WO2024001014A1 - 混合动力系统以及具有其的混合动力车辆 - Google Patents

混合动力系统以及具有其的混合动力车辆 Download PDF

Info

Publication number
WO2024001014A1
WO2024001014A1 PCT/CN2022/134437 CN2022134437W WO2024001014A1 WO 2024001014 A1 WO2024001014 A1 WO 2024001014A1 CN 2022134437 W CN2022134437 W CN 2022134437W WO 2024001014 A1 WO2024001014 A1 WO 2024001014A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
clutch
output shaft
engine
power
Prior art date
Application number
PCT/CN2022/134437
Other languages
English (en)
French (fr)
Inventor
张闻森
刘永富
许传飞
孙龙芳
李响
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2024001014A1 publication Critical patent/WO2024001014A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the field of vehicle technology, and specifically to a hybrid power system and a hybrid vehicle having the same.
  • Hybrid electric vehicles have gradually gained favor in the market for their superior energy saving and emission reduction as well as excellent user experience.
  • the market demand for hybrid power systems is gradually expanding. All major automobile companies are actively developing hybrid systems, especially the integrated development of hybrid-specific gearboxes.
  • most hybrid transmissions currently on the market have low integration, large size, and complex structures, which are not conducive to vehicle layout.
  • One aspect of the present application is to provide a hybrid power system, which includes a first clutch, a second clutch, an engine, a first motor, a second motor and a power output assembly;
  • Both ends of the first clutch are connected to the first motor and the engine respectively;
  • Both ends of the second clutch are connected to the first clutch and the power output assembly respectively;
  • the second motor is connected to the power output assembly
  • first clutch and the second clutch are arranged along the radial direction of the output shaft of the first motor, and the second clutch is located at a side of the first clutch away from the output shaft of the first motor. side.
  • the first clutch includes a first part and a second part, the first part and the second part being controllably coupled or separated;
  • the second clutch includes a third part and a fourth part, and the third part and the fourth part are controllably coupled or separated;
  • the second portion of the first clutch is connected to the third portion of the second clutch.
  • the second part and the third part are integrally connected.
  • the first part is sleeved on the output shaft of the engine, one end of the second part is sleeved on the output shaft of the first motor, and the other end is located on the first part.
  • the third part is sleeved on the other end of the second part, one end of the fourth part is connected to the power output assembly, and the other end is located on the side of the third part away from the second part, And cooperate with the third part.
  • the output shaft of the first motor is a stepped shaft, and the diameter of the shaft head of the stepped shaft is smaller than the diameter of the shaft body;
  • the second part is connected to the spindle head, so that at least a part of the second part is received in an annular space around the spindle head.
  • the first portion is an inner hub of the first clutch, and the second portion is an outer hub of the first clutch;
  • the third part is the inner hub of the second clutch, and the fourth part is the outer hub of the second clutch;
  • the outer hub of the first clutch and the inner hub of the second clutch are formed by respectively setting splines on the inner wall and outer wall of the same hub sleeve.
  • the splines formed on the inner wall of the hub sleeve and the splines formed on the outer wall of the hub sleeve are relatively staggered.
  • the power output assembly includes a hollow shaft, the hollow shaft is sleeved on the output shaft of the engine and can rotate relative to the output shaft of the engine;
  • the length of the hollow shaft is less than the length of the output shaft of the engine, and one end of the output shaft of the engine extends from the hollow shaft and is connected to the first part;
  • the fourth part is connected to the hollow shaft.
  • the output shaft of the first electric motor is coaxial with the output shaft of the engine
  • the output shaft of the first motor and the output shaft of the engine are close to each other and have a gap therebetween.
  • the gap is located inside the first clutch and the second clutch.
  • the axis of the output shaft of the second motor is parallel to the axis of the output shaft of the first motor, and the length of the output shaft of the second motor is greater than the length of the output shaft of the first motor. length.
  • orthographic projections of the power output assembly, the output shaft of the engine, and the output shaft of the second motor on the first plane have an overlapping area
  • the first plane is a plane passing through the axis of the output shaft of the first motor and perpendicular to the vertical line between the axis of the output shaft of the second motor and the axis of the output shaft of the engine.
  • the system further includes a housing
  • the first motor, the second motor, the first clutch and the second clutch are all installed inside the housing, and the first motor and the second motor are inside the housing.
  • the arrangement direction is perpendicular to the axis of the output shaft of the first motor;
  • the engine is located outside the casing.
  • the output shaft of the engine includes a power output end of the engine and a connecting shaft that is detachably connected to the power output end of the engine.
  • the connecting shaft is installed in the casing. inside, and can rotate relative to the housing, and a part of the connecting shaft protrudes from the housing.
  • Another aspect of the present application is to provide a hybrid vehicle, which includes the above-mentioned hybrid system.
  • Figure 1 is a partial cross-sectional view of a hybrid power system provided by an embodiment of the present application
  • Figure 2 is an enlarged view of point A in Figure 1;
  • Figure 3 is a schematic structural diagram of a hub sleeve provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of power transmission in the first pure electric mode
  • Figure 5 is a schematic diagram of power transmission in the second pure electric mode
  • Figure 6 is a schematic diagram of power transmission in the first hybrid drive mode
  • Figure 7 is a schematic diagram of power transmission when three power sources are jointly driven in the second hybrid drive mode
  • Figure 8 is a schematic diagram of power transmission in engine direct drive mode
  • Figure 9 is a schematic diagram of power transmission when the engine has no power output in energy recovery mode
  • Figure 10 is a schematic diagram of power transmission in parking power generation mode.
  • Hybrid power systems in related technologies are mostly developed on the basis of traditional automatic transmissions, by simply integrating the motor into AT (hydraulic automatic transmission), AMT (electronically controlled mechanical transmission), CVT ( It is composed of the front end or rear end of a transmission such as a mechanical continuously variable automatic transmission) or a DCT (dual clutch transmission).
  • AT hydraulic automatic transmission
  • AMT electronically controlled mechanical transmission
  • CVT It is composed of the front end or rear end of a transmission such as a mechanical continuously variable automatic transmission
  • DCT dual clutch transmission
  • embodiments of the present application provide a hybrid power system with high integration and compact structure, which greatly saves layout space.
  • the engine is decoupled from the wheels and avoids the need for switching between working modes.
  • the generated power impact and multiple working modes can meet the working needs under different working conditions and help improve fuel saving effect.
  • the hybrid powertrain provided by the embodiment of the present application includes: a first clutch 1, a second clutch 2, an engine 3 (not shown in the figure), a first motor 4, a second motor 5 and Power output assembly 6; wherein, both ends of the first clutch 1 are connected to the first motor 4 and the engine 3 respectively; both ends of the second clutch 2 are connected to the first clutch 1 and the power output assembly 6 respectively; the second motor 5 is connected to the power output assembly 6.
  • the power output assembly 6 is connected; wherein, the first clutch 1 and the second clutch 2 are arranged in the radial direction of the output shaft 41 of the first motor 4 , and the second clutch 2 is located away from the first clutch 1 and away from the output shaft 41 of the first motor 4 side.
  • first clutch 1 and the second clutch 2 mentioned in the embodiment of the present application are arranged along the radial direction of the output shaft 41 of the first motor 4, which refers to the first clutch 1 and the second clutch 2.
  • the arrangement direction is perpendicular to the axis of the output shaft 41 of the first motor 4 .
  • the first clutch 1 and the second clutch 2 may be arranged sequentially on one side of the output shaft 41 of the first motor 4 , and at this time the second clutch 2 is located on a side of the first clutch away from the output shaft 41 of the first motor 4 . side; it is also possible that both the first clutch 1 and the second clutch 2 are sleeved on the output shaft 41 of the first motor 4.
  • the first clutch is directly surrounded by the outside of the output shaft 41 of the first motor 4, and the second clutch Surrounded by the outside of the first clutch.
  • the axial arrangement space can be saved, making the structure of the system more compact; the engine 3
  • the first motor 4 is connected to both ends of the first clutch 1 respectively, and the power is transmitted through the connection and cooperation between the first clutch 1 and the second clutch 2, so the system is more integrated; the engine 3 passes through the first clutch 1 and the second clutch 2 are decoupled from the wheels to avoid the impact when switching modes; based on three power sources of the engine 3, the first motor 4 and the second motor 5, and two controls of the first clutch 1 and the second clutch 2 Devices can be combined into multiple working modes to help improve fuel-saving effects.
  • the first clutch 1 includes a first part 11 and a second part 12, and the first part 11 and the second part 12 are controllably combined or separated;
  • the second clutch 2 It includes a third part 21 and a fourth part 22, which are controllably combined or separated; the second part 12 of the first clutch 1 is connected to the third part 21 of the second clutch 2. Since the second and third parts are directly connected, the integration and compact structure of the system are further improved.
  • the second part 12 and the third part 21 are integrally connected.
  • the second part 12 of the first clutch 1 and the third part 21 of the second clutch 2 are integrally connected, making the two clutches easier to assemble, reducing assembly steps and reducing costs. And since the two clutches actually only have three clutch hubs, the structure after the two clutches are assembled is more compact and the linkage is strong.
  • the second part 12 and the third part 21 may be an integrated structure manufactured by stamping, or may be an integrated structure obtained by machine tool processing after manufacturing.
  • the first part 11 is sleeved on the output shaft 31 of the engine 3
  • one end of the second part 12 is sleeved on the output shaft 41 of the first motor 4
  • the other end is located on the side of the first part 11 away from the output shaft 31 of the engine 3 and matches the first part 11
  • the third part 21 is sleeved on the other end of the second part 12, and one end of the fourth part 22 It is connected to the power output assembly 6, and the other end is located on the side of the third part 21 away from the second part 12, and cooperates with the third part 21.
  • the first part 11 is fixedly connected to the shaft wall of the output shaft 31 of the engine 3, so that it can rotate driven by the output shaft 31 of the engine 3;
  • the second part 12 is fixedly connected to the shaft wall of the output shaft 41 of the first motor 4, Therefore, it can rotate driven by the output shaft 41 of the first motor 4;
  • the power output by the engine 3 can be transmitted to the first motor 4, or the power output by the first motor 4
  • the power can be transmitted to the engine 3 , or the power output by the engine 3 and the first electric motor 4 can be transmitted to subsequent components based on the first clutch 1 , for example, to the third portion 21 of the second clutch 2 .
  • the third part 21 of the second clutch 2 is connected or disposed at an end of the second part 12 away from the output shaft 41 of the first motor 4 to avoid stress at the end where the second part 12 is connected to the output shaft 41 of the first motor 4 Concentration causes failure.
  • the first part 11 is the inner hub of the first clutch 1
  • the second part 12 is the outer hub of the first clutch 1
  • the third part 21 is the second clutch 2
  • the fourth part 22 is the outer hub of the second clutch 2; the outer hub of the first clutch 1 and the inner hub of the second clutch 2 are formed by respectively setting splines on the inner and outer walls of the same hub sleeve.
  • the hub sleeve refers to a cylindrical clutch hub, which is generally sleeved on the outside of the power shaft during assembly. For example, in the embodiment of the present application, it is sleeved on the outside of the output shaft 41 of the first motor 4 .
  • the inner and outer walls of the hub sleeve are respectively processed with toothed splines, in which the spline parameters of the inner wall of the hub sleeve are different from the spline parameters of the outer wall of the hub sleeve.
  • the tooth shape parameters of the inner hub of the first clutch 1 match the spline parameters of the inner wall of the hub sleeve
  • the tooth shape parameters of the outer hub of the second clutch 2 match the spline parameters of the outer wall of the hub sleeve.
  • first clutch 1 and the second clutch 2 may both be friction clutches, wherein the first part 11 and the second part 12 of the first clutch 1 are respectively provided with corresponding multi-plate clutch plates, and the second clutch 2
  • the third part 21 and the fourth part 22 are respectively provided with corresponding multi-plate clutch plates.
  • the two parts of each clutch use mutual friction between these clutch plates to achieve speed synchronization.
  • the splines formed on the inner wall of the hub sleeve and the splines formed on the outer wall of the hub sleeve are relatively staggered to ensure the strength of the hub sleeve.
