WO2024001704A1 - 一种稠油中微水滴分布的分析方法 - Google Patents

一种稠油中微水滴分布的分析方法 Download PDF

Info

Publication number
WO2024001704A1
WO2024001704A1 PCT/CN2023/098743 CN2023098743W WO2024001704A1 WO 2024001704 A1 WO2024001704 A1 WO 2024001704A1 CN 2023098743 W CN2023098743 W CN 2023098743W WO 2024001704 A1 WO2024001704 A1 WO 2024001704A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
oil sample
water droplets
oil
micro
Prior art date
Application number
PCT/CN2023/098743
Other languages
English (en)
French (fr)
Inventor
牟伯中
刘一凡
周蕾
杨世忠
王巧慧
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2024001704A1 publication Critical patent/WO2024001704A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the invention belongs to the technical field of petroleum extraction and relates to an analysis method for the distribution of micro-water droplets in heavy oil.
  • Deep underground oil reservoirs are an extremely complex environment characterized by high toxicity, hydrophobicity and low water activity, as well as high temperature, high salt and high pressure, creating a unique microbial ecosystem. It is generally believed that most crude oil biodegradation activities occur in the oil-water transition zone (OWTZ) and nearby water-saturated zones.
  • OWTZ oil-water transition zone
  • micro-water droplets originating from deep underground water exist in oil samples in asphalt lakes, in which microorganisms are highly abundant and metabolically active.
  • the distribution of micro-water droplets therein remain to be studied.
  • no paper or patent has proposed a method for studying oil layer water droplets, but the statistical method proposed by the present invention is beneficial to studying the distribution of oil layer water droplets in deep underground oil reservoirs.
  • the purpose of the present invention is to provide an analysis method for the distribution of water droplets in heavy oil.
  • An analysis method for the distribution of water droplets in heavy oil including:
  • step 1) a gasket is provided on the glass slide, the other glass slide is fixed on the gasket, and the oil sample to be tested is in contact with the two glass slides.
  • the thickness of the gasket is 0.1-0.2mm, and the preferred thickness of the gasket is 0.1mm.
  • the gasket is a silicone gasket.
  • the oil sample to be tested is a pre-treated oil sample.
  • the pre-treatment method includes: sealing the oil sample in an inert gas atmosphere, and letting it stand at 40-50°C for 12-36 hours. After layering, take the organic phase to get Oil sample to be tested.
  • the surface layer, middle layer and bottom oil sample of the oil sample are used as the oil sample to be measured, where the sampling height of the middle layer is 0.4-0.6 times the liquid level height of the organic phase.
  • step 2) when taking pictures, the oil sample to be tested is placed on the light-filling plate.
  • the photographed object also includes a ruler.
  • step 2) the image J software is used to process the photos of the oil sample to be measured, including: Set Scale, Type (8-bit), Brightness/Contrast, Threshold-elliptical or brush selections, and Analyze Particles.
  • the present invention has the following characteristics:
  • This invention innovatively uses a slide plate to reveal the micro-water droplets in the oil layer, and then uses photography and the image processing software image J to count the size and number of the micro-water droplets, which can be used to count the micro-water droplets in the oil layer in large quantities.
  • Distribution There may be microorganisms that can perform crude oil degradation activities in the oil layer water droplets. Statistics of the distribution of oil layer water droplets will help people further understand the environment of deep underground oil reservoirs, and will also help people make full use of the microorganisms in the oil layer water droplets to improve the performance of oil reservoirs. crude oil recovery and further development of depleted oil reservoirs.
  • the slide plate pressing method can lay out the water droplets in the oil sample on a two-dimensional plane and reveal them in the form of transparent spots. They appear as circular spots against the background of the fill light plate, which is conducive to observing and measuring the number of water droplets.
