WO2024001748A1 - 一种液冷光模块及设备 - Google Patents

一种液冷光模块及设备 Download PDF

Info

Publication number
WO2024001748A1
WO2024001748A1 PCT/CN2023/099711 CN2023099711W WO2024001748A1 WO 2024001748 A1 WO2024001748 A1 WO 2024001748A1 CN 2023099711 W CN2023099711 W CN 2023099711W WO 2024001748 A1 WO2024001748 A1 WO 2024001748A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling
cooling liquid
cooled
optical module
Prior art date
Application number
PCT/CN2023/099711
Other languages
English (en)
French (fr)
Inventor
汤宁峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024001748A1 publication Critical patent/WO2024001748A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This application relates to the field of heat dissipation technology, and in particular to a liquid-cooled light module and equipment.
  • pluggable optical modules use air-cooling for heat dissipation, which uses the air path of the equipment for heat dissipation. This makes the use and maintenance of the optical module more convenient.
  • the capacity of equipment increases, the capacity of pluggable optical modules is getting higher and higher, and the requirements for heat dissipation are also getting higher and higher; for example, in a 51.2T 1U height DC switch, a 1.6T optical module is required.
  • Pluggable optical modules are used for interconnection within the DC.
  • the power consumption of a 1.6T pluggable optical module may reach 25W. This power consumption is close to the limit for air cooling. If air cooling is not used, the optical module needs to be immersed in the cooling liquid.
  • Embodiments of the present application provide a liquid-cooled optical module and equipment.
  • embodiments of the present application provide a liquid-cooled optical module of an optical module, including: a heating component, one end of which is provided with an optical connector, and the other end is provided with an electrical connector; a liquid-cooled housing, including An accommodating part, a coolant input port and a coolant output port.
  • the accommodating part wraps the heating component and is provided with openings respectively corresponding to the optical connector and the electrical connector.
  • the coolant input port and The coolant output port is connected to the inner cavity of the liquid cooling housing to form a coolant flow path.
  • a device including: a liquid-cooled optical module, including a heating component and a liquid-cooling housing. One end of the heating component is provided with an optical connector, and the other end is provided with an electrical connector.
  • the liquid cooling housing includes an accommodating part, a cooling liquid input port and a cooling liquid output port. The accommodating part wraps the heating component and is provided with openings corresponding to the optical connector and the electrical connector respectively.
  • the coolant input port and the coolant output port are connected to the inner cavity of the liquid cooling housing to form a coolant flow path;
  • the equipment frame includes an optical module slot and an electrical connector, and the optical module slot is The slot is configured to fix the liquid-cooled optical module, and the electrical connector is arranged at the end of the optical module slot to dock with the electrical connector.
  • Figure 1 is a structural diagram of the liquid-cooled light module provided by the embodiment of the present application under the rear liquid inlet and outlet solution;
  • Figure 2 is a structural diagram of the liquid-cooled light module provided by the embodiment of the present application under the forward liquid inlet and outlet scheme;
  • FIG. 3 is a structural diagram of the cooling liquid pipeline in the liquid cooling housing provided by the embodiment of the present application.
  • Figure 4 is a structural diagram of the optical module slot and the electrical connector under the rear liquid inlet and outlet solution provided by the embodiment of the present application;
  • Figure 5 is a structural diagram of the optical module slot and the electrical connector under the forward solution solution provided by the embodiment of the present application;
  • FIG. 6 is a structural diagram of the switch device under the forward liquid outflow solution provided by the embodiment of the present application.
  • FIG. 7 is a structural diagram of the switch device under the rear liquid inlet and outlet solution provided by the embodiment of the present application.
  • Figure 8 is a structural diagram of a rack device provided by an embodiment of the present application.
  • At least one (item) refers to one or more, and “plurality” refers to two or more.
  • “And/or” is used to describe the relationship between associated objects, indicating that there can be three relationships. For example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural. The character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.
  • pluggable optical modules are used to interconnect data.
  • the capacity requirements of pluggable optical modules are getting higher and higher, and the power consumption of optical modules is also getting higher and higher.
  • pluggable optical modules There are currently two types of pluggable optical modules.
  • One is the currently mainstream air-cooled heat dissipation, which uses the air path of the device for heat dissipation.
  • This kind of optical module is more convenient to use and maintain, but it is now close to the limit of heat dissipation. limit.
  • the mainstream ones are QSFP and QSFP-DD pluggable optical modules, and the power consumption limit is about 25w.
  • the other is an optical module that uses immersed heat dissipation.
  • the optical module is immersed in the coolant. Although it solves the problem of heat dissipation, it also brings about the sealing problem of optical coupling, so it is not widely used.
  • embodiments of the present application provide a liquid-cooled optical module and equipment, which liquid-cool the optical module through a liquid-cooled housing. Heat dissipation, thereby solving the problem of insufficient heat dissipation capacity of traditional air cooling and optical coupling sealing caused by immersion liquid cooling.
  • an embodiment of the present application provides a liquid-cooled optical module of an optical module, including:
  • Heating component 200 one end of the heating component 200 is provided with an optical connector 210, and the other end is provided with an electrical connector 220;
  • the liquid cooling housing 100 includes an accommodating part, a cooling liquid input port 110 and a cooling liquid output port 120.
  • the accommodating part wraps the heating component 200 and is provided with openings corresponding to the optical connector 210 and the electrical connector 220 respectively.
  • the cooling liquid is input
  • the port 110 and the coolant output port 120 are connected to the inner cavity of the liquid cooling housing 100 to form a coolant flow path.
  • the heating component 200 may be installed into the accommodating part to form a cavity, and the air in the cavity Contact with the accommodating part to achieve heat exchange, etc.
