WO2024000926A1 - 柔性内窥镜及柔性内窥镜机器人 - Google Patents

柔性内窥镜及柔性内窥镜机器人 Download PDF

Info

Publication number
WO2024000926A1
WO2024000926A1 PCT/CN2022/125023 CN2022125023W WO2024000926A1 WO 2024000926 A1 WO2024000926 A1 WO 2024000926A1 CN 2022125023 W CN2022125023 W CN 2022125023W WO 2024000926 A1 WO2024000926 A1 WO 2024000926A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
insertion part
sheath
endoscope
controllable instrument
Prior art date
Application number
PCT/CN2022/125023
Other languages
English (en)
French (fr)
Inventor
刘宏斌
陈健
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Publication of WO2024000926A1 publication Critical patent/WO2024000926A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/00078Insertion part of the endoscope body with stiffening means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • A61B1/2676Bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/303Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels

Definitions

  • the present application relates to the technical field of medical devices, and in particular to a flexible endoscope and a flexible endoscope robot.
  • the flexible endoscopic robot has the characteristics of accurate positioning, precise control, high stability, low operating requirements, and short training time for doctors. It can be applied to the diagnosis and treatment of the natural orifices of the human body. For example, bronchoscopy robots can assist doctors in safely and reliably performing operations such as diagnosis, biopsy, lavage, and medication delivery in thinner bronchial tubes.
  • bronchoscope robots on the market have a thick outer diameter at the end of the mirror body, and can only complete functions such as bronchial suction and alveolar lavage. They cannot reach the more slender airways at the distal end and cannot achieve more slender airways. Minimally invasive biopsy sampling.
  • the present application provides a flexible endoscope and a flexible endoscope robot to solve the defect of the existing technology of being unable to reach the finer natural lumen at the distal end, and to realize micro-invasive biopsy in the finer natural lumen. sampling.
  • the present application provides a flexible endoscope, including: an insertion endoscope and an outer sheath assembly;
  • the outer sheath component has an axially penetrating lumen
  • the inner diameter of the outer sheath assembly is larger than the outer diameter of the insertion endoscope, and the insertion endoscope passes through the lumen of the outer sheath assembly;
  • the overall stiffness of the outer sheath assembly is greater than the overall stiffness of the insertion endoscope
  • the insertion endoscope and the outer sheath assembly are independently controlled by the driving mechanism, and independently complete the mirror advance, withdrawal and bending.
  • the insertion endoscope includes an insertion part flexible and controllable instrument, an insertion part connector, an insertion part lens body, a camera assembly, a tool channel and an insertion part flexible controllable instrument protective cover;
  • the flexible controllable instrument at the insertion part is in the shape of a pipe
  • the camera assembly is installed at the distal end of the flexible controllable instrument at the insertion part;
  • the proximal end of the flexible controllable instrument in the insertion part is connected to the distal end of the insertion part mirror body through the insertion part connector;
  • the far end of the tool channel is installed on the camera assembly and runs through the entire insertion endoscope;
  • the protective cover for the flexible and controllable instrument at the insertion part is elastic and hydrophilic, and is placed on the outer surface of the flexible and controllable instrument at the insertion part.
  • the insertion lens body is manufactured using a precision extrusion process.
  • the insertion endoscope further includes an insertion traction guidewire;
  • the wall of the flexible and controllable instrument at the insertion part adopts a hollow structure, and the flexible and controllable instrument at the insertion part is distributed along the axial direction with multiple sets of concave insertion guide wire channels on the inner wall of the flexible and controllable instrument at the insertion part;
  • the insertion part pulls the guide wire through the insertion part guide wire channel
  • the distal end of the insertion part traction guide wire is fixed in the insertion part guide wire channel at the distal end of the insertion part flexible controllable instrument.
  • the insertion part of the flexible and controllable instrument is manufactured using an additive manufacturing integrated molding process.
  • the installation steps of the flexible controllable instrument protective cover of the insertion part are as follows:
  • the protective cover of the flexible and controllable instrument at the insertion part is passed through a metal tube whose inner diameter is larger than the flexible and controllable instrument at the insertion part and the length is smaller than the flexible and controllable instrument at the insertion part; a micro hole is provided on the side wall of the metal tube, and a micro hole is connected to the micro hole.