  • volume In the subsequent image processing, the black color of crude oil is used as the background to obtain the area data of the plane (the total number of circular spots and the area of each circular spot), and then the area is multiplied by the thickness of the gasket.
  • the volume of micro water droplets can be calculated, and the diameter of spherical water droplets can be obtained according to the spherical volume conversion formula.
  • This statistical method requires a small sample size, uses simple experimental equipment, takes a short time to operate, and has clear results, making it suitable for statistics of multiple sample sizes.
  • Experimental equipment such as beakers and glass slides used in the operation can be wiped clean and reused, and the main process parameters such as temperature and pressure are in a normal, controllable state with a high safety factor.
  • the experimental operation process is safe and non-toxic.
  • Figure 1 is a photo of the scale in Example 1, in which the diameter of the thickened circle is 0.01mm;
  • Figure 2 is an optical photograph of the upper oil phase water droplets in the heated and dehydrated crude oil in Example 1 (left) and the processed image (right). The length of the scale in the picture is 1cm;
  • Figure 3 is an optical photograph (left) of the middle oil phase water droplets in the heated and dehydrated crude oil in Example 1 and the image after processing (right).
  • the length of the scale in the picture is 1cm;
  • Figure 4 is an optical photograph of the bottom oil phase water droplets in the heated and dehydrated crude oil in Example 1 (left) and the processed image (right). The length of the scale in the picture is 1cm;
  • Figure 5 is a summary diagram of the number distribution of microdroplets (upper left), a summary diagram of diameter distribution (upper right), and a summary diagram of volume distribution (bottom) of the upper, middle and bottom oil phase samples in Example 1;
  • Figure 6 is a summary diagram of the number distribution of microdroplets (upper left), a summary diagram of diameter distribution (upper right), and a summary diagram of volume distribution (bottom) of the upper, middle and bottom oil phase samples in Example 2;
  • Figure 7 is a summary diagram of the number distribution of microdroplets (upper left), a summary diagram of diameter distribution (upper right), and a summary diagram of volume distribution (bottom) of the upper, middle and bottom oil phase samples in Example 3;
  • Figure 8 is a summary diagram of the number distribution of microdroplets (upper left), a summary diagram of diameter distribution (upper right), and a summary diagram of volume distribution (bottom) of the upper, middle and bottom oil phase samples in Example 4.
  • An analysis method for the distribution of water droplets in heavy oil including:
  • the thickness of the gasket is 0.1-0.2mm (preferably 0.1mm), and is preferably a silicone gasket; the corresponding sampling volume of the oil sample to be tested is 0.02-0.06mL (preferably 0.05mL);
  • the processing methods using image J software include: Set Scale, Type (8-bit), Brightness/Contrast, Threshold-elliptical or brush selections, and Analyze Particles.
  • the crude oil to be tested after water injection in secondary oil recovery needs to be pre-treated to remove the added water.
  • the pre-treatment method includes: in an inert gas atmosphere, take 80-100 mL of the crude oil to be tested in a 100 mL beaker , and use plastic wrap or sealing film to seal the mouth of the beaker, then transfer the beaker to a fully automatic temperature-controlled incubator, and let it stand at 40-50°C for 12-36 hours to stratify the crude oil to be tested and obtain the heating of the upper layer
  • the dehydrated crude oil and the lower layer are heated to remove water, and the heated dehydrated crude oil is used as the crude oil to be measured for statistical processing.
  • the surface oil sample represents the air contact layer oil sample
  • the middle layer oil sample represents the oil sample at the average suspension height of the oil layer.
  • the height is 0.4-0.6 times the liquid level of the organic phase.
  • the bottom oil sample represents the oil sample in the contact layer with the heated dewatered water during pretreatment.
  • step 2) the scale of the photo of the oil sample to be measured is determined by using the scale, and preferably, determining the scale requires reading the scale at least three times, and the average of the three scales is used as the scale of the photo of micro-water droplets in the heated and dehydrated crude oil for subsequent processing. .
