WO2024001759A1 - 车辆控制方法、系统及存储介质 - Google Patents

车辆控制方法、系统及存储介质 Download PDF

Info

Publication number
WO2024001759A1
WO2024001759A1 PCT/CN2023/099878 CN2023099878W WO2024001759A1 WO 2024001759 A1 WO2024001759 A1 WO 2024001759A1 CN 2023099878 W CN2023099878 W CN 2023099878W WO 2024001759 A1 WO2024001759 A1 WO 2024001759A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
vehicle
target vehicle
emergency
obstacle
Prior art date
Application number
PCT/CN2023/099878
Other languages
English (en)
French (fr)
Inventor
宋新丽
杜建宇
吴岗岗
刘清宇
李佳骏
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024001759A1 publication Critical patent/WO2024001759A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects

Definitions

  • the present application relates to the field of vehicle control, for example, to a vehicle control method, system and storage medium.
  • ultrasonic radar in terms of obstacle target detection, low-speed emergency braking solutions basically use ultrasonic radar as the target detection method.
  • the disadvantages of ultrasonic radar are: short detection range, inability to accurately locate, and inability to identify the moving state of the target.
  • the signal delay is large, etc., which makes it impossible to effectively identify obstacle targets, especially the obstacle target recognition in the driver's blind area, which can easily cause collisions caused by the driver's failure to brake in time when the vehicle is driving at low speeds. A question of possibility.
  • This application provides a vehicle control method, system and storage medium, which can solve the problem of collision caused by the driver not braking in time when the vehicle is driving at low speed, and can not only realize the recognition and collision avoidance of front and rear obstacles when driving straight , and can also realize obstacle recognition and collision avoidance in the driver's blind spot when turning.
  • Embodiments of the present application provide a vehicle control method, which method includes: obtaining vehicle status information of a target vehicle and attribute information of a target obstacle; wherein the target obstacle is located within the maximum detectable area of the target vehicle, And the target obstacle is on the driving trajectory of the target vehicle; the attribute information of the target obstacle is obtained by fusion of information obtained by at least two sensors; the target is determined according to the vehicle status information and the attribute information An emergency control strategy for the vehicle; automatically controlling the target vehicle according to the emergency control strategy.
  • an embodiment of the present application also provides a vehicle control system, which includes: a main controller, an environment sensing system, a signal sensor, a braking control system, an alarm, at least one processor, and a memory communicatively connected to the at least one processor; wherein the environment The perception system includes: ultrasonic radar, millimeter wave radar and surround-view camera; wherein the main controller is connected to the environment perception system, the signal sensor, the brake control system and the alarm respectively; the environment The sensing system is configured to obtain attribute information of the target obstacle; the information sensor is configured to obtain vehicle status information of the target vehicle; the braking control system is configured to automatically control the target vehicle according to the emergency control strategy determined by the main controller ; The alarm is configured to automatically control the target vehicle to issue alarm prompt information; the memory stores a computer program that can be executed by the at least one main controller, and the computer program is controlled by the at least one main controller. Execution, so that the at least one main controller can execute the vehicle control method described in any embodiment of this
  • embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable the processor to implement any of the present application when executed.
  • a vehicle control method according to an embodiment.
  • Figure 1 is a flow chart of a vehicle control method provided by an embodiment of the present application.
  • FIG. 2 is a flow chart of yet another vehicle control method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of an obstacle detection range provided by an embodiment of the present application.
  • FIG. 4 is a structural block diagram of a vehicle control device provided by an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a vehicle control system provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of another vehicle control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another vehicle control system provided by an embodiment of the present application.
  • FIG. 1 is a flow chart of a vehicle control method provided by an embodiment of the present application. This embodiment can be applied to situations where emergency control of low-speed vehicles is automatically performed.
  • the method can be executed by the vehicle control system.
  • the vehicle control system can be implemented in the form of hardware and/or software. As shown in Figure 1, the method includes the following steps.
  • the target obstacle is located within the maximum detectable area of the target vehicle, and the target obstacle is on the driving trajectory of the target vehicle; the attribute information of the target obstacle is obtained by fusion of information obtained by at least two sensors.
  • the target obstacle when the target obstacle is on the driving trajectory of the target vehicle, it can be understood that when the target obstacle is in a dynamic state, the target obstacle and the target vehicle may be traveling relative to each other or in opposite directions; the target obstacle is in a stationary state. state, the target obstacle is located in the driving direction of the target vehicle. It should be noted that when the target obstacle and the target vehicle are traveling in opposite directions, relevant information such as the relative speed of the target obstacle and the target vehicle needs to be considered.
  • the target vehicle can be understood as the vehicle currently driving.
  • the vehicle status information can be understood as the driving status information of the target vehicle, which can include the current vehicle's speed information, gear information, current vehicle's driving direction, acceleration and other related information.
  • Target obstacles can be understood as relevant obstacles that affect the normal driving of the target vehicle, such as pedestrians, other vehicles, objects, etc.
  • the target obstacles can be static obstacles or dynamic obstacles.
  • the number of target obstacles can be one or more. This embodiment does not limit the status and number of obstacles.
  • the vehicle status information includes at least one of the following: current vehicle speed, current gear, driving direction, steering, braking and acceleration;
  • the attribute information of the target obstacle includes at least one of the following: the target obstacle and The relative distance between the target vehicles, the location of the target obstacle, the state of the target obstacle, the size of the target obstacle, and the moving speed of the target obstacle.
  • the current vehicle speed can be understood as the current driving speed of the target vehicle.
  • the current gear position can be understood as the gear position information of the current target vehicle.
  • the driving direction can be understood as the driving direction of the current target vehicle.
  • the driving direction of the current target vehicle can be forward driving or reverse driving. This embodiment is not limited here.
  • the location can be understood as the current driving direction of the target vehicle. For example, it can be driving to the right front of the vehicle when driving forward, driving to the left front of the vehicle when driving forward, or driving in reverse. When traveling toward the right rear of the vehicle, this embodiment does not impose any restrictions on the traveling direction of the target vehicle.
  • Steering refers to the steering direction of the target vehicle. It can be driving forward, turning to the right, or turning to the right. Reverse and turn to the right, you can also turn to the left, etc.
  • Braking refers to the action of stopping or reducing the speed of a moving vehicle.
  • the vehicle status information of the target vehicle may include: current vehicle speed, current gear, driving direction, steering, braking and acceleration
  • the attribute information of the target obstacle may include: the distance between the target obstacle and the target vehicle.
  • Relative distance refers to the relative distance between the target vehicle and the target obstacle, which is expressed as the straight-line distance between the object and the reference object.
  • the state of the target obstacle can be static or dynamic, and the size of the target obstacle can be large or small, and the moving speed of the obstacle can be fast or slow.
  • stationary obstacles can be stationary vehicles, trees, green belts, and roadblocks placed by the traffic department, such as warning posts; dynamic obstacles can be moving vehicles, pedestrians, etc., in this embodiment No restrictions.
  • the target obstacle is located within the maximum detectable area of the target vehicle.
  • the target obstacle can be detected accordingly through the environment sensing system in the target vehicle to obtain the target within the maximum detectable area of the target vehicle.
  • the obstacle and the attribute information of the corresponding obstacle may be, for example, the relative distance between the target obstacle and the target vehicle, the location of the target obstacle, the current state, and the size of the target obstacle, etc.
  • the environment sensing system in the target vehicle can also track moving target obstacles and suspended target obstacles, etc.
  • the environment perception system in the target vehicle includes multiple sensors, such as surround-view cameras, millimeter-wave radars, and ultrasonic radars, so that the attribute information of target obstacles can be obtained through the fusion information of multiple sensors. With the detection area, it achieves a wide detection range, can accurately locate and quickly identify the moving status of target obstacles.
  • the vehicle's current speed information, current acceleration information, vehicle's current gear information, and whether it is turning, whether it is driving forward or reversing, and the process of driving or braking can be obtained from the controller of the target vehicle.
  • the environment sensing system in the target vehicle can obtain the attribute information of the obstacles in the maximum detectable area. For example, it can be the relative distance between the target obstacle and the target vehicle, the location of the target obstacle, the current status, and Volume size, etc.
  • the low-speed emergency braking function can be activated based on the acquired vehicle status information of the target vehicle and the attribute information of the target obstacle, thereby determining whether the obstacle is on the driving trajectory.
  • the target vehicle only needs to detect the attribute information of the obstacles in front of the vehicle when it is moving forward; the target vehicle only needs to detect the attribute information of the obstacles behind the vehicle when it is moving backward; if the obstacle If the target obstacle is not on the driving trajectory of the target vehicle, it is necessary to re-obtain the attribute information of the target obstacle so that the target obstacle is on the driving trajectory of the target vehicle.
