WO2024003133A1 - Module lumineux avec affichage par led optimisé pour application automobile - Google Patents

Module lumineux avec affichage par led optimisé pour application automobile Download PDF

Info

Publication number
WO2024003133A1
WO2024003133A1 PCT/EP2023/067644 EP2023067644W WO2024003133A1 WO 2024003133 A1 WO2024003133 A1 WO 2024003133A1 EP 2023067644 W EP2023067644 W EP 2023067644W WO 2024003133 A1 WO2024003133 A1 WO 2024003133A1
Authority
WO
WIPO (PCT)
Prior art keywords
light module
light
imager
face
optical
Prior art date
Application number
PCT/EP2023/067644
Other languages
English (en)
Inventor
Antoine De Lamberterie
Jose Antonio AFONSO PEREIRA
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Publication of WO2024003133A1 publication Critical patent/WO2024003133A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/30Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating rear of vehicle, e.g. by means of reflecting surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/44Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating braking action or preparation for braking, e.g. by detection of the foot approaching the brake pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/503Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking using luminous text or symbol displays in or on the vehicle, e.g. static text
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255

Definitions

  • the invention relates to the field of light signaling for motor vehicles.
  • the published patent document FR 3 077 117 A1 relates to a light signaling module for a motor vehicle, comprising a liquid crystal imager.
  • the published patent document WO 2011/092121 A1 relates to a light signal module for a motor vehicle, comprising a surface light source of the OLED type (acronym for “organic light-emitting diode”) and a projection lens.
  • a surface light source of the OLED type (acronym for “organic light-emitting diode”) and a projection lens.
  • a pictogram display does not seem planned.
  • the published patent document FR 3 048 059 A1 relates to a light signaling module for a motor vehicle, comprising a matrix of light sources and a projection lens.
  • a pictogram display does not seem planned.
  • the published patent document US 4,740,780 relates to a head-up display device, comprising a matrix type light source, in this case a matrix of 64 by 64 light points of the electroluminescence diode type, and a converging lens, the light matrix being arranged between the focus and the entrance face of the lens so as to project an enlarged image of the light matrix.
  • this device is specifically designed for a head-mounted display. high intended to be placed in a dashboard in order to project light images towards the windshield.
  • the invention aims to overcome at least one of the problems of the aforementioned state of the art. More particularly, the invention aims to propose a light module for a motor vehicle, capable of projecting light images containing in particular pictograms and which is economical from a manufacturing cost and/or use cost point of view.
  • the subject of the invention is a light module for a motor vehicle, comprising an optical projection device with a focus, an entry face and an exit face; an imager forming a matrix of light sources, arranged between the focus and the entrance face so that the optical device can project an enlarged image of said imager; remarkable in that the imager has a width I and a height h, the entry face and/or the exit face have a width L and a height H, where L>l, H>h, and L-l>H-h , so that the light module has a horizontal field of view greater than a vertical field of view, when said light module is oriented in the mounting position on the motor vehicle.
  • imager forming a matrix of light sources is meant a matrix of light sources whose light sources can be controlled individually or in groups, so as to selectively form different light images.
  • the light sources may in particular be electroluminescence diodes (LED for "Light Emitting Diode”), in particular of the "miniLED” type whose dimension is between 100 and 300pm, or of the "MicroLED” type whose dimension is less than 100pm .
  • the light sources can be arranged on a printed circuit board (PCB) or a monolithic type where the light sources are epitaxied on a substrate.
  • the imager can also be a display, in particular of the “MicroLED” type on a “CMOS” type semiconductor, an acronym for “Complementary Metal Oxide Semiconductor”.
  • the light source matrix has at least two rows and two columns. According to an advantageous embodiment of the invention, the lines are oriented in the direction of the width of the imager, and the columns are oriented in the direction of the height of the imager.
  • the matrix of light sources comprises a number of columns strictly greater than the number of lines.
  • the light source matrix has more light sources in the width direction than in the height direction.
  • the matrix of light sources comprises at least 20 lines, in particular at least 50 lines.
  • the matrix of light sources comprises at least 50 columns, in particular at least 100 columns.
  • a high number of rows and/or columns improves the definition of the projected image.
  • the matrix of light sources has at most 200 lines.
  • the matrix of light sources has at most 400 columns.
  • field of view we mean a field in which the image of the imager can be observed by an observer located on the side of the projection.
  • the imager comprises a center in a vertical direction and the optical projection device comprises an optical axis, said center being offset vertically, preferably downwards, relative to said optical axis, when the module light is oriented in the mounting position.
  • the focus of the projection device is located on said optical axis.
  • the optical projection device comprises a single optical axis.
  • the optical projection device thus differs of a matrix of optical projection devices which would have several optical axes, each linked to one of the optical projection devices of the matrix.
  • the distance between the edges of two adjacent light sources is greater than or equal to half the dimension of each of said adjacent light sources.
  • dimension we understand the greatest length that can be measured on the emitting surface of the light source.
  • the distance between the edges of two adjacent light sources is between one time and ten times the dimension of each of said adjacent light sources.
  • each source is square or rectangular in shape.
  • each source is circular in shape.
  • the filling factor is less than or equal to 50%, in particular less than or equal to 25%.
  • the filling factor is greater than or equal to 1%. This value ensures sufficient overall brightness of the light source matrix.
  • the light rays coming from the light sources of the matrix of light sources directly impact the optical projection device.
  • No intermediate optical element is placed between the matrix of light sources and the optical projection device.
  • a projection of the imager on the entry face, along an optical axis of the projection device, is completely included in said entry face, when the light module is oriented in the position disassembly.
  • the imager is arranged between the focus and the entrance face so as to obtain an enlargement rate of the projected image of between 1.5 and 2.5.
  • the optical projection device has a horizontal optical power Ph and a vertical optical power Pv, where Ph ⁇ Pv, when the light module is oriented in the mounting position.
  • optical power we mean the vergence of the optical projection device, corresponding to the inverse of the focal length.
  • the optical projection device has a horizontal magnification Gh and a vertical magnification Gv, where Gh Gv, preferably Gh ⁇ Gv, when the light module is oriented in the mounting position.
  • magnification we mean a ratio of size of an object to its image through the optical projection device, the size being in this case considered perpendicular to the optical axis of the optical projection device. For example, if the image is twice as large as the object, the magnification is two.
  • the optical projection device is a lens, preferably comprising an anti-reflection treatment on the entry face and/or on the exit face.
  • the optical projection device comprises several lenses arranged one behind the other in the direction of travel of the light, in particular comprises one or more doublets. This makes it possible to correct aberrations present with a single lens.
  • the invention also relates to a light device comprising a housing, a glass for closing the housing, and a light module housed in the housing, in which the light module is according to the invention, the optical projection device being a lens formed directly on an interior face of the closing window.
  • the measures of the invention are advantageous in that they make it possible to enlarge the imager while optimizing the luminance in the horizontal and vertical fields of view required for a light signaling device on a motor vehicle.
  • FIG 1 is a view from the top of a motor vehicle, illustrating the horizontal field of view that a rear light must provide;
  • FIG 2 is a side view of a motor vehicle, illustrating the vertical field of view that the rear light must provide;
  • FIG 3 is a schematic side representation of a light module according to a first embodiment of the invention.
  • FIG 4 is a rear view of the imager and light module lens in Figure 3.
  • FIG 5 is a schematic side representation of two variants of the light module of Figure 3, corresponding to different magnification rates.
  • FIG 6 is a schematic side representation of another variation of the light module of Figure 3.
  • FIG 7 is a perspective representation of a light module according to a second embodiment of the invention.
  • FIG 8 is a perspective representation of a glass of a light device according to the invention, on which the projection lens is directly formed.
  • FIG. 1 is a representation, seen from above, of a motor vehicle 2 equipped with a light device forming a rear light 4, in this case a light left rear, likely to be observed and correctly perceived by following motorists located behind.
  • the vehicle 4 moves on a central traffic lane while the two following motor vehicles each move on a traffic lane located laterally to the so-called central traffic lane.
  • Each of the two motorists located respectively in each of the following motor vehicles, whether they are the driver of a left-hand drive or right-hand drive vehicle, must be able to correctly perceive the light signal of the rear light 4 from a certain distance.
  • the rear light 4 has an optical axis 6 which is parallel to the longitudinal axis of the vehicle 2.
  • the field of view of the rear light 4 extends horizontally on either side of the optical axis 6, and symmetrically.
  • the field of view thus extends horizontally by approximately +/- a relative to the optical axis 6, in this case by +/- 40° relative to said axis.
  • This is a minimum desirable field of view, particularly in line with the regulations relating to motor vehicles. It is notably greater than the horizontal extension of the photometric grids defined by this regulation, which is generally +/- 20°.
  • Figure 2 is a representation, in side view, of the vehicle 4 of Figure 1.
  • a following motorist which may correspond to one of the two following motor vehicles in Figure 1.
  • the following vehicle could also move on the same lane as the motor vehicle 2 equipped with the light device of the present presentation.
  • the field of view of the rear light 4 extends vertically on either side of the optical axis 6, and asymmetrically, namely from +p upwards and -y downwards.
  • Figure 3 is a schematic side view of a light module according to the invention, which can then be integrated into the rear light 4 of the motor vehicle 2 illustrated in Figures 1 and 2.
