WO2024002061A1 - 割草方法、装置、割草机器人以及存储介质 - Google Patents

割草方法、装置、割草机器人以及存储介质 Download PDF

Info

Publication number
WO2024002061A1
WO2024002061A1 PCT/CN2023/102718 CN2023102718W WO2024002061A1 WO 2024002061 A1 WO2024002061 A1 WO 2024002061A1 CN 2023102718 W CN2023102718 W CN 2023102718W WO 2024002061 A1 WO2024002061 A1 WO 2024002061A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
mowing
preset
sub
operation sub
Prior art date
Application number
PCT/CN2023/102718
Other languages
English (en)
French (fr)
Inventor
陈建林
魏基栋
Original Assignee
松灵机器人(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松灵机器人(深圳)有限公司 filed Critical 松灵机器人(深圳)有限公司
Publication of WO2024002061A1 publication Critical patent/WO2024002061A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D91/00Methods for harvesting agricultural products
    • A01D91/04Products growing above the soil
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory

Definitions

  • the present application relates to the field of computer technology, and specifically to a lawn mowing method, device, lawn mowing robot and storage medium.
  • Lawn mowing robots are widely used in the maintenance of home courtyard lawns and the mowing of large lawns.
  • the lawn mowing robot combines motion control, multi-sensor fusion and path planning technologies.
  • the mowing path of the lawn mower robot needs to be planned so that it can completely cover all working areas.
  • Various embodiments of the present application provide a lawn mowing method, device, lawn mower robot, and storage medium, which can change the route of the lawn mower robot to increase the actual working area of the lawn mower robot, thereby improving the mowing efficiency of the lawn mower robot. .
  • embodiments of the present application provide a lawn mowing method, including:
  • the generated mowing routes are connected, and the lawn mowing robot is controlled to perform mowing operations based on the connected mowing routes.
  • the preset operation area is divided to obtain multiple operation sub-areas, including:
  • the preset operation area is a special-shaped area
  • the preset operation area is divided based on a preset strategy to obtain multiple operation sub-areas.
  • the preset operation area is divided based on a preset strategy to obtain multiple operation sub-areas, including:
  • the preset operation area is a special-shaped area, obtain a preset area division graphic
  • the divided graphics area When it is detected that the divided graphics area satisfies the preset area division rules, the divided graphics area is determined as a job sub-area.
  • the method further includes:
  • the step of generating a mowing route corresponding to each of the operation sub-areas is performed;
  • a target mowing route corresponding to the preset operation area is generated, and the lawn mowing robot is controlled to perform a lawn mowing operation based on the target mowing route.
  • each of the target mowing routes is parallel to the longest boundary of the triangular preset working area and each of the target mowing routes does not exceed the boundary of the triangular preset working area.
  • generating a mowing route corresponding to each operation sub-area based on the area information of the operation sub-area includes:
  • connecting the generated mowing routes includes:
  • the generated mowing routes are connected based on the route directions.
  • a lawn mowing device including:
  • the acquisition module is used to respond to the lawn mowing trigger request for the lawn mower robot and obtain the preset operating area;
  • a partition module used to divide the preset operation area to obtain multiple operation sub-areas
  • a generation module configured to generate a mowing route corresponding to each of the operation sub-areas based on the area information of the operation sub-area;
  • a control module is used to connect the generated mowing routes, and control the lawn mowing robot to perform mowing operations based on the connected mowing routes.
  • embodiments of the present application provide a lawn mowing robot, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the following is implemented: Steps to any of the lawn mowing methods described above.
  • embodiments of the present application provide a storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the steps of the lawn mowing method described in any one of the above items are implemented.
  • the embodiment of the present application responds to a mowing trigger request for a lawn mower robot, obtains a preset operation area, and then divides the preset operation area to obtain multiple operation sub-areas. Then, according to the area of the operation sub-area Information is generated to generate a mowing route corresponding to each operation sub-area. Finally, the generated mowing routes are connected, and the lawn mowing robot is controlled to perform a lawn mowing operation based on the connected mowing route.
  • the preset operation area is divided to obtain multiple operation sub-areas, and according to the regional information of the operation sub-area, the grass cutting corresponding to each operation sub-area is generated.
  • the mowing routes corresponding to each operation sub-area are connected to obtain fewer corners and longer mowing routes, thereby expanding the actual working area of the lawn mowing robot and thereby improving the mowing efficiency of the lawn mowing robot.
  • Figure 1 is a schematic diagram of a scene of a lawn mowing method according to the prior art solution
  • Figure 2 is a schematic flow chart of a lawn mowing method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the operation sub-area provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of connecting mowing routes in operating sub-areas provided by the embodiment of the present application.
  • Figure 5 is a first structural schematic diagram of a lawn mowing device provided by an embodiment of the present application.
  • Figure 6 is a second structural schematic diagram of the lawn mowing device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a lawn mowing robot according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a lawn mowing method according to the prior art solution.
  • a fixed route can easily cause the route direction to be inconsistent with the terrain of the working area, making the route unable to be as long as possible, which in turn causes the lawn mower robot to make frequent turns and produce a large number of acceleration and deceleration operations, reducing lawn mowing efficiency.
  • the technical solution of this application is proposed to solve the above problems.
  • connection can be used for either fixation or circuit connection.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, it is limited to “first”, “Second” features may include one or more of these features, explicitly or implicitly.
  • “plurality” means two or more, unless otherwise explicitly and specifically limited.
  • Embodiments of the present application provide a lawn mowing method, device, lawn mowing robot, and storage medium.
  • the lawn mowing device can be integrated in the microcontroller unit (MCU) of the lawn mowing robot, or in a smart terminal or server.
  • MCU is also called a single chip microcomputer (Single Chip Microcomputer) or a single chip microcomputer. It is to appropriately reduce the frequency and specifications of the Central Processing Unit (CPU), and integrate peripheral interfaces such as memory, counter (Timer), USB, analog-to-digital conversion/digital-to-analog conversion, UART, PLC, DMA, etc. , forming a chip-level computer to perform different combination controls for different applications.
  • the lawn mowing robot can walk automatically to prevent collisions, automatically return to charge within the range, has safety detection and battery power detection, and has a certain climbing ability. It is especially suitable for lawn mowing and maintenance in home courtyards, public green spaces and other places. Its characteristics are: automatic Cut grass, clean grass clippings, automatically avoid rain, automatically charge, automatically avoid obstacles, compact appearance, electronic virtual fence, network control, etc.
  • the terminal can be a smartphone, tablet, laptop, desktop computer, smart speaker, smart watch, etc., but is not limited to this. Terminals and servers can be connected directly or indirectly through wired or wireless communication methods.
  • the server can be an independent physical server, a server cluster or distributed system composed of multiple physical servers, or a cloud service or cloud database. , cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and cloud servers for basic cloud computing services such as big data and artificial intelligence platforms, this application will not be used here. limit.
  • the working area or working sub-area described in the following embodiments refers to a closed area connected in sequence by at least three line segments in the same coordinate system; the boundary of the working area or the boundary of the working sub-area refers to the area used to separate the working area or the working area.
  • the sub-areas form a line segment that forms a closed area; the mowing route refers to a line segment connected by at least two coordinate points in the same coordinate system.
  • the starting end of the line segment is the starting point of the mowing route, and the end of the line segment is the starting point of the mowing route. end.
  • a lawn mowing method includes: responding to a mowing trigger request for a lawn mower robot, obtaining a preset operation area; dividing the preset operation area to obtain multiple operation sub-areas; and according to the operation sub-area.
  • Regional information generate mowing routes corresponding to each operation sub-area; connect the generated mowing routes, and control the lawn mowing robot to perform mowing operations based on the connected mowing routes.
  • FIG. 2 is a schematic flow chart of a lawn mowing method provided by an embodiment of the present application.
  • the specific process of this lawn mowing method can be as follows:
  • the preset operation area can be an area preliminarily circled by the user in the mowing map, or it can be determined based on the differential positioning data and satellite positioning data of the lawn mowing robot.
  • the specific situation can be determined according to the actual situation.
  • the mowing area The number can be one or multiple, and the shape and size of the mowing area can be preset by the user.
