WO2024002036A1 - 硅铝分子筛-加氢金属组分-氧化铝复合物、其制备及应用 - Google Patents

硅铝分子筛-加氢金属组分-氧化铝复合物、其制备及应用 Download PDF

Info

Publication number
WO2024002036A1
WO2024002036A1 PCT/CN2023/102547 CN2023102547W WO2024002036A1 WO 2024002036 A1 WO2024002036 A1 WO 2024002036A1 CN 2023102547 W CN2023102547 W CN 2023102547W WO 2024002036 A1 WO2024002036 A1 WO 2024002036A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
molecular sieve
hours
composite
silica
Prior art date
Application number
PCT/CN2023/102547
Other languages
English (en)
French (fr)
Inventor
王闻年
高焕新
贾银娟
胥明
刘远林
姚晖
魏一伦
尤丹丹
Original Assignee
中国石油化工股份有限公司
中石化(上海)石油化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化(上海)石油化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024002036A1 publication Critical patent/WO2024002036A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7476MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/74Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition with simultaneous hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the field of catalyst technology, specifically to a silica-alumina molecular sieve-hydrogenation metal component-alumina composite suitable for use as a catalytically active component, its preparation and application.
  • Cyclohexylbenzene is an important chemical intermediate that can be used to prepare phenol and cyclohexanone through oxidation. It can also be used as an additive to the electrolyte of lithium-ion secondary batteries to prevent overcharge. Because of its high cetane number, it can also be used as a blending component of diesel cetane number.
  • WO001244A discloses a method of using solid acid Y molecular sieve as a catalyst to catalyze the alkylation of benzene and cyclohexene to synthesize cyclohexylbenzene, but the yield of cyclohexylbenzene in this process is less than 90%.
  • CN104513122A discloses a method for synthesizing cyclohexylbenzene by liquid-phase alkylation of benzene and cyclohexene. MWW molecular sieve is used as a catalyst to alkylate a mixture of cyclohexene and cyclohexane with benzene to obtain cyclohexylbenzene. The olefin conversion rate is relatively high, and the cyclohexylbenzene yield reaches over 90%.
  • CN108435234A discloses a method for using heteropolyacid as a catalyst to catalyze the alkylation of benzene and cyclohexene to prepare cyclohexylbenzene.
  • the yield of cyclohexylbenzene reaches 96%, and the catalyst can be reused 10 times.
  • the conversion rate is 86%.
  • the alkylation method of benzene and cyclohexene has a higher yield of cyclohexylbenzene, industrially cyclohexene comes from the selective hydrogenation of benzene.
  • the boiling points of cyclohexene and benzene are close, making separation difficult. Therefore, the cost of cyclohexene is higher.
  • Benzene hydroalkylation technology has the characteristics of simple and easily available raw materials and short process. It is another ideal choice for the production of cyclohexylbenzene.
  • US4094918 discloses a four-component catalyst using 13X molecular sieve as a carrier. The catalyst exhibits excellent hydroalkylation performance. Since then, hydroalkylation catalysts using molecular sieves as the alkylation component have been extensively developed.
  • US5053571, US5146024, US6037513, and CN103261126A respectively disclose the use of ⁇ molecular sieves, X or Y molecular sieves, and MCM-22 molecular sieves as alkylation components in hydroalkylation reactions.
  • the molecular sieve and the carrier used in the hydroalkylation catalyst are independent of each other, which results in the catalyst not being well coupled during the hydrogenation and alkylation processes, resulting in Causes excessive hydrogenation of benzene and produces a higher content of cyclohexane as a by-product.
  • cyclohexane cannot continue to be utilized in the system, resulting in a waste of benzene resources; on the other hand, the boiling points of benzene and cyclohexane are very close, making separation difficult, resulting in increased reaction energy consumption.
  • this application provides a silica-alumina molecular sieve-hydrogenation metal component-alumina composite, its preparation and application.
  • the composite is particularly suitable for use as a catalytically active component of a hydrogenation alkylation catalyst. Catalyzes the hydroalkylation reaction of aromatic hydrocarbons.
  • the present application provides a silica-alumina molecular sieve-hydrogenation metal component-alumina composite, including silica-alumina molecular sieve, alumina and hydrogenation metal component, wherein the composite At least part of the silica-alumina molecular sieve is combined with at least part of the alumina through chemical bonds, so that the infrared spectrum of the composite shows a characteristic peak at 860-900 cm -1 .
  • a method for preparing the silica-alumina molecular sieve-hydrogenation metal component-alumina composite of the present application including the following steps:
  • the present application provides a silica-alumina molecular sieve catalyst, including a binder and the silica-alumina molecular sieve-hydrogenation metal component-alumina composite of the present application, wherein, based on the total mass of the catalyst, the The aluminum content of the catalyst (calculated as alumina) is 10-85% by weight, the silicon content (calculated as silicon oxide) is 10-85% by weight, and the hydrogenation metal component content (calculated as metal) is 0.01-5% by weight.
  • a method for preparing a silica-alumina molecular sieve catalyst including the following steps:
  • silica-aluminum molecular sieve-hydrogenation metal component-alumina composite of the present application or prepare the silica-aluminum molecular sieve-hydrogenation metal component according to the method for preparing the silica-aluminum molecular sieve-hydrogenation metal component-alumina composite of the present application.
  • silica-alumina molecular sieve-hydrogenation metal component-alumina composite and the binder source are kneaded into shape, roasted, and optionally activated to obtain the catalyst.
  • silica-alumina molecular sieve catalyst prepared according to the method for preparing a silica-alumina molecular sieve catalyst of the present application is provided.
  • the application of the silica-aluminum molecular sieve catalyst of the present application in aromatic hydroalkylation reaction includes contacting and reacting aromatic hydrocarbon raw materials and alkylation reagents with the silica-aluminum molecular sieve catalyst in the presence of hydrogen.
  • the present application provides a method for synthesizing cyclohexylbenzene, which includes the following steps: contacting and reacting benzene with the silica-aluminum molecular sieve catalyst of the present application in the presence of hydrogen to obtain cyclohexylbenzene.
  • the silica-alumina molecular sieve catalyst using the silica-alumina molecular sieve-hydrogenation metal component-alumina composite of the present application as a catalytically active component has good catalytic activity and Selectivity, especially when used in the reaction of benzene hydroalkylation to prepare cyclohexylbenzene, can avoid excessive hydrogenation of benzene, reduce the selectivity of the by-product cyclohexane, improve the utilization of benzene and reduce the energy consumption of reaction separation. .
  • Figure 1 is a diagram showing the long-term operation results of the silica-alumina molecular sieve catalyst obtained in Example 1 and Comparative Example 1 of the present application;
  • Figure 2 is an infrared spectrum of the Y-Ru/Al 2 O 3 composite obtained in Example 1;
  • Figure 3 is the infrared spectrum of the Y-Ru/Al 2 O 3 composite obtained in Comparative Example 1.
  • any specific numerical values disclosed herein are not limited to Rather than the precise value of the numerical value, it should be understood that it also encompasses values close to the precise value, such as all possible values within ⁇ 5% of the precise value.
  • one or more new values can be obtained by any combination between the endpoint values of the range, between the endpoint value and the specific point value within the range, and between each specific point value. Numerical ranges, these new numerical ranges should also be deemed to be specifically disclosed herein.
  • hydrogenating metal component refers to metals, metal oxides, other metal compounds with hydrogenation activity, or their mixtures.
  • compositions of the silica-alumina molecular sieve-hydrogenation metal component-alumina composite and the silica-alumina molecular sieve catalyst are determined by X-ray fluorescence (XRF) analysis, and are consistent with the dosage ratios of relevant raw materials during preparation.
  • XRF X-ray fluorescence
  • the molecular sieve crystallinity of the silica-alumina molecular sieve-hydrogenation metal component-alumina composite and the silica-alumina molecular sieve catalyst was measured by the X-ray diffraction (XRD) method.
  • the sample was dried at 120°C for 2 hours before testing.
  • the crystallinity of the sample was calculated from the peak area of the 2theta diffraction peak between 5-40° on the XRD spectrum.
  • the surface hydrogenation metal percentage of the silica-aluminum molecular sieve-hydrogenation metal component-alumina composite is measured by the X-ray photoelectron spectroscopy (XPS) method; the total hydrogenation metal percentage of the composite is The component content was determined by X-ray fluorescence spectroscopy (XRF) method.
  • the pressures given are gauge pressures.
  • any issues or matters not mentioned are directly applicable to aspects known in the art without any changes.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby are regarded as part of the original disclosure or original record of this application and shall not be It is regarded as new content that has not been disclosed or expected in this article, unless those skilled in the art believe that the combination is obviously unreasonable.
  • the present application provides a silica-alumina molecular sieve-hydrogenation metal component-alumina composite, including silica-alumina molecular sieve, alumina and hydrogenation metal component, wherein the composite At least part of the silica-alumina molecular sieve is chemically bonded to at least part of the alumina Combined, the infrared spectrum of the complex shows characteristic peaks at 860-900 cm -1 .
  • the silica-aluminum molecules are selected from molecular sieves with a ten-membered ring or twelve-membered ring pore structure, or a combination thereof, and are more preferably selected from ⁇ , Y, MCM-22, PSH-3, SSZ -25, MCM-49, MCM-56 molecular sieves, or their combinations, particularly preferably selected from ⁇ , Y, MCM-22 molecular sieves, or their combinations.
  • the type of hydrogenation active metal in the hydrogenation metal component is not particularly limited, and can be various hydrogenation active metals commonly used in this field.
  • the hydrogenation active metal in the hydrogenation metal component is selected from Group VIB metals, Group VIII metals of the periodic table of elements, or combinations thereof, and is more preferably selected from Ru, Pd, Pt, Ni, Co, Mo, W, or combinations thereof, particularly preferably selected from Pd, Ru, Ni, or combinations thereof.
  • the use of the above-mentioned preferred hydrogenation active metals is beneficial to improving the overall performance of the catalyst.
  • the composite has a molecular sieve crystallinity of 50-75%, preferably 50-70%, as detected by XRD.
  • the silicon content (calculated as silicon oxide) of the composite is 5-65wt%, preferably 15-50wt%, and the aluminum content (calculated as alumina) is 30-94.99wt%, preferably 50-85%, and the hydrogenation metal component content (based on metal) is 0.01-5wt%, preferably 0.1-3wt%.
  • the ratio of the surface hydrogenation metal percentage of the composite measured by the XPS method to the total hydrogenation metal percentage of the composite measured by the XRF method is 0.1-25 %, preferably 5-20%.
  • the complex of the present application is prepared by a method including the following steps:
  • each feature of step 1) to step 3) is as described in the second aspect below.
  • the present application provides a method for preparing a silica-alumina molecular sieve-hydrogenation metal component-alumina composite, including the following steps:
  • modified activated alumina after loading a hydrogenation metal component is used as a solid aluminum source.
  • the silica-aluminum molecular sieve is synthesized through hydrothermal crystallization, so that the molecular sieve is formed on the surface of alumina loaded with hydrogenation active metals, so that most of the hydrogenation active metals are sandwiched between the molecular sieve and alumina, which is more Helps improve the coupling of hydrogenation and alkylation reactions, especially in the reaction of hydrogenation and alkylation of benzene to prepare cyclohexylbenzene, which can avoid excessive hydrogenation of benzene caused by too long diffusion paths, thereby reducing the by-product cyclohexane. Selectivity, improve benzene utilization and reduce reaction separation energy consumption.
  • Suitable hydrated aluminas include, but are not limited to, pseudoboehmite, alumina trihydrate, boehmite, amorphous aluminum hydroxide, or mixtures thereof, with pseudoboehmite being preferred.
  • the conditions for the first roasting and the second roasting in step 1) each independently include: the roasting temperature is 500-650°C, preferably 550-600°C, and/or the roasting time is 0.5-5 hours, preferably 2-4.5 hours.
  • the "ammonium salt solution treatment” is treated with an acidic ammonium salt solution, such as ammonium chloride solution, ammonium nitrate solution, ammonium sulfate solution, etc.
  • the conditions for the ammonium salt solution treatment in step 1) include: hydrated alumina (based on the weight after roasting at 550°C for 5 hours), the mass ratio of ammonium salt to water is 1:1-15 ⁇ 1-15, preferably 1:1-2:1-5; exchange temperature is 25-100°C, preferably 60-90°C; and/or during exchange The time is 0.5-5 hours, preferably 1-2 hours.
  • the activated alumina base material used as a raw material for preparing molecular sieves is synthesized by using hydrated alumina as raw material through roasting, ammonium salt solution treatment and secondary roasting treatment, which can improve the molecular sieve.
  • the degree of crystallinity is more conducive to the synergistic cooperation between the obtained molecular sieve and the metal component to jointly improve the performance of the catalyst using it as the active component, especially in the reaction of benzene hydrogenation alkylation to prepare cyclohexylbenzene, which can be better Reduce the selectivity of the by-product cyclohexane.
  • the hydrogenation active metal in the hydrogenation metal component is selected from Group VIB metals, Group VIII metals of the periodic table of elements, or combinations thereof, and is more preferably selected from Ru, Pd, Pt, Ni, Co, Mo, W, or combinations thereof, particularly preferably selected from Pd, Ru, Ni, or combinations thereof.
  • the loading in step (2) is achieved by impregnation, preferably by equal volume impregnation. Further preferably, the loading of step (2) is implemented in the following manner: contacting the activated alumina substrate with an aqueous solution containing a soluble salt of a hydrogenation active metal, the contact temperature is 0-50°C, and the contact time is 0.5 -12 hours, wherein the hydrogenation active metal is as described above and will not be described again.
  • the step (3) is implemented in the following manner: the modified activated alumina substrate, silicon source, alkali source, optional structure directing agent or template agent, and water are heated in a hydrothermal React under crystallization conditions to obtain the complex.
  • the hydrothermal crystallization conditions include: the hydrothermal crystallization temperature is 80-250°C, preferably 100-180°C, and/or the hydrothermal crystallization time is 20-60 hours, preferably 28 -48 hours.
  • different reaction conditions are adopted for different target molecular sieves.
  • the temperature of the hydrothermal crystallization can be, for example, 80-120°C, preferably 95-105°C. °C
  • the hydrothermal crystallization time can be, for example, 20-60 hours, preferably 28-36 hours.
  • the silicon source is selected from water glass, silica sol, sodium silicate, or a combination thereof;
  • the alkali source is selected from an alkali metal hydroxide, ammonia water, or a combination thereof;
  • the directing or templating agent is selected from tetramethylammonium bromide, tetraethylammonium bromide and hexamethyleneimine.
  • the silica-alumina molecular sieve obtained at this time is MCM-22 molecular sieve.
  • the silica-alumina molecular sieve obtained at this time is ⁇ molecular sieve.
  • the silica-alumina molecular sieve-hydrogenation metal component-alumina composite can be obtained by washing with deionized water and then drying.
  • the drying can be performed under normal pressure or under reduced pressure.
  • the drying temperature can be 40-250°C, preferably 60-150°C; the drying time can be 8-36 hours, preferably 12-24 hours.