  • the light module 8 comprises an imager 10 forming a matrix 10.1 of light sources, preferably of the electroluminescence diode (LED) type. It is therefore a generally planar and matrix imager in which each pixel is luminous. Each of the light sources or pixels can be electrically powered individually, in particular so as to produce a light image stylized as a pictogram, a symbol or even text. It is understood, however, that the imager 10 can also form more basic light images such as a rectangle or a square, in particular to provide one or more classic light signaling functions such as a stop function, direction indicators, lantern, fog light, light reversing, etc.
  • the light module also includes an optical projection device which is in this case embodied by a lens 12.
  • the latter conventionally comprises an entry face 12.1, an exit face 12.2 and a focus 12.3.
  • This is a converging lens which can notably be of the plano-convex, biconvex or even meniscus-shaped type.
  • the imager 10 is located between the focus 12.3 and the entry face 12.1 of the lens 12, in this case at a distance from said focus 12.3 and said entry face 12.1, so that the lens 12 can project an enlarged image of the imager 10.
  • the virtual enlarged image 10' is represented at focus 12.3.
  • the positioning of the imager 10 between the entry face 12.1 of the lens 12, in this case at a distance from said focus 12.3 and said entry face 12.1, is advantageous in that it makes it possible to project a light image with a given luminance while reducing the size, cost and electrical consumption of the imager 10 in comparison with a situation where the projection lens would be absent and the imager would have the size of the desired light image. Indeed, it is easy to understand that the fact of enlarging the light image by means of the optical projection device, being in this case a lens 12, makes it possible to reduce the size and cost of the imager.
  • the gain in energy efficiency is explained by the fact that the size of the light image formed through the lens is larger than the image of the imager, and in that the luminance of the light image, which is precisely the visible light flux emitted by a surface element of the The image in a given direction, per unit of surface and per unit of solid angle, is unchanged during optical enlargement by the lens 12. More precisely, the luminance of the image is equal to the luminance of the imager itself, excluding light losses when passing through the optical device, such as for example the Fresnel reflection factors at the interfaces, and the absorption of the material(s) making up the optical device. In other words, only these losses are likely to reduce the luminance of the image.
  • the entry face 12.1 of the lens being more extensive than the imager 10, but also more extensive than the light image of the imager, no ray coming from the edge of the imager is obscured by the edge of the lens so that the image is seen entirely by an observer - without vignetting.
  • the electrical power consumed by the imager is much lower than the power consumed by a larger imager, having the size of the desired light image, and without a projection lens. It is understood, however, that what has just been described applies for a luminance in directions close to that of the optical axis, that is to say in the horizontal and vertical fields of view as described below. before in relation to Figures 1 and 2.
  • Figure 4 is a rear view of the imager and the optical projection device of the light module of Figure 2, in the direction of the optical axis.
  • Figure 4 illustrates an asymmetry between the imager and the optical projection device, being in this case a projection lens, making it possible to optimize the luminance of the light image in the horizontal and vertical fields of view described above in relation to figures 1 and 2.
  • the projection lens 12 is extended more horizontally than vertically with respect to the imager 10. The reason is to be able to capture more horizontally diverging light rays and thus ensure sufficient luminance in the larger horizontal field of view. than the vertical field of view.
  • the imager 10 and the projection lens 12 are rectangular, it being understood that other shapes are possible.
  • the imager 10 has a width I and a height h
  • the projection lens at least its entry face and/or its exit face, has a width L and a height H.
  • Each of the width L and the height H of the projection lens 12 is greater than the width I and the height h of the imager 10, respectively.
  • the width L is greater than the width I than the height H is greater than the height h, namely Ll>Hh. More particularly, this asymmetry can be expressed by the relationship Ll>n (Hh), where n is greater than or equal to 1, more particularly greater than or equal to 2, preferably 3, and/or less than or equal to 5.
  • the imager 10 can be decentered vertically, in this case downwards, relative to the optical projection device, being in this case a projection lens 12.
  • This vertical decentering towards the bottom is explained by the asymmetry of the vertical field of view, as illustrated in Figure 2, namely where j3>y.
  • the vertical decentering towards the bottom of the imager 10 makes it possible to collect more rays diverging upwards and thus to ensure sufficient luminance upwards following the angle
  • the center of the imager is imaged in a direction which connects the center of the imager to the optical center of the projection lens 12 (namely its zone of maximum thickness).
  • the center is imaged upwards and the overall image is located on an angular field more upwards than downwards, relative to a horizontal axis.
  • Figure 5 is a schematic side representation of two variants of the light module of Figure 3, corresponding to different magnification rates.
  • magnification rate can thus be greater than 2 since the distance between the focus 12.3 and the imager 10 is less than the distance between the imager 10 and the entrance face 12.1 of the projection lens.
  • a particularly high magnification rate, for example above 3, can be interesting but has the limitation that the visual field, in which the projected image is visible, is reduced angularly.
  • the growth rate of the light module of the invention is advantageously between 1.5 and 3, corresponding to a compromise between reduction in manufacturing and use costs and optical performance.
  • Figure 6 is a schematic side representation of the light module of Figure 3 illustrating the downward offset of the imager relative to the projection lens, as shown in Figure 4.
  • the projection lens 12 can be truncated at its lower edge, taking into account the smaller downward extent of the field of view.
  • the imager 10 can be vertically centered with the projection lens, while the latter can be truncated in its lower part and thus present an apparent centering being in reality rather a vertical offset resulting from the truncated lower edge of the lens projection.
  • Such an arrangement allows more upwardly diverging rays to be exploited for luminance in the upper part of the vertical field of view.
  • Figure 7 is a perspective representation of a light module according to a second embodiment of the invention.
  • the reference numbers of the first embodiment are used to designate the identical or corresponding elements of the second embodiment, these numbers being however increased by 100. Reference is also made to the description of these elements in the context of the first mode of achievement.
  • the light module 108 of Figure 7 differs from that of the first embodiment in that the projection lens 112 extends horizontally with a constant section over a major part of this horizontal extent. This means that the projection lens 112 in question has zero or at least very low horizontal optical power Ph.
  • the horizontal magnification Gh is then close to 1.
  • the projected image therefore has a size close to that of the object, in the direction considered.
  • optical power corresponds to the vergence or even the inverse of the focal length, that is to say the distance between the optical projection device, in this case the projection lens, and the focus.
  • the magnification is a ratio of the size of a focal object to its image through the optical projection device, the size being in this case considered perpendicular to the optical axis of the optical projection device.
  • the imager 110 also extends and similarly horizontally along the projection lens 112.
  • the vertical optical power Pv and/or the vertical magnification Gv of the projection lens 112 thus makes it possible to ensure vertical magnification of the image projected while no horizontal magnification takes place or a significantly smaller horizontal magnification takes place.
  • the light module in Figure 7 can be interesting for displaying pictograms in the form of text or at least a line of characters or signs.
  • Figure 8 is a perspective representation of a closing glass of a housing (not shown) intended to receive a light module according to the invention, in particular according to the two embodiments described above, on which the lens of projection is directly formed.
  • the glass 14 or 114 forms in a manner known and conventional in itself a transparent or translucent wall intended to be fixed along its periphery to the housing (not shown) intended to receive a light module according to the invention, in particular for the purposes of protecting said light module from bad weather and other attacks from the outside world.
  • It is preferably made of plastic material, such as for example polycarbonate (PC) or polymethyl methacrylate (PMMA), and for example produced by injection molding. It comprises an exterior face, intended to be outside the housing, and an interior face, intended to be inside said housing. It can be observed that the projection lens 12 or 112 is in contact with the interior face of the glass 14 or 114.
  • the projection lens 12 or 112 is advantageously made of plastic material, such as for example polycarbonate (PC) or polymethacrylate methyl (PMMA), and for example produced by injection molding.
  • plastic material such as for example polycarbonate (PC) or polymethacrylate methyl (PMMA)
  • one of the glass 14 or 114 and the projection lens 12 or 112 is initially produced by injection of plastic material into a mold according to a first configuration, and then the other of the glass 14 or 114 and of the projection lens 12 or 112 is produced by injection of plastic material in the same mold but in a second configuration.
  • the first configuration forms a volume corresponding to that of the glass 14 or 114 and the projection lens 12 or 112 which is initially formed, while the second configuration forms a larger volume corresponding to that of the glass 14 and the lens projection 12 or 112.
  • the glass 14 or 114 and the projection lens are then co-molded. It is understood, however, that other methods or variants to the method described above are possible.
  • the mold may include a single cavity having the shape of the projection lens 12 or 112 combined with the shape of the lens 14 or 114.
  • the projection lens may have an anti-reflective coating on the exit face and/or on the entry face.
  • the anti-reflection coating on the exit face is particularly advantageous in that it reduces the luminance of the external light reflected towards an observer and thus avoids a reduction in contrast between the light image of the imager and the reflected external light .
  • the application of such an anti-reflective coating is also advantageous on the glass, particularly on the exterior side, for the same reasons as for the projection lens.
  • the coating anti-reflection is then applied to the exterior face of the glass and/or to the entrance face of the projection lens.
  • the anti-reflective coating mentioned above is in itself well known to those skilled in the art.
  • the optical projection device can have a horizontal optical power Ph and a vertical optical power Pv greater than the horizontal optical power Ph.
  • the optical projection device can have a horizontal magnification Gh and a vertical magnification Gv greater than the horizontal optical power Ph. at horizontal magnification Gh.
  • Optical power and/or magnification may vary in directions perpendicular to the optical axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