  • the following examples use the crude oil collected from Daqing Oilfield well number N4-D1-129 as a sample for processing and statistics.
  • the well started water injection on July 14, 1984, and the crude oil samples used were collected on July 21, 2021.
  • the sampling point is 1018.0-1141.4 meters deep, the temperature is 49.4°C, the crude oil viscosity is 7.4 mPa ⁇ s, and the salinity is 5907.99 mg/L, asphaltene accounts for 23.7%, and colloid content is 15.58%.
  • An analysis method for water droplet distribution in heavy oil including the following steps:
  • S3 Place the graduated ruler on the fill-in light plate, fix the camera position and take pictures to determine the scale of the photo (as shown in Figure 1), then place the heated dehydrated crude oil plate on the fill-in light plate and use the camera to take pictures to obtain the microstructure in the heated dehydrated crude oil.
  • Photos of water droplets (shown on the left in Figure 2-4), use image processing software image J to process photos of micro-water droplets in heated dehydrated crude oil [Set Scale-Type(8-bit)-Brightness/Contrast-Threshold- elliptical or brush selections-Analyze Particles(Display results,Exclude on edges, Clear results, summarize)] (the processed image is shown in the right picture of Figure 2-4), and the number, diameter, and volume distribution of micro-water droplets are obtained.
  • Example 1 An analysis method for the distribution of micro-water droplets in heavy oil. Compared with Example 1, the only difference is that the standing time in step S1 is 24 hours, and the rest is the same as Example 1.
  • the water desorbed by heating is about 20mL; in 0.05mL of heated and dehydrated crude oil, the number of microwater droplets is distributed in the range of 40-350, and the number of microwater droplets in most samples is 120; The diameter of micro water droplets is distributed in the range of 25.15-567.19 ⁇ m, and the diameter of most micro water droplets is 75 ⁇ m; the volume of micro water droplets is distributed in the range of 8.33 ⁇ 10 -6 -0.096 ⁇ L, and the volume of most micro water droplets is 2.5 ⁇ 10 -4 ⁇ L.
  • Example 1 An analysis method for the distribution of micro-water droplets in heavy oil. Compared with Example 1, the only difference is that the standing temperature in step S1 is 50°C and the standing time is 36 hours. The rest is the same as in Example 1.
  • the water desorbed by heating is about 20mL; in 0.05mL of heated and dehydrated crude oil, the number of microwater droplets is distributed in the range of 35-300, and the number of microwater droplets in most samples is 130; The diameter of micro water droplets is distributed in the range of 22.48-369.23 ⁇ m, and the diameter of most micro water droplets is 135.32 ⁇ m; the volume of micro water droplets is distributed in the range of 5.95 ⁇ 10 -6 -0.026 ⁇ L, and the volume of most micro water droplets is 1.0 ⁇ 10 -3 ⁇ L.
  • the crude oil collected from Daqing Oilfield well number Pu 174-174 was used as samples for processing and statistics. This well is a newly opened oil well and has not been water flooded.
  • the crude oil sample used was collected on October 18, 2021.
  • the sampling point is 1253.74 meters deep and the temperature is 57.4°C.
  • the water content of the oil sample measured on site is 10%.
  • Example 1 An analysis method for the distribution of micro-water droplets in heavy oil. Compared with Example 1, the only difference is that the standing time in step S1 is 24 hours, and the rest is the same as Example 1.
  • the water desorbed by heating is about 2mL; in 0.05mL of heated and dehydrated crude oil, the number of microwater droplets is distributed in the range of 2-31, and the number of microwater droplets in most samples is 12; The diameter of micro water droplets is distributed in the range of 20.51-545.82 ⁇ m, and the diameter of most micro water droplets is 30.00 ⁇ m; micro water The volume of the droplets is distributed in the range of 4.52 ⁇ 10 -6 -0.085 ⁇ L, and the volume of most micro water droplets is 7 ⁇ 10 -4 ⁇ L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种稠油中微水滴分布的分析方法,包括首先取待测油样于载玻片上,并通过另一个载玻片夹持固定,得到待测油样板;再对待测油样板进行拍照,并采用image J软件对待测油样照片进行统计处理,即得到待测油样中微水滴的粒径分布与体积分布。与现有技术相比,本发明的统计方法需要的样品量小,使用的实验器材简单,操作过程耗费时间短,适用于多样本量的统计,并且操作中用到的烧杯和载玻片等实验器材均可擦拭清洁干净再次利用,且主要的工艺参数如温度、压力均处于常态,可控,保险系数高的状态,实验操作过程安全无毒。