  • the emergency control strategy can be understood as the attribute information of the current target obstacle and the status of the target vehicle. After comprehensive judgment of the information, a control request strategy is issued to the braking control system or early warning prompt.
  • relevant strategies for emergency control of the target vehicle can be determined based on the vehicle status information of the target vehicle obtained from the controller and the attribute information of the target obstacle obtained from the environment sensing system in the target vehicle. , it can be a control request strategy sent to the braking control system, or it can be a control request strategy sent by the early warning mechanism.
  • Obstacles can be classified accordingly based on the attribute information of the obstacles.
  • the relative information between the vehicle and the obstacles can be determined based on the relevant status information of the vehicle, and the relevant emergency control strategy of the current vehicle can be determined based on the relative information.
  • the relative information between the vehicle and the obstacle includes the relative speed and relative distance between the target vehicle and the target obstacle.
  • the implementation of the emergency control strategy of the target vehicle is related to the detection range of the target obstacle by the target vehicle.
  • the detection area of the target obstacle it can be divided into a safety area, a braking area, an alarm area and a target area.
  • the maximum detectable area of the vehicle can provide corresponding emergency control strategies in real time when the vehicle enters different detection areas.
  • the target vehicle can be automatically controlled according to the emergency control strategy of the target vehicle.
  • This embodiment can automatically control the target vehicle to perform corresponding actions according to different emergency control strategies.
  • the emergency control strategy can be to provide a collision warning prompt between the target vehicle and the obstacle. Classify and identify objects, and set different alarm thresholds to automatically control the target vehicle to issue corresponding alarm prompts.
  • the emergency control strategy can be to automatically activate the emergency braking function.
  • the relevant activation time can be determined based on the braking starting position, the vehicle status information of the current vehicle, and the relevant attribute information of the target obstacle.
  • the emergency braking function is automatically activated when the start time is reached.
  • the technical solution of the embodiment of the present application obtains the vehicle status information of the target vehicle and the attribute information of the target obstacle, determines the emergency control strategy of the target vehicle based on the vehicle status information and attribute information, and automatically controls the target vehicle according to the emergency control strategy.
  • the embodiment of the present application by using multiple sensors to fuse information, it is possible to identify target obstacles in a large range around the target vehicle, determine the emergency control strategy of the target vehicle based on the vehicle status information and attribute information, and automatically control the target vehicle according to the emergency control strategy.
  • the target vehicle not only recognizes and avoids collisions with target obstacles in the front and rear directions when driving straight, but also recognizes and avoids collisions with obstacles in the driver's blind spot when turning.
  • the method before acquiring the vehicle status information of the target vehicle and the attribute information of the target obstacle, the method further includes: receiving an enabling operation of the low-speed automatic emergency braking function of the target vehicle.
  • the low-speed automatic emergency braking function means that when the vehicle encounters an emergency while driving at low speed, it can The function of automatically stopping the car within the shortest distance quickly and accurately.
  • the low speed in this embodiment can be understood as the vehicle speed at which the current vehicle speed does not exceed a vehicle speed threshold.
  • the low speed may be the speed when the current vehicle speed does not exceed 12km/h.
  • the enabling operation can be understood as the related operation of the enabling switch, which can be the operation of starting or turning off the low-speed automatic emergency braking function by touching or tapping.
  • the driver can perform corresponding enabling operations on the enabling switch by touching or tapping.
  • the driver can obtain the target vehicle's low-speed automatic emergency braking function. vehicle status information and target obstacle attribute information.
  • FIG. 2 is a flow chart of another vehicle control method provided by an embodiment of the present application. Based on the above-mentioned multiple embodiments, this embodiment determines the emergency control strategy and the emergency control method according to the emergency control method. The strategy describes the process of automatically controlling the target vehicle. As shown in Figure 2, the vehicle control method in this embodiment may include the following steps.
  • the category of the target obstacle can be understood as the classification of the state of the target obstacle.
  • the category of the target obstacle can be a static category or a dynamic category. This embodiment is not limited here. It should be noted that the obstacles in the vehicle's detectable area can be classified according to the type, size, location, current motion state, speed and other parameters of the obstacles.
  • Dynamic status For example, when the target obstacle is in the pop-up area, the current moving speed of the target obstacle is 0, indicating that the target obstacle is currently in a stationary state; when the target vehicle can track the currently moving obstacle, it indicates that the target obstacle Things are in a dynamic state.
  • S230 Determine the relative information between the target vehicle and the target obstacle according to the type of the target obstacle and the vehicle status information; where the relative information includes: relative speed and relative distance.
  • Relative information can be understood as information related to the relative speed and/or relative distance between the target vehicle and the target obstacle.
  • dynamic thresholds can be set respectively according to the relative speed and/or relative distance between the target vehicle and the target obstacle, and the relative distance between the target vehicle and the target obstacle can be divided into corresponding areas, for example, it can be a safety area. , start the automatic braking area to the area where the vehicle stops, the alarm area and the detectable area of the target obstacle, etc., to determine the target vehicle's position in different areas based on the relative speed and relative distance between the target vehicle and the target obstacle.
  • Emergency control strategies start the automatic braking area to the area where the vehicle stops, the alarm area and the detectable area of the target obstacle, etc.
  • the emergency control strategy for determining the target vehicle based on relative information can be divided into two types. One is based on the relative information between the target vehicle and the target obstacle to determine the emergency alarm time and emergency alarm of the target vehicle. distance; the other is to determine the optimal braking distance of the target vehicle based on the relative information between the target vehicle and the target obstacle, and determine the emergency braking function of the target vehicle based on the optimal braking distance and the preset safety distance. Start Time.
  • FIG. 3 is a schematic diagram of an obstacle detection range provided by an embodiment of the present application. As shown in Figure 3, the distance between target vehicle detection and obstacles is required to be no less than 10m in the longitudinal and front directions, and the angle between both sides of the front fan-shaped detection area and the vehicle body is no less than ⁇ , where ⁇ is 30°.
  • the obstacle area in Figure 3 can be divided into: A. Safety area, B. Braking area, C. Alarm area, D. Detectable area.
  • the angle between the fan-shaped detection area composed of multiple areas and the vehicle body is ⁇ .
  • the requirements for the left and right detection areas on the front side and the left and right detection areas on the rear side are consistent.
  • Area A is a safe area, and the target vehicle must stop on the dotted line between area A and area B at the latest. After the target vehicle stops, the minimum distance between the target obstacle and the vehicle body; area B is the braking area, that is, from the area where automatic braking is started to the area where the target vehicle stops.
  • the relative distance and relative speed between the object and the vehicle can be used to calculate the optimal braking distance under ideal conditions.
  • the distance between the target vehicle and the target obstacle is less than the sum of the optimal braking distance and the safe distance, that is, it is smaller than the safe zone.
  • the automatic emergency braking function is activated.
  • the braking starting position can set different thresholds according to different vehicle speeds, distances and braking target decelerations to improve the driving experience.
  • Area C is the alarm area, which can prompt the driver in the form of language or text to indicate that there are obstacles or dangers ahead. At this time, the driver can manually brake accordingly according to the corresponding prompt information.
  • the alarm area can classify and identify obstacles according to their type, size, orientation, motion state, speed and other parameters, and set different alarm thresholds to remind the driver of the risk of collision;
  • area D is the area where the largest obstacle can be detected , In this area, the number, location and movement trend related information of obstacles in the detection area can be obtained, and the obstacles can be tracked and analyzed to determine whether the target is on the driving trajectory.
  • the target vehicle must stop on the dotted line between area A and area B at the latest. It can be understood that after the target vehicle stops, the relative distance between the target vehicle and the target obstacle must at least ensure that it reaches the straight line of area A. distance. Of course, the target vehicle can also stop within a range larger than the straight-line distance of area A, that is, in area B. The earliest braking start time of the target vehicle can be at the overlap between area B and area C. It can be understood that when the target vehicle activates the automatic emergency braking function, the maximum relative distance between the target vehicle and the target obstacle is area A. The total straight-line distance from area B. Of course, the automatic emergency braking function can also be activated if the distance between the target vehicle and the target obstacle is less than the sum of the straight-line distances in area A and area B.
  • determining the emergency control strategy of the target vehicle based on the relative information includes: determining the emergency alarm time and emergency alarm distance of the target vehicle based on the relative information.
  • the emergency alarm distance can be understood as the distance between the entering vehicle and the obstacle without collision.
  • the emergency alarm time can be understood as the time when entering the alarm area and starting the alarm.
  • the emergency alarm time and emergency alarm distance of the target vehicle can be determined based on the relative speed and/or relative distance between the target vehicle and the target obstacle, so that the emergency alarm time and/or emergency alarm distance can be used to automatically Control the target vehicle to send out an alarm prompt message.