L'invention a trait à un module lumineux pour véhicule automobile, comprenant un dispositif optique de projection (12) avec un foyer, une face d'entrée et une face de sortie; un imageur (10) formant une matrice de sources lumineuses, disposé entre le foyer et la face d'entrée de manière à ce que le dispositif optique de projection (12) puisse projeter une image agrandie dudit imageur (10); dans lequel l'imageur (10) présente une largeur I et une hauteur h, la face d'entrée et/ou la face de sortie présentent une largeur L et une hauteur H, où L>l, H>h, et L-l>H-h, de manière à ce que le module lumineux présente un champ de vue horizontal supérieur à un champ de vue vertical, lorsque ledit module lumineux est orienté en position de montage sur le véhicule automobile.

Description

MODULE LUMINEUX AVEC AFFICHAGE PAR LED OPTIMISÉ POUR APPLICATION AUTOMOBILE
Domaine technique
L’invention a trait au domaine de la signalisation lumineuse pour véhicule automobile.
Technique antérieure
Dans le domaine de la signalisation lumineuse pour véhicule automobile, il est actuellement connu d’afficher des pictogrammes lumineux au moyen de divers imageurs lumineux, comme notamment des écrans à cristaux liquides nécessitant un rétroéclairage ou encore des microsystèmes électromécaniques optiques, couramment désignés MEMS (acronyme de « micro electro mechanic system >>), nécessitant également une source lumineuse. Ces imageurs lumineux, potentiellement très performants, sont cependant coûteux et surdimensionnés d’un point de vue résolution pour l’affichage de pictogrammes, habituellement de forme simple et aisément reconnaissable, sur et en particulier à l’arrière d’un véhicule automobile.
Le document de brevet publié FR 3 077 117 A1 a trait à un module de signalisation lumineuse pour véhicule automobile, comprenant un imageur à cristaux liquides.
Le document de brevet publié WO 2011 /092121 A1 a trait à un module de signalisateur lumineuse pour véhicule automobile, comprenant une source de lumière surfacique du type OLED (acronyme de « organic light-emitting diode ») et une lentille de projection. Un affichage de pictogramme ne semble pas prévu.
Le document de brevet publié FR 3 048 059 A1 a trait à un module de signalisation lumineuse pour véhicule automobile, comprenant une matrice de sources lumineuse et une lentille de projection. Un affichage de pictogramme ne semble pas prévu.
Le document de brevet publié US 4,740,780 a trait à un dispositif d’affichage tête haute, comprenant une source lumineuse du type matricielle, en l’occurrence une matrice de 64 par 64 points lumineux du type diode à électroluminescence, et une lentille convergente, la matrice lumineuse étant disposée entre le foyer et la face d’entrée de la lentille de manière à projeter une image agrandie de la matrice lumineuse. Ce dispositif est cependant spécifiquement conçu pour un affichage tête- haute destiné à être disposé dans un tableau bord en vue de projeter des images lumineuses vers le pare-brise.
Exposé de l'invention
L’invention a pour objectif de pallier au moins un des problèmes de l’état de la technique susmentionné. Plus particulièrement, l’invention a pour objectif de proposer un module lumineux pour véhicule automobile, apte à projeter des images lumineuses contenant notamment des pictogrammes et qui soit économique d’un point de vue coût de fabrication et/ou coût d’utilisation.
L’invention a pour objet un module lumineux pour véhicule automobile, comprenant un dispositif optique de projection avec un foyer, une face d’entrée et une face de sortie ; un imageur formant une matrice de sources lumineuses, disposé entre le foyer et la face d’entrée de manière à ce que le dispositif optique puisse projeter une image agrandie dudit imageur ; remarquable en ce que l’imageur présente une largeur I et une hauteur h, la face d’entrée et/ou la face de sortie présentent une largeur L et une hauteur H, où L>l, H>h, et L-l>H-h, de manière à ce que le module lumineux présente un champ de vue horizontal supérieur à un champ de vue vertical, lorsque ledit module lumineux est orienté en position de montage sur le véhicule automobile.
Par imageur formant une matrice de sources lumineuses, on entend une matrice de sources lumineuses dont les sources lumineuses peuvent être commandées de manière individuelle ou en groupes, de manière à former, de manière sélective, différentes images lumineuses. Les sources lumineuses peuvent notamment être des diodes à électroluminescence (LED pour « Light Emitting Diode >>), notamment du type « miniLED » dont la dimension est comprise entre 100 et 300pm, ou du type « MicroLED » dont la dimension est inférieure à 100pm. Les sources lumineuses peuvent être disposées sur une platine du type à circuit imprimé (PCB pour « Printed Circuit Board ») ou du type monolithique où les sources lumineuses sont épitaxiées sur un substrat. L’imageur peut également être un afficheur notamment du type « MicroLED » sur un semiconducteur du type « CMOS », acronyme de « Complementary Metal Oxide Semiconductor >>.
La matrice de sources lumineuses comporte au moins deux lignes et deux colonnes. Selon un mode avantageux de l’invention, les lignes sont orientées dans le sens de la largeur de l’imageur, et les colonnes sont orientées dans le sens de la hauteur de l’imageur.
Selon un mode avantageux de l’invention, la matrice de sources lumineuses comporte un nombre de colonnes strictement supérieur au nombre de lignes. Autrement dit, la matrice de sources lumineuses comporte plus de sources lumineuses dans le sens de la largeur que dans le sens de la hauteur.
Selon un mode avantageux de l’invention, la matrice de sources lumineuses comporte au moins 20 lignes, notamment au moins 50 lignes.
Selon un mode avantageux de l’invention, la matrice de sources lumineuses comporte au moins 50 colonnes, notamment au moins 100 colonnes.
Un nombre élevé de lignes et/ou de colonnes permet d’améliorer la définition de l’image projetée.
Selon un mode avantageux de l’invention, la matrice de sources lumineuses comporte au plus 200 lignes.
Selon un mode avantageux de l’invention, la matrice de sources lumineuses comporte au plus 400 colonnes.
Limiter le nombre de lignes et/ou de colonnes permet de garder un coût raisonnable du dispositif.
Par champ de vue on entend un champ dans lequel l’image de l’imageur peut être observée par un observateur situé du côté de la projection.
Selon un mode avantageux de l’invention, L-l>n (H-h), où n=2, préférentiellement n=3, plus préférentiellement n=5.
Selon un mode avantageux de l’invention, l’imageur comprend un centre dans une direction verticale et le dispositif optique de projection comprend un axe optique, ledit centre étant décalé verticalement, préférentiellement vers le bas, par rapport audit axe optique, lorsque le module lumineux est orienté dans la position de montage. Le foyer du dispositif de projection est situé sur ledit axe optique.
Selon un mode avantageux de l’invention, le dispositif optique de projection comprend un unique axe optique. Le dispositif optique de projection diffère ainsi d’une matrice de dispositifs optiques de projection qui présenterait plusieurs axes optiques, chacun lié à l’un des dispositifs optiques de projection de la matrice.
Selon un mode avantageux de l’invention, la distance entre les bords de deux sources lumineuses adjacentes est supérieure ou égale à la moitié de la dimension de chacune desdites sources lumineuses adjacentes. Par dimension, on comprend la plus grande longueur que l’on peut mesurer sur la surface émettrice de la source lumineuse.
Selon un mode avantageux de l’invention, la distance entre les bords de deux sources lumineuses adjacentes est comprise entre une fois et dix fois la dimension de chacune desdites sources lumineuses adjacentes.
Selon un mode avantageux de l’invention, chaque source est de forme carrée ou rectangulaire.
Selon un mode avantageux de l’invention, chaque source est de forme circulaire.