  • a thermal conductive material such as thermal conductive silicone grease, can be provided at the contact position to improve the thermal conductivity.
  • the liquid cooling housing 100 is also provided with a coolant input port 110 and a coolant output port 120.
  • the coolant input port 110 and the coolant output port 120 are connected to the external coolant circulation system, so that the coolant passes through the coolant input port 110 and is cooled.
  • the liquid output port 120 circulates within the cooling housing, that is, it absorbs heat when the cooling liquid passes through the interior of the cooling housing, and releases the heat through the cooling liquid circulation system after flowing out of the optical module, thereby realizing liquid cooling heat dissipation.
  • the liquid cooling case 100 does not completely wrap the entire heating component 200.
  • the liquid cooling housing 100 may have two openings (not labeled in the figure) respectively corresponding to the optical connector 210 and the electrical connector 220 of the heating component 200.
  • the external interface (such as optical fiber connector, electrical port connection module, etc.) is connected to the optical connector 210 or the electrical connector 220 through the corresponding opening. Therefore, it can be seen that the optical connector 210 or the electrical connector 220 does not need to be exposed to the liquid cooling housing.
  • 100 can also be flush with the opening of the liquid cooling housing 100 , or even protrude from the opening of the liquid cooling housing 100 . In short, by reserving openings, the front end and end of the optical module can be connected to corresponding external connectors.
  • the shape of the liquid cooling housing 100 can be designed according to actual needs. For example, if the optical module of the embodiment of the present application is compatible with conventional equipment, the liquid cooling housing 100 will be set into a three-dimensional rectangle and the size will be limited, so that The overall external dimensions of the optical module are made compatible with conventional equipment.
  • the wrapping form of the liquid cooling case 100 for the heating component 200 can also be set according to actual needs.
  • the accommodating part has a semi-wrapping structure or a tubular wrapping structure.
  • the overall shape of the liquid cooling case 100 is a three-dimensional rectangle.
  • the liquid cooling housing 100 in the semi-wrapped structure, can be U-shaped, that is, viewed from the cross-section of the liquid cooling housing 100, one side is open and three side walls form a U-shaped structure, and the heating component 200 can be viewed from the open side.
  • the liquid cooling housing 100 Embedded in the liquid cooling housing 100; in the tubular wrapping structure, viewed from the cross section of the liquid cooling housing 100, the four side walls are closed to form a tubular structure, and the heating component 200 is embedded into the liquid cooling housing from the tube opening.
  • the accommodating portion of the liquid cooling housing 100 can also be designed in other shapes, and examples are not given here.
  • the liquid-cooling housing 100 is often three-dimensional and rectangular. Therefore, in order to facilitate the connection of the coolant input port 110 and the coolant output port 120 with the external coolant circulation system, the coolant input port 110 and the coolant output port 120 can be provided in the liquid cooling shell.
  • the front end surface of the solid rectangular body 100 , or the cooling liquid inlet 110 and the coolant output port 120 may be disposed on the rear end surface of the liquid cooling housing 100 .
  • the coolant input port 110 and the coolant output port 120 face the installer. After the optical module is inserted into the device, the installer needs to The coolant input port 110 and the coolant output port 120 are connected to the coolant circulation system.
  • Coolant inlet 110 When the coolant output port 120 and the coolant output port 120 are set on the rear end face, as shown in Figure 1, the connector of the coolant circulation system can be pre-set inside the device. After the optical module is inserted into the device, the coolant input port 110 and the coolant output port 120 automatically Align the pre-set connectors to connect to the coolant circulation system.
  • the front end surface of the liquid cooling housing 100 in the embodiment of the present application is provided with a retractable pull buckle component 130.
  • the installer needs to pull out the optical module, he pulls the pull buckle component 130 on the front end surface. Pull out the optical module from the device. After the optical module is pulled out, the installer can push the buckle component 130 back into the optical module to facilitate storage and transportation of the optical module.
  • guide rails 140 can be provided on the side of the liquid-cooled optical module.
  • the guide rails 140 are used to match the recesses on the equipment. Installation is carried out through the groove 311, and fool-proof installation can also be achieved by designing the position and size of the guide rail 140.
  • the elongated guide rail 140 can be arranged in a direction extending along the length direction of the liquid cooling light module.
  • the special-shaped guide rail 140 can also be merely used as a fitting piece to match the installation slot on the device.
  • the guide rail 140 to cooperate with the groove 311 on the device, for the rear liquid inlet and outlet solution, the correct installation position of the liquid cooling optical module can be ensured, thereby ensuring the cooling liquid inlet 110 on the liquid cooling housing 100
  • the coolant output port 120 can be installed in alignment with the joint of the coolant circulation system inside the device.
  • quick connectors are provided at the ends of the coolant input port 110 and the coolant output port 120.
  • the quick connectors can allow the coolant to The flow path is easily connected to the coolant circulation system.
  • the quick connector provides a simple and fast connection method, is suitable for multiple plug-in and pull-out connections, and has a certain sealing performance after the connection is made to avoid coolant leakage.
  • the inner cavity of the liquid cooling housing 100 can be designed according to actual needs.
  • the first is that the inner cavity of the liquid cooling housing 100 is provided with a cooling liquid pipe 150 , and the cooling liquid pipe 150 , the cooling liquid input port 110 , and the cooling liquid output port 120 form a cooling liquid flow path.
  • the coolant pipe 150 can also have a variety of structures.
  • the coolant pipe 150 is in the shape of a coil in the inner cavity of the liquid cooling housing 100.
  • the shape of the coil can be set according to actual needs, for example, only one circle of coil is provided.
  • the direction of the coil is distributed according to the heating area of the heating component 200, or multiple coil coils are arranged along the plane of the liquid cooling housing 100, or multiple coil coils are arranged in a three-dimensional distribution, etc., which are not limited here.
