WO2024001353A1 - 一种光源装置和投影系统 - Google Patents

一种光源装置和投影系统 Download PDF

Info

Publication number
WO2024001353A1
WO2024001353A1 PCT/CN2023/084485 CN2023084485W WO2024001353A1 WO 2024001353 A1 WO2024001353 A1 WO 2024001353A1 CN 2023084485 W CN2023084485 W CN 2023084485W WO 2024001353 A1 WO2024001353 A1 WO 2024001353A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
layer
component
band
Prior art date
Application number
PCT/CN2023/084485
Other languages
English (en)
French (fr)
Other versions
WO2024001353A9 (zh
Inventor
张勇
顾晓强
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2024001353A1 publication Critical patent/WO2024001353A1/zh
Publication of WO2024001353A9 publication Critical patent/WO2024001353A9/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present application relates to the field of projection display technology, and in particular, to a light source device and a projection system.
  • Projection display is a technology that uses flat image information to control the light source, and uses the optical system and projection space to amplify the image and display it on the projection screen.
  • projection display is gradually used in fields such as business activities, conferences and exhibitions, scientific education, military command, traffic management, centralized monitoring, and advertising and entertainment. Its advantages of large display screen size and clear display are also suitable for Large screen display requirements.
  • Laser is used in the field of projection display due to its high brightness, strong monochromaticity, and wide color gamut.
  • high-energy lasers are commonly used to excite phosphor wheels to emit three-color light.
  • the phosphor wheel solution there are more blue light loop lenses, and due to the needs of heat dissipation and high-speed rotation of the phosphor wheel, its size is larger, so it requires stronger structural support and larger installation space, so the light source structure size is larger.
  • the phosphor wheel is irradiated by a higher-power laser, its heat cannot be dissipated quickly. Excessive temperature will cause the conversion efficiency of the fluorescent material to decrease and affect the optical output.
  • This application first discloses a light source device, including:
  • Laser light source array used to emit laser light of the first wave band
  • Dichroic mirror on the light path of the laser light source array;
  • the dichroic mirror includes a first part and a second part, the first part is used to transmit the light of the first wave band, and the second part is used to reflect the first wave band and the second band of light;
  • the dynamic optical component is located on the side of the dichroic mirror away from the laser light source array; the dynamic optical component includes a reflective part and a transmissive part;
  • the fluorescence conversion component is located on the side of the dynamic optical component away from the dichroic mirror; the fluorescence conversion component is used to emit light of the second waveband under the excitation of the light of the first waveband;
  • the heat dissipation component is located on the side of the fluorescence conversion component away from the dynamic optical component; the heat dissipation component is used to dissipate heat from the fluorescence conversion component.
  • the embodiment of the present application also discloses a projection system, including the light source device of the above technical solution, a light valve modulation component and a projection lens;
  • the light valve modulation component is located on the light exit side of the light source device, and the light valve modulation component is used to modulate and reflect the incident light;
  • the projection lens is located on the reflected light path of the light valve modulation component, and the projection lens is used to reflect the light valve modulation component.
  • Figure 1 is a schematic structural diagram of a light source device in the related art
  • Figure 2 is a schematic side view of the phosphor wheel in Figure 1;
  • Figure 3 is one of the structural schematic diagrams of the light source device provided by the embodiment of the present application.
  • Figure 4 is one of the planar structural schematic diagrams of the dynamic optical component provided by the embodiment of the present application.
  • Figure 5 is one of the cross-sectional structural schematic diagrams of the fluorescence conversion component provided by the embodiment of the present application.
  • Figure 6 is the second schematic cross-sectional structural diagram of the fluorescence conversion component provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a heat dissipation component provided by an embodiment of the present application.
  • Figure 8 is the second structural schematic diagram of the light source device provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the spectral transmittance of the first filter part provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of the spectral transmittance of the second filter part provided by the embodiment of the present application.
  • Figure 11 is the third structural schematic diagram of the light source device provided by the embodiment of the present application.
  • Figure 12 is the fourth structural schematic diagram of the light source device provided by the embodiment of the present application.
  • Figure 13 is the fifth structural schematic diagram of the light source device provided by the embodiment of the present application.
  • Figure 14 is the sixth structural schematic diagram of the light source device provided by the embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a projection system provided by an embodiment of the present application.
  • Projection display is a technology that uses flat image information to control the light source, and uses the optical system and projection space to amplify the image and display it on the projection screen.
  • projection display is gradually used in fields such as business activities, conferences and exhibitions, scientific education, military command, traffic management, centralized monitoring, and advertising and entertainment. Its advantages of large display screen size and clear display are also suitable for Large screen display requirements.
  • the blue laser spot irradiates the phosphor layer of the reflective part of the phosphor wheel 12 to excite fluorescence, which is reflected by the substrate surface and passes through the first lens group 13 a It is collimated, converted into a parallel beam and emitted, and then reflected to the color filter component 15 through the dichroic mirror 14 for color filtering, and the red and green fluorescence bands are output in time sequence.
  • the phosphor wheel 12 includes a phosphor layer 121 , a reflective substrate 122 with reflective function, and a driving component 123 . Due to the high energy density of the laser, it is necessary to drive the phosphor wheel 12 to rotate at high speed during specific implementation to avoid The optical powder wheel 12 is damaged by the high-energy laser. In addition, the phosphor wheel 12 must rotate at high speed to meet the development needs.
  • ceramic fluorescent materials have the most superior performance, their fixing solutions are still limited to using colloid bonding or mechanical structures to fix them on reflective substrates. Under higher-power laser irradiation, their heat cannot be dissipated quickly, and excessive temperatures will still remain. This leads to a reduction in the conversion efficiency of ceramic fluorescent materials and affects the optical output. However, the installation of ceramic fluorescent materials through welding is technically difficult and costly. Third, the current phosphor wheel components are complex and the production process requirements are high, resulting in high costs.
  • embodiments of the present application provide a light source device that adopts fixed fluorescence conversion components and new optical path and heat dissipation scheme designs to achieve stable optical performance and efficient output under a certain laser power.
  • the light source device includes: a laser light source array 201 , a dichroic mirror 202 , a dynamic optical component 203 , a fluorescence conversion component 204 and a heat dissipation component 205 .
  • the laser light source array 201 is used to emit laser light in a first waveband.
  • the laser light source array 201 can emit blue laser light
  • the first waveband can be 420 nm to 470 nm.
  • the laser light source array 201 may be a laser array or a laser including multiple laser light sources, such as an MCL laser, which is not limited here.
  • the first waveband laser emitted from the laser light source array 201 can pass through the first part 2021 of the dichroic mirror 202 to excite the fluorescence conversion component 204, and the light of the second waveband stimulated and emitted by the fluorescence conversion component 204 can be dichroic.
  • the first part 2021 and the second part 2022 of the color mirror 202 reflect.
  • the light in the second wavelength band stimulated and emitted by the fluorescence conversion component 204 may be yellow light, and the second wavelength band may be 500 nm to 630 nm. Yellow light contains red light and green light bands. With the filter component, red light, green light and blue light can be emitted, thereby realizing the emission of three primary colors of light from the light source device.
  • FIG. 4 is a schematic plan view of a dynamic optical component provided by an embodiment of the present application.
  • the fluorescence conversion component 204 emits fluorescence, and the stimulated emission of fluorescence is reflected to the dichroic mirror 202 and further reflected in a set direction by the dichroic mirror 202 .
  • light of different colors can be output sequentially in the set direction, realizing the emission of three primary color lights.
  • the dynamic optical component 203 can realize switching between the reflective part 2031 and the transmissive part 2032 by means of rotation, linear reciprocating motion, or electrical conversion of light transmission.
  • FIG. 4 only takes the rotational method of driving the dynamic optical component 203 as an example for illustration. In actual applications, different movement methods can be used according to structural requirements, and there is no limitation here.
  • a focusing lens group 206 is provided between the dichroic mirror 202 and the dynamic optical component 203 , which can focus the laser light emitted from the dichroic mirror 202 onto the dynamic optical component 203 .
  • the focusing lens group 206 includes at least one lens. In the embodiment of the present application, the focusing lens group 206 may include two lenses, which is not limited herein.
  • the fluorescence conversion component 204 is located on the side of the dynamic optical component 203 away from the dichroic mirror 202.
