WO2024001008A1 - 高压海缆绝缘老化寿命预测方法、装置及设备 - Google Patents

高压海缆绝缘老化寿命预测方法、装置及设备 Download PDF

Info

Publication number
WO2024001008A1
WO2024001008A1 PCT/CN2022/133731 CN2022133731W WO2024001008A1 WO 2024001008 A1 WO2024001008 A1 WO 2024001008A1 CN 2022133731 W CN2022133731 W CN 2022133731W WO 2024001008 A1 WO2024001008 A1 WO 2024001008A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
insulation
electric field
life
model
Prior art date
Application number
PCT/CN2022/133731
Other languages
English (en)
French (fr)
Inventor
侯帅
傅明利
樊灵孟
黎小林
贾磊
展云鹏
朱闻博
惠宝军
冯宾
张逸凡
Original Assignee
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2024001008A1 publication Critical patent/WO2024001008A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present application relates to the technical field of high-voltage AC cable insulation, and in particular to a method, device and equipment for predicting the aging life of high-voltage submarine cable insulation.
  • the insulation aging of high-voltage submarine cables is caused by the combined effects of electric field, thermal field and mechanical stress. Due to the complex effects of multiple physical fields, the aging rules are also very complex, making life assessment difficult. Domestic and foreign authors have proposed some empirical models to reflect the aging laws of insulation materials based on the insulation aging characteristics, such as the inverse power model, exponential model, Arrhenius model, RAMU model, etc. However, the above models also show significant shortcomings in the application process. For example, the inverse power model and the Arrhenius model can only describe the aging process under the action of a single factor of the electric field and the thermal field. When the electrothermal factors are applied to the insulating material at the same time, its aging life time will be reduced.
  • a method for predicting the aging life of high-voltage submarine cable insulation is provided.
  • this application provides a method for predicting the aging life of high-voltage submarine cable insulation, including:
  • the environmental data includes the electric field, temperature and mechanical stress exerted by the environment on the cable sample;
  • the Weibull distribution is used to calculate the corresponding characteristic breakdown time of the cable sample
  • the Weibull distribution model is:
  • P is the breakdown probability
  • is the scale coefficient of the breakdown time
  • is the shape coefficient of the breakdown time
  • t is the breakdown time
  • the characteristic breakdown time corresponding to the cable sample is obtained using the Weibull distribution model.
  • n groups of cable samples are substituted into the electrothermal mechanical composite field cable insulation aging life coefficient model, and a high-voltage submarine cable insulation aging life prediction model is established based on the coefficient model;
  • n is not less than 6 An integer, and there is at least one difference between the environmental data of each set of cable samples;
  • E 0 , T 0 , M 0 , E 1 , T 1 , and M 1 are respectively the electric field intensity, temperature, and mechanical stress of the environment in which the two sets of cable samples are located.
  • L 0 is the electric field intensity E 0 , temperature T 0 , and mechanical stress.
  • Insulation life under the condition of stress M 0 , L 1 is the insulation life under the conditions of electric field strength E 1 , temperature T 1 and mechanical stress M 1 , L E0 , L T0 and L M0 are the electric field strength E 0 , temperature T 0 and The insulation life under the single factor of mechanical stress M 0 , L E1 , L T1 and L M1 are the insulation life under the single factor of electric field strength E 1 , temperature T 1 and mechanical stress M 1 respectively, G is the electric field, temperature and mechanical Correlation coefficient of stress.
  • the electric field insulation life model is specifically:
  • h is the aging coefficient under the single action of electric field
  • the ratio of L T0 to L T1 is determined using the temperature insulation life model.
  • the temperature insulation life model is specifically:
  • k is the aging coefficient under the single action of temperature
  • the ratio of L M0 and L M1 is determined using the mechanical stress insulation life model.
  • the mechanical stress insulation life model is specifically:
  • m is the aging coefficient under the single action of mechanical stress.
  • the value of temperature T and the value of mechanical stress M 0 and M 1 determine the value of G with the electrothermal mechanical multi-physics correlation coefficient model.
  • the electrothermal mechanical multi-physics correlation coefficient model is specifically:
  • n, n′ and n′′ are the correlation coefficient between electric field and temperature, the correlation coefficient between electric field and mechanical stress, and the correlation coefficient between temperature and mechanical stress respectively.
  • coefficients h, k, m, n, n′ and n′′ are calculated according to the coefficient model, and a high-voltage submarine cable insulation aging life prediction model is established based on the coefficients;
  • L is the predicted life of the insulation aging of the high-voltage submarine cable to be predicted
  • E, T and M are the electric field strength, temperature and mechanical stress of the actual application environment of the submarine cable to be predicted, respectively.
  • the temperature range that can be set is 50 ⁇ 150°C
  • the electric field intensity range is 40 ⁇ 80kV/mm
  • the tensile and compressive stress range that the mechanical stress device can apply is 0 ⁇ 10Mpa.
  • the characteristic breakdown time calculation module is used to calculate the characteristic breakdown time corresponding to the cable sample using Weibull distribution based on the cable breakdown time of the cable sample;
  • the cable insulation aging life prediction module is used to obtain the environmental data of the cable to be predicted in the actual application environment, and use the prediction model to calculate the insulation aging life of the cable to be predicted.
  • this application provides a device for predicting the aging life of high-voltage submarine cable insulation.
  • the device includes a processor and a memory:
  • the processor is configured to execute the method for predicting the aging life of high-voltage submarine cable insulation according to any one of the first aspects of this application according to the instructions in the program code.
  • Figure 1 is a flow chart of a method for predicting the aging life of high-voltage submarine cable insulation in some embodiments
  • Figure 2 is a flow chart for calculating the characteristic breakdown time of the high-voltage submarine cable insulation aging life prediction method in some embodiments
  • Figure 3 is a flow chart for establishing a prediction model of the high-voltage submarine cable insulation aging life prediction method in some embodiments
  • This application provides a method for predicting the aging life of high-voltage submarine cable insulation, which is used to solve the problem of inaccurate life assessment of high-voltage submarine cables in the existing technology.