  • the lawn mowing map corresponding to the lawn mowing robot is determined based on the satellite positioning data, and then, in response to the area dividing operation for the lawn mowing map, the grass cutting area is divided in the lawn mowing map.
  • dividing the preset operation area refers to dividing the area preliminarily circled by the user in the mowing map or the area determined based on the differential positioning data and satellite positioning data of the lawn mowing robot into multiple operation sub-areas. area, and the number of operation sub-areas depends on the actual situation.
  • the total area of multiple operation sub-areas is equal to the area of the original preset operation area, and when dividing the preset operation area, the preset area will not be changed. The original boundaries of the work area.
  • the preset operating area is a closed area formed by connecting multiple line segments in sequence, and each line segment is the boundary of the preset operating area.
  • the step of "dividing the preset operation area to obtain multiple operation sub-areas" may specifically include:
  • the preset operation area is a special-shaped area
  • the preset operation area is divided based on the preset strategy to obtain multiple operation sub-areas.
  • the special-shaped area is a polygon with all sides not parallel to each other, or it can also be a preset operating area with a curved boundary.
  • the preset strategy may be a division method for dividing the preset operation area, for example, dividing the preset operation area according to the division method with the smallest number of polygonal operation sub-regions obtained by division.
  • the step "when it is detected that the preset operation area is a special-shaped area, divide the preset operation area based on the preset strategy to obtain multiple operation sub-areas" may specifically include:
  • the divided graphics area is determined as a job sub-area.
  • obtaining the preset area division graphic includes at least a set of polygons with parallel sides and polygons with all sides not being parallel to each other.
  • Polygons with at least one set of parallel sides can be trapezoids, parallelograms, or rectangles; polygons with all sides not parallel to each other can be triangles, pentagons, or hexagons, or even irregular pentagons and hexagons, etc. wait.
  • Dividing the preset operation area based on the area division graphic refers to first predetermining the shape of the operation sub-area as a rectangle, and then determining a rectangular area as the operation sub-area in the preset operation area.
  • the area of the rectangular sub-area and the The relative position of the rectangular sub-area within the preset operating area may be determined according to specific conditions. Please refer to Figure 3, which is a schematic diagram of the operation sub-area provided by the embodiment of the present application.
  • the preset operation area is divided according to the shape of the operation sub-area, and a rectangular first operation sub-area 101 and a trapezoidal second operation sub-area 102 are divided.
  • the divided graphics area is determined to be a job.
  • the actual operation process of the sub-areas may be: repeat the division of the preset operation area multiple times to obtain multiple operation sub-area combinations, wherein each operation sub-area combination includes multiple polygonal operation sub-areas; based on at least one filter
  • the conditions are to filter out the optimal job sub-region combination from multiple job sub-region combinations, and use the polygonal job sub-region of the optimal job sub-region combination as the divided job sub-region, where the filtering condition is that the number of polygon job sub-regions is the least
  • the preset area division rule may be based on the minimum number of divided work sub-areas to determine whether the divided graphics area satisfies the criterion; or, the preset area division rule may be based on the divided operation sub-areas.
  • the minimum number of triangular operation sub-areas is used as a criterion to determine whether the divided graphics area satisfies this criterion; or, the preset area division rule can be based on the minimum area of the divided triangular operation sub-areas as a criterion to determine whether the divided graphics area is satisfy this criterion; even, the preset area division rule can be any two or three of the above criteria.
  • the operation partition is divided to obtain operation sub-regions of the operation sub-region.
  • each operation sub-region is a polygonal operation sub-region with at least one set of parallel opposite sides.
  • the step "divide the preset operation area to obtain multiple operation sub-areas” it may specifically include: detecting the number of boundaries of the preset operation area; when the detected number of boundaries is greater than the preset When the value is set, the step of generating a mowing route corresponding to each operation sub-area is performed; when the number of boundaries is detected to be less than or equal to the preset value, a target mowing route corresponding to the preset operation area is generated, and the target mowing route is generated based on the target mowing route.
  • the grass route controls the lawn mower robot to perform lawn mowing operations.
  • each boundary of the polygonal preset working area can be further detected to detect the number of boundaries of the preset working area.
  • the preset value is 3.
  • the preset operation area is a triangular preset operation area
  • the target cut is generated within the triangular preset operation area.
  • Each target mowing route is parallel to the longest boundary of the triangular preset operating area and each target mowing route does not exceed the boundary of the triangular preset operating area.
  • the preset value is 4.
  • the preset operating area is a triangular preset operating area
  • the target is generated within the triangular preset operating area.
  • each target mowing route is parallel to the longest boundary of the triangular preset operating area and each target mowing route does not exceed the boundary of the triangular preset operating area.
  • the preset operation area is a quadrilateral preset operation area
  • a target mowing route is generated within the quadrilateral preset operation area.
  • Each target mowing route is consistent with the quadrilateral preset operation area.
  • the longest boundary of the working area is parallel and each target mowing route does not exceed the boundary of the quadrilateral preset working area.
  • the area information of the operation sub-area includes area area, area shape, area of part of the area that needs to be mowing, etc.
  • the mowing route generated in the operation sub-area is in the shape of a "bow", that is, the lawn mower robot goes straight, turns, and goes straight along the mowing route, forming a "bow"-shaped driving trajectory.
  • the step "generate mowing routes corresponding to each operation sub-area based on the regional information of the operation sub-areas" may specifically include:
  • the work sub-area is a polygon work sub-area with at least one set of parallel opposite sides
  • the longest boundary within the polygon work sub-area that is parallel to the opposite boundary is determined, and in the polygon work sub-area Multiple equally spaced mowing routes are generated within the area.
  • Each mowing route is parallel to the longest boundary and each mowing route does not exceed the boundary of the polygonal operation sub-area.
  • the operation sub-area is a triangular operation sub-area
  • multiple equally spaced mowing routes are generated within the triangular operation sub-area, and each mowing route is consistent with the triangle operation sub-area. The longest boundaries are parallel and each mowing route does not exceed the boundaries of the triangular operating subarea.
  • the area area and area shape are extracted from the area information of any operation sub-area.
  • the operation sub-area is a square operation sub-area of 5X5 square meters.
  • the lawn mowing robot travels 1 meter in a straight line and the mowing area is 1 square meter, it will generate at least 5 parallel mowing routes in the square operation sub-area, and each mowing route is connected to one of the boundaries of the square operation sub-area. Parallel, each mowing route does not exceed the boundaries of the square operating sub-area.
  • FIG. 4 is a schematic diagram of connecting mowing routes in operating sub-areas provided by an embodiment of the present application.
  • the operation sub-area where the lawn mowing robot's starting point is located is the first operation sub-area 101.
  • the operation sub-area where the lawn mowing robot's end point is located is the first operation sub-area 101.
  • Operation sub-area 102 At the junction of the first operation sub-area 101 and the second operation sub-area 102, the end point of the mowing route of the first operation sub-area 101 is connected with the starting point of the mowing route of the second operation sub-area 102, realizing two operations.
  • Mowing route connections for subregions After the mowing routes of the two operation sub-areas are connected, the lawn mowing robot starts from the mowing route of the first operation sub-area 101. The starting point is continuously traveled to the end point of the mowing route of the second operation sub-area 102 .
  • the step "Connect the generated mowing routes” may include:
  • the preset operation area is divided to obtain multiple operation sub-areas, and a mowing route corresponding to each operation sub-area is generated based on the regional information of the operation sub-area, which is beneficial to each operation sub-area.
  • Generate a more reasonable mowing route for each operation sub-area change the original fixed route, and finally connect the generated mowing routes, and control the lawn mowing robot to perform mowing operations based on the connected mowing routes, so that each operation sub-area
  • the mowing routes corresponding to the areas are connected to obtain a longer mowing route with fewer corners, thereby expanding the actual working area of the lawn mower robot and thereby improving the mowing efficiency of the lawn mower robot.
  • the embodiment of the present application also provides a lawn mowing device based on the above.
  • the meanings of the nouns are the same as in the above-mentioned lawn mowing method.
  • FIG. 5 is a first structural schematic diagram of a lawn mower device provided by an embodiment of the present application.
  • the lawn mower device may include an acquisition module 201, a partition module 202, a generation module 203 and a control module 204.