  • the convex portion of the spline formed on the inner wall of the hub sleeve corresponds to the concave portion of the spline on the outer wall of the hub sleeve
  • the concave portion of the spline formed on the inner wall of the hub sleeve corresponds to The raised part of the spline on the outer wall of the hub sleeve.
  • the splines formed on the inner wall of the hub sleeve and the splines formed on the outer wall of the hub sleeve are both trapezoidal splines.
  • the trapezoidal spline is formed by stamping molding process, which is simple and easy to manufacture.
  • the first motor 4 may include a stator and a rotor, where the stator refers to a fixed part of the first motor 4, on which, for example, pairs of DC-excited stationary main magnetic poles are installed; the rotor refers to an iron core passing through the inside of the stator, For example, there is an armature winding installed on it. When energized, an induced electromotive force will be generated, which will rotate relative to the stator under the action of excitation.
  • a part of the rotor can extend from the inside of the stator to form an output shaft, or a part of the rotor can extend from the inside of the stator and be connected to a connecting shaft to form an output shaft; the hub sleeve is fixed to the output shaft connect.
  • the fixed connection method may be screwing, welding, etc. Therefore, when the rotor of the first motor 4 rotates, the hub sleeve can rotate synchronously with the rotor.
  • a space is left between the splined portion of the hub sleeve and the output shaft 41 of the first motor 4, and the inner hub of the first clutch 1 is arranged in this space.
  • the output shaft 41 of the first motor 4 is a stepped shaft, and the diameter of the shaft head of the stepped shaft is smaller than the diameter of the shaft body.
  • the shaft head refers to the end of the rotor of the first motor 4 away from the stator.
  • the second part 12 is connected to the shaft head, so that at least a part of the second part 12 is received in the annular space around the shaft head.
  • the structure of the stepped shaft is equivalent to having a notch in the circumferential direction at the end of the rotor extending out of the stator, and a part of the first clutch 1 is arranged in the notch.
  • the power output assembly 6 includes a hollow shaft 61.
  • the hollow shaft 61 is sleeved on the output shaft 31 of the engine 3 and can rotate relative to the output shaft 31 of the engine 3; the length of the hollow shaft 61 is less than The length of the output shaft 31 of the engine 3.
  • One end of the output shaft 31 of the engine 3 extends from the hollow shaft 61 and is connected to the first part 11; the fourth part 22 is connected to the hollow shaft 61.
  • the hollow shaft 61 can freely rotate relative to the output shaft 31 of the engine 3.
  • a bearing may be provided between the hollow shaft 61 and the output shaft 31 of the engine 3, and the two are connected together through the bearing to achieve relative rotation.
  • a part of the output shaft 31 of the engine 3 protrudes from the cylinder cover of the engine 3 .
  • the output shaft 31 of the engine 3 may be a crankshaft, or the output shaft 31 of the engine 3 may also include a crankshaft and a connecting shaft connected to the crankshaft.
  • the hollow shaft 61 is sleeved on the part of the output shaft that protrudes from the cylinder cover of the engine 3 , but the length of the hollow shaft 61 is smaller than the length of the protruding part, so that the end of the output shaft 31 of the engine 3 can pass through the hollow shaft 61 Stretch out.
  • the end of the output shaft 31 of the engine 3 protruding from the hollow shaft 61 may be fixedly connected to the first part 11 of the first motor 4 .
  • the fixed connection method may be screwing, welding, etc. Therefore, when the output shaft 31 of the engine 3 rotates, the first part 11 can rotate synchronously with the output shaft.
  • the power output assembly 6 may also include a first gear 62 fixedly connected to the hollow shaft 61 , an intermediate shaft 63 , a second gear 64 and a third gear 65 fixedly connected to the intermediate shaft 63 .
  • the first gear 62 can rotate synchronously with the hollow shaft 61
  • the second gear 64 can rotate synchronously with the intermediate shaft 63
  • the first gear 62 meshes with the second gear 64 .
  • the hollow shaft 61 rotates, power is transmitted through the hollow shaft 61, the first gear 62, the second gear 64, and the intermediate shaft 63 in sequence, and the intermediate shaft 63 can continue to output power backward.
  • the fourth part 22 of the second clutch 2 is fixedly connected to the hollow shaft 61, so when the hollow shaft 61 rotates, it will also drive the fourth part 22 to rotate synchronously. If the second clutch 2 is in the coupled state at this time, the power at the hub sleeve can be transmitted to the power output assembly 6 through the second clutch 2, or can be transmitted to the hub sleeve through the power output assembly 6 and the second clutch 2.
  • the fourth part 22 and the hollow shaft 61 may be fixedly connected by screwing, welding, etc.
  • the second gear 64 is also meshed with the motor output gear 52 fixed on the output shaft 51 of the second motor 5 , so the power output by the second motor 5 passes through the motor output gear 52 , the second gear 64 and The intermediate shaft 63 performs transmission to achieve power output.
  • the output shaft 41 of the first motor 4 and the output shaft 31 of the engine 3 are coaxial; the output shaft 41 of the first motor 4 and the output shaft 31 of the engine 3 are close to each other, and there is a gap between them. There is a gap, and the gap is located inside the first clutch 1 and the second clutch 2.
  • the output shaft 41 of the first motor 4 and the output shaft 31 of the engine 3 are coaxial and close to each other, so the power transmission path between the two power sources is relatively short and the power loss is less.
  • the first electric machine 4 may be used as the starter of the engine 3 .
  • the starting of the engine 3 requires external support.
  • a starter is configured for the engine 3, and the flywheel of the engine 3 is driven by the starter to rotate, thereby starting the engine 3.
  • the first motor 4 can be used to drive the engine 3 to start, thereby functioning as a starter. Therefore, there is no starter in the hybrid system, and the structure is simplified.
  • the first clutch 1 can be controlled to be engaged, the second clutch 2 can be controlled to be disengaged, and the first motor 4 can be controlled to operate.
  • the power output by the first motor 4 passes through the output shaft 41 of the first motor 4 in turn.
  • the second part 12 and the first part 11 of the first clutch 1 are transmitted to the output shaft 31 of the engine 3, thereby driving the engine 3 to start.
  • the first electric motor 4 can also assist in stopping and speed regulating the engine 3 .
  • the first motor 4 converts electrical energy into mechanical energy to output power; when the auxiliary engine 3 stops or decelerates, the first motor 4 converts the mechanical energy output by the engine 3 into electrical energy, and Store for later use.
  • the output shaft 41 of the first motor 4 there is a gap between the output shaft 41 of the first motor 4 and the ends of the output shaft 31 of the engine 3 that are close to each other, that is, they are not in contact.
  • This gap reflects the minimum distance between the engine 3 and the first motor 4. This distance cannot be too large, otherwise it will cause a waste of axial layout space.
  • the axial direction here refers to the output shaft 41 of the first motor 4. axial.
  • the maximum gap cannot exceed the size of the first clutch 1 and the second clutch 2, that is, the gap is located inside the first clutch 1 and the second clutch 2. The smaller the gap, the more compact the system layout.
  • the engine 3 and the first motor 4 rotate, the output shaft will vibrate to a certain extent, so the gap cannot be too small. At least the engine 3 and the first motor 4 need to be ensured. Whether the first motors 4 rotate individually or simultaneously, they do not interfere with or influence each other.
  • the axis of the output shaft 51 of the second motor 5 is parallel to the axis of the output shaft 41 of the first motor 4 , and the length of the output shaft 51 of the second motor 5 is greater than the output of the first motor 4 The length of shaft 41.
  • the arrangement direction of the second motor 5 is the same as that of the first motor 4 and the engine 3 . Therefore, the axis of the output shaft 51 of the second motor 5 is parallel to the axis of the output shaft 41 of the first motor 4 and also parallel to the output of the engine 3 axis of shaft 31. This ensures full and reasonable utilization of the layout space, and because the output shafts of the three power sources are parallel to each other, it reduces direction changes during power transmission, reduces power loss, and improves power transmission efficiency.
  • the second motor 5 may also include a stator and a rotor. As shown in FIG. 1 , a part of the rotor may extend from the inside of the stator to form an output shaft, or a part of the rotor may extend from the inside of the stator and be connected to a connecting shaft. The output shaft 51 of the second motor 5 is formed.
  • the length of the output shaft 51 of the second motor 5 is greater than the length of the output shaft 41 of the first motor 4, so that the output shaft 51 of the second motor 5 includes a part corresponding to the output shaft 41 of the first motor 4, It also includes the part corresponding to the output shaft 31 of the engine 3, which shortens the power transmission path, reduces the number of other power transmission components, such as gears, intermediate shafts 63, etc., and also reduces losses during the power transmission process.
  • FIG. 1 there is an overlapping area in the orthographic projections of the power output assembly 6 , the output shaft 31 of the engine 3 and the output shaft 51 of the second motor 5 on the first plane. ; There is a gap between the orthographic projection of the power output assembly 6 on the first plane and the orthographic projection of the output shaft 41 of the first motor 4 on the first plane; where the first plane passes through the output shaft 41 of the first motor 4 axis, and is a plane perpendicular to the perpendicular line between the axis of the output shaft 51 of the second motor 5 and the axis of the output shaft 31 of the engine 3 .
  • the first plane may also be called a projection plane.
  • the power output assembly 6 is actually arranged between the output shaft 31 of the engine 3 and the output shaft 51 of the second motor 5 . Specifically, it is arranged between the output shaft 31 of the engine 3 and the second motor 5 . between the parts of the output shaft 51 of 5 corresponding to the output shaft 31 of the engine 3, so the orthographic projections of the power output assembly 6, the output shaft 31 of the engine 3 and the output shaft 51 of the second motor 5 on the first plane exist.
  • the overlapping area does not overlap with the orthographic projection of the output shaft 41 of the first motor 4 on the first plane. Therefore, the system uses the layout space in a more reasonable and balanced manner, and will not concentrate most components in a certain area, resulting in unbalanced distribution, or waste of space.
  • the first plane may be a plane that passes through the axis of the output shaft 41 of the first motor 4 and is perpendicular to the cross section shown in FIG. 1 .
  • the system further includes a housing 8; the first motor 4, the second motor 5, the first clutch 1 and the second clutch 2 are all installed inside the housing 8, and the first motor 4 and The arrangement direction of the second motor 5 in the housing 8 is perpendicular to the axis of the output shaft 41 of the first motor 4; the engine 3 is located outside the housing 8, and the output shaft 31 of the engine 3 includes the power output end of the engine 3, and A connecting shaft 311 is detachably connected to the power output end of the engine 3.
  • the connecting shaft 311 is installed inside the housing 8 and can rotate relative to the housing 8. A part of the connecting shaft 311 protrudes from the housing 8.
  • the first motor 4 and the second motor 5 are relatively small in size, and the engine 3 is relatively large in size.
  • the first motor 4, the second motor 5, and the first clutch 1 , the second clutch 2, the power output assembly 6 and the connecting shaft 311 are all integrated inside the housing 8, and the engine 3 is independent of the housing 8.
  • the engine 3 has a power output end, which may be a crankshaft, for example.
  • the crankshaft can be connected to the connecting shaft 311 to form the output shaft 31 of the engine 3 .
  • the housing 8 and the engine 3 integrating the first motor 4, the second motor 5, the first clutch 1, the second clutch 2, the connecting shaft 311 and other components can be placed in corresponding positions respectively, and then the The part of the connecting shaft 311 extending out of the housing 8 is connected to the engine 3 .
  • the connection method may be screw connection, snap connection, etc., for example.
  • the hybrid system may also include a wheel drive assembly 7, which may include a differential 71, a wheel drive shaft and two wheels.
  • the differential 71 is installed on the wheel drive shaft, and the gear of the differential 71 meshes with the third gear 65 installed on the intermediate shaft 63 of the power output assembly 6 to receive the power output by the power output assembly 6 .
  • the two wheels are respectively installed at both ends of the wheel drive shaft, and the differential 71 enables the two wheels to rotate at different speeds to complete fine steering.