  • the fluorescence conversion component 204 is used to emit light of the second wavelength band under excitation of the light of the first wavelength band.
  • the light in the first waveband may be blue light, and the light in the second waveband may be yellow light.
  • the fluorescence conversion layer 2041 serves as the core film layer in the fluorescence conversion component and is used to emit light of the second wavelength band under excitation of light of the first wavelength band.
  • the fluorescence conversion layer can be made of fluorescent ceramics made by high-temperature sintering of YAG matrix phosphor powder and ceramic materials, ceramic fluorescent materials or single crystal fluorescent materials made through manufacturing processes such as crystal growth, which are not limited here.
  • the thickness of the fluorescence conversion layer 2041 is between 0.05 mm and 1 mm.
  • the anti-reflection layer 2042 is located on the side of the fluorescence conversion layer 2041 facing the dynamic optical component 203 .
  • the anti-reflection layer 2042 is used to increase the reflection of light in the first waveband.
  • the coating process can be used to reduce the reflection of the anti-reflection layer 2042 in the wavelength range of 420 nm to 470 nm, thereby increasing the transmission of blue laser.
  • the thickness of the anti-reflection layer 2042 is Between 0.5 ⁇ m and 10 ⁇ m, there is no limit here.
  • the reflective layer 2043 is located on the side of the fluorescence conversion layer 2041 facing away from the anti-reflection layer 2042 .
  • the reflective layer 2043 is used to reflect the light of the first wave band and the second wave band.
  • the reflective layer 2043 can be a dielectric film or a metal film.
  • the thickness of the reflective layer 2043 is between 0.5 ⁇ m and 10 ⁇ m, and the wavelength spectrum range is 420 nm to 680 nm.
  • the visible light has a high reflectivity.
  • the reflective layer 2043 may use a dielectric film.
  • the fluorescence conversion component 204 used in the embodiment of the present application is a fixed fluorescence conversion component.
  • the fixed fluorescence conversion scheme removes the driving element in the phosphor powder wheel scheme and is fixedly assembled in the light source device system, which can greatly improve the system reliability and does not require mechanical Movement can reduce the structural design size of the light source device.
  • the fluorescent material is reduced from the original annular area to a small square or circular area, which greatly reduces the amount of fluorescent material used and reduces material costs.
  • the light source device also includes a heat dissipation component 205.
  • the heat dissipation component 205 is located on the side of the fluorescence conversion component 204 away from the dynamic optical component 203.
  • the heat dissipation component is used to dissipate heat from the fluorescence conversion component.
  • Figure 6 is the second schematic cross-sectional structural diagram of the fluorescence conversion component provided by the embodiment of the present application.
  • the fluorescence conversion component further includes: a thermal conductive layer 2044 and a connection layer 2045.
  • the thermal conductive layer 2044 is located on the side of the reflective layer 2043 facing away from the fluorescence conversion layer 2041.
  • a thermal conductive layer 2044 is provided on the surface of the reflective layer 2043 in order to quickly conduct the heat generated by the laser excitation point to the entire fluorescent conversion layer sheet, thereby increasing the heat dissipation capability.
  • the thermal conductive layer 2044 can use a metal layer with high thermal conductivity efficiency, including a copper layer or a gold layer and other highly thermally conductive metal materials, with a thickness of 0.1 ⁇ m ⁇ 1000 ⁇ m. In view of cost issues, a copper layer solution can be selected, with a thickness between 10 ⁇ m ⁇ 200 ⁇ m. , no limitation is made here.
  • connection layer 2045 is located on the side of the thermal conductive layer 2044 away from the reflective layer 2043.
  • the connection layer 2045 is used to connect the heat dissipation component 205.
  • the connection layer 2045 can be made of different materials.
  • the connection layer 2045 may use thermally conductive silicone grease to mechanically connect the heat dissipation component 205 .
  • This embodiment of the present application takes welding as an example to illustrate the structure of the connection layer 2045 and the heat dissipation component 205 .
  • connection layer 2045 includes: a solder resist layer 20451 and a first solder layer 20452.
  • the solder resist layer 20451 is located on the side of the thermal conductive layer 2044 away from the reflective layer 2043, and the first solder layer 20452 is located on the solder resist layer 20451.
  • the first welding layer 20452 is used to weld the heat dissipation component 205.
  • the thermal conductive layer 2044 can be a copper layer, and a layer of solder resist layer 20451 is plated on the basis of the copper layer.
  • the solder resist layer 20451 can be a metallic nickel layer or a titanium layer, and a layer with higher thermal conductivity can be used.
  • the thickness of the nickel layer is between 0.1 ⁇ m and 5 ⁇ m.
  • a first welding layer 20452 is provided at the bottom of the fluorescence conversion component.
  • the first welding layer 20452 is a weldable metal layer, and a gold layer can be used, with a thickness between 0.1 ⁇ m and 2 ⁇ m.
  • FIG. 7 is a schematic structural diagram of a heat dissipation component provided by an embodiment of the present application.
  • the heat dissipation component may use a semiconductor refrigeration device.
  • the semiconductor refrigeration device includes: a second welding layer 2051, a first thermal conductive sheet 2052, a second thermal conductive sheet 2053, a plurality of semiconductor thermocouples 2054 and a heat sink 2057.
  • the second welding layer 2051 is located on the side close to the first welding layer 20452, and the second welding layer 2051 is used for welding with the first welding layer 20452.
  • the second welding layer 2051 can be a nickel-gold layer or a titanium-platinum layer, and is connected to the fluorescence conversion component 204 by welding.
  • the semiconductor thermocouple 2054 is composed of a P-type semiconductor and an N-type semiconductor.
  • the embodiment of the present application includes a semiconductor collection composed of multiple thermocouples.
  • the P-type semiconductor and the N-type semiconductor are connected to form a complete series circuit by a metal conductor 2055 with good conductivity.
  • the metal conductor 2055 can be made of copper, aluminum or other metal conductors. In this embodiment, copper can be used.
  • a first thermal conductive sheet 2052 and a second thermal conductive sheet 2053 are provided on both sides of the semiconductor thermocouple 2054.
  • the first thermally conductive sheet 2052 and the second thermally conductive sheet 2053 may be ceramic sheets that are insulating and have good thermal conductivity.
  • the heat sink 2057 is connected to the heat dissipation end to efficiently dissipate heat from the fluorescence conversion component.
  • the thermal conductive sheet and the semiconductor thermocouple can be mechanically fixed and bonded by applying thermal conductive silicone grease, or they can be plated with a gold-nickel layer in specific areas of the thermal conductive sheet and the semiconductor thermocouple and assembled by welding. Together, there is no limit here.
  • the joint portion 2056 connected between the thermal conductive sheet and the metal conductor 2055 can be made of thermal conductive silicone grease, solderable metal, etc., which is not limited here.
  • the radiator 2057 can use metal heat sinks, or can also use air cooling, liquid cooling and other heat dissipation devices, which are not limited here.
  • the embodiment of this application only takes the semiconductor refrigeration device as the heat dissipation component as an example.
  • the heat dissipation component can also use an air cooling device, a liquid cooling device or a metal heat dissipation device, etc., and the selection can be made according to actual needs. This is not the case. Make limitations.
  • FIG. 8 is the second structural schematic diagram of the light source device provided by the embodiment of the present application.
  • the laser light source array 201 includes a first laser light source group 2011 and a second laser light source group 2012 arranged side by side.
  • the first laser light source group 2011 may include multiple laser light sources
  • the second laser light source group 2012 may include multiple laser light sources.
  • the first laser light source group 2011 and the second laser light source Group 2012 includes the same laser light sources, both of which are used to emit laser light in the first waveband.
  • the light source device also includes a first reflecting mirror 2071 and a second reflecting mirror 2072.
  • the dichroic mirror 202 includes two first parts and two second parts, and the first parts and the second parts are alternately arranged.
  • the two first parts are 2021a and 2021b, and the two second parts are 2022a and 2022b.
  • the first reflector 2071 is located on the light emitting side of the first laser light source group 2011, and the first reflector 2071 is used to reflect the emitted light of the first laser light source group 2011 toward one of the two first parts 2021a.
  • the second reflector 2072 is located on the light emitting side of the second laser light source group 2012. The second reflector 2072 is used to reflect the emitted light of the second laser light source group 2012 toward the other first part 2021b of the two first parts.
  • the laser beam emitted by the first laser light source group 2011 and the second laser light source group 2012 can be regarded as a laser spot when incident on the corresponding reflecting mirror. Therefore, the size of the first reflecting mirror 2071 and the second reflecting mirror 2072 needs to be larger than the incident light spot.
  • the size of the laser spot is set to an appropriate angle by setting the first reflector 2071 and the second reflector 2072 so that the laser emitted from the first laser light source group 2011 is reflected by the first reflector 2071 and then incident on the first part 2021a.
  • the laser light emitted by the second laser light source group 2012 is reflected by the second reflecting mirror 2072 and then enters the first part 2021b.
  • the light-transmitting part 2032 in the dynamic optical component 203 includes a first filter part 2032r and a second filter part 2032g; the light in the second waveband is yellow light, and the second waveband may include the first sub-band and The second sub-band; wherein, the light in the first sub-band is red light, and the light in the second sub-band is green light.
  • the thickness of the first filter part 2032r ranges from 0.1 mm to 5 mm.