  • the present application provides a silica-alumina molecular sieve catalyst, comprising a binder and a silica-alumina molecular sieve-hydrogenation metal component-alumina composite of the present application, wherein, based on the total mass of the catalyst, the The aluminum content (calculated as alumina) of the catalyst is 10-85% by weight, preferably 15-80% by weight, the silicon content (calculated as silicon oxide) is 10-85% by weight, preferably 15-80% by weight, and the hydrogenation metal The component content (based on metal) is 0.01-5% by weight, preferably 0.1-3% by weight.
  • the binder is not particularly limited and may be those conventionally used in catalyst preparation in the art.
  • the binder is an inorganic oxide, preferably an oxide selected from the group consisting of Group IIA, Group IVB, Group IIIA and Group IVA elements of the periodic table of elements, or a combination thereof, more preferably from aluminum oxide, silicon oxide, titanium oxide or combinations thereof.
  • the use of the above-mentioned preferred binders is beneficial to improving the overall performance of the catalyst.
  • the shape of the silica-alumina molecular sieve catalyst is not particularly limited and can be in any physical form, such as powder, granular or molded form, such as sheet, strip, or clover.
  • silica-alumina molecular sieve catalyst of the present application most of the hydrogenation active metals are sandwiched between the silica-alumina molecular sieve and alumina, rather than dispersed on the outer surface of the molecular sieve, which is more conducive to Improve coupling of hydrogenation and alkylation reactions, thereby improving catalysis
  • the agent has high reactivity and selectivity in the hydroalkylation reaction of aromatic hydrocarbons, especially the reaction of benzene hydroalkylation to prepare cyclohexylbenzene.
  • a method for preparing a silica-alumina molecular sieve catalyst including the following steps:
  • silica-alumina molecular sieve-hydrogenation metal component-alumina composite and the binder source are kneaded into shape, roasted, and optionally activated to obtain the catalyst.
  • the binder source is not particularly limited and may be those conventionally used in catalyst preparation in the art.
  • the binder source is an inorganic oxide or those that can be converted into an inorganic oxide under calcining conditions.
  • the inorganic oxide is preferably selected from Group IIA, Group IVB, Oxides of Group IIIA and Group IVA elements or combinations thereof are more preferably selected from alumina, silicon oxide or combinations thereof.
  • the binder source may be alumina.
  • step II the kneading and forming can be carried out by conventional methods in the art, such as extrusion, which is not strictly limited in this application.
  • the resulting molded product is dried after kneading and molding.
  • the drying can be carried out in a conventional manner in the art.
  • the drying conditions include: a temperature of 40-250°C, preferably 60-150°C; a drying time of 8-30 hours, preferably 10-20 hours.
  • the drying can be performed under normal pressure or under reduced pressure.
  • the roasting can be carried out in a conventional manner in the art.
  • the calcination conditions include: calcination temperature is 300-650°C, preferably 400-600°C, and/or calcination time is 1-10 hours, preferably 3-6 hours.
  • the calcination is performed in an oxygen-containing atmosphere, such as air or oxygen atmosphere.
  • the activation described in step II) includes: sequentially performing ammonium exchange and reduction on the shaped solid after roasting in step II).
  • the ammonium exchange conditions include: the mass ratio of the shaped solid, ammonium salt and water is 1:1-15:1-15, and the exchange temperature is 25-100°C, preferably 60-90°C. , the exchange time is 0.5-5 hours, preferably 1-2 hours. Further preferably, after ammonium exchange, deionized water is used for washing and then drying. The drying can be performed under normal pressure or under reduced pressure, and the drying temperature can be 40-250°C, preferably 60-150°C; The drying time can be 8-36 hours, preferably 12-24 hours.
  • the reduction conditions include: reduction in a hydrogen atmosphere, the reduction temperature is 100-500°C, preferably 190-400°C, the reduction time is 0.5-12 hours, preferably 3-5 hours, the volume of hydrogen
  • the airspeed is 100-600h -1 , preferably 300-400h -1 .
  • the silica-aluminum molecular sieve catalyst can be made into any physical form, such as powder, granular or molded shape, such as sheet, strip, clover-like shape.
  • This application has no special limitation on this. , correspondingly these physical forms can be obtained in any manner conventionally known in the art.
  • a silica-alumina molecular sieve catalyst prepared according to the method for preparing a silica-alumina molecular sieve catalyst of the present application is provided.
  • the present application provides a method for hydroalkylation of aromatic hydrocarbons, which includes contacting an aromatic hydrocarbon feedstock and an alkylation reagent with a silica-aluminum molecular sieve catalyst according to the third or fifth aspect of the present application in the presence of hydrogen. Hydroalkylation reaction.
  • the aromatic hydrocarbon feedstock is selected from benzene, toluene, xylene, or combinations thereof.
  • reaction temperature is 80-200°C
  • reaction pressure is 0.1-2.0MPa
  • molar ratio of hydrogen to benzene is 0.1-20.0
  • benzene mass space velocity is 0.1-2.0h -1 .
  • a method for synthesizing cyclohexylbenzene including the following steps: contacting and reacting benzene with the silica-aluminum molecular sieve catalyst according to the third or fifth aspect of the present application in the presence of hydrogen to obtain cyclohexylbenzene.
  • reaction conditions include: reaction temperature is 80-200°C, reaction pressure is 0.1-2.0MPa, molar ratio of hydrogen to benzene is 0.1-20.0, and benzene mass space velocity is 0.1-2.0h -1 .
  • the model of the X-ray fluorescence spectrometer was the AxiosmAX type X-ray fluorescence spectrometer from Panak of the Netherlands, and the standard-free quantitative method was used for quantification.
  • the model of the X-ray photoelectron spectrometer is the American Thermo Fisher K-Alpha spectrometer.
  • the best resolution is ⁇ 30 ⁇ m
  • the best energy resolution is ⁇ 0.5eV FWHM
  • the C1s energy resolution is ⁇ 0.85eV.
  • Use Al K ⁇ target (hv 1486.68eV)
  • ion source energy range 100 to 3keV
  • maximum beam current 4 ⁇ A
  • optimal vacuum of the analysis chamber 5 ⁇ 10 -9 mbar.
  • the surface was not sputtered.
  • X-ray diffraction analysis Use the powder XRD method to conduct phase analysis on the sample, and calculate the relative crystallinity and skeleton silicon-aluminum ratio.
  • the instrument used was a Japanese Rigaku D/max-1400 X-ray powder diffractometer. Using Cu-K ⁇ radiation (wavelength is ), the tube current is 40mA, the tube voltage is 40kV, and the scanning angle range of phase analysis is 5-50°.
  • the raw materials and reagents used are all commercially available materials, and the purity is reagent purity.
  • the preparation process of the silica-alumina molecular sieve-hydrogenation metal component-alumina composite is as follows, but is not limited to the embodiments described below:
  • the guiding agent is prepared by stirring and reacting 55.8 grams of water glass and 56.8 grams of sodium aluminate solution at room temperature for 24 hours.
  • Catalyst A was evaluated for a hydroalkylation reaction.
  • the mass space velocity of benzene is 1.0h -1
  • the molar ratio of hydrogen to benzene is 2
  • the reaction temperature is 150°C
  • the reaction pressure is 0.10MPa.
  • the results of reaction for 32 hours are shown in Table 3, and the results of long-term operation are shown in Figure 1.
  • Figure 2 is the infrared spectrum of the Y-Ru/Al 2 O 3 composite obtained in Example 1, which has a characteristic peak at 860-900cm -1 and the characteristic peak position is 863cm -1 , indicating that the molecular sieve and alumina There are chemical bonds between them.
  • Catalyst B was evaluated for hydroalkylation reaction.
  • the mass space velocity of benzene is 1.0h -1
  • the molar ratio of hydrogen to benzene is 2
  • the reaction temperature is 150°C
  • the reaction pressure is 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • Example 2 The infrared spectrum of the Y-Pd/Al 2 O 3 composite obtained in Example 2 is similar to that in Example 1.
  • Catalyst C was evaluated for the hydroalkylation reaction.
  • the mass space velocity of benzene is 0.45h -1
  • the feed amount of benzene is 0.075g/min
  • the feed amount of hydrogen is 10.9mL/min.
  • the reaction temperature is 150°C and the reaction pressure is 0.12MPa. The results after 32 hours of reaction are shown in Table 3.
  • Example 3 The infrared spectrum of the Y-Ni/Al 2 O 3 composite obtained in Example 3 is similar to that in Example 1.
  • Catalyst D was evaluated for hydroalkylation reactions.
  • the mass space velocity of benzene is 1.0h -1
  • the molar ratio of hydrogen to benzene is 2
  • the reaction temperature is 150°C
  • the reaction pressure is 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • Example 4 The infrared spectrum of the ⁇ -Ru/Al 2 O 3 composite obtained in Example 4 is similar to that in Example 1.
  • Catalyst E was evaluated for hydroalkylation reactions.
  • the mass space velocity of benzene is 1.0h -1
  • the molar ratio of hydrogen to benzene is 2
  • the reaction temperature is 150°C
  • the reaction pressure is 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • Example 5 The infrared spectrum of the ⁇ -Pd/Al 2 O 3 composite obtained in Example 5 is similar to that in Example 1.
  • Catalyst F was evaluated for hydroalkylation reaction.
  • the mass space velocity of benzene is 0.45h -1
  • the feed amount of benzene is 0.075g/min
  • the feed amount of hydrogen is 10.9mL/min.
  • the reaction temperature is 150°C and the reaction pressure is 0.12MPa. The results after 32 hours of reaction are shown in Table 3.
  • Example 6 The infrared spectrum of the ⁇ -Ni/Al 2 O 3 composite obtained in Example 6 is similar to that in Example 1.
  • the ammonium molecular sieve was calcined at 550°C for 5 hours, and then the obtained sample was reduced at 230°C for 3 hours and the hydrogen volume space velocity was 300h -1 to obtain catalyst G. Based on the input amount, in catalyst G, the Ru content is 1.5wt%, the composite content is 50.5wt%, and the binder content is 49.5wt%.
  • the elemental analysis results are shown in Table 2.
  • Catalyst G was evaluated for hydroalkylation reaction.
  • the mass space velocity of benzene is 1.0h -1
  • the molar ratio of hydrogen to benzene is 2
  • the reaction temperature is 150°C
  • the reaction pressure is 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • Example 7 The infrared spectrum of the MCM-22-Ru/Al 2 O 3 composite obtained in Example 7 is similar to that in Example 1.
  • the catalyst was prepared with reference to step (4) of Example 1, except that 25 grams of the Y-Ru/Al 2 O 3 composite obtained in step (3) of Example 1 and 25 grams of the Y-Ru/Al 2 O 3 composite obtained in step (3) of Example 4 were used.
  • the ⁇ -Ru/Al 2 O 3 composite was mixed with 70 grams of binder (alumina), and the other conditions were the same to obtain catalyst H. Based on the input amount, in catalyst H, the Ru content is 1.5wt%, the composite content is 50.5wt%, and the binder content is 49.5wt%.
  • the elemental analysis results are shown in Table 2.
  • Catalyst H was evaluated for the hydroalkylation reaction.
  • the mass space velocity of benzene was 1.0h -1 , the molar ratio of hydrogen to benzene was 2, the reaction temperature was 150°C, and the reaction pressure was 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • the catalyst was prepared with reference to Example 1, except that in step (4), 50 grams of Y-Ru/Al 2 O 3 composite was mixed with 22.5 grams of binder (alumina), and the other conditions were the same to obtain Catalyst I. Based on the input amount, in Catalyst I, the Ru content is 2.3wt%, the composite content is 76wt%, and the binder content is 24wt%.
  • the elemental analysis results are shown in Table 2.
  • Catalyst I was evaluated for the hydroalkylation reaction.
  • the benzene mass space velocity was 1.0h -1 , the molar ratio of hydrogen to benzene was 2, the reaction temperature was 150°C, and the reaction pressure was 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • the catalyst was prepared with reference to Example 1, except that 70 grams of porous silica gel was used as the binder to obtain Catalyst J. Based on the input amount, in catalyst J, the Ru content is 1.5wt%, the composite content is 43.4wt%, and the binder content is 56.5wt%.
  • the elemental analysis results are shown in Table 2.
  • Catalyst J was evaluated for the hydroalkylation reaction.
  • the mass space velocity of benzene was 1.0h -1 , the molar ratio of hydrogen to benzene was 2, the reaction temperature was 150°C, and the reaction pressure was 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • Y molecular sieve as the carrier, take 98.5 grams, impregnate 1.5 grams of Ru in equal volume, dry at 120°C for 12 hours, and calcined at 550°C for 5 hours to obtain Ru/Y. Then take 50 grams of Ru/Y, mix with 70 grams of hydrated alumina, knead, shape into strips, dry at 120°C for 12 hours, and then bake at 600°C for 5 hours to obtain Y-Ru/Al 2 O 3 composite things. Take 30 grams of Y-Ru/Al 2 O 3 complex and 30 grams of ammonium nitrate, add them to 300 grams of deionized water, and treat at 60°C for 2 hours.
  • Catalyst K was evaluated for the hydroalkylation reaction.
  • the mass space velocity of benzene was 1.0h -1 , the molar ratio of hydrogen to benzene was 2, the reaction temperature was 150°C, and the reaction pressure was 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3, and the results of long-term operation are shown in Figure 1.
  • Figure 3 is the infrared spectrum of the Y-Ru/Al 2 O 3 composite obtained in Comparative Example 1, in which there is no characteristic peak at 860-900 cm -1 , indicating that the molecular sieve and alumina are physically mixed, and there is no connection between the two. There are chemical bonds.
  • Y molecular sieve as a carrier, take 99.5 grams, impregnate 0.5 grams of Pd in equal volumes, dry at 120°C for 12 hours, and roast at 550°C for 5 hours to obtain Pd/Y. Then take 50 grams of Pd/Y, mix with 70 grams of hydrated alumina, knead, shape into strips, dry at 120°C for 12 hours, and then bake at 600°C for 5 hours to obtain Y-Pd/Al 2 O 3 composite things. Take 30 grams of Y-Pd/Al 2 O 3 composite and 30 grams of ammonium nitrate, add them to 300 grams of deionized water, and treat at 60°C for 2 hours.
  • Catalyst L was evaluated for hydroalkylation reaction.
  • the mass space velocity of benzene is 1.0h -1
  • the molar ratio of hydrogen to benzene is 2
  • the reaction temperature is 150°C
  • the reaction pressure is 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • the Y-Pd/Al 2 O 3 composite obtained in Comparative Example 2 has no infrared spectrum at 860-900 cm -1 Characteristic peaks.
  • Y molecular sieve as a carrier, take 90 grams, impregnate 10 grams of Ni in an equal volume, dry at 120°C for 12 hours, and roast at 550°C for 5 hours to obtain Ni/Y. Then take 50 grams of Ni/Y, mix with 70 grams of hydrated alumina, knead, shape into strips, dry at 120°C for 12 hours, and then bake at 600°C for 5 hours to obtain Y-Ni/Al 2 O 3 composite things. Take 30 grams of Y-Ni/Al 2 O 3 complex and 30 grams of ammonium nitrate, add them to 300 grams of deionized water, and treat at 60°C for 2 hours.
  • Catalyst M was evaluated for hydroalkylation reactions.
  • the mass space velocity of benzene is 1.0h -1
  • the molar ratio of hydrogen to benzene is 2
  • the reaction temperature is 150°C
  • the reaction pressure is 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • the Y-Ni/Al 2 O 3 composite obtained in Comparative Example 3 has no characteristic peaks at 860-900 cm -1 in the infrared spectrum.
  • step (4) of Example 1 mix 50 grams of Ru/molecular sieve-alumina mixture with 70 grams of binder (alumina). The other conditions are the same to obtain catalyst O.
  • Catalyst O was evaluated for the hydroalkylation reaction.
  • the mass space velocity of benzene was 1.0h -1 , the molar ratio of hydrogen to benzene was 2, the reaction temperature was 150°C, and the reaction pressure was 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.
  • Example 1 Dissolve a certain amount of metal salt (refer to Example 1) in water to obtain a metal salt solution, and then replace the above Y with the metal salt solution and the activated alumina obtained in step (1) of Example 1 respectively.
  • the water used in the molecular sieve-hydrogenated metal component-alumina composite synthesis method and the modified activated alumina base material are used to obtain the composite.
  • step (4) of Example 1 mix 50 grams of the composite obtained in step (1) with 70 grams of binder (alumina). The other conditions are the same to obtain catalyst P.
  • Catalyst P was evaluated for the hydroalkylation reaction.
  • the mass space velocity of benzene was 1.0h -1 , the molar ratio of hydrogen to benzene was 2, the reaction temperature was 150°C, and the reaction pressure was 0.10MPa.
  • the results after 32 hours of reaction are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