  • the power output by the power output assembly 6 is transmitted to the two wheels through the third gear 65, the differential 71 and the wheel drive shaft in sequence.
  • the hybrid system also includes a power supply component, and the first motor 4 and the second motor 5 can exchange energy with the power supply component.
  • the power component can provide energy to the working motor; when the first motor 4 and/or the second motor 5 are in the power generation mode, the power component can receive and store the power being generated. The energy converted by the electric motor that generates electricity.
  • the motor “working” means that the motor is in a state of converting electrical energy into mechanical energy.
  • “Not working” means that the motor is in a state of neither converting electrical energy into mechanical energy nor mechanical energy into electrical energy.
  • In power generation mode means that the motor is in a state of neither converting electrical energy into mechanical energy nor mechanical energy into electrical energy. It means that the motor is in a state of converting mechanical energy into electrical energy.
  • Both the first motor 4 and the second motor 5 can rotate forward or reversely. When rotating forward, the vehicle moves forward, and when rotating reversely, the reversing function of the vehicle is activated.
  • the power supply component may also include a battery pack, a first motor 4 control unit MCU1, a second motor 5 control unit, a first inverter and a second inverter.
  • the battery pack and the first inverter are connected to the second inverter respectively.
  • the first motor 4 control unit and the first motor 4 are both electrically connected to the first inverter.
  • the second motor 5 control unit and the second motor 5 are both electrically connected to the second inverter. .
  • the power supply component may include a battery management system.
  • the battery management system can monitor the usage status of the battery pack at all times, take necessary measures to alleviate the inconsistency of the battery pack, and provide guarantee for the safety of the battery pack.
  • the hybrid power system provided by the embodiment of the present application is configured with three power sources: the engine 3, the first motor 4 and the second motor 5. These three power sources can be driven individually or jointly, combined with the first clutch 1
  • the two different power transmission paths corresponding to the second clutch 2 and the power output assembly 6 enable multiple working modes and multiple gears to output power to drive the wheels to rotate, which helps to improve fuel economy.
  • the first clutch 1 and the second clutch 2 in the embodiment of the present application include an integrated structure connected to each other, and an arrangement and assembly method determined based on the structural characteristics of each component, the entire system has a high degree of integration and a compact structure. , space utilization is balanced and reasonable.
  • the engine 3 can be decoupled from the wheels through the first clutch 1 and the second clutch 2, shock during mode switching is also avoided and smoothness is improved.
  • the embodiment of the present application also provides a hybrid power system, including a first clutch 1, a second clutch 2, an engine 3, a first motor 4, a second motor 5, and a power output assembly 6.
  • the first clutch 1 and the second clutch 2 Arranged along the radial direction of the output shaft of the first motor 4; the first clutch 1 includes a first part 11 and a second part 12 that can be controllably combined or separated.
  • the first part 11 is connected to the output shaft of the engine 3, and the second part 12 is connected to the output shaft of the first motor 4;
  • the second clutch 2 includes a third part 21 and a fourth part 22 that can be controllably combined or separated, the third part 21 is connected to the second part 12, and the third part 21 is located
  • the second part 12 is on the side away from the output shaft of the first motor 4, and the fourth part 22 is connected to the power output assembly 6; the output shaft of the second motor 5 is connected to the power output assembly 6.
  • the second part 12 and the third part 21 are integrally connected.
  • the first part 11 is the inner hub of the first clutch 1
  • the second part 12 is the outer hub of the first clutch 1
  • the third part 21 is the inner hub of the second clutch 2
  • the fourth part 11 is the inner hub of the first clutch 1.
  • Part 22 is the outer hub of the second clutch 2; the outer hub of the first clutch 1 and the inner hub of the second clutch 2 are formed by respectively setting splines on the inner wall and outer wall of the same hub sleeve.
  • the hub sleeve is arranged outside the output shaft of the first motor 4 and is fixedly connected to the output shaft of the first motor 4 , so that the hub sleeve can rotate driven by the first motor 4 .
  • the power output assembly 6 includes a hollow shaft 61.
  • the hollow shaft 61 is sleeved on the outer periphery of the output shaft of the engine 3 and can rotate relative to the output shaft of the engine 3; the length of the hollow shaft 61 is shorter than that of the engine.
  • the length of the output shaft is 3.
  • One end of the output shaft of the engine 3 extends from the hollow shaft 61 and is fixedly connected to the first part 11; the fourth part 22 is fixedly connected to the hollow shaft 61.
  • the output shaft of the first motor 4 and the output shaft of the engine 3 are coaxial; the output shaft of the first motor 4 and the output shaft of the engine 3 are close to each other, and there is a gap between them.
  • the axis of the output shaft of the second motor 5 is parallel to the axis of the output shaft of the first motor 4 , and the length of the output shaft of the second motor 5 is greater than the length of the output shaft of the first motor 4 .
  • the orthographic projections of the power output assembly 6, the output shaft of the engine 3 and the output shaft of the second motor 5 on the first plane have an overlapping area; the orthographic projections of the power output assembly 6 on the first plane There is a gap between the projection and the orthographic projection of the output shaft of the first motor 4 on the first plane; wherein the first plane passes through the axis of the output shaft of the first motor 4 and is perpendicular to the axis of the output shaft of the second motor 5 and the axis of the output shaft of the engine 3.
  • the system further includes a housing 8; the first motor 4, the second motor 5, the first clutch 1 and the second clutch 2 are all installed inside the housing 8, and the first motor 4 and The arrangement direction of the second motor 5 in the housing 8 is perpendicular to the axis of the output shaft of the first motor 4; the engine 3 is located outside the housing 8, and the output shaft of the engine 3 includes the power output end of the engine 3 and is connected to the engine.
  • the power output end of 3 is detachably connected to a connecting shaft 311, and a part of the connecting shaft 311 extends from the housing 8.
  • the axial arrangement space can be saved, making the structure of the system more compact.
  • the engine 3 and the first motor 4 are respectively connected to the first part 11 and the second part 12 of the first clutch 1, and transmit power through the connection and cooperation between the first clutch 1 and the second clutch 2, so the integration of the system The degree is higher; the engine 3 is decoupled from the wheels through the first clutch 1 and the second clutch 2, avoiding the impact when switching modes; based on the three power sources of the engine 3, the first motor 4, the second motor 5, and the first
  • the two control devices, clutch 1 and second clutch 2 can be combined to create a variety of working modes, which helps to improve fuel saving.
  • An embodiment of the present application also provides a hybrid vehicle, including the hybrid system described in any of the above embodiments.
  • the vehicle also has a controller that can determine a matching working mode based on the current vehicle status and control the hybrid system to switch to the corresponding working mode.
  • the current vehicle status at least includes the current accelerator pedal opening, the current brake pedal opening, the current power battery level, the current vehicle speed and the current working conditions.
  • the operating modes that the hybrid system can implement include at least a first pure electric mode, a second pure electric mode, a first hybrid drive mode, a second hybrid drive mode, an engine direct drive mode, an energy recovery mode, and a parking charging mode.
  • the second motor 5 can be used as a power source alone.
  • This working mode is generally suitable for situations where the vehicle is in a low-speed creeping or cruising state, such as in urban conditions. It reduces the power consumption during congestion and parking waiting, saves more electricity, and meets the various requirements of users in pursuit of economy, power and comfort.
  • the controller may be configured to: control the second motor 5 to operate, control the engine 3 and the first motor 4 not to operate, and control both the first clutch 1 and the second clutch 2 to be separated.
  • the second motor 5 when the second motor 5 drives the vehicle alone, the DC power released by the power battery is converted into three-phase AC power after passing through the second inverter, and is used to drive the output shaft 51 of the second motor 5 to rotate.
  • the power output by the second motor 5 can be directly transmitted to the power output assembly 6 .
  • the first transmission path of power between the power output assembly 6 and the wheel drive assembly 7 is: the second gear 64 rotates after receiving the power transmitted by the motor output gear 52 on the output shaft 51 of the second motor 5 , and drives the intermediate shaft 63 and the third gear 65 to rotate, and then transmits it to the drive shaft through the gear of the differential 71 meshed with the third gear 65, and then transmits it to the wheels, thereby driving the vehicle to move.
  • the second motor 5 can rotate forward or reversely. When rotating forward, the vehicle moves forward, and when rotating reversely, the reversing function of the vehicle is activated.
  • the first motor 4 is generally not used to drive the vehicle alone. However, in some cases, such as when the second motor 5 fails, the first motor 4 can be used to drive the vehicle alone.
  • the controller may be configured to: control the first motor 4 to work, control the engine 3 and the second motor 5 not to work, control the first clutch 1 to separate, and control the second clutch 2 to engage.
  • the transmission path when the first motor 4 is driven alone is: the DC power released by the power battery is converted into three-phase AC power after passing through the first inverter, and is used to drive the output shaft 41 of the first motor 4 to rotate, and the first motor 4 outputs The power is transmitted to the power output assembly 6 through the combined second clutch 2 .
  • the second transmission path of power between the power output assembly 6 and the wheel drive assembly 7 is: the hollow shaft 61 rotates after receiving the power transmitted by the second clutch 2, and drives the third gear fixed on the hollow shaft 61.
  • One gear 62 rotates, and then the power is transmitted to the intermediate shaft 63 through the second gear 64 meshed with the first gear 62, so that the intermediate shaft 63 and the third gear 65 rotate synchronously, and then passes through the differential 71 meshed with the third gear 65
  • the gears are transmitted to the drive shaft and then to the wheels, thereby driving the vehicle.
  • the vehicle provided by the embodiment of the present application can also use the first motor 4 and the second motor 5 as a joint power source to drive the vehicle.
  • Dual motor drive is usually suitable when the user needs to keep the vehicle in a low-speed state.
  • larger torque is temporarily required, such as overtaking scenes, starting scenes, etc., the vehicle can obtain larger torque in a short time and have good power responsiveness.
  • the controller can be configured to: control the first motor 4 and the second motor 5 to operate, control the engine 3 not to operate, control the first clutch 1 to separate, and control the second clutch 2 to engage.
  • the DC power released by the power battery is converted into three-phase AC power through the first inverter and the second inverter respectively.
  • the power output by the first motor 4 is transmitted to the power output assembly 6 through the second clutch 2, and the power output by the second motor 5 is directly transmitted to the power output assembly 6 and collected at the second gear 64 in the power output assembly 6. and then passed to the wheel drive assembly 7.
  • the power transmission path when the first motor 4 and the second motor 5 output power has been analyzed and explained in detail above, and will not be described again here.
  • the first hybrid drive mode provided by the embodiment of the present application is also called a series/extended range hybrid drive mode.
  • the engine 3 and the second motor 5 can be used as hybrid power sources, and the first motor 4 can be used as a power generation device.
  • This working mode is usually suitable for high torque conditions, rapid acceleration conditions, etc.
  • the power advantage of the engine 3 at high speed can be used, and the motor's fast response characteristics can be used, so that the vehicle can be driven in a short time when driving at high speed.
  • a larger torque can be obtained in a short period of time; of course, this working mode can also be applied when the power battery is insufficient, and the first motor 4 generates electricity to supply energy to the second motor 5 to drive the vehicle.
  • the controller when the vehicle is controlled to be in the first hybrid drive mode, the controller is configured to: control the engine 3 to work, control the second motor 5 to work, control the first motor 4 to be in the power generation mode, and control the first clutch 1 is engaged and controls the second clutch 2 to be disengaged.
  • FIG. 6 shows the power transmission route when the vehicle is driven in the first hybrid drive mode.
  • the engine 3 runs in the high-efficiency zone to drive the first motor 4 to generate electricity.
  • the generated electric energy is converted by the first inverter and the second inverter and transferred to the second motor 5 for supplying the second motor 5 to drive the vehicle.
  • the excess electric energy can be stored in the power battery.
  • the power battery can also replenish the power, so that the first motor 4 and the power battery jointly meet the power demand of the second motor 5 .
  • the power transmission path is: the power output by the output shaft 31 of the engine 3 is output to the first motor 4 through the coupled first clutch 1.
  • the power transmission path through which the second motor 5 outputs power to the wheel end has been analyzed and explained in detail above, and will not be described again here.
