積層されている断熱材が開示されている。上記特許文献1には、断熱シートを、電池セルの膨張、収縮による電池セル間の隙間変化に追従させることができることが記載されている。
日本国特開2021-34278号公報
 ところで、従来の組電池(電池ユニット)においては、電池セルの充放電時等に、電池セルの膨張、収縮に伴って、発熱及び冷却が繰り返されるため、電池ケースの内部で結露水が発生することがある。そして、発生した結露水が断熱材に浸入すると、断熱材の絶縁性が低下して隣接する電池セル同士が短絡し、発火するおそれがある。また、電池セルが熱暴走により破損した場合に、電池セルの内部の電解液が高温の状態で断熱材に浸入すると、断熱材の断熱性が著しく低下し、熱暴走の連鎖を引き起こす原因となる。
 上記特許文献1に記載の断熱材においては、結露水の浸入による絶縁性の低下、及び電解液の浸入による断熱性の低下を防止することはできない。
 本発明は上記問題点に鑑みてなされたものであり、優れた断熱性を有するとともに、水分の浸入を防止し、これにより、電池セル同士が短絡することによる発火等を防止することができ、好ましくは電解液の浸入による断熱性の低下を防止することができる熱伝達抑制シート及びこの熱伝達抑制シートを有する組電池を提供することを目的とする。
 本発明の上記目的は、熱伝達抑制シートに係る下記[1]の構成により達成される。
[1] 複数の電池セルの間に介在される熱伝達抑制シートであって、
 無機繊維及び有機繊維から選択された少なくとも1種の繊維と、
 水の表面張力よりも小さい表面張力を有する撥液性物質と、を含むことを特徴とする、熱伝達抑制シート。
 また、熱伝達抑制シートに係る本発明の好ましい実施形態は、以下の[2]~[12]に関する。
[2] 無機粒子を含み、前記無機粒子の少なくとも一部が前記撥液性物質である、[1]に記載の熱伝達抑制シート。
[3] 前記撥液性物質は、疎水性シリカであることを特徴とする、[2]に記載の熱伝達抑制シート。
[4] 無機粒子を含み、
 前記撥液性物質は、熱伝達抑制シートの表面、熱伝達抑制シートの内部における前記無機粒子の表面、及び熱伝達抑制シートの内部における前記繊維の表面の少なくとも一部に付着していることを特徴とする、[1]に記載の熱伝達抑制シート。
[5] 前記撥液性物質は、パラフィン基油類、ナフテン基油類、炭化水素系合成油、エステル系合成油、動植物油脂、シリコーン樹脂及びフッ素樹脂、ロジン系サイズ剤及びアルキルケテンダイマーサイズ剤から選択された少なくとも1種であることを特徴とする、[4]に記載の熱伝達抑制シート。
[6] 前記無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種の無機材料からなる粒子であることを特徴とする、[4]又は[5]に記載の熱伝達抑制シート。
[7] 前記無機粒子は、乾式シリカ粒子及びシリカエアロゲルから選択された少なくとも1種の粒子を含むことを特徴とする、[6]に記載の熱伝達抑制シート。
[8] 前記無機粒子は、さらに、チタニア、ジルコン、ジルコニア、炭化ケイ素、酸化亜鉛及びアルミナから選択された少なくとも1種の粒子を含むことを特徴とする、[7]に記載の熱伝達抑制シート。
[9] 前記撥液性物質の表面張力は、前記電池セルに含まれる電解液の表面張力よりも小さいことを特徴とする、[1]~[8]のいずれか1つに記載の熱伝達抑制シート。
[10] 前記撥液性物質の表面張力は、45mN/m以下であることを特徴とする、[1]~[9]のいずれか1つに記載の熱伝達抑制シート。
[11] 前記撥液性物質は、シリコーン樹脂及びフッ素樹脂から選択された少なくとも1種であることを特徴とする、[10]に記載の熱伝達抑制シート。
[12] 複数の三次元的に連結した空孔を有し、
 前記空孔は、熱伝達抑制シートの表面に向けて開口していることを特徴とする、[1]~[11]のいずれか1つに記載の熱伝達抑制シート。
 また、本発明の上記目的は、組電池に係る下記[13]の構成により達成される。
[13] 複数の電池セルと、[1]~[12]のいずれか1つに記載の熱伝達抑制シートを有し、前記複数の電池セルが直列又は並列に接続された、組電池。
 本発明の熱伝達抑制シートは、表面及び内部の少なくとも一部に撥液性物質を有し、この撥液性物質の表面張力は水の表面張力よりも小さいため、熱伝達抑制シートの外部に生成された結露水等が熱伝達抑制シートの内部に浸入することを抑制できる。したがって、熱伝達抑制シートの絶縁性が低下して隣接する電池セル同士が短絡し、発火することを防止することができる。また、撥液性物質の表面張力が、電池セルに使用されている電解液の表面張力よりも小さいと、電解液の熱伝達抑制シートの内部への浸入をも抑制することができ、断熱性の低下を防止することができる。
 本発明の組電池は、上記のように優れた断熱性を有し、結露水や電解液の浸入が抑制された熱伝達抑制シートを有するため、組電池における電池セル同士の短絡を防止できるとともに、電池セルの熱暴走や、電池ケースの外側への炎の拡大を抑制することができる。
図1は、本発明の第1の実施形態に係る熱伝達抑制シートの構造を示す模式的断面図である。 図2は、本発明の第1の実施形態に係る熱伝達抑制シートを有する組電池を模式的に示す断面図である。 図3は、本発明の第2の実施形態に係る熱伝達抑制シートの構造を示す模式的断面図である。 図4は、本発明の実施形態に係る熱伝達抑制シートに使用することができる断熱材の断面を示す図面代用写真である。 図5は、第2の実施形態に係る熱伝達抑制シートが三次元的に連結した空孔を有する場合の構造を示す模式的断面図である。 図6は、第2の実施形態に係る熱伝達抑制シートが電池セルに隣接して配置されている様子を示す模式的断面図である。
 本発明者は、上記課題を解決することができる熱伝達抑制シートについて、鋭意検討を行った。
 その結果、熱伝達抑制シートの表面に撥液性物質を外添するか、又は内部に撥液性物質を内添し、撥液性物質として、水よりも小さい表面張力を有するものを使用することにより、熱伝達シートの外部で生成された結露水が、シート内部に浸入することを防止することができることを見出した。また、例えば熱伝達シートを電池セルの近傍に配置させる場合に、撥液性物質として、電池セルの内部に充填されている電解液よりも小さい表面張力を有するものを使用すると、電池セルから漏れ出た電解液が熱伝達抑制シートの内部に浸入することを抑制でき、断熱性の低下を防止することができることを見出した。
 以下、本発明の実施形態に係る熱伝達抑制シート、その製造方法及び組電池について、詳細に説明する。なお、本発明は、以下で説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
[熱伝達抑制シート]
<第1の実施形態>
 図1は、本発明の第1の実施形態に係る熱伝達抑制シートの構造を示す模式的断面図である。また、図2は、本発明の第1の実施形態に係る熱伝達抑制シートを有する組電池を模式的に示す断面図である。
 図1に示すように、本実施形態に係る熱伝達抑制シート10は、断熱材9の表面に撥液性物質2を付着させたものである。断熱材9は、無機粒子として、ナノシリカ4とチタニア3とを有するとともに、繊維として、ガラス繊維1を有する。なお、撥液性物質2は、水の表面張力よりも小さい表面張力を有するものであり、例えばロジン系サイズ剤である。
