WO2024001285A1 - 智能头戴设备及其壳体 - Google Patents

智能头戴设备及其壳体 Download PDF

Info

Publication number
WO2024001285A1
WO2024001285A1 PCT/CN2023/080462 CN2023080462W WO2024001285A1 WO 2024001285 A1 WO2024001285 A1 WO 2024001285A1 CN 2023080462 W CN2023080462 W CN 2023080462W WO 2024001285 A1 WO2024001285 A1 WO 2024001285A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
weight
mounted device
reducing frame
smart head
Prior art date
Application number
PCT/CN2023/080462
Other languages
English (en)
French (fr)
Inventor
李美玲
李春
凌风光
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2024001285A1 publication Critical patent/WO2024001285A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features

Definitions

  • the present application relates to the technical field of wearable devices, and more specifically, to a housing of a smart head-mounted device and a smart head-mounted device having the housing of the smart head-mounted device.
  • VR's shell is usually supported by injection molding materials or carbon fiber composite structures. Although such materials have high strength, due to their high density, they greatly increase the weight of the product and reduce the user's weight. Use experience.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • one object of the present invention is to provide a housing for a smart head-mounted device, which has the advantages of high strength and light weight.
  • Another object of the present invention is to provide an electronic device composed of the housing of the above-mentioned smart head-mounted device.
  • the present invention provides the following technical solutions.
  • the housing of a smart head-mounted device according to an embodiment of the first aspect of the present invention, at least a part of the housing is formed into a weight-reducing frame, and the weight-reducing frame is at least made of organic aerogel material.
  • the weight-reducing frame The density is 0.4g/cm 3 -1.3g/cm 3 , and the flexural modulus of the weight-reducing frame is greater than 2.5GPa.
  • the housing is integrally formed into the weight-reducing frame.
  • the housing further includes an auxiliary support part, which is bonded to the weight-reducing frame or integrally formed into the housing.
  • the auxiliary support part is made of engineering plastics, stainless steel or lightweight prepared from at least one of the alloys.
  • the weight-reducing frame also contains reinforcing materials.
  • the mass percentage of the organic airgel material in the total weight of the weight-reducing frame is 30%-90%, and the reinforcing materials account for all the weight-reducing frames.
  • the mass percentage of the total weight of the weight-reduction frame is 10%-70%; and/or the specific modulus of the weight-reduction frame is greater than 3.5GPa ⁇ cm 3 /g.
  • the organic airgel material has a matrix skeleton and a pore structure, and the reinforcing material is reinforcing fibers distributed within the matrix skeleton and the pore structure.
  • the reinforcing material is at least one of carbon fiber, glass fiber, aramid fiber and PBO fiber.
  • the reinforcing material is at least one of chopped fiber powder, non-woven mat, and fiber fabric.
  • the length of the reinforcing fibers is greater than 1 mm.
  • the bending strength of the weight-reducing frame is greater than 30 MPa.
  • the weight-reducing frame also contains thermally conductive fillers, and the thermally conductive fillers are at least one of metal fillers and inorganic non-metallic fillers.
  • the thermal conductivity of the thermally conductive filler is greater than 60W/m ⁇ K, and the thermal conductivity of the weight-reducing frame is greater than or equal to 0.55W/m ⁇ K.
  • the weight reduction frame has a loss factor greater than 0.01.
  • the organic aerogel includes at least one of polyimides, polyamides, polyesters, aldehydes, polyolefins and polysaccharides.
  • the weight-reducing frame is a piece of non-transparent material.
  • the housing includes: a main housing provided with a wearing portion suitable for wearing; a front housing connected to the main housing and connected with the main housing; The main housing cooperates to define an accommodation space, wherein at least a portion of the front housing and the main housing form the weight-reducing frame.
  • a wearable device includes: a housing according to any one of the above embodiments; and an optical lens, the optical lens being provided on the housing.
  • the casing of the smart head-mounted device According to the casing of the smart head-mounted device according to the embodiment of the present invention, at least a part of the casing is provided as a weight-reducing frame prepared by including the organic aerogel material, and is prepared from the organic aerogel material.
  • the resulting weight-reducing frame has a large number of pores inside.
  • the weight-reducing frame By controlling the density and bending modulus of the weight-reducing frame, the weight-reducing frame has a lighter mass on the basis of meeting the stiffness requirements, making it more comfortable for users to wear and improving user comfort. Use experience.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • At least part of the housing of the smart headset according to an embodiment of the present invention is formed into a weight-reducing frame.
  • the weight-reducing frame is at least made of organic aerogel material.
  • the density of the weight-reducing frame is 0.4g/cm 3 -1.3g/ cm 3 , the flexural modulus of the weight-reduced frame is greater than 2.5GPa.
  • the casing of the smart head-mounted device according to the embodiment of the present invention can be entirely composed of a weight-reducing frame, or only part of it can be a weight-reducing frame, and the remaining parts are made of conventional materials for the casing of the smart head-mounted device.
  • Weight-reducing frames can also be prepared by adding other reinforcing materials or reinforcing structures to organic airgel materials.
  • the density of the weight-reducing frame is controlled between 0.4g/cm 3 -1.3g/cm 3 , for example, it can be 0.4g/cm 3 , 0.7g/cm 3 , 1g/cm 3 , 1.2g/cm 3 , 1.3g/ cm 3 etc., the bending modulus of the weight-reduced frame is set to greater than 2.5GPa, which can meet the stiffness needs of the shell.
  • the organic aerogel material is a solid material with large porosity and high specific surface area. Most of its volume is composed of air.
  • the density of the weight-reducing frame can be controlled by controlling the porosity and Parameters such as pore size can be adjusted.
  • Bending modulus refers to the ability of a material to resist bending deformation within its elastic limit. Bending modulus is the ratio of bending stress to deformation caused by bending. Bending performance is one of the important physical performance indicators of the shell of smart head-mounted devices. Bending modulus is one of the important data to detect whether the quality of the shell meets the standard. Usually, the greater the bending modulus of the shell, the stiffness and The stronger the resistance to deformation.
  • the weight-reduced frame made of organic aerogel materials can adjust its flexural modulus by adjusting the porosity, pore size and other parameters of the organic aerogel material, thereby achieving the requirement of having a higher flexural modulus.