  • the engine 3 is decoupled from the differential 71 and the wheels, and only drives the first motor 4 to rotate. Therefore, it is not easy to cause impact on the wheel ends when switching modes, which improves the driving process.
  • the vehicle's smoothness can be improved, while the engine 3 can have a better fuel-saving effect and maintain a higher economy.
  • the first hybrid drive mode provided by the embodiment of the present application is also called a parallel hybrid drive mode.
  • both the engine 3 and at least one motor can be used as power sources, that is, at least two power sources work together to jointly drive the vehicle.
  • the variable speed transmission system can output greater power and improve the dynamics of the vehicle. It is usually suitable for high torque conditions, rapid acceleration conditions, etc. It can also be applied when the power battery is insufficient.
  • the controller is configured to: control the engine 3 to work, control the first motor 4 not to work or be in the power generation mode, control the second motor 5 to work, and control both the first clutch 1 and the second clutch 2 to be combined.
  • the engine 3 operates in the high-efficiency zone and outputs power.
  • the first motor 4 is in the power generation mode, part of the power output by the engine 3 is used to drive the first motor 4 to generate electricity.
  • the generated electric energy is passed through the first inverter. converter and the second inverter, and transmits it to the second motor 5, which is used to supply the second motor 5 to drive the vehicle, and the other part of the power is used to directly drive the vehicle; when the first motor 4 does not work, the power output by the engine 3 Part of the power drags the output shaft 41 of the first motor 4 to rotate and is lost, and the other part of the power is used to directly drive the vehicle.
  • the excess electric energy can be stored in the power battery.
  • the power battery can also replenish the power, so that the first motor 4 and the power battery jointly meet the power demand of the second motor 5 .
  • the power transmission path of the engine 3 directly driving the vehicle is: the output shaft 31 of the engine 3 outputs the power to the first clutch 1 connected thereto, and then the combined first clutch 1 outputs the power to the second clutch 2, and then the power is output to the second clutch 2 through the output shaft 31 of the engine 3.
  • the second clutch 2 is transmitted to the power output assembly 6 and the wheel drive assembly 7 .
  • part of the power output by the engine 3 for driving the vehicle will be combined with the power output by the second motor 5 at the power output assembly 6 and continue to be transmitted backward.
  • the power transmission path between the power output component 6 and the vehicle drive component has been analyzed and explained in detail above, and will not be described again here.
  • the controller is configured to: control the engine 3, the first motor 4 and the second motor 5 to operate, and control the first clutch 1 and the second clutch 2 to be combined.
  • FIG 7 shows the power transmission route when the vehicle is driven by three power sources jointly.
  • the engine 3 operates in the high-efficiency zone and outputs power.
  • the DC power released by the power battery is converted into three-phase AC power through the first inverter and the second inverter respectively, and is used to drive the first motor 4 and the second motor 5.
  • the output shaft 51 rotates.
  • the power transmission paths through which the engine 3, the first motor 4 and the second motor 5 drive the vehicle have been described in detail above and will not be described again here.
  • Part of the power output by the engine 3 for driving the vehicle will be combined with the power output by the first motor 4 at the first clutch 1 (actually the second part 12 of the first clutch 1), and then the combined power will be
  • the power output by the output assembly 6 and the second motor 5 is gathered again and continues to be transmitted backward.
  • the power transmission path between the power output component 6 and the vehicle drive component has been analyzed and explained in detail above, and will not be described again here.
  • the engine 3 can be used as a separate power source to drive the vehicle.
  • This working mode can be applied to situations where a high-voltage fault occurs in the variable speed transmission system or the battery power is insufficient. It can also be applied to high-speed working conditions. At this time, if the motor is used to drive, the power consumption may be high. If the engine 3 is used to drive directly, it can reduce the power consumption. power consumption.
  • the controller when the vehicle is controlled to be in the engine direct drive mode, the controller is configured to: control the engine 3 to work, control the first motor 4 to selectively be in the power generation mode according to the power demand, and control the second motor 5 not to work. , controls the first clutch 1 and the second clutch 2 to be combined.
  • FIG 8 shows the power transmission route when the vehicle is driven in engine direct drive mode.
  • the transmission path of the power output by the engine 3 is the same as the transmission path of the power used by the engine 3 for driving in the second hybrid drive mode. It has been described in detail above and will not be described again here.
  • the first motor 4 can be controlled not to work. At this time, part of the power output by the engine 3 drags the output shaft 41 of the first motor 4 to rotate and be lost, and the other part of the power is used for Drive the vehicle directly.
  • variable speed transmission system provided by the embodiment of the present application is in the coasting/braking energy recovery mode
  • at least one of the first motor 4 and the second motor 5 can be used as a power generation device to convert the kinetic energy of the car into electrical energy and store it in the power Backup in battery.
  • This working mode is usually suitable for coasting and braking conditions.
  • the vehicle can recover part of the kinetic energy and convert it into electrical energy storage to provide energy for subsequent vehicle operation, thereby improving the vehicle's cruising range.