  • the heat in the liquid cooling housing 100 can be more fully absorbed, thereby achieving better heat dissipation effect, as shown in Figure 3 .
  • the second method is that the inner cavity of the liquid cooling housing 100 is provided with a cooling liquid cavity, and the cooling liquid cavity is connected to the cooling liquid input port 110 and the cooling liquid output port 120 respectively.
  • This structural form is to directly fill the inner cavity with cooling liquid, and does not have high requirements on the support performance of the liquid cooling housing 100. Therefore, the shape of the inner cavity can also be set according to actual needs, for example, the volume of the inner cavity can be set according to the amount of heat generated. , or adjust the shape of the inner cavity according to the heating area of the heating component 200, or reduce the thickness of the inner cavity and set up a curved flow channel in the inner cavity when higher heat absorption efficiency is required, etc., which are not limited here. Through the above method, the heat in the liquid cooling housing 100 can also be more fully absorbed, thereby achieving better heat dissipation effect.
  • an embodiment of the present application also provides a device, including:
  • the liquid-cooled optical module includes a heating component 200 and a liquid-cooling housing 100.
  • One end of the heating component 200 is provided with an optical connector 210, and the other end is provided with an electrical connector 220.
  • the liquid-cooling housing 100 includes an accommodating portion and a cooling liquid input port. 110 and the coolant output port 120.
  • the accommodating part wraps the heating component 200 and is provided with openings corresponding to the optical connector 210 and the electrical connector 220 respectively.
  • the coolant input port 110 and the coolant output port 120 are connected to the liquid cooling housing. 100 inner cavity to form a coolant flow path;
  • the equipment frame 300 includes an optical module slot 310 and an electrical connector 320.
  • the optical module slot 310 is configured to fix a liquid-cooled optical module.
  • the electrical connector 320 is configured at the end of the optical module slot 310 to dock with the electrical connector 220. .
  • the liquid-cooled optical module in this embodiment can adopt a similar structure to the liquid-cooled optical module in the previous embodiment. It also has a heating component 200 and a liquid-cooling housing 100. The heating component 200 is installed through the accommodating part of the liquid-cooling housing 100 and absorbs the energy. Heating component 200 of heat, and the absorbed heat is released to the outside through coolant circulation.
  • This embodiment also includes an equipment frame 300.
  • the optical module slot 310 in the equipment frame 300 is used to install the above-mentioned liquid-cooled optical module.
  • the electrical connector 320 is provided at the end of the optical module slot 310 and is used to connect the electrical connector of the liquid-cooled optical module. Connector 220.
  • a guide rail 140 is provided on the side of the liquid cooling housing 100 , and a groove 311 matching the guide rail 140 is provided on the inside of the optical module slot 310 .
  • Liquid-cooled optical modules are usually three-dimensional rectangular, so the optical module slot 310 is usually a tubular structure with a rectangular cross-section.
  • the liquid cooling housing 100 includes a front end surface and a rear end surface.
  • the coolant input port 110 and the coolant output port 120 are both disposed on the front end surface, or the coolant input port 110 and the coolant output port 120 are both disposed on the rear end surface. According to the different locations of the coolant input port 110 and the coolant output port 120, they actually correspond to the front liquid inlet and outlet scheme (Fig. 5) and the rear liquid inlet and outlet scheme (Fig. 4) of the liquid cooling light module.
  • the guide rail 140 to cooperate with the groove 311 on the device, for the rear liquid inlet and outlet solution, the correct installation position of the liquid cooling optical module can be ensured, thereby ensuring that the cooling liquid inlet 110 on the liquid cooling housing 100 and The coolant output port 120 can be installed in alignment with the joint (marked 330 in FIG. 4 ) of the coolant circulation system inside the device.
  • the equipment frame 300 is a switch housing; or, referring to Figure 8, the equipment is a rack equipment, and the equipment frame 300 is a rack tray.
  • the switch When the equipment frame 300 is a switch casing, the switch is pre-set with multiple optical module slots 310, and the optical module slots 310 are enclosed by the switch casing. Therefore, when the liquid-cooled optical module is installed in the switch, the forward optical module can be used according to actual needs.
  • the liquid outlet solution ( Figure 6) or the rear liquid inlet and outlet solution ( Figure 7) can also be used. Under the rear liquid inlet and outlet solution, a joint for the coolant circulation system can be set inside the switch case.
  • the rack equipment When the equipment frame 300 is a rack tray, the rack equipment is pre-set with multi-layer PCB boards. Each layer of PCB board can be provided with multiple optical module slots 310. The optical module slots 310 are set in an open manner, so the rack equipment is often Use the solution of front effusion (Figure 8).
  • optical module slots 310 can be designed according to actual needs, and are not limited here.
  • the liquid cooling case 100 includes a heating component 200, and a cooling liquid input port 110 and a cooling liquid output port 120 are provided on the liquid cooling housing 100, and the cooling liquid circulation method is used to perform liquid cooling on the wrapped heating component 200.
  • Cold heat dissipation because the optical module is designed in the form of a liquid-cooled housing 100, which maintains the structural characteristics of the traditional optical module, it can be applied to box-type equipment or rack-type equipment with pluggable optical modules, solving the problem of using large capacity In the optical module scenario, the air-cooling heat dissipation capacity is insufficient and the immersion liquid cooling solution has defects.
  • the liquid-cooled housing includes a heating component, and a cooling liquid input port and a cooling liquid output port are provided on the liquid cooling housing, and the cooling liquid is used to
  • the wrapped heating components are liquid-cooled and dissipated in a cyclic manner; because the optical module is designed in the form of a liquid-cooled housing, the structural characteristics of the traditional optical module are maintained, so it can be applied to box-type equipment or pluggable optical modules.
  • Rack-mounted equipment solves the shortcomings of insufficient air-cooling and heat dissipation capabilities and immersion liquid cooling solutions in scenarios where large-capacity optical modules are used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Led Device Packages (AREA)