  • the casing of the smart head-mounted device according to the embodiment of the present invention, at least a part of the casing is configured to include a weight-reducing frame made of organic aerogel material.
  • a weight-reducing frame made of organic aerogel material.
  • the shell includes: a main shell and a front shell.
  • the main shell is provided with a wearing part suitable for wearing.
  • the front shell is connected to the main shell and cooperates with the main shell to define an accommodation space.
  • the housing of the smart head-mounted device mainly consists of two parts: the main housing and the front housing.
  • the main housing is provided with a wearing structure for wearing the smart head-mounted device.
  • the front shell is located at the front of the main shell, and cooperates with the main shell to form a storage space.
  • the storage space can be used to assemble the motherboard, optical components, heat sinks and other structures of the smart headset.
  • the main shell constitutes the main structure of the smart head-mounted device shell.
  • the weight of the smart head-mounted device shell is also mainly concentrated on the main shell.
  • the main shell and the front shell can be controlled separately.
  • the material ratio of the body is adjusted so that the main shell and the front shell meet different density and flexural modulus requirements.
  • the housing is integrally formed as a weight-reducing frame.
  • the entire housing of the smart headset is composed of a weight-reducing frame, and the weight-reducing frame is at least made of organic aerogel material. Therefore, the smart headset according to the embodiment of the present invention is The entire housing of the wearable device is at least made of organic aerogel material. When the entire weight-reducing frame is made of organic aerogel material, the entire housing of the smart head-mounted device according to the embodiment of the present invention is also made of organic aerogel material.
  • the entire housing of the smart headset can be made of a weight-reducing frame, the entire housing of this structure can be made of organic aerogel materials, which is easy to prepare and can more accurately control the movement of the housing. Density and bending modulus, thereby more accurately controlling the stiffness and lightweight of the shell, and improving the overall designability of the smart headset shell.
  • the shell further includes an auxiliary support part, which is bonded to the weight-reducing frame or integrally formed into the shell.
  • the casing of the smart headset does not only include the weight reduction frame, but is composed of the weight reduction frame and the auxiliary support part.
  • the auxiliary support part can be bonded to the weight reduction frame. connection, or the auxiliary support part and the weight-reducing frame can be prepared by integral molding.
  • the auxiliary support part and the weight-reducing frame are prepared by integral molding, the auxiliary support part can be formed in advance, and then embedded into the mold as a prefabricated insert and injection molded or molded together with the organic airgel material. Therefore, the shell of this structure can be prepared in various ways and can be flexibly adjusted according to the needs of use, making it more practical.
  • the auxiliary support part is made of at least one of engineering plastics, stainless steel, or light alloy.
  • the auxiliary support part can constitute the skeleton part of the casing of the smart headset.
  • Selecting materials such as engineering plastics, stainless steel, or light alloys as the skeleton part of the casing can not only improve the overall strength and rigidity of the casing, but also Forming relatively complex shapes to meet the production needs of different products.
  • the weight-reducing frame composed of organic aerogel materials can be used as an auxiliary support structure for the housing of smart head-mounted devices. It can reduce the weight of the housing while ensuring the overall strength and stiffness requirements of the housing.
  • the weight-reducing frame also contains reinforcing materials.
  • the organic airgel material accounts for 30%-90% of the total weight of the weight-reducing frame, and the reinforcing materials account for 30%-90% of the total weight of the weight-reducing frame.
  • the mass percentage of the total weight of the frame is 10%-70%; and/or the specific modulus of the weight-reduced frame is greater than 3.5GPa ⁇ cm 3 /g.
  • the weight-reducing frame can be prepared from organic airgel materials and reinforcing materials.
  • the percentage of organic airgel material in the overall weight of the weight-reducing frame can be between 30% and 90%, and the remaining components are Can all be reinforced materials.
  • the mass percentage of organic airgel materials in the weight-reducing frame is 30%
  • the mass percentage of reinforcing materials is 70%
  • the mass percentage of organic aerogel materials in the weight-reducing frame is 40%
  • the mass percentage of the organic airgel material in the weight-reducing frame is 60%; when the mass percentage of the organic airgel material in the weight-reducing frame is 50%, the mass percentage of the reinforcing material is 50%; when the mass percentage of the organic aerogel material in the weight-reducing frame is At 90%, the mass percentage of reinforcement material is 10%.
  • the mass percentage of the organic airgel material in the weight reduction framework needs to reach at least 30% to achieve the effect of continuous matrix reinforcement. If the content of organic aerogel material is too high, it will lead to a reduction in the overall strength of the weight-reducing frame. Therefore, it is necessary to control the mass percentage of organic aerogel materials in the weight-reducing frame to not exceed 90%. At the same time, the reinforcing materials in the weight-reducing frame need to be controlled. The mass percentage does not exceed 70%.
  • the specific modulus is the ratio of the modulus to the density of the material, and is an important indicator of the material's load-bearing capacity.
  • the greater the specific modulus of the material, the greater the rigidity of the material, and the rigidity of parts made from the material is also The bigger. According to the weight-reduction frame according to the embodiment of the present invention, by adjusting the percentage of the reinforcing material, the stiffness requirements can be effectively ensured.
  • the rigidity and strength of the weight-reducing frame can be further improved.
  • the weight-reducing frame can be further reduced. The material consumption of the weight-reducing frame is reduced, thereby reducing the overall weight of the shell.
  • the organic airgel material has a matrix skeleton and a pore structure, and the reinforcing material is reinforcing fibers distributed within the matrix skeleton and pore structure.
  • the weight-reduction frame of the casing of the smart head-mounted device can be made of a composite of organic aerogel materials and reinforced fibers, wherein the organic aerogel material with a pore structure can constitute an auxiliary support part of the weight-reduction frame, and