  • the controller can be configured to: control the second motor 5 to be in the power generation mode, and control the engine 3 and the first motor 4 Not working, both the first clutch 1 and the second clutch 2 are controlled to be disconnected.
  • the reverse torque output by the wheels passes through the drive shaft, the gear of the differential 71, the third gear 65, the intermediate shaft 63, The second gear 64, the motor output gear 52, and the output shaft 51 of the second motor 5 are transmitted to the second motor 5.
  • the second motor 5 can convert the braked kinetic energy into electrical energy and store it in the power battery for backup.
  • the power transmission path in this mode is exactly opposite to the power transmission path when the second motor 5 drives the vehicle alone in the first pure electric mode.
  • the controller can be configured to: control the operation of the engine 3, control the first motor 4 and the second motor 5.
  • the two motors 5 are both in the power generation mode, controlling the first clutch 1 to be engaged and the second clutch 2 to be disengaged.
  • the reverse torque output by the wheels is transmitted to the second motor 5 through the same power transmission route as in Figure 9.
  • the second motor 5 converts the braked kinetic energy into electrical energy and stores it in the power battery for backup.
  • the power output by the engine 3 is transmitted to the first motor 4 through the combined first clutch 1.
  • the first motor 4 converts this part of mechanical energy into electrical energy and stores it in the power battery for backup.
  • the parking power generation mode is usually suitable for situations where the power battery is low, and the power output from the engine 3 is used to charge the power battery.
  • the controller when the vehicle is controlled to be in the parking power generation mode, the controller is configured to: control the engine 3 to work, control the first motor 4 to be in the power generation mode, control the second motor 5 not to work, and control the first clutch 1 combined, and the second clutch 2 is disengaged.
  • FIG 10 shows the power transmission route when the vehicle charges the power battery in the parking power generation mode.
  • the power transmission path output by the engine 3 is the same as the power transmission path through which the engine 3 utilizes the first motor 4 to recover energy in the energy recovery mode. This has been explained in detail above and will not be repeated here.
  • the hybrid variable speed transmission system includes a total of three power sources including dual motors and an engine, ensuring strong power performance of the entire vehicle.
  • the high-performance dual motors can ensure that the vehicle has sufficient power during normal driving and provide strong low-speed torque when the vehicle accelerates sharply; the engine can ensure that the vehicle has excellent acceleration performance at full speed and provide sufficient backup when the vehicle speed increases. power.
  • the hybrid transmission system provided by the embodiment of the present application has excellent economy.
  • the high-performance dual motors can work together to meet most of the performance requirements of the vehicle, greatly reducing engine running time, fuel consumption and emissions; when the vehicle is under low load, the two motors can work selectively , to ensure that the motor operates within a good efficiency zone.
  • the hybrid variable speed transmission system provided by the embodiment of the present application has a long cruising range and will not cause range anxiety of pure electric vehicles. When driving long distances, it can be configured in pure engine drive mode, and with the optimized third-speed ratio, it can provide excellent driving comfort and cruising range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

一种混合动力系统及具有其的混合动力车辆,该混合动力系统包括第一离合器(1)、第二离合器(2)、发动机(3)、第一电机(4)、第二电机(5)以及动力输出组件(6);第一离合器(1)的两端分别与第一电机(4)和发动机(3)相连;第二离合器(2)的两端分别与第一离合器(1)和动力输出组件(6)相连;第二电机(5)与动力输出组件(6)相连;第一离合器(1)和第二离合器(2)沿第一电机(4)的输出轴(41)的径向布置,并且第二离合器(2)位于第一离合器(1)远离第一电机(4)的输出轴(41)的一侧。

Description

混合动力系统以及具有其的混合动力车辆
本申请要求于2022年06月28日提交的申请号为202210753220.6、发明名称为“混合动力系统以及具有其的混合动力车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,具体涉及一种混合动力系统以及具有其的混合动力车辆。
背景技术
随着汽车使用量的不断加大,汽车尾气污染已经成为城市空气污染的主要来源。为降低燃油车辆的汽车尾气对环境的影响,越来越多的新能源汽车走入消费者的视野。
混合动力汽车以其优越的节能减排以及较为出色的用户体验,逐渐得到了市场的青睐。相应地,市场对混合动力系统需求也逐渐扩大。各大汽车企业都在积极地研发混合动力系统,尤其是混合动力专用变速箱的集成开发。但是目前市场上的混合动力变速箱大多集成度低、尺寸大,结构复杂,不利于整车布置。
发明内容
本申请提供了一种混合动力系统以及具有其的混合动力车辆,具体采用如下技术方案:
本申请的一方面是提供了一种混合动力系统,所述混合动力系统包括第一离合器、第二离合器、发动机、第一电机、第二电机以及动力输出组件;
所述第一离合器的两端分别与所述第一电机和所述发动机相连;
所述第二离合器的两端分别与所述第一离合器和所述动力输出组件相连;
所述第二电机与所述动力输出组件相连;
其中,所述第一离合器和所述第二离合器沿所述第一电机的输出轴的径向布置,并且所述第二离合器位于所述第一离合器远离所述第一电机的输出轴的一侧。
在一些实施例中,所述第一离合器包括第一部和第二部,所述第一部和所述第二部可控制地结合或分离;
所述第二离合器包括第三部和第四部,所述第三部和所述第四部可控制地结合或分离;
所述第一离合器的第二部与所述第二离合器的第三部相连。
在一些实施例中,所述第二部和所述第三部一体化连接。
在一些实施例中,所述第一部套接在所述发动机的输出轴上,所述第二部的一端套接在所述第一电机的输出轴上,另一端位于所述第一部远离所述发动机的输出轴的一侧,并与所述第一部相配合;
所述第三部套接在所述第二部的另一端,所述第四部的一端与所述动力输出组件相连,另一端位于所述第三部远离所述第二部的一侧,并与所述第三部相配合。
在一些实施例中,所述第一电机的输出轴为阶梯轴,所述阶梯轴的轴头的直径小于轴身的直径;
所述第二部与所述轴头相连,以使所述第二部的至少一部分容纳于所述轴头外周的环形空间内。
在一些实施例中,所述第一部为所述第一离合器的内毂,所述第二部为所述第一离合器的外毂;
所述第三部为所述第二离合器的内毂,所述第四部为所述第二离合器的外毂;
所述第一离合器的外毂和所述第二离合器的内毂通过在同一毂套的内壁和外壁分别开设花键而形成。
在一些实施例中,开设在所述毂套的内壁上的花键和开设在所述毂套的外壁上的花键相对交错布置。
在一些实施例中,所述动力输出组件包括空心轴,所述空心轴套设在所述发动机的输出轴上,并能相对于所述发动机的输出轴转动;
所述空心轴的长度小于所述发动机的输出轴的长度,所述发动机的输出轴 的一端伸出于所述空心轴,并与所述第一部连接;
所述第四部与所述空心轴连接。
在一些实施例中,所述第一电机的输出轴与所述发动机的输出轴共轴线;
所述第一电机的输出轴和所述发动机的输出轴彼此靠近,且二者之间具有间隙,所述间隙位于所述第一离合器和所述第二离合器的内部。
在一些实施例中,所述第二电机的输出轴的轴线平行于所述第一电机的输出轴的轴线,并且所述第二电机的输出轴的长度大于所述第一电机的输出轴的长度。
在一些实施例中,所述动力输出组件、所述发动机的输出轴和所述第二电机的输出轴在第一平面上的正投影存在重叠区域;
所述动力输出组件在所述第一平面上的正投影与所述第一电机的输出轴在所述第一平面上的正投影之间具有间隙;
其中,所述第一平面为经过所述第一电机的输出轴的轴线,且垂直于所述第二电机的输出轴的轴线和所述发动机的输出轴的轴线之间的垂线的平面。
在一些实施例中,所述系统还包括壳体;
所述第一电机、所述第二电机、所述第一离合器和所述第二离合器均安装在所述壳体的内部,并且所述第一电机和所述第二电机在所述壳体内的排布方向垂直于所述第一电机的输出轴的轴线;
所述发动机位于所述壳体的外部,所述发动机的输出轴包括发动机的动力输出端,以及与所述发动机的动力输出端可拆卸连接的连接轴,所述连接轴安装在所述壳体的内部,并能相对于所述壳体转动,所述连接轴的一部分伸出于所述壳体。
本申请的另一方面是提供了一种混合动力车辆,所述混合动力车辆包括上述的混合动力系统。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的混合动力系统的局部剖视图;
图2是图1中A处的放大图;
图3是本申请实施例提供的一种毂套的结构示意图;
图4是第一纯电动模式下的动力传递示意图;
图5是第二纯电动模式下的动力传递示意图;
图6是第一混合动力驱动模式下的动力传递示意图;
图7是第二混合动力驱动模式下三个动力源联合驱动时的动力传递示意图;
图8是发动机直驱模式下的动力传递示意图;
图9是能量回收模式下发动机无动力输出时的动力传递示意图;
图10是驻车发电模式下的动力传递示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
相关技术中的混合动力系统多是在传统的自动变速箱的基础上进行的开发,通过将电机简单的集成在AT(液力自动变速箱)、AMT(电控机械自动变速箱)、CVT(机械无级自动变速箱)或者DCT(双离合变速器)等变速箱的前端或者后端而构成。