  • a hollow metal tube, the middle cavity of the metal tube is aligned with the micro holes, and the other end of the metal tube is connected to a negative pressure device;
  • the negative pressure device is used to extract the air in the closed space, so that the outer wall of the flexible controllable instrument protective cover of the insertion part is close to the inner wall of the metal tube;
  • the outer sheath assembly includes a sheath flexible controllable instrument, a sheath connector, a sheath mirror body, a sheath tip, and a sheath flexible controllable instrument protective cover;
  • the sheathed flexible controllable instrument is in the shape of a tube
  • the sheath tip is installed on the distal end of the sheath flexible controllable instrument
  • the proximal end of the sheath flexible controllable instrument is connected to the distal end of the sheath mirror body through the sheath connector;
  • the sheath flexible controllable instrument protective cover is elastic and hydrophilic, and is placed on the outer surface of the sheath flexible controllable instrument.
  • the sheath lens body is manufactured using a precision extrusion process.
  • the insertion endoscope further includes a sheath traction guidewire;
  • the wall of the sheath flexible controllable instrument adopts a hollow structure, and multiple sets of concave sheath guidewire channels on the inner wall of the sheath flexible controllable instrument are distributed along the axial direction;
  • the sheath pulls the guidewire through the sheath guidewire channel
  • the distal end of the sheath traction guide wire is fixed in the sheath guide wire channel at the distal end of the sheath flexible controllable instrument.
  • This application also provides a flexible endoscope robot, including any of the above flexible endoscopes.
  • the flexible endoscope and flexible endoscope robot provided by this application design a flexible endoscope structure with graded insertion.
  • the insertion endoscope goes deep into the lumen of the thinner branches, and the outer sheath assembly goes deep into the lumen of the thicker branches. , so that the flexible endoscope can penetrate into thinner cavities as a whole, realize micro-invasive biopsy sampling in thinner cavities, and improve the efficiency and accuracy of surgical operations.
  • Figure 1 is one of the structural diagrams of the flexible endoscope provided by this application.
  • Figure 2 is one of the structural diagrams of the insertion endoscope provided by this application.
  • Figure 3 is the second structural diagram of the insertion endoscope provided by this application.
  • Figure 4 is a structural diagram of the flexible controllable instrument with an insertion part provided by this application;
  • Figure 5 is a cross-sectional view of the flexible and controllable instrument with an insertion part provided by this application;
  • Figure 6 is a cross-sectional view of the insertion endoscope provided by this application.
  • Figure 7 is a cross-sectional view of the insertion part lens body provided by this application.
  • FIG. 8 is a structural diagram of the camera assembly provided by this application.
  • Figure 9 is a structural diagram of the distal end of the flexible controllable instrument of the insertion part provided by this application.
  • Figure 10 is one of the structural diagrams of the outer sheath assembly provided by this application.
  • Figure 11 is the second structural diagram of the outer sheath assembly provided by this application.
  • Figure 12 is a cross-sectional view of the sheath flexible controllable instrument provided by the present application.
  • Figure 13 is a cross-sectional view of the sheath lens body provided by this application.
  • Figure 14 is a structural diagram of the sheath tip provided by this application.
  • Figure 15 is a structural diagram of the distal end of the outer sheath assembly provided by the present application.
  • Figure 16 is the second structural diagram of the flexible endoscope provided by this application.
  • Figure 17 is one of the cross-sectional views of the flexible endoscope provided by this application.
  • Figure 18 is the second cross-sectional view of the flexible endoscope provided by this application.
  • Figure 19 is the third structural diagram of the flexible endoscope provided by this application.
  • Figure 20 is the fourth structural diagram of the flexible endoscope provided by this application.
  • Figure 21 is the fifth structural diagram of the flexible endoscope provided by this application.
  • This application uses bronchoscopy as a specific implementation, and can be applied to choledochoscope, renal pyeloscope and other flexible endoscopes.
  • the reliability of traditional flexible bronchoscopy for the diagnosis of peripheral pulmonary nodules is not ideal, especially for small, benign nodules that lack bronchial signs.
  • bronchial surgery robots have the characteristics of accurate positioning, precise control, high stability, low operating requirements, and short training time for doctors; functionally, bronchial surgery robots can assist doctors. Perform operations such as diagnosis, biopsy, lavage, and drug delivery safely and reliably in the thinner bronchi.
  • Some bronchoscope robots currently on the market have a thick outer diameter at the end of the mirror body and cannot reach the distal airway. Currently, they can only complete functions such as bronchial sputum suction and alveolar lavage, but have not yet been able to achieve minimally invasive biopsy sampling.