  • determining the emergency control strategy of the target vehicle based on the relative information includes: determining the optimal braking distance of the target vehicle based on the relative information; determining the emergency braking of the target vehicle based on the optimal braking distance and the preset safety distance. The start time of the function.
  • the optimal braking distance can be understood as the optimal braking distance in the ideal state, which can be calculated by the relative speed and relative distance between the target vehicle and the target obstacle.
  • the preset safety distance can be understood as the preset safety distance between the target vehicle and the target obstacle.
  • the start time can be understood as the moment when the emergency braking function of the target vehicle is activated, which can be determined by the optimal braking distance and the preset safety distance. It should be noted that the earliest braking start time can be at the overlap between the braking area and the alarm area, and the target vehicle must stop at the overlap line between the safety area and the braking area at the latest.
  • the optimal braking distance of the target vehicle can be determined through the relative speed and relative distance between the target vehicle and the target obstacle.
  • the emergency braking distance of the target vehicle can be determined based on the preset safe distance.
  • the start time of the automatic function is automatically controlled to activate the emergency braking function of the target vehicle according to the start time. It should be noted that when the distance between the target vehicle and the target obstacle is less than the sum of the optimal braking distance and the safety distance, that is, when it is smaller than the sum of the distances between the safety zone and the braking zone, the automatic emergency braking function is activated.
  • the braking starting position can set different thresholds according to different vehicle speeds, distances and braking target decelerations. For example, when the speed of the vehicle is very low and the pedestrian in front is stationary, the braking start position can be implemented relatively late.
  • automatic control of the target vehicle according to the emergency control strategy can be divided into two situations. One is: automatically controlling the target vehicle to send out alarm prompt information according to the emergency alarm time and/or emergency alarm distance; the other is: according to the emergency alarm time and/or emergency alarm distance.
  • the emergency control strategy automatically controls the target vehicle and can automatically control the target vehicle to activate the emergency braking function according to the activation time of the emergency braking function.
  • step S240 when step S240 includes determining the emergency alarm time and emergency alarm distance of the target vehicle based on the relative information, automatically controlling the target vehicle according to the emergency control strategy includes: according to the emergency alarm time and/or the emergency alarm distance. Automatically control the target vehicle to issue an alarm message.
  • the alarm prompt information can be understood as reminding the driver that there are obstacles ahead when entering the alarm area. Related prompt information.
  • the alarm prompt information may be provided in the form of voice broadcast, or the corresponding alarm prompt may be provided in the form of text, which is not limited in this embodiment.
  • the target vehicle can be automatically controlled to issue an alarm prompt message according to the emergency alarm time and/or emergency alarm distance.
  • step S240 when step S240 includes determining the optimal braking distance of the target vehicle based on the relative information, and determining the activation time of the emergency braking function of the target vehicle based on the optimal braking distance and the preset safety distance, Automatically control the target vehicle according to the emergency control strategy, including: automatically controlling the target vehicle to activate the emergency braking function according to the activation time of the emergency braking function.
  • the target vehicle after determining the activation time of the emergency braking function of the target vehicle, the target vehicle is automatically controlled to activate the emergency braking function according to the activation time of the emergency braking function.
  • the above technical solution of this embodiment obtains the vehicle status information of the target vehicle and the attribute information of the target obstacle, determines the category of the target obstacle based on the attribute information, and determines the target vehicle and the target obstacle based on the category of the target obstacle and the vehicle status information.
  • the relative information between them determines the emergency control strategy of the target vehicle based on the relative information.
  • by using the fusion information of multiple sensors it is possible to identify target obstacles in a larger range around the target vehicle, determine the category of the target obstacle based on the attribute information, and determine the target based on the category of the target obstacle and the vehicle status information.
  • the relative information between the vehicle and the target obstacle enables automatic emergency braking during low-speed driving, provides accurate and reliable obstacle information, and avoids emergency stops against driving intentions caused by misidentification; determines the emergency control strategy of the target vehicle based on the relative information, and Automatically controlling the target vehicle according to the emergency control strategy can further solve the problem of the possibility of collision caused by the driver not braking in time when the vehicle is driving at low speed, realize the recognition and collision avoidance of front and rear obstacles when driving straight, and also achieve Obstacle recognition and collision avoidance in the driver's blind spot when turning.
  • FIG. 4 is a schematic flowchart of another vehicle control method provided by an embodiment of the present application. As shown in Figure 4, the execution steps of this method are as follows.
  • the driver performs the enabling operation through the manual switch.
  • the controller obtains vehicle information, which may include vehicle status information such as vehicle speed and driving direction.
  • vehicle status information includes but is not limited to vehicle speed, gear, steering, braking, acceleration and other information.
  • the environment perception system obtains information about target obstacles by fusing sensor signals such as surround-view cameras, millimeter-wave radars, and ultrasonic radars.
  • Obstacle attribute information includes but is not limited to distance, orientation, status, size, moving speed (including longitudinal and lateral speed), etc.
  • the obstacle detection range is not less than 10m in the front and rear, and the angle between the side and the vehicle body is not less than 30. It should be noted that in order to be more accurate By accurately analyzing target obstacles, you can obtain as much attribute information as possible.
  • the target obstacle information can be obtained in area D as shown in Figure 3, and it can be determined whether the target obstacle is on the driving trajectory.
  • Area D is the maximum detectable area of the environment sensing system.
  • S440 Activate the low-speed emergency braking function based on vehicle information and target obstacle information.
  • the low-speed emergency braking function is activated according to the characteristics and status of the vehicle and obstacles to determine whether the obstacle is on the driving trajectory.
  • the activation of the low-speed emergency braking function requires the information obtained in steps S410, S420 and S430 to be satisfied. It can be activated only when certain conditions are determined. Generally, the vehicle speed is not greater than 12km/h, and the obstacles are within the specified recognition range.
  • S450 Classify and identify the target obstacles according to the acquired information about the target obstacles.
  • S460 Determine whether to issue an alarm prompt based on the relative speed and relative distance between the vehicle and the obstacle. If an alarm prompt is provided, S470 is executed. If no alarm prompt is provided, S450 is returned to execution.
  • S470 Determine whether the distance between the vehicle and the obstacle is less than the optimal braking distance. If the distance between the vehicle and the obstacle is less than the optimal braking distance, execute S480. If the distance between the vehicle and the obstacle is not less than If the optimal braking distance is reached, return to S460.
  • the relative speed and relative distance between the target vehicle and the target obstacle can be determined based on the type of the target obstacle and vehicle status information, and dynamic thresholds can be set respectively to divide the detection area into A, B, C, There are four areas in D. Area A is the safety area, area B is the braking area, area C is the alarm area, and area D is the maximum detectable area.
  • the target obstacle needs to be on the same driving trajectory as the target vehicle. As shown in Figure 3 in the above embodiment, the target vehicle needs to stop on the dotted line between area A and area B at the latest. It can be understood that after the target vehicle stops, the relative distance between the target vehicle and the target obstacle must be at least Ensure the straight-line distance to area A.
  • the target vehicle can also stop within a range larger than the straight-line distance of area A, that is, in area B.
  • the earliest braking start time of the target vehicle can be at the overlap between area B and area C.
  • the maximum relative distance between the target vehicle and the target obstacle is area A.
  • the automatic emergency braking function can also be activated if the distance between the target vehicle and the target obstacle is less than the sum of the straight-line distances in area A and area B.
  • the automatic emergency braking function is activated.
  • the braking starting position can set different thresholds according to different vehicle speeds, distances and braking target decelerations, thereby improving the driving experience.
  • the emergency alarm time and emergency alarm distance of the target vehicle can be determined, and by setting different alarm thresholds, the emergency alarm time and emergency alarm distance of the target vehicle can be determined. In the form of sound or text prompts, the driver is reminded of the risk of collision.
  • FIG. 5 is a structural block diagram of a vehicle control device provided by an embodiment of the present application.
  • the device is suitable for automatic emergency control of low-speed vehicles.
  • the device can be implemented by hardware/software. It can be configured in an electronic device to implement a vehicle control method in the embodiment of the present application.
  • the device includes: an information acquisition module 510 , a policy determination module 520 and a vehicle control module 530 .
  • the information acquisition module 510 is configured to acquire the vehicle status information of the target vehicle and the attribute information of the target obstacle; wherein the target obstacle is located within the maximum detectable area of the target vehicle, and the target obstacle is within the maximum detectable area of the target vehicle.