Abstract

本申请公开了一种液冷光模块及设备,液冷光模块包括发热组件(200)和液冷壳体(100),发热组件(200)的一端设置有光连接器(210),另一端设置有电连接器(220);液冷壳体(100)包括容置部、冷却液输入口(110)和冷却液输出口(120),容置部包裹发热组件(200)并设有分别对应光连接器(210)和电连接器(220)的开口,冷却液输入口(110)和冷却液输出口(120)连通到液冷壳体(100)的内腔以形成冷却液流路。

Description

一种液冷光模块及设备
相关申请的交叉引用
本申请基于申请号为202210733588.6、申请日为2022年06月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及散热技术领域,尤其涉及一种液冷光模块及设备。
背景技术
目前可插拔光模块使用风冷散热,即利用设备的风路进行散热,这样光模块的使用和维护都比较方便。但是随着设备容量的增大,可插拔光模块的容量也越来越高,对散热要求也越来越高;例如,在51.2T的1U高度的DC交换机中,需要使用1.6T的可插拔光模块用于DC内互联,1.6T的可插拔光模块的功耗可能达到25W,这个功耗对于风冷散热来说已经接近极限。如果不采用风冷散热,则需要将光模块沉浸在冷却液中,虽然解决了散热问题,但又带来了光耦合的密闭性问题。
发明内容
以下是对本申请详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种液冷光模块及设备。
第一方面,本申请实施例提供了一种光模块的液冷光模块,包括:发热组件,所述发热组件的一端设置有光连接器,另一端设置有电连接器;液冷壳体,包括容置部、冷却液输入口和冷却液输出口,所述容置部包裹所述发热组件并设有分别对应所述光连接器和所述电连接器的开口,所述冷却液输入口和所述冷却液输出口连通到所述液冷壳体的内腔以形成冷却液流路。
第二方面,本申请实施例提供了一种设备,包括:液冷光模块,包括发热组件和液冷壳体,所述发热组件的一端设置有光连接器,另一端设置有电连接器,所述液冷壳体包括容置部、冷却液输入口和冷却液输出口,所述容置部包裹所述发热组件,并设有分别对应所述光连接器和所述电连接器的开口,所述冷却液输入口和所述冷却液输出口连通到所述液冷壳体的内腔以形成冷却液流路;设备框架,包括光模块插槽和电口连接器,所述光模块插槽被设置为固定所述液冷光模块,所述电口连接器设置在所述光模块插槽的末端以对接所述电连接器。本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的 实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例提供的液冷光模块的后进出液方案下的结构图;
图2是本申请实施例提供的液冷光模块的前进出液方案下的结构图;
图3是本申请实施例提供的液冷壳体内冷却液管道的结构图;
图4是本申请实施例提供的后进出液方案下光模块插槽和电口连接器的结构图;
图5是本申请实施例提供的前进出液方案下光模块插槽和电口连接器的结构图;
图6是本申请实施例提供的前进出液方案下交换机设备的结构图;
图7是本申请实施例提供的后进出液方案下交换机设备的结构图;
图8是本申请实施例提供的机架设备的结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。
本申请的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或装置不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或装置固有的其他步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应当理解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。
目前在高速、大型系统设备中,使用可插拔光模块对外进行数据的互连,随着设备容量的增加对可插拔光模块的容量要求也越来越高,光模块的功耗也越来越大,对散热能力提出更高的要求。
目前可插拔光模块目前有两种类型,一种是目前主流的风冷散热,即利用设备的风路进行散热,这种光模块,使用和维护起来都比较方便,但是目前已经接近散热的极限。目前在DC交换机中,主流的是QSFP和QSFP-DD的可插拔光模块,功耗的极限在25w左右。另外一种是采用沉浸式散热的光模块,把光模块沉浸在冷却液中,虽然解决了散热的问题,但是,带来了光耦合的密闭性问题,所以,并未广泛使用。
基于此,本申请实施例提供了一种液冷光模块及设备,通过液冷壳体对光模块进行液冷 散热,从而解决了传统风冷散热能力不足和沉浸式液冷导致的光耦合密闭性的问题。
参照图1和图2所示,本申请实施例提供的一种光模块的液冷光模块,包括:
发热组件200,发热组件200的一端设置有光连接器210,另一端设置有电连接器220;
