WO2024001700A1 - 一种多色可调控的电致变色材料及电致变色器件 - Google Patents

一种多色可调控的电致变色材料及电致变色器件 Download PDF

Info

Publication number
WO2024001700A1
WO2024001700A1 PCT/CN2023/098695 CN2023098695W WO2024001700A1 WO 2024001700 A1 WO2024001700 A1 WO 2024001700A1 CN 2023098695 W CN2023098695 W CN 2023098695W WO 2024001700 A1 WO2024001700 A1 WO 2024001700A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
microspheres
electrochromic
electrochromic material
monodisperse
Prior art date
Application number
PCT/CN2023/098695
Other languages
English (en)
French (fr)
Inventor
田丰
黄晓华
Original Assignee
珠海光驭科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海光驭科技有限公司 filed Critical 珠海光驭科技有限公司
Publication of WO2024001700A1 publication Critical patent/WO2024001700A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems

Definitions

  • the invention relates to an electrochromic material and an electrochromic device, in particular to a multi-color controllable electrochromic material and an electrochromic device.
  • Electrochromism refers to the reversible change in the color and transparency of a material under the action of an applied voltage. Electrochromic materials can be divided into inorganic electrochromic materials and organic electrochromic materials. Inorganic electrochromic materials are mainly transition metal oxides and coordination dyes. Transition metal oxides mainly include WO 3 and MoO 3 of the VIB group. These materials are in a faded state in the highly oxidized state and in a colored state in the reduced state. Coordination dyes are mainly chelates composed of transition metal ions and multiple ligands, and the color change occurs due to changes in the valence state of the metal ions. There are many types of organic electrochromic materials.
  • Organic electrochromic materials have many advantages, such as low cost and rich colors. However, compared with inorganic electrochromic materials, they have poor radiation resistance, weak chemical stability, and weak bonding with the substrate inorganic material. has promoted its development, so inorganic color-changing materials are widely used in industrial applications. However, electrochromic materials still have problems such as slow electrochromic speed and single color change, which are not conducive to applications in fields such as multi-color displays.
  • Photonic crystal is a photonic band gap structure produced by the periodic arrangement of materials with different dielectric constants. Photonic crystal materials have the function of regulating light propagation. When visible light passes through the photonic crystal When the material is used as a material, light of a specific frequency will be modulated by the photonic band gap, resulting in part of the visible light being unable to pass through the material and being directly reflected, causing the photonic crystal to produce a specific structural color. Compared with pigments or dyes, the photonic crystal structural color has high Unique properties of saturation, high brightness and colorfastness.
  • Chinese patent CN102978674B discloses a method for preparing an electrochromic film with a photonic crystal structure. By introducing the structure of the photonic crystal into the electrochromic material, an electrochromic polyaniline with an inverse opal structure is prepared.
  • Photonic crystal films Chinese patent application CN114031309A discloses an inorganic-organic composite photonic crystal film, which is composed of WO 3 as an inverse opal skeleton and the conductive polymer PEDOT as a shell layer to obtain an electrochromic composite film.
  • Chinese patent CN113386437B physically blends temperature-sensitive materials, electrochromic materials and latex microspheres to obtain a flexible photonic crystal that changes color in response to temperature and voltage.
  • Chinese patent application CN113103706A prepares a photonic crystal film doped with organic viologen compounds with reversible electrochromic redox activity, thereby achieving electrochromic dynamic color development.
  • the present invention provides a low angle dependence Multi-color controllable electrochromic materials and electrochromic devices.
  • a multi-color controllable electrochromic material is made of the following raw materials: monodisperse nanometer microspheres, dispersion liquid, and/or light absorber.
  • the monodisperse nanometer microspheres are silica microspheres or silica-coated ferroferric oxide core-shell structure microspheres or polymer microspheres.
  • the silica microspheres are synthesized by hydrolysis of TEOS (ethyl orthosilicate) under alkaline conditions through the Stober method.
  • TEOS ethyl orthosilicate
  • the process is simple and has good controllability.
  • the specific steps are: mix absolute ethanol, deionized water and concentrated ammonia evenly, add TEOS dropwise into the mixture at room temperature, continue the reaction for 6 hours after the dropwise addition, use ethanol to centrifuge and wash three times, and obtain silica after vacuum drying.
  • the particle size of silica microspheres is adjusted by changing the concentration of TEOS. As the concentration of TEOS increases, the particle size of silica microspheres gradually increases.
  • the concentration of TEOS increases, the concentration of the generated intermediate product silicic acid increases, the polymerization speed accelerates, the number of crystal nuclei increases, and a longer network structure grows. During the condensation process, the longer network structures are intertwined with each other to form a stable state.
  • the monodispersed nano-microspheres include nano-microspheres with one particle size, two particle sizes, or more than two particle sizes.
  • Monodisperse nanospheres of a single particle size are periodically arranged to form a long-range ordered structure, which makes the structural color angularly dependent.
  • monodisperse nanospheres of different particle sizes are mixed, they will exhibit a long-range disordered crystal structure. This amorphous crystal structure makes the structural color have low angle dependence.
  • the weight fraction of the monodisperse nanospheres is 25-50%, the average particle size of the monodisperse nanospheres is 150-350nm, and the polydispersity index (PDI) of the nanospheres is less than 0.15.
  • the electrochromic material is a slurry, and the slurry is in a liquid state.
  • the monodisperse nanometer microspheres move faster under the action of an electric field and have a more sensitive color change response.
  • the polymer microsphere is a polymer of styrene, methyl methacrylate, ethylene glycol diacrylate and divinylbenzene monomer.