 この熱伝達抑制シート10の具体的な使用形態としては、図2に示すように、複数の電池セル20a,20b,20cの間に、熱伝達抑制シート10を介在させるように使用することができる。そして、複数の電池セル20a,20b,20cが直列又は並列に接続された状態(接続された状態は図示を省略)で、電池ケース30に格納されて組電池100が構成される。なお、電池セル20a,20b,20cは、例えば、リチウムイオン二次電池が好適に用いられるが、特にこれに限定されず、その他の二次電池にも適用され得る。
 上記のように構成された組電池100において、稼働時(充放電時)には、電池セル20a,20b,20cの温度が上昇し、電池ケース30内の温度も上昇する。その後、組電池100の稼働が停止され、電池ケース30内の空気が冷却されると、電池セル20a,20b,20cや電池ケース30の内面に結露水が付着する。
 このとき、第1の実施形態に係る熱伝達抑制シート10においては、その表面に水よりも表面張力が小さい撥液性物質2が付着しており、この撥液性物質2は水をはじく性質を有するため、結露水5が熱伝達抑制シート10の内部に浸入することを抑制することができる。したがって、熱伝達抑制シートの絶縁性が低下することを抑制することができ、隣接する電池セル、例えば電池セル20aと電池セル20bとが短絡し、発火することを防止することができる。
 また、上記組電池100において、例えば電池セル20cが熱暴走により膨張し、破損して電池セル20c内に充填されている電解液が流出した場合に、この電解液が高温の状態で断熱材に浸入すると、断熱材の断熱性が著しく低下し、熱暴走の連鎖を引き起こす原因となる。このような場合に、撥液性物質2として例えばフッ素樹脂を使用すると、フッ素樹脂は、電池セル20a,20b,20cの内部に充填されている電解液、例えばジメチルカーボネート(DMC)の表面張力よりも小さい表面張力を有する。したがって、結露水5のみでなく電解液に対しても撥液性を発揮し、電解液が熱伝達抑制シート10の内部に浸入することを抑制することができ、熱暴走の連鎖を防止することができる。
 第1の実施形態において、熱伝達抑制シート10が、その表面10a,10bに撥液性物質2を有する場合に、表面10a,10bの少なくとも一部に撥液性物質2が付着していれば、撥液性物質2が付着していない場合と比較して、結露水や電解液の熱伝達抑制シート10の内部への浸入を防止する効果を得ることができる。ただし、表面10a,10bの全面を完全に被覆するように撥液性物質2が付着していることが好ましい。このように、熱伝達抑制シート10の表面10a,10bの全面に撥液性物質2が付着していると、結露水や電解液の熱伝達抑制シート10の内部への浸入を確実に防止することができる。第1の実施形態に係る熱伝達抑制シート10の製造方法については、後述する。
 また、本実施形態に係る熱伝達抑制シート10は、繊維として、無機繊維であるガラス繊維1を有するため、ガラス繊維1が熱伝達抑制シート10の骨材として作用し、高い圧縮強度を得ることができる。図2に示すように、本実施形態に係る熱伝達抑制シート10は、複数の電池セル20a,20b,20cの間に介在されるが、熱伝達抑制シート10に隣接して配置されている電池セル20a,20b,20cは、充放電等により膨張又は収縮する。このとき、熱伝達抑制シート10が高い圧縮強度を有するため、電池セル20a,20b,20cに押圧されても大きく変形することなく、その形状を保持することができる。したがって、圧縮されて熱伝達抑制シート10の厚さが薄くなったり、無機粒子等が熱伝達抑制シート10から脱落することによる断熱性の低下を防止することができる。さらに、無機繊維は高い高温強度を有するため、熱伝達抑制シート10が高温に晒された場合であっても、その形状を維持することができる。
 さらにまた、本実施形態に係る熱伝達抑制シート10は、無機粒子としてナノシリカ4及びチタニア3を含んでおり、これらの無機粒子は幅広い温度領域で断熱性を発揮するため、優れた断熱性を得ることができる。
<第2の実施形態>
 図3は、本発明の第2の実施形態に係る熱伝達抑制シートの構造を示す模式的断面図である。上記第1の実施形態に係る熱伝達抑制シート10は、断熱材9の表面に撥液性物質2を付着させたものであったが、第2の実施形態では、撥液性物質2が付着している領域が、第1の実施形態と異なっている。ただし、その他の材料等に関して、第2の実施形態は第1の実施形態と同様であるため、図3において、図1と同一物には同一符号を付して、その詳細な説明は省略する。
 図3に示すように、第2の実施形態に係る熱伝達抑制シート10は、断熱材9の内部における繊維(ガラス繊維1)や、無機粒子(ナノシリカ4及びチタニア3)の表面の少なくとも一部に撥液性物質2が付着した、所謂内添型の構造を有する。
 上述のように構成された第2の実施形態に係る熱伝達抑制シート10においては、撥液性物質2が内添されているため、表面10a,10bから、ある程度の深さまで結露水5や電解液が浸入することがあるが、完全に浸透することを防止することができる。したがって、熱伝達抑制シートの絶縁性の低下を抑制することができ、隣接する電池セル同士の短絡による発火を防止することができるとともに、高温の電解液の浸入による断熱性の低下を防止することができる。
 また、第2の実施形態に示すように、熱伝達抑制シート10に撥液性物質2が内添されていると、仮に、熱伝達抑制シート10の表面10a,10bが破損した場合であっても、結露水5の浸入を途中で阻止することができる。
 なお、第2の実施形態に示すように、断熱材9の内部における繊維(ガラス繊維1)や、無機粒子(ナノシリカ4及びチタニア3)の表面の少なくとも一部に撥液性物質2を付着させるとともに、第1の実施形態に示すように、断熱材9の表面に撥液性物質2を付着させることにより、両者の優れた効果をともに有する熱伝達抑制シートを得ることができる。
<第3の実施形態>
 第3の実施形態については図示を省略するが、図1を参照して説明する。第3の実施形態に係る熱伝達抑制シート10は、図1に示すように撥液性物質2を表面に付着させたものではなく、撥液性を有する無機粒子を使用したものである。すなわち、断熱材9における無機粒子の少なくとも一部が撥液性物質となっている。このような無機粒子としては、例えば、疎水性シリカ(ヒュームドシリカ)が挙げられる。
 このように構成された第3の実施形態においても、表面に撥液性を有する無機粒子が存在するため、熱伝達抑制シート10の表面に撥液性物質2を付着させる工程を実施することなく、容易に内部への結露水5の浸入を防止することができる。
 なお、無機繊維及び有機繊維から選択された少なくとも1種の繊維を含まず、撥液性物質2からなる無機粒子のみを使用して熱伝達抑制シート10を製造した場合に、仮に、結露水5が熱伝達抑制シート10の内部に浸入すると、無機粒子同士が互いに凝集してしまい、クラックが発生しやすくなる。本実施形態においては、繊維(ガラス繊維1)を含んでいるため、無機粒子同士の凝集が抑制され、クラックの発生を防止することができる。
 次に、本発明の実施形態に係る熱伝達抑制シートに使用することができる断熱材について、より詳細に説明する。図4は、本発明の実施形態に係る熱伝達抑制シートに使用することができる断熱材の断面を示す図面代用写真である。図4に示す断熱材19は、無機粒子14と有機繊維6とを含んでいる。無機粒子14としては、上記第1及び第2の実施形態に示すように、ナノシリカ、チタニア等を使用することができる。また、有機繊維6としては、ポリエチレンテレフタレート(PET:Polyethyleneterephthalate)繊維等を使用することができる。さらに、上記第1及び第2の実施形態に示すように、ガラス繊維1等の無機繊維が含まれていてもよい。