这种类型的混合动力系统因研发投入少、技术门槛低被众多车企采用,但是却存在着下述明显的缺点:第一,系统集成度低、部件尺寸大,不利于空间布置,还会影响电机功率的扩展,进而影响整车动力性;第二,若是采用电机启动发动机,那么发动机与车轮不解耦,在模式切换时会产生冲击,影响驾乘舒适度;若是采用传统的启动机起动发动机,则启动时间长、启动噪音大;第三,传统的混合动力变速箱没有增程模式,导致组合后的系统工作模式较少,限制节油效果。
为改善相关技术中混合动力系统的上述缺陷,本申请实施例提供了一种混合动力系统,其集成度高,结构紧凑,大大节省了布置空间,发动机与车轮解耦,避免了切换工作模式时产生的动力冲击,而且多种工作模式,满足不同工况下的工作需求,有助于提高节油效果。
如图1和图2所示,本申请实施例提供的混合动力系包括:第一离合器1、第二离合器2、发动机3(图中未示出)、第一电机4、第二电机5以及动力输出组件6;其中,第一离合器1的两端分别与第一电机4和发动机3相连;第二离合器2的两端分别与第一离合器1和动力输出组件6相连;第二电机5与动力输出组件6相连;其中,第一离合器1和第二离合器2沿第一电机4的输出轴41的径向布置,并且第二离合器2位于第一离合器1远离第一电机4的输出轴41的一侧。
需要说明的是,本申请实施例中所提到的第一离合器1和第二离合器2沿第一电机4的输出轴41的径向布置,指的是第一离合器1和第二离合器2的布置方向垂直于第一电机4的输出轴41的轴线。示例性地,第一离合器1和第二离合器2可以在第一电机4的输出轴41的一侧依次布置,此时第二离合器2位于第一离合器远离第一电机4的输出轴41的一侧;也可以是第一离合器1和第二离合器2均套设在第一电机4的输出轴41上,此时第一离合器直接包围在第一电机4的输出轴41的外侧,第二离合器包围在第一离合器的外侧。
在本申请实施例中,由于第一离合器1和第二离合器2是沿第一电机4的输出轴41的径向布置的,因此可以节省轴向布置空间,使得系统的结构更加紧凑;发动机3和第一电机4分别与第一离合器1的两端相连,并且通过第一离合器1和第二离合器2之间的连接配合而传递动力,因而系统的集成度更高;发动机3通过第一离合器1和第二离合器2与车轮解耦,避免了模式切换时的冲击;基于发动机3、第一电机4、第二电机5三个动力源,以及第一离合器1和第二离合器2两个控制器件,可以组合出多种工作模式,有助于提高节油效果。在本申请的一些实施例中,如图2所示,第一离合器1包括第一部11和第二部12,第一部11和第二部12可控制地结合或分离;第二离合器2包括第三部21和第四部22,第三部21和第四部22可控制地结合或分离;第一离合器1的第二部12与第二离合器2的第三部21相连。由于第二部和第三部直接相连,因此进一步提高了系统的集成度以及结构紧凑度。
在一些实施例中,第二部12和第三部21一体化连接。第一离合器1的第二部12和第二离合器2的第三部21一体化连接,使得两个离合器更加易于装配,减少了装配步骤,降低了成本。并且由于两个离合器实际上只有三个离合器毂,因此两个离合器装配后结构更加紧凑,联动性强。
在本申请实施例中,第二部12和第三部21可以是通过冲压制造得到的一体化结构,或者也可以是制造后再通过机床加工而得到的一体化结构。
在本申请的一些实施例中,如图1和图2所示,第一部11套接在发动机3的输出轴31上,第二部12的一端套接在第一电机4的输出轴41上,另一端位于第一部11远离发动机3的输出轴31的一侧,并与第一部11相配合;第三部21套接在第二部12的另一端,第四部22的一端与动力输出组件6相连,另一端位于第三部21远离第二部12的一侧,并与第三部21相配合。
第一部11与发动机3的输出轴31的轴壁固定连接,从而能在发动机3的输出轴31的带动下转动;第二部12与第一电机4的输出轴41的轴壁固定连接,从而能在第一电机4的输出轴41带动下转动;当第一部11和第二部12相结合时,发动机3输出的动力能向第一电机4传递,或者第一电机4输出的动力能向发动机3传递,或者发动机3和第一电机4输出的动力能基于第一离合器1向后面的部件传递,例如传递至第二离合器2的第三部21。
其中,第二离合器2的第三部21连接或者设置在第二部12远离第一电机4的输出轴41的一端,以避免第二部12与第一电机4的输出轴41连接的一端应力集中而造成故障。在本申请的一些实施例中,如图3所示,第一部11为第一离合器1的内毂,第二部12为第一离合器1的外毂;第三部21为第二离合器2的内毂,第四部22为第二离合器2的外毂;第一离合器1的外毂和第二离合器2的内毂通过在同一毂套的内壁和外壁分别开设花键而形成。
毂套指的是圆筒形的离合器毂,在装配时其一般是套设在动力轴的外侧,例如在本申请实施例中则是套设在第一电机4的输出轴41的外侧。在毂套的内壁和外壁分别加工有齿形的花键,其中毂套内壁的花键参数不同于毂套外壁的花键参数。第一离合器1的内毂的齿形参数与毂套内壁的花键参数相匹配,第二离合器2的外毂的齿形参数与毂套外壁的花键参数相匹配。
示例性地,第一离合器1和第二离合器2可以均为摩擦式离合器,其中第一离合器1的第一部11和第二部12上分别设有对应的多片离合器片,第二离 合器2的第三部21和第四部22上分别设有对应的多片离合器片,每个离合器的两个部分利用这些离合器片之间的相互摩擦达到转速同步。
在本申请的一些实施例中,开设在毂套的内壁上的花键和开设在毂套的外壁上的花键相对交错地布置,以保证毂套的强度。示例性地,参见图3,开设在毂套的内壁上的花键的凸起部分对应于毂套的外壁上的花键的凹陷部分,开设在毂套的内壁上的花键的凹陷部分对应于毂套的外壁上的花键的凸起部分。
在一些实施例中,开设在所述毂套的内壁上的花键和开设在所述毂套的外壁上的花键均为梯形花键。梯形花键采用冲压成型工艺形成,工艺简单,易于制造。
第一电机4可以包括定子和转子,其中定子是指第一电机4中固定的部分,上面例如装设有成对的直流励磁的静止的主磁极;转子是从定子内部穿过的铁芯,上面例如装设有电枢绕组,通电后会产生感应电动势,从而在励磁作用下相对于定子旋转。如图1所示,转子的一部分可以从定子内部伸出而形成输出轴,或者转子的一部分可以从定子内部伸出并与一根连接轴相连,从而形成输出轴;毂套与该输出轴固定连接。示例性的,固定连接的方式可以为螺接、焊接等。因此当第一电机4的转子转动时,毂套可以随转子同步转动。为了便于布置第一离合器1的内毂,毂套上开设有花键的部分与第一电机4的输出轴41之间留有布置空间,第一离合器1的内毂即布置在该空间内。
继续参见图1,在本申请的一些实施例中,第一电机4的输出轴41为阶梯轴,该阶梯轴的轴头的直径小于轴身的直径。轴头指的是第一电机4的转子远离定子的端部。第二部12与轴头相连,以使第二部12的至少一部分容纳于轴头外周的环形空间内。阶梯轴的结构相当于是在转子伸出定子的末端沿周向开设有缺口,第一离合器1的一部分布置在该缺口内。由于第一离合器1的一部分布置在该环形空间内,因此节省了对径向空间的占用,从而第一离合器1与第一电机4的输出轴41布置得更加紧凑,这里的“径向”指的是第一电机4的输出轴41的径向。
在本申请的一些实现方式中,动力输出组件6包括空心轴61,空心轴61套设在发动机3的输出轴31上,并能相对于发动机3的输出轴31转动;空心轴61的长度小于发动机3的输出轴31的长度,发动机3的输出轴31的一端伸出于空心轴61,并与第一部11连接;第四部22与空心轴61连接。
空心轴61能够相对于发动机3的输出轴31自由转动,示例性地,空心轴61和发动机3的输出轴31之间可以设置有轴承,二者通过轴承连接在一起,以实现相对转动。
发动机3的输出轴31的一部分伸出于发动机3的气缸罩盖。在一些实施例中,发动机3的输出轴31可以为曲轴,或者,发动机3的输出轴31也可以包括曲轴以及与曲轴相连的连接轴。空心轴61套设在输出轴伸出于发动机3的气缸罩盖的部分上,但是空心轴61的长度小于该伸出部分的长度,从而发动机3的输出轴31的端部能够从空心轴61中伸出。
在一些实施例中,发动机3的输出轴31的伸出于空心轴61的端部可以与第一电机4的第一部11固定连接。示例性地,固定连接的方式可以为螺接、焊接等。因此当发动机3的输出轴31转动时,第一部11可以随输出轴同步转动。
在本申请实施例中,动力输出组件6还可以包括固定连接在空心轴61上的第一齿轮62、中间轴63、固定连接在中间轴63上的第二齿轮64和第三齿轮65。其中,第一齿轮62能与空心轴61同步转动,第二齿轮64能与中间轴63同步转动,第一齿轮62与第二齿轮64啮合。当空心轴61转动时,动力依次经过空心轴61、第一齿轮62、第二齿轮64、中间轴63进行传递,中间轴63可以继续向后输出动力。
第二离合器2的第四部22固定连接在空心轴61上,因此当空心轴61转动时,也会带动第四部22同步转动。若此时第二离合器2处于结合状态,那么毂套处的动力可以经过第二离合器2向动力输出组件6方向传递,也可以经过动力输出组件6和第二离合器2向毂套方向传递。示例性地,第四部22与空心轴61之间固定连接的方式可以为螺接、焊接等。
在一些实施例中,第二齿轮64还与固定在第二电机5的输出轴51上的电机输出齿轮52啮合,因此第二电机5输出的动力依次经过电机输出齿轮52、第二齿轮64和中间轴63进行传递,从而实现动力输出。
在本申请的一些实施例中,第一电机4的输出轴41与发动机3的输出轴31共轴线;第一电机4的输出轴41和发动机3的输出轴31彼此靠近,且二者之间具有间隙,间隙位于第一离合器1和第二离合器2的内部。
第一电机4的输出轴41和发动机3的输出轴31共轴线且彼此靠近,因此这两个动力源之间的动力传递路径比较短,动力损失更少。
在本申请的一些实施例中,可以使用第一电机4作为发动机3的起动机。发动机3的起动是需要外力支持的,通常情况下会为发动机3配置起动机,并通过起动机来驱动发动机3的飞轮旋转,从而起动发动机3。但是在本申请实施例中,可以通过第一电机4带动发动机3起动,从而起到起动机的作用,因此该混合动力系统中没有设置起动机,结构得到了简化。
具体来讲,在发动机3启动之前,可以控制第一离合器1结合,第二离合器2分离,控制第一电机4工作,此时第一电机4输出的动力依次经过第一电机4的输出轴41、第一离合器1的第二部12、第一部11传递至发动机3的输出轴31,进而带动发动机3启动。
同样地,第一电机4还可以辅助发动机3的停止和调速。其中当辅助发动机3启动和提速时,第一电机4会将电能转化为机械能,从而输出动力;当辅助发动机3停止或者减速时,第一电机4可以将发动机3输出的机械能转化为电能,并存储起来以备使用。
当然,在本申请的另一些实施例中,也可以选择不使用第一电机4辅助发动机3启动,而是为发动机3配备单独的起动机。
需要说明的是,在第一电机4的输出轴41和发动机3的输出轴31彼此靠近的端部之间是具有间隙的,也即二者是不接触的。该间隙反映的是发动机3与第一电机4之间的最小距离,该距离不能过大,否则会造成轴向布置空间的浪费,这里的轴向指的是第一电机4的输出轴41的轴向。通常情况下,该间隙最大不能超过第一离合器1和第二离合器2的尺寸,即间隙位于第一离合器1和第二离合器2的内部。而该间隙越小,则系统的布置越紧凑,但是在发动机3和第一电机4发生转动时,输出轴均会发生一定程度的抖动,因此该间隙也不能太小,至少需要保证发动机3和第一电机4无论是在单独转动时,还是在同时转动时,彼此都是互不干扰、互不影响的。
在本申请的一些实现方式中,第二电机5的输出轴51的轴线平行于第一电机4的输出轴41的轴线,并且第二电机5的输出轴51的长度大于第一电机4的输出轴41的长度。
第二电机5的布置方向与第一电机4、发动机3是相同的,因此第二电机5的输出轴51的轴线平行于第一电机4的输出轴41的轴线,也平行于发动机3的输出轴31的轴线。这样保证了对布置空间的充分、合理利用,并且由于这三 个动力源的输出轴是彼此平行的,因此减少了传递动力过程中方向的变化,降低了动力损失,提高了动力传递效率。
第二电机5也可以包括定子和转子,如图1所示,转子的一部分可以从定子内部伸出而形成输出轴,或者转子的一部分可以从定子内部伸出并与一根连接轴相连,从而形成第二电机5的输出轴51。其中,第二电机5的输出轴51的长度是大于第一电机4的输出轴41的长度的,从而第二电机5的输出轴51既包括与第一电机4的输出轴41对应的部分,也包括与发动机3的输出轴31对应的部分,这样缩短了动力传递的路径,减少了其它动力传递部件,例如齿轮、中间轴63等的数量,也减少了动力传递过程中的损耗。
在本申请的一些实现方式中,如图1所示,动力输出组件6、所述发动机3的输出轴31和所述第二电机5的输出轴51在第一平面上的正投影存在重叠区域;动力输出组件6在第一平面上的正投影与第一电机4的输出轴41在第一平面上的正投影之间具有间隙;其中,第一平面为经过第一电机4的输出轴41的轴线,并且垂直于第二电机5的输出轴51的轴线和发动机3的输出轴31的轴线之间的垂线的平面,第一平面也可以称为投影平面。
结合图1可见,动力输出组件6实际上是布置在发动机3的输出轴31和第二电机5的输出轴51之间的,具体来讲,是布置在发动机3的输出轴31与第二电机5的输出轴51上对应于发动机3的输出轴31的部分之间的,因此动力输出组件6、发动机3的输出轴31和第二电机5的输出轴51在第一平面上的正投影存在重叠区域,但是不与第一电机4的输出轴41在第一平面上的正投影重叠。因此该系统对布置空间的利用更加的合理和均衡,不会将大部分部件集中布置在某一个区域而导致分布失衡,也不会造成空间的浪费。
示例性地,第一平面可以为经过第一电机4的输出轴41的轴线,并且与图1所示出的剖面垂直的平面。
在本申请的一些实施例中,系统还包括壳体8;第一电机4、第二电机5、第一离合器1和第二离合器2均安装在壳体8的内部,并且第一电机4和第二电机5在壳体8内的排布方向垂直于第一电机4的输出轴41的轴线;发动机3位于壳体8的外部,发动机3的输出轴31包括发动机3的动力输出端,以及与发动机3的动力输出端可拆卸连接的连接轴311,连接轴311安装在壳体8的内部,并能相对于壳体8转动,连接轴311的一部分从壳体8中伸出。
本申请的三个动力源,其中第一电机4和第二电机5的体积相对较小,发动机3的体积相对较大,为了便于装配,第一电机4、第二电机5、第一离合器1、第二离合器2、动力输出组件6以及连接轴311均集成在壳体8的内部,发动机3则独立于该壳体8。其中,发动机3具有动力输出端,该动力输出端例如可以是曲轴,曲轴能够与该连接轴311相连而形成发动机3的输出轴31。在装配时,可以将集成有第一电机4、第二电机5、第一离合器1、第二离合器2,以及连接轴311等部件的壳体8和发动机3分别放置在对应的位置,然后将连接轴311伸出于壳体8的部分与发动机3连接。连接方式例如可以为螺接、卡接等。
在本申请实施例中,该混合动力系统还可以包括车轮驱动组件7,该车轮驱动组件7可以包括差速器71、车轮驱动轴以及两个车轮。差速器71安装在车轮驱动轴上,差速器71的齿轮与安装在动力输出组件6的中间轴63上的第三齿轮65啮合,从而接收动力输出组件6输出的动力。两个车轮分别安装在车轮驱动轴的两端,差速器71能够使两个车轮以不同的转速转动,以完成精细转向。动力输出组件6输出的动力依次经第三齿轮65、差速器71和车轮驱动轴,传递至两个车轮。
在本申请实施例中,该混合动力系统还包括电源组件,第一电机4和第二电机5可以与电源组件发生能量交换。当第一电机4和/或第二电机5工作时,电源组件可以为正在工作的电机提供能量;当第一电机4和/或第二电机5处于发电模式时,电源组件可以接收并存储正在发电的电机所转化的能量。