  • the reinforcing fibers have a fibrous structure and can be evenly distributed within the matrix skeleton and pore structure of the organic airgel material, making the flexural modulus of the organic airgel composite material consistent with The flexural modulus will also increase accordingly, and the porosity will decrease, resulting in an increase in the overall density, which will not increase the volume of the weight-reducing frame, but also enhance the strength of the weight-reducing frame.
  • the reinforcing material may be at least one of carbon fiber, glass fiber, aramid fiber and PBO fiber.
  • the reinforcing material may also include chopped fibers or continuous fibers in different states, wherein the reinforcing material may be at least one of chopped fiber powder, non-woven felt and fiber fabric.
  • reinforcement materials are available from a wide range of sources, with low cost and high practicability.
  • the length of the reinforcing fibers is greater than 1 mm. Since the reinforcing fibers have a fibrous structure, if the length of the reinforcing fibers is too short, it will be difficult to play a supporting role in increasing the strength, and the reinforcing effect on the weight-reducing frame will be poor. Therefore, by controlling the length of the reinforcing fibers, the reinforcing effect of the weight-reducing frame can be ensured, thereby ensuring the strength of the casing of the smart headset.
  • the shell strength of smart head-mounted devices is low, and the shell is prone to deformation and damage, resulting in product damage. Therefore, it is necessary to ensure that the smart head-mounted device
  • the casing of the device has a certain bending strength.
  • the bending strength of the weight-reducing frame is greater than 30 MPa. This ensures that the housing of the smart head-mounted device has strong strength and is not prone to deformation and damage.
  • the weight-reducing frame also contains thermally conductive filler, and the thermally conductive filler is at least one of a metal filler and an inorganic non-metallic filler.
  • the thermal conductivity of the thermally conductive filler is greater than 60W/m ⁇ K, and the thermal conductivity of the weight-reducing frame is greater than or equal to 0.55W/m ⁇ K.
  • the casing of a smart head-mounted device can usually include a main casing and a front cover.
  • the casing is equipped with an optical lens, and the optical lens generates heat during operation.
  • a thermally conductive filler can be placed in the weight-reducing frame. That is, a thermally conductive material can be added to the organic aerogel material to prepare the housing of the smart headset.
  • the thermally conductive filler can be a metal filler or a high thermal conductivity
  • One or more of the inorganic non-metallic fillers are mixed, preferably boron nitride or graphene.
  • thermally conductive filler to the housing of a smart head-mounted device, the thermal conductivity of the housing can be improved, thereby improving the heat dissipation effect of the wearable device on the basis of meeting the stiffness and quality requirements of the housing.
  • the main shell will be in direct contact with the human body.
  • the front case is not in direct contact with the human body, so appropriate thermal conductive fillers can be added to the front case to increase the thermal conductivity of the front case and avoid transferring heat to the human body and affecting the user's wearing experience.
  • the weight reduction frame has a loss factor greater than 0.01.
  • An optical lens is installed in the casing of the smart head-mounted device.
  • the weight-reducing frame of the casing is at least made of organic aerogel material.
  • the organic aerogel material has a pore structure. By controlling the loss factor of the weight-reducing frame, it can It has good damping.
  • stress acts on the pore structure inside the organic airgel material the skeleton of the organic airgel material deforms, and the fluid in the pore structure is eliminated.
  • it is necessary to eliminate the viscous fluid inside the pore structure. Work is done, resulting in energy loss, and the mechanical energy is converted into internal energy during vibration, thereby protecting the optical lens in the wearable device housing from damage caused by impact.
  • the organic aerogel includes at least one of polyimides, polyamides, polyesters, aldehydes, polyolefins and polysaccharides.
  • aerogel refers to a nano-scale porous solid material formed by using the sol-gel method to replace the liquid phase in the gel with gas after drying, and the aerogel also has the properties of a gel.
  • organic aerogel can be an aerogel made of polymeric organic materials. It not only has the characteristics of porous and light weight, but also has a larger chain length than inorganic aerogel materials. It has a certain strength and is suitable for making shells with certain mechanical requirements. In practical applications, one or more of the above organic aerogel materials can be selected according to the actual needs of the wearable device, which has stronger applicability.
  • the weight-reducing frame is a piece of non-transparent material.
  • the entire shell of the smart headset is made of opaque material, and the color of the shell can be adjusted by adding materials of corresponding colors to the organic aerogel.
  • a wearable device includes a housing of the smart head-mounted device according to the above embodiment, and an optical lens is provided in the housing.
  • the wearable device may be an electronic device such as VR, which is not limited in this application.
  • the wearable device according to the embodiments of the present invention also has corresponding technical effects, that is, the weight of the wearable device can be greatly reduced, making the More comfortable to wear.
  • organic aerogel composite materials synthesize polyimide hydrogel, and then add chopped carbon fibers with a length of 3 mm. The mass content of chopped carbon fibers is 50% to obtain an organic aerogel composite containing reinforced fibers. Material.
  • the prepared organic airgel composite material was injected into a mold to be integrally formed into a shell, and then freeze-dried and imidized to obtain the final shell one, in which the porosity of the shell was 47%.
  • the second shell is made of PC integrated injection molding.
  • the structure and dimensions of the second housing in the comparative example are the same as those of the first housing in the embodiment.
  • the mass of shell one using organic airgel composite material in the example is only 71.5 of the mass of injection molded shell two. %, and the weight reduction reaches 28.5%.
  • the flexural modulus of shell one using organic airgel composite material in the embodiment is 1.6 times that of shell two using injection molding in the comparative example.
  • the specific modulus of shell one using organic airgel composite material is that of the comparative example.
  • the specific modulus of injection molded shell two is 2.2 times.
  • the flexural modulus and specific modulus can be used to measure the anti-damage ability of the product, indicating that shell one using organic airgel composite materials according to embodiments of the present invention Not only does it have better strength and damage resistance, but on the basis of ensuring the strength of the product structure design, it can also significantly reduce the weight of the product and improve the user's wearing comfort.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Golf Clubs (AREA)
  • Pens And Brushes (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