 また、断熱材19は、無機粒子14同士、無機粒子14と有機繊維6との間等に、複数の三次元的に連結した空孔7を有する。なお、空孔7の少なくとも一部は、断熱材19の表面19aに連通し、外方に開口する開口部7aを有している。
 図4に示すように、本実施形態において使用される断熱材19の表面19aには無機粒子14が露出しており、極めて微細な凹凸が形成されているため、断熱材19はもともと撥水性を有する構造となっている。これに加えて、第1及び第2の実施形態では、断熱材19の表面19aに撥液性物質を付着させるか、又は断熱材の内部における無機粒子14や有機繊維6の表面に撥液性物質を付着させており、第3の実施形態では、撥液性物質からなる無機粒子を使用している。したがって、所定量の無機粒子を含まず、表面に微細な凹凸が形成されていない断熱材に撥液性物質を付与する場合と比較して、結露水や電解液の浸入を防止する効果を著しく高めることができる。
 なお、図4に示すように、断熱材19が三次元的に連結した空孔7を有し、空孔7が開口部7aを有していると、断熱材19の表面側から撥液性物質を付与する場合に、開口部7aを介して断熱材19の内部に撥液性物質が浸入しやすくなる。特に、無機粒子14として疎水性のシリカを使用した場合に、さらに撥液性物質を断熱材19の表面から付着させようとすると、無機粒子14が撥液性を発揮し、付着が困難になることがある。これに対して、図4に示すように、断熱材19に開口部7aを有する空孔7が存在すると、断熱材19の内部に撥液性物質を浸入させやすくなり、撥液性を向上させることができる。
 図5は、上記第2の実施形態に係る熱伝達抑制シートが三次元的に連結した空孔を有する場合の構造を示す模式的断面図である。また、図6は、上記第2の実施形態に係る熱伝達抑制シートが電池セルに隣接して配置されている様子を示す模式的断面図である。
 図5に示すように、熱伝達抑制シート10が三次元的に連結した空孔7を有し、空孔7が開口部7aを有していると、開口部7aと空孔7とを連通する入排水パス8が形成される。したがって、仮に、空孔7の開口部7aや、その他の部分から熱伝達抑制シート10の内部に結露水5が浸入した場合であっても、入排水パス8を介して結露水5を外部に排出することができる。
 また、図6に示すように、稼働時に電池セル20cの温度が上昇し、熱伝達抑制シート10の温度もある程度上昇すると、熱伝達抑制シート10の内部に存在する水分が蒸発して水蒸気となり、入排水パス8を介して外部に排出させることができる。さらに、稼働時に電池セル20cが膨張した場合に、電池セル20cと、図6では不図示の電池セル20bとの間隔が狭くなり、熱伝達抑制シート10が押圧される。このとき、熱伝達抑制シート10に水分が浸入していると、入排水パス8を介して結露水5が排出されやすくなる。
 以下、本実施形態に係る熱伝達抑制シートを構成する材料について、詳細に説明する。
<撥液性物質>
 撥液性物質2は、熱伝達抑制シート10の内部への結露水5の浸入を防止する効果を有する重要な成分である。結露水5の浸入を防止するためには、撥液性物質2の表面張力は、水の表面張力よりも小さいものであることが必要である。また、熱伝達抑制シート10の近傍に配置されている電池セルに含まれる電解液の表面張力よりも小さいものとすると、電解液の浸入をも防止することができる。
 25℃における水の表面張力は、約72.0(mN/m)であるため、撥液性物質の表面張力の具体的な値としては、例えば70.0(mN/m)以下とし、65(mN/m)以下であることが好ましい。また、電解液の浸入を抑制するためには、撥液性物質の表面張力は45(mN/m)以下であることがより好ましく、25(mN/m)以下であることがさらに好ましい。
 撥液性物質としては、一般的に使用されている撥水剤、撥油剤、サイズ剤が挙げられる。
 撥水剤の具体的な例としては、パラフィン基油類、ナフテン基油類、炭化水素系合成油、エステル系合成油、動植物油脂等の撥水剤が挙げられる。また、撥油剤の具体的な例としては、シリコーン樹脂、フッ素樹脂が挙げられる。さらに、サイズ剤の具体的な例としては、ロジン系(松脂)、アルキルケテンダイマー(AKD:Alkyl Ketene Dimer)等が挙げられる。
 これらの撥液性物質のうち、電解液よりも小さい表面張力を有する撥液性物質としては、シリコーン樹脂、フッ素樹脂が挙げられる。なお、シリコーン樹脂の表面張力は、16~30(mN/m)であり、フッ素樹脂の表面張力は、10~25(mN/m)である。
 なお、上記第3の実施形態に示すように、無機粒子を撥液性物質として使用することができる。この場合に、撥液性物質として、疎水性シリカ(ヒュームドシリカ)等が挙げられる。
(撥液性物質の含有量)
 本実施形態において、熱伝達抑制シート全質量に対する撥液性物質2の含有量が適切に制御されていると、結露水5や電解液に対して十分な撥液性を得ることができる。
 撥液性物質2の含有量は、熱伝達抑制シート10の全質量に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましい。また、撥液性物質2の含有量が多くなりすぎると、無機粒子や繊維の含有量が相対的に減少するため、所望の断熱性能を得るためには、撥液性物質2の含有量は、熱伝達抑制シート10の全質量に対して35質量%以下であることが好ましく、20質量%以下であることがより好ましい。
<無機粒子>
 無機粒子として、単一の無機粒子を使用してもよいし、2種以上の無機粒子を組み合わせて使用してもよい。無機粒子の種類としては、熱伝達抑制効果の観点から、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種の無機材料からなる粒子を使用することが好ましく、酸化物粒子を使用することがより好ましい。また、形状についても特に限定されないが、ナノ粒子、中空粒子及び多孔質粒子から選択される少なくとも1種を含むことが好ましく、具体的には、シリカナノ粒子、金属酸化物粒子、マイクロポーラス粒子や中空シリカ粒子等の無機バルーン、熱膨張性無機材料からなる粒子、含水多孔質体からなる粒子等を使用することもできる。
 無機粒子の平均二次粒子径が0.01μm以上であると、入手しやすく、製造コストの上昇を抑制することができる。また、200μm以下であると、所望の断熱効果を得ることができる。したがって、無機粒子の平均二次粒子径は、0.01μm以上200μm以下であることが好ましく、0.05μm以上100μm以下であることがより好ましい。
 なお、2種以上の熱伝達抑制効果が互いに異なる無機粒子を併用すると、発熱体を多段に冷却することができ、吸熱作用をより広い温度範囲で発現できる。具体的には、大径粒子と小径粒子とを混合使用することが好ましい。例えば、第1及び第2の実施形態において示すように、一方の無機粒子として、ナノ粒子(ナノシリカ4)を使用する場合に、他方の無機粒子として、金属酸化物からなる無機粒子(チタニア3)を含むことが好ましい。以下、小径の無機粒子を第1の無機粒子、大径の無機粒子を第2の無機粒子として、無機粒子についてさらに詳細に説明する。
<第1の無機粒子>
(酸化物粒子)
