WO2024001632A1 - 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法 - Google Patents

一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法 Download PDF

Info

Publication number
WO2024001632A1
WO2024001632A1 PCT/CN2023/096774 CN2023096774W WO2024001632A1 WO 2024001632 A1 WO2024001632 A1 WO 2024001632A1 CN 2023096774 W CN2023096774 W CN 2023096774W WO 2024001632 A1 WO2024001632 A1 WO 2024001632A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous casting
slab
rolling
temperature
casting
Prior art date
Application number
PCT/CN2023/096774
Other languages
English (en)
French (fr)
Inventor
王来信
蒲春雷
李好兵
蔡沅良
刘传磊
高心宇
代岩
陈钰
马玉明
Original Assignee
中冶华天工程技术有限公司
山东钢铁集团永锋临港有限公司
中冶华天南京工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶华天工程技术有限公司, 山东钢铁集团永锋临港有限公司, 中冶华天南京工程技术有限公司 filed Critical 中冶华天工程技术有限公司
Publication of WO2024001632A1 publication Critical patent/WO2024001632A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the continuous casting-hot rolling process in the iron and steel industry, especially the hot rolling bar rolling production line of ordinary or alloy steel bars, and provides a casting and rolling integrated material tracking and scheduling method. Mainly through equipment status monitoring, production abnormality judgment, operation performance records, etc., we establish a reasonable connection between continuous casting and hot rolling and integrated production scheduling.
  • the present invention provides a continuous casting-hot rolling process integrated casting and rolling material tracking and scheduling method to realize high-temperature entry of cast slabs into the heating furnace or high-temperature direct rolling, reducing system energy consumption and shortening the production cycle.
  • the calculation of the temperature from the continuous casting billet to the #1 baffle on the continuous casting cooling bed is to use a differential algorithm to calculate the temperature from the continuous casting billet to the #1 baffle on the continuous casting cooling bed.
  • the cast billet is sent to the conveyor roller, and then sent to the heating furnace for heating.
  • the prediction of the slab temperature using a differential algorithm to calculate the theoretical temperature of the slab, collecting the pyrometer temperature measurement data when the slab reaches the designated position in real time, and correcting the theoretical calculation results through the neural network.
  • it also includes prediction of the position of the slab: tracking the position of the slab through the speed of the slab conveyor roller collected in real time, and correcting the position information of the slab, including:
  • the position of the slab is corrected through the signals of each hot metal detector in the continuous casting-first rolling mill section; and/or through the collection of industrial camera signals at multiple positions in the continuous casting-first rolling mill section, the machine Visually judge the presence/absence of cast slabs.
  • the invention uses real-time tracking of cast slabs as a means to realize intelligent scheduling of cast slabs on the production line.
  • machine vision and hot metal detectors as means, as well as a self-developed temperature evolution algorithm, the billet information (position, status, temperature, etc.) from continuous casting to rolling mill is tracked and recorded.
  • Figure 1 Process flow chart of continuous casting-hot rolling production line.
  • FIG. 1 Schematic diagram of the integrated scheduling and control system for casting and rolling under the direct rolling production mode.
  • FIG. 3 Schematic diagram of the integrated scheduling and control system for casting and rolling under the hot feeding/cold loading production mode.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • the present invention proposes to use material tracking combined with temperature prediction to realize flexible online production scheduling and achieve reasonable connection of integrated casting and rolling production.
  • the process flow of the continuous casting-hot rolling production line including direct rolling, hot feeding and cold charging is shown in Figure 1.
  • the continuous casting billet is cut to length by flame cutting to complete the generation of the cast billet.
  • the cast billet waits at the continuous casting 1# baffle. After waiting, it enters the continuous casting cooling bed area, and whether the cast billet is determined according to the working conditions. Off the line, if not, wait until the 2# baffle is raised before sending the billet; if the direct rolling mode is used for production, the billet will be sent directly to the rolling mill through the conveyor roller table.
  • the temperature of the slab is measured by a pyrometer. When the temperature of the slab meets the requirements, it will be sent to the rolling mill for rolling. If it does not meet the requirements, the slab will be scrapped and taken off the line; if the hot feeding mode is used, the slab will be cast. After the billet comes out of the 2# baffle of the continuous casting cooling bed, it is sent to the heating furnace for heating through the conveyor roller. After completing the heating, it is taken out of the furnace and sent to the rolling mill for rolling; if the cold charging mode is used for production, the cold billet will go through the steel loading device and conveying rollers, sent to the heating furnace for heating, and after heating is completed, it is taken out of the furnace and sent to the rolling mill for rolling.
  • Direct rolling production mode Obtain the continuous casting production plan through MES, and collect the continuous casting machine flame cutting signal, the continuous casting machine flow speed, and the continuous casting cooling bed signal (steel turning signal, billet transfer car signal, baffle signal) in real time , the speed of each section of the straight rolling rollers from continuous casting to the 1# rolling mill section, all the hot metal detector signals of the straight rolling roller section from continuous casting to the 1# rolling mill section, the key to the direct rolling mode from continuous casting to the 1# rolling mill section Production data such as position industrial camera signal, 1# rolling mill bite signal, 1# rolling mill bite speed, etc.
  • the differential algorithm (comprehensive consideration of heat conduction, heat convection and heat radiation) calculates the temperature from the continuous casting slab to the front of the 1# baffle of the continuous casting cooling bed, and combines the position information of the slab on the existing roller table to determine whether the slab needs to be at the 1# baffle. Wait at the plate. If it is necessary to wait, calculate the waiting time and the slab temperature after the waiting time is reached. If the temperature does not meet the conditions for entering the rolling mill, the slab will be taken off the production line by the billet moving car after the 1# baffle is raised; if the temperature meets the conditions for entering the rolling mill, the slab will wait for the time at the 1# baffle. Raise the 1# baffle and cast the billet to the 2# baffle.