  • the dispersion is a carbonate solvent, including one or two of propylene carbonate, ethylene carbonate, and dimethyl carbonate.
  • the weight fraction of the light absorber is 0.01% to 0.1%.
  • the light absorber is a black pigment or dye.
  • the black pigment is one or more of carbon black, aniline black, iron black, and graphite black. .
  • a multi-color controllable electrochromic device includes a device body, the device body includes a photonic crystal color-changing layer, and the photonic crystal color-changing layer is the electrochromic material described in any one of the above.
  • the device body also includes an upper electrode layer and a lower electrode layer disposed on both sides of the photonic crystal color-changing layer.
  • the color of the device body is dynamically regulated within the range of 400-700 nm, and the color of the device body has low angle dependence.
  • the invention provides a multi-color controllable electrochromic material and an electrochromic device.
  • the electrochromic material is made of the following raw materials: monodisperse nanometer microspheres, dispersion liquid, and/or light absorber, monodisperse nanometer microspheres, and/or light absorbers.
  • the balls are silica microspheres or polymer microspheres, monodisperse nanometer microspheres
  • the balls include nano-microspheres with one particle size or two particle sizes or more than two particle sizes.
  • the electrochromic device includes a photonic crystal color-changing layer made of electrochromic materials, which is easy to prepare and low-cost; and the electrochromic device
  • the material is slurry, which is liquid. Compared with thin films, monodisperse nanospheres move faster under the action of an electric field and are more responsive to color changes.
  • the present invention can adjust the reflection spectrum of the structural color of the electrochromic device by using a variety of monodisperse nanometer microspheres with different particle sizes and adjusting the ratio between the monodisperse nanometer microspheres with different particle sizes. Under a voltage of 0-3V, It exhibits highly sensitive color change characteristics, achieves color change in the full visible light range, and has low angle dependence.
  • Figure 1 is a schematic structural diagram of the electrochromic device of the present invention.
  • Figure 2 is a continuous color change spectrum diagram of the electrochromic device according to Embodiment 1 of the present invention.
  • Figure 3 is a continuous color change spectrum diagram of the electrochromic device of Embodiment 2 of the present invention.
  • Figure 4 is a continuous color change spectrum diagram of the electrochromic device of Embodiment 3 of the present invention.
  • Figure 5 shows the color of the electrochromic device observed from different angles under the condition of voltage 2 according to Embodiment 3 of the present invention.
  • Parts that are not particularly emphasized in the following examples are all at normal temperature and pressure.
  • a multi-color controllable electrochromic material is made of the following raw materials: monodisperse nanometer microspheres, dispersion liquid, and light absorber.
  • the monodisperse nanometer microspheres are silica microspheres.
  • the monodisperse nanometer microspheres include nanometer microspheres with one particle size, the weight fraction of the monodisperse nanometer microspheres is 40%, the average particle size of the monodisperse nanometer microspheres is 205nm, and the nanometer microspheres
  • the polydispersity index (PDI) of the spheres is 0.06.
  • the electrochromic material is slurry.
  • the dispersion is propylene carbonate.
  • the weight portion of the light absorber is 0.1%, the light absorber is a black pigment, and the black pigment is aniline black.
  • the preparation method of the electrochromic material is as follows: centrifuge and clean the silica microspheres with ethanol three times to obtain an ethanol dispersion of silica microspheres with a solid content of 25%, and take 10g of the ethanol dispersion of silica microspheres. Mix it with 3.75g of carbonated acrylic acid solution containing 0.1% aniline black, disperse evenly with ultrasonic, and then rotary evaporate and concentrate to obtain a red photonic crystal slurry.
  • a multi-color controllable electrochromic device includes a device body, and the device body includes a photonic crystal color-changing layer 1, and the photonic crystal color-changing layer 1 is the electrochromic material described in any one of the above.
  • the device body also includes an upper electrode layer 2 and a lower electrode layer 3 arranged on both sides of the photonic crystal color-changing layer 1.
  • the upper electrode layer 2 and the lower electrode layer 3 are both ITO electrode layers.
  • the device body The color is dynamically controlled in the range of 400-700nm, and the color of the device body has low angle dependence.
  • the preparation method of the electrochromic device is as follows: injecting the electrochromic material between the upper electrode layer and the lower electrode layer separated by 50 ⁇ m to obtain a multi-color controllable electrochromic device based on photonic crystals.
  • the electrochromic device prepared in this embodiment was connected to a voltage in the range of 0-3V. The voltage is continuously varied while measuring the reflection spectrum.
  • the color development and reflection peak spectra of the electrochromic device are shown in Figure 2 and Table 1. It can be seen from Figure 2 that the reflection peak wavelength of the electrochromic device changes significantly. Monodisperse nanospheres of a single particle size will be periodically arranged to form a long-range ordered structure with angle dependence.
  • a multi-color controllable electrochromic material is made of the following raw materials: monodisperse nanometer microspheres, dispersion liquid, and light absorber.
  • the monodisperse nanometer microspheres are silica microspheres.
  • the monodisperse nanometer microspheres include nanometer microspheres with one particle size, the weight fraction of the monodisperse nanometer microspheres is 30%, the average particle size of the monodisperse nanometer microspheres is 180nm, and the nanometer microspheres
  • the polydispersity index (PDI) of the spheres is 0.05.
  • the electrochromic material is slurry.
  • the dispersion is propylene carbonate.
  • the weight portion of the light absorber is 0.1%, the light absorber is a black pigment, and the black pigment is aniline black.