液冷壳体100,包括容置部、冷却液输入口110和冷却液输出口120,容置部包裹发热组件200并设有分别对应光连接器210和电连接器220的开口,冷却液输入口110和冷却液输出口120连通到液冷壳体100的内腔以形成冷却液流路。
发热组件200指在工作过程中光模块发热的部分,包括但不限于电源模块、激光器和管控单元等,由于大容量光模块中这些模块的发热量很高,传统风冷散热已经无法满足需要,因此本申请实施例利用液冷壳体100对发热组件200进行包裹,通过液冷壳体100吸收发热组件200的热量,并循环液冷壳体100内的冷却液,带走发热组件200的热量,实现液冷散热。其中液冷壳体100通过容置部包裹发热组件200,容置部与发热组件200直接接触实现热交换,也可以是发热组件200装入容置部后形成一个空腔,空腔中的空气与容置部接触实现热交换等。为了提高热传导能力,在容置部与发热组件200直接接触的情况下,可以在接触位置处设置导热材料,例如导热硅脂等,提高热传导能力。液冷壳体100还设置有冷却液输入口110和冷却液输出口120,冷却液输入口110和冷却液输出口120连接外部的冷却液循环系统,使得冷却液通过冷却液输入口110和冷却液输出口120在冷却壳体内进行循环,即在冷却液经过冷却壳体内部时吸收热量,在流出光模块之后通过冷却液循环系统释放热量,从而实现液冷散热。
其中,液冷壳体100并不是完全包裹整个发热组件200的,液冷壳体100可以分别开设有两个开口(图中未标示)分别对应发热组件200的光连接器210和电连接器220,外部接口(如光纤接头、电口连接模块等)通过对应的开口与光连接器210或电连接器220连接,因此可知,光连接器210或电连接器220可以不露出于液冷壳体100,也可以齐平液冷壳体100的开口,甚至可以突出于液冷壳体100的开口。总之,通过预留开口的方式使得光模块的前端和末端能够连接外部对应的连接器。
可以理解的是,液冷壳体100的形状可以根据实际需要设计,例如,本申请实施例的光模块兼容到常规的设备中,则将液冷壳体100设置成立体矩形并限制尺寸,从而使得光模块整体的外部尺寸兼容常规的设备。另外,液冷壳体100对发热组件200的包裹形式也可以根据实际需要设置,例如容置部为半包裹结构或者为管形包裹结构,以液冷壳体100的整体外形为立体矩形为例,在半包裹结构下,液冷壳体100可以是U形的,即从液冷壳体100的横截面看,一面开放,三面侧壁,构成U形结构,发热组件200可以从开放的一面嵌入到液冷壳体100内;在管形包裹结构下,从液冷壳体100的横截面看,四面侧壁封闭,构成管形结构,发热组件200从管口处嵌入到液冷壳体100内。液冷壳体100的容置部还可以设计成其他形状,在此不一一举例。
液冷壳体100往往是立体矩形的,因此为了方便冷却液输入口110和冷却液输出口120对接外部的冷却液循环系统,冷却液输入口110和冷却液输出口120可以设置在液冷壳体100这一立体矩形的前端面,或者冷却液输入口110和冷却液输出口120可以设置在液冷壳体100这一立体矩形的后端面。冷却液输入口110和冷却液输出口120设置在前端面的情况下,如图2所示,冷却液输入口110和冷却液输出口120朝向安装人员,光模块插入设备后,需要安装人员将冷却液输入口110和冷却液输出口120连接到冷却液循环系统。冷却液输入口110 和冷却液输出口120设置在后端面的情况下,如图1所示,设备内部可以预先设置冷却液循环系统的接头,光模块插入设备后,冷却液输入口110和冷却液输出口120自动对准预先设置的接头,从而连接到冷却液循环系统。
为了方便拔出光模块,本申请实施例的液冷壳体100的前端面设置可伸缩的拉扣部件130,在安装人员需要拔出光模块的时候,拉住前端面的拉扣部件130,将光模块拔出设备。光模块拔出之后,安装人员可以将拉扣部件130推回到光模块内部,便于光模块存储和运输。
由于本申请实施例的液冷光模块相比传统光模块多了液冷壳体100,考虑到区分度和安装方便,可以在液冷光模块的侧面设置导轨140,导轨140用于配合设备上的凹槽311进行安装,通过设计导轨140的位置和大小,也能够实现防呆安装。长条形的导轨140的设置方向可以是沿液冷光模块的长度方向延伸,当然异形的导轨140也可以仅仅作为一个配合件与设备上的安装槽位配合。值得注意的是,利用导轨140和设备上的凹槽311配合,对于后进出液的方案来说,可以确保液冷光模块的安装位置正确,从而保证液冷壳体100上的冷却液输入口110和冷却液输出口120能够对准设备内部的冷却液循环系统的接头进行安装。
为了方便配合冷却液循环系统,以及光模块的可插拔需求,冷却液输入口110和冷却液输出口120的端部设置有快速连接头(图中未标示),快速连接头可以使得冷却液流路很方便地接入到冷却液循环系统。快速连接头提供了简单快捷的连接方式,适于多次插拔连接,并且在连接好之后具有一定的密封性能,避免冷却液泄漏。
液冷壳体100的内腔可以根据实际需要设计,此处举出两种结构形式进行说明:
第一种是液冷壳体100的内腔设置有冷却液管道150,冷却液管道150与冷却液输入口110、冷却液输出口120构成冷却液流路。冷却液管道150也可以有多种结构,例如,冷却液管道150在液冷壳体100的内腔中呈盘管状,盘管形状可以是根据实际需要设置,例如仅设置一圈盘管,或者盘管的走向根据发热组件200的发热区域分布,或者沿液冷壳体100的平面设置多圈盘管,或者以立体分布的形式设置多圈盘管等,在此不作限定。通过上述方式能够更加充分地吸收液冷壳体100中的热量,从而实现更好的散热效果,如图3所示。
第二种是液冷壳体100的内腔设置有冷却液腔体,冷却液腔体分别连通冷却液输入口110和冷却液输出口120。这种结构形式是在内腔中直接填充冷却液,并且对液冷壳体100的支撑性能要求不高,因此内腔的形状也可以根据实际需要设置,例如根据发热量大小设置内腔的容积,或者根据发热组件200的发热区域调整内腔的形状,或者在需求更高吸热效率的时候降低内腔的厚度和在内腔设置弯曲的流道等,在此不做限定。通过上述方式同样能够更加充分地吸收液冷壳体100中的热量,从而实现更好的散热效果。
参照图4至图8所示,本申请实施例还提供了一种设备,包括:
液冷光模块,包括发热组件200和液冷壳体100,发热组件200的一端设置有光连接器210,另一端设置有电连接器220,液冷壳体100包括容置部、冷却液输入口110和冷却液输出口120,容置部包裹发热组件200,并设有分别对应光连接器210和电连接器220的开口,冷却液输入口110和冷却液输出口120连通到液冷壳体100的内腔以形成冷却液流路;
设备框架300,包括光模块插槽310和电口连接器320,光模块插槽310被设置为固定液冷光模块,电口连接器320设置在光模块插槽310的末端以对接电连接器220。
本实施例的液冷光模块与前述实施例中的液冷光模块可以采用类似的结构,同样具有发热组件200和液冷壳体100,通过液冷壳体100的容置部安装发热组件200并吸收发热组件 200的热量,通过冷却液循环的方式将吸收的热量释放到外部。本实施例还包括设备框架300,设备框架300中的光模块插槽310用于安装上述液冷光模块,电口连接器320设置在光模块插槽310的末端,用于对接液冷光模块的电连接器220。
在一些实施例中,液冷壳体100的侧面设置有导轨140,光模块插槽310的内侧设置有与导轨140配合的凹槽311。液冷光模块通常是立体矩形,因此光模块插槽310通常是矩形截面的管形结构,在插入液冷光模块时,将液冷光模块侧面的导轨140对准光模块插槽310的内侧的凹槽311进行安装,防止因为安装位置偏移而损伤液冷光模块或者对应的设备。
液冷壳体100包括前端面和后端面,冷却液输入口110和冷却液输出口120均设置在前端面,或冷却液输入口110和冷却液输出口120均设置在后端面。根据冷却液输入口110和冷却液输出口120设置位置的不同,实际上对应了液冷光模块的前进出液方案(图5)和后进出液方案(图4)。值得注意的是,利用导轨140和设备上的凹槽311配合,对于后进出液方案来说,可以确保液冷光模块的安装位置正确,从而保证液冷壳体100上的冷却液输入口110和冷却液输出口120能够对准设备内部的冷却液循环系统的接头(图4中以330标示)进行安装。
参照图6至图7所示,设备框架300为交换机壳体;或者,参照图8所示,设备为机架设备,设备框架300为机架托盘。
设备框架300为交换机壳体的情况下,交换机预先设置了多个光模块插槽310,光模块插槽310被交换机壳体封闭,因此液冷光模块安装到交换机中时,可以根据实际需要采用前进出液方案(图6),也可以采用后进出液方案(图7),后进出液方案下,交换机壳体内部可以设置冷却液循环系统的接头。
设备框架300为机架托盘的情况下,机架设备预先设置了多层PCB板,每层PCB板可以设置多个光模块插槽310,光模块插槽310开放式设置,因此机架设备往往采用前进出液的方案(图8)。
当然,应用可插拔光模块的设备的类型有多种,并不限于上述举例提到的交换机和机架设备,其他类型根据实际需要设计光模块插槽310即可,在此不作限定。
综上可知,液冷壳体100包括发热组件200,并在液冷壳体100上设置冷却液输入口110和冷却液输出口120,利用冷却液循环的方式对包裹着的发热组件200进行液冷散热;由于采用液冷壳体100包裹的形式设计光模块,保持了传统光模块的结构特征,因此可以适用于可插拔光模块的盒式设备或者机架式设备,解决了使用大容量光模块场景下,风冷散热能力不足以及沉浸液冷方案的缺陷。
本申请实施例提供的一种液冷光模块及设备,至少具有如下有益效果:通过液冷壳体包括发热组件,并在液冷壳体上设置冷却液输入口和冷却液输出口,利用冷却液循环的方式对包裹着的发热组件进行液冷散热;由于采用液冷壳体包裹的形式设计光模块,保持了传统光模块的结构特征,因此可以适用于可插拔光模块的盒式设备或者机架式设备,解决了使用大容量光模块场景下,风冷散热能力不足以及沉浸液冷方案的缺陷。
以上是对本申请的一些实施进行了说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (14)