公开了一种硅铝分子筛-加氢金属组分-氧化铝复合物、及其制备和应用,所述复合物包括硅铝分子筛、氧化铝和加氢金属组分,其中所述复合物中的至少部分硅铝分子筛与至少部分氧化铝通过化学键结合,使得所述复合物的红外谱图在860-900cm-1处显示出特征谱峰。基于该复合物的加氢烷基化催化剂用于苯加氢烷基化制备环己基苯的反应中时,可以避免扩散路径过长造成苯的过度加氢,能够降低副产物环己烷的选择性,提高苯的利用率和降低反应分离能耗。

Description

硅铝分子筛-加氢金属组分-氧化铝复合物、其制备及应用 技术领域
本申请涉及催化剂技术领域,具体涉及一种适于用作催化活性成分的硅铝分子筛-加氢金属组分-氧化铝复合物、其制备及应用。
背景技术
环己基苯是一种重要的化工中间体,可以通过氧化制备苯酚和环己酮,还可以作为锂离子二次电池电解液的添加剂,具有防过充的作用。由于其十六烷值较高,因此还可以作为柴油十六烷值的调和组分。
WO001244A公开了一种使用固体酸Y分子筛为催化剂,催化苯与环己烯烷基化合成环己基苯的方法,但该过程环己基苯的收率在90%以下。CN104513122A公开了一种苯与环己烯液相烷基化合成环己基苯的方法,采用MWW分子筛作为催化剂,将环己烯与环己烷的混合物与苯烷基化得到环己基苯,环己烯转化率较高,环己基苯收率达到90%以上。
CN108435234A公开了一种使用杂多酸为催化剂,催化苯与环己烯烷基化制备环己基苯的方法,环己基苯的收率达到96%,催化剂可以重复利用10次后,环己烯的转化率为86%。虽然苯与环己烯烷基化方法环己基苯收率较高,但是工业上环己烯来自于苯选择性加氢,环己烯和苯的沸点接近,分离困难。因此环己烯的成本较高。
苯加氢烷基化技术具有原料简单易得、流程短的特点,是环己基苯的生产另一种理想选择。US4094918公开了以13X分子筛为载体的四组分催化剂,催化剂表现出优异的加氢烷基化性能。此后,以分子筛为烷基化组分的加氢烷基化催化剂的广泛的开发。US5053571、US5146024、US6037513、CN103261126A分别公开了β分子筛、X或者Y分子筛、MCM-22分子筛作为烷基化组分在加氢烷基化反应中应用。这个反应虽然包括苯加氢生成环己烯和环己烯与苯烷基化两个步骤,但是在同一个催化剂上完成,因此,提高加氢和烷基化两个反应的耦合性能,就能很好地降低反应的副产物。
现有技术中,加氢烷基化催化剂所采用的分子筛与载体是相互独立的,这样导致催化剂在进行加氢和烷基化过程不能很好地耦合,导 致苯过度加氢,生成较高含量的副产物环己烷。一方面,环己烷不能在体系中继续利用,造成苯资源的浪费;另一方面,苯与环己烷沸点十分接近,分离困难,造成反应能耗增加。
因此,本领域仍然需要一种能够以高转化率和选择性实现芳烃加氢烷基化反应的催化剂。
发明内容
针对现有技术的不足,本申请提供了一种硅铝分子筛-加氢金属组分-氧化铝复合物,其制备及应用,该复合物特别适合作为加氢烷基化催化剂的催化活性成分用于催化芳烃加氢烷基化反应。
为了实现上述目的,一方面,本申请提供了一种硅铝分子筛-加氢金属组分-氧化铝复合物,包括硅铝分子筛、氧化铝和加氢金属组分,其中所述复合物中的至少部分硅铝分子筛与至少部分氧化铝通过化学键结合,使得所述复合物的红外谱图在860-900cm-1处显示出特征谱峰。
另一方面,提供了制备本申请的硅铝分子筛-加氢金属组分-氧化铝复合物的方法,包括如下步骤:
1)对水合氧化铝依次进行第一焙烧、铵盐水溶液处理和第二焙烧,得到活性氧化铝基材;
2)在所述活性氧化铝基材上负载加氢金属组分得到改性活性氧化铝基材;以及
3)以所述改性活性氧化铝基材作为固体铝源,通过水热晶化合成硅铝分子筛,得到所述复合物。
再一方面,本申请供了一种硅铝分子筛催化剂,包含粘结剂和本申请的硅铝分子筛-加氢金属组分-氧化铝复合物,其中,基于所述催化剂的总质量,所述催化剂的铝含量(以氧化铝计)为10-85重量%,硅含量(以氧化硅计)为10-85重量%,加氢金属组分含量(以金属计)为0.01-5重量%。
再一方面,提供了一种制备硅铝分子筛催化剂的方法,包括如下步骤:
I)提供本申请的硅铝分子筛-加氢金属组分-氧化铝复合物或者按照本申请的制备硅铝分子筛-加氢金属组分-氧化铝复合物的方法制备硅铝分子筛-加氢金属组分-氧化铝复合物;以及
II)将所述硅铝分子筛-加氢金属组分-氧化铝复合物与粘结剂源混捏成型并焙烧,以及任选地活化,得到所述催化剂。
再一方面,提供了按照本申请的制备硅铝分子筛催化剂的方法制备得到的硅铝分子筛催化剂。
再一方面,提供了本申请的硅铝分子筛催化剂在芳烃加氢烷基化反应中的应用,包括使芳烃原料与烷基化试剂在氢气存在下与所述硅铝分子筛催化剂接触反应。
又一方面,本申请提供了一种合成环己基苯的方法,包括如下步骤:在氢气存在下使苯与本申请的硅铝分子筛催化剂接触反应,得到环己基苯。
与现有技术相比,以本申请的硅铝分子筛-加氢金属组分-氧化铝复合物作为催化活性成分的硅铝分子筛催化剂用于芳烃加氢烷基化反应时具有良好的催化活性和选择性,特别是用于苯加氢烷基化制备环己基苯的反应中时可以避免苯的过度加氢、降低副产物环己烷的选择性,提高苯的利用率和降低反应分离能耗。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请实施例1和对比例1中所得硅铝分子筛催化剂的长时间运转结果图;
图2是实施例1所得的Y-Ru/Al2O3复合物的红外谱图;以及
图3是对比例1所得的Y-Ru/Al2O3复合物的红外谱图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限 于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,所谓“加氢金属组分”是指具有加氢活性的金属、金属氧化物、其他金属化合物,或者它们的混合物。
本申请中,硅铝分子筛-加氢金属组分-氧化铝复合物和硅铝分子筛催化剂的组成采用X射线荧光(XRF)分析测定,并且与制备时相关原料的投加比一致。
本申请中,硅铝分子筛-加氢金属组分-氧化铝复合物和硅铝分子筛催化剂的分子筛结晶度通过X射线光衍射(XRD)方法测量,测试前将样品在120℃干燥2小时。样品结晶度的计算由XRD谱图上2theta在5-40°之间衍射峰峰面积计算。
本申请中,所述硅铝分子筛-加氢金属组分-氧化铝复合物的表面加氢金属百分含量通过X射线光电子能谱(XPS)方法测定;所述复合物的总加氢金属百分含量通过X射线荧光光谱分析(XRF)方法测定。
本申请中,如无特殊表示,所给压力均为表压。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的方面而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种硅铝分子筛-加氢金属组分-氧化铝复合物,包括硅铝分子筛、氧化铝和加氢金属组分,其中所述复合物中的至少部分硅铝分子筛与至少部分氧化铝通过化学键结 合,使得所述复合物的红外谱图在860-900cm-1处显示出特征谱峰。
在优选的实施方式中,所述硅铝分子筛选自具有十元环或十二元环孔结构的分子筛,或者它们的组合,更优选选自β、Y、MCM-22、PSH-3、SSZ-25、MCM-49、MCM-56分子筛,或者它们的组合,特别优选选自β、Y、MCM-22分子筛,或者它们的组合。
在本申请中,对所述加氢金属组分中的加氢活性金属的种类没有特别的限定,可以为本领域常规采用的各种加氢活性金属。在优选的实施方式中,所述加氢金属组分中的加氢活性金属选自元素周期表第VIB族金属、第VIII族金属,或者它们的组合,更优选选自Ru、Pd、Pt、Ni、Co、Mo、W,或者它们的组合,特别优选选自Pd、Ru、Ni,或者它们的组合。采用上述优选的加氢活性金属有利于提高催化剂的综合性能。
在优选的实施方式中,通过XRD检测,所述复合物具有50-75%、优选50-70%的分子筛结晶度。
在优选的实施方式中,基于所述复合物的总质量,所述复合物的硅含量(以氧化硅计)为5-65wt%,优选15-50wt%,铝含量(以氧化铝计)为30-94.99wt%,优选50-85%,以及加氢金属组分含量(以金属计)为0.01-5wt%,优选0.1-3wt%。
在优选的实施方式中,通过XPS方法测得的所述复合物的表面加氢金属百分含量与通过XRF方法测得的所述复合物的总加氢金属百分含量的比值为0.1-25%,优选5-20%。
在优选的实施方式中,本申请的复合物通过包括如下步骤的方法制备得到:
1)对水合氧化铝依次进行第一焙烧、铵盐水溶液处理和第二焙烧,得到活性氧化铝基材;
2)在所述活性氧化铝基材上负载加氢金属组分得到改性活性氧化铝基材;以及
3)以所述改性活性氧化铝基材作为固体铝源,通过水热晶化合成硅铝分子筛,得到所述复合物。
进一步优选地,所述步骤1)至步骤3)的各项特征如以下第二方面中所述。
不局限于具体理论,据信在本申请的硅铝分子筛-加氢金属组分- 氧化铝复合物中,大部分加氢活性金属被包夹在分子筛和氧化铝之间,而非分散在分子筛外表面,从而更有助于提高加氢和烷基化反应的耦合,尤其是在苯加氢烷基化制备环己基苯的反应中可以避免扩散路径过长造成苯的过度加氢等副反应,从而降低副产物环己烷的选择性,提高苯的利用率和降低反应分离能耗。
在第二方面,本申请提供了一种制备硅铝分子筛-加氢金属组分-氧化铝复合物的方法,包括如下步骤:
1)对水合氧化铝(如拟薄水铝石)依次进行第一焙烧、铵盐水溶液处理和第二焙烧,得到活性氧化铝基材;
2)在所述活性氧化铝基材上负载加氢金属组分得到改性活性氧化铝基材;以及
3)以所述改性活性氧化铝基材作为固体铝源,通过水热晶化合成硅铝分子筛,得到所述复合物。
不局限于具体理论,据信在本申请的制备硅铝分子筛-加氢金属组分-氧化铝复合物的方法中,通过采用负载加氢金属组分之后的改性活性氧化铝作为固体铝源,经由水热晶化合成硅铝分子筛,使得分子筛形成在表面负载有加氢活性金属的氧化铝的表面上,从而大部分加氢活性金属被包夹在分子筛和氧化铝之间,这更有助于提高加氢和烷基化反应的耦合,尤其是在苯加氢烷基化制备环己基苯的反应中可以避免扩散路径过长造成苯的过度加氢,从而降低副产物环己烷的选择性,提高苯的利用率和降低反应分离能耗。
根据本申请,适用的水合氧化铝包括但不限于拟薄水铝石、三水合氧化铝、薄水铝石、无定形氢氧化铝,或者它们的混合物,优选拟薄水铝石。
在优选的实施方式中,步骤1)中所述第一焙烧和第二焙烧的条件各自独立地包括:焙烧温度为500-650℃,优选550-600℃,和/或焙烧时间为0.5-5小时,优选2-4.5小时。
根据本申请,所述“铵盐水溶液处理”是用酸性铵盐溶液,例如氯化铵溶液、硝酸铵溶液、硫酸铵溶液等,进行处理。在优选的实施方式中,步骤1)中所述铵盐水溶液处理的条件包括:水合氧化铝(以550℃焙烧5小时后的重量计)、铵盐与水的质量比为1∶1-15∶1-15,优选1∶1-2∶1-5;交换温度为25-100℃,优选60-90℃;和/或交换时 间为0.5-5小时,优选1-2小时。
不局限于具体理论,据信在本申请的方法中,通过以水合氧化铝为原料经过焙烧、铵盐水溶液处理和二次焙烧处理来合成作为分子筛制备原料的活性氧化铝基材,可以提高分子筛的结晶度,从而更有利于所得分子筛与金属组分进行协同配合,共同提高以之为活性成分的催化剂的性能,尤其是在苯加氢烷基化制备环己基苯的反应中,能够较好地降低副产物环己烷的选择性。
在优选的实施方式中,所述加氢金属组分中的加氢活性金属选自元素周期表第VIB族金属、第VIII族金属,或者它们的组合,更优选选自Ru、Pd、Pt、Ni、Co、Mo、W,或者它们的组合,特别优选选自Pd、Ru、Ni,或者它们的组合。
在优选的实施方式中,所述步骤(2)的负载通过浸渍实现,优选通过等体积浸渍实现。进一步优选地,所述步骤(2)的负载通过如下方式实施:使所述活性氧化铝基材与包含加氢活性金属的可溶性盐的水溶液接触,接触温度为0-50℃,接触时间为0.5-12小时,其中所述加氢活性金属如上文所述,在此不再赘述。