  • the preparation method of the electrochromic material is as follows: centrifuge and clean the silica microspheres with ethanol three times to obtain an ethanol dispersion of silica microspheres with a solid content of 25%, and take 10g of the ethanol dispersion of silica microspheres. Mix it with 5.8g of carbonated acrylic acid solution containing 0.05% aniline black, disperse evenly with ultrasonic, and then rotary evaporate and concentrate to obtain a green photonic crystal slurry.
  • a multi-color controllable electrochromic device includes a device body, and the device body includes a photonic crystal color-changing layer 1, and the photonic crystal color-changing layer 1 is the electrochromic material described in any one of the above.
  • the device body also includes an upper electrode layer 2 and a lower electrode layer 3 arranged on both sides of the photonic crystal color-changing layer 1.
  • the upper electrode layer 2 and the lower electrode layer 3 are both ITO electrode layers.
  • the device body The color is dynamically controlled in the range of 400-700nm, and the color of the device body has low angle dependence.
  • the preparation method of the electrochromic device is as follows: injecting the electrochromic material between the upper electrode layer and the lower electrode layer separated by 50 ⁇ m to obtain a multi-color controllable electrochromic device based on photonic crystals.
  • the electrochromic device prepared in this embodiment was continuously changed in voltage in the voltage range of 0-3V, and the reflection spectrum was measured at the same time.
  • the color development and reflection peak spectra of the electrochromic device are shown in Figure 3 and Table 1. It can be seen from Figure 3 that the reflection peak wavelength of the electrochromic device changes significantly. Monodisperse nanospheres of a single particle size will be periodically arranged to form a long-range ordered structure with angle dependence.
  • the silica microspheres include nano-microspheres with three particle sizes, each with a particle size of 190 nm (PDI is 0.05), particle size 205nm (PDI is 0.06), particle size 210 (PDI is 0.08) are mixed and used according to the mass ratio of 1:1:1.
  • the electrochromic device prepared in this embodiment was continuously changed in voltage in the voltage range of 0-3V, and the reflection spectrum was measured at the same time.
  • the color development and reflection peak spectra of the electrochromic device are shown in Figure 4 and Table 1. It can be seen from Figure 4 that the change in reflection peak wavelength of the electrochromic device in Figure 4 is smaller than that in Figures 2 and 3, indicating that the electrochromic device in Figure 4 has low angle dependence.
  • the silica microspheres include nano-microspheres with three particle sizes, respectively, with a particle size of 195 nm (PDI is 0.06) and a particle size of 210 (PDI is 0.06) mixed according to a mass ratio of 1:1 use.
  • the electrochromic device prepared in this embodiment was continuously changed in voltage in the voltage range of 0-3V, and the reflection spectrum was measured at the same time.
  • the color development and reflection peak spectra of the electrochromic device are shown in Table 1.
  • the silica microspheres include nano-microspheres with three particle sizes, each with a particle size of 210 (PDI is 0.06) and particle size 230 (PDI 0.08) are mixed at a mass ratio of 1:1.
  • the electrochromic device prepared in this embodiment was continuously changed in voltage in the voltage range of 0-3V, and the reflection spectrum was measured at the same time.
  • the color development and reflection peak spectra of the electrochromic device are shown in Table 1.
  • Example 2 the same raw materials and experimental procedures as those in Example 1 were used to prepare the electrochromic material. The difference is that in this comparative example, the weight fraction of the monodispersed nanomicrospheres is 20%.
  • This comparative example uses the same raw materials and experimental procedures as those in Example 1 to prepare electrochromic materials. The difference is that in this comparative example, the average particle size of the monodisperse nanospheres is 100 nm (PDI is 0.1).
  • the electrochromic materials prepared in Examples 1 to 5 all have spectral continuous color change properties. In Examples 3 to 5, they also have low angle dependence. This is due to the monodisperse nanometer particles with different particle sizes. When the microspheres are mixed, they exhibit a long-range disordered crystal structure. This amorphous crystal structure results in low angle dependence of the structural color.
  • Example 1 Compared with Comparative Example 1, Example 1 has a lower content of monodisperse nanospheres, so no structural color can be observed. Compared with Comparative Example 2, the particle size of the monodisperse nanospheres in Example 1 is too small, and the structural color in the visible light range cannot be obtained.
  • the invention provides a multi-color controllable electrochromic material and an electrochromic device.
  • the electrochromic material is made of the following raw materials: monodisperse nanometer microspheres, dispersion liquid, and/or light absorber, monodisperse nanometer microspheres, and/or light absorbers.
  • the balls are silica microspheres or polymer microspheres, and the monodisperse nanospheres include nanospheres with one particle size, two particle sizes, or more than two particle sizes, and the electro-induced
  • the color-changing material is slurry, which is liquid. Compared with thin films, monodisperse nanospheres move faster under the action of an electric field and are more responsive to color changes.
  • the electrochromic device includes a photonic crystal color-changing layer made of electrochromic material.
  • the present invention adopts a variety of monodisperse nanometer microspheres with different particle sizes and adjusts the ratio between the monodisperse nanometer microspheres with different particle sizes. Adjusting the reflection spectrum of the structural color of the electrochromic device shows highly sensitive color change characteristics at a voltage of 0-3V, achieving color change in the full visible light range, and has low angle dependence. It is expected to be used in displays, sensors and other fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种多色可调控的电致变色材料及电致变色器件,电致变色材料由以下原料制成:单分散纳米微球、分散液、和/或光吸收剂,单分散纳米微球为二氧化硅微球或二氧化硅包覆四氧化三铁核壳结构微球或聚合物微球,单分散纳米微球包括一种粒径或两种粒径或两种以上粒径的纳米微球,电致变色器件包括由电致变色材料制得的光子晶体变色层,制备方便,成本低廉,通过采用多种不同粒径的单分散纳米微球和调节不同粒径的单分散纳米微球之间的比例,可调节电致变色器件结构色的反射光谱,在0-3V电压下,呈现高灵敏的颜色变化特性,实现全可见光范围变色,且具有低角度依赖性。