  • the slab Combined with the position information of the slab on the existing roller table, it is judged whether the slab needs to wait at the 2# baffle. If it needs to wait, the waiting time is calculated, and the differential algorithm is used to calculate the temperature of the slab after the waiting time is reached. If the temperature does not meet the conditions for entering the rolling mill, the slab will be rolled off the production line by the billet moving car in front of the 2# baffle; if the temperature meets the conditions for entering the rolling mill, the slab will rise after waiting time at the 2# baffle. 2# baffle, the cast slab is transported to the 1# rolling mill through the straight rolling roller table. During this period, real-time tracking of the position of the billet was achieved through dual verification of hot metal detector + machine vision.
  • Hot feeding/cold charging production mode Obtain the continuous casting production plan through MES, and collect the continuous casting machine flame cutting signal, the continuous casting machine flow speed, the continuous casting cooling bed signal (steel turning signal, billet transfer car signal, baffle) in real time signal), the roller speed of each section from continuous casting to the 1# rolling mill section, all hot metal detector signals from the continuous casting to the 1# rolling mill section, the key position industrial camera signals from the continuous casting to the 1# rolling mill section, Production data such as the heating furnace billet entering signal, the pre-furnace reject signal, the heating furnace billet coming out signal, the post-furnace reject signal, the 1# rolling mill bite signal, the 1# rolling mill bite speed, etc., adopt a differential algorithm (comprehensive consideration (heat conduction, heat convection and heat radiation) to calculate the temperature of the continuous casting billet to the front of the continuous casting cooling bed 1# baffle, combined with the existing cast billet position information on the roller table and the heating furnace steel demand signal, determine whether the cast billet needs to be at 1# Wait at the baffle.
  • the billet will be taken off the line by the billet moving car after the 1# baffle is raised; If the temperature meets the conditions for entering the heating furnace, the billet will wait for the time at the 1# baffle, then raise the 1# baffle and move the billet to the 2# baffle. Combined with the position information of the slab on the existing roller table and the steel demand signal of the heating furnace, it is judged whether the slab needs to wait at the 2# baffle.
  • the waiting time is calculated, and the differential algorithm is used to calculate the slab after the waiting time.
  • temperature If the temperature does not meet the conditions for entering the heating furnace, the cast slab will be taken off the line by the billet moving car in front of the 2# baffle; if the temperature meets the conditions for entering the heating furnace, the slab will wait for the time at the 2# baffle. Raise the 2# baffle, and transport the slab to the heating furnace through the hot conveyor. During this period, real-time tracking of the position of the billet was achieved through dual verification of hot metal detector + machine vision. A pyrometer is set up in front of and behind the heating furnace to measure the temperature of the slab.
  • the slab When the slab reaches this position, if the measured actual slab temperature does not meet the requirements for entering the heating furnace/rolling mill, the slab will be offline. If the actual temperature measured before entering the furnace meets the requirements as predicted, the slab will enter the heating furnace to heat up. If the actual measured temperature after coming out of the furnace meets the requirements as predicted, the slab will enter the rolling mill for rolling. The temperature value measured by the pyrometer will be fed back to the differential algorithm to complete the neural network self-learning of the slab temperature, thereby achieving accurate prediction of the slab temperature. When continuous casting is stopped for maintenance or the heating furnace adjusts the system during the current period to prepare for digesting the cold billet reserves, the cold charging mode is used for production. Through the above basic logic, combined with the MES production plan and real-time data collection, the integrated intelligent scheduling of casting and rolling in the hot feeding/cold loading mode is completed.
  • This invention is aimed at the hot feeding/direct rolling process and proposes a method of material tracking combined with temperature prediction to realize flexible online production scheduling and achieve a reasonable connection of integrated casting and rolling production.
  • the process flow of the continuous casting-hot rolling production line including direct rolling, hot feeding and cold charging is shown in Figure 1.
  • the continuous casting billet is cut to length by flame cutting to complete the generation of the cast billet.
  • the cast billet waits at the continuous casting 1# baffle. After waiting, it enters the continuous casting cooling bed area, and whether the cast billet is determined according to the working conditions. Off the line, if not, wait until the 2# baffle is raised before sending the billet; if the direct rolling mode is used for production, the billet will be sent directly to the rolling mill through the conveyor roller table.
  • the temperature of the slab is measured by a pyrometer. When the temperature of the slab meets the requirements, it will be sent to the rolling mill for rolling. If it does not meet the requirements, the slab will be scrapped and taken off the line; if the hot feeding mode is used, the slab will be cast. After the billet comes out of the 2# baffle of the continuous casting cooling bed, it is sent to the heating furnace for heating through the conveyor roller. After completing the heating, it is taken out of the furnace and sent to the rolling mill for rolling; if the cold charging mode is used for production, the cold billet will go through the steel loading device and conveying rollers, sent to the heating furnace for heating, and after heating is completed, it is taken out of the furnace and sent to the rolling mill for rolling.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