在优选的实施方式中,所述步骤(3)通过如下方式实施:使所述改性活性氧化铝基材、硅源、碱源、任选的结构导向剂或模板剂、以及水在水热晶化条件下反应,得到所述复合物。
在进一步优选的实施方式中,所述水热晶化条件包括:水热晶化温度为80-250℃,优选100-180℃,和/或水热晶化时间为20-60小时,优选28-48小时。在更进一步优选的实施方式中,针对不同的目标分子筛采用不同的反应条件,例如所述分子筛为Y分子筛时,所述水热晶化的温度,比如可以为80-120℃,优选95-105℃,所述水热晶化的时间,比如可以为20-60小时,优选28-36小时。
在进一步优选的实施方式中,所述硅源选自水玻璃、硅溶胶、硅酸钠,或者它们的组合;所述碱源选自碱金属氢氧化物、氨水或者它们的组合;所述结构导向剂或模板剂选自四甲基溴化铵、四乙基溴化铵和六亚甲基亚胺。
在某些进一步优选的实施方式中,所述改性活性氧化铝基材、硅源、碱源、任选的结构导向剂或模板剂和水的用量以Na2O、Al2O3、SiO2和H2O计,摩尔比为Na2O∶Al2O3∶SiO2∶H2O=0.1-1.0∶1∶0.5-2.0∶ 10-50,此时所得的硅铝分子筛为Y分子筛。
在某些进一步优选的实施方式中,所述改性活性氧化铝基材、硅源、碱源、任选的结构导向剂或模板剂和水的用量以Na2O、Al2O3、SiO2和H2O,模板剂R计,摩尔比为Na2O∶Al2O3∶SiO2∶H2O∶R=0.1-3.0∶1∶10.0-100.0∶300-800∶10-40,此时所得的硅铝分子筛为MCM-22分子筛。
在某些进一步优选的实施方式中,所述改性活性氧化铝基材、硅源、碱源、任选的结构导向剂或模板剂和水的用量以Na2O、Al2O3、SiO2和H2O,模板剂R计,摩尔比为Na2O∶Al2O3∶SiO2∶H2O∶R=0.01-2∶1∶20.0-100.0∶100-500∶5-30,此时所得的硅铝分子筛为β分子筛。
在本申请中,水热晶化之后,可以采用去离子水洗涤、再干燥得到所述硅铝分子筛-加氢金属组分-氧化铝复合物。所述干燥可以在常压下进行,也可以在减压下进行,干燥的温度可以为40-250℃,优选60-150℃;干燥的时间可以为8-36小时,优选12-24小时。
在第三方面,本申请提供了一种硅铝分子筛催化剂,包含粘结剂和本申请的硅铝分子筛-加氢金属组分-氧化铝复合物,其中,基于所述催化剂的总质量,所述催化剂的铝含量(以氧化铝计)为10-85重量%,优选15-80重量%,硅含量(以氧化硅计)为10-85重量%,优选15-80重量%,加氢金属组分含量(以金属计)为0.01-5重量%,优选0.1-3重量%。
在本申请中,对所述粘结剂没有特别的限定,可以为本领域常规用于催化剂制备的那些。在优选的实施方式中,所述粘结剂为无机氧化物,优选选自元素周期表第IIA族、第IVB族、第IIIA族和第IVA族元素的氧化物或者它们的组合,更优选选自氧化铝、氧化硅、氧化钛或者它们的组合。采用上述优选的粘结剂有利于提高催化剂的综合性能。
根据本申请,所述硅铝分子筛催化剂的形状并没有特别的限定,可以呈现为任何的物理形式,比如粉末状、颗粒状或者模制品状,比如片状、条状、三叶草状。
不局限于具体理论,据信在本申请的硅铝分子筛催化剂中,大部分加氢活性金属被包夹在硅铝分子筛和氧化铝之间,而非分散在分子筛外表面,这更有助于提高加氢和烷基化反应的耦合,从而提高催化 剂在芳烃加氢烷基化反应,特别是苯加氢烷基化制备环己基苯的反应,中的反应活性和选择性。
在第四方面,提供了一种制备硅铝分子筛催化剂的方法,包括如下步骤:
I)提供根据本申请第一方面的硅铝分子筛-加氢金属组分-氧化铝复合物或者按照本申请第二方面的方法制备硅铝分子筛-加氢金属组分-氧化铝复合物;以及
II)将所述硅铝分子筛-加氢金属组分-氧化铝复合物与粘结剂源混捏成型并焙烧,以及任选地活化,得到所述催化剂。
在本申请中,对所述粘结剂源没有特别的限定,可以为本领域常规用于催化剂制备的那些。在优选的实施方式中,所述粘结剂源为无机氧化物或者可以在焙烧条件下转化为无机氧化物的那些,所述无机氧化物优选选自元素周期表第IIA族、第IVB族、第IIIA族和第IVA族元素的氧化物或者它们的组合,更优选选自氧化铝、氧化硅或者它们的组合。例如,所述粘结剂源可以为氧化铝。
在步骤II)中,所述的混捏成型可采用本领域的常规方式进行,如挤条,本申请对此并没有严格的限制。
在优选的实施方式中,在混捏成型之后对所得成型物进行干燥。所述干燥可以采用本领域的常规方式进行,优选地所述干燥条件包括:温度为40-250℃,优选60-150℃;干燥时间为8-30小时,优选10-20小时。所述干燥可以在常压下进行,也可以在减压下进行。
在步骤II)中,所述的焙烧可以采用本领域的常规方式进行。在优选的实施方式中,所述焙烧的条件包括:焙烧温度为300-650℃,优选400-600℃,和/或焙烧时间为1-10小时,优选3-6小时。所述焙烧在含氧气氛下进行,比如空气或者氧气气氛下。
在优选的实施方式中,步骤II)中所述的活化包括:对步骤II)焙烧后的成型固体依次进行铵交换和还原。
在进一步优选的实施方式中,所述铵交换的条件包括:成型固体、铵盐以及水的质量比为1∶1-15∶1-15,交换温度为25-100℃,优选60-90℃,交换时间为0.5-5小时,优选1-2小时。进一步优选地,在铵交换之后,采用去离子水洗涤、而后干燥。所述干燥可以在常压下进行,也可以在减压下进行,干燥的温度可以为40-250℃,优选60-150℃; 干燥的时间可以为8-36小时,优选12-24小时。
在进一步优选的实施方式中,所述还原的条件包括:氢气气氛下还原,还原温度为100-500℃,优选190-400℃,还原时间为0.5-12小时,优选3-5小时,氢气体积空速为100-600h-1,优选300-400h-1
根据本申请,所述硅铝分子筛催化剂可以制成任何的物理形式,比如粉末状、颗粒状或者模制品状,比如片状、条状、三叶草状的形状,本申请对此并没有特别的限制,相应地可以按照本领域常规已知的任何方式来获得这些物理形式。
在第五方面,提供了按照本申请的制备硅铝分子筛催化剂的方法制备得到的硅铝分子筛催化剂。
在第六方面,提供了根据本申请第三方面或第五方面的硅铝分子筛催化剂在芳烃加氢烷基化反应中的应用。
在第七方面,本申请提供了一种芳烃加氢烷基化方法,包括使芳烃原料与烷基化试剂在氢气存在下与根据本申请第三方面或第五方面的硅铝分子筛催化剂接触进行加氢烷基化反应。
在优选的实施方式中,所述芳烃原料选自苯、甲苯、二甲苯,或者它们的组合。
在优选的实施方式中,所述加氢烷基化反应的条件包括:反应温度为80-200℃,反应压力为0.1-2.0MPa,氢气与苯的摩尔比为0.1-20.0,苯质量空速为0.1-2.0h-1
在第八方面,提供了一种合成环己基苯的方法,包括如下步骤:在氢气存在下使苯与根据本申请第三方面或第五方面的硅铝分子筛催化剂接触反应,得到环己基苯。
在优选的实施方式中,所述反应的条件包括:反应温度为80-200℃,反应压力为0.1-2.0MPa,氢气与苯的摩尔比为0.1-20.0,苯质量空速为0.1-2.0h-1
实施例
以下通过实施例对本申请作进一步的详细说明,但本申请并不限于此。
以下实施例和对比例中所用的仪器与测试方法如下:
使用Thermo Fisher Nicolet IS10红外光谱仪对样品进行吡啶红外 谱图的测定,测定时样品在红外灯下干燥30分钟,并于溴化钾按照1∶50比例混合后,压片测量。测量前后,扣除二氧化碳背景。
X射线荧光光谱分析仪(XRF)的型号为荷兰帕纳克AxiosmAX型X射线荧光光谱仪,采用无标样定量法定量。
X射线光电子能谱分析仪(XPS)的型号为美国Thermo Fisher K-Alpha型光谱仪,最佳分辨率<30μm,最佳能量分辨率<0.5eV FWHM,C1s能量分辨率<0.85eV。使用Al Kα靶(hv=1486.68eV),离子源能量范围:100至3keV,最大束流:4μA,分析室最佳真空:5×10-9mbar。测量时,表面不采用溅射处理。
X射线衍射分析(XRD):使用粉末XRD法对样品进行物相分析,并计算相对结晶度和骨架硅铝比。所用仪器为日本理学D/max-1400型X-射线粉末衍射仪。采用Cu-Kα辐射(波长为),管电流40mA,管电压40kV,物相分析的扫描角度范围为5-50°。
以下实施例和对比例中,如无其它说明,所用原料和试剂均为市售材料,纯度为试剂纯。
以下实施例中,硅铝分子筛-加氢金属组分-氧化铝复合物的制备过程如下,但不限于下文所述实施方案:
Y分子筛-加氢金属组分-氧化铝复合物
取67.2g克水玻璃置于烧杯中,利用水浴将烧杯内温度加热到50℃,加入52g克导向剂,搅拌均匀后加入12g克氢氧化钠使体系pH值大于10,经充分混合均匀后再加入88g克水和50克改性活性氧化铝基材,搅拌60分钟后,将其装入反应釜中,在100℃晶化20小时,然后过滤、洗涤、在120℃下干燥12小时,得到Y-加氢金属组分-氧化铝复合物样品。其中,导向剂由55.8克水玻璃和56.8克铝酸钠溶液在室温下,搅拌反应24小时制备而成。
MCM-22分子筛-加氢金属组分-氧化铝复合物
取293g克硅溶胶置于烧杯中,利用水浴将烧杯内温度加热到50℃,加入144g克六亚甲基胺模板剂和5.6克晶种,搅拌均匀后加入10g克氢氧化钠使体系pH值大于10,经充分混合均匀后再加入970g克水和50克改性活性氧化铝基材,搅拌60分钟后,将其装入反应釜中,在100℃晶化28小时,然后过滤、洗涤,在120℃下干燥12小时,得 到MCM-22-加氢金属组分-氧化铝复合物样品。
β分子筛-加氢金属组分-氧化铝复合物
取443克去离子水置于烧杯中,加入32.6克氢氧化钠使体系pH值大于10,不断搅拌使之完全溶解,利用水浴将烧杯内温度加热到50℃,加入50克改性活性氧化铝基材,960克四乙基氢氧化铵和520克和四乙基溴化铵(TEA),混和0.5小时后,加入2445克40%的硅溶胶,继续搅拌1小时,放入晶化釜。晶化是在搅拌的条件下进行,晶化温度150℃,晶化时间40小时,然后过滤、洗涤,在120℃下干燥12小时,得到β-加氢金属组分-氧化铝复合物样品。
混合分子筛-加氢金属组分-氧化铝复合物
采用上述分子筛的合成方法,独立地进行分子筛晶化,随后将获得的晶化产物混合后,充分搅拌,然后过滤、洗涤,在120℃下干燥12小时,得到混合分子筛-加氢金属组分-氧化铝复合物。
实施例1
(1)取200克水合氧化铝,在600℃下焙烧5小时,然后,取焙烧好的粉末100克,100克硝酸铵,加入到500克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,随后在550℃下焙烧5小时得到活性氧化铝。
(2)以96克活性氧化铝为载体,等体积浸渍3克Ru,在120℃下干燥12小时,550℃下焙烧5小时,得到Ru/Al2O3
(3)取50克Ru/Al2O3作为基质,按照上文所述的方法进行Y分子筛的合成,得到Y-Ru/Al2O3复合物,其结晶度和元素分析结果见表1。
(4)取50克Y-Ru/Al2O3复合物,再与70克粘结剂(氧化铝)混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到成型固体;取30克所得成型固体,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛,将铵分子筛在550℃下焙烧5小时后将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂A。按投料量计,催化剂A中,Ru含量为1.5wt%,复合物含量为50.5 wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂A进行加氢烷基化反应评价。苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32h的结果见表3,长时间运转结果见图1。