  • the first type is to simply combine the existing mature electronic flexible endoscope with the driving mechanism, and use a robotic arm to complete the initial entry and steering operations.
  • the endoscope is large in size and cannot enter deeper bronchial layers.
  • the second type is a flexible endoscope equipped with an independent camera assembly. After arriving at the target location, the camera assembly is taken out and surgical tools are inserted for surgical operation.
  • This type of flexible endoscope cannot provide real-time image feedback during surgical diagnosis such as biopsy sampling, cutting, and puncture, which poses safety risks.
  • the above two types of endoscopes are often used in flexible endoscope systems that are reused multiple times. They face risks such as complex operations, high maintenance costs, cross-infection caused by repeated disinfection, and high manufacturing and surgical costs.
  • bronchial tubes mainly use traditional polymer plastic tubes embedded with metal mesh as the endoscope body.
  • the tube contains many channel tubes to isolate the traction guidewire, tool channel and other types of wire harnesses, resulting in the endoscope body
  • the assembly is more difficult and costly, and there is friction between the pipes.
  • bending and flexible controllable instruments of bronchial endoscopes mainly use riveting structures or laser cutting and forming processes.
  • the riveted flexible controllable instrument is to connect multiple flexible controllable instrument units in series into a whole through riveting and is driven by a traction guide wire.
  • Laser cutting flexible controllable instruments use laser cutting processing technology to remove the hollow structure of a complete catheter at one time.
  • Both types of flexible controllable devices require additional structural parts to install traction guidewires for driving, which will increase the outer diameter of the endoscope, limit the scope of bronchial intervention, and increase the assembly complexity and cost of the endoscope.
  • an embodiment of the present application provides a flexible endoscope, which mainly includes two parts: an insertion endoscope 1 and an outer sheath assembly 2 .
  • the outer sheath assembly is equipped with a through lumen with a diameter larger than any cross section of the insertion endoscope, so the insertion endoscope can pass through the lumen of the outer sheath assembly.
  • the insertion endoscope 1 includes an insertion part flexible and controllable instrument 11, an insertion part connector 12, an insertion part mirror body 13, a camera assembly 14, a tool channel 15 and an insertion part flexible controllable instrument protection. Set of 16.
  • the insertion part flexible controllable instrument 11 is tubular and has an axially hollow lumen, which can be used to pull the guide wire 112, camera harness, tool channel 15 and other structures through the insertion part, and the above structure is aligned with the lumen of the insertion part mirror body 13 and pass through the insertion part lens body 13.
  • the mounted tool channel 15 runs through the entire insertion part mirror body 13, and surgical tools such as biopsy forceps and cell brushes can be passed through the tool channel 15.
  • the tool channel 15 is produced using a one-time precision extrusion process, and the materials used include PE (polyethylene), PEBAX (polyetheramide block copolymer), TPU (polyurethane rubber) and other materials.
  • the protective cover 16 for the flexible and controllable instrument at the insertion part has certain elasticity and hydrophilicity, and can protect the flexible and controllable instrument at the insertion part 11 inside, improve the resilience of the flexible and controllable instrument at the insertion part 11, and provide a smooth surface.
  • the installation method of the flexible controllable instrument protective cover 16 of the insertion part is as follows:
  • a negative pressure device such as a vacuum pump, aspirator, etc.
  • a negative pressure device such as a vacuum pump, aspirator, etc.
  • the inner diameter of the flexible and controllable instrument protective cover 16 at the insertion part becomes larger under the action of atmospheric pressure, so that the outer wall of the flexible and controllable instrument protective cover 16 at the insertion part is close to the inner wall of the metal tube.
  • the flexible and controllable instrument 11 at the insertion part is passed through the flexible and controllable instrument at the insertion part.
  • the protective cover 16 of the controllable instrument is removed and the negative pressure device is removed, and the protective cover is tightly attached to the flexible controllable instrument 11 at the insertion part.
  • the insertion part of the flexible controllable instrument 11 has a regularly arranged hollow structure, or the width and gap size of the hollow structure along the axis decrease/increase linearly or non-linearly in a certain direction, so that the insertion part
  • the bending stiffness of the flexible and controllable instrument 11 gradually changes, and the end or root of the insertion part of the flexible and controllable instrument 11 becomes softer.
  • the insertion part traction guide wire 112 is welded or bonded in the insertion part guide wire channel at the distal end of the insertion part flexible controllable instrument 11 .