本发明公开一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法。所述的方法为实时获取连铸机生产计划和各设备实时生产数据,计算连铸坯至连铸冷床1#挡板前的温度,结合现有辊道上铸坯位置信息,判断铸坯是否需要在1#挡板处等待,如需等待则计算等待时间,以及达到等待时间后的铸坯温度。本发明针对连铸-热轧生产工艺,以铸坯实时跟踪为手段,实现产线铸坯的智能调度。以机器视觉、热金属检测仪两种方式为手段,加上自行开发的温度演变算法,对自连铸至轧机的铸坯信息(位置、状态、温度等)进行跟踪、记录。满足直轧、热送、冷装三种生产模式的切换需求。

Description

一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法 技术领域
本发明涉及领域为钢铁工业连铸-热轧工艺,特别是普通或合金钢棒材热轧棒材轧制生产线,提供了一种铸轧一体化物料跟踪及调度方法。主要通过对设备状态监控、生产异常状况判断、作业实绩记录等,建立连铸-热轧合理衔接和一体化生产调度。
背景技术
在钢铁生产流程中,无论是以铁矿石为原料的长流程还是电炉炼钢的短流程,连铸和热轧都是不可或缺的两大关键工序。它们之间呈现顺序加工关系,不仅存在物流平衡和资源平衡问题,而且由于高温作业,还存在着能量平衡和时间平衡问题。20世纪80年代以来,围绕节能而广泛推广的热送热装工艺实现了连铸-热轧的一体化生产,使钢铁生产工艺流程发生了根本性转变,可为企业带来极大的经济效益,但同时也给生产管理提出了更高的要求。
发明内容
为克服上述缺陷,本发明提供一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法,以实现铸坯高温入加热炉或高温直接轧制,降低系统能耗,缩短生产周期。
为达到上述目的,本发明连铸-热轧工艺铸轧一体化物料跟踪及调度方法,所述的方法为实时获取连铸机生产计划和各设备实时生产数据,计算连铸坯至连铸冷床1#挡板前的温度,结合现有辊道上铸坯位置信息,判断铸坯是否需要在1#挡板处等待,如需等待则计算等待时间,以及达到等待时间后的铸坯温度。
进一步的,所述的各设备实时生产数据包括:连铸机火焰切割信号、连铸机各流拉速、连铸冷床信号(翻钢信号、移坯车信号、挡板信号)、连铸-第一架轧机区段的各段辊道速度、连铸至第一架轧机区段的所有热金属检测仪信号、冷坯上料台架动作信号、炉前剔废信号、铸坯进/出加热炉信号、炉后剔废信号、第一架轧机咬钢信号和/或第一架轧机咬入速度。
进一步的,所述的计算连铸坯至连铸冷床1#挡板前的温度是采用差分算法计算连铸坯至连铸冷床1#挡板前的温度。
进一步的,对于直轧生产模式,还包括下述步骤:
结合所有铸坯位置信息,推算当前铸坯到达第一架轧机位置时的温度是否满足轧制需要;如不满足,则铸坯在过连铸冷床1#挡板后在冷床区进行下线;如满足,则根据辊道上铸坯数 量和位置状态,判断当前铸坯是否需要在连铸2#挡板处进行等待;
如需等待,则判断等待时间及相应的铸坯温度变化,预测到达第一架轧机处的温度,判断是否满足轧制需要,不满足则进行铸坯下线,满足则升起2#挡板,将铸坯运往轧机。
进一步的,对于热送生产模式,还包括下述步骤:
结合所有铸坯位置信息以及当前加热炉对入炉铸坯的温度要求,预测当前铸坯到达加热炉入炉辊道的温度是否满足入炉温度要求;
如满足,则升起连铸机冷床2#挡板,将铸坯经热送辊道运往加热炉,经加热后送往轧机;如不满足,则在冷床区进行下线。
进一步的,对于冷装生产模式:,还包括下述步骤:
通过冷坯上钢装置,将铸坯送至输送辊道,再送往加热炉进行加热。