图2是实施例1所得的Y-Ru/Al2O3复合物的红外谱图,其中在860-900cm-1处具有特征谱峰,特征谱峰位置为863cm-1,说明分子筛和氧化铝之间存在化学键结合。
实施例2
(1)取200克水合氧化铝,在600℃下焙烧5小时,然后,取焙烧好的粉末100克,100克硝酸铵,加入到500克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,随后在550℃下焙烧5小时得到活性氧化铝;
(2)以99克活性氧化铝为载体,等体积浸渍1克Pd,在120℃下干燥12小时,550℃下焙烧5小时,得到Pd/Al2O3
(3)取50克Pd/Al2O3作为基质,按照上文所述的方法进行Y分子筛的合成,得到Y-Pd/Al2O3复合物,其结晶度和元素分析结果见表1;
(4)然后取50克Y-Pd/Al2O3复合物,再与70克粘结剂(氧化铝)混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到成型固体;取30克成型固体,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛,将铵分子筛在550℃下焙烧5小时后将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂B。按投料量计,催化剂B中,Pd含量为0.5wt%,复合物含量为50.5wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂B进行加氢烷基化反应评价。苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
实施例2所得的Y-Pd/Al2O3复合物的红外谱图与实施例1类似。
实施例3
(1)取200克水合氧化铝,在600℃下焙烧5小时,然后,取焙烧 好的粉末100克,100克硝酸铵,加入到500克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,随后在550℃下焙烧5小时得到活性氧化铝;
(2)以95克活性氧化铝为载体,等体积浸渍5克Ni,在120℃下干燥12小时,550℃下焙烧5小时,得到Ni/Al2O3
(3)取50克Ni/Al2O3作为基质,按照上文所述的方法进行Y分子筛的合成,得到Y-Ni/Al2O3复合物,其结晶度和元素分析结果见表1;
(4)然后取50克Y-Ni/Al2O3复合物,再与70克粘结剂(氧化铝)混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到成型固体;取30克成型固体,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛,将铵分子筛在550℃下焙烧5小时后将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂C。按投料量计,催化剂C中,Ni含量为2.5wt%,复合物含量为50.5wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂C进行加氢烷基化反应评价。苯质量空速为0.45h-1,苯进料量为0.075g/min,氢气的进料量为10.9mL/min。反应温度为150℃,反应压力为0.12MPa。反应32小时后的结果见表3。
实施例3所得的Y-Ni/Al2O3复合物的红外谱图与实施例1类似。
实施例4
(1)取200克水合氧化铝,在600℃下焙烧5小时,然后,取焙烧好的粉末100克,100克硝酸铵,加入到500克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,随后在550℃下焙烧5小时得到活性氧化铝;
(2)以96克活性氧化铝为载体,等体积浸渍3克Ru,在120℃下干燥12小时,550℃下焙烧5小时,得到Ru/Al2O3
(3)取50克Ru/Al2O3作为基质,按照上文所述的方法进行β分子筛的合成,得到β-Ru/Al2O3复合物,其结晶度和元素分析结果见表1;
(4)然后取50克β-Ru/Al2O3复合物,再与70克粘结剂(氧化铝)混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到成型固体;取30克成型固体,30克硝酸铵,加入到300克去 离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛,将铵分子筛在550℃下焙烧5小时后将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂D。按投料量计,催化剂D中,Ru含量为1.5wt%,复合物含量为50.5wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂D进行加氢烷基化反应评价。苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
实施例4所得的β-Ru/Al2O3复合物的红外谱图与实施例1类似。
实施例5
(1)取200克水合氧化铝,在600℃下焙烧5小时,然后,取焙烧好的粉末100克,100克硝酸铵,加入到500克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,随后在550℃下焙烧5小时得到活性氧化铝;
(2)以99克活性氧化铝为载体,等体积浸渍1克Pd,在120℃下干燥12小时,550℃下焙烧5小时,得到Pd/Al2O3
(3)取50克Pd/Al2O3作为基质,按照上文所述的方法进行β分子筛的合成,得到β-Pd/Al2O3复合物,其结晶度和元素分析结果见表1;
(4)然后取50克β-Pd/Al2O3复合物,再与70克粘结剂(氧化铝)混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到成型固体;取30克成型固体,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛,将铵分子筛在550℃下焙烧5小时后将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂E。按投料量计,催化剂E中,Pd含量为0.5wt%,复合物含量为50.5wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂E进行加氢烷基化反应评价。苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
实施例5所得的β-Pd/Al2O3复合物的红外谱图与实施例1类似。
实施例6
(1)取200克水合氧化铝,在600℃下焙烧5小时,然后,取焙烧好的粉末100克,100克硝酸铵,加入到500克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,随后在550℃下焙烧5小时得到活性氧化铝;
(2)以95克活性氧化铝为载体,等体积浸渍5克Ni,在120℃下干燥12小时,550℃下焙烧5小时,得到Ni/Al2O3
(3)取50克Ni/Al2O3作为基质,按照上文所述的方法进行β分子筛的合成,得到β-Ni/Al2O3复合物,其结晶度和元素分析结果见表1;
(4)然后取50克β-Ni/Al2O3复合物,再与70克氧化铝混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到成型固体;取30克成型固体,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛,将铵分子筛在550℃下焙烧5小时后将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂F。按投料量计,催化剂F中,Ni含量为2.5wt%,复合物含量为50.5wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂F进行加氢烷基化反应评价。苯质量空速为0.45h-1,苯进料量为0.075g/min,氢气的进料量为10.9mL/min。反应温度为150℃,反应压力为0.12MPa。反应32小时后的结果见表3。
实施例6所得的β-Ni/Al2O3复合物的红外谱图与实施例1类似。
实施例7
(1)取200克水合氧化铝,在600℃下焙烧5小时。然后,取焙烧好的粉末100克,100克硝酸铵,加入到500克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时随后将铵分子筛在550℃下焙烧5小时得到活性氧化铝;
(2)以96克活性氧化铝为载体,等体积浸渍3克Ru,在120℃下干燥12小时,550℃下焙烧5小时,得到Ru/Al2O3
(3)取50克Ru/Al2O3作为基质,按照上文所述的方法进行MCM-22分子筛的合成,得到MCM-22-Ru/Al2O3复合物,其结晶度和元素分析结果见表1;
(4)然后取50克MCM-22-Ru/Al2O3复合物,再与70克粘结剂(氧化铝)混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到成型固体;取30克成型固体,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时,随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛,将铵分子筛在550℃下焙烧5小时后将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂G。按投料量计,催化剂G中,Ru含量为1.5wt%,复合物含量为50.5wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂G进行加氢烷基化反应评价。苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
实施例7所得的MCM-22-Ru/Al2O3复合物的红外谱图与实施例1类似。
实施例8
参照实施例1步骤(4)制备催化剂,区别在于:采用25克实施例1步骤(3)中得到的Y-Ru/Al2O3复合物和25克实施例4步骤(3)中得到的β-Ru/Al2O3复合物与70克粘结剂(氧化铝)混合,其余条件相同,得到催化剂H。按投料量计,催化剂H中,Ru含量为1.5wt%,复合物含量为50.5wt%,粘结剂含量为49.5wt%,其元素分析结果见表2。
对催化剂H进行加氢烷基化反应评价,苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
实施例9
参照实施例1制备催化剂,区别在于:在步骤(4)中取50克Y-Ru/Al2O3复合物与22.5克粘结剂(氧化铝)混合,其余条件相同,得到催化剂I。按投料量计,催化剂I中,Ru含量为2.3wt%,复合物含量为76wt%,粘结剂含量为24wt%,其元素分析结果见表2。
对催化剂I进行加氢烷基化反应评价,苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
实施例10
参照实施例1制备催化剂,区别在于使用70克多孔硅胶做为粘结剂,得到催化剂J。按投料量计,催化剂J中,Ru含量为1.5wt%,复合物含量为43.4wt%,粘结剂含量为56.5wt%,其元素分析结果见表2。
对催化剂J进行加氢烷基化反应评价,苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
表1实施例1-7所得复合物的组成和性质
表2实施例1-10所得催化剂的组成