 酸化物粒子は屈折率が高く、光を乱反射させる効果が強いため、第1の無機粒子として酸化物粒子を使用すると、特に異常発熱などの高温度領域において輻射伝熱を抑制することができる。酸化物粒子としては、シリカ、チタニア、ジルコニア、ジルコン、チタン酸バリウム、酸化亜鉛及びアルミナから選択された少なくとも1種の粒子を使用することができる。すなわち、無機粒子として使用することができる上記酸化物粒子のうち、1種のみを使用してもよいし、2種以上の酸化物粒子を使用してもよい。特に、シリカは断熱性が高い成分であり、チタニアは他の金属酸化物と比較して屈折率が高い成分であって、500℃以上の高温度領域において光を乱反射させ輻射熱を遮る効果が高いため、酸化物粒子としてシリカ及びチタニアを用いることが最も好ましい。
(酸化物粒子の平均一次粒子径:0.001μm以上50μm以下)
 酸化物粒子の粒子径は、輻射熱を反射する効果に影響を与えることがあるため、平均一次粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
 すなわち、酸化物粒子の平均一次粒子径が0.001μm以上であると、加熱に寄与する光の波長よりも十分に大きく、光を効率よく乱反射させるため、500℃以上の高温度領域において熱伝達抑制シート内における熱の輻射伝熱が抑制され、より一層断熱性を向上させることができる。
 一方、酸化物粒子の平均一次粒子径が50μm以下であると、圧縮されても粒子間の接点や数が増えず、伝導伝熱のパスを形成しにくいため、特に伝導伝熱が支配的な通常温度域の断熱性への影響を小さくすることができる。
 なお、本発明において平均一次粒子径は、顕微鏡で粒子を観察し、標準スケールと比較し、任意の粒子10個の平均をとることにより求めることができる。
(ナノ粒子)
 本発明において、ナノ粒子とは、球形又は球形に近い平均一次粒子径が1μm未満のナノメートルオーダーの粒子を表す。ナノ粒子は低密度であるため伝導伝熱を抑制し、第1の無機粒子としてナノ粒子を使用すると、更に三次元的に連結した空孔7が微細化し、対流伝熱を抑制する優れた断熱性を得ることができる。このため、通常の常温域の電池使用時において、隣接するナノ粒子間の熱の伝導を抑制することができる点で、ナノ粒子を使用することが好ましい。
 さらに、酸化物粒子として、平均一次粒子径が小さいナノ粒子を使用すると、電池セルの熱暴走に伴う膨張によって熱伝達抑制シートが圧縮され、内部の密度が上がった場合であっても、熱伝達抑制シートの伝導伝熱の上昇を抑制することができる。これは、ナノ粒子が静電気による反発力で粒子間に細かな空隙ができやすく、かさ密度が低いため、クッション性があるように粒子が充填されるからであると考えられる。
 また、本実施形態に係る熱伝達抑制シート10の断熱材にナノ粒子が含まれていると、断熱材の表面に微細な凹凸が形成されるため、上述のとおり、撥液性物質2を付与することにより得られる撥液性をより一層向上させることができる。
 なお、本発明において、第1の無機粒子としてナノ粒子を使用する場合に、上記ナノ粒子の定義に沿ったものであれば、材質について特に限定されない。例えば、シリカナノ粒子は、断熱性が高い材料であることに加えて、粒子同士の接点が小さいため、シリカナノ粒子により伝導される熱量は、粒子径が大きいシリカ粒子を使用した場合と比較して小さくなる。また、一般的に入手されるシリカナノ粒子は、かさ密度が0.1(g/cm)程度であるため、例えば、熱伝達抑制シートの両側に配置された電池セルが熱膨張し、熱伝達抑制シートに対して大きな圧縮応力が加わった場合であっても、シリカナノ粒子同士の接点の大きさ(面積)や数が著しく大きくなることはなく、断熱性を維持することができる。したがって、ナノ粒子としてはシリカナノ粒子を使用することが好ましい。シリカナノ粒子としては、湿式シリカ、乾式シリカ及びエアロゲル等が挙げられるが、本実施形態に特に好適であるシリカナノ粒子について、以下に説明する。
 一般的に、湿式シリカは粒子が凝集しているのに対し、乾式シリカは粒子を分散させることができる。300℃以下の温度範囲において、熱の伝導は伝導伝熱が支配的であるため、粒子を分散させることができる乾式シリカの方が、湿式シリカと比較して、優れた断熱性能を得ることができる。
 なお、本実施形態に係る熱伝達抑制シートは、材料を含む混合物を、乾式法によりシート状に加工する製造方法を用いることが好ましい。したがって、無機粒子としては、熱伝導率が低い乾式シリカ、シリカエアロゲル等を使用することが好ましい。また、第3の実施形態に係る熱伝達抑制シートに示すように、疎水性シリカを使用することも好ましい。
(ナノ粒子の平均一次粒子径:1nm以上100nm以下)
 ナノ粒子の平均一次粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
 すなわち、ナノ粒子の平均一次粒子径を1nm以上100nm以下とすると、特に500℃未満の温度領域において、熱伝達抑制シート内における熱の対流伝熱及び伝導伝熱を抑制することができ、断熱性をより一層向上させることができる。また、圧縮応力が印加された場合であっても、ナノ粒子間に残った空隙と、多くの粒子間の接点が伝導伝熱を抑制し、熱伝達抑制シートの断熱性を維持することができる。
 なお、ナノ粒子の平均一次粒子径は、2nm以上であることがより好ましく、3nm以上であることが更に好ましい。一方、ナノ粒子の平均一次粒子径は、50nm以下であることがより好ましく、10nm以下であることが更に好ましい。
(無機水和物粒子)
 無機水和物粒子は、発熱体からの熱を受けて熱分解開始温度以上になると熱分解し、自身が持つ結晶水を放出して発熱体及びその周囲の温度を下げる、所謂「吸熱作用」を発現する。また、結晶水を放出した後は多孔質体となり、無数の空気孔により断熱作用を発現する。
 無機水和物の具体例として、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、水酸化カルシウム(Ca(OH))、水酸化亜鉛(Zn(OH))、水酸化鉄(Fe(OH))、水酸化マンガン(Mn(OH))、水酸化ジルコニウム(Zr(OH))、水酸化ガリウム(Ga(OH))等が挙げられる。
 例えば、水酸化アルミニウムは約35%の結晶水を有しており、下記式に示すように、熱分解して結晶水を放出して吸熱作用を発現する。そして、結晶水を放出した後は多孔質体であるアルミナ(Al)となり、断熱材として機能する。
 2Al(OH)→Al+3H
 なお、後述するように、本実施形態に係る熱伝達抑制シート10は、例えば、電池セル間に介在されることが好適であるが、熱暴走を起こした電池セルでは、200℃を超える温度に急上昇し、700℃付近まで温度上昇を続ける。したがって、無機粒子としては熱分解開始温度が200℃以上である無機水和物からなることが好ましい。
 上記に挙げた無機水和物の熱分解開始温度は、水酸化アルミニウムは約200℃、水酸化マグネシウムは約330℃、水酸化カルシウムは約580℃、水酸化亜鉛は約200℃、水酸化鉄は約350℃、水酸化マンガンは約300℃、水酸化ジルコニウムは約300℃、水酸化ガリウムは約300℃であり、いずれも熱暴走を起こした電池セルの急激な昇温の温度範囲とほぼ重なり、温度上昇を効率よく抑えることができることから、好ましい無機水和物であるといえる。
(無機水和物粒子の平均二次粒子径:0.01μm以上200μm以下)
 また、第1の無機粒子として、無機水和物粒子を使用した場合に、その平均粒子径が大きすぎると、熱伝達抑制シート10の中心付近にある第1の無機粒子(無機水和物)が、その熱分解温度に達するまでにある程度の時間を要するため、シート中心付近の第1の無機粒子が熱分解しきれない場合がある。このため、無機水和物粒子の平均二次粒子径は、0.01μm以上200μm以下であることが好ましく、0.05μm以上100μm以下であることがより好ましい。