  • the lawn mower device may be as follows:
  • the acquisition module 201 is configured to respond to a mowing trigger request for a lawn mower robot and acquire a preset working area.
  • the partition module 202 is used to divide the preset operation area to obtain multiple operation sub-areas.
  • the partition module 202 may specifically include:
  • the detection unit is used to detect whether the preset working area is a special-shaped area
  • the partition unit is used to divide the preset operation area based on the preset strategy to obtain multiple operation sub-areas when it is detected that the preset operation area is a special-shaped area.
  • the partition unit may specifically include:
  • Divide sub-units used to divide the preset operating area based on area division graphics
  • the judgment subunit is used to detect whether the divided graphics area meets the preset area division rules
  • the confirmation subunit is used to determine the divided graphics area as a job sub-area when it is detected that the divided graphics area satisfies the preset area division rules.
  • the dividing sub-unit is also used to: when the working sub-area is a polygonal working sub-area with all sides not parallel to each other, divide the working partition to obtain the working sub-area of the working sub-area; loop the above Steps until each operation sub-region is a polygonal operation sub-region with at least one set of parallel opposite sides.
  • FIG. 6 is a second structural schematic diagram of a lawn mowing device provided by an embodiment of the present application.
  • the lawn mowing device of the present application may further include a detection module 205.
  • the detection module 205 may be used to: detect the number of boundaries of the preset work area; when the number of boundaries is detected to be greater than the preset value, generate each work sub-section. The steps of the mowing route corresponding to the area; when it is detected that the number of boundaries is less than or equal to the preset value, a target mowing route corresponding to the preset operation area is generated, and the lawn mowing robot is controlled to perform the mowing operation based on the target mowing route.
  • the detection module 205 generates target mowing routes in the preset working area, each target mowing route is parallel to the longest boundary of the triangular preset working area and each target mowing route All do not exceed the boundaries of the triangular preset operating area.
  • the generation module 203 is used to generate a mowing route corresponding to each operation sub-area according to the area information of the operation sub-area.
  • the generation module 203 may specifically include:
  • the extraction unit is used to extract the area area and area shape from the area information of the job sub-area.
  • the generation unit is used to generate the mowing route corresponding to each operation sub-area based on the area area and area shape.
  • the control module 204 is used to connect the generated mowing routes, and control the lawn mowing robot to perform lawn mowing operations based on the connected mowing routes.
  • control module 204 may specifically include:
  • a direction detection unit is used to detect the route direction of adjacent mowing routes.
  • a connection operation unit is used to connect the generated mowing routes based on the route direction.
  • the acquisition module 201 responds to the mowing trigger request for the lawn mower robot and acquires the preset operation area. Then, the partition module 202 divides the preset operation area to obtain multiple operation sub-areas. Then, the generation module 203 generates the operation area according to the The area information of the operation sub-areas is used to generate a mowing route corresponding to each operation sub-area. Finally, the control module 204 connects the generated mowing routes and controls the lawn mowing robot to perform the lawn mowing operation based on the connected mowing routes.
  • the preset operation area is divided to obtain multiple operation sub-areas, and a mowing route corresponding to each operation sub-area is generated based on the regional information of the operation sub-area, which is beneficial to each operation sub-area.
  • Generate a more reasonable mowing route for each operation sub-area change the original fixed route, and finally connect the generated mowing routes, and control the lawn mowing robot to perform mowing operations based on the connected mowing routes, so that each operation sub-area
  • the mowing routes corresponding to the areas are connected to obtain a longer mowing route with fewer corners, thereby expanding the actual working area of the lawn mower robot and thereby improving the mowing efficiency of the lawn mower robot.
  • the embodiment of the present application also provides a lawn mowing robot, as shown in Figure 7, which shows a schematic structural diagram of the lawn mowing robot involved in the embodiment of the present application. Specifically:
  • the lawn mowing robot may include a control module 501, a traveling mechanism 502, a cutting module 503, a power supply 504 and other components.
  • a control module 501 may control the traveling mechanism 502 and controls the cutting module 503 and other components.
  • the control module 501 is the control center of the lawn mowing robot.
  • the control module 501 may specifically include a central processing unit (CPU), memory, input/output ports, system bus, timer/counter, digital-to-analog converter and Components such as analog-to-digital converters, the CPU performs various functions of the lawn mowing robot and processes data by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory; preferably, the CPU can Integrated application processor and modem processor, where the application processor mainly handles operating systems and application programs, etc., and the modem processor mainly handles wireless communications. It can be understood that the above modem processor may not be integrated into in the CPU.
  • the memory can be used to store software programs and modules, and the CPU executes various functional applications and data processing by running the software programs and modules stored in the memory.
  • the memory may mainly include a storage program area and a storage data area, wherein the storage program area may store the operating system, at least one application required for a function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store data according to the segmentation The data created by the use of grass robots, etc.
  • the memory may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the memory may also include a memory controller to provide the CPU with access to the memory.
  • the traveling mechanism 502 is electrically connected to the control module 501, and is used to respond to the control signal transmitted by the control module 501, adjust the traveling speed and direction of the lawn mower robot, and realize the self-moving function of the lawn mower robot.
  • the cutting module 503 is electrically connected to the control module 501, and is used to respond to the control signal transmitted by the control module, adjust the height and rotation speed of the cutting blade, and implement lawn mowing operations.
  • the power supply 504 can be logically connected to the control module 501 through the power management system, so that functions such as charging, discharging, and power consumption management can be implemented through the power management system.
  • the power supply 504 may also include one or more DC or AC power supplies, recharging systems, power failure detection circuits, power converters or inverters, power status indicators, and other arbitrary components.
  • the lawn mowing robot may also include a communication module, a sensor module, a prompt module, etc., which will not be described again here.
  • the communication module is used to receive and send signals in the process of sending and receiving information. By establishing a communication connection with the user equipment, base station or server, it realizes signal sending and receiving with the user equipment, base station or server.
  • the sensor module is used to collect internal environmental information or external environmental information, and feeds the collected environmental data to the control module for decision-making, realizing the precise positioning and intelligent obstacle avoidance functions of the lawn mowing robot.
  • the sensors may include: ultrasonic sensors, infrared sensors, collision sensors, rain sensors, lidar sensors, inertial measurement units, wheel speedometers, image sensors, position sensors and other sensors, without limitation.
  • the prompt module is used to prompt the user about the current working status of the lawn mower robot.
  • the prompt module includes but is not limited to indicator lights, buzzers, etc.
  • a lawn mowing robot can remind the user of the current power status, motor working status, sensor working status, etc. through indicator lights.
  • the buzzer can be used to provide an alarm.
  • the processor in the control module 501 will load the executable files corresponding to the processes of one or more application programs into the memory according to the following instructions, and the processor will run the executable files stored in the memory. application to achieve various functions, as follows:
  • the embodiment of the present application responds to the mowing trigger request for the lawn mower robot, obtains the preset operation area, and then divides the preset operation area to obtain multiple operation sub-areas. Then, according to the area information of the operation sub-area, each operation sub-area is generated. mowing routes corresponding to each operation sub-area. Finally, the generated mowing routes are connected, and the lawn mowing robot is controlled to perform the mowing operation based on the connected mowing routes.
  • the preset operation area is divided to obtain multiple operation sub-areas, and a mowing route corresponding to each operation sub-area is generated based on the regional information of the operation sub-area, which is beneficial to each operation sub-area.
  • embodiments of the present application provide a storage medium in which a plurality of instructions are stored, and the instructions can be loaded by the processor to execute the steps in any of the lawn mowing methods provided by the embodiments of the present application.
  • this command can perform the following steps:
  • the storage medium may include: read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or optical disk etc.