  • the first filter part has the properties shown in Figure 9 through coating: transmitting light from 420 nm to 470 nm and reflecting light from 470 nm to 590 nm. , transmitting light above 600nm, thus used to transmit blue light and filter out red light.
  • the multi-layer coating can also achieve the transmission of small-angle blue light, but the reflected large-angle blue light cannot pass through.
  • the thickness of the second filter part 2032g ranges from 0.1mm to 5mm.
  • the areas of the first filter part 2032r and the second filter part 2032g are both larger than the area of the reflective part 2031.
  • the light source device usually requires higher energy green light, so the area of the second filter portion 2032g for filtering out green light can be larger than that for filtering out red light.
  • the area of the first filter part 2032r since the blue laser is excitation light and its energy is much higher than the stimulated emission of fluorescence, the areas of the first filter part 2032r and the second filter part 2032g are both larger than the area of the reflective part 2031.
  • the light source device usually requires higher energy green light, so the area of the second filter portion 2032g for filtering out green light can be larger than that for filtering out red light.
  • the area of the first filter part 2032r is excitation light and its energy is much higher than the stimulated emission of fluorescence.
  • the light source device also includes: a condensing lens group 210 located on the reflection path of the dichroic mirror 202 , and a light uniforming component 211 located on the side of the condensing lens group 210 away from the dichroic mirror 202 .
  • the light source device further includes: a dynamic filter component 212 .
  • the dynamic filter component 212 is located on the reflection path of the dichroic mirror 202, and specifically can be disposed between the condensing lens group 210 and the uniform light component 211.
  • the dynamic optical component 203 may only include a reflective part 2031 and a transmissive part 2032, and no longer needs to have a light filtering function.
  • FIG. 15 is a second schematic plan view of the dynamic optical component provided by the embodiment of the present application
  • FIG. 16 is a schematic plan view of the dynamic filter component provided by the embodiment of the present application.
  • the dynamic filter component 212 includes a light transmitting part 2121, a third filter part 2122r and a fourth filter part 2122g.
  • the light in the second wave band is yellow light
  • the second wave band may include a first sub-band and a second sub-band; wherein, the light in the first sub-band is red light, and the light in the second sub-band is green light.
  • the third filter part 2122r is used to filter the light emitting the first sub-band (red)
  • the fourth filter part 2122g is used to filter the light emitting the second sub-band (green);
  • the light-transmitting part 2121 is used to transmit the first sub-band of light.
  • the third filter part 2122r and the fourth filter part 2122g can be coated to achieve the effect of increasing light transmission in a specific wavelength band and increasing reflection in other wavelength bands.
  • the light-transmitting part 2121 is a transparent homogenizing material with a certain diffusion effect, thereby having a certain homogenizing effect on the blue laser.
  • the areas of the third filter part 2122r and the fourth filter part 2122g are both larger than the area of the light-transmitting part 2121.
  • the light source device usually requires green light with higher energy, so the area of the fourth filter part 2122g for filtering out the green light may be larger than the area of the third filter part 2122r for filtering out the red light.
  • the light valve modulation component 200 is used to modulate the incident light and then reflect it.
  • the time valve modulation component 200 may use a digital micromirror device (DMD for short).
  • DMD digital micromirror device
  • the surface of the DMD includes thousands of tiny reflectors, each of which can be driven to deflect independently. By controlling the deflection angle of the DMD, the reflected light is incident on the projection lens 300 .
  • the fluorescent material is reduced from the original annular area to a small square or circular area, which greatly reduces the amount of fluorescent material used and reduces material costs.
  • a simple optical path is used to achieve stable optical performance and efficient output under a certain laser power.
  • the dichroic mirror laser light source array is on the light output path.
  • the dichroic mirror is formed by coating the surface of a transparent flat plate using the principle of thin film interference. It can increase the reflection or increase the reflection of light in different wavelength bands according to the needs.
  • the dichroic mirror includes a first part and a second part, and different parts of the dichroic mirror can use different coating processes for anti-reflection or anti-reflection of light in different wavelength bands.
  • the first part is used to transmit the light of the first wave band
  • the second part is used to reflect the light of the first wave band and the second wave band.
  • the light source device further includes a first reflecting mirror and a second reflecting mirror.
  • the dichroic mirror includes two first parts and two second parts, and the first parts and the second parts are arranged alternately.
  • the first reflector is located on the light emitting side of the first laser light source group, and is used to reflect the emitted light of the first laser light source group toward one of the two first parts.
  • the second reflector is located on the light emitting side of the second laser light source group, and is used to reflect the emitted light of the second laser light source group toward the other of the two first parts.
  • the laser light emitted by the first laser light source group can be reflected by the first reflector and then incident on one of the first parts, and the laser light emitted by the second laser light source group can pass through After being reflected by the second reflector, it is incident on the other first part.
  • the light in the first waveband is blue light
  • the second waveband includes a first sub-band and a second sub-band
  • the light in the first sub-band is red light
  • the light in the second sub-band is green light
  • the fluorescence conversion component includes: a fluorescence conversion layer, an anti-reflection layer and a reflection layer.
  • the fluorescence conversion layer is used to emit light of the second waveband under excitation of the light of the first waveband.
  • the anti-reflection layer is used to increase the transmission of light in the first wave band
  • the reflective layer is used to reflect the light in the first wave band and the second wave band.
  • the fluorescence conversion component further includes: a thermal conductive layer and a connection layer.
  • the thermal conductive layer quickly conducts the heat generated by the laser excitation point to the entire fluorescent conversion layer sheet, thereby increasing the heat dissipation capacity.
  • the connection layer is used to connect the heat dissipation components.
  • the connection layer can be made of different materials.
  • the heat dissipation component can use a metal heat dissipation device, an air cooling device, a liquid cooling device or a semiconductor refrigeration device to efficiently dissipate heat from the fluorescence conversion component.
  • the connection layer includes: a solder resist layer and a first solder layer.
  • the heat dissipation component can use a semiconductor refrigeration device.
  • the semiconductor refrigeration device includes: a second welding layer, a first thermal conductive sheet, a second thermal conductive sheet, a plurality of semiconductor thermocouples and a radiator.
  • the second welding layer is used for welding with the first welding layer.
  • Semiconductor thermocouples are composed of P-type semiconductors and N-type semiconductors, and are a collection of semiconductors composed of multiple thermocouples. The P-type semiconductor and the N-type semiconductor are connected by a well-conducting metal conductor to form a complete series circuit.
  • a first thermal conductive sheet and a second thermal conductive sheet are provided on both sides of the semiconductor thermocouple.
  • one end close to the fluorescence conversion component is the cooling end, and the other end is the heat dissipation end.
  • a radiator is connected to the heat dissipation end to efficiently dissipate heat from the fluorescence conversion component.
  • the radiator can use metal heat sinks, or can use air cooling, liquid cooling and other heat dissipation devices, which are not limited here.
  • the light source device further includes: a focusing lens group located between the dichroic mirror and the dynamic optical component, a collimating lens group located between the laser light source array and the dichroic mirror, and a collimating lens group located between the dichroic mirror and the dynamic optical component.
  • a focusing lens group located between the dichroic mirror and the dynamic optical component
  • a collimating lens group located between the laser light source array and the dichroic mirror
  • a collimating lens group located between the dichroic mirror and the dynamic optical component.
  • the light-transmitting part in the dynamic optical component includes a first filter part and a second filter part.
  • the first filter part is used to transmit the light of the first wavelength band and the first sub-band, and reflect the light of the second sub-band;
  • the second filter part is used to The light of the first waveband and the second subband is transmitted, and the light of the first subband is reflected;
  • the reflective part in the dynamic optical component is used to reflect the light of the first waveband.
  • the light source device further includes: a dynamic filter component located on the reflection path of the dichroic mirror.
  • the dynamic optical component includes a transmissive part and a reflective part.
  • the dynamic filter component includes a light transmitting part, a third filter part and a fourth filter part.
  • the third filter part is used to filter the light emitted in the first sub-band
  • the fourth filter part is used to filter the light emitted in the second sub-band
  • the light-transmitting part is used to transmit the light emitted in the first wave band.
  • the projection system includes any of the above-mentioned light source devices, a light valve modulation component, and a projection lens.
  • the light valve modulation component is located on the light exit side of the light source device
  • the projection lens is located on the reflected light path of the light valve modulation component.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