Description

一种多色可调控的电致变色材料及电致变色器件 技术领域
本发明涉及一种电致变色材料及电致变色器件,特别是一种多色可调控的电致变色材料及电致变色器件。
背景技术
电致变色是指在外加电压的作用下,材料在外观上表现为材料颜色和透明度的可逆变化。电致变色材料可以分为无机电致变色材料和有机电致变色材料。无机电致变色材料主要是过渡金属氧化物和配位染料类,过渡金属氧化物类,主要包括第VIB族的WO3、MoO3等。这些材料在高价氧化态下是褪色状态,还原态时为着色态。配位染料主要是过渡金属离子与多配位体构成螯合物,以金属离子价态变化产生变色现象。有机电致变色材料种类比较多,按材料结构大致可分为有机小分子电致变色料和导电聚合物电致变色材料。有机电致变色材料的优点有很多,比如成本低廉、表现色彩丰富等,但是与无机电致变色材料相比,其抗辐射能力差,化学稳定性弱,与基板无机材料结合不牢固等缺陷限制了其发展,因此在产业化应用中无机变色材料应用较多。然而,电致变色材料中仍存在着电致变色速度慢及颜色变化单一等问题,不利于在多色显示等领域应用。
光子晶体是由不同介电常数的材料周期性排列而产生的光子带隙结构。光子晶体材料具有调控光传播的作用,当可见光通过光子晶 体时,特定频率的光会受到光子带隙的调制,导致部分可见光不能通过该材料而直接被反射,从而使光子晶体产生特定的结构色,与颜料或染料相比,光子晶体结构色具有高饱和度,高亮度和不褪色的独特性能。
现有技术中,中国专利CN102978674B公开了一种具有光子晶体结构的电致变色薄膜的制备方法,通过把光子晶体的结构引入到电致变色材料中,制备具有反蛋白石结构的电致变色聚苯胺光子晶体薄膜。中国专利申请CN114031309A公开了一种无机有机复合光子晶体薄膜,由WO3为反蛋白石骨架,导电聚合物PEDOT为壳层,得到电致变色的复合薄膜。中国专利CN113386437B将温敏材料和电致变色材料和乳胶微球物理共混,得到一种温度、电压响应变色的柔性光子晶体。中国专利申请CN113103706A制备了一种掺杂可逆电致氧化还原活性的有机紫精类化合物的光子晶体薄膜,从而实现电致变色的动态显色。
目前的基于光子晶体结构的电致变色技术大多是通过制备光子晶体模板结构,引入无机或有机电致变色材料而得到。虽然能实现电场作用下颜色的调控,但是制备方法依赖于光子晶体自组装,方法复杂,难以制备大尺寸的产品。此外,这类光子晶体所呈现出来的结构色会随着观测角度的变化而发生改变,限制了光子晶体材料在显示器、传感器等领域的应用。
发明内容
为了克服现有技术的不足,本发明提供一种具有低角度依赖性的 多色可调控的电致变色材料及电致变色器件。
本发明解决其技术问题所采用的技术方案是:
一种多色可调控的电致变色材料,由以下原料制成:单分散纳米微球、分散液、和/或光吸收剂。
所述单分散纳米微球为二氧化硅微球或二氧化硅包覆四氧化三铁核壳结构微球或聚合物微球。
所述二氧化硅微球是通过stober法,TEOS(正硅酸乙酯)在碱性条件下水解合成,工艺简单,可控性好。具体步骤为:将无水乙醇、去离子水和浓氨水混合均匀,常温下将TEOS滴加至混合液中,滴加结束后继续反应6h,采用乙醇离心清洗三次,真空干燥后得到二氧化硅微球,通过改变TEOS的浓度来调整二氧化硅微球的粒径,随着TEOS浓度增加,二氧化硅微球的粒径逐渐增加。随着TEOS浓度增加,生成的中间产物硅酸的浓度增加,聚合速度加快,晶核数目增加,生长较长的网状结构,在缩合过程中,较长的网格状结构相互交织,形成稳定状态。
所述单分散纳米微球包括一种粒径或两种粒径或两种以上粒径的纳米微球。单一粒径的单分散纳米微球会呈周期性排列形成长程有序结构,这种结构使得结构色具有角度依赖性。而当不同粒径的单分散纳米微球混合时,会呈现出长程无序的晶体结构,这种无定型的晶体结构使得结构色具有低角度依赖性。
所述单分散纳米微球的重量份数为25~50%,所述单分散纳米微球的平均粒径为150~350nm,所述纳米微球的多分散性指数PDI小于 0.15。
所述电致变色材料为浆料,浆料为液态,相较于薄膜,单分散纳米微球在电场作用下的移动更快,颜色变化响应更灵敏。
所述聚合物微球为苯乙烯、甲基丙烯酸甲酯、乙二醇二丙烯酸酯和二乙烯基苯单体的聚合物。