  • This design can evenly distribute 3 or 4 groups of insertion guide wire channels along the circumferential direction.
  • the insertion part flexible controllable instrument 11 is manufactured using an additive manufacturing integrated molding process, which can integrally manufacture multiple sets of insertion part guide wire channels 111 and hollow structures. Since there is no need for additional insertion part guide wire channel parts, the outer diameter of the insertion part flexible controllable instrument 11 can be reduced, making it easier for the insertion part endoscope to enter higher bronchial branches for surgical operations. A single part reduces process complexity and assembly complexity. degree and reduce costs.
  • the bending of the insertion part flexible controllable instrument 11 can be controlled by the insertion part traction guide wire 112 .
  • the insertion part pulls the guide wire 112 by controlling the stretching/relaxing state of the guide wire by a driving mechanism.
  • the guide wires on one side of the insertion part of the flexible and controllable instrument 11 are tightened and all the guide wires on the other side are relaxed, the insertion part of the flexible and controllable instrument 11 will bend toward that side.
  • the insertion part of the flexible controllable instrument 11 can be bent in any direction.
  • the insertion part mirror body 13 and the insertion part flexible controllable instrument 11 are connected and installed through the insertion part connector 12 .
  • the proximal end of the connector is connected to the insertion part mirror body 13 and connected to the internal step, and the distal end is connected to the insertion part flexible controllable instrument 11.
  • the insertion part flexible controllable instrument 11 is inserted into the connector and connected to the insertion part mirror body 13. After installation, the outer diameter of the connecting piece is consistent with the flexible controllable instrument protective cover 16 of the insertion part.
  • FIG. 7 is an example of the cross-section of the insertion part lens body, including three insertion part traction guide wire lumen 131 distributed along 120° circumference, camera harness lumen 132, magnetic positioning sensor lumen 133, and two symmetrical optical fiber lumen 134 and tool channel lumen 135.
  • the insertion part lens body 13 is manufactured through a precision extrusion process, and the materials used are not limited to PE (polyethylene), PEBAX (polyether amide block copolymer), TPU (polyurethane rubber) and other materials.
  • Different chambers are independent chambers that are parallel to each other.
  • the wall thickness between the chambers can be selected from 0.05mm, 0.1mm, 0.15mm, 0.2mm, etc.
  • materials with a Shore hardness of 50D or above can be used.
  • the use of precision extruded multi-channel mirror body can effectively isolate different wire harnesses and prevent wire harness entanglement; reduce the friction between wire harnesses and wire harnesses and the outer wall; the processing precision is high, and the outer diameter size can be limited while extruding multiple cavities; insert
  • the lens body 13 has high processing efficiency and low cost, and is very suitable for the lens body of disposable flexible endoscopes.
  • the camera assembly 14 includes a camera 141 , (two) LED lights 142 , and a transparent camera tip 143 .
  • the camera and LED are respectively installed on the tip of the camera, and the fixing method is not limited to bonding.
  • the LED can emit light through the tip of the camera, illuminating the camera's field of view.
  • the tool channel 15 is installed on the camera tip and is aligned with the channel axis of the camera tip head, where the tool will come out after passing through the tool channel.
  • the tip in order to fix the tip of the camera and determine the direction of the tip, the tip will be inserted from the head into the inner cavity of the flexible controllable instrument 11, and a U-shaped groove will be used to limit its circumferential rotation.
  • the camera tip can be manufactured using 3D printing, injection molding or machining.
  • the outer sheath assembly 2 includes a sheath flexible controllable instrument 21, a sheath connector 22, a sheath mirror body 23, a sheath tip 24, and a sheath flexible controllable instrument protective cover 25.
  • the sheath flexible controllable instrument protective cover 25 is installed in the same manner as the insertion part flexible controllable instrument protective cover 16 .
  • the cooperative relationship between the sheath connector 22, the sheath flexible controllable instrument 21 and the sheath mirror body 23 is similar to that of the insertion endoscope.
  • the outer diameter of the sheath connector 22 is consistent with the assembled sheath flexible controllable instrument protective cover. The installation method is not specified here. Again.
  • the sheath flexible controllable instrument 21 includes a hollow structure, a sheath traction guidewire channel 211 and a sheath traction guidewire 212.
  • the sheath traction guidewire channels are distributed in 3, 4 or 6 groups along the circumferential direction, with at least 10 channels along the axial direction. Two groups.