本申请公开了一种光源装置和投影系统,包括激光光源阵列、二向色镜、动态光学部件、荧光转换部件和散热部件。激光光源阵列出射激光激发荧光转换部件出射荧光实现三基色光的出射。荧光转换部件采用固定式荧光转换部件,固定式荧光转化方案去掉了荧光粉轮方案中的驱动元件,固定装配在光源装置系统中,可以大幅提高系统可靠性,没有机械运动,可以减小光源装置结构设计尺寸。荧光材料由原来的环形面积缩小为小面积方形或圆形区域,大幅减小了所用的荧光材料的使用量,减少材料成本。

Description

一种光源装置和投影系统
相关申请的交叉引用
本申请要求在2022年6月29日提交中国专利局、申请号为202210755997.6,发明名称为“一种光源装置和投影系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影显示技术领域,尤其涉及一种光源装置和投影系统。
背景技术
投影显示是由平面图像信息控制光源,利用光学系统和投影空间把图像放大并显示在投影屏幕上的技术。随着投影显示技术的发展,投影显示逐渐应用于商务活动、会议展览、科学教育、军事指挥、交通管理、集中监控和广告娱乐等领域,其显示画面尺寸较大、显示清晰等优点同样适应于大屏幕显示的要求。
激光因为高亮度、单色性强、色域宽广等优点被应用于投影显示领域,目前激光投影系统中普遍使用高能激光激发荧光粉轮发光的方式出射三色光。而荧光粉轮的方案中,蓝光回路镜片较多,并且因为荧光粉轮散热和高速旋转需要,其尺寸较大,因而需要较强结构支撑和较大的安装空间,所以光源结构尺寸较大。荧光粉轮在较高功率的激光照射下,其热量无法快速散出,过高的温度会导致荧光材料转化效率降低,影响光学输出。
发明内容
本申请首先公开了一种光源装置,包括:
激光光源阵列,用于出射第一波段的激光;
二向色镜,激光光源阵列的出光路径上;二向色镜包括第一部和第二部,第一部用于透射第一波段的光线,第二部用于反射第一波段和第二波段的光线;
动态光学部件,位于二向色镜背离激光光源阵列的一侧;动态光学部件包括反射部和透射部;
荧光转换部件,位于动态光学部件背离二向色镜的一侧;荧光转换部件用于在第一波段的光的激发下出射第二波段的光线;
散热部件,位于荧光转换部件背离动态光学部件的一侧;散热部件用于对荧光转换部件进行散热。
本申请实施例还公开了一种投影系统,包括上述技术方案的光源装置、光阀调制部件和投影镜头;
其中,光阀调制部件位于光源装置的出光侧,光阀调制部件用于对入射光线进行调制后反射;投影镜头位于光阀调制部件的反射光路上,投影镜头用于对光阀调制部件的出射光进行成像。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中光源装置的结构示意图;
图2为图1中荧光粉轮的侧视结构示意图;
图3为本申请实施例提供的光源装置的结构示意图之一;
图4为本申请实施例提供的动态光学部件的平面结构示意图之一;
图5为本申请实施例提供的荧光转换部件的截面结构示意图之一;
图6为本申请实施例提供的荧光转换部件的截面结构示意图之二;
图7为本申请实施例提供的散热部件的结构示意图;
图8为本申请实施例提供的光源装置的结构示意图之二;
图9为本申请实施例提供的第一滤光部的光谱透射率示意图;
图10为本申请实施例提供的第二滤光部的光谱透射率示意图;
图11为本申请实施例提供的光源装置的结构示意图之三;
图12为本申请实施例提供的光源装置的结构示意图之四;
图13为本申请实施例提供的光源装置的结构示意图之五;
图14为本申请实施例提供的光源装置的结构示意图之六;
图15为本申请实施例提供的动态光学部件的平面结构示意图之二;
图16为本申请实施例提供的动态滤光部件的平面结构示意图;
图17为本申请实施例提供的投影系统的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方 式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
投影显示是由平面图像信息控制光源,利用光学系统和投影空间把图像放大并显示在投影屏幕上的技术。随着投影显示技术的发展,投影显示逐渐应用于商务活动、会议展览、科学教育、军事指挥、交通管理、集中监控和广告娱乐等领域,其显示画面尺寸较大、显示清晰等优点同样适应于大屏幕显示的要求。
激光因为高亮度、单色性强、色域宽广等优点被应用于投影显示领域,目前激光投影系统中普遍使用高能激光激发荧光粉轮发光的方式出射三色光。
图1为相关技术中光源装置的结构示意图。
如图1所示,光源装置中的激光阵列11发出蓝色激光光束,聚焦照射到荧光粉轮12上,荧光粉轮12具有反射部和透射部,反射部涂覆有荧光粉层。荧光粉轮12的前方设置有第一透镜组13a,第一透镜组13a具有聚焦和准直的双重作用,能够使激光光束汇聚成较小的光斑。
当驱动荧光粉轮12旋转至反射部的位置时,蓝色激光光斑照射到荧光粉轮12的反射部的荧光粉层上,激发出荧光,荧光被基板表面反射并透过第一透镜组13a进行准直,转换成平行光束射出,再经过二向色镜14反射到滤色部件15进行滤色,时序地输出红色、绿色荧光波段。
当驱动荧光粉轮12旋转至透射部的位置时,蓝色激光透射,蓝色激光经过第一透镜组13a被聚焦后还会发散,根据光路可逆性质,蓝色激光到达经过荧光粉轮12的透射部后还需经过第二透镜组13b进行准直,以平行的光束传播,蓝色激光经过光学回路最终入射滤色部件15的透过部分,输出蓝色激光波段。
图2为图1中荧光粉轮的侧视结构示意图。
如图2所示,荧光粉轮12包括荧光粉层121,具有反射作用的反射基板122,以及驱动部件123。因激光能量密度较大,在具体实施时需要驱动荧光粉轮12高速旋转以避免荧 光粉轮12被高能激光损坏。另外,荧光粉轮12必须高速旋转以匹配显像需要。
另一方面,为实现较小的光学拓展量,更高光学系统效率,照射在荧光粉层表面的激光光斑面积也受到严格控制,因此在一定的照明系统中,高能量密度的激光束在照射荧光粉层时单位时间内产生了大量的热量,导致荧光粉层的温度迅速升高,导致荧光转化效率下降。因此,荧光粉轮12必须要设计一定的尺寸,提高其散热能力,从而保证荧光转化效率在合理的范围内。
由此可见,目前的光源装置存在以下问题:其一,光源系统复杂,蓝光回路镜片较多,并且因为荧光粉轮散热和高速旋转需要,其尺寸较大,因而需要较强结构支撑和较大的安装空间,所以光源结构尺寸较大。其二,因为荧光粉不能直接应用荧光粉轮中,需要混合一定的载体将荧光粉固定在反射基板122上。目前普遍的载体为硅胶、玻璃以及陶瓷,其中硅胶荧光材料能够耐受150℃左右的温度,玻璃荧光材料能够耐受180℃左右的温度,而陶瓷荧光材料能够耐受250℃左右的温度。虽然陶瓷荧光材料性能最为优越,但其固定方案仍然局限在应用胶体粘接或机械结构固定在反射基板上,在较高功率的激光照射下,其热量无法快速散出,过高的温度仍会导致陶瓷荧光材料转化效率降低,影响光学输出。而对于陶瓷荧光材料通过焊接的方式安装,则技术难度大,成本高。其三,目前的荧光粉轮组成部件复杂,生产工艺要求较高,导致成本较高。
有鉴于此,本申请实施例提供一种光源装置,采用固定式荧光转换部件以及新的光路和散热方案设计,实现在一定激光功率下光学性能稳定、高效输出。
图3为本申请实施例提供的光源装置的结构示意图之一。
如图3所示,本申请实施例提供的光源装置包括:激光光源阵列201、二向色镜202、动态光学部件203、荧光转换部件204和散热部件205。
激光光源阵列201用于出射第一波段的激光,在本申请实施例中,激光光源阵列201可以出射蓝色激光,第一波段可以为420nm~470nm。激光光源阵列201可以采用激光器阵列,也可以采用包括多个激光光源的激光器,如MCL激光器,在此不做限定。
二向色镜202激光光源阵列201的出光路径上。二向色镜是利用薄膜干涉原理在透明平板的表面镀膜形成,可以根据所需要增透或增反不同波段的光。
在本申请实施例中,如图3所示,二向色镜202包括第一部2021和第二部2022,二向色镜202的不同部分可以采用不同的镀膜工艺用于增透或增反不同波段的光线。其中,第一部2021用于透射第一波段的光线,第二部2022用于反射第一波段和第二波段的光线。
值得说明的是,当二向色镜中的第一部或第二部对特定波段的光线具有增透作用,则对于除特定波段以外的其它波段的光线具有增反的效果;同样地,当第一部或第二部对特定波段的光线具有增反的作用,则对除特定波段以外的其它波段的光线具有增透的效果。那么当第一部2021具有透射第一波段的光线的作用时,还具有对第二波段的光线进行反 射的作用。因此第一部2021和第二部2022均具有反射第二波段的光线的作用。
具体地,激光光源阵列201出射的第一波段激光可以透过二向色镜202的第一部2021激发荧光转换部件204,而荧光转换部件204受激发射的第二波段的光线可以被二向色镜202的第一部2021和第二部2022反射。其中,荧光转换部件204受激发射的第二波段的光可以为黄色光,第二波段可以为500nm~630nm。黄色光中包含了红色光和绿色光的波段,配合滤光部件可以出射红色光、绿色光和蓝色光,由此实现光源装置三基色光的出射。
动态光学部件203位于二向色镜202背离激光光源阵列201的一侧。图4为本申请实施例提供的动态光学部件的平面结构示意图之一。
如图4所示,动态光学部件包括反射部2031和透射部2032,动态光学部件203还包括驱动元件,驱动元件可以驱动动态光学部件203运动,从而使激光可以分时地入射到反射部2031和透射部2032。当激光入射到反射部2031时,激光被反射到二向色镜202,进而被二向色镜202向设定方向反射;当激光入射到透射部2032时,激光可以入射到荧光转换部件204激发荧光转换部件204发射荧光,受激发射的荧光再被反射到二向色镜202,进而被二向色镜202向设定方向反射。由此在设定方向上可以时序性地输出不同颜色的光,实现三基色光的出射。
动态光学部件203可以采用旋转、直线往复运动或电转换透光等方式实现反射部2031和透射部2032的切换。图4仅以采用转动方式驱动动态光学部件203为例进行举例说明,在实际应用时可以根据结构需要采用不同的运动方式,在此不做限定。
如图3所示,二向色镜202与动态光学部件203之间设置有聚焦透镜组206,可以将二向色镜202出射的激光聚焦照射到动态光学部件203上。聚焦透镜组206包括至少一个透镜,在本申请实施例中,聚焦透镜组206可以包括两个透镜,在此不做限定。