Abstract

本申请实施例公开的一种割草方法,通过响应针对割草机器人的割草触发请求,获取预设作业区域,对所述预设作业区域进行划分,得到多个作业子区域,根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线,将生成的割草航线进行连接,并基于连接后的割草航线控制所述割草机器人执行割草作业,上述割草方法可以改变割草机器人的航线,以增大割草机器人的实际工作面积,从而提高割草机器人的割草效率。

Description

割草方法、装置、割草机器人以及存储介质
本申请要求于2022年06月30日提交中国专利局、申请号为CN202210770697.5、申请名称为“割草方法、装置、割草机器人以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,具体涉及一种割草方法、装置、割草机器人以及存储介质。
背景技术
割草机器人被广泛应用于家庭庭院草坪的维护和大型草地的修剪。割草机器人融合了运动控制、多传感器融合以及路径规划等技术。为了控制割草机器人实现割草作业,需要对割草机器人的割草路径进行规划,使其可以完全覆盖所有的作业区域。
然而,传统的割草机器人采用随机路径,在工作环境内随意移动,工作效率很低;此外,市面上的另一种割草机器人按照预设的航线移动,但是,由于预设的航线是固定设置的,预设的航线设置不合理又不能改变,导致割草机器人的实际工作面积很小,降低割草机器人的割草效率。
发明内容
本申请的各个实施例提供一种割草方法、装置、割草机器人以及存储介质,可以改变割草机器人的航线,以增大割草机器人的实际工作面积,从而提高割草机器人的割草效率。
第一方面,本申请实施例提供了一种割草方法,包括:
响应针对割草机器人的割草触发请求,获取预设作业区域;
对所述预设作业区域进行划分,得到多个作业子区域;
根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线;
将生成的割草航线进行连接,并基于连接后的割草航线控制所述割草机器人执行割草作业。
可选地,所述对所述预设作业区域进行划分,得到多个作业子区域,包括:
检测所述预设作业区域是否为异形区域;
当检测到所述预设作业区域为异形区域时,基于预置策略对所述预设作业区域进行划分,得到多个作业子区域。
可选地,所述当检测到所述预设作业区域为异形区域时,基于预置策略对所述预设作业区域进行划分,得到多个作业子区域,包括:
当检测到所述预设作业区域为异形区域时,获取预设的区域划分图形;
基于所述区域划分图形对所述预设作业区域进行划分;
检测划分得到的图形区域是否满足预设区域划分规则;
当检测到划分得到的图形区域满足预设区域划分规则时,则将划分得到的图形区域确定为作业子区域。
可选地,所述对所述预设作业区域进行划分,得到多个作业子区域之前,还包括:
检测所述预设作业区域的边界数量;
当检测到所述边界数量大于预设值时,则执行生成每个所述作业子区域对应的割草航线的步骤;
当检测到所述边界数量小于或等于预设值时,则生成所述预设作业区域对应的目标割草航线,并基于所述目标割草航线控制所述割草机器人执行割草作业。
可选地,每条所述目标割草航线均与三角形预设作业区域的最长边界平行且每条所述目标割草航线均不超出所述三角形预设作业区域的边界。
可选地,所述根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线,包括:
从所述作业子区域的区域信息中提取区域面积和区域形状;
基于所述区域面积和区域形状,生成每个所述作业子区域对应的割草航线。
可选地,所述将生成的割草航线进行连接,包括:
检测相邻割草航线的路线方向;
基于所述路线方向将生成的割草航线进行连接。
第二方面,本申请实施例提供了一种割草装置,包括:
获取模块,用于响应针对割草机器人的割草触发请求,获取预设作业区域;
分区模块,用于对所述预设作业区域进行划分,得到多个作业子区域;
生成模块,用于根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线;
控制模块,用于将生成的割草航线进行连接,并基于连接后的割草航线控制所述割草机器人执行割草作业。
第三方面,本申请实施例提供了一种割草机器人,包括存储器,处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如上任一项所述割草方法的步骤。
第四方面,本申请实施例提供了一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如上任一项所述割草方法的步骤。
本申请实施例响应针对割草机器人的割草触发请求,获取预设作业区域,然后,对所述预设作业区域进行划分,得到多个作业子区域,接着,根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线,最后,将生成的割草航线进行连接,并基于连接后的割草航线控制所述割草机器人执行割草作业。在本申请提供的割草方案中,对所述预设作业区域进行划分,得到多个作业子区域,并根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线,有利于针对每个作业子区域生成更合理的割草航线,实现改变原来固定的航线,最后将生成的割草航线进行连接,并基于连接后的割草航线控制所述割草机器人执行割草作业,使得各个作业子区域对应的割草航线连接起来得到更少拐角、更长的割草航线,从而扩大割草机器人的实际工作面积,进而提高割草机器人的割草效率。
附图的简要说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
图1为现有技术方案的割草方法的场景示意图;
图2为本申请实施例提供的割草方法的流程示意图;
图3为本申请实施例提供的作业子区域的示意图;
图4为本申请实施例提供的将作业子区域的割草航线进行连接的示意图;
图5为本申请实施例提供的割草装置的第一结构示意图;
图6为本申请实施例提供的割草装置的第二结构示意图;
图7为本申请实施例所涉及的割草机器人的结构示意图。
具体实施方式
在现有技术方案中,割草机器人的割草航线是固定设置的、不可改变的。请参阅图1,图1为现有技术方案的割草方法的场景示意图。固定的航线容易造成航线方向与作业区域的地形不吻合,从而使得航线无法尽量长,进而导致割草机器人频繁拐弯而产生大量加减速的操作,降低割草效率。本申请技术方案正是为了解决上述问题而提出的。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于电路连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、 “第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请实施例提供一种割草方法、装置、割草机器人和存储介质。
其中,该割草装置具体可以集成在割草机器人的微控制单元(Microcontroller Unit,MCU)中,还可以集成在智能终端或服务器中,MCU又称单片微型计算机(Single Chip Microcomputer)或者单片机,是把中央处理器(Central Process Unit,CPU)的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、USB、模数转换/数模转换、UART、PLC、DMA等周边接口,形成芯片级的计算机,为不同的应用场合做不同组合控制。割草机器人可以自动行走,防止碰撞,范围之内自动返回充电,具备安全检测和电池电量检测,具备一定爬坡能力,尤其适合家庭庭院、公共绿地等场所进行草坪修剪维护,其特点是:自动割草、清理草屑、自动避雨、自动充电、自动躲避障碍物、外形小巧、电子虚拟篱笆、网络控制等。