  • a guide wire passes through each set of channels, and the guide wire is fixed in the channel at the front end of the flexible controllable instrument.
  • the fixing method is not limited to welding and bonding.
  • the outer diameter and wall thickness of the sheathed flexible controllable instrument are larger than those of the insertion part, and the sheathed flexible controllable instrument is shorter in length and has higher overall stiffness.
  • the maximum allowable cylindrical boundary 213 inside the sheath flexible controllable instrument must be larger than any cross-sectional diameter of the insertion endoscope. Moreover, when the sheath flexible controllable instrument is bent, the internal space still allows the insertion endoscope to pass through.
  • the outer sheath assembly also uses a precision extruded multi-channel catheter as the sheath body 21 .
  • the materials used are not limited to PE (polyethylene), PEBAX (polyether amide block copolymer), TPU (polyurethane rubber) and other polymer materials.
  • Figure 13 is an example of this, including 6 guidewire lumens 231 and 1 insertion lumen 232 distributed around the circumference. When less than 6 guidewire lumens are actually used, the guidewire lumen can also be used as a fiber optic lumen. .
  • the inner diameter of the outer sheath assembly 2 is larger than any cross-sectional diameter of the insertion endoscope 1 .
  • the hardness of the sheath lens body 21 is generally greater than that of the insertion part lens body, and materials with Shore hardness of 60D, 70D, 80D, 90D and other hardness can be used for extrusion.
  • a sheath tip 24 is installed at the end of the outer sheath assembly 2. As shown in Figures 14 and 15, the sheath tip 24 is inserted into the sheath flexible controllable instrument 21 from the distal end, and is pressed against the head, and is fixed by gluing or other means. The outer diameter of the sheath tip 24 is consistent with the sheath flexible controllable instrument protective sleeve 25 . The surface and internal edges of the sheath tip 24 are rounded.
  • a major advantage of the combined design of the insertion endoscope 1 and the outer sheath assembly 2 adopted in this application lies in the combined movement of two sets of flexible instruments that can be bent in all directions, allowing the flexible endoscope to enter deep and small cavities. tracts, such as in the deeper branches of the pulmonary bronchi.
  • the traction guidewires of the insertion endoscope 1 and the outer sheath assembly 2 are both in a relaxed state, and neither of them is bent.
  • most of the structure of the insertion endoscope is retracted inside the outer sheath assembly, and only the camera tip protrudes from the front section of the outer sheath assembly.
  • the insertion endoscope and outer sheath assembly can be regarded as an integral endoscope, and the driving mechanism drives the robot system to perform overall lens entry and steering movements.
  • Figure 16 shows the initial state of the flexible endoscope robot system.
  • the insertion endoscope and outer sheath assembly guide wire are both in a free state.
  • Figures 17 and 18 show the state of the two sides of the flexible endoscope when the insertion endoscope and the outer sheath assembly guide wire are both in a free state.
  • Figure 19 shows the bending state of the flexible endoscope when the sheath flexible controllable instrument is bent.
  • the driving mechanism cannot drive the whole forward mirror. Since the stiffness of the outer sheath component is much greater than that of the insertion part of the flexible controllable instrument and the insertion part of the mirror body, the driving mechanism maintains the position and bending angle of the outer sheath component and pushes out the insertion part of the endoscope separately, driving it to advance and turn. .
  • the outer sheath assembly provides support for the insertion endoscope.
  • Figure 20 shows the working state of pushing out the insertion endoscope when the outer sheath assembly maintains its shape.
  • Figure 21 shows the working state in which the insertion endoscope is bent and turned when the outer sheath assembly maintains its shape.
  • the surgical tool When the insertion endoscope of the flexible endoscope robot system continues to travel to the target position, the surgical tool will be extended from the tool channel to perform surgical operations such as sampling and puncture.
  • the flexible endoscope provided by this application can be used once or repeatedly.
  • the flexible endoscope provided in this application adopts a two-stage combination scheme of an insertion endoscope and an outer sheath assembly.
  • the combined movement of the outer sheath assembly and the insertion endoscope allows the flexible endoscope to enter the deep branches of the bronchus.
  • the outer sheath component can be bent in all directions, and the bending angle can meet the needs of conventional bronchial branch bending.
  • the insertion endoscope is equipped with a high-definition camera and a standard tool channel. It can enter the branches of the bronchus above level 7 and can be bent in all directions. The bending angle meets the needs of most bronchial branches.