荧光转换部件204位于动态光学部件203背离二向色镜202的一侧,荧光转换部件204用于在第一波段的光的激发下出射第二波段的光线。其中,第一波段的光可以为蓝色光,第二波段的光可以为黄色光。
图5为本申请实施例提供的荧光转换部件的截面结构示意图之一。
如图5所示,荧光转换部件包括:荧光转换层2041、增透层2042和反射层2043。
荧光转换层2041作为荧光转换部件中的核心膜层,用于在第一波段的光线的激发下出射第二波段的光线。荧光转换层可以采用YAG基质荧光粉与陶瓷材料高温烧结的荧光陶瓷、通过结晶生长等制造工艺制成的陶瓷荧光材料或单晶荧光材料,在此不做限定。荧光转换层2041的厚度在0.05mm~1mm之间。
增透层2042位于荧光转换层2041面向动态光学部件203的一侧。增透层2042用于增透第一波段的光线,具体地,采用镀膜工艺可以使增透层2042在波段光谱范围420nm~470nm具有减少反射的作用,从而增加蓝色激光的透射。增透层2042的厚度在 0.5μm~10μm之间,在此不做限定。
反射层2043位于荧光转换层2041背离增透层2042的一侧。反射层2043用于反射第一波段和第二波段的光线,具体地,反射层2043可以为介质膜或金属膜,反射层2043的厚度在0.5μm~10μm之间,对波段光谱范围420nm~680nm的可见光具有较高的反射率。为保证反射效率,反射层2043可以采用介质膜。
通过在荧光转换层2041的两侧设置增透层2042和反射层2043,可以增加第一波段的激光的透射以激发荧光转换层,并将荧光转换层受激发射的第二波段的荧光向二向色镜的方向进行反射,以使更多地荧光被利用。
本申请实施例采用的荧光转换部件204为固定式荧光转换部件,固定式荧光转化方案去掉了荧光粉轮方案中的驱动元件,固定装配在光源装置系统中,可以大幅提高系统可靠性,没有机械运动,可以减小光源装置结构设计尺寸。荧光材料由原来的环形面积缩小为小面积方形或圆形区域,大幅减小了所用的荧光材料的使用量,减少材料成本。另外,没有高速旋转的动态限制,可以对固定式荧光转换部件进行集中散热。
如图3所示,光源装置还包括散热部件205,散热部件205位于荧光转换部件204背离动态光学部件203的一侧,散热部件用于对荧光转换部件进行散热。
在具体实施时,散热部件205可以采用金属散热装置、风冷装置、液冷装置或半导体制冷装置,对荧光转换部件204进行高效散热。
图6为本申请实施例提供的荧光转换部件的截面结构示意图之二。
在一些实施例中,如图6所示,荧光转换部件还包括:导热层2044和连接层2045。
导热层2044位于反射层2043背离荧光转换层2041的一侧。在反射层2043的表面设置一层导热层2044,是为了将激光激发点产生的热量迅速传导到整个荧光转换层片材,从而增加散热能力。导热层2044可以采用具有高导热效率的金属层,包括铜层或金层等高导热金属材料,其厚度为0.1μm~1000μm,鉴于成本问题,可选铜层方案,厚度在10μm~200μm之间,在此不做限定。
连接层2045位于导热层2044背离反射层2043的一侧,连接层2045用于连接散热部件205。当荧光转换部件204采用不同的连接方式连接散热部件205时,连接层2045可以采用不同的材料进行制作。在一些实施例中,连接层2045可以采用导热硅脂通过机械固定的方式连接散热部件205。在一些实施例中,连接层2045可以采用胶体混合涂覆在基板表面的胶体贴合或机械固定的封装方式、通过键合的方式封装在承载基板、通过高温烧结将陶瓷荧光材料烧结封装,或者通过焊接的方式连接散热部件205。
本申请实施例以焊接方式为例对连接层2045以及散热部件205的结构进行举例说明。
如图6所示,连接层2045包括:阻焊层20451和第一焊接层20452。
阻焊层20451位于导热层2044背离反射层2043的一侧,第一焊接层20452位于阻焊 层20451背离导热层2044的一侧,第一焊接层20452用于焊接散热部件205。在本申请实施例中,导热层2044可采用铜层,在铜层的基础上还镀有一层阻焊层20451,阻焊层20451可以为金属镍层或钛层,可选用导热能力更高的镍层,其厚度在0.1μm~5μm之间。荧光转换部件的最下方设置一层第一焊接层20452,第一焊接层20452为可焊性金属层,可选用金层,厚度在0.1μm~2μm之间。
图7为本申请实施例提供的散热部件的结构示意图。
在一些实施例中,如图7所示,散热部件可以采用半导体制冷装置。具体地,半导体制冷装置包括:第二焊接层2051、第一导热片2052、第二导热片2053、多个半导体热电偶2054和散热器2057。
第二焊接层2051位于靠近第一焊接层20452的一侧,第二焊接层2051用于与第一焊接层20452焊接。第二焊接层2051可以采用镍金层或钛铂金层,通过焊接的方式连接荧光转换部件204。
半导体热电偶2054由P型半导体和N型半导体组成,本申请实施例包括多个热电偶组成的半导体集合。P型半导体和N型半导体之间由导电良好的金属导体2055连接成完整串联回路,金属导体2055可以选用铜、铝或其它金属导体,本申请实施例可以选用铜材质。
半导体热电偶2054的两侧设置有第一导热片2052和第二导热片2053。第一导热片2052和第二导热片2053可以选用绝缘且导热良好的陶瓷片。当接入电源后,由于半导体制冷原理,靠近荧光转换部件的一端为制冷端,另外一端为放热端,在放热端连接散热器2057,可以对荧光转换部件进行高效散热。
在本申请实施例中,导热片与半导体热电偶之间可以是通过涂抹导热硅脂后机械固定贴合,也可以是在导热片与半导体热电偶的特定区域镀金镍层,通过焊接的方式组装在一起,在此不做限定。那么连接在导热片与金属导体2055之间的结合部2056可以采用导热硅脂、可焊性金属等材质,在此不做限定。
散热器2057可以采用金属散热片,也可以采用风冷、液冷等散热装置,在此不做限定。
本申请实施例仅以散热部件采用半导体制冷装置为例进行举例说明,在具体实施时,散热部件还可以采用风冷装置、液冷装置或金属散热装置等,根据实际需要进行选择,在此不做限定。
图8为本申请实施例提供的光源装置的结构示意图之二。
在一些实施例中,如图8所示,激光光源阵列201包括并排设置的第一激光光源组2011和第二激光光源组2012。第一激光光源组2011可以包括多个激光光源,第二激光光源组2012可以包括多个激光光源。在本申请实施例中,第一激光光源组2011和第二激光光源 组2012包括相同的激光光源,均用于出射第一波段的激光。
相应地,光源装置还包括第一反射镜2071和第二反射镜2072。二向色镜202包括两个第一部和两个第二部,第一部和第二部交替排列。两个第一部分别为2021a和2021b,两个第二部分别为2022a和2022b。
其中,第一反射镜2071位于第一激光光源组2011的出光侧,第一反射镜2071用于将第一激光光源组2011的出射光向两个第一部中的一个第一部2021a反射。第二反射镜2072位于第二激光光源组2012的出光侧,第二反射镜2072用于将第二激光光源组2012的出射光向两个第一部中的另一个第一部2021b反射。
第一激光光源组2011和第二激光光源组2012出射的激光光束在入射到对应的反射镜上时可以看作一个激光光斑,因此第一反射镜2071和第二反射镜2072的尺寸需要大于入射的激光光斑的尺寸,通过设置第一反射镜2071和第二反射镜2072为合适的角度,可以使第一激光光源组2011出射的激光经过第一反射镜2071反射后向第一部2021a入射,第二激光光源组2012出射的激光经过第二反射镜2072反射后向第一部2021b入射。
下面对光源装置按照设定时序出射不同波段光线的原理进行具体说明。
如图4所示,动态光学部件203中的透光部2032包括第一滤光部2032r和第二滤光部2032g;第二波段的光为黄色光,第二波段可以包括第一子波段和第二子波段;其中,第一子波段的光为红色光,第二子波段的光为绿色光。
第一滤光部2032r用于透射第一波段(蓝色)和第一子波段(红色)的光线,反射第二子波段(绿色)的光线;第二滤光部2032g用于透射第一波段(蓝色)和第二子波段(绿色)的光线,反射第一子波段(红色)的光线;动态光学部件203中的反射部2031用于反射第一波段(蓝色)的光线。
具体地,第一滤光部2032r的厚度范围在0.1mm~5mm之间,通过镀膜使第一滤光部具有如图9所示的性质:透射420nm~470nm的光线,反射470nm~590nm的光线,透射600nm以上的光线,从而用于透射蓝色光、滤出红色光。另外,通过多层镀膜还可以实现小角度蓝色光透过,而经过反射的大角度蓝色光无法通过。第二滤光部2032g的厚度范围在0.1mm~5mm之间,通过镀膜使第二滤光部具有如图10所示的性质:透射420nm~470nm的光线,反射470nm~490nm的光线,透射500nm~590nm的光线,反射600nm以上的光线,从而用于透射蓝色光、滤出绿色光。同样地,通过多层镀膜还可以实现小角度蓝色光透过,而经过反射的大角度蓝色光无法通过。反射部2031的厚度范围在0.1mm~5mm之间,通过镀膜可以反射420nm~470nm的光线,从而反射蓝色光。
在具体实施时,由于蓝色激光为激发光,其能量远高于受激发射的荧光,因此第一滤光部2032r和第二滤光部2032g的面积均大于反射部2031的面积。而光源装置通常需要较高能量的绿色光,因此用于滤出绿色光的第二滤光部2032g的面积可大于用于滤出红色光 的第一滤光部2032r的面积。
如图8所示,激光光源阵列201出射的蓝色激光经过第一反射镜2071和第二反射镜2072的反射后向二向色镜的第一部2021a和2021b入射,经过聚焦透镜组206聚焦之后照射到动态光学部件203上。
当动态光学部件203运动到反射部2031时,蓝色激光入射到反射部2031被反射到二向色镜的第二部2022a和2022b,经其反射向设定方向出射。
当动态光学部件203运动到第一滤光部2032r时,蓝光激光穿过第一滤光部2032r照射到荧光转换部件204,激发荧光转换部件204出射荧光(黄色光),荧光被反射层2043反射后经过第一滤光部2032r滤光得到红色荧光向二向色镜202出射,经其反射向设定方向出射。
当动态光学部件203运动到第二滤光部2032g时,蓝光激光穿过第二滤光部2032g照射到荧光转换部件204,激发荧光转换部件204出射荧光(黄色光),荧光被反射层2043反射后经过第二滤光部2032g滤光得到绿色荧光向二向色镜202出射,经其反射向设定方向出射。