终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器,本申请在此不做限制。
以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优先顺序的限定。以下实施例中记述的作业区域或者作业子区域指的是在同一坐标系内至少三条线段依次连接起来的闭合区域;作业区域的边界或者作业子区域的边界指的是用于将作业区域或者作业子区域围成闭合区域的线段;割草航线指的是由同一坐标系内至少两个坐标点连接起来的线段,该线段起始端为割草航线的起点,该线段的末端为割草航线的终点。
一种割草方法,包括:响应针对割草机器人的割草触发请求,获取预设作业区域;对预设作业区域进行划分,得到多个作业子区域;根据作业子区域的 区域信息,生成每个作业子区域对应的割草航线;将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业。
请参阅图2,图2为本申请实施例提供的割草方法的流程示意图。该割草方法的具体流程可以如下:
S1、响应针对割草机器人的割草触发请求,获取预设作业区域。
其中,预设作业区域可以是由用户预先在割草地图中圈定的区域,也可以是根据割草机器人的差分定位数据和卫星定位数据确定的,具体可以根据实际情况而定,割草区域的数量可以为一个,也可以为多个,该割草区域的形状和尺寸均可以由用户预先进行设定。
比如,根据卫星定位数据确定该割草机器人对应的割草地图,然后,响应针对该割草地图的区域划分操作,在割草地图中划分割草区域。
S2、对预设作业区域进行划分,得到多个作业子区域。
可以理解的是,对预设作业区域进行划分指的是,将用户预先在割草地图中圈定的区域或根据割草机器人的差分定位数据和卫星定位数据确定的区域,分割成多个作业子区域,而作业子区域的数量根据实际情况而定,多个作业子区域相加的总面积等于原来的预设作业区域的面积,且对预设作业区域进行划分的时候,不改变该预设作业区域的原有边界。
其中,预设作业区域为多条线段依次连接形成的闭合区域,每条线段均为预设作业区域的边界。
可选地,步骤“对预设作业区域进行划分,得到多个作业子区域”,具体可以包括:
(21)检测预设作业区域是否为异形区域。
(22)当检测到预设作业区域为异形区域时,基于预置策略对预设作业区域进行划分,得到多个作业子区域。
可以理解的是,在一些具体实施例中,异形区域是所有边相互不平行的多边形,也可以是边界为曲线的预设作业区域。
可选地,在一些实施例中,预设策略可以是对预设作业区域进行划分的划分方式,例如,根据划分得到的多边形作业子区域数量最少的划分方式对预设作业区域进行划分。
可选地,在一些实施例中,步骤“当检测到预设作业区域为异形区域时,基于预置策略对预设作业区域进行划分,得到多个作业子区域”,具体可以包括:
(221)当检测到预设作业区域为异形区域时,获取预设的区域划分图形。
(222)基于区域划分图形对预设作业区域进行划分。
(223)检测划分得到的图形区域是否满足预设区域划分规则。
(224)当检测到划分得到的图形区域满足预设区域划分规则时,则将划分得到的图形区域确定为作业子区域。
可以理解的是,获取预设的区域划分图形包括至少具有一组对边平行的多边形以及所有边相互不平行的多边形。至少具有一组对边平行的多边形可以是梯形、平行四边形或矩形,所有边相互不平行的多边形可以是三角形、五边形或六边形,甚至是不规则的五边形和六边形等等。基于区域划分图形对预设作业区域进行划分,指的是先预定作业子区域的形状为矩形,然后在预设作业区域内确定一块矩形的区域为作业子区域,该矩形子区域的面积以及该矩形子区域在预设作业区域内的相对位置可以是根据具体情况而定。请参阅图3,图3为本申请实施例提供的作业子区域示意图。根据作业子区域的形状对预设作业区域进行划分,划分出矩形的第一作业子区域101,以及梯形的第二作业子区域102。
可选地,在一些实施例中,检测划分得到的图形区域是否满足预设区域划分规则,当检测到划分得到的图形区域满足预设区域划分规则时,则将划分得到的图形区域确定为作业子区域的实际操作过程可以是:重复多次对预设作业区域进行划分,对应得到多个作业子区域组合,其中,每个作业子区域组合均包括多个多边形作业子区域;根据至少一个筛选条件从多个作业子区域组合中筛选出最优作业子区域组合,并以最优作业子区域组合的多边形作业子区域作为划分后的作业子区域,其中,筛选条件为多边形作业子区域数量最少的作业子区域组合、所有边相互不平行的多边形作业子区域数量最少的作业子区域组合或者所有边相互不平行的多边形作业子区域面积最小的作业子区域组合。因此,预设区域划分规则可以是以划分出的作业子区域数量最少为准则,判断划分得到的图形区域是否满足该准则;或者,预设区域划分规则可以是以划分出 的三角形作业子区域数量最少为准则,判断划分得到的图形区域是否满足该准则;或者,预设区域划分规则可以是以划分出的三角形作业子区域面积最小为准则,判断划分得到的图形区域是否满足该准则;甚至,预设区域划分规则可以是任意两种上述准则或者三种准则。
可选地,在一些实施例中,当作业子区域为所有边相互不平行的多边形作业子区域时,对作业分区进行划分得到作业子区域的作业子区域。
循环上述步骤,直至每个作业子区域均为至少具有一组对边平行的多边形作业子区域。
可选地,在一些实施例中,在步骤“对预设作业区域进行划分,得到多个作业子区域”之前,具体可以包括:检测预设作业区域的边界数量;当检测到边界数量大于预设值时,则执行生成每个作业子区域对应的割草航线的步骤;当检测到边界数量小于或等于预设值时,则生成预设作业区域对应的目标割草航线,并基于目标割草航线控制割草机器人执行割草作业。
可以理解的是,当检测到预设作业区域是多边形预设作业区域时,可以进一步对多边形预设作业区域的每一条边界进行检测,以检测预设作业区域的边界数量。
在一个具体的实施例中,预设值为3,当检测到预设作业区域的边界数量等于3时,即预设作业区域为三角形预设作业区域,在三角形预设作业区域内生成目标割草航线,每条目标割草航线均与三角形预设作业区域的最长边界平行且每条目标割草航线均不超出三角形预设作业区域的边界。
在另一个具体的实施例中,预设值为4,当检测到预设作业区域的边界数量等于3时,即预设作业区域为三角形预设作业区域,在三角形预设作业区域内生成目标割草航线,每条目标割草航线均与三角形预设作业区域的最长边界平行且每条目标割草航线均不超出三角形预设作业区域的边界。当检测到预设作业区域的边界数量等于4时,即预设作业区域为四边形预设作业区域,在四边形预设作业区域内生成目标割草航线,每条目标割草航线均与四边形预设作业区域的最长边界平行且每条目标割草航线均不超出四边形预设作业区域的边界。
S3、根据作业子区域的区域信息,生成每个作业子区域对应的割草航线。
其中,作业子区域的区域信息包括区域面积、区域形状以及区域中需要割草的部分区域面积等等。在作业子区域生成的割草航线呈“弓”字型,即割草机器人沿割草航线直行-拐弯-直行,形成“弓”字型的行驶轨迹。
可选地,步骤“根据作业子区域的区域信息,生成每个作业子区域对应的割草航线”,具体可以包括:
(31)从作业子区域的区域信息中提取区域面积和区域形状。
(32)基于区域面积和区域形状,生成每个作业子区域对应的割草航线。
可选地,在一些实施例中,当作业子区域为至少具有一组对边平行的多边形作业子区域时,确定多边形作业子区域内与相对边界相互平行的最长边界,并在多边形作业子区域内排列生成多条等间距的割草航线,每条割草航线均与最长边界平行且每条割草航线均不超出多边形作业子区域的边界。
可选地,在一些实施例中,当作业子区域为三角形作业子区域时,在三角形作业子区域内排列生成多条等间距的割草航线,每条割草航线均与三角形作业子区域的最长边界平行且每条割草航线均不超出三角形作业子区域的边界。