对比例1
以Y分子筛为载体,取98.5克,等体积浸渍1.5克Ru,在120℃下干燥12小时,550℃下焙烧5小时,得到Ru/Y。然后取50克Ru/Y,再与70克水合氧化铝混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到Y-Ru/Al2O3复合物。取30克Y-Ru/Al2O3复合物,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛。随后将铵分子筛在550℃下焙烧5小时。将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂K。
对催化剂K进行加氢烷基化反应评价,苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3,长时间运转结果见图1。
图3是对比例1所得的Y-Ru/Al2O3复合物的红外谱图,其中在860-900cm-1处没有特征谱峰,表明分子筛与氧化铝为物理混合,两者之间不存在化学键结合。
对比例2
以Y分子筛为载体,取99.5克,等体积浸渍0.5克Pd,在120℃下干燥12小时,550℃下焙烧5小时,得到Pd/Y。然后取50克Pd/Y,再与70克水合氧化铝混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到Y-Pd/Al2O3复合物。取30克Y-Pd/Al2O3复合物,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛。随后将铵分子筛在550℃下焙烧5小时。将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂L。
对催化剂L进行加氢烷基化反应评价。苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
对比例2所得的Y-Pd/Al2O3复合物在红外谱图860-900cm-1处没有 特征谱峰。
对比例3
以Y分子筛为载体,取90克,等体积浸渍10克Ni,在120℃下干燥12小时,550℃下焙烧5小时,得到Ni/Y。然后取50克Ni/Y,再与70克水合氧化铝混合,混捏,成型为条状,120℃下干燥12小时,然后在600℃下焙烧5小时,得到Y-Ni/Al2O3复合物。取30克Y-Ni/Al2O3复合物,30克硝酸铵,加入到300克去离子水中,在60℃下处理2小时。随后经过去离子水洗涤并在120℃下干燥12小时,得到铵分子筛。随后将铵分子筛在550℃下焙烧5小时。将所得样品在230℃下,还原时间为3小时,氢气体积空速为300h-1,得到催化剂M。
对催化剂M进行加氢烷基化反应评价。苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
对比例3所得的Y-Ni/Al2O3复合物在红外谱图860-900cm-1处没有特征谱峰。
对比例4
(1)取50克改性氧化铝,与8.1克RuCl3(以37%Ru计),32.6克氢氧化钠,760克四乙基溴化铵,1050克粗孔硅胶,充分研磨8分钟。放入150℃反应釜中晶化40小时。得到Ru/分子筛-氧化铝混合物。
(2)参照实施例1步骤(4),取50克Ru/分子筛-氧化铝混合物与70克粘结剂(氧化铝)混合,其余条件相同,得到催化剂O。
对催化剂O进行加氢烷基化反应评价,苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
对比例5
(1)将一定量的金属盐(参照实施例1)溶于水得到金属盐水溶液,再以该金属盐水溶液和实施例1步骤(1)所得的活性氧化铝分别替代上文所述的Y分子筛-加氢金属组分-氧化铝复合物合成方法中所用的水和改性活性氧化铝基材,得到复合物。
(2)参照实施例1步骤(4),取50克步骤(1)所得的复合物与70克粘结剂(氧化铝)混合,其余条件相同,得到催化剂P。
对催化剂P进行加氢烷基化反应评价,苯质量空速为1.0h-1,氢气与苯的摩尔比为2,反应温度为150℃,反应压力为0.10MPa。反应32小时后的结果见表3。
表3各实施例和对比例所得催化剂的加氢烷基化反应评价结果
从表3所示的数据可看出,与对比例1-5相比,实施例1-10所得的催化剂显示出较高的苯转化率、以及主产物环己基苯的收率和选择性,而副产物环己烷的选择性和收率则显著下降。
从图1示出的本申请实施例1和对比例1所得催化剂的长时间运转结果可知,在长周期运转过程中,本申请的催化剂能够维持高活性不下降,同时与对比例1的催化剂相比,本申请催化剂的苯转化率和 主产物环己基苯的选择性更高。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (17)