由此,时序地出射三基色光,用于图像显示。
图11为本申请实施例提供的光源装置的结构示意图之三。
如图11所示,光源装置还包括:位于激光光源阵列201与二向色镜202之间的准直透镜组208。准直透镜组208用于对激光光源阵列201出射的激光进行准直整形,以缩小激光光斑尺寸。准直透镜组208可以包括至少一个透镜,在本申请实施例中,准直透镜组208包括两个透镜。
图12为本申请实施例提供的光源装置的结构示意图之四。
如图12所示,光源装置还包括:位于准直透镜组208与二向色镜202之间的匀光层209。激光光源阵列201出射的激光能量较高,为了避免激光散斑问题以及避免入射到荧光转换部件的激光能量过高而降低荧光转换效率,在光路中设置匀光层209,对激光进行匀化。在具体实施时,匀光层209可以采用扩散片,在此不做限定。
图13为本申请实施例提供的光源装置的结构示意图之五。
如图13所示,光源装置还包括:位于二向色镜202的反射路径上的会聚透镜组210,以及位于会聚透镜组210背离二向色镜202一侧的匀光部件211。
二向色镜202时序性输出的三基色光需要进一步匀化再入射到显示部件,因此在光源装置的出光口设置匀光部件211,在匀光部件211之前设置会聚透镜组210可以将二向色镜出射的光线进行会聚,从而使尽可能多的光线入射到匀光部件211中被利用。
在具体实施时,匀光部件211可以采用光棒、光导管等;会聚透镜组210包括至少一个透镜,在此不做限定。
图14为本申请实施例提供的光源装置的结构示意图之六。
在一些实施例中,如图14所示,光源装置还包括:动态滤光部件212。动态滤光部件212位于二向色镜202的反射路径上,具体可以设置在会聚透镜组210和匀光部件211之间。相应地,动态光学部件203可以只包括反射部2031和透射部2032,而不再需要具有滤光功能。
图15为本申请实施例提供的动态光学部件的平面结构示意图之二;图16为本申请实施例提供的动态滤光部件的平面结构示意图。
具体地,如图15所示,动态光学部件包括反射部2031和透射部2032,其中反射部2031的面积小于透射部2032的面积。反射部2031用于反射第一波段的激光,透射部2032用于透射第二波段的受激发射的荧光。
相应地,如图16所示,动态滤光部件212包括透光部2121、第三滤光部2122r和第四滤光部2122g。在本申请实施例中,第二波段的光为黄色光,第二波段可以包括第一子波段和第二子波段;其中,第一子波段的光为红色光,第二子波段的光为绿色光。
第三滤光部2122r用于过滤出射第一子波段(红色)的光线,第四滤光部2122g用于过滤出射第二子波段(绿色)的光线;透光部2121用于透射第一波段的光线。
第三滤光部2122r和第四滤光部2122g可以通过镀膜使其对特定波段光线增透,而对其它波段光线增反的效果。透光部2121则为带有一定扩散效果的透明匀化材质,从而对蓝色激光具有一定的匀化效果。
由于蓝色激光为激发光,其能量远高于受激发射的荧光,因此第三滤光部2122r和第四滤光部2122g的面积均大于透光部2121的面积。而光源装置通常需要较高能量的绿色光,因此用于滤出绿色光的第四滤光部2122g的面积可大于用于滤出红色光的第三滤光部2122r的面积。
在光源装置中设置动态滤光部件212可以简化动态光学部件203的设计,在具体实施时,动态滤光部件212与动态光学部件203需要同步驱动。本申请实施例中的附图以动态滤光部件212和动态光学部件203采用轮体的形式进行举例说明,但不仅限于高速旋转形式的方案,包括高频移动、电转换透光等方案均在属于本申请的保护范围。
基于同一发明构思,本申请实施例还提供一种投影系统,图17为本申请实施例提供的投影系统的结构示意图。
如图17所示,投影系统包括上述任一光源装置100、光阀调制部件200和投影镜头300。其中,光阀调制部件200位于光源装置100的出光侧,投影镜头300位于光阀调制部件200的反射光路上。
光源装置100采用固定式荧光转换部件,固定式荧光转化方案去掉了荧光粉轮方案中的驱动元件,固定装配在光源装置系统中,可以大幅提高系统可靠性,没有机械运动,可 以减小光源装置结构设计尺寸。荧光材料由原来的环形面积缩小为小面积方形或圆形区域,大幅减小了所用的荧光材料的使用量,减少材料成本。另外,没有高速旋转的动态限制,可以对固定式荧光转换部件进行集中散热。
光阀调制部件200用于对入射光线进行调制后反射。在具体实施时光阀调制部件200可以采用数字微镜(Digital Micromirror Device,简称DMD)。DMD表面包括成千上万个微小反射镜,每个小反射镜可单独受驱动进行偏转,通过控制DMD的偏转角度使反射光入射到投影镜头300。
投影镜头300用于对光阀调制部件200的出射光进行成像,经过投影镜头300的成像之后用于投影成像。
根据第一发明构思,光源装置包括:激光光源阵列、二向色镜、动态光学部件、荧光转换部件和散热部件。激光光源阵列出射激光激发荧光转换部件出射荧光实现三基色光的出射。荧光转换部件采用固定式荧光转换部件,固定式荧光转化方案去掉了荧光粉轮方案中的驱动元件,固定装配在光源装置系统中,可以大幅提高系统可靠性,没有机械运动,可以减小光源装置结构设计尺寸。荧光材料由原来的环形面积缩小为小面积方形或圆形区域,大幅减小了所用的荧光材料的使用量,减少材料成本。另外,没有高速旋转的动态限制,可以对固定式荧光转换部件进行集中散热。采用简洁光路实现在一定激光功率下光学性能稳定、高效输出。
根据第二发明构思,激光光源阵列包括并排设置的第一激光光源组和第二激光光源组。第一激光光源组可以包括多个激光光源,第二激光光源组可以包括多个激光光源,第一激光光源组和第二激光光源组包括相同的激光光源,均用于出射第一波段的激光。
根据第三发明构思,二向色镜激光光源阵列的出光路径上。二向色镜是利用薄膜干涉原理在透明平板的表面镀膜形成,可以根据所需要增透或增反不同波段的光。二向色镜包括第一部和第二部,二向色镜的不同部分可以采用不同的镀膜工艺用于增透或增反不同波段的光线。其中,第一部用于透射第一波段的光线,第二部用于反射第一波段和第二波段的光线。
根据第四发明构思,光源装置还包括第一反射镜和第二反射镜。二向色镜包括两个第一部和两个第二部,第一部和第二部交替排列。第一反射镜位于第一激光光源组的出光侧,第一反射镜用于将第一激光光源组的出射光向两个第一部中的一个第一部反射。第二反射镜位于第二激光光源组的出光侧,第二反射镜用于将第二激光光源组的出射光向两个第一部中的另一个第一部反射。通过设置第一反射镜和第二反射镜为合适的角度,可以使第一激光光源组出射的激光经过第一反射镜反射后向其中一个第一部入射,第二激光光源组出射的激光经过第二反射镜反射后向另一个第一部入射。
根据第五发明构思,动态光学部件包括反射部和透射部,动态光学部件还包括驱动元 件,驱动元件可以驱动动态光学部件运动,从而使激光可以分时地入射到反射部和透射部。当激光入射到反射部时,激光被反射到二向色镜,进而被二向色镜向设定方向反射。当激光入射到透射部时,激光可以入射到荧光转换部件激发荧光转换部件发射荧光,受激发射的荧光再被反射到二向色镜,进而被二向色镜向设定方向反射。由此在设定方向上可以时序性地输出不同颜色的光,实现三基色光的出射。动态光学部件可以采用旋转、直线往复运动或电转换透光等方式实现反射部和透射部的切换。
根据第六发明构思,第一波段的光为蓝色光,第二波段包括第一子波段和第二子波段,第一子波段的光为红色光,第二子波段的光为绿色光。
根据第七发明构思,荧光转换部件包括:荧光转换层、增透层和反射层。荧光转换层用于在第一波段的光线的激发下出射第二波段的光线。增透层用于增透第一波段的光线,反射层用于反射第一波段和第二波段的光线。通过在荧光转换层的两侧设置增透层和反射层,可以增加第一波段的激光的透射以激发荧光转换层,并将荧光转换层受激发射的第二波段的荧光向二向色镜的方向进行反射,以使更多地荧光被利用。
根据第八发明构思,荧光转换部件还包括:导热层和连接层。导热层将激光激发点产生的热量迅速传导到整个荧光转换层片材,从而增加散热能力。连接层用于连接散热部件。当荧光转换部件采用不同的连接方式连接散热部件时,连接层可以采用不同的材料进行制作。
根据第九发明构思,散热部件可以采用金属散热装置、风冷装置、液冷装置或半导体制冷装置,对荧光转换部件进行高效散热。
根据第十发明构思,连接层包括:阻焊层和第一焊接层。散热部件可以采用半导体制冷装置。半导体制冷装置包括:第二焊接层、第一导热片、第二导热片、多个半导体热电偶和散热器。第二焊接层用于与第一焊接层焊接。半导体热电偶由P型半导体和N型半导体组成,多个热电偶组成的半导体集合。P型半导体和N型半导体之间由导电良好的金属导体连接成完整串联回路。半导体热电偶的两侧设置有第一导热片和第二导热片。当接入电源后,由于半导体制冷原理,靠近荧光转换部件的一端为制冷端,另外一端为放热端,在放热端连接散热器,可以对荧光转换部件进行高效散热。散热器可以采用金属散热片,也可以采用风冷、液冷等散热装置,在此不做限定。
根据第十一发明构思,光源装置还包括:位于二向色镜与动态光学部件之间的聚焦透镜组,位于激光光源阵列与二向色镜之间的准直透镜组,位于准直透镜组与二向色镜之间的匀光层,位于二向色镜的反射路径上的会聚透镜组,以及位于会聚透镜组背离二向色镜一侧的匀光部件。
根据第十二发明构思,动态光学部件中的透光部包括第一滤光部和第二滤光部。第一滤光部用于透射第一波段和第一子波段的光线,反射第二子波段的光线;第二滤光部用于 透射第一波段和第二子波段的光线,反射第一子波段的光线;动态光学部件中的反射部用于反射第一波段的光线。
根据第十三发明构思,光源装置还包括:位于二向色镜反射路径上的动态滤光部件。动态光学部件包括透射部和反射部。动态滤光部件包括透光部、第三滤光部和第四滤光部。第三滤光部用于过滤出射第一子波段的光线,第四滤光部用于过滤出射第二子波段的光线;透光部用于透射第一波段的光线。在光源装置中设置动态滤光部件可以简化动态光学部件的设计。
根据第十四发明构思,投影系统包括上述任一光源装置、光阀调制部件和投影镜头。其中,光阀调制部件位于光源装置的出光侧,投影镜头位于光阀调制部件的反射光路上。
尽管已描述了本申请的多个实施例,但本领域内的技术人员一旦得知了基本创造性概念,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型。