在一个具体的实施例中,从任意一个作业子区域的区域信息中提取区域面积和区域形状,由该区域面积和该区域形状确定该作业子区域为5X5平方米的正方形作业子区域时,假设割草机器人沿直线行驶1米时割草面积为1平方米,则在该正方形作业子区域内生成至少5条并列的割草航线,每条割草航线均与正方形作业子区域的其中一条边界平行,每条割草航线均不超出正方形作业子区域的边界。
S4、将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业。
请参阅图4,图4为本申请实施例提供的将作业子区域的割草航线进行连接的示意图。在划分出多个作业子区域后,割草机器人起始点所在的作业子区域为第一作业子区域101,假设划分得到两个作业子区域,则割草机器人终止点所在的作业子区域为第二作业子区域102。在第一作业子区域101与第二作业子区域102交界处,第一作业子区域101的割草航线的终止点与第二作业子区域102的割草航线的起始点相连,实现两个作业子区域的割草航线连接。两个作业子区域的割草航线连接后,割草机器人从第一作业子区域101的割草航线的 起始点不停地行驶至第二作业子区域102的割草航线的终止点。
可选地,步骤“将生成的割草航线进行连接”,可以包括:
(41)检测相邻割草航线的路线方向。
(42)基于路线方向将生成的割草航线进行连接。
可以理解的是,当划分得到的作业子区域为两个以上时,以三个作业子区域为例,需要检测与第一作业子区域101相邻的作业子区域的割草航线的路线方向,若其余两个中的一个作业子区域的割草航线的路线方向与第一作业子区域101的割草航线的路线方向一致,则将该作业子区域确定为第二作业子区域102,连接第一作业子区域101与第二作业子区域102的割草航线,并将两个中的另一个作业子区域确定为第三作业子区域,且将割草机器人终止点确定在第三作业子区域。
在本申请提供的割草方案中,对预设作业区域进行划分,得到多个作业子区域,并根据作业子区域的区域信息,生成每个作业子区域对应的割草航线,有利于针对每个作业子区域生成更合理的割草航线,实现改变原来固定的航线,最后将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业,使得各个作业子区域对应的割草航线连接起来得到更少拐角、更长的割草航线,从而扩大割草机器人的实际工作面积,进而提高割草机器人的割草效率。
为便于更好的实施本申请实施例的割草方法,本申请实施例还提供一种基于上述割草装置。其中名词的含义与上述割草方法中相同,具体实现细节可以参考方法实施例中的说明。
请参阅图5,图5为本申请实施例提供的割草装置的第一结构示意图,其中该割草装置可以包括获取模块201、分区模块202、生成模块203以及控制模块204,具体可以如下:
获取模块201,用于响应针对割草机器人的割草触发请求,获取预设作业区域。
分区模块202,用于对预设作业区域进行划分,得到多个作业子区域。
可选地,在一些实施例中,分区模块202具体可以包括:
检测单元,用于检测预设作业区域是否为异形区域;
分区单元,用于当检测到预设作业区域为异形区域时,基于预置策略对预设作业区域进行划分,得到多个作业子区域。
可选地,在一些实施例中,分区单元具体可以包括:
获取子单元,用于当检测到预设作业区域为异形区域时,获取预设的区域划分图形;
划分子单元,用于基于区域划分图形对预设作业区域进行划分;
判断子单元,用于检测划分得到的图形区域是否满足预设区域划分规则;
确认子单元,用于当检测到划分得到的图形区域满足预设区域划分规则时,则将划分得到的图形区域确定为作业子区域。
可选地,在一些实施例中,划分子单元还用于:当作业子区域为所有边相互不平行的多边形作业子区域时,对作业分区进行划分得到作业子区域的作业子区域;循环上述步骤,直至每个作业子区域均为至少具有一组对边平行的多边形作业子区域。
可选地,在一些实施例中,请参阅图6,图6为本申请实施例提供的割草装置的第二结构示意图。本申请的割草装置具体还可以包括检测模块205,该检测模块205具体可以用于:检测预设作业区域的边界数量;当检测到边界数量大于预设值时,则执行生成每个作业子区域对应的割草航线的步骤;当检测到边界数量小于或等于预设值时,则生成预设作业区域对应的目标割草航线,并基于目标割草航线控制割草机器人执行割草作业。
可选地,在一些实施例中,检测模块205在预设作业区域生成的目标割草航线,每条目标割草航线均与三角形预设作业区域的最长边界平行且每条目标割草航线均不超出三角形预设作业区域的边界。
生成模块203,用于根据作业子区域的区域信息,生成每个作业子区域对应的割草航线。
可选地,在一些实施例中,生成模块203具体可以包括:
提取单元,用于从作业子区域的区域信息中提取区域面积和区域形状。
生成单元,用于基于区域面积和区域形状,生成每个作业子区域对应的割草航线。
控制模块204,用于将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业。
可选地,在一些实施例中,控制模块204具体可以包括:
方向检测单元,用于检测相邻割草航线的路线方向。
连接操作单元,用于基于路线方向将生成的割草航线进行连接。
本申请实施例获取模块201响应针对割草机器人的割草触发请求,获取预设作业区域,然后,分区模块202对预设作业区域进行划分,得到多个作业子区域,接着,生成模块203根据作业子区域的区域信息,生成每个作业子区域对应的割草航线,最后,控制模块204将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业。在本申请提供的割草方案中,对预设作业区域进行划分,得到多个作业子区域,并根据作业子区域的区域信息,生成每个作业子区域对应的割草航线,有利于针对每个作业子区域生成更合理的割草航线,实现改变原来固定的航线,最后将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业,使得各个作业子区域对应的割草航线连接起来得到更少拐角、更长的割草航线,从而扩大割草机器人的实际工作面积,进而提高割草机器人的割草效率。
此外,本申请实施例还提供一种割草机器人,如图7所示,其示出了本申请实施例所涉及的割草机器人的结构示意图,具体来讲:
该割草机器人可以包括控制模块501、行进机构502、切割模块503以及电源504等部件。本领域技术人员可以理解,图7中示出的割草机器人结构并不构成对本实施例中割草机器人的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
控制模块501是该割草机器人的控制中心,该控制模块501具体可以包括中央处理器(Central Process Unit,CPU)、存储器、输入/输出端口、系统总线、定时器/计数器、数模转换器和模数转换器等组件,CPU通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行割草机器人的各种功能和处理数据;优选的,CPU可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到 CPU中。
存储器可用于存储软件程序以及模块,CPU通过运行存储在存储器的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据割草机器人的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器还可以包括存储器控制器,以提供CPU对存储器的访问。
行进机构502与控制模块501电性相连,用于响应控制模块501传递的控制信号,调整割草机器人的行进速度和行进方向,实现割草机器人的自移动功能。
切割模块503与控制模块501电性相连,用于响应控制模块传递的控制信号,调整切割刀盘的高度和转速,实现割草作业。
电源504可以通过电源管理系统与控制模块501逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源504还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管未示出,该割草机器人还可以包括通信模块、传感器模块、提示模块等,在此不再赘述。