一种智能头戴设备及其壳体,智能头戴设备的壳体的至少一部分形成为减重框架,减重框架至少由有机气凝胶材料制成,减重框架的密度为0.4g/cm 3-1.3g/cm 3,减重框架的弯曲模量大于2.5GPa。

Description

智能头戴设备及其壳体 技术领域
本申请涉及可穿戴设备技术领域,更具体地,涉及一种智能头戴设备的壳体以及具有该智能头戴设备的壳体的智能头戴设备。
背景技术
可穿戴设备在生活中的应用越来越广泛,用户对于可穿戴设备的需求和体验感也与日俱增。VR作为一种常见的可穿戴设备,其壳体通常采用注塑材料或者碳纤维复合结构来支撑,此类材料虽然强度较高,但是由于密度较大,因此极大的增加了产品重量,降低了用户使用体验。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种智能头戴设备的壳体,该壳体具有强度高、质量轻的优点。
本发明的另一个目的在于提供上述智能头戴设备的壳体组成的电子设备。
为了实现以上目的,本发明提供了以下技术方案。
根据本发明第一方面实施例的智能头戴设备的壳体,所述壳体的至少一部分形成为减重框架,所述减重框架至少由有机气凝胶材料制成,所述减重框架的密度为0.4g/cm3-1.3g/cm3,所述减重框架的弯曲模量大于2.5GPa。
根据本发明的一些实施例,所述壳体整体形成为所述减重框架。
根据本发明的一些实施例,所述壳体还包括辅助支撑部,所述辅助支撑部与所述减重框架粘结或一体成型为所述壳体。
根据本发明的一些实施例,所述辅助支撑部由工程塑料、不锈钢或轻 质合金中的至少一种制备而成。
根据本发明的一些实施例,所述减重框架内还含有增强材料,所述有机气凝胶材料占所述减重框架总重量的质量百分比为30%-90%,所述增强材料占所述减重框架总重量的质量百分比为10%-70%;且/或,所述减重框架的比模量大于3.5GPa·cm3/g。
根据本发明的一些实施例,所述有机气凝胶材料具有基体骨架和孔隙结构,所述增强材料为分布于所述基体骨架和所述孔隙结构内的增强纤维。
根据本发明的一些实施例,所述增强材料为碳纤维、玻璃纤维、芳纶纤维和PBO纤维中的至少一种。
根据本发明的一些实施例,所述增强材料为短切纤维粉、无纺布毡和纤维织物中的至少一种。
根据本发明的一些实施例,所述增强纤维的长度大于1mm。
根据本发明的一些实施例,所述减重框架的弯曲强度大于30MPa。
根据本发明的一些实施例,所述减重框架内还含有导热填料,所述导热填料为金属填料和无机非金属填料的至少一种。
根据本发明的一些实施例,所述导热填料的导热系数大于60W/m·K,所述减重框架的导热系数大于等于0.55W/m·K。
根据本发明的一些实施例,所述减重框架的损耗因子大于0.01。
根据本发明的一些实施例,所述有机气凝胶包括聚酰亚胺类、聚酰胺类、聚酯类、醛类、聚烯烃类和多糖类中的至少一种。
根据本发明的一些实施例,所述减重框架为非透明材料件。
根据本发明的一些实施例,所述壳体包括:主壳体,所述主壳体设有适于佩戴的佩戴部;前壳,所述前壳与所述主壳体连接,并与所述主壳体配合限定出容纳空间,其中,所述前壳和所述主壳体的至少一部分形成为所述减重框架。
根据本发明第二方面实施例的可穿戴设备,包括:根据上述实施例任一项所述的壳体;和光学镜头,所述光学镜头设于所述壳体。
根据本发明实施例的智能头戴设备的壳体,通过将壳体的至少一部分设置为包含有机气凝胶材料制备而成的减重框架,由有机气凝胶材料制备 而成的减重框架内部具有大量孔隙,通过控制减重框架的密度和弯曲模量,使减重框架在满足刚度需求的基础上,具有更轻的质量,使用户佩戴更舒适,提高了用户使用体验。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面首先具体描述根据本发明实施例的智能头戴设备的壳体。
根据本发明实施例的智能头戴设备的壳体的至少一部分形成为减重框架,减重框架至少由有机气凝胶材料制成,减重框架的密度为0.4g/cm3-1.3g/cm3,减重框架的弯曲模量大于2.5GPa。
换言之,根据本发明实施例的智能头戴设备的壳体可以整体均由减重框架构成,也可以仅有部分为减重框架,其余部分采用智能头戴设备的壳体的常规材料制备而成。减重框架也可以通过在有机气凝胶材料中添加其他加强材料或加强结构制备得到。减重框架的密度控制在0.4g/cm3-1.3g/cm3之间,例如可以是0.4g/cm3、0.7g/cm3、1g/cm3、1.2g/cm3、1.3g/cm3 等,减重框架的弯曲模量设置为大于2.5GPa,可以满足壳体的刚度需要。
其中需要说明的是,有机气凝胶材料是一种孔隙率大、比表面积高的固体材料,其体积大部分由空气构成,减重框架的密度可以通过控制有机气凝胶材料中孔隙率、孔径大小等参数进行调节。弯曲模量是指材料在弹性极限内抵抗弯曲变形的能力,弯曲模量即弯曲应力与弯曲所产生的形变之比。弯曲性能是智能头戴设备的壳体的重要物理性能指标之一,弯曲模量是检测壳体质量是否达标的重要数据之一,通常壳体的弯曲模量越大,说明壳体的刚度和抗变形能力越强。由有机气凝胶材料制备而成的减重框架,可以通过调整有机气凝胶材料的孔隙率、孔径大小等参数调节其弯曲模量,从而达到具有较高的弯曲模量的要求。