Selon un mode avantageux de l’invention, le facteur de remplissage est inférieur ou égal à 50%, notamment inférieur ou égal à 25%. Par facteur de remplissage on comprend le ratio entre d’une part la somme des surfaces des sources lumineuses de la matrice de sources lumineuses, et d’autre part la surface totale du substrat ou du support portant les sources lumineuses. Un ratio réduit permet de limiter le coût du dispositif.
Selon un mode avantageux de l’invention, le facteur de remplissage est supérieur ou égal à 1%. Cette valeur permet d’assurer une luminosité globale suffisante de la matrice de sources lumineuses.
Selon un mode avantageux de l’invention, les rayons lumineux issus des sources lumineuses de la matrice de sources lumineuses impactent directement le dispositif optique de projection. Aucun élément optique intermédiaire n’est disposé entre la matrice de sources lumineuses et le dispositif optique de projection.
Selon un mode avantageux de l’invention, une projection de l’imageur sur la face d’entrée, suivant un axe optique du dispositif de projection, est totalement incluse dans ladite face d’entrée, lorsque le module lumineux est orienté dans la position de montage. Selon un mode avantageux de l’invention, l’imageur est disposé entre le foyer et la face d’entrée de manière à obtenir un taux d’agrandissement de l’image projetée compris entre 1 .5 et 2.5.
Selon un mode avantageux de l’invention, le dispositif optique de projection présente une puissance optique horizontale Ph et une puissance optique verticale Pv, où Ph<Pv, lorsque le module lumineux est orienté dans la position de montage.
Par puissance optique, on entend la vergence du dispositif optique de projection, correspondant à l’inverse de la distance focale.
Selon un mode avantageux de l’invention, le dispositif optique de projection présente un grandissement horizontal Gh et un grandissement vertical Gv, où Gh Gv, préférentiellement Gh<Gv, lorsque le module lumineux est orienté dans la position de montage.
Par grandissement, on entend un rapport de grandeur d’un objet à son image au travers du dispositif optique de projection, la grandeur étant en l’occurrence considérée perpendiculairement à l’axe optique du dispositif optique de projection. Par exemple, si l’image est deux fois plus étendue que l’objet, le grandissement vaut deux.
Selon un mode avantageux de l’invention, le dispositif optique de projection est une lentille, préférentiellement comprenant un traitement anti-reflet sur la face d’entrée et/ou sur la face de sortie.
Selon un mode avantageux de l’invention, le dispositif optique de projection comprend plusieurs lentilles disposées l’une derrière l’autre dans le sens de parcours de la lumière, notamment comprend un ou plusieurs doublets. Ceci permet de corriger les aberrations présentes avec une lentille unique.
Selon un mode avantageux de l’invention, la lentille s’étend horizontalement sur au moins 80% de la largeur L avec une section transversale constante.
L’invention a également pour objet un dispositif lumineux comprenant un boîter, une glace de fermeture du boîtier, et un module lumineux logé dans le boîtier, dans lequel le module lumineux est selon l’invention, le dispositif optique de projection étant une lentille formée directement sur une face intérieure de la glace de fermeture. Les mesures de l’invention sont avantageuses en ce qu’elles permettent de réaliser un agrandissement de l’imageur tout en optimisant la luminance dans les champs de vue horizontale et vertical requis pour un dispositif de signalisation lumineuse sur un véhicule automobile.
Brève description des dessins
[Fig 1] est une vue du haut d’un véhicule automobile, illustrant le champ de vue horizontal que doit assurer un feu arrière ;
[Fig 2] est une vue de côté d’un véhicule automobile, illustrant le champ de vue vertical que doit assurer le feu arrière ;
[Fig 3] est une représentation schématique de côté d’un module lumineux selon un premier mode de réalisation de l’invention.
[Fig 4] est une vue arrière de l’imageur et de la lentille du module lumineux de la figure 3.
[Fig 5] est une représentation schématique de côté de deux variantes du module lumineux de la figure 3, correspondant à différents taux de grandissement.
[Fig 6] est une représentation schématique de côté d’une autre variante du module lumineux de la figure 3.
[Fig 7] est une représentation en perspective d’un module lumineux selon un deuxième mode de réalisation de l’invention.
[Fig 8] est une représentation en perspective d’une glace de dispositif lumineux selon l’invention, sur laquelle la lentille de projection est directement formée.
Description détaillée
Dans la description qui va suivre, les notions « horizontal(e)(s) », « vertical(e)(s) », « inférieur(e)(s) » et « supérieures) » sont à comprendre lorsque le module lumineux est orienté suivant une position normale et opérationnelle telle que sur le véhicule automobile auquel il est destiné. Cette orientation correspond à celle sur les figures 1 à 8. On notera que la largeur est mesurée horizontalement et la hauteur verticalement.
La figure 1 est une représentation, en vue du haut, d’un véhicule automobile 2 équipé d’un dispositif lumineux formant un feu arrière 4, en l’occurrence un feu arrière gauche, susceptible d’être observé et correctement perçu par des automobilistes suiveurs situés à l’arrière. En l’occurrence, le véhicule 4 évolue sur une bande centrale de circulation alors que les deux véhicules automobiles suiveurs évoluent chacun sur une bande de circulation située latéralement à la bande de circulation dite centrale. Chacun des deux automobilistes situés respectivement dans chacun des véhicules automobiles suiveurs, qu’il soit conducteur d’un véhicule avec conduite à gauche ou conduite à droite, doit pouvoir correctement percevoir le signal lumineux du feu arrière 4 à partir d’une certaine distance. Le feu arrière 4 présente un axe optique 6 qui est parallèle à l’axe longitudinal du véhicule 2. On peut observer que le champ de vue du feu arrière 4 s’étend horizontalement de part et d’autre de l’axe optique 6, et de manière symétrique. Le champ de vue s’étend ainsi horizontalement approximativement de +/- a par rapport à l’axe optique 6, en l’occurrence de +/- 40° par rapport audit axe. Il s’agit là d’un champ de vue minimum souhaitable, notamment en cohérence avec la réglementation relative aux véhicules automobiles. Il est notamment supérieur à l’extension horizontale des grilles photométriques définies par cette réglementation, qui est généralement de +/- 20°.
La figure 2 est une représentation, en vue de côté, du véhicule 4 de la figure 1 . On peut observer la présence d’un automobiliste suiveur, pouvant correspondre à l’un des deux véhicules automobiles suiveurs de la figure 1 . Le véhicule suiveur pourrait également évoluer sur la même bande que le véhicule automobile 2 équipé du dispositif lumineux du présent exposé. En fonction de la hauteur à laquelle l’automobiliste suiveur est, notamment en fonction du type de véhicule, et la distance à laquelle il est, il doit pouvoir correctement percevoir le signal lumineux du feu arrière 4. On peut observer que le champ de vue du feu arrière 4 s’étend verticalement de part et d’autre de l’axe optique 6, et de manière asymétrique, à savoir de +p vers le haut et de -y vers le bas. Cette dissymétrie est liée au fait que la plage de position verticale possible pour l’automobiliste suiveur n’est pas centrée sur l’axe optique 6 du feu arrière, mais bien décalée vers le haut. En l’occurrence, le champ de vue s’étend verticalement de -y=10° à +[3=20° par rapport à l’axe optique 6. Ce champ de vue vertical est - en outre - cohérent avec la réglementation relative aux véhicules automobiles lorsque la hauteur de montage du système de signalisation est relativement peu élevée. En effet, l’extension verticale des grilles photométriques définies par cette réglementation est généralement de +/- 10° Ce qui précède illustre les contraintes réglementaires d’un dispositif lumineux, en l’occurrence d’un feu arrière, de véhicule automobile et permet d’expliquer le sens et l’intérêt des mesures de l’invention.