(熱膨張性無機材料からなる粒子)
 熱膨張性無機材料としては、バーミキュライト、ベントナイト、雲母、パーライト等を挙げることができる。
(含水多孔質体からなる粒子)
 含水多孔質体の具体例としては、ゼオライト、カオリナイト、モンモリロナイト、酸性白土、珪藻土、湿式シリカ、乾式シリカ、エアロゲル、マイカ、バーミキュライト等が挙げられる。
(無機バルーン)
 本発明に用いる断熱材は、第1の無機粒子として無機バルーンを含んでいてもよい。
 無機バルーンが含まれると、500℃未満の温度領域において、断熱材内における熱の対流伝熱または伝導伝熱を抑制することができ、断熱材の断熱性をより一層向上させることができる。
 無機バルーンとしては、シラスバルーン、シリカバルーン、フライアッシュバルーン、バーライトバルーン、およびガラスバルーンから選択された少なくとも1種を用いることができる。
(無機バルーンの含有量)
 無機バルーンの含有量としては、熱伝達抑制シート全質量に対し、60質量%以下が好ましい。
(無機バルーンの平均粒子径:1μm以上100μm以下)
 無機バルーンの平均粒子径としては、1μm以上100μm以下が好ましい。
<第2の無機粒子>
 熱伝達抑制シートに2種の無機粒子が含有されている場合に、第2の無機粒子は、第1の無機粒子と材質や粒子径等が異なっていれば特に限定されない。第2の無機粒子としては、酸化物粒子、炭化物粒子、窒化物粒子、無機水和物粒子、シリカナノ粒子、金属酸化物粒子、マイクロポーラス粒子や中空シリカ粒子等の無機バルーン、熱膨張性無機材料からなる粒子、含水多孔質体からなる粒子等を使用することができ、これらの詳細については、上述のとおりである。
 なお、ナノ粒子は伝導伝熱が極めて小さいとともに、熱伝達抑制シートに圧縮応力が加わった場合であっても、優れた断熱性を維持することができる。また、チタニア等の金属酸化物粒子は、輻射熱を遮る効果が高い。さらに、大径の無機粒子と小径の無機粒子とを使用すると、大径の無機粒子同士の隙間に小径の無機粒子が入り込むことにより、より緻密な構造となり、熱伝達抑制効果を向上させることができる。したがって、上記第1の無機粒子として、例えばナノ粒子を使用した場合に、さらに、第2の無機粒子として、第1の無機粒子よりも大径である金属酸化物からなる粒子を、熱伝達抑制シートに含有させることが好ましい。
 金属酸化物としては、酸化ケイ素、酸化チタン、酸化アルミニウム、チタン酸バリウム、酸化亜鉛、ジルコン、酸化ジルコニウム等を挙げることがでる。特に、酸化チタン(チタニア)は他の金属酸化物と比較して屈折率が高い成分であり、500℃以上の高温度領域において光を乱反射させ輻射熱を遮る効果が高いため、チタニアを用いることが最も好ましい。
 第1の無機粒子として、乾式シリカ粒子及びシリカエアロゲルから選択された少なくとも1種の粒子を使用し、第2の無機粒子として、チタニア、ジルコン、ジルコニア、炭化ケイ素、酸化亜鉛及びアルミナから選択された少なくとも1種の粒子を使用する場合に、300℃以下の温度範囲内において、優れた断熱性能を得るためには、第1の無機粒子は、無機粒子全質量に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。また、第1の無機粒子は、無機粒子全質量に対して、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。
 一方、300℃を超える温度範囲内において、優れた断熱性能を得るためには、第2の無機粒子は、無機粒子全質量に対して、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。また、第2の無機粒子は、無機粒子全質量に対して、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。
(第2の無機粒子の平均一次粒子径)
 金属酸化物からなる第2の無機粒子を熱伝達抑制シートに含有させる場合に、第2の無機粒子の平均一次粒子径は、1μm以上50μm以下であると、500℃以上の高温度領域で効率よく輻射伝熱を抑制することができる。第2の無機粒子の平均一次粒子径は、5μm以上30μm以下であることが更に好ましく、10μm以下であることが最も好ましい。
(無機粒子の含有量)
 本実施形態において、熱伝達抑制シート10中の無機粒子の合計の含有量が適切に制御されていると、熱伝達抑制シート10の断熱性を十分に確保することができる。
 無機粒子の合計の含有量は、熱伝達抑制シート10の全質量に対して30質量%以上であることが好ましく、50質量%以上であることがより好ましい。また、無機粒子の合計の含有量が多くなりすぎると、繊維の含有量が相対的に減少するため、熱伝達抑制シート10の適切な強度を得るためには、無機粒子の合計の含有量は、熱伝達抑制シート10の全質量に対して80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
<繊維>
 本実施形態に係る熱伝達抑制シート10は、無機繊維及び有機繊維から選択された少なくとも1種の繊維を有する。
<有機繊維>
 有機繊維は、熱伝達抑制シート10に柔軟性を与えるとともに、無機粒子を保持し、シートの強度及び形状を保持する効果を高める効果を有する。熱伝達抑制シート10における有機繊維の材料として、単成分の有機繊維の他に、芯鞘構造のバインダ繊維を使用することもできる。芯鞘構造のバインダ繊維は、繊維の長手方向に延びる芯部と、芯部の外周面を被覆するように形成された鞘部とを有するものである。
 有機繊維の材料として、単成分の有機繊維を使用した場合であっても、芯鞘構造のバインダ繊維を使用した場合であっても、熱伝達抑制シート10の製造時に加熱されることにより繊維の表面の一部が溶融して、その後の冷却により、有機繊維の周囲に無機粒子や他の繊維が溶着される。したがって、優れたシート強度を得ることができる。
 有機繊維の材料として、芯鞘構造のバインダ繊維を使用する場合に、芯部を構成する第1の有機材料及び鞘部を構成する第2の有機材料について、以下に説明する。
(第1の有機材料)
 繊維として、芯鞘構造のバインダ繊維を使用する場合に、芯部を構成する第1の有機材料は、芯部の外周面に存在する鞘部、すなわち第2の有機材料の融点よりも高いものであれば、特に限定されない。第1の有機材料としては、ポリエチレンテレフタレート、ポリプロピレン及びナイロンから選択された少なくとも1種が挙げられる。
(第2の有機材料)
 有機繊維として、芯鞘構造のバインダ繊維を使用する場合に、鞘部を構成する第2の有機材料は、芯部を構成する第1の有機材料の融点よりも低いものであれば、特に限定されない。第2の有機材料としては、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン及びナイロンから選択された少なくとも1種が挙げられる。
 なお、第2の有機材料の融点は、90℃以上であることが好ましく、100℃以上であることがより好ましい。また、第2の有機材料の融点は、150℃以下であることが好ましく、130℃以下であることがより好ましい。
(有機繊維の含有量)
 本実施形態において、熱伝達抑制シート10が有機繊維を含む場合に、熱伝達抑制シート10における有機繊維の含有量が適切に制御されていると、熱伝達抑制シート10の強度を向上させる効果を十分に得ることができる。