  • Figure 1 is a flow chart of a method for predicting the aging life of high-voltage submarine cable insulation provided by an embodiment of the present application.
  • the environmental data includes the electric field, temperature and mechanical stress exerted by the environment on the cable sample;
  • the cable sample is first placed in a composite field of electric field temperature and mechanical stress, and at the same time, the electric field intensity, temperature of the composite field, and the mechanical stress applied to the cable sample are controlled to be constant at preset values, and the values of the cable sample are obtained.
  • Environmental data i.e. values of field strength, temperature and stress, are then recorded for the cable breakdown time required for the cable sample to breakdown in the multi-physics composite field.
  • the cable breakdown time of the cable sample is fitted to a dual-coefficient Weibull distribution curve, and the corresponding characteristic breakdown time under the electrothermal data of the cable sample is obtained using the Weibull distribution.
  • this embodiment combines the characteristic breakdown time of the cable sample under the simultaneous action of voltage, temperature and mechanical stress to establish the aging of high-voltage submarine cable insulation that reflects the influence of the three on the insulation life. Lifetime prediction model.
  • S400 Obtain the environmental data of the cable to be predicted in the actual application environment, and use the prediction model to calculate the insulation aging life of the cable to be predicted.
  • the high-voltage submarine cable insulation aging life prediction model reflects the impact of electric field, temperature and mechanical stress on the insulation aging life.
  • the electric field intensity, temperature and mechanical stress of the cable application environment to be predicted need to be substituted into it for calculation, that is, The corresponding insulation aging life can be obtained.
  • the Weibull distribution is first used to calculate the characteristic breakdown time of the cable sample, then a high-voltage submarine cable insulation aging life prediction model is established, and finally the environmental data of the cable to be predicted is substituted to calculate the insulation aging life.
  • the characteristic breakdown time calculated by the Weibull distribution describes the characteristics of the cable under the electric thermal field.
  • the life prediction model reflects the changing law of the insulation aging life of the cable under the combination of electric field, temperature and mechanical stress, and can efficiently and accurately predict the cable's performance in response to multiple physics. Lifetime under composite fields.
  • Figure 2 is a flow chart for calculating the characteristic breakdown time of the high-voltage submarine cable insulation aging life prediction method; in step S200 of the aforementioned embodiment, according to the cable breakdown time of the cable sample, the Weibull distribution is used to calculate the corresponding characteristics of the cable sample. Breakdown time, specifically:
  • the number of samples in each group of cable samples is 5-10 to improve the efficiency of Weibull distribution fitting.
  • the number of samples in each group of cable samples can be selected to be greater than 10, so that each group The more cables there are in the cable sample, the more breakdown times are obtained for fitting, and the more accurate the Weibull distribution obtained by fitting is.
  • the preset breakdown probability is 63.2%, which value corresponds to the average life of the cable, that is, the mathematical expectation of the cable life in the Weibull distribution.
  • Figure 3 is a flow chart for establishing a prediction model of the high-voltage submarine cable insulation aging life prediction method; in step S300 of the aforementioned embodiment, a high-voltage submarine cable insulation aging life prediction is established based on the electrothermal data and characteristic breakdown time of the cable sample.
  • Model specifically:
  • E 0 , T 0 , M 0 , E 1 , T 1 , and M 1 are respectively the electric field intensity, temperature, and mechanical stress of the environment in which the two sets of cable samples are located.
  • L 0 is the electric field intensity E 0 , temperature T 0 , and mechanical stress.
  • Insulation life under the condition of stress M 0 , L 1 is the insulation life under the conditions of electric field strength E 1 , temperature T 1 and mechanical stress M 1 , L E0 , L T0 and L M0 are the electric field strength E 0 , temperature T 0 and The insulation life under the single factor of mechanical stress M 0 , L E1 , L T1 and L M1 are the insulation life under the single factor of electric field strength E 1 , temperature T 1 and mechanical stress M 1 respectively, G is the electric field, temperature and mechanical Correlation coefficient of stress;
  • the insulation life under the action of a single factor refers to the insulation life in which only the electric field strength or temperature or mechanical stress changes, while other environmental parameters do not change. It can be understood that the insulation life under the action of a single factor depends on two sets of cables. The sample data can be reflected, that is, the ratio of L E0 to L E1 , the ratio of L T0 to L T1 , and the ratio of L M0 to L M1 can reflect the influence of a single factor.
  • the insulation aging life of cables can also be predicted based on the insulation life affected by multiple single factors.
  • the value of G can be calculated first based on the insulation life of six groups of cable samples affected by single factors and two groups affected by multiple physical fields, and then Keep the single factor of each physical field of the multi-physics composite field of the cable to be predicted, measure the three insulation lifespans affected by a single factor in its actual application environment, and combine the other three groups of single factors and a group of multi-physics-influenced cable sample insulation lifespans, The insulation aging life of the cable to be predicted under the multi-physical composite field can be calculated.
  • the ratio of L E0 to L E1 is determined by the electric field insulation life model.
  • the electric field insulation life model is specifically:
  • the ratio of L T0 to L T1 is determined using the temperature insulation life model.
  • the temperature insulation life model is specifically:
  • the ratio of L M0 and L M1 is determined using the mechanical stress insulation life model.
  • the mechanical stress insulation life model is specifically:
  • the value of G is determined by the electrothermal mechanical multi-physics correlation coefficient model.
  • the electrothermal mechanical multi-physics correlation coefficient model is specifically: :
  • h is the aging coefficient under the single action of electric field
  • k is the aging coefficient under the single action of temperature
  • m is the aging coefficient under the single action of mechanical stress
  • n, n′ and n′′ are the correlation coefficient between electric field and temperature, and electric field respectively.
  • the characteristic breakdown time of the cable sample is calculated through the Weibull distribution, and then an electrothermal mechanical composite field cable insulation aging life coefficient model is established.