其中,电机“工作”是指电机处于将电能转化为机械能的状态,“不工作”即是指电机处于既不将电能转化为机械能又不将机械能转化为电能的状态,“处于发电模式”即指电机处于将机械能转化为电能的状态。第一电机4和第二电机5均可以正转或反转,当正转时车辆前行,当反转时即为启动车辆的倒车功能。
在本申请实施例中,电源组件还可以包括电池组、第一电机4控制单元MCU1、第二电机5控制单元、第一逆变器和第二逆变器,电池组与第一逆变器和第二逆变器分别连接,第一电机4控制单元和第一电机4均与第一逆变器电连接,第二电机5控制单元和第二电机5均与第二逆变器电连接。
在本申请的一些实施例中,电源组件可以包括电池管理系统,电池管理系统能够时刻监控电池组的使用状态,通过必要措施缓解电池组的不一致性,为 电池组的使用安全提供保障。
综上所述,本申请实施例提供的混合动力系统配置有发动机3、第一电机4和第二电机5三个动力源,这三个动力源可以单独驱动或者联合驱动,结合第一离合器1和第二离合器2,以及动力输出组件6所对应的两个不同的动力传递路径,实现以多种工作模式,在多个挡位下输出动力而驱动车轮转动,有助于提高节油效果。其中,由于本申请实施例中第一离合器1和第二离合器2包括彼此连接的一体化结构,以及基于各个部件的结构特点所确定的布置和装配方式,因而整个系统的集成度高、结构紧凑,空间利用均衡合理。并且由于发动机3可以通过第一离合器1和第二离合器2与车轮解耦,因此还避免了模式切换时的冲击,提高了平顺性。
本申请实施例还提供了一种混合动力系统,包括第一离合器1、第二离合器2、发动机3、第一电机4、第二电机5以及动力输出组件6第一离合器1和第二离合器2沿第一电机4的输出轴的径向布置;第一离合器1包括可控制地结合或分离的第一部11和第二部12,第一部11与发动机3的输出轴相连,第二部12与第一电机4的输出轴相连;第二离合器2包括可控制地结合或分离的第三部21和第四部22,第三部21与第二部12相连,并且第三部21位于第二部12远离第一电机4的输出轴的一侧,第四部22与动力输出组件6相连;第二电机5的输出轴与动力输出组件6相连。
在本申请的一些实施例中,第二部12和第三部21一体化连接。
在本申请的一些实施例中,第一部11为第一离合器1的内毂,第二部12为第一离合器1的外毂;第三部21为第二离合器2的内毂,第四部22为第二离合器2的外毂;第一离合器1的外毂和第二离合器2的内毂通过在同一毂套的内壁和外壁分别开设花键而形成。
在本申请的一些实施例中,毂套套设在第一电机4的输出轴的外侧,并与第一电机4的输出轴固定连接,从而毂套能在第一电机4的带动下发生转动。
在本申请的一些实施例中,动力输出组件6包括空心轴61,空心轴61套设在发动机3的输出轴的外周,并能相对于发动机3的输出轴转动;空心轴61的长度小于发动机3的输出轴的长度,发动机3的输出轴的一端从空心轴61中伸出,并与第一部11固定连接;第四部22与空心轴61固定连接。
在本申请的一些实施例中,第一电机4的输出轴与发动机3的输出轴共轴线;第一电机4的输出轴和发动机3的输出轴彼此靠近,且二者之间具有间隙,间隙位于第一离合器1和第二离合器2的内部。
在本申请的一些实施例中,第二电机5的输出轴的轴线平行于第一电机4的输出轴的轴线,并且第二电机5的输出轴的长度大于第一电机4的输出轴的长度。
在本申请的一些实施例中,动力输出组件6、发动机3的输出轴和第二电机5的输出轴在第一平面上的正投影存在重叠区域;动力输出组件6在第一平面上的正投影与第一电机4的输出轴在第一平面上的正投影之间具有间隙;其中,第一平面经过第一电机4的输出轴的轴线,并且垂直于第二电机5的输出轴的轴线和发动机3的输出轴的轴线之间的垂线。
在本申请的一些实施例中,系统还包括壳体8;第一电机4、第二电机5、第一离合器1和第二离合器2均安装在壳体8的内部,并且第一电机4和第二电机5在壳体8内的排布方向垂直于第一电机4的输出轴的轴线;发动机3位于壳体8的外部,发动机3的输出轴包括发动机3的动力输出端,以及与发动机3的动力输出端可拆卸连接的连接轴311,连接轴311的一部分从壳体8中伸出。
本申请实施例提供的混合动力系统中,由于第一离合器1和第二离合器2是沿第一电机4的输出轴的径向布置的,因此可以节省轴向布置空间,使得系统的结构更加紧凑;发动机3和第一电机4分别与第一离合器1的第一部11和第二部12相连,并且通过第一离合器1和第二离合器2之间的连接配合而传递动力,因而系统的集成度更高;发动机3通过第一离合器1和第二离合器2与车轮解耦,避免了模式切换时的冲击;基于发动机3、第一电机4、第二电机5三个动力源,以及第一离合器1和第二离合器2两个控制器件,可以组合出多种工作模式,有助于提高节油效果。
本申请实施例还提供了一种混合动力车辆,包括上述任一实施例中所述的混合动力系统。该车辆还具有控制器,能够根据当前车辆状态确定出相匹配的工作模式,并控制混合动力系统切换至对应的工作模式。其中,当前车辆状态至少包括当前油门踏板开度、当前刹车踏板开度、当前动力电池电量、当前车 速和当前工况。混合动力系统能够实现的工作模式至少包括第一纯电动模式、第二纯电动模式、第一混合动力驱动模式、第二混合动力驱动模式、发动机直驱模式、能量回收模式以及驻车充电模式。
下面结合图2至图7,对本申请实施例提供的混合动力系统所对应的一些工作模式所适用的工况,以及混合动力车辆在各工作模式下的动力传递路径进行详细的说明。
(1)第一纯电动模式
本申请实施例所提供的车辆在处于纯电动模式时,可以利用第二电机5单独作为动力源,该工作模式通常适用于车辆处于低速蠕行或巡航状态的情况,例如城市工况下,能够降低拥堵以及停车等待过程中的功耗,更加节省电力,满足了用户追求经济性、动力性和舒适型等多方面的要求。
此时,控制器可以被配置为:控制第二电机5工作,控制发动机3和第一电机4不工作,控制第一离合器1和第二离合器2均分离。
如图4所示,当第二电机5单独驱动车辆行驶时,动力电池释放出的直流电,经过第二逆变器后转换为三相交流电,用于驱动第二电机5的输出轴51旋转,第二电机5输出的动力可以通过直接传递至动力输出组件6。之后,动力在动力输出组件6和车轮驱动组件7之间的第一传递路径为:第二齿轮64在接收到第二电机5的输出轴51上的电机输出齿轮52所传递的动力之后发生转动,并带动中间轴63和第三齿轮65转动,然后经与第三齿轮65啮合的差速器71的齿轮传递至驱动轴,进而传递至车轮处,从而驱动车辆行驶。
其中,第二电机5可以正转或反转,当正转时车辆前行,当反转时即为启动车辆的倒车功能。
出于能耗的考虑,一般不使用第一电机4单独驱动车辆行驶。但是在一些情况下,例如第二电机5发生故障时,也是可以使用第一电机4单独驱动车辆行驶的。第一电机4单独驱动车辆行驶时,控制器可以被配置为:控制第一电机4工作,控制发动机3和第二电机5不工作,控制第一离合器1分离,第二离合器2结合。
第一电机4单独驱动时的传递路径为:动力电池释放出的直流电,经过第一逆变器后转换为三相交流电,用于驱动第一电机4的输出轴41旋转,第一电机4输出的动力经过结合的第二离合器2传递至动力输出组件6。之后,动力在 动力输出组件6和车轮驱动组件7之间的第二传递路径为:空心轴61在接收到第二离合器2所传递的动力之后发生转动,并带动固定在空心轴61上的第一齿轮62转动,然后动力经与第一齿轮62啮合的第二齿轮64传递至中间轴63,使得中间轴63和第三齿轮65同步转动,然后经与第三齿轮65啮合的差速器71的齿轮传递至驱动轴,进而传递至车轮处,从而驱动车辆行驶。
需要说明的是,在单电机驱动的模式下,相比于使用第二电机5驱动,使用第一电机4驱动需要经历更长的动力传递路径,导致动力损耗相对更大,因此,在第二电机5运行正常的情况下,通常不选用将第一电机4作为单独动力源进行驱动的模式。
(2)第二纯电动模式
本申请实施例所提供的车辆在处于纯电动模式时,还可以利用第一电机4和第二电机5作为联合动力源驱动车辆行驶,双电机驱动通常适用于用户需要使车辆处于低速状态下,但临时需要较大扭矩的情况下,例如超车场景、起步场景等,以使车辆短时间内获得较大扭矩,具有良好的动力响应性。
在使用双电机驱动时,控制器可以被配置为:控制第一电机4和第二电机5工作,控制发动机3不工作,控制第一离合器1分离,第二离合器2结合。
如图5所示,当第一电机4和第二电机5联合驱动车辆行驶时,动力电池释放出的直流电,分别经过第一逆变器和第二逆变器而转换为三相交流电,用于驱动第一电机4和第二电机5的输出轴51旋转。其中,第一电机4输出的动力经第二离合器2传递至动力输出组件6,第二电机5输出的动力直接传递至动力输出组件6,并在动力输出组件6中的第二齿轮64处汇集后传递至车轮驱动组件7。第一电机4和第二电机5输出动力时的动力传递路径已经在上文中做过详细的分析说明,这里不再赘述。
(3)第一混合动力驱动模式
本申请实施例所提供的第一混合动力驱动模式,也称为串联/增程式混合驱动模式。当车辆在处于第一混合动力驱动模式时,可以将发动机3和第二电机5作为混合动力源,第一电机4作为发电设备,该工作模式通常适用于大扭矩工况、急加速工况等,例如车辆处于高速状态下但临时需要较大扭矩进行超车的情况,既能够利用发动机3在高转速下的动力优势,又能够利用电机响应性快的特点,使得车辆在高速行驶时能够在短时间内获得较大扭矩;当然,该工作 模式也可适用于动力电池电量不足的情况,通过第一电机4发电为第二电机5供给能量,驱动车辆行驶。
在本申请实施例中,当控制车辆处于第一混合动力驱动模式时,控制器被配置为:控制发动机3工作,控制第二电机5工作,控制第一电机4处于发电模式,控制第一离合器1结合,控制第二离合器2分离。
图6示出了车辆以第一混合动力驱动模式驱动车辆行驶时的动力传递路线。发动机3运行在高效区带动第一电机4发电,发出的电能经第一逆变器、第二逆变器转化,传递至第二电机5,用于供给第二电机5驱动车辆行驶。同时结合第二电机5的电能使用情况,当存在多余的电能时,可以将多余的电能储存在动力电池中。当第一电机4的发电量不足时,动力电池也可以进行电量补充,从而第一电机4和动力电池共同满足第二电机5的用电需求。
其中发动机3向第一电机4输出动力时,动力的传递路径为:发动机3的输出轴31所输出的动力经结合的第一离合器1输出至第一电机4。而第二电机5向轮端输出动力的动力传递路径已经在上文中做出过详细的分析说明,这里不再赘述。
在上述的第一混合动力驱动模式中,发动机3与差速器71和车轮是解耦的,仅带动第一电机4转动,因此在切换模式时不容易对轮端造成冲击,提高了行驶过程中车辆的平顺性,同时可使发动机3具有较好的节油效果,并保持较高的经济性。
(4)第二混合动力驱动模式
本申请实施例所提供的第一混合动力驱动模式,也称为并联式混合驱动模式。当车辆在处于第二混合动力驱动模式时,可以将发动机3以及至少一个电机均作为动力源,即至少两个动力源共同工作,联合驱动车辆行驶。该工作模式下变速传动系统可以输出较大的功率,提高整车动力性,通常适用于大扭矩工况、急加速工况等,也可以适用于动力电池电量不足的情况。
在本申请实施例中,当控制车辆处于并联式混合驱动模式时,根据动力源的数量不同,可以分为以下两种情况:
第一种情况下,以发动机3和第二电机5作为联合动力源。此时控制器被配置为:控制发动机3工作,控制第一电机4不工作或者处于发电模式,控制第二电机5工作,控制第一离合器1和第二离合器2均结合。
在第一种情况下,发动机3运行在高效区输出动力,其中当第一电机4处于发电模式时,发动机3输出的一部分动力用于带动第一电机4发电,发出的电能经第一逆变器、第二逆变器转化,传递至第二电机5,用于供给第二电机5驱动车辆行驶,另一部分动力用于直接驱动车辆行驶;当第一电机4不工作时,发动机3输出的一部分动力拖曳第一电机4的输出轴41转动而损耗,另一部分动力用于直接驱动车辆行驶。
结合第二电机5的电能使用情况,当存在多余的电能时,可以将多余的电能储存在动力电池中。当第一电机4的发电量不足时,动力电池也可以进行电量补充,从而第一电机4和动力电池共同满足第二电机5的用电需求。
其中,发动机3直接驱动车辆行驶的动力传递路径为:发动机3的输出轴31将动力输出至与其相连的第一离合器1,然后经结合的第一离合器1输出至第二离合器2,并由第二离合器2传递至动力输出组件6以及车轮驱动组件7。其中,发动机3输出的用于驱动车辆行驶的一部分动力会在动力输出组件6处与第二电机5输出的动力汇集,并继续向后传递。动力在动力输出组件6和车辆驱动组件之间的动力传递路径已经在上文中做出过详细的分析说明,这里不再赘述。
第二种情况下,以发动机3、第一电机4和第二电机5作为联合动力源。此时控制器被配置为:控制发动机3、第一电机4和第二电机5均工作,控制第一离合器1和第二离合器2均结合。
图7示出了车辆以三个动力源联合驱动车辆行驶时的动力传递路线。发动机3运行在高效区输出动力,同时动力电池释放出的直流电,分别经过第一逆变器和第二逆变器而转换为三相交流电,用于驱动第一电机4和第二电机5的输出轴51旋转。
其中,发动机3、第一电机4以及第二电机5各自驱动车辆行驶的动力传递路径已在上文中做过详细的说明,在此不再赘述。发动机3输出的用于驱动车辆行驶的一部分动力会在第一离合器1(实际上是第一离合器1的第二部12)处与第一电机4输出的动力汇集,之后汇集的动力会在动力输出组件6处与第二电机5输出的动力再次汇集,并继续向后传递。动力在动力输出组件6和车辆驱动组件之间的动力传递路径已经在上文中做出过详细的分析说明,这里不再赘述。
(5)发动机直驱模式
本申请实施例所提供的车辆在处于发动机直驱模式时,可以将发动机3作为单独动力源驱动车辆行驶。该工作模式下可以适用于变速传动系统出现高压故障或电池电量不足的情况,也可以适用于高速工况下,此时若使用电机驱动可能功耗较高,若使用发动机3直接驱动,能够降低功耗。
在本申请实施例中,当控制车辆处于发动机直驱模式时,控制器被配置为:控制发动机3工作,控制第一电机4根据电量需求选择性地处于发电模式,控制第二电机5不工作,控制第一离合器1和第二离合器2结合。
图8示出了车辆以发动机直驱模式驱动车辆行驶时的动力传递路线。发动机3输出的动力的传递路径与第二混合动力驱动模式下发动机3用于驱动的动力的传递路径相同,前文中已详细说明过,此处不再赘述。
在一些实施例中,若是动力电池不需要充电,则控制第一电机4不工作即可,此时发动机3输出的一部分动力拖曳第一电机4的输出轴41转动而损耗,另一部分动力用于直接驱动车辆行驶。
(6)能量回收模式
本申请实施例所提供的变速传动系统在处于滑行/制动能量回收模式时,可以利用第一电机4和第二电机5中的至少一个作为发电设备,将汽车的动能转换为电能存储在动力电池中备用。该工作模式通常适用于滑行和制动工况下,车辆能够回收部分动能并将其转化为电能存储,为后续车辆的运行提供能量,从而提高了车辆的续航里程。
第一种情况下,当发动机3无动力输出时,仅以第二电机5作为发电设备,此时控制器可以被配置为:控制第二电机5处于发电模式,控制发动机3和第一电机4不工作,控制第一离合器1和第二离合器2均分离。
如图9所示,当车辆在滑行和制动工况下开启能量回收模式时,则车轮输出的反向力矩依次通过驱动轴、差速器71的齿轮、第三齿轮65、中间轴63、第二齿轮64、电机输出齿轮52、第二电机5的输出轴51传递至第二电机5,第二电机5能够将被制动的这部分动能转化为电能,并存入动力电池中备用。该模式下的动力传递路径与第二电机5在第一纯电动模式下单独驱动车辆行驶时的动力传递路径刚好相反。