Description

一种稠油中微水滴分布的分析方法 技术领域
本发明属于石油开采技术领域,涉及一种稠油中微水滴分布的分析方法。
背景技术
地下深部油藏是一个极其复杂的环境,具有高毒性、疏水性和低水活性、以及高温、高盐和高压的特点,造就了一个独特的微生物生态系统。人们通常认为大部分的原油生物降解活动发生在油水过渡带(oil-water transition zone,OWTZ)及附近的水饱和区。然而近些年来有报道沥青湖中油样中存在有源自深层底下水的微水滴,其中微生物丰度高且代谢活跃。但地下油藏的油层中是否存在微水滴以及其中微水滴的分布还有待研究。目前还未有论文或专利提出研究油层微水滴的方法,而本发明提出的统计方法则有利于研究深层地下油藏中油层微水滴的分布。
发明内容
本发明的目的就是提供一种稠油中微水滴分布的分析方法。
本发明的目的可以通过以下技术方案来实现:
一种稠油中微水滴分布的分析方法,包括:
1)取待测油样于载玻片上,并通过另一个载玻片夹持固定,得到待测油样板;
2)对待测油样板进行拍照,并采用image J软件对待测油样照片进行统计处理,即得到待测油样中微水滴的粒径分布与体积分布。
进一步地,步骤1)中,所述的载玻片上设有垫片,所述的另一个载玻片固定于垫片上,所述的待测油样与两个载玻片相接触。
进一步地,所述的垫片厚度为0.1-0.2mm,优选的垫片厚度为0.1mm。
进一步地,所述的垫片为硅胶垫片。
进一步地,步骤1)中,所述的待测油样为预处理油样,预处理方法包括:将油样密封于惰性气体氛围中,并在40-50℃下静置12-36h,分层后取有机相即得到 待测油样。
进一步地,取样时,以油样的表层、中间层与底层油样作为待测油样,其中中间层的取样高度为有机相液位高度的0.4-0.6倍。
进一步地,步骤2)中,拍照时,将待测油样板置于补光板上。
进一步地,步骤2)中,拍照对象还包括标尺。
进一步地,步骤2)中,采用image J软件对待测油样照片的处理方法依次包括:Set Scale、Type(8-bit)、Brightness/Contrast、Threshold-elliptical or brush selections、Analyze Particles。
与现有技术相比,本发明具有以下特点:
本发明创新性地采用载玻片压板的方式将油层中的微水滴显露出来,再用拍照的方式和图片处理软件image J对微水滴的尺寸和数量进行统计,可用于大批量统计油层微水滴的分布。油层微水滴中可能存在着能够进行原油降解活动的微生物,那么统计油层微水滴的分布就有利于人们进一步的了解地下深部油藏的环境,也有利于人们充分利用油层微水滴中的微生物来提高原油采收率,进一步开发枯竭油藏。
载玻片压板的方式能将油样中的微水滴铺平在二维平面上,并以透明斑的形式显露出来,在补光板的背景下呈圆形光斑样,有利于观察测量水滴的数量和体积:在后续的图片处理中以原油的黑色为背景,处理得到平面的面积数据(圆形光斑的总个数和每个圆形光斑的面积),之后再将面积乘以垫片的厚度可计算得微水滴的体积,根据球形体积换算公式得到球形的水滴直径。在对多个样本进行处理时,得到大多数油藏中油层微水滴的尺寸和数量分布,便于找出油层微水滴分布的规律。
这种统计方法需要的样品量小,使用的实验器材简单,操作过程耗费时间短,结果清晰,适用于多样本量的统计。操作中用到的烧杯和载玻片等实验器材均可擦拭清洁干净再次利用,且主要的工艺参数如温度、压力均处于常态,可控,保险系数高的状态,实验操作过程安全无毒。
附图说明
图1为实施例1中标尺照片,其中加粗圆的直径为0.01mm;
图2为实施例1中加热脱水原油中上层油相微水滴的光学照片(左)以及处理后的图像(右),图中标尺长度为1cm;
图3为实施例1中加热脱水原油中中层油相微水滴的光学照片(左)以及处理后的图像(右),图中标尺长度为1cm;
图4为实施例1中加热脱水原油中底层油相微水滴的光学照片(左)以及处理后的图像(右),图中标尺长度为1cm;
图5为实施例1中上、中、底三层油相样品微液滴数量分布汇总图(左上)、直径分布汇总图(右上),以及体积分布汇总图(下);
图6为实施例2中上、中、底三层油相样品微液滴数量分布汇总图(左上)、直径分布汇总图(右上),以及体积分布汇总图(下);
图7为实施例3中上、中、底三层油相样品微液滴数量分布汇总图(左上)、直径分布汇总图(右上),以及体积分布汇总图(下);
图8为实施例4中上、中、底三层油相样品微液滴数量分布汇总图(左上)、直径分布汇总图(右上),以及体积分布汇总图(下)。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