  1. 一种液冷光模块,包括:
    发热组件,所述发热组件的一端设置有光连接器,另一端设置有电连接器;
    液冷壳体,包括容置部、冷却液输入口和冷却液输出口,所述容置部包裹所述发热组件并设有分别对应所述光连接器和所述电连接器的开口,所述冷却液输入口和所述冷却液输出口连通到所述液冷壳体的内腔以形成冷却液流路。
  2. 根据权利要求1所述的液冷光模块,其中,所述容置部为半包裹结构或者为管形包裹结构。
  3. 根据权利要求1所述的液冷光模块,其中,所述液冷壳体包括前端面和后端面,所述前端面与所述光连接器位于同一端,所述后端面与所述电连接器位于同一端。
  4. 根据权利要求3所述的液冷光模块,其中,所述冷却液输入口和所述冷却液输出口均设置在所述前端面,或所述冷却液输入口和所述冷却液输出口均设置在所述后端面。
  5. 根据权利要求3所述的液冷光模块,其中,所述前端面设置有可伸缩的拉扣部件。
  6. 根据权利要求1所述的液冷光模块,其中,所述液冷壳体的侧面设置有导轨。
  7. 根据权利要求1所述液冷光模块,其中,所述冷却液输入口和所述冷却液输出口的端部设置有快速连接头。
  8. 根据权利要求1所述的液冷光模块,其中,所述液冷壳体的内腔设置有冷却液管道,所述冷却液管道与所述冷却液输入口、所述冷却液输出口构成冷却液流路。
  9. 根据权利要求8所述的液冷光模块,其中,所述冷却管道以盘管形式设置。
  10. 根据权利要求1所述的液冷光模块,其中,所述液冷壳体的内腔设置有冷却液腔体,所述冷却液腔体分别连通所述冷却液输入口和所述冷却液输出口。
  11. 一种设备,包括:
    液冷光模块,包括发热组件和液冷壳体,所述发热组件的一端设置有光连接器,另一端设置有电连接器,所述液冷壳体包括容置部、冷却液输入口和冷却液输出口,所述容置部包裹所述发热组件,并设有分别对应所述光连接器和所述电连接器的开口,所述冷却液输入口和所述冷却液输出口连通到所述液冷壳体的内腔以形成冷却液流路;
    设备框架,包括光模块插槽和电口连接器,所述光模块插槽被设置为固定所述液冷光模块,所述电口连接器设置在所述光模块插槽的末端以对接所述电连接器。
  12. 根据权利要求11所述的设备,其中,所述液冷壳体的侧面设置有导轨,所述光模块插槽的内侧设置有与所述导轨配合的凹槽。
  13. 根据权利要求11所述的设备,其中,所述液冷壳体包括前端面和后端面,所述冷却液输入口和所述冷却液输出口均设置在所述前端面,或所述冷却液输入口和所述冷却液输出口均设置在所述后端面。
  14. 根据权利要求11所述的设备,所述设备为交换机,所述设备框架为交换机壳体;或者,所述设备为机架设备,所述设备框架为机架托盘。
PCT/CN2023/099711 2022-06-27 2023-06-12 一种液冷光模块及设备 WO2024001748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210733588.6A CN117348173A (zh) 2022-06-27 2022-06-27 一种液冷光模块及设备
CN202210733588.6 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001748A1 true WO2024001748A1 (zh) 2024-01-04