  • the single factor insulation life model, the multi-physics field correlation coefficient model and the environmental parameters are used to calculate Each coefficient establishes a prediction model for the insulation aging life of high-voltage submarine cables that reflects the three factors of electrothermal and mechanical factors that affect the insulation aging life.
  • the characteristic breakdown time calculated by the Weibull distribution describes the characteristics of the cable under the electric heating field.
  • the life prediction model reflects the changing law of the insulation aging life of the cable under the combination of voltage and temperature. The model calculation is optimized and can efficiently and accurately predict the cable's corresponding conditions. Life span under multi-physics composite fields.
  • Figure 4 is a flow chart of the electrothermal field experiment of the method for predicting the aging life of high-voltage submarine cable insulation; in step S100 of the aforementioned embodiment, environmental data and cable breakdown time of the cable sample are obtained; the environmental data includes environmental effects on the cable sample. electric field, temperature and mechanical stress, including:
  • the cable sample obtained in this embodiment is simulated by a flat vulcanizing machine to simulate the cable to be predicted, and the flat sample is made from the insulating material of the cable to be predicted.
  • This facilitates the acquisition of electrothermal data and cable breakdown time, as well as subsequent lifespan analysis.
  • Prediction in actual prediction, the same cable entity as the cable to be predicted can also be used to calculate the electrothermal data and cable breakdown time.
  • the cross-linking temperature of the flat vulcanizer is set to 180°C
  • the pressure is 15 MPa
  • the manufacturing process lasts 15 minutes
  • the diameter of the prepared cable sample is 50 mm.
  • the cable samples are placed in a 60°C vacuum drying oven for more than 24 hours to remove cross-linking by-products.
  • the mechanical stress device applies uniform pressure between the upper and lower surfaces of the flat cable samples to simulate the seawater pressure state. Different groups of cable samples are set to different tension and pressure. Stress, and the tensile and compressive stress range that the mechanical stress device can exert is 0 ⁇ 10Mpa.
  • the electrodes in the electric field thermostat are columnar metal electrodes, and the chamfer radius ranges from 0.5 to 1mm.
  • the electrodes used are brass columnar electrodes with a diameter of 25mm and a chamfer radius of 1mm;
  • the temperature range of the thermostatic box is 50 ⁇ 150°C, and the electric field intensity range is 40 ⁇ 80kV/mm.
  • the characteristic breakdown time calculation module 20 is used to calculate the characteristic breakdown time corresponding to the cable sample based on the cable breakdown time of the cable sample using Weibull distribution;
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