一种稠油中微水滴分布的分析方法,包括:
1)取待测油样于边缘具有垫片的载玻片上,并通过另一个载玻片夹持固定,并使待测油样充分浸润两个载玻片,得到固定油样厚度的待测油样板;
其中,垫片厚度为0.1-0.2mm(优选为0.1mm),并优选为硅胶垫片;对应的待测油样的取样量为0.02-0.06mL(优选为0.05mL);
2)在补光板上,对待测油样板以及具有刻度的标尺进行拍照,并采用image J软件对待测油样照片进行统计处理,即得到待测油样中微水滴的粒径分布与体积分布;
其中,采用image J软件的处理方法依次包括:Set Scale、Type(8-bit)、Brightness/Contrast、Threshold-elliptical or brush selections、Analyze Particles。
优选的,步骤1)中,对于二次采油中注水后的待测原油,需先进行预处理脱除外加水,预处理方法包括:在惰性气体氛围中,取80-100mL待测原油于100mL烧杯中,并采用保鲜膜或封口膜封住烧杯口,之后将烧杯转移至全自动控温培养箱中,在40-50℃下静置12-36h,使待测原油分层并得到上层的加热脱水原油和下层的加热脱出水,并以加热脱水原油作为待测原油进行统计处理。
优选的,取样时以表层、中间层与底层处的多个油样作为待测油样,其中表层油样代表空气接触层油样,中间层油样油层中平均悬浮高度处的油样,取样高度为有机相液位高度的0.4-0.6倍,底层油样在预处理中代表与加热脱出水接触层的油样。通过对三个位置进行取样,模拟油藏环境中与伴生气接触的顶层油样、远离油水过渡区的中层油样和油水过渡区油样,从而尽可能统计到贴合实际的油藏中微水滴的分布。
步骤2)中,通过标尺以确定待测油样照片的比例尺,并且优选的,确定比例尺需对标尺进行至少三次读数,得到三次的比例尺取平均数作为后续处理加热脱水原油中微水滴照片的比例尺。
本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下实施例以大庆油田井号为N4-D1-129采到的原油为样品进行处理统计。该井从1984年7月14日开始注水,于2021年7月21日采到所用原油样品,采样点深1018.0-1141.4米,温度为49.4℃,原油黏度为7.4mPa·s,矿化度5907.99mg/L,沥青质占23.7%,含胶质15.58%。
实施例1:
一种稠油中微水滴分布的分析方法,包括以下步骤:
S1:在氮气氛围下,取100mL原油于100mL烧杯中并用保险膜或封口膜封住杯口,将烧杯静置于全自动控温培养箱中,控制温度为46℃,静置12小时使原油分层,并得到上层的加热脱水原油和下层的加热脱出水;
取加热脱出水分离到量筒中,其体积约为18mL;
S2:将加热脱水原油冷却至室温,用1mL注射器分别在加热脱水原油表层、中层和底层均匀选择五个采样点,并吸取0.05mL加热脱水原油,之后分别挤压到干净、边缘贴有0.1mm厚的硅胶皮垫片的载玻片上,并用另一载玻片缓慢盖上,压紧得到厚度固定的加热脱水原油板;
S3:将有刻度的标尺置于补光板上,固定相机位置拍摄以确定照片的比例尺(如图1所示),然后将加热脱水原油板置于补光板上并用相机拍摄得到加热脱水原油中微水滴的照片(如图2-4中左图所示),用图片处理软件image J对加热脱水原油中微水滴的照片进行处理[Set Scale-Type(8-bit)-Brightness/Contrast-Threshold-elliptical or brush selections-Analyze Particles(Display results,Exclude on  edges,Clear results,summarize)](处理后的图像如图2-4右图所示),得到微水滴的数量、直径、体积分布。
结果如图5所示,可以看出,在0.05mL的加热脱水原油中,微水滴的数量分布在87-865个的范围,大多样品中的微水滴数量为225个;微水滴的直径分布在25.46-1143.84μm的范围,大部分的微水滴的直径为120μm;微水滴的体积则分布在8.65×10-6-0.78μL的范围,大部分微水滴的体积为5×10-4μL。
实施例2:
一种稠油中微水滴分布的分析方法,与实施例1相比,区别仅在于:步骤S1中静置时间为24h,其余同实施例1。