所述分散液为碳酸酯类溶剂,包括碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯中的一种或两种。
所述光吸收剂的重量份数为0.01%~0.1%,所述光吸收剂为黑色颜料或染料,所述黑色颜料为炭黑、苯胺黑、铁黑、石墨黑中的一种或多种。通过调节光吸收剂的用量,实现高效调控电致变色材料的饱和度和亮度,使得电致变色材料具有高度的可定制性。
一种多色可调控的电致变色器件,包括有器件本体,所述器件本体包括光子晶体变色层,所述光子晶体变色层为上述任一项所述的电致变色材料。
所述器件本体还包括有设置在所述光子晶体变色层两侧的上电极层和下电极层。
所述器件本体的颜色在400-700nm范围内进行动态调控,所述器件本体的颜色具有低角度依赖性。
本发明的有益效果是:
本发明提供一种多色可调控的电致变色材料及电致变色器件,电致变色材料由以下原料制成:单分散纳米微球、分散液、和/或光吸收剂,单分散纳米微球为二氧化硅微球或聚合物微球,单分散纳米微 球包括一种粒径或两种粒径或两种以上粒径的纳米微球,电致变色器件包括由电致变色材料制得的光子晶体变色层,制备方便,成本低廉;且电致变色材料为浆料,浆料为液态,相较于薄膜,单分散纳米微球在电场作用下的移动更快,颜色变化响应更灵敏。
本发明通过采用多种不同粒径的单分散纳米微球和调节不同粒径的单分散纳米微球之间的比例,可调节电致变色器件结构色的反射光谱,在0-3V电压下,呈现高灵敏的颜色变化特性,实现全可见光范围变色,且具有低角度依赖性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的电致变色器件的结构示意图;
图2是本发明的实施例1的电致变色器件的连续变色光谱图;
图3是本发明的实施例2的电致变色器件的连续变色光谱图;
图4是本发明的实施例3的电致变色器件的连续变色光谱图;
图5是本发明的实施例3的电致变色器件在电压2的条件下,不同角度观察的器件颜色。
具体实施方式
下列实施例中没有特别强调的部分,均为常温常压。
实施例1:
一种多色可调控的电致变色材料,由以下原料制成:单分散纳米微球、分散液、和光吸收剂。
所述单分散纳米微球为二氧化硅微球。
所述单分散纳米微球包括一种粒径的纳米微球,所述单分散纳米微球的重量份数为40%,所述单分散纳米微球的平均粒径为205nm,所述纳米微球的多分散性指数PDI为0.06。
所述电致变色材料为浆料。
所述分散液为碳酸丙烯酯。
所述光吸收剂的重量份数为0.1%,所述光吸收剂为黑色颜料,所述黑色颜料为苯胺黑。
电致变色材料的制备方法为:将所述二氧化硅微球采用乙醇离心清洗三次,得到固含量25%的二氧化硅微球的乙醇分散液,取10g二氧化硅微球的乙醇分散液与3.75g含有0.1%苯胺黑的碳酸丙烯酸溶液混合,超声分散均匀后旋转蒸发浓缩即获得红色光子晶体浆料。
一种多色可调控的电致变色器件,包括有器件本体,所述器件本体包括光子晶体变色层1,所述光子晶体变色层1为上述任一项所述的电致变色材料。
所述器件本体还包括有设置在所述光子晶体变色层1两侧的上电极层2和下电极层3,所述上电极层2和下电极层3均为ITO电极层,所述器件本体的颜色在400-700nm范围内进行动态调控,所述器件本体的颜色具有低角度依赖性。
电致变色器件的制备方法为:将电致变色材料注入于间隔50μm的上电极层和下电极层之间,得到基于光子晶体的多色可调控的电致变色器件。将本实施例制备的电致变色器件,在电压0-3V范围,连 续变化电压,同时测量反射光谱。电致变色器件的显色和反射峰光谱如图2和表1所示。由图2可得,电致变色器件的反射峰波长变化较为明显,单一粒径的单分散纳米微球会呈周期性排列形成长程有序结构,具有角度依赖性。
实施例2:
一种多色可调控的电致变色材料,由以下原料制成:单分散纳米微球、分散液、和光吸收剂。
所述单分散纳米微球为二氧化硅微球。
所述单分散纳米微球包括一种粒径的纳米微球,所述单分散纳米微球的重量份数为30%,所述单分散纳米微球的平均粒径为180nm,所述纳米微球的多分散性指数PDI为0.05。
所述电致变色材料为浆料。
所述分散液为碳酸丙烯酯。
所述光吸收剂的重量份数为0.1%,所述光吸收剂为黑色颜料,所述黑色颜料为苯胺黑。