通信模块用于收发信息过程中信号的接收和发送,通过与用户设备、基站或服务器建立通信连接,实现与用户设备、基站或服务器之间的信号收发。
传感器模块用于采集内部环境信息或外部环境信息,并将采集到的环境数据反馈给控制模块进行决策,实现割草机器人的精准定位和智能避障功能。可选地,传感器可以包括:超声波传感器、红外传感器、碰撞传感器、雨水感应器、激光雷达传感器、惯性测量单元、轮速计、图像传感器、位置传感器及其他传感器,对此不做限定。
提示模块用于提示用户当前割草机器人的工作状态。本方案中,提示模块包括但不限于指示灯、蜂鸣器等。例如,割草机器人可以通过指示灯提示用户当前的电源状态、电机的工作状态、传感器的工作状态等。又例如,当检测到 割草机器人出现故障或被盗时,可以通过蜂鸣器实现告警提示。
具体在本实施例中,控制模块501中的处理器会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行文件加载到存储器中,并由处理器来运行存储在存储器中的应用程序,从而实现各种功能,如下:
响应针对割草机器人的割草触发请求,获取预设作业区域;对预设作业区域进行划分,得到多个作业子区域;根据作业子区域的区域信息,生成每个作业子区域对应的割草航线;将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
本申请实施例响应针对割草机器人的割草触发请求,获取预设作业区域,然后,对预设作业区域进行划分,得到多个作业子区域,接着,根据作业子区域的区域信息,生成每个作业子区域对应的割草航线,最后,将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业。在本申请提供的割草方案中,对预设作业区域进行划分,得到多个作业子区域,并根据作业子区域的区域信息,生成每个作业子区域对应的割草航线,有利于针对每个作业子区域生成更合理的割草航线,实现改变原来固定的航线,最后将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业,使得各个作业子区域对应的割草航线连接起来得到更少拐角、更长的割草航线,从而扩大割草机器人的实际工作面积,进而提高割草机器人的割草效率。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本申请实施例提供一种存储介质,其中存储有多条指令,该指令能够被处理器进行加载,以执行本申请实施例所提供的任一种割草方法中的步骤。例如,该指令可以执行如下步骤:
响应针对割草机器人的割草触发请求,获取预设作业区域;对预设作业区域进行划分,得到多个作业子区域;根据作业子区域的区域信息,生成每个作业子区域对应的割草航线;将生成的割草航线进行连接,并基于连接后的割草航线控制割草机器人执行割草作业。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
其中,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
由于该存储介质中所存储的指令,可以执行本申请实施例所提供的任一种割草方法中的步骤,因此,可以实现本申请实施例所提供的任一种割草方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
以上对本申请实施例所提供的一种割草方法、装置、割草机器人以及存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种割草方法,其中,包括:
    响应针对割草机器人的割草触发请求,获取预设作业区域;
    对所述预设作业区域进行划分,得到多个作业子区域;
    根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线;
    将生成的割草航线进行连接,并基于连接后的割草航线控制所述割草机器人执行割草作业。
  2. 根据权利要求1所述的方法,其中,所述对所述预设作业区域进行划分,得到多个作业子区域,包括:
    检测所述预设作业区域是否为异形区域;
    当检测到所述预设作业区域为异形区域时,基于预置策略对所述预设作业区域进行划分,得到多个作业子区域。
  3. 根据权利要求2所述的方法,其中,所述当检测到所述预设作业区域为异形区域时,基于预置策略对所述预设作业区域进行划分,得到多个作业子区域,包括:
    当检测到所述预设作业区域为异形区域时,获取预设的区域划分图形;
    基于所述区域划分图形对所述预设作业区域进行划分;
    检测划分得到的图形区域是否满足预设区域划分规则;
    当检测到划分得到的图形区域满足预设区域划分规则时,则将划分得到的图形区域确定为作业子区域。
  4. 根据权利要求1至3任一项所述的方法,其中,所述预设作业区域为多条线段依次连接形成的闭合区域,每条所述线段均为所述预设作业区域的边界;所述对所述预设作业区域进行划分,得到多个作业子区域之前,还包括:
    检测所述预设作业区域的边界数量;
    当检测到所述边界数量大于预设值时,则执行生成每个所述作业子区域对应的割草航线的步骤;
    当检测到所述边界数量小于或等于预设值时,则生成所述预设作业区域对应的目标割草航线,并基于所述目标割草航线控制所述割草机器人执行割草作 业。
  5. 根据权利要求4所述的方法,其中,每条所述目标割草航线均与三角形预设作业区域的最长边界平行且每条所述目标割草航线均不超出所述三角形预设作业区域的边界。
  6. 根据权利要求5所述的方法,其中,所述根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线,包括:
    从所述作业子区域的区域信息中提取区域面积和区域形状;
    基于所述区域面积和区域形状,生成每个所述作业子区域对应的割草航线。
  7. 根据权利要求5所述的方法,其中,所述将生成的割草航线进行连接,包括:
    检测相邻割草航线的路线方向;
    基于所述路线方向将生成的割草航线进行连接。
  8. 一种割草装置,其中,包括:
    获取模块,用于响应针对割草机器人的割草触发请求,获取预设作业区域;
    分区模块,用于对所述预设作业区域进行划分,得到多个作业子区域;
    生成模块,用于根据所述作业子区域的区域信息,生成每个所述作业子区域对应的割草航线;
    控制模块,用于将生成的割草航线进行连接,并基于连接后的割草航线控制所述割草机器人执行割草作业。
  9. 一种割草机器人,其中,包括存储器,处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1-7任一项所述割草方法的步骤。
  10. 一种存储介质,其中,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述割草方法的步骤。
PCT/CN2023/102718 2022-06-30 2023-06-27 割草方法、装置、割草机器人以及存储介质 WO2024002061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210770697.5A CN115039561A (zh) 2022-06-30 2022-06-30 割草方法、装置、割草机器人以及存储介质
CN202210770697.5 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024002061A1 true WO2024002061A1 (zh) 2024-01-04