结果如图6所示,可以看出,加热脱出水约20mL;在0.05mL的加热脱水原油中,微水滴的数量分布在40-350个的范围,大多样品中的微水滴数量为120个;微水滴的直径分布在25.15-567.19μm的范围,大部分的微水滴的直径为75μm;微水滴的体积则分布在8.33×10-6-0.096μL的范围,大部分微水滴的体积为2.5×10-4μL。
实施例3:
一种稠油中微水滴分布的分析方法,与实施例1相比,区别仅在于:步骤S1中静置温度为50℃,静置时间为36h,其余同实施例1。
结果如图7所示,可以看出,加热脱出水约20mL;在0.05mL的加热脱水原油中,微水滴的数量分布在35-300个的范围,大多样品中的微水滴数量为130个;微水滴的直径分布在22.48-369.23μm的范围,大部分的微水滴的直径为135.32μm;微水滴的体积则分布在5.95×10-6-0.026μL的范围,大部分微水滴的体积为1.0×10-3μL。
实施例4:
针对未注水油藏,以大庆油田井号为葡174-174采到的原油为样品进行处理统计。该井为新开油井,未进行过水驱,于2021年10月18日采到所用原油样品,采样点深1253.74米,温度为57.4℃,现场测得油样的含水量为10%。
一种稠油中微水滴分布的分析方法,与实施例1相比,区别仅在于:步骤S1中静置时间为24h,其余同实施例1。
结果如图8所示,可以看出,加热脱出水约2mL;在0.05mL的加热脱水原油中,微水滴的数量分布在2-31个的范围,大多样品中的微水滴数量为12个;微水滴的直径分布在20.51-545.82μm的范围,大部分的微水滴的直径为30.00μm;微水 滴的体积则分布在4.52×10-6-0.085μL的范围,大部分微水滴的体积为7×10-4μL。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种稠油中微水滴分布的分析方法,其特征在于,该统计方法包括:
    1)取待测油样于载玻片上,并通过另一个载玻片夹持固定,得到待测油样板;
    2)对待测油样板进行拍照,并采用image J软件对待测油样照片进行统计处理,即得到待测油样中微水滴的粒径分布与体积分布。
  2. 根据权利要求1所述的一种稠油中微水滴分布的分析方法,其特征在于,步骤1)中,所述的载玻片上设有垫片,所述的另一个载玻片固定于垫片上,所述的待测油样与两个载玻片相接触。
  3. 根据权利要求1所述的一种稠油中微水滴分布的分析方法,其特征在于,所述的垫片厚度为0.1-0.2mm。
  4. 根据权利要求3所述的一种稠油中微水滴分布的分析方法,其特征在于,所述的垫片厚度为0.1mm。
  5. 根据权利要求3所述的一种稠油中微水滴分布的分析方法,其特征在于,所述的垫片为硅胶垫片。
  6. 根据权利要求1所述的一种稠油中微水滴分布的分析方法,其特征在于,步骤1)中,所述的待测油样为预处理油样,预处理方法包括:将油样密封于惰性气体氛围中,并在40-50℃下静置12-36h,分层后取有机相即得到待测油样。
  7. 根据权利要求1所述的一种稠油中微水滴分布的分析方法,其特征在于,取样时,以油样的表层、中间层与底层油样作为待测油样,其中中间层的取样高度为有机相液位高度的0.4-0.6倍。
  8. 根据权利要求1所述的一种稠油中微水滴分布的分析方法,其特征在于,步骤2)中,拍照时,将待测油样板置于补光板上。
  9. 根据权利要求1所述的一种稠油中微水滴分布的分析方法,其特征在于,步骤2)中,拍照对象还包括标尺。
  10. 根据权利要求1所述的一种稠油中微水滴分布的分析方法,其特征在于,步骤2)中,采用image J软件对待测油样照片的处理方法依次包括:Set Scale、Type(8-bit)、Brightness/Contrast、Threshold-elliptical or brush selections、Analyze Particles。
PCT/CN2023/098743 2022-07-01 2023-06-07 一种稠油中微水滴分布的分析方法 WO2024001704A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210773294.6A CN115290516A (zh) 2022-07-01 2022-07-01 一种稠油中微水滴分布的分析方法
CN202210773294.6 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024001704A1 true WO2024001704A1 (zh) 2024-01-04