  1. 一种硅铝分子筛-加氢金属组分-氧化铝复合物,包括硅铝分子筛、氧化铝和加氢金属组分,其中所述复合物中的至少部分硅铝分子筛与至少部分氧化铝通过化学键结合,使得所述复合物的红外谱图在860-900cm-1处显示出特征谱峰。
  2. 根据权利要求1所述的复合物,其中:
    所述硅铝分子筛选自具有十元环或十二元环孔结构的分子筛,或者它们的组合,优选选自β、Y、MCM-22、PSH-3、SSZ-25、MCM-49、MCM-56分子筛,或者它们的组合,更优选选自β、Y、MCM-22分子筛,或者它们的组合;和/或
    所述加氢金属组分中的加氢活性金属选自元素周期表第VIB族金属、第VIII族金属,或者它们的组合,优选选自Ru、Pd、Pt、Ni、Co、Mo、W,或者它们的组合,更优选选自Pd、Ru、Ni,或者它们的组合。
  3. 根据权利要求1或2所述的复合物,其中通过XRD检测,所述复合物具有50-75%、优选50-70%的分子筛结晶度。
  4. 根据权利要求1-3中任一项所述的复合物,其中,基于所述复合物的总质量,所述复合物的硅含量(以氧化硅计)为5-65wt%,优选15-50wt%,铝含量(以氧化铝计)为30-94.99wt%,优选50-85%,以及加氢金属组分含量(以金属计)为0.01-5wt%,优选0.1-3wt%。
  5. 根据权利要求1-4中任一项所述的复合物,其中,通过XPS方法测得的所述复合物的表面加氢金属百分含量是通过XRF方法测得的所述复合物的总加氢金属百分含量的0.1-25%,优选5-20%。
  6. 权利要求1-5中任一项所述的复合物,通过包括如下步骤的方法制备得到:
    1)对水合氧化铝依次进行第一焙烧、铵盐水溶液处理和第二焙烧,得到活性氧化铝基材;
    2)在所述活性氧化铝基材上负载加氢金属组分得到改性活性氧化铝基材;以及
    3)以所述改性活性氧化铝基材作为固体铝源,通过水热晶化合成硅铝分子筛,得到所述复合物。
  7. 制备权利要求1-6中任一项所述的硅铝分子筛-加氢金属组分- 氧化铝复合物的方法,包括如下步骤:
    1)对水合氧化铝依次进行第一焙烧、铵盐水溶液处理和第二焙烧,得到活性氧化铝基材;
    2)在所述活性氧化铝基材上负载加氢金属组分得到改性活性氧化铝基材;以及
    3)以所述改性活性氧化铝基材作为固体铝源,通过水热晶化合成硅铝分子筛,得到所述复合物。
  8. 根据权利要求7所述的方法,其中所述步骤1)中:
    所述第一焙烧和第二焙烧的条件各自独立地包括:焙烧温度为500-650℃,和/或焙烧时间为0.5-5小时;和/或
    所述铵盐水溶液处理的条件包括:水合氧化铝(以550℃焙烧5小时后的重量计)、铵盐与水的质量比为1∶1-15∶1-15,优选1∶1-2∶1-5;交换温度为25-100℃,优选60-90℃;和/或交换时间为0.5-5小时,优选1-2小时。
  9. 根据权利要求7或8所述的方法,其中:
    所述加氢金属组分中的加氢活性金属选自元素周期表第VIB族金属、第VIII族金属,或者它们的组合,优选选自Ru、Pd、Pt、Ni、Co、Mo、W,或者它们的组合,更优选选自Pd、Ru、Ni,或者它们的组合;和/或
    所述步骤(2)的负载通过浸渍实现,优选通过等体积浸渍实现,优选地,所述步骤(2)的负载通过如下方式实施:使所述活性氧化铝基材与包含加氢活性金属的可溶性盐的水溶液接触,接触温度为0-50℃,接触时间为0.5-12小时。
  10. 根据权利要求7-9中任一项所述的方法,其中所述步骤(3)通过如下方式实施:使所述改性活性氧化铝基材、硅源、碱源、任选的结构导向剂或模板剂、以及水在水热晶化条件下反应,得到所述复合物;
    优选地,所述水热晶化条件包括:水热晶化温度为80-250℃,优选100-180℃,和/或水热晶化时间为20-60小时,优选28-48小时。
    进一步优选地,所述硅源选自水玻璃、硅溶胶、硅酸钠,或者它们的组合;所述碱源选自碱金属氢氧化物、氨水或者它们的组合;所述结构导向剂或模板剂选自四甲基溴化铵、四乙基溴化铵和六亚甲基 亚胺。
  11. 一种硅铝分子筛催化剂,包含粘结剂和权利要求1-6中任一项所述的硅铝分子筛-加氢金属组分-氧化铝复合物,其中基于所述催化剂的总质量,所述催化剂的铝含量(以氧化铝计)为10-85重量%,优选15-80重量%,硅含量(以氧化硅计)为10-85重量%,优选15-80重量%,加氢金属组分含量(以金属计)为0.01-5重量%,优选0.1-3重量%。
  12. 根据权利要求11所述的催化剂,其中所述粘结剂为无机氧化物,优选选自元素周期表第IIA族、第IVB族、第IIIA族和第IVA族元素的氧化物或者它们的组合,更优选选自氧化铝、氧化硅、氧化钛或者它们的组合。
  13. 制备硅铝分子筛催化剂的方法,包括如下步骤:
    I)提供权利要求1-6中任一项所述的硅铝分子筛-加氢金属组分-氧化铝复合物或者按照权利要求7-10中任一项所述的方法制备硅铝分子筛-加氢金属组分-氧化铝复合物;以及
    II)将所述硅铝分子筛-加氢金属组分-氧化铝复合物与粘结剂源混捏成型并焙烧,以及任选地活化,得到所述催化剂。
  14. 根据权利要求13所述的方法,其中:
    步骤II)中所述焙烧的条件包括:焙烧温度为300-650℃,和/或焙烧时间为1-10小时;和/或
    步骤II)中所述的活化包括:对步骤II)焙烧后的成型固体依次进行铵交换和还原,优选地,所述铵交换的条件包括:成型固体、铵盐以及水的质量比为1∶1-15∶1-15,交换温度为25-100℃,交换时间为0.5-5小时;和/或所述还原的条件包括:氢气气氛下还原,还原温度为100-500℃,还原时间为0.5-12小时,氢气体积空速为100-600h-1
  15. 通过权利要求13-14中任一项所述的方法制备得到的硅铝分子筛催化剂。
  16. 权利要求11-12和15中任一项所述的硅铝分子筛催化剂在芳烃加氢烷基化反应中的应用,包括使芳烃原料与烷基化试剂在氢气存在下与所述硅铝分子筛催化剂接触反应。
  17. 一种合成环己基苯的方法,包括如下步骤:
    在氢气存在下使苯与权利要求11-12和15中任一项所述的硅铝分 子筛催化剂接触反应,得到环己基苯;
    优选地,所述反应的条件包括:反应温度为80-200℃,反应压力为0.1-2.0MPa,氢气与苯的摩尔比为0.1-20.0,苯质量空速为0.1-2.0h-1
PCT/CN2023/102547 2022-06-28 2023-06-27 硅铝分子筛-加氢金属组分-氧化铝复合物、其制备及应用 WO2024002036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210742780.1 2022-06-28
CN202210742780.1A CN117339625A (zh) 2022-06-28 2022-06-28 加氢烷基化催化剂及其制备方法和应用和环己基苯合成的方法