一种高压海缆绝缘老化寿命预测方法、装置及设备,方法包括:获取电缆样品的环境数据和电缆击穿时间;环境数据包括环境对电缆样品施加的电场、温度和机械应力(S100);根据电缆样品的电缆击穿时间,以Weibull分布计算电缆样品对应的特征击穿时间(S200);以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型(S300);获取待预测电缆在实际应用环境下的环境数据,以预测模型计算待预测电缆的绝缘老化寿命(S400)。

Description

高压海缆绝缘老化寿命预测方法、装置及设备
相关申请
本申请要求2022年06月29日申请的,申请号为202210752856.9,名称为“一种高压海缆绝缘老化寿命预测方法、装置及设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及高压交流电缆绝缘技术领域,尤其涉及一种高压海缆绝缘老化寿命预测方法、装置及设备。
背景技术
高压海缆在承受电场、热场和机械应力多物理场联合作用下的绝缘老化,由于多物理场作用复杂,其老化规律也就很复杂,寿命评估困难。国内外学者根据绝缘老化特性,提出了一些经验模型来反映绝缘材料的老化规律,如反幂模型、指数模型、Arrhenius模型、RAMU模型等。但上述模型在应用过程中也呈现出显著的不足,例如反幂模型和Arrhenius模型只能描述电场和热场单因子作用下老化过程,而当电热因子同时施加于绝缘材料时,其老化寿命时间显著缩短,导致反幂模型和Arrhenius模型无法精确描述高压交流电缆绝缘实际寿命;RAMU模型的背景是以经典的单应力电老化的反幂函数规律为基础,将反幂函数规律的常数设置为与温度有关的系数,从而描述电场和温度共同对绝缘老化寿命的影响,但该模型评价误差大,且存在适用范围小的问题,难以准确评估高压交流电缆绝缘老化寿命;进一步的,针对于机械应力对绝缘老化寿命的影响鲜有人研究,那对于电场、热场和机械应力三者联合作用下的绝缘老化寿命就更少涉及了。
发明内容
根据本申请的各种实施例,提供一种高压海缆绝缘老化寿命预测方法。
第一方面,本申请提供了一种高压海缆绝缘老化寿命预测方法,包括:
获取电缆样品的环境数据和电缆击穿时间;环境数据包括环境对电缆样品施加的电场、温度和机械应力;
根据电缆样品的电缆击穿时间,以Weibull分布计算电缆样品对应的特征击穿时间;
以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型;
获取待预测电缆在实际应用环境下的环境数据,以预测模型计算待预测电缆的绝缘老化寿命。
可选的,根据电缆样品的电缆击穿时间,以Weibull分布计算各组电缆样品对应的特征击穿时间,具体为:对电缆样品中的电缆击穿时间进行拟合,得到对应的Weibull分布模型,Weibull分布模型为:
Figure PCTCN2022133731-appb-000001
其中,P为击穿概率,α为击穿时间的尺度系数,β为击穿时间的形状系数,t为击穿时间;
根据预设的击穿概率,以Weibull分布模型得到电缆样品对应的特征击穿时间。
可选的,以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型,具体为:
将n组电缆样品的环境数据和特征击穿时间,两两分别代入电热机械复合场电缆绝缘老化寿命系数模型中,根据系数模型建立高压海缆电缆绝缘老化寿命预测模型;n为不小 于6的整数,且各组电缆样品的环境数据之间至少有一项不同;
电热机械复合场电缆绝缘老化寿命系数模型具体为:
Figure PCTCN2022133731-appb-000002
其中,E 0、T 0、M 0、E 1、T 1、M 1分别为两组电缆样品所处环境的电场强度、温度和机械应力,L 0为电场强度E 0、温度T 0、机械应力M 0条件下的绝缘寿命,L 1为电场强度E 1、温度T 1、机械应力M 1条件下的绝缘寿命,L E0、L T0、L M0分别为电场强度E 0、温度T 0和机械应力M 0单一因素作用下的绝缘寿命,L E1、L T1、L M1分别为电场强度E 1、温度T 1和机械应力M 1单一因素作用下的绝缘寿命,G为电场、温度与机械应力的相关性系数。
可选的,根据电场强度E 0和E 1的值,以电场绝缘寿命模型确定L E0与L E1的比值,电场绝缘寿命模型具体为:
Figure PCTCN2022133731-appb-000003
其中,h为电场单一作用下的老化系数;
根据温度T 0的值,以温度绝缘寿命模型确定L T0与L T1的比值,温度绝缘寿命模型具体为:
Figure PCTCN2022133731-appb-000004
其中,k为温度单一作用下的老化系数;
根据机械应力M 0和M 1的值,以机械应力绝缘寿命模型确定L M0与L M1的比值,机械应力绝缘寿命模型具体为:
Figure PCTCN2022133731-appb-000005
其中,m为机械应力单一作用下的老化系数。
可选的,根据电场强度E 0和E 1的值、温度T的值和机械应力M 0和M 1的值,以电热机械多物理场相关系数模型确定G的值,电热机械多物理场相关系数模型具体为:
Figure PCTCN2022133731-appb-000006
其中,n、n′和n″分别为电场与温度相关性系数、电场与机械应力相关性系数和温度与机械应力相关性系数。
可选的,根据系数模型建立高压海缆绝缘老化寿命预测模型具体为:
根据系数模型计算得到系数h、k、m、n、n′和n″的值,以系数建立高压海缆绝缘老化寿命预测模型;
高压海缆绝缘老化寿命预测模型具体为:
Figure PCTCN2022133731-appb-000007
其中,L为待预测高压海缆的绝缘老化预测寿命,E、T和M分别为待预测海缆实际应用环境的电场强度、温度和机械应力。
可选的,获取电缆样品的环境数据具体为:
获取电缆样品所处的电场恒温箱以及安装电缆样品机械应力装置的设置参数。
可选的,电场恒温箱中,能够设置的温度范围为50~150℃,电场强度范围为40~80kV/mm,机械应力装置能够施加的拉压应力范围为0~10Mpa。
第二方面,本申请提供了一种高压海缆绝缘老化寿命预测装置,包括:
电缆样品实验模块,用于获取电缆样品的环境数据和电缆击穿时间;环境数据包括环境对电缆样品施加的电场、温度和机械应力;
特征击穿时间计算模块,用于根据电缆样品的电缆击穿时间,以Weibull分布计算电 缆样品对应的特征击穿时间;
电缆绝缘老化寿命预测模型建立模块,用于以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型;
电缆绝缘老化寿命预测模块,用于获取待预测电缆在实际应用环境下的环境数据,以预测模型计算待预测电缆的绝缘老化寿命。
第三方面,本申请提供了一种高压海缆绝缘老化寿命预测设备,设备包括处理器以及存储器:
存储器用于存储程序代码,并将程序代码传输给处理器;
处理器用于根据程序代码中的指令执行本申请第一方面任一项的高压海缆绝缘老化寿命预测方法。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一些实施例中高压海缆绝缘老化寿命预测方法流程图;
图2为一些实施例中高压海缆绝缘老化寿命预测方法特征击穿时间计算流程图;
图3为一些实施例中高压海缆绝缘老化寿命预测方法预测模型建立流程图;
图4为一些实施例中高压海缆绝缘老化寿命预测方法电热场实验流程图;