由此,根据本发明实施例的智能头戴设备的壳体,通过将壳体的至少一部分设置为包含有机气凝胶材料制备而成的减重框架,由有机气凝胶材料制备而成的减重框架内部具有大量孔隙,通过控制减重框架的密度和弯曲模量,使减重框架在满足刚度需求的基础上,具有更轻的质量,使用户佩戴更舒适,提高了用户使用体验。
智能头戴设备的壳体的结构可以根据智能头戴设备的具体需要进行合理设置,从而满足用户的不同使用需求。在本发明的一些具体实施例中,壳体包括:主壳体和前壳,主壳体设有适于佩戴的佩戴部,前壳与主壳体连接,并与主壳体配合限定出容纳空间,其中,前壳和主壳体的至少一部分形成为减重框架。
换句话说,根据本发明实施例的智能头戴设备的壳体主要由主壳体和前壳两部分组成,其中,主壳体上设有用于佩戴智能头戴设备的佩戴结构,例如可以是头环、镜腿等,前壳设于主壳体的前部,并且与主壳体配合形成容纳空间,容纳空间内可以用于装配智能头戴设备的主板、光学组件、散热件等结构。主壳体构成了智能头戴设备的壳体的主体结构,智能头戴设备的壳体的重量也主要集中在主壳体上,在壳体制备过程中,可以分别控制主壳体和前壳体的材料配比,以使主壳体和前壳体满足不同的密度和弯曲模量需求。
根据本发明的一个具体实施例,壳体整体形成为减重框架。
也就是说,在本实施例中,智能头戴设备的壳体整体均由减重框架构成,而减重框架至少由有机气凝胶材料制备而成,因此,根据本发明实施例的智能头戴设备的壳体整体至少由有机气凝胶材料制备而成。当减重框架整体由有机气凝胶材料制备而成时,则根据本发明实施例的智能头戴设备的壳体整体也由有机气凝胶材料制备而成。
由此,通过将智能头戴设备的壳体整体均由减重框架构成,该结构的壳体整体均可以由有机气凝胶材料制备而成,制备方便,并且可以更加精确的控制壳体的密度和弯曲模量,从而更精确的控制壳体的刚度和轻量化程度,提高智能头戴设备的壳体的整体可设计性。
在本发明的一些具体实施方式中,壳体还包括辅助支撑部,辅助支撑部与减重框架粘结或一体成型为壳体。
换句话说,在本实施例中,智能头戴设备的壳体不仅仅只包含减重框架,而是由减重框架和辅助支撑部两部分组成,辅助支撑部可以与减重框架通过粘结的方式连接,也可以将辅助支撑部与减重框架通过一体成型的方式制备而成。
其中,当辅助支撑部与减重框架通过一体成型的方式制备时,可以先将辅助支撑部提前成型,然后作为预制嵌件镶嵌到模具中与有机气凝胶材料一起注塑或者模压成型。由此,该结构的壳体制备方式多样,可以根据使用需要进行灵活调整,实用性更强。
可选地,根据本发明的一个实施例,辅助支撑部由工程塑料、不锈钢或轻质合金中的至少一种制备而成。
具体地,辅助支撑部可以构成智能头戴设备的壳体的骨架部分,选用工程塑料、不锈钢或轻质合金等材质作为壳体的骨架部分,不仅可以提高壳体的整体强度和刚性,而且可以成型比较复杂的形状,满足不同产品的生产需求。由有机气凝胶材料构成的减重框架可以作为智能头戴设备的壳体的辅助支撑结构,在保证壳体的整体强度和刚度需求的基础上,可以起到减轻壳体的重量的效果。
在本发明的一些可选实施例中,减重框架内还含有增强材料,有机气凝胶材料占减重框架总重量的质量百分比为30%-90%,增强材料占减重框 架总重量的质量百分比为10%-70%;且/或,减重框架的比模量大于3.5GPa·cm3/g。
也就是说,减重框架可以由有机气凝胶材料和增强材料共同制备而成,其中,有机气凝胶材料占减重框架整体重量的百分比可以在30%-90%之间,剩余成分则可以均为增强材料。例如,当减重框架中有机气凝胶材料的质量百分比为30%时,增强材料的质量百分比则为70%;当减重框架中有机气凝胶材料的质量百分比为40%时,增强材料的质量百分比则为60%;当减重框架中有机气凝胶材料的质量百分比为50%时,增强材料的质量百分比则为50%;当减重框架中有机气凝胶材料的质量百分比为90%时,增强材料的质量百分比则为10%。
其中,由于有机气凝胶材料具有孔隙结构,有机气凝胶材料在减重框架中的质量百分比至少需要达到30%,才能达到连续基体增强的效果。如果有机气凝胶材料含量过高,则会导致减重框架整体强度降低,因此,需要控制减重框架中有机气凝胶材料的质量百分比不超过90%,同时,控制减重框架中增强材料的质量百分比不超过70%。
比模量是材料的模量与密度之比,是材料承载能力的一个重要指标,材料的比模量越大,说明该材料的刚性越大,由该材料制备而成的零件的刚性也就越大。根据本发明实施例的减重框架,通过调节其中增强材料的百分比,可以有效保证其对于刚度的需求。
由此,通过在减重框架内增加增强材料与有机气凝胶材料进行配合,可以进一步提高减重框架的刚性和强度,在保证了减重框架的刚性和强度的基础上,则可以进一步减小减重框架的材料用量,从而起到降低壳体整体重量的效果。
可选地,根据本发明的一个实施例,有机气凝胶材料具有基体骨架和孔隙结构,增强材料为分布于基体骨架和孔隙结构内的增强纤维。
具体地,智能头戴设备的壳体的减重框架可以由有机气凝胶材料和增强纤维复合而成,其中,具有孔隙结构的有机气凝胶材料可以构成减重框架的辅助支撑部分,而增强纤维为纤维状结构,可以均匀分布于有机气凝胶材料的基体骨架和孔隙结构内,使得有机气凝胶复合材料的弯曲模量与 弯曲模量也会相应增加,孔隙率会下降,导致整体密度增加,从而既不会增加减重框架的体积,又可以起到增强减重框架的强度的效果。
在本发明的一些可选实施例中,增强材料可以为碳纤维、玻璃纤维、芳纶纤维和PBO纤维中的至少一种。