La figure 3 est une vue schématique de côté d’un module lumineux selon l’invention, pouvant alors être intégré dans le feu arrière 4 du véhicule automobile 2 illustré aux figures 1 et 2.
Le module lumineux 8 comprend un imageur 10 formant une matrice 10.1 de sources lumineuses, préférentiellement du type diode à électroluminescence (LED). Il s’agit donc d’un imageur généralement plan et matriciel dont chaque pixel est lumineux. Chacune des sources lumineuses ou pixel peut être alimenté électriquement individuellement, notamment de manière à produire une image lumineuse stylisée comme un pictogramme, un symbole ou encore du texte. Il est toutefois entendu que l’imageur 10 peut aussi former des images lumineuses plus basiques comme un rectangle ou un carré, notamment pour assurer une ou plusieurs fonctions de signalisation lumineuse classique comme une fonction stop, indicateurs de direction, lanterne, feu antibrouillard, feu de recul, etc. Le module lumineux comprend également un dispositif optique de projection qui est en l’occurrence concrétisé par une lentille 12. Cette dernière comprend, classiquement, une face d’entrée 12.1 , une face de sortie 12.2 et un foyer 12.3. Il s’agit d’une lentille convergente qui peut notamment être du type plan-convexe, biconvexe ou encore en forme de ménisque. L’imageur 10 est situé entre le foyer 12.3 et la face d’entrée 12.1 de la lentille 12, en l’occurrence à distance dudit foyer 12.3 et de ladite face d’entrée 12.1 , de manière à ce que la lentille 12 puisse projeter une image agrandie de l’imageur 10. L’image agrandie virtuelle 10’ est représentée au foyer 12.3.
Le positionnement de l’imageur 10 entre la face d’entrée 12.1 de la lentille 12, en l’occurrence à distance dudit foyer 12.3 et de ladite face d’entrée 12.1 , est avantageux en ce qu’il permet de projeter une image lumineuse avec une luminance donnée tout en diminuant la taille, le coût et la consommation électrique de l’imageur 10 en comparaison avec une situation où la lentille de projection serait absente et l’imageur aurait la taille de l’image lumineuse désirée. En effet, on comprend aisément que le fait d’agrandir l’image lumineuse au moyen du dispositif optique de projection, étant en l’occurrence une lentille 12, permet de réduire la taille et le coût de l’imageur. Le gain en rendement énergétique s’explique en ce que la taille de l’image lumineuse formée à travers de la lentille est plus grande que l’image de l’imageur, et en ce que la luminance de l’image lumineuse, qui est précisément le flux de lumière visible émis par un élément de surface de l’image dans une direction donnée, par unité de surface et par unité d'angle solide, est inchangée lors de l’agrandissement optique par la lentille 12. Plus précisément, la luminance de l’image est égale à la luminance de l’imageur lui-même, abstraction faite des pertes lumineuses lors de la traversée du dispositif optique, telles que par exemple les facteurs de réflexion de Fresnel aux interfaces, et l’absorption du ou des matériaux composant le dispositif optique. Autrement dit, seules ces pertes sont susceptibles de réduire la luminance de l’image. La face d’entrée 12.1 de la lentille étant plus étendue que l’imageur 10, mais aussi plus étendue que l’image lumineuse de l’imageur, aucun rayon issu du bord de l’imageur n’est occulté par le bord de la lentille de telle sorte que l’image est vue entièrement par un observateur - sans effet de vignettage. Ainsi, la puissance électrique consommée par l’imageur est bien plus faible que la puissance consommée d’un imageur plus grand, ayant la taille de l’image lumineuse désirée, et sans lentille de projection. Il est toutefois entendu que ce qui vient d’être décrit s’applique pour une luminance dans des directions proches de celle de l’axe optique, c’est-à-dire dans les champs de vue horizontal et vertical tels que décrits ci-avant en relation avec les figures 1 et 2.
La figure 4 est une vue arrière de l’imageur et du dispositif optique de projection du module lumineux de la figure 2, suivant la direction de l’axe optique.
La figure 4 illustre une dissymétrie entre l’imageur et le dispositif optique de projection, étant en l’occurrence une lentille de projection, permettant d’optimiser la luminance de l’image lumineuse dans les champs de vue horizontal et vertical décrit ci-avant en relation avec les figures 1 et 2.
On observe en effet que la lentille de projection 12 est davantage étendue horizontalement que verticalement par rapport à l’imageur 10. La raison est de pouvoir capter davantage de rayons lumineux divergents horizontalement et ainsi assurer une luminance suffisante dans le champ de vue horizontal plus grand que le champ de vue vertical.
A la figure 4, l’imageur 10 et la lentille de projection 12 sont rectangulaires, étant entendu que d’autres formes sont envisageables. L’imageur 10 présente une largeur I et une hauteur h, et la lentille de projection, du moins sa face d’entrée et/ou sa face de sortie, présente une largeur L et une hauteur H. Chacune de la largeur L et la hauteur H de la lentille de projection 12 est supérieur à la largeur I et la hauteur h de l’imageur 10, respectivement. Cependant, conformément ce qui précède, la largeur L est davantage supérieure à la largeur I que la hauteur H est supérieure à la hauteur h, à savoir L-l>H-h. Plus particulièrement, cette dissymétrie peut être exprimée par la relation L-l>n (H-h), où n est supérieur ou égal à 1 , plus particulièrement supérieur ou égal à 2, préférentiellement 3, et/ou inférieur ou égal à 5.
Toujours à la figure 4, on peut observer que l’imageur 10 peut être décentré verticalement, en l’occurrence vers le bas, par rapport au dispositif optique de projection, étant en l’occurrence une lentille de projection 12. Ce décentrage vertical vers le bas s’explique par la dissymétrie du champ de vue vertical, telle qu’illustrée à la figure 2, à savoir où j3>y. Le décentrage vertical vers le bas de l’imageur 10 permet de récolter davantage de rayons divergents vers le haut et ainsi d’assurer une luminance suffisante dans vers haut suivant l’angle |3 à la figure 2. Aussi, le centre de l’imageur est imagé dans une direction qui relie le centre de l’imageur au centre optique de la lentille de projection 12 (à savoir sa zone d’épaisseur maximale). Ainsi le centre est imagé vers le haut et l’image globale est située sur un champ angulaire davantage vers le haut que vers le bas, par rapport à un axe horizontal.
La figure 5 est une représentation schématique de côté de deux variantes du module lumineux de la figure 3, correspondant à différents taux de grandissement.
En haut de la figure 5, on peut observer, en comparaison avec la figure 3, que l’imageur 10 est plus proche du foyer 12.3 de la lentille de projection 12 que de la face d’entrée 12.1 de ladite lentille de projection 12, ayant pour conséquence d’augmenter le taux de grandissement entre l’imageur 10 et son image virtuelle 10’. Le taux de grandissement peut ainsi être supérieur à 2 dès lors que la distance entre le foyer 12.3 et l’imageur 10 est inférieure à la distance entre l’imageur 10 et la face d’entrée 12.1 de la lentille de projection. Un taux de grandissement particulièrement élevé, par exemple au-delà de 3, peut être intéressant mais présente toutefois pour limite que le champ visuel, dans lequel l’image projetée est visible, se trouve réduit angulairement. En bas de la figure 5, on peut observer l’inverse du haut de la figure 5, à savoir un taux de grandissement inférieure à 2 dès lors que l’imageur 10 est plus proche de la face d’entrée 12.1 de la lentille de projection que du foyer 12.3. Un taux de grandissement bas limite les contraintes quant à l’extension angulaire du champ visuel dans lequel l’image projetée est visible, mais réduit l’avantage économique de diminution de taille de l’imageur.