图5为一些实施例中高压海缆绝缘老化寿命预测方法总流程图;
图6为一些实施例中高压海缆绝缘老化寿命预测装置图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供了一种高压海缆绝缘老化寿命预测方法,用于解决现有技术中高压海缆寿命评估不准确的问题。
请参阅图1,图1为本申请实施例提供的高压海缆绝缘老化寿命预测方法流程图。
S100、获取电缆样品的环境数据和电缆击穿时间;环境数据包括环境对电缆样品施加的电场、温度和机械应力;
需要说明的是,本实施例先将电缆样品置于电场温度和机械应力复合场中,同时控制复合场的电场强度、温度以及施加于电缆样品的机械应力恒定处于预设值,获取电缆样品的环境数据,即场强、温度和应力的值,然后记录电缆样品在多物理复合场中被击穿所需的电缆击穿时间。
S200、根据电缆样品的电缆击穿时间,以Weibull分布计算电缆样品对应的特征击穿时间;
需要说明的是,将电缆样品的电缆击穿时间拟合成双系数的Weibull分布曲线,以Weibull分布得到该组电缆样品的电热数据下对应的特征击穿时间。
S300、以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型;
需要说明的是,本实施例将电缆样品在电压、温度和机械应力三者同时作用的情况下 得到的特征击穿时间结合,建立起体现三者对绝缘寿命的影响关系的高压海缆绝缘老化寿命预测模型。
S400、获取待预测电缆在实际应用环境下的环境数据,以预测模型计算待预测电缆的绝缘老化寿命。
需要说明的是,高压海缆绝缘老化寿命预测模型体现电场、温度和机械应力对绝缘老化寿命的影响,需将待预测电缆应用环境的电场强度、温度和受到的机械应力代入其中进行计算,即可得到对应的绝缘老化寿命。
本实施例中,先以Weibull分布计算电缆样品的特征击穿时间,接着建立起高压海缆绝缘老化寿命预测模型,最后代入待预测的电缆的环境数据,计算其绝缘老化寿命。Weibull分布计算的特征击穿时间描述了电缆在电热场下的特性,寿命预测模型体现了电缆在电场、温度和机械应力的共同下绝缘老化寿命变化规律,能高效准确的预测电缆在对应多物理复合场下的寿命。
以上为本申请提供的一种高压海缆绝缘老化寿命预测方法的第一个实施例的详细说明,下面为本申请提供的一种高压海缆绝缘老化寿命预测方法的第二个实施例的详细说明。
参照图2,图2为高压海缆绝缘老化寿命预测方法特征击穿时间计算流程图;在前述实施例的步骤S200中,根据电缆样品的电缆击穿时间,以Weibull分布计算电缆样品对应的特征击穿时间,具体为:
S210,对电缆样品中的电缆击穿时间进行拟合,得到对应的Weibull分布模型;
需要说明的是,Weibull分布模型为:
Figure PCTCN2022133731-appb-000008
其中,P为击穿概率,α为击穿时间的尺度系数,β为击穿时间的形状系数,t为击穿时间;每组电缆样品中样品的数量为5-10个,对同组中多条电缆的击穿时间拟合成双系数Weibull分布,获取击穿时间的尺度系数α和击穿时间的形状系数β,得到该组电缆样品对应的Weibull分布模型。
进一步的,本实施例中每组电缆样品中样品数量为5-10个提高Weibull分布拟合的效率,而在实际预测实验中,每组电缆样品可以选择大于10个的样品数量,这样每组电缆样品的电缆数量越多,获取到用于拟合的击穿时间数量越多,这样拟合得到的Weibull分布就越准确。
S220,根据预设的击穿概率,以Weibull分布模型得到电缆样品对应的特征击穿时间。
需要说明的是,在本实施例中,预设的击穿概率为63.2%,该数值下对应于该电缆的平均寿命,也即在Weibull分布中电缆寿命的数学期望。
参照图3,图3为高压海缆绝缘老化寿命预测方法预测模型建立流程图;在前述实施例的步骤S300中,以电缆样品的电热数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型,具体为:
S310,建立电热机械复合场电缆绝缘老化寿命系数模型;
电热机械复合场电缆绝缘老化寿命系数模型具体为:
Figure PCTCN2022133731-appb-000009
其中,E 0、T 0、M 0、E 1、T 1、M 1分别为两组电缆样品所处环境的电场强度、温度和机械应力,L 0为电场强度E 0、温度T 0、机械应力M 0条件下的绝缘寿命,L 1为电场强度E 1、温度T 1、机械应力M 1条件下的绝缘寿命,L E0、L T0、L M0分别为电场强度E 0、温度T 0和机械应力M 0单一因素作用下的绝缘寿命,L E1、L T1、L M1分别为电场强度E 1、温度T 1和机械应力M 1单一因素作用下的绝缘寿命,G为电场、温度与机械应力的相关性系数;
需要说明的是,单一因素作用下的绝缘寿命指的是只有电场强度或温度或机械应力改 变,而其他环境参数不改变的绝缘寿命,可以理解,该单一因素作用的绝缘寿命需要依靠两组电缆样品的数据才能体现,即需要在L E0与L E1的比值、L T0与L T1的比值、L M0与L M1的比值下才能体现出单一因素的影响。
进一步的,以多个单一因素作用的绝缘寿命也可预测电缆的绝缘老化寿命,可以先以六组单一因素作用影响的和两组多物理场影响的电缆样品绝缘寿命计算出G的值,再将待预测电缆的多物理复合场的各物理场单一因素保留,测算其实际应用环境的单一因素影响的三个绝缘寿命,结合另三组单一因素和一组多物理影响的电缆样品绝缘寿命,即可计算出待预测电缆在多物理复合场下的绝缘老化寿命。
S320,根据单一因素绝缘寿命模型、多物理场相关系数模型和环境参数以系数模型计算得到系数的值;
需要说明的是,根据电场强度E 0和E 1的值,以电场绝缘寿命模型确定L E0与L E1的比值,电场绝缘寿命模型具体为:
Figure PCTCN2022133731-appb-000010
根据温度T 0的值,以温度绝缘寿命模型确定L T0与L T1的比值,温度绝缘寿命模型具体为:
Figure PCTCN2022133731-appb-000011
根据机械应力M 0和M 1的值,以机械应力绝缘寿命模型确定L M0与L M1的比值,机械应力绝缘寿命模型具体为:
Figure PCTCN2022133731-appb-000012
根据电场强度E 0和E 1的值、温度T的值和机械应力M 0和M 1的值,以电热机械多物理场相关系数模型确定G的值,电热机械多物理场相关系数模型具体为:
Figure PCTCN2022133731-appb-000013
其中,h为电场单一作用下的老化系数,k为温度单一作用下的老化系数,m为机械应力单一作用下的老化系数,n、n′和n″分别为电场与温度相关性系数、电场与机械应力相关性系数和温度与机械应力相关性系数;
最终得到电热机械复合场电缆绝缘老化寿命系数模型为:
Figure PCTCN2022133731-appb-000014
S330,根据系数模型计算得到系数h、k、m、n、n′和n″的值,以系数建立高压海缆绝缘老化寿命预测模型;
高压海缆绝缘老化寿命预测模型具体为:
Figure PCTCN2022133731-appb-000015
其中,L为待预测高压海缆的绝缘老化预测寿命,E、T和M分别为待预测海缆实际应用环境的电场强度、温度和机械应力。