Claims (10)

  1. 一种光源装置,其特征在于,包括:
    激光光源阵列,用于出射第一波段的激光;
    二向色镜,所述激光光源阵列的出光路径上;所述二向色镜包括第一部和第二部,所述第一部用于透射所述第一波段的光线,所述第二部用于反射所述第一波段和第二波段的光线;
    动态光学部件,位于所述二向色镜背离所述激光光源阵列的一侧;所述动态光学部件包括反射部和透射部;
    荧光转换部件,位于所述动态光学部件背离所述二向色镜的一侧;所述荧光转换部件用于在所述第一波段的光的激发下出射所述第二波段的光线;
    散热部件,位于所述荧光转换部件背离所述动态光学部件的一侧;所述散热部件用于对所述荧光转换部件进行散热。
  2. 如权利要求1所述的光源装置,其特征在于,所述激光光源阵列包括并排设置的第一激光光源组和第二激光光源组;
    所述光源装置还包括第一反射镜和第二反射镜;所述第一反射镜位于所述第一激光光源组的出光侧,所述第二反射镜位于所述第二激光光源组的出光侧;
    所述二向色镜包括两个所述第一部和两个所述第二部,所述第一部和所述第二部交替排列;所述第一反射镜用于将所述第一激光光源组的出射光向所述两个第一部中的一个第一部反射,所述第二反射镜用于将所述第二激光光源组的出射光向所述两个第一部中的另一个第一部反射。
  3. 如权利要求1所述的光源装置,其特征在于,所述荧光转换部件包括:
    荧光转换层,用于在所述第一波段的光线的激发下出射所述第二波段的光线;
    增透层,位于所述荧光转换层面向所述动态光学部件的一侧;所述增透层用于增透所述第一波段的光线;
    反射层,位于所述荧光转换层背离所述增透层的一侧;所述反射层用于反射所述第一波段和所述第二波段的光线。
  4. 如权利要求3所述的光源装置,其特征在于,所述荧光转换部件还包括:
    导热层,位于所述反射层背离所述荧光转换层的一侧;
    连接层,位于所述导热层背离所述反射层的一侧;所述连接层用于连接所述散热部件;
    其中,所述连接层包括:
    阻焊层,位于所述导热层背离所述反射层的一侧;
    第一焊接层,位于所述阻焊层背离所述导热层的一侧;所述第一焊接层用于焊接所述散热部件。
  5. 如权利要求4所述的光源装置,其特征在于,所述散热部件采用金属散热装置、风冷装置、液冷装置或半导体制冷装置;
    其中,所述半导体制冷装置包括:
    第二焊接层,位于靠近所述第一焊接层的一侧;所述第二焊接层用于与所述第一焊接层焊接;
    第一导热片,位于所述第二焊接层背离所述第一焊接层的一侧;
    第二导热片,位于所述第一导热片背离所述第二焊接层的一侧;
    多个半导体热电偶,位于所述第一导热片和所述第二导热片之间;所述多个半导体热电偶之间相互串联;
    散热器,位于所述第二导热片背离所述第一导热片的一侧。
  6. 如权利要求1所述的光源装置,其特征在于,所述动态光学部件中的所述透光部包括第一滤光部和第二滤光部;所述第二波段包括第一子波段和第二子波段;
    所述第一滤光部用于透射所述第一波段和所述第一子波段的光线,反射所述第二子波段的光线,所述第二滤光部用于透射所述第一波段和所述第二子波段的光线,反射所述第一子波段的光线;所述动态光学部件中的所述反射部用于反射所述第一波段的光线。
  7. 如权利要求1所述的光源装置,其特征在于,还包括:
    动态滤光部件,位于所述二向色镜的反射路径上;所述动态滤光部件包括第三滤光部、第四滤光部和透光部;所述第二波段包括第一子波段和第二子波段;
    所述第三滤光部用于过滤出射第一子波段的光线,所述第四滤光部用于过滤出射第二子波段的光线;所述动态滤光部件中的透光部用于透射所述第一波段的光线。
  8. 如权利要求6或7所述的光源装置,其特征在于,所述第一波段的光为蓝色光,所述第一子波段的光为红色光,所述第二子波段的光为绿色光。
  9. 如权利要求1~7任一项所述的光源装置,其特征在于,还包括:
    准直透镜组,位于激光光源阵列与所述二向色镜之间;
    匀光层;位于所述准直透镜组与所述二向色镜之间;
    聚焦透镜组,位于所述二向色镜与所述动态光学部件之间;
    会聚透镜组,位于所述二向色镜的反射路径上;
    匀光部件,位于所述会聚透镜组背离所述二向色镜的一侧。
  10. 一种投影系统,其特征在于,包括如权利要求1~9任一项所述的光源装置、光阀调制部件和投影镜头;
    其中,所述光阀调制部件位于所述光源装置的出光侧,所述光阀调制部件用于对入射光线进行调制后反射;所述投影镜头位于所述光阀调制部件的反射光路上,所述投影镜头用于对所述光阀调制部件的出射光进行成像。
PCT/CN2023/084485 2022-06-29 2023-03-28 一种光源装置和投影系统 WO2024001353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210755997.6A CN114995036A (zh) 2022-06-29 2022-06-29 一种光源装置和投影系统
CN202210755997.6 2022-06-29