Family

ID=83822959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098743 WO2024001704A1 (zh) 2022-07-01 2023-06-07 一种稠油中微水滴分布的分析方法

Country Status (2)

Country Link
CN (1) CN115290516A (zh)
WO (1) WO2024001704A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115290516A (zh) * 2022-07-01 2022-11-04 华东理工大学 一种稠油中微水滴分布的分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283128A (en) * 1980-06-23 1981-08-11 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Photomicrographic system for flowing fluids
CN101493398A (zh) * 2009-03-04 2009-07-29 大庆油田有限责任公司 乳化原油乳状液激光共聚焦分析方法
CN111982757A (zh) * 2020-05-13 2020-11-24 北京华龛生物科技有限公司 一种单位质量粉末中颗粒数的测定方法
CN113758840A (zh) * 2021-09-07 2021-12-07 安徽工业大学 一种基于Image J的碳烟颗粒粒径及面积的测量方法
CN115290516A (zh) * 2022-07-01 2022-11-04 华东理工大学 一种稠油中微水滴分布的分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283128A (en) * 1980-06-23 1981-08-11 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Photomicrographic system for flowing fluids
CN101493398A (zh) * 2009-03-04 2009-07-29 大庆油田有限责任公司 乳化原油乳状液激光共聚焦分析方法
CN111982757A (zh) * 2020-05-13 2020-11-24 北京华龛生物科技有限公司 一种单位质量粉末中颗粒数的测定方法
CN113758840A (zh) * 2021-09-07 2021-12-07 安徽工业大学 一种基于Image J的碳烟颗粒粒径及面积的测量方法
CN115290516A (zh) * 2022-07-01 2022-11-04 华东理工大学 一种稠油中微水滴分布的分析方法

Also Published As

Publication number Publication date
CN115290516A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024001704A1 (zh) 一种稠油中微水滴分布的分析方法
WO2022148193A1 (zh) 模拟高温高压下流体驱替的微观可视化实验装置及方法
CN106285583B (zh) 一种微观可视化驱替模拟系统及其使用方法
CN112858113A (zh) 一种深层油藏高温高压气驱油微观可视化实验方法
CN109001097B (zh) 一种可视化压裂液自发渗吸研究装置及方法
CN105044192B (zh) 一种基于光诱导介电泳技术的细胞分类方法
US20230265482A1 (en) Trypsin detection film, preparation method therefor, application thereof, and trypsin detection kit
CN110186834A (zh) 一种密封胶对反渗透膜的渗透性检测装置及检测方法
CN106442226A (zh) 基于量子点的热管吸液芯毛细测试方法及装置
CN111693428A (zh) 地层条件下测定岩石渗吸作用的可视化实验装置和方法
CN116840192A (zh) 一种跨尺度凝析气雾状流重力沉降弛豫时间测试方法
KR101279062B1 (ko) 강판 수소 투과 시험 장치
CN113049453A (zh) 原位润湿角测定装置和基于深度学习的润湿角确定方法
CN111808917A (zh) 胃蛋白酶检测薄膜及其制备方法、应用和胃蛋白酶检测试剂盒
RU2362141C2 (ru) Способ определения количества жидкости, перемещаемой поверхностно-активным веществом
CN112798539A (zh) 一种基于迁移学习的黄曲霉毒素智能检测方法
CN114577770B (zh) 一种深海冷泉区沉积物中微塑料的全尺寸提取与检测方法
CN114486824B (zh) 一种模拟pH变化的面向土壤系统的高分辨技术耦合的重金属原位表征系统
Leu Cake filtration
CN210343328U (zh) 水化数据采集装置及水化应力场获取系统
CN114460088A (zh) 土壤冻融循环模拟装置及napl相迁移定量识别方法
CN115452671A (zh) 一种岩体裂隙渗流-颗粒运移沉积可视化的实验装置
CN107621483A (zh) 一种微量混凝土孔溶液pH值的测试方法
CN109975900A (zh) 一种具有导热涂层的反射膜及其制备方法与应用
CN212031246U (zh) 一种检测赫尔-肖氏薄板中颗粒孔隙率的试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829888

Country of ref document: EP

Kind code of ref document: A1