进一步的,还包括对铸坯温度预测:采用差分算法计算铸坯的理论温度,实时采集铸坯到达指定位置时的高温计测温数据,通过神经网络对理论计算结果进行校正。
进一步的,还包括对铸坯位置预测:通过实时采集的铸坯输送辊道速度对铸坯位置进行跟踪,对铸坯位置信息进行校正,包括:
通过连铸-第一架轧机区段的各热金属检测仪信号,对铸坯位置进行矫正;和/或通过连铸-第一架轧机区段的多个位置工业相机信号进行采集,通过机器视觉对有/无铸坯进行判断。
本发明针对连铸-热轧生产工艺,以铸坯实时跟踪为手段,实现产线铸坯的智能调度。以机器视觉、热金属检测仪两种方式为手段,加上自行开发的温度演变算法,对自连铸至轧机的铸坯信息(位置、状态、温度等)进行跟踪、记录。满足直轧、热送、冷装三种生产模型的切换需求。通过本发明所述铸轧一体化调度系统,实现连铸与热轧的合理衔接及一体化管控,保障了直轧模式下的钢坯入轧机温度要求,稳定了热送模式下的加热炉加热制度,达到降低系统能耗和连铸-轧钢产能优化匹配的目的。
附图说明
图1连铸-热轧生产线工艺流程图。
图2直轧生产模式下铸轧一体化调度管控系统原理图。
图3热送/冷装生产模式下铸轧一体化调度管控系统原理图。
具体实施方式
下面结合附图对本发明实施例进行详细描述。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明的一实施例,本发明即针对热送/直轧工艺,提出以物料跟踪结合温度预测的方式,实现生产在线灵活调度,达到铸轧一体化生产的合理衔接。包含直轧、热送、冷装三种方式的连铸-热轧生产线工艺流程如图1所示。连铸拉坯经火焰切割定尺,完成铸坯的生成,根据排产需要,铸坯在连铸1#挡板处等待,等待结束后进入连铸冷床区,依工况决定铸坯是否下线,如不下线则待2#挡板升起后送坯;若采用直轧模式生产,则铸坯经输送辊道直接送往轧机。在入轧机前,通过高温计测量铸坯温度,当铸坯温度满足要求,则送往轧机进行轧制,若不满足要求,则将铸坯剔废下线;若采用热送模式,则铸坯出连铸冷床2#挡板后,经输送辊道,送至加热炉进行加热升温,完成加热后出炉送至轧机进行轧制;若采用冷装模式生产,则冷坯经上钢装置和输送辊道,送至加热炉进行加热升温,完成加热后出炉送至轧机进行轧制。
以下分直接轧制生产模式和热送/冷装生产模式分别进行阐述:
直接轧制生产模式:通过MES获取连铸生产计划,实时采集连铸机火焰切割信号、连铸机各流拉速、连铸冷床信号(翻钢信号、移坯车信号、挡板信号)、连铸至1#架轧机区段的各段直轧辊道速度、连铸至1#轧机区段的直轧辊道所有热金属检测仪信号、连铸至1#轧机区段的直轧模式关键位置工业相机信号、1#轧机咬钢信号、1#轧机咬入速度等生产数据,采用 差分算法(综合考虑热传导、热对流和热辐射)计算连铸坯至连铸冷床1#挡板前的温度,结合现有辊道上的铸坯位置信息,判断铸坯是否需要在1#挡板处等待,如需等待则计算等待时间,以及达到等待时间后的铸坯温度。若温度不满足进轧机条件,则该铸坯在1#挡板升起后由移坯车进行下线;若温度满足进轧机条件,则该铸坯在1#挡板处等待时间满后,升起1#挡板,铸坯至2#挡板。结合现有辊道上的铸坯位置信息,判断铸坯是否需要在2#挡板处等待,如需等待则计算等待时间,并采用差分算法计算达到等待时间后的铸坯温度。若温度不满足进轧机条件,则该铸坯在2#挡板前由移坯车进行下线;若温度满足进轧机条件,则该铸坯在2#挡板处等待时间满后,升起2#挡板,铸坯通过直轧辊道运往1#轧机。期间,通过热金属检测仪+机器视觉双重校核的方式,实现对铸坯位置的实时跟踪。在1#轧机前至少设置1个高温计用于测量铸坯温度,当铸坯到达该位置后经测量实际铸坯温度不满足进轧机要求的话,则铸坯将被下线。如实测温度同预测一样满足要求,则铸坯进入轧机进行轧制。高温计所测量的温度值会反馈用于差分算法,完成铸坯温度的神经网络自学习,从而实现对铸坯温度的精确预测。通过上述基础逻辑,配合MES生产计划和实时数据的采集,完成直轧模式下的铸轧一体化智能调度。