第二种情况下,当发动机3有动力输出时,以第一电机4和第二电机5共 同作为发电设备,此时控制器可以被配置为:控制发动机3工作,控制第一电机4和第二电机5均处于发电模式,控制第一离合器1结合,第二离合器2分离。
此时一方面车轮输出的反向力矩经与图9中相同的动力传递路线传递至第二电机5,第二电机5将被制动的这部分动能转化为电能,并存入动力电池中备用;另一方面发动机3输出的动力经结合的第一离合器1传递至第一电机4,第一电机4将这部分机械能转化为电能,并存入动力电池中备用。
(7)驻车充电模式
驻车发电模式通常适用于动力电池电量不足的情况,利用发动机3输出的动力为动力电池充电。在本申请实施例中,当控制车辆处于驻车发电模式时,控制器被配置为:控制发动机3工作,控制第一电机4处于发电模式,控制第二电机5不工作,控制第一离合器1结合,第二离合器2分离。
图10示出了车辆以驻车发电模式为动力电池充电时的动力传递路线。此时发动机3输出的动力传递路径与能量回收模式下发动机3利用第一电机4回收能量的动力传递路径相同,前文中已详细说明过,此处不再赘述。
综上所述,本申请实施例提供的混合动力变速传动系统包括双电机和发动机共三个动力源,保证了整车强大的动力性能。其中,高性能双电机可以保证车辆在正常行驶时足够的动力,在车辆急加速时提供强大的低速扭矩;发动机可以保证整车在全速段具备优良的加速性能,在车速提高后提供足够的后备功率。
本申请实施例提供的混合动力变速传动系统具备优良的经济性。在车辆中低负荷时,高性能双电机之间配合工作能满足车辆行驶的大部分性能要求,大大减少发动机运行时间,减小油耗和排放;在车辆低负荷时,两台电机可以选择性工作,保证电机工作在良好效率区内。
本申请实施例提供的混合动力变速传动系统续航里程长,不会发生纯电动汽车的里程焦虑。在长途行驶时可以配置为纯发动机驱动模式,配合优化的三档速比,可提供优良的行驶舒适性和续航里程。
本领域技术人员在考虑说明书及实践这里公开的本申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变 化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种混合动力系统,其中,所述混合动力系统包括第一离合器(1)、第二离合器(2)、发动机(3)、第一电机(4)、第二电机(5)以及动力输出组件(6);
    所述第一离合器(1)的两端分别与所述第一电机(4)和所述发动机(3)相连;
    所述第二离合器(2)的两端分别与所述第一离合器(1)和所述动力输出组件(6)相连;
    所述第二电机(5)与所述动力输出组件(6)相连;
    其中,所述第一离合器(1)和所述第二离合器(2)沿所述第一电机(4)的输出轴(41)的径向布置,并且所述第二离合器(2)位于所述第一离合器(1)远离所述第一电机(4)的输出轴(41)的一侧。
  2. 根据权利要求1所述的系统,其中,所述第一离合器(1)包括第一部(11)和第二部(12),所述第一部(11)和所述第二部(12)可控制地结合或分离;
    所述第二离合器(2)包括第三部(21)和第四部(22),所述第三部(21)和所述第四部(22)可控制地结合或分离;
    所述第一离合器(1)的第二部(12)与所述第二离合器(2)的第三部(21)相连。
  3. 根据权利要求2所述的系统,其中,所述第二部(12)和所述第三部(21)一体化连接。
  4. 根据权利要求2所述的系统,其中,所述第一部(11)套接在所述发动机(3)的输出轴(31)上,所述第二部(12)的一端套接在所述第一电机(4)的输出轴(41)上,另一端位于所述第一部(11)远离所述发动机(3)的输出轴(31)的一侧,并与所述第一部(11)相配合;
    所述第三部(21)套接在所述第二部(12)的另一端,所述第四部(22)的一端与所述动力输出组件(6)相连,另一端位于所述第三部(21)远离所述 第二部(12)的一侧,并与所述第三部(21)相配合。
  5. 根据权利要求4所述的系统,其中,所述第一电机(4)的输出轴(41)为阶梯轴,所述阶梯轴的轴头的直径小于轴身的直径;
    所述第二部(12)与所述轴头相连,以使所述第二部(12)的至少一部分容纳于所述轴头外周的环形空间内。
  6. 根据权利要求2-5任一项所述的系统,其中,所述第一部(11)为所述第一离合器(1)的内毂,所述第二部(12)为所述第一离合器(1)的外毂;
    所述第三部(21)为所述第二离合器(2)的内毂,所述第四部(22)为所述第二离合器(2)的外毂;
    所述第一离合器(1)的外毂和所述第二离合器(2)的内毂通过在同一毂套的内壁和外壁分别开设花键而形成。
  7. 根据权利要求6所述的系统,其中,开设在所述毂套的内壁上的花键和开设在所述毂套的外壁上的花键相对交错布置。
  8. 根据权利要求2所述的系统,其中,所述动力输出组件(6)包括空心轴(61),所述空心轴(61)套设在所述发动机(3)的输出轴(31)上,并能相对于所述发动机(3)的输出轴(31)转动;
    所述空心轴(61)的长度小于所述发动机(3)的输出轴(31)的长度,从而所述发动机(3)的输出轴(31)的一端伸出于所述空心轴(61),并与所述第一部(11)连接;
    所述第四部(22)与所述空心轴(61)连接。
  9. 根据权利要求1所述的系统,其中,所述第一电机(4)的输出轴(41)与所述发动机(3)的输出轴(31)共轴线;
    所述第一电机(4)的输出轴(41)和所述发动机(3)的输出轴(31)彼此靠近,且二者之间具有间隙,所述间隙位于所述第一离合器(1)和所述第二离合器(2)的内部。
  10. 根据权利要求9所述的系统,其中,所述第二电机(5)的输出轴(51)的轴线平行于所述第一电机(4)的输出轴(41)的轴线,并且所述第二电机(5)的输出轴(51)的长度大于所述第一电机(4)的输出轴(41)的长度。
  11. 根据权利要求10所述的系统,其中,所述动力输出组件(6)、所述发动机(3)的输出轴(31)和所述第二电机(5)的输出轴(51)在第一平面上的正投影存在重叠区域;
    所述动力输出组件(6)在所述第一平面上的正投影与所述第一电机(4)的输出轴(41)在所述第一平面上的正投影之间具有间隙;
    其中,所述第一平面为经过所述第一电机(4)的输出轴(41)的轴线,且垂直于所述第二电机(5)的输出轴(51)的轴线和所述发动机(3)的输出轴(31)的轴线之间的垂线的平面。
  12. 根据权利要求1所述的系统,其中,所述系统还包括壳体(8);
    所述第一电机(4)、所述第二电机(5)、所述第一离合器(1)和所述第二离合器(2)均安装在所述壳体(8)的内部,并且所述第一电机(4)和所述第二电机(5)在所述壳体(8)内的排布方向垂直于所述第一电机(4)的输出轴(41)的轴线;
    所述发动机(3)位于所述壳体(8)的外部,所述发动机(3)的输出轴包括发动机(3)的动力输出端,以及与所述发动机(3)的动力输出端可拆卸连接的连接轴(311),所述连接轴(311)安装在所述壳体(8)的内部,并能相对于所述壳体(8)转动,所述连接轴(311)的一部分伸出于所述壳体(8)。
  13. 一种混合动力车辆,其中,所述混合动力车辆包括权利要求1-12任一项所述的混合动力系统。
PCT/CN2022/134437 2022-06-28 2022-11-25 混合动力系统以及具有其的混合动力车辆 WO2024001014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210753220.6A CN114987190B (zh) 2022-06-28 2022-06-28 混合动力系统以及具有其的混合动力车辆
CN202210753220.6 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024001014A1 true WO2024001014A1 (zh) 2024-01-04

Family

ID=83019010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134437 WO2024001014A1 (zh) 2022-06-28 2022-11-25 混合动力系统以及具有其的混合动力车辆

Country Status (2)

Country Link
CN (1) CN114987190B (zh)
WO (1) WO2024001014A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114987190B (zh) * 2022-06-28 2023-10-31 奇瑞汽车股份有限公司 混合动力系统以及具有其的混合动力车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527675A (zh) * 2013-10-17 2014-01-22 中国北方车辆研究所 一种双离合器
CN103573850A (zh) * 2012-07-20 2014-02-12 加特可株式会社 摩擦联结装置及其摩擦板的组装方法和夹具
CN106795923A (zh) * 2014-08-29 2017-05-31 舍弗勒技术股份两合公司 双离合器
CN109986949A (zh) * 2017-12-29 2019-07-09 比亚迪股份有限公司 混合动力驱动系统及车辆
WO2020127012A1 (de) * 2018-12-18 2020-06-25 Zf Friedrichshafen Ag Mehrfachkupplungsanordnung, hybrid-getriebeanordnung sowie kraftfahrzeug
CN114211950A (zh) * 2021-12-24 2022-03-22 奇瑞汽车股份有限公司 混合动力系统及车辆
CN114987190A (zh) * 2022-06-28 2022-09-02 奇瑞汽车股份有限公司 混合动力系统以及具有其的混合动力车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217277A1 (de) * 2014-08-29 2016-03-03 Schaeffler Technologies AG & Co. KG Doppelkupplung
DE102015225033A1 (de) * 2015-12-14 2017-06-14 Schaeffler Technologies AG & Co. KG Doppelkupplung
CN212177711U (zh) * 2020-04-13 2020-12-18 博格华纳汽车零部件(宁波)有限公司 一种可拆分式的三离合器p2混合动力模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573850A (zh) * 2012-07-20 2014-02-12 加特可株式会社 摩擦联结装置及其摩擦板的组装方法和夹具
CN103527675A (zh) * 2013-10-17 2014-01-22 中国北方车辆研究所 一种双离合器
CN106795923A (zh) * 2014-08-29 2017-05-31 舍弗勒技术股份两合公司 双离合器
CN109986949A (zh) * 2017-12-29 2019-07-09 比亚迪股份有限公司 混合动力驱动系统及车辆
WO2020127012A1 (de) * 2018-12-18 2020-06-25 Zf Friedrichshafen Ag Mehrfachkupplungsanordnung, hybrid-getriebeanordnung sowie kraftfahrzeug
CN114211950A (zh) * 2021-12-24 2022-03-22 奇瑞汽车股份有限公司 混合动力系统及车辆
CN114987190A (zh) * 2022-06-28 2022-09-02 奇瑞汽车股份有限公司 混合动力系统以及具有其的混合动力车辆

Also Published As

Publication number Publication date
CN114987190A (zh) 2022-09-02
CN114987190B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
EP2508378B1 (en) Hybrid electric drive unit, hybrid drive system and control method thereof
EP2444266A1 (en) Series/parallel bi-motor dual-clutch hybrid electrical driving unit for automobile
WO2015113419A1 (zh) 车辆及车辆的巡航控制方法
US11391348B2 (en) Transmission and power system for use in hybrid vehicle
CN111251866B (zh) 混合动力驱动系统及车辆
CN110667368A (zh) 一种四驱车辆混合动力系统及工作方法
JP6542779B2 (ja) ハイブリッド推進及び関連する制御技術を有する自動車用変速装置
CN201633523U (zh) 混合动力驱动系统
KR101580773B1 (ko) 하이브리드 자동차의 동력전달구조
JP2010076625A (ja) ハイブリッド車両
CN102390249A (zh) 带单向离合器的四驱混合动力车的混合动力系统
WO2024001014A1 (zh) 混合动力系统以及具有其的混合动力车辆
WO2022089176A1 (zh) 混合动力系统及车辆
CN111098695B (zh) 混合动力驱动系统及车辆
CN111688470B (zh) 一种串并联构型插电式混合动力系统及其控制方法
CN111038247A (zh) 双离合混合动力耦合系统及车辆
WO2023029340A1 (zh) 电动动力传递系统及车辆
CN114211950A (zh) 混合动力系统及车辆
CN114834241A (zh) 双电机混合动力系统与车辆
CN110789328B (zh) 混合动力驱动系统
JPH02101903A (ja) 電動車両
CN114194020A (zh) 混合动力系统及车辆
CN220996106U (zh) 混合动力驱动系统及车辆
CN217623107U (zh) 一种混合动力车辆多档位驱动系统
CN114851828B (zh) 变速传动系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949094

Country of ref document: EP

Kind code of ref document: A1