电致变色材料的制备方法为:将所述二氧化硅微球采用乙醇离心清洗三次,得到固含量25%的二氧化硅微球的乙醇分散液,取10g二氧化硅微球的乙醇分散液与5.8g含有0.05%苯胺黑的碳酸丙烯酸溶液混合,超声分散均匀后旋转蒸发浓缩即获得绿色光子晶体浆料。
一种多色可调控的电致变色器件,包括有器件本体,所述器件本体包括光子晶体变色层1,所述光子晶体变色层1为上述任一项所述的电致变色材料。
所述器件本体还包括有设置在所述光子晶体变色层1两侧的上电极层2和下电极层3,所述上电极层2和下电极层3均为ITO电极层,所述器件本体的颜色在400-700nm范围内进行动态调控,所述器件本体的颜色具有低角度依赖性。
电致变色器件的制备方法为:将电致变色材料注入于间隔50μm的上电极层和下电极层之间,得到基于光子晶体的多色可调控的电致变色器件。将本实施例制备的电致变色器件,在电压0-3V范围,连续变化电压,同时测量反射光谱。电致变色器件的显色和反射峰光谱如图3和表1所示。由图3可得,电致变色器件的反射峰波长变化较为明显,单一粒径的单分散纳米微球会呈周期性排列形成长程有序结构,具有角度依赖性。
实施例3:
本实施例采用与实施例1相同的原料与实验步骤制备电致变色材料,区别在于本实施例中,二氧化硅微球包括三种粒径的纳米微球,分别为粒径190nm(PDI为0.05)、粒径205nm(PDI为0.06)、粒径210(PDI为0.08)按照质量比1:1:1混合使用。
将本实施例制备的电致变色器件,在电压0-3V范围,连续变化电压,同时测量反射光谱。电致变色器件的显色和反射峰光谱如图4和表1所示。由图4可得,图4中电致变色器件的反射峰波长变化相较于图2和图3都较小,说明图4的电致变色器件具有低角度依赖性。
实施例4:
本实施例采用与实施例1相同的原料与实验步骤制备电致变色 材料,区别在于本实施例中,二氧化硅微球包括三种粒径的纳米微球,分别为粒径195nm(PDI为0.06)、粒径210(PDI为0.06)按照质量比1:1混合使用。
将本实施例制备的电致变色器件,在电压0-3V范围,连续变化电压,同时测量反射光谱。电致变色器件的显色和反射峰光谱如表1所示。
实施例5:
本实施例采用与实施例1相同的原料与实验步骤制备电致变色材料,区别在于本实施例中,二氧化硅微球包括三种粒径的纳米微球,分别为粒径210(PDI为0.06)、粒径230(PDI为0.08)按照质量比1:1混合使用。
将本实施例制备的电致变色器件,在电压0-3V范围,连续变化电压,同时测量反射光谱。电致变色器件的显色和反射峰光谱如表1所示。
对比例1:
本对比例采用与实施例1相同的原料与实验步骤制备电致变色材料,区别在于本对比例中,所述单分散纳米微球的重量分数为20%。
对比例2:
本对比例采用与实施例1相同的原料与实验步骤制备电致变色材料,区别在于本对比例中,所述单分散纳米微球的平均粒径为100nm(PDI为0.1)。
表一
由上表可得,实施例1至5中制得的电致变色材料均具有光谱连续变色特性,实施例3至5中,还具有低角度依赖性,这是由于不同粒径的单分散纳米微球混合时,会呈现出长程无序的晶体结构,这种无定型的晶体结构使得结构色具有低角度依赖性。
实施例1与对比例1相比,单分散纳米微球的含量较低,从而无法观测到结构色。实施例1与对比例2相比,单分散纳米微球的粒径太小,也无法得到可见光范围的结构色。
本发明提供一种多色可调控的电致变色材料及电致变色器件,电致变色材料由以下原料制成:单分散纳米微球、分散液、和/或光吸收剂,单分散纳米微球为二氧化硅微球或聚合物微球,单分散纳米微球包括一种粒径或两种粒径或两种以上粒径的纳米微球,且所述电致 变色材料为浆料,浆料为液态,相较于薄膜,单分散纳米微球在电场作用下的移动更快,颜色变化响应更灵敏。
电致变色器件包括由电致变色材料制得的光子晶体变色层,本发明通过采用多种不同粒径的单分散纳米微球和调节不同粒径的单分散纳米微球之间的比例,可调节电致变色器件结构色的反射光谱,在0-3V电压下,呈现高灵敏的颜色变化特性,实现全可见光范围变色,且具有低角度依赖性,有望应用于显示器、传感器等领域。
以上的实施方式不能限定本发明创造的保护范围,专业技术领域的人员在不脱离本发明创造整体构思的情况下,所做的均等修饰与变化,均仍属于本发明创造涵盖的范围之内。