Le taux de grandissement du module lumineux de l’invention est avantageusement compris entre 1 .5 et 3, correspondant à un compromis entre réduction de coût de fabrication et d’utilisation et performance optique.
La figure 6 est une représentation schématique de côté du module lumineux de la figure 3 illustrant le décentrage vers le bas de l’imageur par rapport à la lentille de projection, tel que montré à la figure 4.
On peut en effet observer un décentrage vers le bas entre l’axe optique 6 du module lumineux, correspondant à l’axe optique de la lentille de projection, et l’axe central 10.3 de l’imageur 10. Comme déjà mentionné en relation avec la figure 4, ce décentrage vers le bas permet d’optimiser la luminance de l’image projetée dans le champ de vue vertical asymétrique, à savoir davantage étendu vers le haut que vers le bas.
Il est à noter qu’indépendamment du décentrage vers le bas évoqué ci-avant, la lentille de projection 12 peut être tronquée à son bord inférieur, compte tenu de l’étendue plus faible vers le bas du champ de vue. En effet, l’imageur 10 peut être verticalement centré avec la lentille de projection, alors que celle-ci peut être tronquée dans sa partie basse et ainsi présenter un centrage apparent étant en réalité plutôt un décalage vertical résultant de bord inférieur tronqué de la lentille de projection. Un tel agencement permet d’exploiter davantage de rayons divergents vers le haut pour la luminance dans la partie supérieure du champ de vue vertical.
La figure 7 est une représentation en perspective d’un module lumineux selon un deuxième mode de réalisation de l’invention. Les numéros de référence du premier mode de réalisation sont utilisés pour désigner les éléments identiques ou correspondants du deuxième mode de réalisation, ces numéros étant toutefois majorés de 100. Il est par ailleurs fait référence à la description de ces éléments dans le cadre du premier mode de réalisation. Le module lumineux 108 de la figure 7 se distingue de celui du premier mode de réalisation en ce que la lentille de projection 112 s’étend horizontalement avec une section constante sur une majeure partie de cette étendue horizontale. Cela signifie que la lentille de projection 112 en question présente une puissance optique horizontale Ph nulle ou du moins très faible. Le grandissement horizontal Gh est alors proche de 1 . L’image projetée a en conséquence une taille proche de celle de l’objet, dans la direction considérée. La notion de puissance optique correspond à la vergence ou encore l’inverse de la distance focale, c’est-à-dire la distance entre le dispositif optique de projection, en l’occurrence la lentille de projection, et le foyer. Le grandissement est un rapport de grandeur d’un objet foyer à son image au travers du dispositif optique de projection, la grandeur étant en l’occurrence considérée perpendiculairement à l’axe optique du dispositif optique de projection. L’imageur 110 s’étend également et similairement horizontalement le long de la lentille de projection 112. La puissance optique verticale Pv et/ou le grandissement vertical Gv de la lentille de projection 112 permettent ainsi d’assurer un grandissement vertical de l’image projetée alors qu’aucun grandissement horizontal n’a lieu ou alors un grandissement horizontal sensiblement plus réduit a lieu.
Il est intéressant de prévoir Pv supérieur à Ph et/ou Gv supérieur à Gh, notamment lorsque le dispositif lumineux et donc le dispositif optique de projection est sensiblement plus étendu horizontalement que verticalement. Dans une telle configuration, une valeur Ph ou Gh proche de Pv ou Gv, respectivement, requerrait un dispositif optique de projection complexe, comme par exemple une lentille particulièrement épaisse, et donc non seulement encombrante mais également coûteuse.
Le module lumineux de la figure 7 peut être intéressant pour afficher des pictogrammes sous forme de texte ou du moins une ligne de caractères ou signes.
La figure 8 est une représentation en perspective d’une glace de fermeture d’un boîtier (non représenté) destiné à recevoir un module lumineux selon l’invention, notamment selon les deux modes de réalisation décrits ci-avant, sur laquelle la lentille de projection est directement formée.
La glace 14 ou 114 forme de manière connue et classique en soi une paroi transparente ou translucide destinée à être fixée le long de sa périphérie au boîtier (non représenté) destiné à recevoir un module lumineux selon l’invention, notamment à des fins de protection dudit module lumineux des intempéries et autres agressions du monde extérieur. Elle est préférentiellement en matériau plastique, comme par exemple en polycarbonate (PC) ou en polyméthacrylate de méthyle (PMMA), et par exemple réalisée par moulage par injection. Elle comprend une face extérieure, destinée à être à l’extérieur du boîtier, et une face intérieure, destinée à être à l’intérieure dudit boîtier. On peut observer que la lentille de projection 12 ou 112 est en contact avec la face intérieure de la glace 14 ou 114. La lentille de projection 12 ou 112 est avantageusement réalisée en matériau plastique, comme par exemple en polycarbonate (PC) ou en polyméthacrylate de méthyle (PMMA), et par exemple réalisée par moulage par injection. A cet effet, l’une de la glace 14 ou 114 et de la lentille de projection 12 ou 112 est initialement réalisée par injection de matière plastique dans un moule selon une première configuration, et ensuite l’autre de la glace 14 ou 114 et de la lentille de projection 12 ou 112 est réalisée par injection de matière plastique dans le même moule mais selon une deuxième configuration. La première configuration forme un volume correspondant à celui de la glace 14 ou 114 et de la lentille de projection 12 ou 112 qui est initialement formée, alors que la deuxième configuration forme un volume plus grand correspondant à celui de la glace 14 et de la lentille de projection 12 ou 112. La glace 14 ou 114 et la lentille de projection sont alors co-moulées. Il est toutefois entendu que d’autres méthodes ou des variantes à la méthode décrite ci-avant sont envisageables. Par exemple le moule peut comporter une seule cavité présentant la forme de la lentille de projection 12 ou 112 combinée avec la forme de la glace 14 ou 114.
De manière générale, la lentille de projection peut présenter un revêtement antireflet sur la face de sortie et/ou sur la face d’entrée. Le revêtement anti-reflet sur la face de sortie est particulièrement intéressant en ce qu’il réduit la luminance de la lumière extérieure réfléchie vers un observateur et ainsi évite une diminution de contraste entre l’image lumineuse de l’imageur et la lumière extérieure réfléchie. L’application d’un tel revêtement anti-reflet est également avantageux sur la glace, en particulier sur la face extérieure, pour les mêmes raisons que pour la lentille de projection. Lorsque la lentille de projection est formée directement sur la face intérieure de la glace, comme illustré à la figure 8, il est entendu que le revêtement anti-reflet s’applique alors sur la face extérieure de la glace et/ou sur la face d’entrée de la lentille de projection. Le revêtement anti-reflet évoqué ci-avant est en soi bien connu de l’homme de métier.
Aussi de manière générale, le dispositif optique de projection peut présenter une puissance optique horizontale Ph et une puissance optique verticale Pv supérieure à la puissance optique horizontale Ph. Similairement, le dispositif optique de projection peut présenter un grandissement horizontal Gh et un grandissement vertical Gv supérieur au grandissement horizontal Gh. La puissance optique et/ou le grandissement peuvent varier dans des directions perpendiculaires à l’axe optique.