  • the attribute information of the target obstacle is obtained by fusion of information obtained by at least two sensors.
  • the strategy determination module 520 is configured to determine the emergency control strategy of the target vehicle according to the vehicle status information and the attribute information.
  • the vehicle control module 530 is configured to automatically control the target vehicle according to the emergency control strategy.
  • the information acquisition module can identify target obstacles in a large range around the target vehicle by using the fusion information of multiple sensors.
  • the strategy determination module determines the emergency control strategy of the target vehicle based on vehicle status information and attribute information.
  • the vehicle control module automatically controls the target vehicle according to the emergency control strategy. It not only realizes the identification and collision avoidance of the target vehicle's front and rear target obstacles when driving straight, but also realizes the identification and collision avoidance of obstacles in the driver's blind spot when turning. .
  • the strategy determination module 520 includes: a category determination unit configured to determine the category of the target obstacle based on the attribute information; a relative information determination unit configured to determine the category of the target obstacle based on the category and the target obstacle.
  • the vehicle status information determines relative information between the target vehicle and the target obstacle; wherein the relative information includes: relative speed and relative distance; a strategy determination unit configured to determine the target according to the relative information Vehicle emergency control strategies.
  • the strategy determination unit includes: an emergency determination unit configured to determine the emergency alarm time and emergency alarm distance of the target vehicle based on the relative information.
  • the vehicle control module 530 includes: an alarm prompt unit configured to automatically control the target vehicle to issue alarm prompt information according to the emergency alarm time and/or emergency alarm distance.
  • the strategy determination unit includes: an optimal distance determination subunit configured to determine the optimal braking distance of the target vehicle based on the relative information; a start time determination subunit configured to determine the optimal braking distance based on the relative information.
  • the optimal braking distance and the preset safety distance determine the activation time of the emergency braking function of the target vehicle.
  • the vehicle control module 530 includes: an emergency braking control unit configured to automatically control the target vehicle to activate the emergency braking function according to the activation time of the emergency braking function.
  • the device further includes: an enabling operation receiving module configured to receive a low-speed automatic emergency response to the target vehicle before obtaining the vehicle status information of the target vehicle and the attribute information of the target obstacle. Enable operation of the braking function.
  • the vehicle control device provided by the embodiments of this application can execute the vehicle control method provided by any embodiment of this application, and has corresponding functional modules for executing the method.
  • FIG. 6 is a structural block diagram of a vehicle control system provided by an embodiment of the present application.
  • the system is suitable for automatic emergency control of low-speed vehicles.
  • the system can be implemented by hardware/software.
  • the system includes: a main controller 630, an environment sensing system 610, a signal sensor 620, a braking control system 640, an alarm 650, at least one processor, and a memory communicatively connected to the at least one processor.
  • the environment sensing system 610 includes: ultrasonic radar, millimeter wave radar and surround-view camera; wherein the main controller 630 is respectively connected with the environment sensing system 610, the signal sensor 620, the braking control system 640 is connected to the alarm 650; the environment sensing system 610 is configured to obtain attribute information of the target obstacle; the information sensor 620 is configured to obtain vehicle status information of the target vehicle; the braking control system 640, The alarm 650 is configured to automatically control the target vehicle according to the emergency control strategy determined by the main controller; the alarm 650 is configured to automatically control the target vehicle to issue alarm prompt information; the memory stores information that can be used by the at least one main controller 630 A computer program is executed, and the computer program is executed by the at least one main controller 630, so that the at least one main controller 630 can execute the vehicle control method in any of the above embodiments.
  • attribute information of target obstacles within a larger visual range can be obtained, and the target vehicle can be obtained through the signal sensor 620.
  • the main controller 630 can make a corresponding comprehensive judgment on the current obstacle information and vehicle information based on the attribute information of the target obstacle and the vehicle status information of the target vehicle, and then send the brake control system 640 to the brake control system 640 based on the comprehensive judgment.
  • the alarm 650 sends a control request signal to automatically control the target vehicle to perform emergency braking according to the emergency control strategy determined by the main controller 630, or automatically controls the target vehicle to send out an alarm prompt message.
  • the vehicle control system may also include an enabling switch, which is connected to the main controller 630 and can be set to manually start/stop the low-speed emergency braking function.
  • the main controller 630 may also be called a low-speed emergency braking controller.
  • the obstacle target recognition method proposed in the embodiment of this application based on the fusion of multiple sensors such as ultrasonic radar, millimeter wave radar and camera can improve the distance and range of obstacle recognition, motion characteristics recognition, target size recognition, and can also achieve target tracking. Predict the risk of collision between vehicles and obstacles in advance and give alarm prompts. When the collision distance is less than a certain threshold, the automatic emergency braking function is activated to avoid a collision.
  • the processor in the vehicle control system and the memory communicatively connected to the processor are shown in FIG. 7 of this application, but are not shown correspondingly in FIG. 6 .
  • FIG. 7 is a schematic structural diagram of a vehicle control system provided by an embodiment of the present application.
  • the vehicle control system 10 further includes at least one processor 11 and at least one processor 11 Communication-connected memories, such as read-only memory (Read-Only Memory, ROM) 12, random access memory (Random Access Memory, RAM) 13, etc., wherein the memory stores computer programs that can be executed by at least one processor, and the processor 11 can perform various appropriate actions and processes according to the computer program stored in the ROM 12 or loaded from the storage unit 18 into the RAM 13. In the RAM 13, various programs and data required for the operation of the electronic device 10 can also be stored.
  • the processor 11, the ROM 12 and the RAM 13 are connected to each other via the bus 14.
  • An input/output (I/O) interface 15 is also connected to the bus 14 .
  • the I/O interface 15 includes: an input unit 16, such as a keyboard, a mouse, etc.; an output unit 17, such as various types of displays, speakers, etc.; a storage unit 18, such as a disk, Optical disc, etc.; and communication unit 19, such as network card, modem, wireless communication transceiver, etc.
  • the communication unit 19 allows the electronic device 10 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunications networks.
  • Processor 11 may be a variety of general and/or special purpose processing components having processing and computing capabilities. Some examples of the processor 11 include, but are not limited to, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (GPU), a variety of dedicated artificial intelligence (Artificial Intelligence, AI) computing chips, a variety of running Machine learning model algorithm processor, digital signal processor (Digital Signal Processor, DSP), and any appropriate processor, controller, microcontroller, etc.
  • the processor 11 performs a plurality of methods and processes described above, such as vehicle control methods.
  • the vehicle control system also includes: a main controller, an environment sensing system, a signal sensor, a braking control system, and an alarm; wherein, the environment sensing system includes: ultrasonic radar, millimeter wave radar, and surround-view camera ;
  • the main controller is connected to the environment sensing system, the signal sensor, the braking control system and the alarm respectively; the environment sensing system is configured to obtain attribute information of the target obstacle;
  • the information sensor is configured to obtain vehicle status information of the target vehicle;
  • the brake control system is configured to automatically control the target vehicle according to the emergency control strategy determined by the main controller;
  • the alarm is configured to automatically control the target The vehicle issues an alarm message.
  • the main controller, environment sensing system, signal sensor, braking control system and alarm in the vehicle control system are shown in Figure 6 of this application and are not corresponding in Figure 7 of shown.
  • the vehicle control method may be implemented as a computer program tangibly embodied in a computer-readable storage medium, such as storage unit 18 .
  • part or all of the computer program may be loaded and/or installed onto the vehicle control system 10 via the ROM 12 and/or the communication unit 19.
  • the processor 11 may be configured to perform the vehicle control method in any other suitable manner (eg, by means of firmware).
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSP Application Specific Standard Parts
  • SOC System on Chip
  • CPLD Complex Programmable Logic Device
  • These various embodiments may include implementation in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor
  • the processor which may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • Computer programs for implementing the methods of the present application may be written in any combination of one or more programming languages. These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, such that the computer program, when executed by the processor, causes the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium.
  • machine-readable storage media would include an electrical connection based on one or more wires, a laptop disk, a hard drive, RAM, ROM, Erasable Programmable Read-Only Memory (EPROM), or Flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage equipment, magnetic storage equipment, or any suitable combination of the above.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN), blockchain network, and the Internet.
  • Computing systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.
  • the server can be a cloud server, also known as cloud computing server or cloud host. It is a host product in the cloud computing service system to solve the problems that exist in traditional physical host and virtual private server (VPS) services. It has the disadvantages of difficult management and weak business scalability.
  • VPN virtual private server