热送/冷装生产模式:通过MES获取连铸生产计划,实时采集连铸机火焰切割信号、连铸机各流拉速、连铸冷床信号(翻钢信号、移坯车信号、挡板信号)、连铸至1#架轧机区段的各段辊道速度、连铸至1#轧机区段的所有热金属检测仪信号、连铸至1#轧机区段的关键位置工业相机信号、加热炉铸坯入炉信号、炉前剔废信号、加热炉铸坯出炉信号、炉后剔废信号、1#轧机咬钢信号、1#轧机咬入速度等生产数据,采用差分算法(综合考虑热传导、热对流和热辐射)计算连铸坯至连铸冷床1#挡板前的温度,结合现有辊道上的铸坯位置信息及加热炉要钢信号,判断铸坯是否需要在1#挡板处等待,如需等待则计算等待时间,以及达到等待时间后的铸坯温度。若温度不满足进加热炉条件(保障尽量不调整/微调加热炉制度,从而维持炉况稳定,降低能耗),则该铸坯在1#挡板升起后由移坯车进行下线;若温度满足进加热炉条件,则该铸坯在1#挡板处等待时间满后,升起1#挡板,铸坯至2#挡板。结合现有辊道上的铸坯位置信息及加热炉要钢信号,判断铸坯是否需要在2#挡板处等待,如需等待则计算等待时间,并采用差分算法计算达到等待时间后的铸坯温度。若温度不满足进加热炉条件,则该铸坯在2#挡板前由移坯车进行下线;若温度满足进加热炉条件,则该铸坯在2#挡板处等待时间满后,升起2#挡板,铸坯通过热送辊道运往加热炉。期间,通过热金属检测仪+机器视觉双重校核的方式,实现对铸坯位置的实时跟踪。在加热炉前及加热炉后均设置1个高温计用于测量铸坯温度,当铸坯到达该位置后经测量实际铸坯温度不满足进加热炉/进轧机要求的话,则铸坯将被下线。如入炉前实测温度同预测一样满足要求,则铸坯进入加热炉进行升温。 出炉后实测温度同预测一样满足要求,则铸坯进入轧机进行轧制。高温计所测量的温度值会反馈用于差分算法,完成铸坯温度的神经网络自学习,从而实现对铸坯温度的精确预测。当连铸检修停产或当前时间段加热炉调整制度,准备消化冷坯储量时,采用冷装模式进行生产。通过上述基础逻辑,配合MES生产计划和实时数据的采集,完成热送/冷装模式下的铸轧一体化智能调度。
本发明即针对热送/直轧工艺,提出以物料跟踪结合温度预测的方式,实现生产在线灵活调度,达到铸轧一体化生产的合理衔接。包含直轧、热送、冷装三种方式的连铸-热轧生产线工艺流程如图1所示。连铸拉坯经火焰切割定尺,完成铸坯的生成,根据排产需要,铸坯在连铸1#挡板处等待,等待结束后进入连铸冷床区,依工况决定铸坯是否下线,如不下线则待2#挡板升起后送坯;若采用直轧模式生产,则铸坯经输送辊道直接送往轧机。在入轧机前,通过高温计测量铸坯温度,当铸坯温度满足要求,则送往轧机进行轧制,若不满足要求,则将铸坯剔废下线;若采用热送模式,则铸坯出连铸冷床2#挡板后,经输送辊道,送至加热炉进行加热升温,完成加热后出炉送至轧机进行轧制;若采用冷装模式生产,则冷坯经上钢装置和输送辊道,送至加热炉进行加热升温,完成加热后出炉送至轧机进行轧制。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,所述的方法为实时获取连铸机生产计划和各设备实时生产数据,计算连铸坯至连铸冷床1#挡板前的温度,结合现有辊道上铸坯位置信息,判断铸坯是否需要在1#挡板处等待,如需等待则计算等待时间,以及达到等待时间后的铸坯温度。