可选地,增强材料也可以为包括不同状态的短切纤维或者连续纤维,其中,增强材料可以为短切纤维粉、无纺布毡和纤维织物中的至少一种。由此,增强材料的来源广泛,并且成本低廉,实用性强。
根据本发明的一个实施例,增强纤维的长度大于1mm。由于增强纤维为纤维状结构,若增强纤维的长度过短,则难以起到增加强度的支撑作用,对于减重框架的增强效果较差。因此,通过控制增强纤维的长度,可以保证对于减重框架的增强效果,从而保证智能头戴设备的壳体的强度。
考虑到可穿戴设备在使用构成中可能会出现的变形或损坏问题,智能头戴设备的壳体强度较低,壳体容易发生变形和破坏,从而导致产品出现破损,因此,需要保证智能头戴设备的壳体具有一定的弯曲强度。在本发明的一些具体实施方式中,减重框架的弯曲强度大于30MPa。由此,可以保证智能头戴设备的壳体具有较强的强度,不容易发生变形和破坏。
可选地,根据本发明的一个实施例,减重框架内还含有导热填料,导热填料为金属填料和无机非金属填料的至少一种。
具体地,导热填料的导热系数大于60W/m·K,减重框架的导热系数大于等于0.55W/m·K。
需要说明的是,智能头戴设备的壳体通常可以包括主壳体和前盖,壳体内设有光学镜头,光学镜头在工作过程中会产生热量。为了散发光学镜头产生的热量,可以在减重框架内设置导热填料,即可以在有机气凝胶材料中添加导热材料共同制备出智能头戴设备的壳体,导热填料可以是金属填料或者高导热无机非金属填料中的一种或者多种混合,优选可以是氮化硼或石墨烯。
由此,通过在智能头戴设备的壳体内添加导热填料,可以改善壳体的导热性,从而在满足壳体的刚度和质量要求的基础上,提高可穿戴设备的散热效果。其中,考虑到智能头戴设备在佩戴过程中,主壳体会与人体直 接接触,而前壳体则不与人体直接接触,因此可以在前壳体中添加适当的导热填料,以增加前壳体的导热性能,而避免将热量传到人体,影响用户佩戴体验。
在本发明的一些具体实施方式中,减重框架的损耗因子大于0.01。
智能头戴设备的壳体内安装有光学镜头,壳体的减重框架至少由有机气凝胶材料制备而成,而有机气凝胶材料具有孔隙结构,通过控制减重框架的损耗因子,使其具有较好的阻尼,当应力作用于有机气凝胶材料内部的孔隙结构时,有机气凝胶材料的骨架发生变形,孔隙结构中的流体被排除,而排除孔隙结构内部的粘滞性流体需要做功,从而造成能量损耗,在振动时将机械能转化为内能,从而保护可穿戴设备壳体内的光学镜头,避免其受冲击造成损坏。
根据本发明的一个实施例,有机气凝胶包括聚酰亚胺类、聚酰胺类、聚酯类、醛类、聚烯烃类和多糖类中的至少一种。
具体地,气凝胶是指通过溶胶凝胶法,干燥后使气体取代凝胶中的液相而形成的一种纳米级多孔固态材料,并且,气凝胶还具凝胶的性质。在本申请中,有机气凝胶可以为一种采用高分子有机材料制成的气凝胶,不仅具有多孔和质轻的特征,相比于无机气凝胶材料,链长较大,还具有一定的强度,适用于制作具有一定力学要求的壳体。在实际应用中,可根据可穿戴设备的实际需求选择上述有机气凝胶材料中的一种或者几种,应用性更强。
在本发明的一些具体实施方式中,减重框架为非透明材料件。
也就是说,智能头戴设备的壳体整体为不透明材料,壳体的颜色可以通过将相应颜色的材料加入有机气凝胶中进行调节得到。
根据本发明实施例的可穿戴设备包括根据上述实施例的智能头戴设备的壳体,壳体内设有光学镜头。可穿戴设备可以是VR等电子设备,本申请对此不做限定。
由于根据本发明上述实施例的智能头戴设备的壳体具有上述技术效果,因此,根据本发明实施例的可穿戴设备也具有相应的技术效果,即可以极大减轻可穿戴设备的重量,使佩戴更舒适。
下面结合具体实施例和对比例对本发明的智能头戴设备的壳体进行详细说明。
实施例
首先,制备有机气凝胶复合材料:合成聚酰亚胺水凝胶,然后加入长度为3mm的短切碳纤维,短切碳纤维质量含量占比为50%,得到含有增强纤维的有机气凝胶复合材料。
将制备得到的有机气凝胶复合材料注入模具一体成型为壳体,然后冷冻干燥,进行亚胺化制得最终的壳体一,其中壳体的孔隙率为47%。
对比例
壳体二采用PC一体注塑成型。对比例中壳体二的结构和尺寸与实施例中壳体一的结构和尺寸相同。
将实施例和对比例制备得到的壳体分别进行质量、弯曲模量和阻尼测试,测试结果如表1所示。
表1壳体测试结果
从表1可以看出,在实施例和对比例的结构和尺寸相同的情况下,实施例中采用有机气凝胶复合材料的壳体一的质量仅仅为注塑成型的壳体二的质量的71.5%,减重达到28.5%,同时,实施例中采用有机气凝胶复合材料的壳体一的弯曲模量是对比例中采用注塑成型的壳体二的弯曲模量的1.6倍,实施例中采用有机气凝胶复合材料的壳体一的比模量是对比例中 采用注塑成型的壳体二的比模量的2.2倍,弯曲模量和比模量可以用于衡量产品的抗破坏能力,说明采用根据本发明实施例的有机气凝胶复合材料的壳体一不仅具有更好的强度和抗破坏能力,在保证了产品结构设计强度的基础上,还可以大幅减少产品重量,提高用户的佩戴舒适度。
通过对实施例中采用有机气凝胶复合材料的壳体一的阻尼与注塑成型的壳体二的阻尼进行测试,可以看出,采用有机气凝胶复合材料的壳体一的损耗因子为0.03,大于对比例中注塑成型的壳体二的损耗因子,说明有机气凝胶复合材料所具有的孔道和长链结构,使得该壳体一具有较好的阻尼性。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (17)