 有機繊維の含有量は、熱伝達抑制シート10の全質量に対して2質量%以上であることが好ましく、4質量%以上であることがより好ましい。また、有機繊維の含有量が多くなりすぎると、無機粒子の含有量が相対的に減少するため、所望の断熱性能を得るためには、有機繊維の含有量は、熱伝達抑制シート10の全質量に対して10質量%以下であることが好ましく、8質量%以下であることがより好ましい。
(有機繊維の繊維長)
 有機繊維の繊維長については特に限定されないが、成形性や加工性を確保する観点から、有機繊維の平均繊維長は10mm以下とすることが好ましい。
 一方、熱伝達抑制シート10の強度を向上させる観点から、有機繊維の平均繊維長は0.5mm以上とすることが好ましい。
<無機繊維>
 無機繊維は、優れた強度を有するため、熱伝達抑制シート10の骨材として作用し、高い圧縮強度を得ることができる。したがって、熱伝達抑制シート10が電池セル20a,20b,20cの間に介在され、これらの電池セルに押圧されても大きく変形することなく、その形状を保持することができる。また、無機繊維は高い高温強度を有するため、熱伝達抑制シート10が高温に晒された場合であっても、その形状を維持することができる。
 無機繊維として、単一の無機繊維を使用してもよいし、2種以上の無機繊維を組み合わせて使用してもよい。無機繊維としては、例えば、シリカ繊維、アルミナ繊維、アルミナシリケート繊維、ジルコニア繊維、カーボンファイバ、ソルブルファイバ、リフラクトリーセラミック繊維、エアロゲル複合材、マグネシウムシリケート繊維、アルカリアースシリケート繊維、チタン酸カリウム繊維、炭化ケイ素繊維、チタン酸カリウムウィスカ繊維等のセラミックス系繊維、ガラス繊維、グラスウール、スラグウール等のガラス系繊維、ロックウール、バサルトファイバ、ムライト繊維、上記以外の鉱物系繊維として、ウォラストナイト等の天然鉱物系繊維等が挙げられる。
 これらの無機繊維は、耐熱性、強度、入手容易性などの点で好ましい。無機繊維のうち、取り扱い性の観点から、特にシリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維、ガラス繊維が好ましい。
 無機繊維の断面形状は、特に限定されず、円形断面、平断面、中空断面、多角断面、芯断面などが挙げられる。中でも、中空断面、平断面または多角断面を有する異形断面繊維は、断熱性が若干向上されるため好適に使用することができる。
 無機繊維の平均繊維長の好ましい下限は0.1mmであり、より好ましい下限は0.5mmである。一方、無機繊維の平均繊維長の好ましい上限は50mmであり、より好ましい上限は10mmである。無機繊維の平均繊維長が0.1mm未満であると、無機繊維同士の絡み合いが生じにくく、熱伝達抑制シートの機械的強度が低下するおそれがある。一方、50mmを超えると、補強効果は得られるものの、無機繊維同士が緊密に絡み合うことができなったり、単一の無機繊維だけで丸まったりし、それにより連続した空隙が生じやすくなるので断熱性の低下を招くおそれがある。
 無機繊維の平均繊維径の好ましい下限は1μmであり、より好ましい下限は2μmであり、更に好ましい下限は3μmである。一方、無機繊維の平均繊維径の好ましい上限は15μmであり、より好ましい上限は10μmである。無機繊維の平均繊維径が1μm未満であると、無機繊維自体の機械的強度が低下するおそれがある。また、人体の健康に対する影響の観点より、無機繊維の平均繊維径が3μm以上であることが好ましい。一方、無機繊維の平均繊維径が15μmより大きいと、無機繊維を媒体とする固体伝熱が増加して断熱性の低下を招くおそれがあり、また、熱伝達抑制シートの成形性及び強度が悪化するおそれがある。
(無機繊維の含有量)
 本実施形態において、熱伝達抑制シート10が無機繊維を含む場合に、無機繊維の含有量は、熱伝達抑制シートの全質量に対して3質量%以上15質量%以下であることが好ましい。
 また、無機繊維の含有量は、熱伝達抑制シートの全質量に対して、5質量%以上10質量%以下であることがより好ましい。このような含有量にすることにより、無機繊維による保形性や押圧力耐性、抗風圧性や、無機粒子の保持能力がバランスよく発現される。また、熱伝達抑制シート10が、繊維として有機繊維及び無機繊維を含有する場合に、無機繊維の含有量を適切に制御することにより、有機繊維及び無機繊維が互いに絡み合って3次元ネットワークを形成するため、無機粒子等を保持する効果をより一層向上させることができる。
<他の配合材料>
 なお、本実施形態に係る熱伝達抑制シートは、さらに、必要に応じて、結合剤、着色剤等を含有させることができる。これらはいずれも熱伝達抑制シートの補強や成形性の向上等を目的とする上で有用であり、熱伝達抑制シートの全質量に対して合計量で、10質量%以下とすることが好ましい。
(ホットメルトパウダー)
 結合剤として、例えばホットメルトパウダーを使用することができる。ホットメルトパウダーは、加熱により溶融する性質を有する粉体である。材料を混合した混合物中にホットメルトパウダーを含有させ、加熱することにより、ホットメルトパウダーは溶融し、その後冷却すると、材料である繊維や無機粒子を含んだ状態で硬化する。したがって、熱伝達抑制シートの形状保持性を向上させることができる。ホットメルトパウダーとしては、種々の融点を有するものが挙げられるため、熱伝達抑制シートの製造条件に応じて、適切な融点を有するホットメルトパウダーを選択すればよい。
(ホットメルトパウダーの含有量)
 材料を混合した混合物中にホットメルトパウダーを含有させる場合に、その含有量は微量でも熱伝達抑制シートの形状保持性を向上させることができる。したがって、ホットメルトパウダーの含有量は、混合物全質量に対して0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。
 一方、ホットメルトパウダーの含有量を増加させると、無機粒子や繊維の含有量が相対的に減少するため、所望の断熱性能を得るためには、ホットメルトパウダーの含有量は、混合物の全質量に対して5質量%以下であることが好ましく、4質量%以下であることがより好ましい。
[熱伝達抑制シートの製造方法]
<第1の実施形態に係る熱伝達抑制シートの製造方法>
 第1の実施形態に係る熱伝達抑制シートの製造方法の例について、図1を参照して以下に説明する。
 例えば、繊維(ガラス繊維1)、無機粒子(チタニア3、ナノシリカ4)及び不図示のバインダ等を所定の割合でV型混合機などの混合機に投入し、混合物を作製する。その後、得られた混合物を所定の型内に投入し、プレス機等により加圧して、得られた成形体を加熱した後、これを冷却することにより、シート状に加工された断熱材9が得られる。
 その後、断熱材9を、撥液性物質2が含まれた溶液に浸漬した後、乾燥させることにより、シート表面に撥液性物質2が付着した熱伝達抑制シート10を製造することができる。
 上記第1の実施形態に係る製造方法においては、断熱材9を撥液性物質2が含まれた溶液に浸漬した後に乾燥させるため、シート表面における微細な無機粒子間に撥液性物質2が入り込み、シート表面に隙間なく撥液性物質2を付着させることができ、優れた撥液性を得ることができる。
 また、図4に示すように、断熱材9に開口部7aを有する空孔7が形成されている場合に、開口部7aを介して断熱材9の内部まで撥液性物質2が入り込み、三次元的に連結した空孔7の内壁部分にも撥液性が付与される。したがって、シート表面の撥液性物質2が付着した領域に亀裂が発生し、内部に結露水5等が浸入した場合であっても、三次元的に連結した空孔7により、それ以上の結露水5の浸入を抑制することができる。また、電池の使用時に、開口部7aを介して熱伝達抑制シート10の内部に結露水5等が浸入した場合であっても、空孔7の内壁部分が撥液性を有することにより、他の部分に浸透せず、開口部7aから結露水5等が排出されやすくなる。