  2. 如权利要求1所述的连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,所述的各设备实时生产数据包括:连铸机火焰切割信号、连铸机各流拉速、连铸冷床信号(翻钢信号、移坯车信号、挡板信号)、连铸-第一架轧机区段的各段辊道速度、连铸至第一架轧机区段的所有热金属检测仪信号、冷坯上料台架动作信号、炉前剔废信号、铸坯进/出加热炉信号、炉后剔废信号、第一架轧机咬钢信号和/或第一架轧机咬入速度。
  3. 如权利要求1所述的连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,所述的计算连铸坯至连铸冷床1#挡板前的温度是采用差分算法计算连铸坯至连铸冷床1#挡板前的温度。
  4. 如权利要求1所述的连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,对于直轧生产模式,还包括下述步骤:
    结合所有铸坯位置信息,推算当前铸坯到达第一架轧机位置时的温度是否满足轧制需要;如不满足,则铸坯在过连铸冷床1#挡板后在冷床区进行下线;如满足,则根据辊道上铸坯数量和位置状态,判断当前铸坯是否需要在连铸2#挡板处进行等待;
    如需等待,则判断等待时间及相应的铸坯温度变化,预测到达第一架轧机处的温度,判断是否满足轧制需要,不满足则进行铸坯下线,满足则升起2#挡板,将铸坯运往轧机。
  5. 如权利要求1所述的连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,对于热送生产模式,还包括下述步骤:
    结合所有铸坯位置信息以及当前加热炉对入炉铸坯的温度要求,预测当前铸坯到达加热炉入炉辊道的温度是否满足入炉温度要求;
    如满足,则升起连铸机冷床2#挡板,将铸坯经热送辊道运往加热炉,经加热后送往轧机;如不满足,则在冷床区进行下线。
  6. 如权利要求1所述的连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,对于冷装生产模式,还包括下述步骤:
    通过冷坯上钢装置,将铸坯送至输送辊道,再送往加热炉进行加热。
  7. 如权利要求1所述的连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,
    还包括对铸坯温度预测:采用差分算法计算铸坯的理论温度,实时采集铸坯到达指定位置时的高温计测温数据,通过神经网络对理论计算结果进行校正。
  8. 如权利要求1所述的连铸-热轧工艺铸轧一体化物料跟踪及调度方法,其特征在于,
    还包括对铸坯位置预测:通过实时采集的铸坯输送辊道速度对铸坯位置进行跟踪,对铸坯位置信息进行校正,包括:
    通过连铸-第一架轧机区段的各热金属检测仪信号,对铸坯位置进行矫正;和/或通过连铸-第一架轧机区段的多个位置工业相机信号进行采集,通过机器视觉对有/无铸坯进行判断。
PCT/CN2023/096774 2022-06-29 2023-05-29 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法 WO2024001632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210756562.3 2022-06-29
CN202210756562.3A CN114967627A (zh) 2022-06-29 2022-06-29 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法