本实施例中,通过Weibull分布计算电缆样品的特征击穿时间,接着建立起电热机械复合场电缆绝缘老化寿命系数模型,以各单一因素绝缘寿命模型、多物理场相关系数模型 和环境参数,计算各系数,建立起体现电热机械三因素影响绝缘老化寿命的高压海缆绝缘老化寿命预测模型。Weibull分布计算的特征击穿时间描述了电缆在电热场下的特性,寿命预测模型体现了电缆在电压与温度的共同下绝缘老化寿命变化规律,优化了模型计算,能高效准确的预测电缆在对应多物理复合场下的寿命。
以上为本申请提供的一种高压海缆绝缘老化寿命预测方法的第二个实施例的详细说明,下面为本申请提供的一种高压海缆绝缘老化寿命预测方法的第三个实施例的详细说明。
参照图4,图4为高压海缆绝缘老化寿命预测方法电热场实验流程图;在前述实施例的步骤S100中,获取电缆样品的环境数据和电缆击穿时间;环境数据包括环境对电缆样品施加的电场、温度和机械应力,具体还包括:
S110,采用平板硫化机制备高压交流电缆样品,绝缘交联的温度压力,模拟高压交流电缆的制造过程,并在制造结束后去除交联副产物。
需要说明的是,本实施例中得到的电缆样品是通过平板硫化机模拟待预测电缆,以待预测电缆的绝缘材料制成平板样品,这样便于获取电热数据和电缆击穿时间,以及进行后续寿命预测,实际预测中也可以采用与待预测电缆相同的电缆实体进行电热数据和电缆击穿时间的测算。本实施例中,平板硫化机设置的交联温度为180℃,压力为15MPa,制造过程历时为15min,制备的电缆样品直径为50mm。在结束制造后,再将电缆样品置于60℃真空干燥箱中静置24h以上,以去除交联副产物。
S120:将电缆样品安装在机械应力装置上,并设置机械应力,再将电缆样品保持受力状态置与电场恒温箱中;
需要说明的是,为模拟海缆在海水中收到的水压,机械应力装置在平板状的电缆样品上下表面之间施加均匀压力,模拟海水压力状态,不同组的电缆样品设置不同的拉压应力,且机械应力装置能够施加的拉压应力范围为0~10Mpa。
进一步的,电场恒温箱中的电极采用柱状金属电极,其倒角半径的取值范围为0.5~1mm,本实施例中,采用的电极为直径25mm倒角半径1mm的黄铜材质柱状电极;电场恒温箱的温度取值范围为50~150℃,电场强度范围为40~80kV/mm。
S130:对不同组的电缆样品施加恒定电场,直至电缆样品击穿,并记录环境数据和电缆击穿时间。
需要说明的是,在实验开始前,将电缆样品置于电场恒温箱中,调节恒温箱温度为实验温度,待温度达到稳定至少30分钟,使电极与样品达到恒定实验温度;保持电缆样品所处环境的电场强度、温度和机械应力,直至电缆样品发生击穿,记录各组电缆样品对应的环境参数,以及电缆击穿时间。
进一步的,请参阅图5,图5为高压海缆绝缘老化寿命预测方法总流程图,图5中的步骤内容可以参考前述的实施例中的对应过程,在此不再赘述。
本实施例中,对多组电缆样品进行处理后,先施加机械应力模拟海底压力状态,再置于不同的电场恒温箱中施加温度和电场,为电缆样品建立电热机械多物理复合场,测算对应的电缆击穿时间,为后续步骤提供了系数计算的数据,该数据体现了电缆在电压、温度和机械应力的共同作用下绝缘老化寿命变化规律,能高效准确的预测电缆在对应多物理复合场下的寿命。
以上为本申请提供的一种高压海缆绝缘老化寿命预测方法的第三个实施例的详细说明,下面为本申请第二方面提供的一种高压海缆绝缘老化寿命预测装置的详细说明。
请参阅图6,图6为高压海缆绝缘老化寿命预测装置图。本实施例提供了一种多物理复合场下高压海缆绝缘老化寿命预测装置,其特征在于,包括:
电缆样品实验模块10,用于获取电缆样品的环境数据和电缆击穿时间;环境数据包括环境对电缆样品施加的电场、温度和机械应力;
特征击穿时间计算模块20,用于根据电缆样品的电缆击穿时间,以Weibull分布计算电缆样品对应的特征击穿时间;
电缆绝缘老化寿命预测模型建立模块30,用于以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型;
电缆绝缘老化寿命预测模块40,用于获取待预测电缆在实际应用环境下的环境数据,以预测模型计算待预测电缆的绝缘老化寿命。
本申请第三方面还提供了一种高压海缆绝缘老化寿命预测设备,包括处理器以及存储器:其中存储器用于存储程序代码,并将程序代码传输给处理器;处理器用于根据程序代码中的指令执行上述高压海缆绝缘老化寿命预测方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和设备的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种高压海缆绝缘老化寿命预测方法,包括:
    获取电缆样品的环境数据和电缆击穿时间;所述环境数据包括环境对电缆样品施加的电场、温度和机械应力;
    根据电缆样品的电缆击穿时间,以Weibull分布计算电缆样品对应的特征击穿时间;
    以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型;
    获取待预测电缆在实际应用环境下的环境数据,以所述预测模型计算待预测电缆的绝缘老化寿命。
  2. 根据权利要求1所述的方法,其特征在于,所述根据电缆样品的电缆击穿时间,以Weibull分布计算各组电缆样品对应的特征击穿时间,具体为:对电缆样品中的电缆击穿时间进行拟合,得到对应的Weibull分布模型,所述Weibull分布模型为:
    Figure PCTCN2022133731-appb-100001
    其中,P为击穿概率,α为击穿时间的尺度系数,β为击穿时间的形状系数,t为击穿时间;
    根据预设的击穿概率,以Weibull分布模型得到电缆样品对应的特征击穿时间。
  3. 根据权利要求1所述的方法,其特征在于,所述以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型,具体为:
    将n组电缆样品的环境数据和特征击穿时间,两两分别代入电热机械复合场电缆绝缘老化寿命系数模型中,根据系数模型建立高压海缆电缆绝缘老化寿命预测模型;所述n为不小于6的整数,且各组电缆样品的环境数据之间至少有一项不同;
    所述电热机械复合场电缆绝缘老化寿命系数模型具体为:
    Figure PCTCN2022133731-appb-100002
    其中,E 0、T 0、M 0、E 1、T 1、M 1分别为两组电缆样品所处环境的电场强度、温度和机械应力,L 0为电场强度E 0、温度T 0、机械应力M 0条件下的绝缘寿命,L 1为电场强度E 1、温度T 1、机械应力M 1条件下的绝缘寿命,L E0、L T0、L M0分别为电场强度E 0、温度T 0和机械应力M 0单一因素作用下的绝缘寿命,L E1、L T1、L M1分别为电场强度E 1、温度T 1和机械应力M 1单一因素作用下的绝缘寿命,G为电场、温度与机械应力的相关性系数。
  4. 根据权利要求3所述的方法,其特征在于,根据电场强度E 0和E 1的值,以电场绝缘寿命模型确定L E0与L E1的比值,所述电场绝缘寿命模型具体为:
    Figure PCTCN2022133731-appb-100003
    其中,h为电场单一作用下的老化系数;
    根据温度T 0的值,以温度绝缘寿命模型确定L T0与L T1的比值,所述温度绝缘寿命模型具体为:
    Figure PCTCN2022133731-appb-100004
    其中,k为温度单一作用下的老化系数;