Family

ID=89365446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099711 WO2024001748A1 (zh) 2022-06-27 2023-06-12 一种液冷光模块及设备

Country Status (2)

Country Link
CN (1) CN117348173A (zh)
WO (1) WO2024001748A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208384180U (zh) * 2018-06-12 2019-01-15 深圳市盈鑫通光电有限公司 一种光模块的外部结构及其固定安装组件
CN110658595A (zh) * 2018-06-28 2020-01-07 迈络思科技有限公司 用于大功率可插拔连接器的柔性液冷组件
CN110876252A (zh) * 2018-08-31 2020-03-10 泰连公司 通信系统的热管理
US20210007243A1 (en) * 2019-07-01 2021-01-07 Delta Electronics, Inc. Heat dissipation module for optical transceiver
US20210112683A1 (en) * 2019-10-15 2021-04-15 Ciena Corporation Liquid cooling high-density pluggable modules for a network element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208384180U (zh) * 2018-06-12 2019-01-15 深圳市盈鑫通光电有限公司 一种光模块的外部结构及其固定安装组件
CN110658595A (zh) * 2018-06-28 2020-01-07 迈络思科技有限公司 用于大功率可插拔连接器的柔性液冷组件
CN110876252A (zh) * 2018-08-31 2020-03-10 泰连公司 通信系统的热管理
US20210007243A1 (en) * 2019-07-01 2021-01-07 Delta Electronics, Inc. Heat dissipation module for optical transceiver
US20210112683A1 (en) * 2019-10-15 2021-04-15 Ciena Corporation Liquid cooling high-density pluggable modules for a network element

Also Published As

Publication number Publication date
CN117348173A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US11737247B2 (en) Fluid cooling system
US10010013B2 (en) Scalable rack-mount air-to-liquid heat exchanger
US7408776B2 (en) Conductive heat transport cooling system and method for a multi-component electronics system
US7405936B1 (en) Hybrid cooling system for a multi-component electronics system
JP2020043082A (ja) モジュールを冷却する方法
US20070274043A1 (en) Liquid-Air Hybrid Cooling in Electronics Equipment
US10385996B2 (en) Tapering couplers for connecting fluid flow components
CN219476798U (zh) 电池装置及供电设备
GB2577898A (en) A network cabinet module
CN103209553B (zh) 一种新型高效冷却机箱及其散热方法
WO2022028037A1 (zh) 一种电子设备及用于该电子设备的液体冷却装置
WO2021258837A1 (zh) 液冷散热装置、液冷数据处理设备以及均温方法
WO2022100106A1 (zh) 可插拔设备、信息通信设备、散热系统和制造方法
US20240049434A1 (en) Liquid cooling high-density pluggable modules for a network element
WO2024001748A1 (zh) 一种液冷光模块及设备
US20210274687A1 (en) Liquid Drain Mechanism For Immersion Cooling System
CN114839732B (zh) 光模块承载装置、系统及电子设备
US11737246B2 (en) Dual-radiator cooling device
US10897837B1 (en) Cooling arrangement for a server mountable in a server rack
CN112968229A (zh) 一种模块化散热模组锂电池
TWI810559B (zh) 浸沒式冷卻系統及具有其之電子設備
WO2024001749A1 (zh) 一种光模块的液冷结构及光模块
US11917793B2 (en) Localized immersion cooling enclosure
CN213548106U (zh) 冷却机柜和浸没冷却系统
CN212628910U (zh) 一种新型插件式结构的光电系统平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829931

Country of ref document: EP

Kind code of ref document: A1