Claims

REVENDICATIONS
[Revendication 1 .] Module lumineux (8 ; 108) pour véhicule automobile (2), comprenant :
- un dispositif optique de projection (12 ; 1 12) avec un foyer (12.3 ; 1 12.3), une face d’entrée (12.1 ; 1 12.1 ) et une face de sortie (12.2 ; 1 12.2) ;
- un imageur (10 ; 110) formant une matrice (10.1 ) de sources lumineuses (10.2), disposé entre le foyer (12.3 ; 1 12.3) et la face d’entrée (12.1 ; 1 12.1 ) de manière à ce que le dispositif optique de projection (12 ; 1 12) puisse projeter une image agrandie dudit imageur (10 ; 1 10) ; caractérisé en ce que l’imageur (10 ; 1 10) présente une largeur I et une hauteur h, la face d’entrée (12.1 ; 1 12.1 ) et/ou la face de sortie (12.2 ; 1 12.2) présentent une largeur L et une hauteur H, où L>l, H>h, et L-l>H-h, de manière à ce que le module lumineux (8 ; 108) présente un champ de vue horizontal supérieur à un champ de vue vertical, lorsque ledit module lumineux est orienté en position de montage sur le véhicule automobile (2).
[Revendication 2.] Module lumineux (8 ; 1 108) selon la revendication 1 , dans lequel L-l>n (H-h), où n=2, préférentiellement n=3, plus préférentiellement n=5.
[Revendication 3.] Module lumineux (8 ; 108) selon l’une des revendications 1 et 2, dans lequel l’imageur (10 ; 1 10) comprend un centre dans une direction verticale et le dispositif optique de projection (12 ; 1 12) comprend un axe optique (6 ; 106), ledit centre étant décalé vers le bas par rapport audit axe optique (6 ; 106), lorsque le module lumineux (8 ; 108) est orienté dans la position de montage.
[Revendication 4.] Module lumineux (8 ; 108) selon l’une des revendications 1 à 3, dans lequel une projection horizontale de l’imageur (10 ; 1 10) sur la face d’entrée (12.1 ; 112.1 ) est totalement incluse dans ladite face d’entrée, lorsque le module lumineux (8 ; 108) est orienté dans la position de montage.
[Revendication 5.] Module lumineux (8 ; 108) selon l’une des revendications 1 à 4, dans lequel l’imageur (10 ; 1 10) est disposée entre le foyer (12.3 ;
1 12.3) et la face d’entrée (12.1 ; 1 12.1 ) de manière à obtenir un taux d’agrandissement de l’image projetée compris entre 1 .5 et 2.5. [Revendication 6.] Module lumineux (8 ; 108) selon l’une des revendications 1 à 5, dans lequel le dispositif optique de projection (12 ; 112) présente une puissance optique horizontale Ph et une puissance optique verticale Pv, où Ph Pv, préférentiellement Ph<Pv, lorsque le module lumineux (8 ; 108) est orienté dans la position de montage.
[Revendication 7.] Module lumineux (8 ; 108) selon l’une des revendications 1 à 6, dans lequel le dispositif optique de projection (12 ; 112) présente un grandissement horizontal Gh et un grandissement vertical Gv, où Gh Gv, préférentiellement Gh<Gv, lorsque le module lumineux (8 ; 108) est orienté dans la position de montage.
[Revendication 8.] Module lumineux (8 ; 108) selon l’une des revendications 1 à 7, dans lequel le dispositif optique de projection (12 ; 112) est une lentille, préférentiellement comprenant un traitement anti-reflet sur la face d’entrée (12.1 ; 112.1 ) et/ou sur la face de sortie (12.2 ; 112.2).
[Revendication 9.] Module lumineux (108) selon la revendication 8, dans lequel la lentille (112) s’étend horizontalement sur au moins 80% de la largeur L avec une section transversale constante.
[Revendication 10.] Dispositif lumineux comprenant un boîter, une glace de fermeture (14 ; 114) du boîtier et un module lumineux (8 ; 108) logé dans le boîtier, dans lequel le module lumineux (8 ; 108) est selon l’une des revendications 1 à 9, et, le dispositif optique de projection étant une lentille (12 ; 112) formée directement sur une face intérieure de la glace de fermeture (14 ; 114).
PCT/EP2023/067644 2022-06-30 2023-06-28 Module lumineux avec affichage par led optimisé pour application automobile WO2024003133A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2206698 2022-06-30
FR2206698A FR3137438A1 (fr) 2022-06-30 2022-06-30 Module lumineux avec affichage par led optimisé pour application automobile