    根据机械应力M 0和M 1的值,以机械应力绝缘寿命模型确定L M0与L M1的比值,所述机械应力绝缘寿命模型具体为:
    Figure PCTCN2022133731-appb-100005
    其中,m为机械应力单一作用下的老化系数。
  5. 根据权利要求3所述的方法,其特征在于,根据电场强度E 0和E 1的值、温度T的值和机械应力M 0和M 1的值,以电热机械多物理场相关系数模型确定G的值,所述电热机械多物理场相关系数模型具体为:
    Figure PCTCN2022133731-appb-100006
    其中,n、n′和n″分别为电场与温度相关性系数、电场与机械应力相关性系数和温度与机械应力相关性系数。
  6. 根据权利要求4至5所述的方法,其特征在于,所述根据系数模型建立高压海缆绝缘老化寿命预测模型具体为:
    根据系数模型计算得到系数h、k、m、n、n′和n″的值,以所述系数建立高压海缆绝缘老化寿命预测模型;
    所述高压海缆绝缘老化寿命预测模型具体为:
    Figure PCTCN2022133731-appb-100007
    其中,L为待预测高压海缆的绝缘老化预测寿命,E、T和M分别为待预测海缆实际应用环境的电场强度、温度和机械应力。
  7. 根据权利要求1所述的方法,其特征在于,所述获取电缆样品的环境数据具体为:
    获取电缆样品所处的电场恒温箱以及安装电缆样品机械应力装置的设置参数。
  8. 根据权利要求7所述的方法,其特征在于,所述电场恒温箱中,能够设置的温度范围为50~150℃,电场强度范围为40~80kV/mm,所述机械应力装置能够施加的拉压应力范围为0~10Mpa。
  9. 一种高压海缆绝缘老化寿命预测装置,包括:
    电缆样品实验模块,用于获取电缆样品的环境数据和电缆击穿时间;所述环境数据包括环境对电缆样品施加的电场、温度和机械应力;
    特征击穿时间计算模块,用于根据电缆样品的电缆击穿时间,以Weibull分布计算电缆样品对应的特征击穿时间;
    电缆绝缘老化寿命预测模型建立模块,用于以电缆样品的环境数据和特征击穿时间,建立高压海缆绝缘老化寿命预测模型;
    电缆绝缘老化寿命预测模块,用于获取待预测电缆在实际应用环境下的环境数据,以所述预测模型计算待预测电缆的绝缘老化寿命。
  10. 一种高压海缆绝缘老化寿命预测设备,所述设备包括处理器以及存储器:
    所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;
    所述处理器用于根据所述程序代码中的指令执行权利要求1-8任一项所述的高压海缆绝缘老化寿命预测方法。
PCT/CN2022/133731 2022-06-29 2022-11-23 高压海缆绝缘老化寿命预测方法、装置及设备 WO2024001008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210752856.9 2022-06-29
CN202210752856.9A CN115032488A (zh) 2022-06-29 2022-06-29 一种高压海缆绝缘老化寿命预测方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2024001008A1 true WO2024001008A1 (zh) 2024-01-04

Family

ID=83126559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133731 WO2024001008A1 (zh) 2022-06-29 2022-11-23 高压海缆绝缘老化寿命预测方法、装置及设备

Country Status (3)

Country Link
US (1) US20240005061A1 (zh)
CN (1) CN115032488A (zh)
WO (1) WO2024001008A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117782957A (zh) * 2024-02-28 2024-03-29 山东中船线缆股份有限公司 一种船用电缆老化性能的测试方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032488A (zh) * 2022-06-29 2022-09-09 深圳供电局有限公司 一种高压海缆绝缘老化寿命预测方法、装置及设备
CN117459406B (zh) * 2023-12-26 2024-02-23 国网浙江省电力有限公司宁波供电公司 一种光缆资源运维管理方法、设备及存储介质
CN118194143B (zh) * 2024-05-17 2024-07-19 国网山西省电力公司运城供电公司 配电网电缆老化寿命预测方法、系统、设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307562A (ja) * 2000-04-25 2001-11-02 Mitsubishi Electric Building Techno Service Co Ltd 電力ケーブルの余寿命推定方法
JP2001349924A (ja) * 2000-06-12 2001-12-21 Fujikura Ltd Cvケーブル余寿命推定方法
CN109917251A (zh) * 2019-04-09 2019-06-21 国网江苏省电力有限公司电力科学研究院 一种xlpe电缆绝缘材料老化寿命的预测方法
CN109975672A (zh) * 2019-04-22 2019-07-05 中航宝胜海洋工程电缆有限公司 一种有中继海底光缆绝缘寿命指数评估方法
CN112364523A (zh) * 2020-11-27 2021-02-12 江苏方天电力技术有限公司 一种基于Crine模型的绝缘材料老化寿命测量方法
CN112379229A (zh) * 2020-11-05 2021-02-19 江苏亨通海洋光网系统有限公司 一种有中继海底光缆绝缘电老化寿命评估方法
CN113588452A (zh) * 2021-07-30 2021-11-02 国网青海省电力公司信息通信公司 电缆寿命预测方法和装置以及处理器和存储介质
CN113777455A (zh) * 2021-09-29 2021-12-10 西安交通大学 基于Crine模型XLPE绝缘材料老化寿命评估方法
CN114371374A (zh) * 2021-12-21 2022-04-19 国电南瑞南京控制系统有限公司 一种电缆绝缘电热联合老化程度预估方法及系统
WO2022111157A1 (zh) * 2020-11-27 2022-06-02 深圳供电局有限公司 绝缘材料电老化测试系统
CN115032488A (zh) * 2022-06-29 2022-09-09 深圳供电局有限公司 一种高压海缆绝缘老化寿命预测方法、装置及设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307562A (ja) * 2000-04-25 2001-11-02 Mitsubishi Electric Building Techno Service Co Ltd 電力ケーブルの余寿命推定方法