  1. 一种智能头戴设备的壳体,其特征在于,所述壳体的至少一部分形成为减重框架,所述减重框架至少由有机气凝胶材料制成,所述减重框架的密度为0.4g/cm3-1.3g/cm3,所述减重框架的弯曲模量大于2.5GPa。
  2. 根据权利要求1所述的智能头戴设备的壳体,其特征在于,所述壳体整体形成为所述减重框架。
  3. 根据权利要求1所述的智能头戴设备的壳体,其特征在于,所述壳体还包括辅助支撑部,所述辅助支撑部与所述减重框架粘结或一体成型为所述壳体。
  4. 根据权利要求3所述的智能头戴设备的壳体,其特征在于,所述辅助支撑部由工程塑料、不锈钢或轻质合金中的至少一种制备而成。
  5. 根据权利要求1所述的智能头戴设备的壳体,其特征在于,所述减重框架内还含有增强材料,所述有机气凝胶材料占所述减重框架总重量的质量百分比为30%-90%,所述增强材料占所述减重框架总重量的质量百分比为10%-70%;
    且/或,所述减重框架的比模量大于3.5GPa·cm3/g。
  6. 根据权利要求5所述的智能头戴设备的壳体,其特征在于,所述有机气凝胶材料具有基体骨架和孔隙结构,所述增强材料为分布于所述基体骨架和所述孔隙结构内的增强纤维。
  7. 根据权利要求6所述的智能头戴设备的壳体,其特征在于,所述增强材料为碳纤维、玻璃纤维、芳纶纤维和PBO纤维中的至少一种。
  8. 根据权利要求6所述的智能头戴设备的壳体,其特征在于,所述增强材料为短切纤维粉、无纺布毡和纤维织物中的至少一种。
  9. 根据权利要求6所述的智能头戴设备的壳体,其特征在于,所述增强纤维的长度大于1mm。
  10. 根据权利要求1所述的智能头戴设备的壳体,其特征在于,所述减重框架的弯曲强度大于30MPa。
  11. 根据权利要求1所述的智能头戴设备的壳体,其特征在于,所述 减重框架内还含有导热填料,所述导热填料为金属填料和无机非金属填料的至少一种。
  12. 根据权利要求11所述的智能头戴设备的壳体,其特征在于,所述导热填料的导热系数大于60W/m·K,所述减重框架的导热系数大于等于0.55W/m·K。
  13. 根据权利要求1所述的智能头戴设备的壳体,其特征在于,所述减重框架的损耗因子大于0.01。
  14. 根据权利要求1-13中任一项所述的智能头戴设备的壳体,其特征在于,所述有机气凝胶包括聚酰亚胺类、聚酰胺类、聚酯类、醛类、聚烯烃类和多糖类中的至少一种。
  15. 根据权利要求1-13中任一项所述的智能头戴设备的壳体,其特征在于,所述减重框架为非透明材料件。
  16. 根据权利要求1-13中任一项所述的智能头戴设备的壳体,其特征在于,所述壳体包括:
    主壳体,所述主壳体设有适于佩戴的佩戴部;
    前壳,所述前壳与所述主壳体连接,并与所述主壳体配合限定出容纳空间,其中,所述前壳和所述主壳体的至少一部分形成为所述减重框架。
  17. 一种可穿戴设备,其特征在于,包括:
    根据权利要求1-16中任一项所述的壳体;
    光学镜头,所述光学镜头设于所述壳体。
PCT/CN2023/080462 2022-06-30 2023-03-09 智能头戴设备及其壳体 WO2024001285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210770695.6 2022-06-30
CN202210770695.6A CN115373146A (zh) 2022-06-30 2022-06-30 智能头戴设备及其壳体