Claims (10)

  1. 一种多色可调控的电致变色材料,其特征在于由以下原料制成:
    单分散纳米微球、分散液、和/或光吸收剂;
    所述单分散纳米微球为二氧化硅微球或二氧化硅包覆四氧化三铁核壳结构微球或聚合物微球。
  2. 根据权利要求1所述的多色可调控的电致变色材料,其特征在于所述单分散纳米微球包括一种粒径或两种粒径或两种以上粒径的纳米微球。
  3. 根据权利要求1或2所述的多色可调控的电致变色材料,其特征在于所述单分散纳米微球的重量份数为25~50%,所述单分散纳米微球的平均粒径为150~350nm,所述纳米微球的多分散性指数PDI小于0.15。
  4. 根据权利要求1或2所述的多色可调控的电致变色材料,其特征在于所述电致变色材料为浆料。
  5. 根据权利要求1或2所述的多色可调控的电致变色材料,其特征在于所述聚合物微球为苯乙烯、甲基丙烯酸甲酯、乙二醇二丙烯酸酯和二乙烯基苯单体的聚合物。
  6. 根据权利要求1或2所述的多色可调控的电致变色材料,其特征在于所述分散液为碳酸酯类溶剂,包括碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯中的一种或两种。
  7. 根据权利要求1或2所述的多色可调控的电致变色材料,其特征在于所述光吸收剂的重量份数为0.01%~0.1%,所述光吸收剂为黑 色颜料或染料,所述黑色颜料为炭黑、苯胺黑、铁黑、石墨黑中的一种或多种。
  8. 一种多色可调控的电致变色器件,其特征在于包括有器件本体,所述器件本体包括光子晶体变色层(1),所述光子晶体变色层(1)为权利要求1至7任一项权利要求所述的电致变色材料。
  9. 根据权利要求8所述的多色可调控的电致变色器件,其特征在于所述器件本体还包括有设置在所述光子晶体变色层(1)两侧的上电极层(2)和下电极层(3)。
  10. 根据权利要求8所述的多色可调控的电致变色器件,其特征在于所述器件本体的颜色在400-700nm范围内进行动态调控,所述器件本体的颜色具有低角度依赖性。
PCT/CN2023/098695 2022-06-27 2023-06-06 一种多色可调控的电致变色材料及电致变色器件 WO2024001700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210737464.5 2022-06-27
CN202210737464.5A CN114933894A (zh) 2022-06-27 2022-06-27 一种多色可调控的电致变色材料及电致变色器件

Publications (1)

Publication Number Publication Date
WO2024001700A1 true WO2024001700A1 (zh) 2024-01-04

Family

ID=82868579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098695 WO2024001700A1 (zh) 2022-06-27 2023-06-06 一种多色可调控的电致变色材料及电致变色器件

Country Status (2)