JP2001349924A (ja) * 2000-06-12 2001-12-21 Fujikura Ltd Cvケーブル余寿命推定方法
CN109917251A (zh) * 2019-04-09 2019-06-21 国网江苏省电力有限公司电力科学研究院 一种xlpe电缆绝缘材料老化寿命的预测方法
CN109975672A (zh) * 2019-04-22 2019-07-05 中航宝胜海洋工程电缆有限公司 一种有中继海底光缆绝缘寿命指数评估方法
CN112379229A (zh) * 2020-11-05 2021-02-19 江苏亨通海洋光网系统有限公司 一种有中继海底光缆绝缘电老化寿命评估方法
CN112364523A (zh) * 2020-11-27 2021-02-12 江苏方天电力技术有限公司 一种基于Crine模型的绝缘材料老化寿命测量方法
WO2022111157A1 (zh) * 2020-11-27 2022-06-02 深圳供电局有限公司 绝缘材料电老化测试系统
CN113588452A (zh) * 2021-07-30 2021-11-02 国网青海省电力公司信息通信公司 电缆寿命预测方法和装置以及处理器和存储介质
CN113777455A (zh) * 2021-09-29 2021-12-10 西安交通大学 基于Crine模型XLPE绝缘材料老化寿命评估方法
CN114371374A (zh) * 2021-12-21 2022-04-19 国电南瑞南京控制系统有限公司 一种电缆绝缘电热联合老化程度预估方法及系统
CN115032488A (zh) * 2022-06-29 2022-09-09 深圳供电局有限公司 一种高压海缆绝缘老化寿命预测方法、装置及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 June 2021, XI'AN UNIVERSITY OF SCIENCE AND TECHNOLOGY, CN, article YANG, JING: "Aging Analysis and Residual Life Research on Mining 10 kV XLPE Cable", pages: 1 - 73, XP009551638, DOI: 10.27397/d.cnki.gxaku.2021.000435 *
LIU, ZHIQIAN; DAI, XIZE; HAO, JIAN; GAO, ZHEN; LI, HANPING: "Power Frequency Breakdown Characteristics and Lifetime Model of 500 kV XLPE Submarine Cable Insulation Material under Electro-thermal Stress", INSULATING MATERIALS, vol. 54, no. 2, 20 February 2021 (2021-02-20), pages 92 - 100, XP009552221, ISSN: 1009-9239, DOI: 10.16790/j.cnki.1009-9239.im.2021.02.016 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117782957A (zh) * 2024-02-28 2024-03-29 山东中船线缆股份有限公司 一种船用电缆老化性能的测试方法及系统
CN117782957B (zh) * 2024-02-28 2024-05-28 山东中船线缆股份有限公司 一种船用电缆老化性能的测试方法及系统

Also Published As

Publication number Publication date
CN115032488A (zh) 2022-09-09
US20240005061A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2024001008A1 (zh) 高压海缆绝缘老化寿命预测方法、装置及设备
CN113588452B (zh) 电缆寿命预测方法和装置以及处理器和存储介质
CN111751199B (zh) 基于eifs分布的疲劳寿命预测方法
CN106644781B (zh) 一种基于试件表面温度演化分析的金属疲劳寿命预测方法
CN106991074B (zh) 基于加速因子不变原则的加速退化试验优化设计方法
CN103412244A (zh) 测量高压直流xlpe电缆冷热循环下空间电荷特性的方法
CN105069532A (zh) 一种多应力多退化量步进加速退化试验方案优化设计方法
CN110095697B (zh) 一种电缆载流量调整方法、装置、设备及可读存储介质
CN112446136B (zh) 一种基于微元化物理模型的电缆寿命预测方法
CN111413626B (zh) 基于类极化特性的燃料电池使用寿命的预测方法及装置
CN114076899B (zh) 电池寿命的分档预估方法、装置、设备、系统及介质
Jauregui-Rivera et al. Improving reliability assessment of transformer thermal top-oil model parameters estimated from measured data
CN116165279B (zh) 复合绝缘子缺陷检测方法、装置、电子设备和存储介质
CN111210877B (zh) 一种推断物性参数的方法及装置
CN109557480B (zh) 一种化学电源循环使用寿命的估算方法及系统
CN111967168A (zh) 一种加速退化试验方案优化设计方法
CN109444260A (zh) 一种电缆接头复合界面击穿电压的预测方法
WO2021088453A1 (zh) 电介质状态分析方法、系统、计算机及存储介质
CN111025095B (zh) 一种xlpe电缆终端绝缘可靠性智能快捷化评估方法
CN113721111A (zh) 电缆绝缘层老化程度的测试方法和装置
CN113987776A (zh) 干式电抗器耐老化能力测试模型构建方法与测试方法
CN115391974A (zh) 一种高压交流电缆绝缘老化寿命预测方法、装置及设备
CN118245823B (zh) 一种绝缘子泄漏电流预测方法、装置、设备及存储介质
US7865315B2 (en) Methods and apparatus for calibrating striation density models for materials
Zhan et al. 110kV cable joint temperature computation based on radial basis function neural networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949088

Country of ref document: EP

Kind code of ref document: A1