Publications (1)

Publication Number Publication Date
WO2024001285A1 true WO2024001285A1 (zh) 2024-01-04

Family

ID=84061221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080462 WO2024001285A1 (zh) 2022-06-30 2023-03-09 智能头戴设备及其壳体

Country Status (2)

Country Link
CN (1) CN115373146A (zh)
WO (1) WO2024001285A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115373146A (zh) * 2022-06-30 2022-11-22 歌尔股份有限公司 智能头戴设备及其壳体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300979A1 (de) * 2003-01-14 2004-07-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Ultraleichte Verbundwerkstoffe
CN110804274A (zh) * 2019-10-23 2020-02-18 航天材料及工艺研究所 一种基于间隔结构织物增强体的轻质防隔热复合材料及其制备方法
CN112415751A (zh) * 2020-11-30 2021-02-26 歌尔科技有限公司 Vr设备外壳及其制作方法、以及vr设备
CN114106555A (zh) * 2021-12-02 2022-03-01 海信视像科技股份有限公司 虚拟现实设备,导热复合材料及其制备方法
CN115373146A (zh) * 2022-06-30 2022-11-22 歌尔股份有限公司 智能头戴设备及其壳体
CN115373147A (zh) * 2022-06-30 2022-11-22 歌尔股份有限公司 可穿戴设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300979A1 (de) * 2003-01-14 2004-07-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Ultraleichte Verbundwerkstoffe
CN110804274A (zh) * 2019-10-23 2020-02-18 航天材料及工艺研究所 一种基于间隔结构织物增强体的轻质防隔热复合材料及其制备方法
CN112415751A (zh) * 2020-11-30 2021-02-26 歌尔科技有限公司 Vr设备外壳及其制作方法、以及vr设备
CN114106555A (zh) * 2021-12-02 2022-03-01 海信视像科技股份有限公司 虚拟现实设备,导热复合材料及其制备方法
CN115373146A (zh) * 2022-06-30 2022-11-22 歌尔股份有限公司 智能头戴设备及其壳体
CN115373147A (zh) * 2022-06-30 2022-11-22 歌尔股份有限公司 可穿戴设备

Also Published As

Publication number Publication date
CN115373146A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024001285A1 (zh) 智能头戴设备及其壳体
CA2505241C (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
JP2010048387A (ja) ブレーキパッド
CN101555919A (zh) 高效陶瓷刹车片
Rice et al. Carbon fiber composites: Organoclay-aerospace epoxy nanocomposites. Part I
CN103121319B (zh) 电脑外壳的制作方法
Matsui et al. Stress graphitization of C/C composite reinforced by carbon nanofiber
TW200907199A (en) Shock absorber
CN115373147A (zh) 可穿戴设备
CN207389425U (zh) 一种改进型碳纤维车架
CN106675016A (zh) 一种鼓式制动轮缸专用复合材料及其制备方法
CN206344911U (zh) 一种符合人体结构的自行车
CN206351733U (zh) 一种新型自行车座垫
CN109501901A (zh) 一种多功能型智能自行车车垫
CN106115058A (zh) 一种实用性强的快递包装袋
CN206351736U (zh) 一种新型自行车
CN115073919B (zh) 发声装置的外壳、发声装置及其电子设备
CN113370607A (zh) 智能穿戴设备外壳及其制作方法
CN108609082A (zh) 一种贴合人体的车座
CN109164568A (zh) 一种碳纤维复合材料望远镜
CN208084751U (zh) 一种具有减震式的塑胶样件模具
Neussl et al. Selectively fibre-reinforced components produced by the modified investment casting process
US20040086706A1 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
CN108609088A (zh) 一种混合层的自行车坐垫
CN207106785U (zh) 一体轮内置变速器结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829476

Country of ref document: EP

Kind code of ref document: A1