<第2の実施形態に係る熱伝達抑制シートの製造方法>
 第2の実施形態に係る熱伝達抑制シートの製造方法の例について、図3を参照して以下に説明する。
 まず、繊維(ガラス繊維1)、無機粒子(チタニア3、ナノシリカ4)等と、撥液性物質2が含まれた溶液とを所定の割合で混合し、撹拌機で撹拌した後、得られた混合液を乾燥させる。これにより、繊維及び無機粒子の表面の少なくとも一部に撥液性物質2が付着された混合物が得られる。その後、得られた混合物と不図示のバインダ等とを所定の型内に投入し、プレス機等により加圧して、得られた成形体を加熱した後、冷却することにより、シート状に加工された熱伝達抑制シート10が得られる。
 第2の実施形態に係る製造方法においては、材料とする繊維及び無機粒子の表面に撥液性物質が付着するため、表面からある程度結露水5等が浸入しても、完全に浸透せず、表面に撥液性物質2が付着した繊維及び無機粒子によって、それ以上の浸入を阻止することができる。したがって、結露水5の浸入による絶縁性の低下を防止することができ、撥液性物質2を適切に選択することにより、電解液の浸入による断熱性の低下を防止することができる。
 なお、第2の実施形態に係る熱伝達抑制シートの製造方法に示すように、予め材料の表面に撥液性物質2を付着させ、これをシート状に加工した後に、第1の実施形態に係る製造方法に倣って、シート表面にさらに撥液性物質2を付着させると、より一層撥液性を向上させることができる。
 上述のとおり、第1及び第2の実施形態に係る熱伝達抑制シート10は、乾式法により製造されることが好ましい。乾式法を使用する場合、無機粒子として、乾式法に適した乾式シリカ及びシリカエアロゲルから選択された少なくとも1種を使用することが好ましい。
<第3の実施形態に係る熱伝達抑制シートの製造方法>
 第3の実施形態に係る熱伝達抑制シートの製造方法の例について、以下に説明する。
 繊維(ガラス繊維1)、撥液性を有する無機粒子(疎水性シリカ)及び不図示のバインダ等を所定の割合でV型混合機などの混合機に投入し、混合物を作製する。その後、得られた混合物を所定の型内に投入し、プレス機等により加圧して、得られた成形体を加熱した後、これを冷却することにより、シート状に加工された熱伝達抑制シートが得られる。
 第3の実施形態に係る製造方法においては、材料とする無機粒子が撥液性の効果を有しているため、シート状に加工した後に、材料の段階又はシート状に加工した断熱材に撥液処理をする必要がなく、容易に製造することができる。なお、材料とする無機粒子のうち、一部のみを疎水性シリカとし、残部を他の無機粒子としてもよく、このような構成であっても、撥水効果を得ることができる。
 なお、第3の実施形態に係る熱伝達抑制シートの製造方法に示すように、撥液性を有する無機粒子を撥液性物質2として使用した場合においても、これをシート状に加工した後に、第1の実施形態に係る製造方法に倣って、シート表面にさらに撥液性物質2を付着させると、より一層撥液性を向上させることができる。
<その他の製造方法>
 本発明の製造方法については、本発明の要件を満たす熱伝達抑制シートを製造することができれば、特に限定されない。上記第1~第3の実施形態に係る熱伝達抑制シートの製造方法の他に、例えば、無機粒子として、酸化物粒子の表面にシリコーン、合成樹脂等を付着させて撥液処理を施したものを使用する方法が挙げられる。そして、第3の実施形態に係る熱伝達抑制シートの製造方法と同様の方法により、撥液性を有する熱伝達抑制シートを製造することができる。
(加熱温度)
 繊維として、芯鞘構造のバインダ繊維を使用した場合には、芯部を構成する第1の有機材料の融点が、鞘部を構成する第2の有機材料の融点よりも高いため、混合物を加熱する際に、芯部を残して鞘部を溶融させるような加熱温度を選択する。このように、加熱温度を適切に調整すると、冷却後に、芯部の外周面に他の繊維や無機粒子を被着させることができ、無機粒子を保持することができるとともに、立体的で強固な骨格が形成される。その結果、熱伝達抑制シート全体の形状をより一層高強度に保持することができる。
(熱伝達抑制シートの厚さ)
 本実施形態に係る熱伝達抑制シートの厚さは特に限定されないが、0.05mm以上10mm以下であることが好ましい。厚さが0.05mm以上であると、断熱性を確保しつつ、充分な圧縮強度を得ることができる。一方、厚さが10mm以下であると、組電池としての所望のサイズを実現することができる。
[組電池]
 本発明の実施形態に係る熱伝達抑制シート10を適用した組電池の例は、上記図2に例示したとおりである。ここで、組電池の構成及び効果について、図2を用いて具体的に説明する。なお、上述のとおり、図2に示す熱伝達抑制シート10は、本発明の範囲内で、他の熱伝達抑制シートに代えることもできる。
 図2に示すように、組電池100は、複数の電池セル20a、20b、20cと、本実施形態に係る熱伝達抑制シートと、を有し、該複数の電池セルが直列又は並列に接続されたものである。
 例えば、図2に示すように、本実施形態に係る熱伝達抑制シート10は、電池セル20aと電池セル20bとの間、及び電池セル20bと電池セル20cとの間に介在されている。さらに、電池セル20a、20b、20c及び熱伝達抑制シート10は、電池ケース30に収容されている。
 なお、熱伝達抑制シート10については、上述したとおりである。
 このように構成された組電池100においては、ある電池セルの温度の上昇及び冷却が繰り返され、電池セルの表面に結露水5が発生した場合に、電池セルと電池セルとの間には、水分の浸入を防止することができる熱伝達抑制シート10が存在しているため、電池セル同士の短絡を防止することができる。
 また、ある電池セルの温度が著しく上昇し、膨張等により破損した場合に、熱伝達抑制シート10に付着されている撥液性物質が適切に選択されていると、流出した電解液の浸入を抑制することができるため、高温の電解液の浸入により熱暴走の連鎖が発生することを防止することができる。
 本実施形態の組電池において、電池セル20a、20b、20cと電池ケース30との間に配置された熱伝達抑制シート10と、電池セルとは、接触していても、隙間を有していてもよい。ただし、熱伝達抑制シート10と電池セル20a、20b、20cとの間に隙間を有していると、複数ある電池セルのうち、いずれかの電池セルの温度が上昇し、体積が膨張した場合であっても、電池セルの変形の許容量を大きくすることができる。
 なお、本実施形態に係る熱伝達抑制シート10は、その製造方法によって、種々の形状に作製することができる。したがって、電池セル20a、20b、20c及び電池ケース30の形状に影響されず、どのような形状のものにも対応させることができる。具体的には、角型電池の他、円筒型電池、平板型電池等にも適用することができる。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年6月27日出願の日本特許出願(特願2022-103045)に基づくものであり、その内容は本出願の中に参照として援用される。
1   ガラス繊維
2   撥液性物質
3   チタニア
4   ナノシリカ
5   結露水
6   有機繊維
7   空孔
7a  開口部
8   入排水パス
9,19 断熱材
10  熱伝達抑制シート
14  無機粒子
20a,20b,20c 電池セル
30  電池ケース