Country Link
CN (1) CN114933894A (zh)
WO (1) WO2024001700A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117608010A (zh) * 2024-01-17 2024-02-27 武汉理工大学 一种响应性光子晶体的制备方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933894A (zh) * 2022-06-27 2022-08-23 珠海光驭科技有限公司 一种多色可调控的电致变色材料及电致变色器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436965A (zh) * 2013-07-13 2013-12-11 吉林大学 光子禁带可调节及呈现图案化颜色显示的聚合物光子晶体的制备方法
CN110054933A (zh) * 2019-04-28 2019-07-26 浙江理工大学 一种色彩易调控和着色耐久性良好的液态光子晶体结构色颜料墨水及其制备方法
CN111045270A (zh) * 2019-12-31 2020-04-21 Oppo广东移动通信有限公司 光子晶体变色装置、变色方法、壳体、电子设备
CN114933894A (zh) * 2022-06-27 2022-08-23 珠海光驭科技有限公司 一种多色可调控的电致变色材料及电致变色器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965268B (zh) * 2021-02-05 2022-07-05 中山蓝宏科技有限公司 具有多角度光致变色效果的柔性光子晶体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436965A (zh) * 2013-07-13 2013-12-11 吉林大学 光子禁带可调节及呈现图案化颜色显示的聚合物光子晶体的制备方法
CN110054933A (zh) * 2019-04-28 2019-07-26 浙江理工大学 一种色彩易调控和着色耐久性良好的液态光子晶体结构色颜料墨水及其制备方法
CN111045270A (zh) * 2019-12-31 2020-04-21 Oppo广东移动通信有限公司 光子晶体变色装置、变色方法、壳体、电子设备
CN114933894A (zh) * 2022-06-27 2022-08-23 珠海光驭科技有限公司 一种多色可调控的电致变色材料及电致变色器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO YU XIA, ZHANG JIAN FEI, SUN AI HUA, CHU CHENG YI, ZHOU SHI, GUO JIAN JUN, XU GAO JIE: "Optical Properties of Silica Colloids Suspensions in Electric Field", ADVANCED MATERIALS RESEARCH (DURNTEN-ZURICH, SWITZERLAND), SCITEC PUBLICATIONS, vol. 924, 17 April 2014 (2014-04-17), pages 158 - 165, XP009552273, ISSN: 1662-8985, DOI: 10.4028/www.scientific.net/AMR.924.158 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117608010A (zh) * 2024-01-17 2024-02-27 武汉理工大学 一种响应性光子晶体的制备方法及应用
CN117608010B (zh) * 2024-01-17 2024-04-19 武汉理工大学 一种响应性光子晶体的制备方法及应用

Also Published As

Publication number Publication date
CN114933894A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2024001700A1 (zh) 一种多色可调控的电致变色材料及电致变色器件
CN110054933B (zh) 一种色彩易调控和着色耐久性良好的液态光子晶体结构色颜料墨水及其制备方法
CN109201438B (zh) 一种呈色具有高明亮度低角度依赖性的复合光子结构材料及其制备方法
Wen et al. Surface modification of organic pigment particles for microencapsulated electrophoretic displays
CN103409801A (zh) 一种高强度交联型聚合物光子晶体膜的制备方法
WO2017186155A1 (zh) 一种高吸水感温变色树脂及其制备方法
CN103342393A (zh) 单分散的超顺磁纳米晶簇胶体核壳复合粒子及其制备方法
CN111718450B (zh) 一种有机-无机电极化粒子及其制备方法和应用
CN110527124B (zh) 一种低角度依赖性结构显色薄膜的制备方法
CN113386437B (zh) 具有温度/电压响应变色的柔性光子晶体材料及其制备方法
JP5241853B2 (ja) 微小機能性材料
Cui et al. Preparation of large-scale and angle-independent structural colors by additive of black polypyrrole
CN103073941A (zh) 一种二氧化钒粉体浆料及其制备方法
US9279908B2 (en) Ink for electrowetting device and electrowetting device using the same
CN111679455B (zh) 一种多色变色薄膜器件及其制备方法
Tawiah et al. An overview of the science and art of encapsulated pigments: preparation, performance and application
Liu et al. Preparation of carbon fiber substrates with structural colors based on photonic crystals
CN113979646A (zh) 一种多彩色电致变色复合薄膜及其制备方法与应用
Zheng et al. Reflectance-enhanced liquid crystal displays and thermochromic multi-color patterning
CN113637362A (zh) 光固化型液态光子晶体色浆、制备方法及其在构建结构生色膜中的应用
EP4394002A1 (en) Electrophoretic particle and preparation method therefor and application thereof
KR20000028333A (ko) 고분자 매트릭스를 개질한 전기 광학적 특성 고분자 분산 액정복합필름 및 그의 제조방법
CN113621387B (zh) 液晶复合偏光薄膜及其制备方法和应用
KR20190091967A (ko) 코팅 조성물
CN103135309B (zh) 电泳装置、电泳装置的制造方法、以及显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829884

Country of ref document: EP

Kind code of ref document: A1