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本申请实施例公开了一种车辆控制方法、系统及存储介质。该方法包括:获取目标车辆的车辆状态信息和目标障碍物的属性信息;所述目标障碍物的属性信息由至少两个传感器所获取的信息融合得到;根据所述车辆状态信息和所述属性信息确定所述目标车辆的紧急控制策略;按照所述紧急控制策略自动控制所述目标车辆。

Description

车辆控制方法、系统及存储介质
本申请要求在2022年06月27日提交中国专利局、申请号为202210734354.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆控制领域,例如涉及一种车辆控制方法、系统及存储介质。
背景技术
现代交通参与者中,即使在低速驾驶情况下,由于驾驶员在驾驶车辆过程中,容易产生的驾驶疲劳或走神或不良驾驶的相关习惯,这些极容易引起驾驶员驾驶的车辆和行人等弱势群体的碰撞、车辆和车辆之间的追尾以及侧刮等,也容易引起车辆在转弯以及倒车时由于视野盲区等导致的碰撞等,这些均会造成一定的人员和财产损失。因此开发车辆低速自动紧急制动功能非常必要。
相关技术中,在进行障碍物目标检测方面,低速紧急制动方案,基本以超声波雷达作为目标探测方法,但是超声波雷达的缺点在于:探测距离较短,无法准确定位,无法识别目标的移动状态,信号延迟较大等,从而不能够很有效的识别障碍物目标,特别是在驾驶员盲区的障碍物目标识别,极易造成车辆在低速驾驶时,由于驾驶员未及时制动导致的碰撞发生的可能性问题。
发明内容
本申请提供一种车辆控制方法、系统及存储介质,能够能够解决车辆低速驾驶时,由于驾驶员未及时制动导致的碰撞发生的问题,不仅能实现对直行时前后向障碍物识别和避撞,还能实现转弯时驾驶员盲区的障碍物识别及避撞。
本申请实施例提供了一种车辆控制方法,该方法包括:获取目标车辆的车辆状态信息和目标障碍物的属性信息;其中,所述目标障碍物位于所述目标车辆的最大可探测区域内,且所述目标障碍物在所述目标车辆的行驶轨迹上;所述目标障碍物的属性信息由至少两个传感器所获取信息融合得到;根据所述车辆状态信息和所述属性信息确定所述目标车辆的紧急控制策略;按照所述紧急控制策略自动控制所述目标车辆。
根据本申请的另一方面,本申请实施例还提供了一种车辆控制系统,该系统包括:主控制器、环境感知系统、信号传感器、制动控制系统、报警器、至少一个处理器以及与所述至少一个处理器通信连接的存储器;其中,所述环境 感知系统包括:超声波雷达、毫米波雷达和环视摄像头;其中,所述主控制器分别与所述环境感知系统、所述信号传感器、所述制动控制系统和所述报警器连接;所述环境感知系统,设置为获取目标障碍物的属性信息;所述信息传感器,设置为获取目标车辆的车辆状态信息;所述制动控制系统,设置为按照主控制器确定的紧急控制策略自动控制目标车辆;所述报警器,设置为自动控制所述目标车辆发出报警提示信息;所述存储器存储有可被所述至少一个主控制器执行的计算机程序,所述计算机程序被所述至少一个主控制器执行,以使所述至少一个主控制器能够执行本申请任一实施例所述的车辆控制方法。
根据本申请的另一方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请任一实施例所述的车辆控制方法。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的一种车辆控制方法的流程图;
图2为本申请一实施例提供的又一种车辆控制方法的流程图;
图3为本申请一实施例提供的一种障碍物探测范围的示意图;
图4是本申请一实施例提供的一种车辆控制装置的结构框图;
图5是本申请一实施例提供的一种车辆控制系统的结构框图;
图6为本申请一实施例提供的另一种车辆控制方法的流程示意图;
图7为本申请一实施例提供的另一种车辆控制系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“目标”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列 步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在一实施例中,图1为本申请一实施例提供的一种车辆控制方法的流程图,本实施例可适用于自动对低速车辆进行紧急控制的情况,该方法可以由车辆控制系统来执行,该车辆控制系统可以采用硬件和/或软件的形式实现。如图1所示,该方法包括如下步骤。
S110、获取目标车辆的车辆状态信息和目标障碍物的属性信息。
目标障碍物位于目标车辆的最大可探测区域内,且目标障碍物在目标车辆的行驶轨迹上;目标障碍物的属性信息由至少两个传感器所获取的信息融合得到。
在本实施例中,目标障碍物在目标车辆的行驶轨迹上可以理解为目标障碍物处于动态状态时,目标障碍物与目标车辆可以是相对行驶,也可以是相向行驶的;目标障碍物处于静止状态时,目标障碍物位于目标车辆的行驶方向上。需要说明的是,当目标障碍物与目标车辆相向行驶时,需要考虑目标障碍物与目标车辆的相对速度等相关信息。
目标车辆可以理解为当前正在行驶中的车辆。车辆状态信息可以理解为目标车辆的行驶状态信息,可以包括当前车辆的车速信息、所处挡位信息、当前车辆的行驶方向以及加速度等相关信息。目标障碍物可以理解为影响目标车辆正常行驶的相关障碍物,例如可以为行人、其他车辆、物品等,当然,目标障碍物可以为静态形式的相关障碍物,也可以为动态形式的相关障碍物,目标障碍物的个数可以为一个或多个。本实施例对障碍物的状态及个数均不作限制。
在一实施例中,车辆状态信息至少包括下述之一:当前车速、当前挡位、行驶方向、转向、制动和加速度;目标障碍物的属性信息至少包括下述之一:目标障碍物与目标车辆之间的相对距离、目标障碍物的所处方位、目标障碍物的所处状态、目标障碍物的尺寸、目标障碍物的移动速度。
当前车速可以理解为当前目标车辆的行驶速度。当前挡位可以理解为当前目标车辆的挡位信息。行驶方向可以理解为当前目标车辆的行驶方向,当然,当前目标车辆的行驶方向可以为正向行驶,也可以为倒车行驶,本实施例在此不作限制。所处方位可以理解为当前目标车辆的行驶方位,示例性的,可以为在正向行驶时向车辆的右前方行驶,也可以在正向行驶时向车辆的左前方行驶,也可以在倒车行驶时向车辆的右后方行驶,本实施例对目标车辆的行驶方向不作限制。转向指的是目标车辆的转向方向,可以为正向行驶向右转向,也可以 倒车向右转向,也可以向左转向等。制动指的是使运行中的车辆停止或减低速度的动作。
在本实施例中,目标车辆的车辆状态信息可以包括:当前车速、当前挡位、行驶方向、转向、制动和加速度,目标障碍物的属性信息可以包括:目标障碍物与目标车辆之间的相对距离、目标障碍物的所处方位、目标障碍物的所处状态、目标障碍物的尺寸、目标障碍物的移动速度。相对距离指的是目标车辆与目标障碍物之间的相对距离,表现为物体与参考物之间的直线距离。在目标车辆的行驶轨迹上,目标障碍物的状态可以为静止的,也可以动态的,且目标障碍物的尺寸有大有小,障碍物的移动速度有快有慢。示例性的,静止的障碍物可以为静止的车辆、树木、绿化带以及交通部门放置的路障,例如可以是警示桩;动态的障碍物可以为行驶中的车辆、行人等,本实施例在此不作限制。
在本实施例中,目标障碍物位于目标车辆的最大可探测区域内,可以通过目标车辆中的环境感知系统,对目标障碍物进行相应的检测,以获取目标车辆的最大可探测区域内的目标障碍物以及相应障碍物的属性信息,例如可以是目标障碍物与目标车辆的相对距离、目标障碍物的所处方位、当前所述状态以及体积大小等。同时,通过目标车辆中的环境感知系统还可以追踪移动目标障碍物以及悬浮目标障碍物等,本实施例在此不作限制。目标车辆中的环境感知系统中包括多个传感器,例如可以是环视摄像头、毫米波雷达以及超声波雷达,以便通过多个传感器的融合信息获取目标障碍物的属性信息等,通过多个传感器的融合信息以进行探测区域,实现了探测范围广泛,可以准确定位,快速识别目标障碍物的移动状态。
在本实施例中,从目标车辆的控制器中可以获取车辆的当前车速信息、当前加速度信息、车辆的当前挡位信息以及是否转向、正在正向行驶还是倒车的过程、驱动或制动的相关车辆状态信息,从目标车辆中的环境感知系统可以获取最大可探测区域内相障碍物的属性信息,例如可以是目标障碍物与目标车辆的相对距离、目标障碍物的所处方位、当前状态以及体积大小等。
需要说明的是,可以依据所获取目标车辆的车辆状态信息和目标障碍物的属性信息,以激活低速紧急制动功能,从而判断障碍物是否在行驶轨迹上。示例性的,目标车辆在前进形式的过程中只需探测车辆前方的障碍物的属性信息;目标车辆在后退也即形式倒车的过程中只需探测车辆后方的障碍物的属性信息;如果障碍物不在目标车辆的行驶轨迹上,则需要重新获取目标障碍物的属性信息,以使得目标障碍物在目标车辆的行驶轨迹上。
S120、根据车辆状态信息和属性信息确定目标车辆的紧急控制策略。
紧急控制策略可以理解为对当前目标障碍物的属性信息和目标车辆的状态 信息进行综合判断后,向制动控制系统或预警提示所发出控制请求策略。
在本实施例中,可以依据从控制器中获取的目标车辆的车辆状态信息,以及从目标车辆中的环境感知系统中获取的目标障碍物的属性信息,以确定目标车辆的紧急控制的相关策略,可以为向制动控制系统发出控制请求策略,也可以为预警机制所发出控制请求策略,本实施例在此不作限制。可以依据障碍物的属性信息对障碍物进行相应的分类,在此基础上依据车辆的相关状态信息以确定车辆与障碍物之间的相对信息,并依据相对信息确定当前车辆的相关紧急控制策略。车辆与障碍物之间的相对信息包含目标车辆与目标障碍物之间的相对速度以及相对距离。
需要说明的是,目标车辆的紧急控制策略的实施与目标车辆对目标障碍物的探测范围相关,依据对目标障碍物的探测区域,可以将其划分为安全区、制动区、报警区以及目标车辆最大可探测区,在车辆进入不同的探测区域时,可以实时相对应的紧急控制策略。
S130、按照紧急控制策略自动控制目标车辆。
在本实施例中,可以依据目标车辆的紧急控制的相关策略,以自动控制目标车辆。本实施例可以依据不同的紧急控制策略以自动控制目标车辆进行相应的动作。示例性的,当车辆进入报警区域时,紧急控制策略可以为进行目标车辆与障碍物的碰撞预警提示时,可以依据根据目标障碍物类型、大小、方位、运动状态以及速度等参数等对目标障碍物的分类识别,并设置不同警报报警阈值,以自动控制目标车辆进行相应的报警提示。当车辆进入制动区域时,紧急控制策略可以为自动启动紧急制动功能时,可以依据制动起始位置、当前车辆的车辆状态信息以及目标障碍物的相关属性信息确定出相关启动时间,在达到启动时间时自动启动紧急制动功能。
本申请实施例的技术方案,通过获取目标车辆的车辆状态信息和目标障碍物的属性信息,根据车辆状态信息和属性信息确定目标车辆的紧急控制策略,并按照紧急控制策略自动控制目标车辆。本申请实施例,通过采用多个传感器融合信息,能够识别目标车辆周围较大范围内的目标障碍物,并依据车辆状态信息和属性信息确定目标车辆的紧急控制策略,并按照紧急控制策略自动控制目标车辆,不仅实现对目标车辆在直行时前后向目标障碍物进行识别和避撞,还能实现转弯时对驾驶员盲区的障碍物进行识别及避撞。