100 組電池

Claims (13)

  1.  複数の電池セルの間に介在される熱伝達抑制シートであって、
     無機繊維及び有機繊維から選択された少なくとも1種の繊維と、
     水の表面張力よりも小さい表面張力を有する撥液性物質と、を含むことを特徴とする、熱伝達抑制シート。
  2.  無機粒子を含み、前記無機粒子の少なくとも一部が前記撥液性物質である、請求項1に記載の熱伝達抑制シート。
  3.  前記撥液性物質は、疎水性シリカであることを特徴とする、請求項2に記載の熱伝達抑制シート。
  4.  無機粒子を含み、
     前記撥液性物質は、熱伝達抑制シートの表面、熱伝達抑制シートの内部における前記無機粒子の表面、及び熱伝達抑制シートの内部における前記繊維の表面の少なくとも一部に付着していることを特徴とする、請求項1に記載の熱伝達抑制シート。
  5.  前記撥液性物質は、パラフィン基油類、ナフテン基油類、炭化水素系合成油、エステル系合成油、動植物油脂、シリコーン樹脂、フッ素樹脂、ロジン系サイズ剤及びアルキルケテンダイマーサイズ剤から選択された少なくとも1種であることを特徴とする、請求項4に記載の熱伝達抑制シート。
  6.  前記無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種の無機材料からなる粒子であることを特徴とする、請求項4に記載の熱伝達抑制シート。
  7.  前記無機粒子は、乾式シリカ粒子及びシリカエアロゲルから選択された少なくとも1種の粒子を含むことを特徴とする、請求項6に記載の熱伝達抑制シート。
  8.  前記無機粒子は、さらに、チタニア、ジルコン、ジルコニア、炭化ケイ素、酸化亜鉛及びアルミナから選択された少なくとも1種の粒子を含むことを特徴とする、請求項7に記載の熱伝達抑制シート。
  9.  前記撥液性物質の表面張力は、前記電池セルに含まれる電解液の表面張力よりも小さいことを特徴とする、請求項1に記載の熱伝達抑制シート。
  10.  前記撥液性物質の表面張力は、45mN/m以下であることを特徴とする、請求項9に記載の熱伝達抑制シート。
  11.  前記撥液性物質は、シリコーン樹脂及びフッ素樹脂から選択された少なくとも1種であることを特徴とする、請求項10に記載の熱伝達抑制シート。
  12.  複数の三次元的に連結した空孔を有し、
     前記空孔は、熱伝達抑制シートの表面に向けて開口していることを特徴とする、請求項1に記載の熱伝達抑制シート。
  13.  複数の電池セルと、請求項1~12のいずれか1項に記載の熱伝達抑制シートを有し、前記複数の電池セルが直列又は並列に接続された、組電池。
PCT/JP2023/023682 2022-06-27 2023-06-26 熱伝達抑制シート及び組電池 WO2024004968A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-103045 2022-06-27
JP2022103045A JP7392051B1 (ja) 2022-06-27 2022-06-27 熱伝達抑制シート及び組電池

Publications (1)

Publication Number Publication Date
WO2024004968A1 true WO2024004968A1 (ja) 2024-01-04

Family

ID=89023169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023682 WO2024004968A1 (ja) 2022-06-27 2023-06-26 熱伝達抑制シート及び組電池

Country Status (2)

Country Link
JP (2) JP7392051B1 (ja)
WO (1) WO2024004968A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081701A (ja) * 2010-10-14 2012-04-26 Nichias Corp 断熱材および断熱材の製造方法
WO2021149249A1 (ja) * 2020-01-24 2021-07-29 三菱電機株式会社 防汚性部材、空気調和機及び防汚性部材の製造方法
JP2022086028A (ja) * 2020-11-30 2022-06-09 阿波製紙株式会社 熱拡散シートおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081701A (ja) * 2010-10-14 2012-04-26 Nichias Corp 断熱材および断熱材の製造方法
WO2021149249A1 (ja) * 2020-01-24 2021-07-29 三菱電機株式会社 防汚性部材、空気調和機及び防汚性部材の製造方法
JP2022086028A (ja) * 2020-11-30 2022-06-09 阿波製紙株式会社 熱拡散シートおよびその製造方法

Also Published As

Publication number Publication date
JP2024003805A (ja) 2024-01-15
JP7392051B1 (ja) 2023-12-05
JP2024003709A (ja) 2024-01-15

Similar Documents

Publication Publication Date Title
JP7392051B1 (ja) 熱伝達抑制シート及び組電池
JP7074925B1 (ja) 熱伝達抑制シート及び組電池
JP7364742B1 (ja) 熱伝達抑制シート及び組電池
WO2023229047A1 (ja) 熱伝達抑制シート及び組電池
JP7414888B2 (ja) 熱伝達抑制シート及び組電池
WO2023229042A1 (ja) 熱伝達抑制シート及び組電池
JP7364722B2 (ja) 熱伝達抑制シートの製造方法、熱伝達抑制シート及び組電池
WO2023229046A1 (ja) 熱伝達抑制シート及び組電池
WO2023171818A1 (ja) 熱伝達抑制シートの製造方法、熱伝達抑制シート及び組電池
JP7436582B1 (ja) 熱伝達抑制シート及び組電池
WO2023182384A1 (ja) 防炎構造体及びその製造方法、並びに電池モジュール
WO2023112972A1 (ja) 熱伝達抑制シート及びその製造方法、並びに組電池
JP7364739B2 (ja) 熱伝達抑制シート及び組電池
JP7082706B1 (ja) 熱伝達抑制シート及び組電池
WO2024101455A1 (ja) 熱伝達抑制シート及び組電池
JP2024070502A (ja) 熱伝達抑制シート及び組電池
JP2023170682A (ja) バスバー及び蓄電装置
JP2023170684A (ja) バスバー及び蓄電装置
JP2023170065A (ja) 防炎シート及びその製造方法、並びに電池モジュール
JP2023170683A (ja) バスバー及び蓄電装置
JP2023171187A (ja) バスバー及びその製造方法、並びに蓄電装置
JP2023098612A (ja) 熱伝達抑制シート及び組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831408

Country of ref document: EP

Kind code of ref document: A1