  • the outer sheath assembly has high rigidity and can provide support for the insertion endoscope and the insertion endoscope body, allowing the insertion endoscope to penetrate further into the bronchus.
  • a precision extruded multi-channel catheter is used as the lens body of the insertion endoscope and outer sheath assembly.
  • the multi-channel insertion tube can form all the required cavities at one time, with high precision, fast processing and many material options.
  • Using a multi-channel insertion tube as the lens body can effectively sort out various wire harnesses without the need for redundant channels, greatly reducing the number of parts in the lens body, reducing assembly complexity, and greatly reducing costs. It is very suitable for disposable flexible endoscopes.
  • Precision extrusion processing has high precision and requires only extremely thin wall thickness during design, so the outer diameter of the lens body can be miniaturized.
  • the flexible and controllable instrument at the insertion part and the flexible and controllable instrument at the sheath are both single parts, including the traction guidewire channel at the insertion part, the camera tip installation structure, the hollow structure, etc.
  • Using additive manufacturing technology to manufacture flexible and controllable instruments can greatly reduce the flexibility The number of parts and assembly difficulty of the controllable instrument unit is reduced, and the manufacturing cost of the flexible controllable instrument unit is reduced, and it is suitable for disposable bronchus.
  • the additive manufacturing machine has high precision, and the wall thickness of the flexible controllable instrument units mentioned above is 0.05mm-0.5mm.
  • embodiments of the present application also provide a flexible endoscope robot, including the flexible endoscope described in the above embodiments.
  • the flexible endoscope included in the flexible endoscope robot provided by the embodiments of the present application may be referred to
  • the above-mentioned embodiments can achieve the same technical effects.