在一实施例中,在获取目标车辆的车辆状态信息和目标障碍物的属性信息之前,还包括:接收对目标车辆的低速自动紧急制动功能的使能操作。
低速自动紧急制动功能指的是车辆在低速行驶过程中遇到紧急情况时,可 以迅速、正确在最短距离内自动将车停住的功能。需要说明的是,本实施例中的低速可以理解为当前车速不超过一车速阈值的车速。示例性的,低速可以为当前车速不超过12km/h时的速度。使能操作可以理解为对使能开关的相关操作,可以为采用触摸或点触的方式启动或关闭低速自动紧急制动功能的操作。
在本实施例中,驾驶员可以通过触摸或点触的方式对使能开关进行相应的使能操作,在接收到对目标车辆的低速自动紧急制动功能的使能操作时,可以获取目标车辆的车辆状态信息和目标障碍物的属性信息。
在一实施例中,图2为本申请一实施例提供的又一种车辆控制方法的流程图,本实施例在上述多个实施例地基础上,对紧急控制策略的确定过程以及按照紧急控制策略对目标车辆进行自动控制的过程进行说明。如图2所示,本实施例中的车辆控制方法可以包含如下步骤。
S210、获取目标车辆的车辆状态信息和目标障碍物的属性信息。
S220、根据属性信息确定目标障碍物的类别。
目标障碍物的类别可以理解为目标障碍物的所处状态的分类,目标障碍物的类别可以为静态类别,也可以为动态类别,本实施例在此不作限制。需要说明的是,可以根据障碍物的类型、尺寸大小、所处方位以及当前运动状态、速度等参数对车辆可探测区域的障碍物进行分类。
在本实施例中,可以依据目标障碍物的距离信息、方位信息、状态信息、尺寸大小信息、移动速度(含纵向、横向速度)等,以确定当前目标障碍物的类别为静态状态,还是处于动态状态。示例性的,在目标障碍物处于可弹出区域内时,目标障碍物的当前移动速度为0,说明目标障碍物当前处于静止状态;当目标车辆可以追踪到当前移动的障碍物时,说明目标障碍物处于动态状态。
S230、根据目标障碍物的类别和车辆状态信息确定目标车辆与目标障碍物之间的相对信息;其中,相对信息包括:相对速度和相对距离。
相对信息可以理解为目标车辆与目标障碍物之间的相对速度和/或相对距离的相关信息。
在本实施例中,可以依据目标车辆与目标障碍物之间的相对速度和/或相对距离,分别设置动态阈值,将目标车辆和目标障碍物的相对距离划分为相应区域,例如可以为安全区域、启动自动制动区域到车辆停下的区域、报警区域以及目标障碍物的可探测区域等,以根据目标车辆与目标障碍物之间的相对速度和相对距离确定在不同区域时,目标车辆的紧急控制策略。
S240、根据相对信息确定目标车辆的紧急控制策略。
在本实施例中,根据相对信息确定目标车辆的紧急控制策略,可以分为两种,一种是依据目标车辆与目标障碍物之间的相对信息,以确定目标车辆的紧急报警时间和紧急报警距离;另一种是根据目标车辆与目标障碍物之间的相对信息确定目标车辆的最佳制动距离,根据最佳制动距离和预设安全距离,以确定目标车辆的紧急制动功能的启动时间。
本实施例中,由于目标车辆的紧急控制策略的实施与目标车辆对目标障碍物的探测范围相关,以目标车辆为中心,根据目标车辆的最大可探测区域内的障碍物距离,将目标车辆与目标障碍物划分为不同的区域,并根据车辆运动状态与障碍物的相对位置设置相应的阈值。示例性的,图3为本申请一实施例提供的一种障碍物探测范围的示意图。如图3所示,目标车辆探测与障碍物的距离要求,纵向前后不小于10m,车头扇形探测区域两侧与车身夹角不小于α,其中α为30°。图3中障碍物区域可划分为:A.安全区,B.制动区,C.报警区,D.可探测区。多个区域所组成的扇形探测区与车身夹角为α,前侧左右探测区域与后侧左右探测区域要求一致。A区域为安全区,目标车辆最晚要在A区域与B区域之间的虚线上停止。目标车辆停下后,目标障碍物距离车身的最小距离;B区域为制动区,即为启动自动制动的区域到目标车辆停下的区域,通过对目标障碍物的分类识别以及获取目标障碍物与车辆的相对距离以及相对速度等,可以计算出理想状态下的最佳制动距离,当目标车辆与目标障碍物距离小于最佳制动距离与安全距离之和时,也即小于安全区与制动区的距离之和时,启动自动紧急制动功能,制动起始位置可以根据不同车速、距离与制动目标减速度设置不同阈值,以提高驾乘体验。C区域为报警区域,可以提示采用语言或文字的方式,以驾驶员前方有障碍物或前方危险,此时驾驶员可以根据相应的提示信息,以手动的方式进行相应的制动。报警区域可以根据障碍物类型、大小、方位、运动状态、速度等参数等对障碍物进行分类识别,并设置不同报警阈值,提醒驾驶员存在碰撞危险;D区域为最大可探测到障碍物的区域,在此区域,可以获取探测区域中障碍物的数量、位置以及移动趋势相关信息等,并对障碍物进行跟踪分析,以确定目标是否在行驶轨迹。
需要说明的是,目标车辆最晚需在A区域与B区域之间的虚线上停止,可以理解为,目标车辆在停止之后,与目标障碍物之间的相对距离至少要保证达到A区域的直线距离。当然,目标车辆也可以在大于A区域的直线距离的范围内停止,即在B区域内停止。目标车辆最早的制动启动时间可以在B区域与C区域之间的重合处,可以理解为,目标车辆启动自动紧急制动功能时,目标车辆与目标障碍物之间的最大相对距离为A区域和B区域的直线距离的总和。当然,目标车辆与目标障碍物之间的距离小于A区域和B区域的直线距离的总和,也可以启动自动紧急制动功能。
在一实施例中,根据相对信息确定目标车辆的紧急控制策略,包括:根据相对信息确定目标车辆的紧急报警时间和紧急报警距离。
紧急报警距离可以理解为进入车辆与障碍物不发生相撞的距离。紧急报警时间可以理解为进入报警区域开始报警的时间。
在本实施例中,可以依据目标车辆与目标障碍物之间的相对速度和/或相对距离,以确定目标车辆的紧急报警时间和紧急报警距离,以通过紧急报警时间和/或紧急报警距离自动控制目标车辆发出报警提示信息。
在一实施例中,根据相对信息确定目标车辆的紧急控制策略,包括:根据相对信息确定目标车辆的最佳制动距离;根据最佳制动距离和预设安全距离确定目标车辆的紧急制动功能的启动时间。
最佳制动距离可以理解为理想状态在的最优制动距离,可以通过目标车辆以及目标障碍物之间的相对速度和相对距离计算得出。预设安全距离可以理解为预先设置的目标车辆以及目标障碍物之间的安全距离。启动时间可以理解为目标车辆的紧急制动功能启动的时刻,可以通过最佳制动距离和预设安全距离进行确定。需要说明的是,最早的制动启动时间可以在制动区域与报警区域之间的重合处,目标车辆最晚要在安全区与制动区之间的重合线上停止。
在本实施例中,通过目标车辆以及目标障碍物之间的相对速度和相对距离,可以确定目标车辆的最佳制动距离,在此基础上基于预设安全距离,可以确定目标车辆的紧急制动功能的启动时间,以依据启动时间自动控制目标车辆启动紧急制动功能。需要说明的是,当目标车辆与目标障碍物距离小于最佳制动距离与安全距离之和时,也即小于安全区与制动区的距离之和时,启动自动紧急制动功能。制动起始位置可以根据不同车速、距离与制动目标减速度设置不同阈值。示例性的,当车辆的车速很小且前方行人处于静止状态时,制动起始位置可以相对晚一点执行制动。
S250、按照紧急控制策略自动控制目标车辆。
在本实施例中,按照紧急控制策略自动控制目标车辆可以分为两种情况,一种是:按照紧急报警时间和/或紧急报警距离自动控制目标车辆发出报警提示信息;另一种是:按照紧急控制策略自动控制目标车辆,可以为按照紧急制动功能的启动时间自动控制目标车辆启动紧急制动功能。
在一实施例中,在步骤S240包含根据相对信息以确定目标车辆的紧急报警时间和紧急报警距离的情况下,按照紧急控制策略自动控制目标车辆,包括:按照紧急报警时间和/或紧急报警距离自动控制目标车辆发出报警提示信息。
报警提示信息可以理解为在进入报警区域时,提示驾驶员前方有障碍物的 相关提示信息。报警提示信息的方式可以为通过语音播报的方式进行报警提示,也可以通过文字的形式进行相应的报警提示,本实施例在此不作限制。
在本实施例中,确定出目标车辆的紧急报警时间和紧急报警距离后,可以按照紧急报警时间和/或紧急报警距离,自动控制目标车辆发出报警提示信息。
在一实施例中,在步骤S240包含根据相对信息确定目标车辆的最佳制动距离,并根据最佳制动距离和预设安全距离确定目标车辆的紧急制动功能的启动时间的情况下,按照紧急控制策略自动控制目标车辆,包括:按照紧急制动功能的启动时间自动控制目标车辆启动紧急制动功能。
在本实施例中,确定目标车辆的紧急制动功能的启动时间之后,依据紧急制动功能的启动时间自动控制目标车辆启动紧急制动功能。
本实施例上述技术方案,通过获取目标车辆的车辆状态信息和目标障碍物的属性信息,根据属性信息确定目标障碍物的类别,根据目标障碍物的类别和车辆状态信息确定目标车辆与目标障碍物之间的相对信息,根据相对信息确定目标车辆的紧急控制策略。本申请实施例,通过采用多个传感器的融合信息,能够识别目标车辆周围较大范围内的目标障碍物,根据属性信息确定目标障碍物的类别,根据目标障碍物的类别和车辆状态信息确定目标车辆与目标障碍物之间的相对信息,实现低速驾驶时自动紧急制动提供准确可靠的障碍物信息,避免误识别导致的违背驾驶意图急停;根据相对信息确定目标车辆的紧急控制策略,并按照紧急控制策略自动控制目标车辆,能够进一步解决车辆低速驾驶时,由于驾驶员未及时制动导致的碰撞发生的可能性问题,实现对直行时前后向障碍物识别和避撞,同时还能实现转弯时驾驶员盲区的障碍物识别及避撞。
在一实施例中,图4为本申请一实施例提供的另一种车辆控制方法的流程示意图。如图4所示,该方法的执行步骤如下。
S410、驾驶员通过手动开关进行使能操作。
S420、获取车辆信息。
在本实施例中,控制器获取车辆信息,可以包括车速、行驶方向等车辆状态信息,当然,车辆状态信息包含但不限于车速,挡位,转向,制动,加速等信息。
S430、获取目标障碍物的信息,并判断目标障碍物是否在行驶轨迹上。
在本实施例中,环境感知系统通过对环视摄像头、毫米波雷达以及超声波雷达等传感器信号融合,得到目标障碍物的信息。障碍物属性信息包含但不限于距离、方位、状态、大小、移动速度(含纵向、横向速度)等,障碍物探测范围前后不小于10m,侧向与车身夹角不小于30。需要说明的是,为了更能准 确地对目标障碍物进行分析,可以尽可能获取更多的属性信息。
在本实施例中,可以在如图3所示的D区域中获取目标障碍物信息,并判断目标障碍物是否在行驶轨迹上。D区域为环境感知系统的最大可探测区域。
S440、根据车辆信息和目标障碍物的信息,激活低速紧急制动功能。
在本实施例中,根据车辆和障碍物特征及状态,激活低速紧急制动功能,判断障碍物是否在行驶轨迹上,低速紧急制动功能激活需要在获取步骤S410、S420以及S430中的信息满足判断条件才能激活,一般车速不大于12km/h,且障碍物在规定识别范围内。
S450、根据获取的目标障碍物的信息对目标障碍物进行分类识别处理。
S460、根据车辆和障碍物的相对速度及相对距离,判断是否进行报警提示,若进行报警提示,则执行S470,若不进行报警提示,则返回执行S450。
S470、判断车辆与障碍物之间的距离是否小于最佳制动距离,若车辆与障碍物之间的距离小于最佳制动距离,则执行S480,若车辆与障碍物之间的距离不小于最佳制动距离,则返回执行S460。
S480、紧急制动。