Family

ID=83165618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102718 WO2024002061A1 (zh) 2022-06-30 2023-06-27 割草方法、装置、割草机器人以及存储介质

Country Status (2)

Country Link
CN (1) CN115039561A (zh)
WO (1) WO2024002061A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115039561A (zh) * 2022-06-30 2022-09-13 松灵机器人(深圳)有限公司 割草方法、装置、割草机器人以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170322559A1 (en) * 2014-12-11 2017-11-09 Yanmar Co., Ltd. Work vehicle
CN108981710A (zh) * 2018-08-07 2018-12-11 北京邮电大学 一种移动机器人的全覆盖路径规划方法
CN110801180A (zh) * 2018-08-03 2020-02-18 速感科技(北京)有限公司 清洁机器人的运行方法及装置
CN112445212A (zh) * 2019-08-16 2021-03-05 苏州科瓴精密机械科技有限公司 路径规划方法、系统,机器人及可读存储介质
US20210168996A1 (en) * 2019-12-06 2021-06-10 Lg Electronics Inc. Mapping method of lawn mower robot
CN113110471A (zh) * 2021-04-25 2021-07-13 珠海格力电器股份有限公司 设备作业路径规划方法、装置、计算机设备和存储介质
CN115039561A (zh) * 2022-06-30 2022-09-13 松灵机器人(深圳)有限公司 割草方法、装置、割草机器人以及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106127820A (zh) * 2016-06-30 2016-11-16 北京合众思壮科技股份有限公司 一种不规则地形的面积确定方法及装置
DE102017103141A1 (de) * 2017-02-16 2018-08-16 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Landwirtschaftliches Maschinensystem und Verfahren zur Planung von Fahrspuren zur Bearbeitung einer landwirtschaftlichen Fläche
CN106708060B (zh) * 2017-02-21 2020-01-10 昂海松 一种无外部导航信息的割草机自主有序割草方法
WO2019096264A1 (zh) * 2017-11-16 2019-05-23 南京德朔实业有限公司 智能割草系统
WO2020090589A1 (ja) * 2018-10-30 2020-05-07 株式会社ナイルワークス 運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
CN114296446A (zh) * 2021-12-06 2022-04-08 深圳市杉川机器人有限公司 一种自移动设备的行走路径规划方法、系统及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170322559A1 (en) * 2014-12-11 2017-11-09 Yanmar Co., Ltd. Work vehicle
CN110801180A (zh) * 2018-08-03 2020-02-18 速感科技(北京)有限公司 清洁机器人的运行方法及装置
CN108981710A (zh) * 2018-08-07 2018-12-11 北京邮电大学 一种移动机器人的全覆盖路径规划方法
CN112445212A (zh) * 2019-08-16 2021-03-05 苏州科瓴精密机械科技有限公司 路径规划方法、系统,机器人及可读存储介质
US20210168996A1 (en) * 2019-12-06 2021-06-10 Lg Electronics Inc. Mapping method of lawn mower robot
CN113110471A (zh) * 2021-04-25 2021-07-13 珠海格力电器股份有限公司 设备作业路径规划方法、装置、计算机设备和存储介质
CN115039561A (zh) * 2022-06-30 2022-09-13 松灵机器人(深圳)有限公司 割草方法、装置、割草机器人以及存储介质

Also Published As

Publication number Publication date
CN115039561A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2024002061A1 (zh) 割草方法、装置、割草机器人以及存储介质
WO2024001880A1 (zh) 智能避障方法、装置、割草机器人以及存储介质
US11573576B2 (en) Method for controlling a drone, drone and system
WO2024022337A1 (zh) 障碍物检测方法、装置、割草机器人以及存储介质
WO2024017034A1 (zh) 路径规划方法、装置、割草机器人以及存储介质
WO2024012286A1 (zh) 割草方法、装置、割草机器人以及存储介质
WO2023246802A1 (zh) 割草方法、装置、割草机器人以及存储介质
WO2024008018A1 (zh) 割草方法、装置、割草机器人以及存储介质
CN110956327B (zh) 一种多机器人自动停靠方法、介质、终端和装置
CN111290403B (zh) 搬运自动导引运输车的运输方法和搬运自动导引运输车
WO2024016958A1 (zh) 割草方法、装置、割草机器人以及存储介质
WO2024017032A1 (zh) 割草机器人回充方法、割草机器人以及存储介质
WO2024008016A1 (zh) 作业地图构建方法、装置、割草机器人以及存储介质
CN108172024A (zh) 一种基于智能泊车的停车场管理系统
CN103472839A (zh) 一种基于双核四轮微电脑鼠快速探索控制器
CN203909615U (zh) 基于arm9四轮快速微电脑鼠连转冲刺伺服系统
CN108227720A (zh) 一种四轮驱动高速全天候无人驾驶巡逻车系统
CN115053690A (zh) 割草方法、装置、割草机器人以及存储介质
CN203535485U (zh) 基于arm9两轮微电脑鼠探索控制器
CN115214635A (zh) 无人车的越障方法、装置、无人车及存储介质
CN114355867B (zh) 多agv无冲突无死锁的运动规划方法及装置
CN203786558U (zh) 一种基于arm9两轮微电脑鼠快速连转冲刺伺服系统
CN203643841U (zh) 一种基于arm9两轮微电脑鼠快速对角线冲刺系统
CN116360443A (zh) 路线规划方法、装置、割草机器人以及存储介质
Rajasekhar et al. IoT Enabled Multi-level Smart Parking System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830238

Country of ref document: EP

Kind code of ref document: A1