Publications (1)

Publication Number Publication Date
WO2024001632A1 true WO2024001632A1 (zh) 2024-01-04

Family

ID=82968081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096774 WO2024001632A1 (zh) 2022-06-29 2023-05-29 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法

Country Status (2)

Country Link
CN (1) CN114967627A (zh)
WO (1) WO2024001632A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117539210A (zh) * 2024-01-09 2024-02-09 江苏精益智控科技有限公司 一种融合机器视觉与过程控制的跟踪方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967627A (zh) * 2022-06-29 2022-08-30 中冶华天工程技术有限公司 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775231B1 (ko) * 2006-09-01 2007-11-12 주식회사 포스코 압연시 후판재의 선단부 휨 제어장치 및 방법
CN101972780A (zh) * 2010-11-11 2011-02-16 攀钢集团钢铁钒钛股份有限公司 热轧钛材铸坯温度控制方法
JP2011230131A (ja) * 2010-04-23 2011-11-17 Nippon Steel Corp 熱間圧延ラインにおける圧延ピッチ制御方法
CN106238694A (zh) * 2016-09-14 2016-12-21 中冶华天南京工程技术有限公司 一种连铸坯热送热装工艺方法及装置
CN206652838U (zh) * 2016-12-01 2017-11-21 上海亚新连铸技术工程有限公司 一种低能耗的线材热轧生产装置
CN110834032A (zh) * 2019-10-10 2020-02-25 中冶南方连铸技术工程有限责任公司 连铸连轧温度场跟踪铸坯温度的方法及装置
CN111112328A (zh) * 2020-01-10 2020-05-08 南京净环热冶金工程有限公司 一种利用冶炼余热压延生产长型钢材的节能装置及方法
CN112222207A (zh) * 2020-08-21 2021-01-15 河钢股份有限公司承德分公司 一种6流方坯连铸机自动热送直轧系统
CN112453054A (zh) * 2020-09-21 2021-03-09 河钢股份有限公司承德分公司 一种连铸坯轧制系统
CN114967627A (zh) * 2022-06-29 2022-08-30 中冶华天工程技术有限公司 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775231B1 (ko) * 2006-09-01 2007-11-12 주식회사 포스코 압연시 후판재의 선단부 휨 제어장치 및 방법
JP2011230131A (ja) * 2010-04-23 2011-11-17 Nippon Steel Corp 熱間圧延ラインにおける圧延ピッチ制御方法
CN101972780A (zh) * 2010-11-11 2011-02-16 攀钢集团钢铁钒钛股份有限公司 热轧钛材铸坯温度控制方法
CN106238694A (zh) * 2016-09-14 2016-12-21 中冶华天南京工程技术有限公司 一种连铸坯热送热装工艺方法及装置
CN206652838U (zh) * 2016-12-01 2017-11-21 上海亚新连铸技术工程有限公司 一种低能耗的线材热轧生产装置
CN110834032A (zh) * 2019-10-10 2020-02-25 中冶南方连铸技术工程有限责任公司 连铸连轧温度场跟踪铸坯温度的方法及装置
CN111112328A (zh) * 2020-01-10 2020-05-08 南京净环热冶金工程有限公司 一种利用冶炼余热压延生产长型钢材的节能装置及方法
CN112222207A (zh) * 2020-08-21 2021-01-15 河钢股份有限公司承德分公司 一种6流方坯连铸机自动热送直轧系统
CN112453054A (zh) * 2020-09-21 2021-03-09 河钢股份有限公司承德分公司 一种连铸坯轧制系统
CN114967627A (zh) * 2022-06-29 2022-08-30 中冶华天工程技术有限公司 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117539210A (zh) * 2024-01-09 2024-02-09 江苏精益智控科技有限公司 一种融合机器视觉与过程控制的跟踪方法
CN117539210B (zh) * 2024-01-09 2024-04-16 江苏精益智控科技有限公司 一种融合机器视觉与过程控制的跟踪方法