在本实施例中,可以根据目标障碍物的类别和车辆状态信息确定目标车辆与目标障碍物之间的相对速度及相对距离,并分别设置动态阈值,将探测区域划分为A、B、C、D四个区域,A区域为安全区,B区域为制动区,C区域为报警区,D区域为最大可探测区。在实际操作过程中,目标障碍物需与目标车辆在同一行驶轨迹上。如上述实施例中的图3所示,目标车辆最晚需在A区域与B区域之间的虚线上停止,可以理解为,目标车辆在停止之后,与目标障碍物之间的相对距离至少要保证达到A区域的直线距离。当然,目标车辆也可以在大于A区域的直线距离的范围内停止,即在B区域内停止。目标车辆最早的制动启动时间可以在B区域与C区域之间的重合处,可以理解为,目标车辆启动自动紧急制动功能时,目标车辆与目标障碍物之间的最大相对距离为A区域和B区域的直线距离的总和。当然,目标车辆与目标障碍物之间的距离小于A区域和B区域的直线距离的总和,也可以启动自动紧急制动功能。通过对目标障碍物的分类识别,以及目标障碍物与目标车辆的相对距离以及相对速度,可以得到目标车辆的最佳制动距离,当目标车辆与目标障碍物距离小于最佳制动距离与安全距离之和时,启动自动紧急制动功能,制动起始位置可以根据不同车速、距离与制动目标减速度设置不同阈值,从而可以提高驾乘体验。通过对目标障碍物的分类识别,以及其与目标车辆的相对距离以及相对速度,可以确定目标车辆的紧急报警时间和紧急报警距离,并通过设置不同报警阈值,可以 以声音或文字提示的形式,提醒驾驶员存在碰撞危险。
在一实施例中,图5是本申请一实施例提供的一种车辆控制装置的结构框图,该装置适用于自动对低速车辆进行紧急控制的情况,该装置可以由硬件/软件实现。可配置于电子设备中来实现本申请实施例中的一种车辆控制方法。如图5所示,所述装置,包括:信息获取模块510、策略确定模块520以及车辆控制模块530。
信息获取模块510,设置为获取目标车辆的车辆状态信息和目标障碍物的属性信息;其中,所述目标障碍物位于所述目标车辆的最大可探测区域内,且所述目标障碍物在所述目标车辆的行驶轨迹上;所述目标障碍物的属性信息由至少两个传感器所获取的信息融合得到。
策略确定模块520,设置为根据所述车辆状态信息和所述属性信息确定所述目标车辆的紧急控制策略。
车辆控制模块530,设置为按照所述紧急控制策略自动控制所述目标车辆。
本申请实施例,信息获取模块,通过采用多个传感器的融合信息,能够识别目标车辆周围较大范围内的目标障碍物,策略确定模块,依据车辆状态信息和属性信息确定目标车辆的紧急控制策略,车辆控制模块,按照紧急控制策略自动控制目标车辆,不仅实现对目标车辆在直行时前后向目标障碍物进行识别和避撞,还能实现转弯时对驾驶员盲区的障碍物进行识别及避撞。
在一实施例中,策略确定模块520,包括:类别确定单元,设置为根据所述属性信息确定所述目标障碍物的类别;相对信息确定单元,设置为根据所述目标障碍物的类别和所述车辆状态信息确定所述目标车辆与所述目标障碍物之间的相对信息;其中,所述相对信息包括:相对速度和相对距离;策略确定单元,设置为根据所述相对信息确定所述目标车辆的紧急控制策略。
在一实施例中,策略确定单元,包括:紧急情况确定单元,设置为根据所述相对信息确定所述目标车辆的紧急报警时间和紧急报警距离。
在一实施例中,车辆控制模块530,包括:报警提示单元,设置为按照所述紧急报警时间和/或紧急报警距离自动控制所述目标车辆发出报警提示信息。
在一实施例中,策略确定单元,包括:最佳距离确定子单元,设置为根据所述相对信息确定所述目标车辆的最佳制动距离;启动时间确定子单元,设置为根据所述最佳制动距离和预设安全距离确定所述目标车辆的紧急制动功能的启动时间。
在一实施例中,车辆控制模块530,包括:紧急制动控制单元,设置为按照所述紧急制动功能的启动时间自动控制所述目标车辆启动紧急制动功能。
在一实施例中,所述装置,还包括:使能操作接收模块,设置为在所述获取目标车辆的车辆状态信息和目标障碍物的属性信息之前,接收对所述目标车辆的低速自动紧急制动功能的使能操作。
本申请实施例所提供的车辆控制装置可执行本申请任意实施例所提供的车辆控制方法,具备执行方法相应的功能模块。
在一实施例中,图6是本申请一实施例提供的一种车辆控制系统的结构框图,该系统适用于自动对低速车辆进行紧急控制的情况,该系统可以由硬件/软件实现。如图6所示,该系统包括:主控制器630、环境感知系统610、信号传感器620、制动控制系统640、报警器650、至少一个处理器以及与所述至少一个处理器通信连接的存储器;其中,所述环境感知系统610包括:超声波雷达、毫米波雷达和环视摄像头;其中,所述主控制器630分别与所述环境感知系统610、所述信号传感器620、所述制动控制系统640和所述报警器650连接;所述环境感知系统610,设置为获取目标障碍物的属性信息;所述信息传感器620,设置为获取目标车辆的车辆状态信息;所述制动控制系统640,设置为按照主控制器确定的紧急控制策略自动控制目标车辆;所述报警器650,设置为自动控制所述目标车辆发出报警提示信息;所述存储器存储有可被所述至少一个主控制器630执行的计算机程序,所述计算机程序被所述至少一个主控制器630执行,以使所述至少一个主控制器630能够执行上述任一实施例中的所述的车辆控制方法。
在本实施例中,通过环境感知系统610的多传感器,如环视摄像头,毫米波雷达,超声波雷达等,可以获取较大可视范围内目标障碍物的属性信息,并通过信号传感器620获取目标车辆的车辆状态信息,包括但不限于目标车辆的车速、转向、制动以及相关驱动信息,然后将环境感知系统610获取的目标障碍物的属性信息以及信号传感器620获取目标车辆的车辆状态信息传输至主控制器630,主控制器630可以依据目标障碍物的属性信息以及目标车辆的车辆状态信息,对当前的障碍物信息和车辆信息进行相应的综合判断,之后依据综合判断向制动控制系统640或报警器650发出控制请求信号,以按照主控制器630确定的紧急控制策略自动控制目标车辆进行紧急制动,或者自动控制目标车辆发出报警提示信息。
在本实施例中,车辆控制系统还可以包括使能开关,使能开关与主控制器630进行连接,可设置为手动启动/关闭低速紧急制动功能。需要说明的是,主控制器630也可以称为低速紧急制动控制器。本申请实施例提出的基于超声波雷达,毫米波雷达及摄像头等多传感器融合的障碍物目标识别方法,能提高障碍物识别的距离和范围,运动特性识别,目标大小识别,还能实现目标跟踪, 提前预判车辆与障碍物的碰撞风险,给出报警提示。在碰撞距离小于特定阈值时,启动自动紧急制动功能,避免碰撞发生。
在本实施例中,车辆控制系统中的处理器以及与处理器通信连接的存储器,在本申请图7中已进行示出,未在图6中进行相应的示出。
在一实施例中,图7为本申请一实施例提供的一种车辆控制系统的结构示意图,如图7所示,车辆控制系统10还包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(Read-Only Memory,ROM)12、随机访问存储器(Random Access Memory,RAM)13等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器11可以根据存储在ROM 12中的计算机程序或者从存储单元18加载到RAM 13中的计算机程序,来执行多种适当的动作和处理。在RAM 13中,还可存储电子设备10操作所需的多种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出(Input/Output,I/O)接口15也连接至总线14。
车辆控制系统10中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如多种类型的显示器、扬声器等;存储单元18,例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许电子设备10通过诸如因特网的计算机网络和/或多种电信网络与其他设备交换信息/数据。
处理器11可以是多种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、多种专用的人工智能(Artificial Intelligence,AI)计算芯片、多种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processor,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的多个方法和处理,例如车辆控制方法。
在本实施例中,车辆控制系统,还包括:主控制器、环境感知系统、信号传感器、制动控制系统、报警器;其中,所述环境感知系统包括:超声波雷达、毫米波雷达和环视摄像头;其中,所述主控制器分别与所述环境感知系统、所述信号传感器、所述制动控制系统和所述报警器连接;所述环境感知系统,设置为获取目标障碍物的属性信息;所述信息传感器,设置为获取目标车辆的车辆状态信息;所述制动控制系统,设置为按照主控制器确定的紧急控制策略自动控制目标车辆;所述报警器,设置为自动控制所述目标车辆发出报警提示信息。
在本实施例中,车辆控制系统中的主控制器、环境感知系统、信号传感器、制动控制系统以及报警器,在本申请的图6中进行示出,未在图7中进行相应 的示出。
在一些实施例中,车辆控制方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到车辆控制系统10上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的车辆控制方法的一个或多个步骤。可选地,在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行车辆控制方法。
本文中以上描述的系统和技术的多种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、芯片上系统的系统(System on Chip,SOC)、负载可编程逻辑设备(Complex Programmable Logic Device,CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些多种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。可选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、RAM、ROM、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或快闪存储器、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、 或上述内容的任何合适组合。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)、区块链网络和互联网。
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与虚拟专用服务器(Virtual Private Server,VPS)服务中,存在的管理难度大,业务扩展性弱的缺陷。
应该理解,可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行。