Publications (2)

Publication Number Publication Date
WO2024001353A1 true WO2024001353A1 (zh) 2024-01-04
WO2024001353A9 WO2024001353A9 (zh) 2024-03-21

Family

ID=83019310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084485 WO2024001353A1 (zh) 2022-06-29 2023-03-28 一种光源装置和投影系统

Country Status (2)

Country Link
CN (1) CN114995036A (zh)
WO (1) WO2024001353A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114995036A (zh) * 2022-06-29 2022-09-02 青岛海信激光显示股份有限公司 一种光源装置和投影系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322055A1 (en) * 2012-05-30 2013-12-05 Nichia Corporation Light source device and projector
CN113934097A (zh) * 2021-09-27 2022-01-14 青岛海信激光显示股份有限公司 投影光源和投影设备
CN114995036A (zh) * 2022-06-29 2022-09-02 青岛海信激光显示股份有限公司 一种光源装置和投影系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155939B2 (ja) * 2013-07-30 2017-07-05 株式会社リコー 照明装置および投射表示装置
CN204313225U (zh) * 2014-11-29 2015-05-06 杨毅 发光装置和照明装置
CN106195929A (zh) * 2016-09-03 2016-12-07 超视界激光科技(苏州)有限公司 激光光源模组
CN207780461U (zh) * 2017-11-30 2018-08-28 云赛智联股份有限公司 一种激光转换光源装置
JP6768204B2 (ja) * 2018-03-26 2020-10-14 カシオ計算機株式会社 光源装置及び投影装置
JP2020030360A (ja) * 2018-08-23 2020-02-27 株式会社リコー 光源装置および画像表示装置
CN111142324A (zh) * 2018-11-05 2020-05-12 扬明光学股份有限公司 固定式波长转换装置及应用其的投影机
CN109283784B (zh) * 2018-12-03 2020-03-31 四川长虹电器股份有限公司 无荧光色轮激光投影光源系统
CN111367139A (zh) * 2020-04-15 2020-07-03 青岛海信激光显示股份有限公司 荧光组件以及激光投影仪
CN113050354B (zh) * 2021-03-05 2023-09-15 青岛海信激光显示股份有限公司 光源组件和投影设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322055A1 (en) * 2012-05-30 2013-12-05 Nichia Corporation Light source device and projector
CN113934097A (zh) * 2021-09-27 2022-01-14 青岛海信激光显示股份有限公司 投影光源和投影设备
CN114995036A (zh) * 2022-06-29 2022-09-02 青岛海信激光显示股份有限公司 一种光源装置和投影系统

Also Published As

Publication number Publication date
CN114995036A (zh) 2022-09-02
WO2024001353A9 (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
JP6786546B2 (ja) 波長変換装置、発光装置及び投影システム
EP1881367B1 (en) Projector device, multilayer light-emitting diode device, and reflective light-emitting diode unit
EP2940524B1 (en) Light-emitting device and related projection system
WO2024001353A1 (zh) 一种光源装置和投影系统
US20190265583A1 (en) Light source device, illumination apparatus, and projector apparatus
JP5358878B2 (ja) 発光素子、発光モジュール、照明装置、および画像投影装置
CN109578823B (zh) 一种激光二极管和荧光粉膜同时冷却的激光白光光源
CN111338168A (zh) 光源装置、光源装置的驱动方法以及投影仪
CN111367139A (zh) 荧光组件以及激光投影仪
CN113671780A (zh) 发光单元、光源系统和激光投影设备
CN210323743U (zh) 光源装置和投影系统
WO2021208668A1 (zh) 光源装置、光源装置的驱动方法以及投影仪
CN113671781B (zh) 发光单元、光源系统和激光投影设备
WO2022116630A1 (zh) 光源装置
WO2024002283A1 (zh) 光源装置及投影系统
CN117348325A (zh) 一种光源装置和投影系统
CN109424943B (zh) 波长转换装置和激光荧光转换型光源
CN109424941B (zh) 波长转换装置和激光荧光转换型光源
WO2021052512A1 (zh) 荧光转换部件及其制造方法、光源装置、显示系统
WO2024065695A1 (en) Polarization light source apparatus
CN110837198A (zh) 波长转换部件及激光光源
US11688834B2 (en) Wavelength conversion member and light-emitting device for efficient wavelength conversion
WO2022062916A1 (zh) 光源装置和投影设备
CN216848449U (zh) 光学系统和投影装置
CN217507922U (zh) 激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829544

Country of ref document: EP

Kind code of ref document: A1