  • the same parts and beneficial effects in this embodiment as in the above-mentioned embodiments will not be described in detail here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Otolaryngology (AREA)
  • Physiology (AREA)
  • Robotics (AREA)
  • Endoscopes (AREA)

Abstract

一种柔性内窥镜及柔性内窥镜机器人,属于医疗器械技术领域,柔性内窥镜包括:插入部内镜(1)和外鞘组件(2);外鞘组件(2)具有轴向贯通的腔道;外鞘组件(2)的内径大于插入部内镜(1)的外径,插入部内镜(1)在外鞘组件(2)的腔道内穿过;外鞘组件(2)的整体刚度大于插入部内镜(1)的整体刚度;插入部内镜(1)和外鞘组件(2)分别独立受控于驱动机构,独立完成进镜、退镜和弯曲。柔性内窥镜及柔性内窥镜机器人,设计了一种分级插入的柔性内窥镜结构,可以深入更细枝的自然腔道,实现更细枝的自然腔道内的微创伤活检采样,提高了手术操作的效率与准确度。

Description

柔性内窥镜及柔性内窥镜机器人
相关申请的交叉引用
本申请要求于2022年6月30日提交的申请号为2022107728917,发明名称为“柔性内窥镜及柔性内窥镜机器人”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及医疗器械技术领域,尤其涉及一种柔性内窥镜及柔性内窥镜机器人。
背景技术
柔性内窥镜机器人拥有定位准确、控制精确、稳定性高、操作要求低、医生培训时间短等特点,可应用于人体自然腔道的诊疗。例如支气管镜机器人可辅助医生在更细枝的支气管中安全可靠地进行诊察、取活检、灌洗、送药等操作。
目前,市场存在的一些支气管镜机器人末端镜身外径较粗,仅可完成支气管吸痰、肺泡灌洗等功能,不能到达远端更细枝的气道,无法实现更细枝的气道内的微创伤活检采样。
发明内容
本申请提供一种柔性内窥镜及柔性内窥镜机器人,用以解决现有技术中不能到达远端更细枝的自然腔道的缺陷,实现更细枝的自然腔道内的微创伤活检采样。
本申请提供一种柔性内窥镜,包括:插入部内镜和外鞘组件;
外鞘组件具有轴向贯通的腔道;
外鞘组件的内径大于插入部内镜的外径,插入部内镜在外鞘组件的腔道内穿过;
外鞘组件的整体刚度大于插入部内镜的整体刚度;
插入部内镜和外鞘组件分别独立受控于驱动机构,独立完成进镜、退 镜和弯曲。
可选地,插入部内镜包括插入部柔性可控器械、插入部连接件、插入部镜身、摄像头组件、工具通道和插入部柔性可控器械保护套;
插入部柔性可控器械呈管道状;
摄像头组件安装于插入部柔性可控器械的远端;
插入部柔性可控器械的近端通过插入部连接件与插入部镜身的远端连接;
工具通道的远端安装与摄像头组件上,并贯穿整个插入部内镜;
插入部柔性可控器械保护套具有弹性和亲水性,套在插入部柔性可控器械的外表面。
可选地,插入部镜身采用精密挤出工艺制造而成。
可选地,插入部内镜还包括插入部牵引导丝;
插入部柔性可控器械的壁采用镂空结构,插入部柔性可控器械沿轴向分布着多组凹向插入部柔性可控器械内壁的插入部导丝通道;
插入部牵引导丝穿过插入部导丝通道;
插入部牵引导丝的远端固定于插入部柔性可控器械远端的插入部导丝通道中。
可选地,插入部柔性可控器械采用增材制造一体成型工艺制造而成。
可选地,插入部柔性可控器械保护套的安装步骤如下:
将插入部柔性可控器械保护套穿过一个内径大于插入部柔性可控器械、长度小于插入部柔性可控器械的金属管;金属管侧壁设置微型小孔,且在微型小孔处连接一根中空的金属细管,金属细管中间空腔对准微型小孔,金属细管的另一端连接负压装置;
将插入部柔性可控器械保护套的两端翻起套在金属管两端;使插入部柔性可控器械保护套外壁和金属管内壁形成封闭空间;
利用负压装置抽出封闭空间中的空气,使插入部柔性可控器械保护套外壁紧贴金属管内壁;
将柔性可控器械穿过插入部柔性可控器械保护套;
卸掉负压装置,使插入部柔性可控器械保护套套在插入部柔性可控器械的外表面。
可选地,外鞘组件包括鞘柔性可控器械、鞘连接件、鞘镜身、鞘先端、鞘柔性可控器械保护套;
鞘柔性可控器械呈管道状;
鞘先端安装于鞘柔性可控器械的远端;
鞘柔性可控器械的近端通过鞘连接件与鞘镜身的远端连接;
鞘柔性可控器械保护套具有弹性和亲水性,套在鞘柔性可控器械的外表面。
可选地,鞘镜身采用精密挤出工艺制造而成。
可选地,插入部内镜还包括鞘牵引导丝;
鞘柔性可控器械的壁采用镂空结构,鞘柔性可控器械沿轴向分布着多组凹向鞘柔性可控器械内壁的鞘导丝通道;
鞘牵引导丝穿过鞘导丝通道;
鞘牵引导丝的远端固定于鞘柔性可控器械远端的鞘导丝通道中。
本申请还提供一种柔性内窥镜机器人,包括上述任一种所述的柔性内窥镜。
本申请提供的柔性内窥镜及柔性内窥镜机器人,设计了一种分级插入的柔性内窥镜结构,插入部内镜深入较细枝的腔道,外鞘组件深入较粗枝的腔道,使柔性内窥镜整体上可以深入更细枝的腔道,实现更细枝的腔道内的微创伤活检采样,提高了手术操作的效率与准确度。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的柔性内窥镜的结构图之一;