Also Published As

Publication number Publication date
CN114967627A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2024001632A1 (zh) 一种连铸-热轧工艺铸轧一体化物料跟踪及调度方法
CN109530456B (zh) 一种连铸方坯热送和下线系统
CN102591286B (zh) 在线轧制计划动态预分析自调整系统及其方法
CN102560081B (zh) 一种基于带钢力学性能预报模型的加热炉节能控制方法
CN104525886A (zh) 一种改善铸坯边角部裂纹缺陷的方法
CN107971345A (zh) 钢管在线冷却的过程控制系统和控制方法
CN105521996A (zh) 一种镁合金带材热辊加热轧制装置及方法
CN107497852A (zh) 一种钢材免加热轧制系统及方法
CN106903172A (zh) 一种实现钢板在轧制不同区域位置跟踪切换的控制方法
CN102888506B (zh) 一种加热炉抽出端板坯位置控制方法
CN102650871B (zh) 一种热轧板生产线板坯出炉控制方法
CN104841701B (zh) 热轧带钢大降速轧制时的薄板卷取温度控制方法
CN210321209U (zh) 一种基于图像处理的钢坯入炉前定位控制系统
CN114309514B (zh) 连铸钢坯热送热装一体化生产的系统和方法
CN103611735B (zh) 一种层流冷却温度监控方法及装置
CN107765550B (zh) 一种基于钢包自动定位的稳定出钢温度的方法
CN105695728A (zh) 一种钢板在线固溶处理过程控制系统的装置及方法
CN201862638U (zh) 热轧钢管连铸圆坯热装系统
CN101811143B (zh) 一种待轧保温铸坯温度控制方法
WO2024055375A1 (zh) 免加热直接轧制高温方坯的送钢节奏优化控制方法及系统
CN109865811A (zh) 一种连铸机及其连铸坯的三次冷却装置
CN202166904U (zh) 一种中频感应加热智能温控装置
CN209681090U (zh) 一种连铸机及其连铸坯的三次冷却装置
CN102234715A (zh) 初轧炉群交叉出钢控制方法
CN204702091U (zh) 一种用于输送圆形截面钢坯的悬臂辊

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023/0875.1

Country of ref document: KZ

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829817

Country of ref document: EP

Kind code of ref document: A1