Publications (1)

Publication Number Publication Date
WO2024003133A1 true WO2024003133A1 (fr) 2024-01-04

Family

ID=83188999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/067644 WO2024003133A1 (fr) 2022-06-30 2023-06-28 Module lumineux avec affichage par led optimisé pour application automobile

Country Status (2)

Country Link
FR (1) FR3137438A1 (fr)
WO (1) WO2024003133A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740780A (en) 1985-06-24 1988-04-26 Gec Avionics, Inc. Head-up display for automobile
WO2011092121A1 (fr) 2010-01-26 2011-08-04 Valeo Vision Dispositif optique, notamment pour véhicule automobile
EP2752615A1 (fr) * 2011-09-01 2014-07-09 Koito Manufacturing Co., Ltd. Appareil de phare d'automobile
JP2017147154A (ja) * 2016-02-18 2017-08-24 株式会社小糸製作所 車両用灯具
FR3048059A1 (fr) 2016-02-22 2017-08-25 Valeo Vision Dispositif de projection de faisceau lumineux muni d'une matrice de sources de lumiere, module d'eclairage et projecteur muni d'un tel dispositif
FR3077117A1 (fr) 2018-01-24 2019-07-26 Valeo Vision Module lumineux pour vehicule automobile, et dispositif d'eclairage et/ou de signalisation muni d'un tel module
EP3550203A1 (fr) * 2018-04-04 2019-10-09 ZKW Group GmbH Module d'éclairage pour un dispositif d'éclairage de véhicule automobile en flèche
CN110332499A (zh) * 2018-03-29 2019-10-15 法雷奥照明公司 具有液晶显示器的发光信号装置
EP3835649A1 (fr) * 2019-12-12 2021-06-16 T.Y.C. Brother Industrial Co., Ltd. Phare adaptatif pour véhicules

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740780A (en) 1985-06-24 1988-04-26 Gec Avionics, Inc. Head-up display for automobile
WO2011092121A1 (fr) 2010-01-26 2011-08-04 Valeo Vision Dispositif optique, notamment pour véhicule automobile
EP2752615A1 (fr) * 2011-09-01 2014-07-09 Koito Manufacturing Co., Ltd. Appareil de phare d'automobile
JP2017147154A (ja) * 2016-02-18 2017-08-24 株式会社小糸製作所 車両用灯具
FR3048059A1 (fr) 2016-02-22 2017-08-25 Valeo Vision Dispositif de projection de faisceau lumineux muni d'une matrice de sources de lumiere, module d'eclairage et projecteur muni d'un tel dispositif
FR3077117A1 (fr) 2018-01-24 2019-07-26 Valeo Vision Module lumineux pour vehicule automobile, et dispositif d'eclairage et/ou de signalisation muni d'un tel module
CN110332499A (zh) * 2018-03-29 2019-10-15 法雷奥照明公司 具有液晶显示器的发光信号装置
EP3550203A1 (fr) * 2018-04-04 2019-10-09 ZKW Group GmbH Module d'éclairage pour un dispositif d'éclairage de véhicule automobile en flèche
EP3835649A1 (fr) * 2019-12-12 2021-06-16 T.Y.C. Brother Industrial Co., Ltd. Phare adaptatif pour véhicules

Also Published As

Publication number Publication date
FR3137438A1 (fr) 2024-01-05

Similar Documents

Publication Publication Date Title
EP3396241B1 (fr) Module lumineux avec optique d&#39;imagerie optimisée pour un modulateur spatial pixellisé, destiné à un véhicule automobile
EP3305592B1 (fr) Systeme d&#39;eclairage pour vehicule automobile
EP3466759B1 (fr) Dispositif lumineux avec affichage et projection d&#39;image
EP3513234B1 (fr) Système optique pour faisceau lumineux pixélisé
EP2690352A1 (fr) Système d&#39;éclairage adaptatif pour véhicule automobile
FR2822578A1 (fr) Dispositif d&#39;affichage pour vehicule comportant des sources lumineuses de differentes directivites
FR2984532A1 (fr) Installation et procede de projection d&#39;une image dans le champ visuel d&#39;un conducteur
FR2984457A1 (fr) Module d&#39;eclairage comprenant au moins deux sources lumineuses installees de maniere sensiblement orthogonale
EP0616921A2 (fr) Tableau de bord de faible épaisseur notamment pour véhicule automobile
WO2024003133A1 (fr) Module lumineux avec affichage par led optimisé pour application automobile
FR3070925A1 (fr) Module lumineux pour vehicule automobile, et dispositif d&#39;eclairage et/ou de signalisation muni d&#39;un tel module
FR2831964A1 (fr) Dispositif de visualisation par projection
FR3065818A1 (fr) Module lumineux pour un vehicule automobile configure pour projeter un faisceau lumineux formant une image pixelisee
EP4090555B1 (fr) Dispositif lumineux de véhicule automobile incorporant un écran
EP3857283A1 (fr) Système optique de projection et module lumineux pour véhicule
FR3002802A1 (fr) Dispositif d&#39;affichage tete haute avec diffuseur comportant un miroir
FR2745937A1 (fr) Element d&#39;affichage, reseau et colonne d&#39;elements d&#39;affichage, et indicateur de destination d&#39;un vehicule forme de tels elements d&#39;affichage
FR3118129A1 (fr) Module lumineux d’un véhicule comprenant une matrice de pixels
EP3717828B1 (fr) Module lumineux pour vehicule automobile, et dispositif d&#39;eclairage et/ou de signalisation muni d&#39;un tel module
WO2021148727A1 (fr) Combiné d&#39;instruments pour véhicule automobile à lame réfléchissante
EP3542207B1 (fr) Afficheur tête-haute pour véhicule automobile
WO2024062056A1 (fr) Module optique d&#39;un système lumineux d&#39;un véhicule automobile
FR3061966A1 (fr) Afficheur tete-haute pour vehicule automobile
FR3051049A1 (fr) Dispositif de generation d&#39;images et afficheur tete-haute comportant un tel dispositif
WO2024115461A1 (fr) Dispositif lumineux pour véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23736079

Country of ref document: EP

Kind code of ref document: A1