Claims (10)

  1. 一种车辆控制方法,包括:
    获取目标车辆的车辆状态信息和目标障碍物的属性信息;其中,所述目标障碍物位于所述目标车辆的最大可探测区域内,且所述目标障碍物在所述目标车辆的行驶轨迹上;所述目标障碍物的属性信息由至少两个传感器所获取的信息融合得到;
    根据所述车辆状态信息和所述属性信息确定所述目标车辆的紧急控制策略;
    按照所述紧急控制策略自动控制所述目标车辆。
  2. 根据权利要求1所述的方法,其中,所述根据所述车辆状态信息和所述属性信息确定所述目标车辆的紧急控制策略,包括:
    根据所述属性信息确定所述目标障碍物的类别;
    根据所述目标障碍物的类别和所述车辆状态信息确定所述目标车辆与所述目标障碍物之间的相对信息;其中,所述相对信息包括:相对速度和相对距离;
    根据所述相对信息确定所述目标车辆的紧急控制策略。
  3. 根据权利要求2所述的方法,其中,所述根据所述相对信息确定所述目标车辆的紧急控制策略,包括:
    根据所述相对信息确定所述目标车辆的紧急报警时间和紧急报警距离。
  4. 根据权利要求3所述的方法,其中,所述按照所述紧急控制策略自动控制所述目标车辆,包括:
    按照所述紧急报警时间和所述紧急报警距离中的至少之一自动控制所述目标车辆发出报警提示信息。
  5. 根据权利要求2所述的方法,其中,所述根据所述相对信息确定所述目标车辆的紧急控制策略,包括:
    根据所述相对信息确定所述目标车辆的最佳制动距离;
    根据所述最佳制动距离和预设安全距离确定所述目标车辆的紧急制动功能的启动时间。
  6. 根据权利要求5所述的方法,其中,所述按照所述紧急控制策略自动控制所述目标车辆,包括:
    按照所述紧急制动功能的启动时间自动控制所述目标车辆启动所述紧急制动功能。
  7. 根据权利要求1所述的方法,在所述获取目标车辆的车辆状态信息和目标障碍物的属性信息之前,还包括:
    接收对所述目标车辆的低速自动紧急制动功能的使能操作。
  8. 根据权利要求1-7中任一项所述的方法,其中,所述车辆状态信息至少包括下述之一:当前车速、当前挡位、行驶方向、转向、制动和加速度;
    所述目标障碍物的属性信息至少包括下述之一:所述目标障碍物与目标车辆之间的相对距离、所述目标障碍物的所处方位、所述目标障碍物的所处状态、所述目标障碍物的尺寸、所述目标障碍物的移动速度。
  9. 一种车辆控制系统,包括:主控制器、环境感知系统、信号传感器、制动控制系统、报警器、至少一个处理器以及与所述至少一个处理器通信连接的存储器;其中,所述环境感知系统包括:超声波雷达、毫米波雷达和环视摄像头;其中,所述主控制器分别与所述环境感知系统、所述信号传感器、所述制动控制系统和所述报警器连接;
    所述环境感知系统,设置为获取目标障碍物的属性信息;
    所述信息传感器,设置为获取目标车辆的车辆状态信息;
    所述制动控制系统,设置为按照所述主控制器确定的紧急控制策略自动控制所述目标车辆;
    所述报警器,设置为自动控制所述目标车辆发出报警提示信息;
    所述存储器存储有可被所述至少一个主控制器执行的计算机程序,所述计算机程序被所述至少一个主控制器执行,以使所述至少一个主控制器能够执行权利要求1-8中任一项所述的车辆控制方法。
  10. 一种计算机可读存储介质,存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-8中任一项所述的车辆控制方法。
PCT/CN2023/099878 2022-06-27 2023-06-13 车辆控制方法、系统及存储介质 WO2024001759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210734354.3 2022-06-27
CN202210734354.3A CN115027456A (zh) 2022-06-27 2022-06-27 车辆控制方法、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2024001759A1 true WO2024001759A1 (zh) 2024-01-04

Family

ID=83127413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099878 WO2024001759A1 (zh) 2022-06-27 2023-06-13 车辆控制方法、系统及存储介质

Country Status (2)

Country Link
CN (1) CN115027456A (zh)
WO (1) WO2024001759A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115027456A (zh) * 2022-06-27 2022-09-09 中国第一汽车股份有限公司 车辆控制方法、系统及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105984447A (zh) * 2015-01-27 2016-10-05 陕西汽车集团有限责任公司 基于机器视觉的车辆前向防撞自动紧急制动系统及方法
CN106882172A (zh) * 2015-12-15 2017-06-23 现代自动车株式会社 紧急制动系统及其控制方法
CN110239535A (zh) * 2019-07-03 2019-09-17 国唐汽车有限公司 一种基于多传感器融合的弯道主动避撞控制方法
CN110304054A (zh) * 2019-07-03 2019-10-08 国唐汽车有限公司 一种基于多传感器融合的自动紧急制动方法
CN110395251A (zh) * 2019-06-27 2019-11-01 驭势(上海)汽车科技有限公司 一种基于多传感器融合数据的自动紧急制动决策方法
CN112172775A (zh) * 2020-09-27 2021-01-05 北京中科慧眼科技有限公司 基于双目立体相机的车辆制动预警方法、系统和装置
CN113879292A (zh) * 2021-09-17 2022-01-04 江铃汽车股份有限公司 紧急制动方法、超声波雷达系统及aeb控制器
CN115027456A (zh) * 2022-06-27 2022-09-09 中国第一汽车股份有限公司 车辆控制方法、系统及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105984447A (zh) * 2015-01-27 2016-10-05 陕西汽车集团有限责任公司 基于机器视觉的车辆前向防撞自动紧急制动系统及方法
CN106882172A (zh) * 2015-12-15 2017-06-23 现代自动车株式会社 紧急制动系统及其控制方法
CN110395251A (zh) * 2019-06-27 2019-11-01 驭势(上海)汽车科技有限公司 一种基于多传感器融合数据的自动紧急制动决策方法
CN110239535A (zh) * 2019-07-03 2019-09-17 国唐汽车有限公司 一种基于多传感器融合的弯道主动避撞控制方法
CN110304054A (zh) * 2019-07-03 2019-10-08 国唐汽车有限公司 一种基于多传感器融合的自动紧急制动方法
CN112172775A (zh) * 2020-09-27 2021-01-05 北京中科慧眼科技有限公司 基于双目立体相机的车辆制动预警方法、系统和装置
CN113879292A (zh) * 2021-09-17 2022-01-04 江铃汽车股份有限公司 紧急制动方法、超声波雷达系统及aeb控制器
CN115027456A (zh) * 2022-06-27 2022-09-09 中国第一汽车股份有限公司 车辆控制方法、系统及存储介质

Also Published As

Publication number Publication date
CN115027456A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN106064626B (zh) 车辆行驶控制装置
US10053067B2 (en) Vehicle safety assist system
CN108263279B (zh) 基于传感器整合的行人检测和行人碰撞避免装置及方法
CN110164183A (zh) 一种在车车通信条件下考虑他车驾驶意图的安全辅助驾驶预警方法
KR20210038852A (ko) 조기 경보 방법, 장치, 전자 기기, 컴퓨터 판독 가능 저장 매체 및 컴퓨터 프로그램
WO2021249020A1 (zh) 一种行驶状态的预测方法、装置和终端设备
WO2024001759A1 (zh) 车辆控制方法、系统及存储介质
US11897458B2 (en) Collision avoidance apparatus for vehicle
CN110660256A (zh) 一种信号灯状态的估计方法及装置
WO2021259260A1 (zh) 一种制动等级的评估方法、装置、车辆和存储介质
CN110626341B (zh) 一种汽车交通辅助方法、电子设备及汽车
KR20210052610A (ko) 차량 및 그 제어 방법
JP2019018788A (ja) 車両制御装置及び車両制御方法
CN115556770B (zh) 基于域控制器的智能变道方法及相关装置
CN111591286A (zh) 一种基于交通灯信号的避撞方法、系统及车辆
KR20210080717A (ko) 운전자 보조 장치 및 운전자 보조 방법
WO2022012217A1 (zh) 一种自适应巡航控制方法及装置
CN115071564A (zh) 车辆开门防撞方法、装置、电子设备及存储介质
JP2019185639A (ja) 衝突判定装置および方法
CN113255540A (zh) 一种基于毫米波雷达和摄像头融合的礼让行人系统及方法
US20200189534A1 (en) Vehicle and control method thereof
CN114506345B (zh) 车辆控制方法、车辆控制装置、车辆和计算机可读存储介质
CN114390989B (zh) 车辆控制设备及其控制方法
CN116612652A (zh) 车辆检测方法、装置、电子设备及存储介质
CN115973140A (zh) 一种邻车道变道的防护方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829942

Country of ref document: EP

Kind code of ref document: A1