Publications (1)

Publication Number Publication Date
WO2024002036A1 true WO2024002036A1 (zh) 2024-01-04

Family

ID=89359976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102547 WO2024002036A1 (zh) 2022-06-28 2023-06-27 硅铝分子筛-加氢金属组分-氧化铝复合物、其制备及应用

Country Status (3)

Country Link
CN (1) CN117339625A (zh)
TW (1) TW202400299A (zh)
WO (1) WO2024002036A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150094494A1 (en) * 2013-10-01 2015-04-02 Exxonmobil Chemical Patents Inc. Hydroalkylating Process
CN114130420A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种苯加氢烷基化催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150094494A1 (en) * 2013-10-01 2015-04-02 Exxonmobil Chemical Patents Inc. Hydroalkylating Process
CN114130420A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种苯加氢烷基化催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN117339625A (zh) 2024-01-05
TW202400299A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
CN107303512B (zh) 一种双功能催化剂及其在苯加氢烷基化反应中的应用
TWI640362B (zh) Molecular sieve, manufacturing method thereof and use thereof
CN108187728B (zh) 一种成型zsm-5分子筛催化剂的制备方法及其应用
CN102211972B (zh) 水滑石负载型催化剂在异丁烷脱氢制备异丁烯中的用途
WO2018010358A1 (zh) 一种甲苯与合成气侧链烷基化制苯乙烯的方法
CN108465481B (zh) 一种多功能纳米复合催化剂及其制备方法和应用
CN107303500B (zh) 金属/h-mcm-22催化剂及其在生产环己基苯中的应用
WO2018205839A1 (zh) 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
WO2022063203A1 (zh) 一种催化裂化催化剂及其制备方法与应用
CN112517059B (zh) 一种二甲基苄醇氢解催化剂及其制备方法
WO2024002036A1 (zh) 硅铝分子筛-加氢金属组分-氧化铝复合物、其制备及应用
CN108863706B (zh) 一种含炔碳四馏分的选择加氢方法
CN107303501B (zh) 金属/mcm-49催化剂及其在生产环己基苯中的应用
CN112138715B (zh) 贵金属杂化分子筛的制备方法、制备的分子筛及其应用
JPH0528278B2 (zh)
CN104549399B (zh) 一种用于1,4‑丁二醇气相脱氢的壳层催化剂及其应用
CN106518600A (zh) 液相烷基化制环己基苯的方法
CN108863699B (zh) 一种炔烃选择加氢回收丁二烯的方法
CN114433220B (zh) 一种苯和合成气烷基化催化剂的制备方法
CN107185548A (zh) 一种联苯选择性加氢制备环己基苯的方法
CN111085243B (zh) 一种负载金属的rey分子筛催化剂、制备方法及其应用
CN102373069A (zh) 用于碳六烷烃裂解的方法
CN108970636B (zh) 一种苯烷基化催化剂的制备方法
JP2011073913A (ja) Zsm−5型ゼオライトの製造方法
CN107344120B (zh) 加氢裂化催化剂载体及其制法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830213

Country of ref document: EP

Kind code of ref document: A1