图2是本申请提供的插入部内镜的结构图之一;
图3是本申请提供的插入部内镜的结构图之二;
图4是本申请提供的插入部柔性可控器械的结构图;
图5是本申请提供的插入部柔性可控器械的截面图;
图6是本申请提供的插入部内镜的截面图;
图7是本申请提供的插入部镜身的截面图;
图8是本申请提供的摄像头组件的结构图;
图9是本申请提供的插入部柔性可控器械的远端的结构图;
图10是本申请提供的外鞘组件的结构图之一;
图11是本申请提供的外鞘组件的结构图之二;
图12是本申请提供的鞘柔性可控器械的截面图;
图13是本申请提供的鞘镜身的截面图;
图14是本申请提供的鞘先端的结构图;
图15是本申请提供的外鞘组件的远端的结构图;
图16是本申请提供的柔性内窥镜的结构图之二;
图17是本申请提供的柔性内窥镜的截面图之一;
图18是本申请提供的柔性内窥镜的截面图之二;
图19是本申请提供的柔性内窥镜的结构图之三;
图20是本申请提供的柔性内窥镜的结构图之四;
图21是本申请提供的柔性内窥镜的结构图之五。
具体实施方式
本申请以支气管镜作为具体实施方案,并可应用于胆道镜,肾盂镜等其他柔性内窥镜。传统的柔性支气管镜检查对于周围型肺结节诊断的可靠性并不理想,尤其是那些较小的、缺乏支气管征的、良性的结节。同非机器人控制的支气管内镜相比,在技术上,支气管手术机器人拥有定位准确、控制精确、稳定性高、操作要求低、医生培训时间短等特点;在功能上,支气管手术机器人可辅助医生在更细枝的支气管中安全可靠地进行诊察、取活检、灌洗、送药等操作。
目前市场存在的一些支气管镜机器人末端镜身外径较粗,未能达到达远端气道,目前仅可完成支气管吸痰、肺泡灌洗等功能,尚未能实现微创伤活检采样。
目前支气管镜机器人内镜部分主要有两种方案。第一类是简单地将现有成熟电子柔性内窥镜与驱动机构相结合,借助机械臂完成初步的进镜与 转向操作,内镜尺寸较大,无法进入较深层次的支气管。第二类是配备独立的摄像头组件的柔性内窥镜,抵达至目标位置后,取出摄像头组件,插入手术工具进行手术操作。这类柔性内窥镜在活检取样、切割、穿刺等手术诊断时,无法提供实时的图像反馈,存在安全风险。以上两类内镜常用于多次重复使用的柔性内窥镜系统中,面临着重复消毒带来的复杂操作、维护成本高、交叉感染等风险,并且制造成本和手术成本较高。
其次,现有的支气管主要是采用传统的内嵌金属网的高分子塑料管作为内镜的镜身,管内包含较多通道管以隔离牵引导丝、工具通道与其他各类线束,导致镜身的装配难度较大、成本较高,管道之间存在摩擦。
最后,目前常用的支气管内窥镜的弯曲柔性可控器械主要采用的是铆接结构或者是激光切割成型工艺。铆接柔性可控器械是通过铆接将多个柔性可控器械单元串联为一个整体,由牵引导丝进行驱动。激光切割柔性可控器械是通过激光切割的加工工艺将一根完整的导管一次性切除镂空结构。这两类柔性可控器械均需要额外的结构零件安装牵引导丝进行驱动,这将增加内镜的外径尺寸,限制了支气管的介入范围,并且这将增加内镜的装配复杂度和成本。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请实施例提供一种柔性内窥镜,主要包括两部分:插入部内镜1和外鞘组件2。外鞘组件中配备一个贯通的腔道,直径大于插入部内镜的任意截面,因此插入部内镜可以在外鞘组件腔道内穿过。如图2和图3所示,插入部内镜1包括插入部柔性可控器械11、插入部连接件12、插入部镜身13、摄像头组件14、工具通道15和插入部柔性可控器械保护套16。插入部柔性可控器械11呈管状,具有轴向中空的腔道,可用于通过插入部牵引导丝112、摄像头线束、工具通道15等结构,并且以上结构与插入部镜身13的腔道对准,并穿过插入部镜身13。所搭载的工具通道15贯穿整个插入部镜身13,工具通道15中可通过活检钳、细胞刷 等外科手术工具。工具通道15使用一次性精密挤出工艺生产,使用材料包括PE(聚乙烯)、PEBAX(聚醚酰胺嵌段共聚物)、TPU(聚氨酯橡胶)等材料。
插入部柔性可控器械保护套16具有一定弹性和亲水性,能够保护内部的插入部柔性可控器械11,提高插入部柔性可控器械11的回弹性,并提供光滑表面。插入部柔性可控器械保护套16的安装方式如下:
将插入部柔性可控器械保护套16通过一个内径稍大、长度略短的薄壁中空金属管中,并且在两端将插入部柔性可控器械保护套16翻起套在金属管两端。此时,插入部柔性可控器械保护套16的外壁和金属管内壁形成了封闭空间。金属管一侧开有一个微型小孔,并且在小孔处连接(焊接、粘接等)一根中空的金属细管,金属细管中间空腔对准微型小孔。在金属细管上接上负压装置(如真空泵、吸气机等),即可将插入部柔性可控器械保护套16的外壁和金属管内壁之间形成的封闭空间中的空气抽走,插入部柔性可控器械保护套16在大气压作用下内径变大,使插入部柔性可控器械保护套16的外壁紧贴金属管内壁,此时将插入部柔性可控器械11穿过插入部柔性可控器械保护套16,卸掉负压装置,保护套紧紧贴合在插入部柔性可控器械11上。
如图4和图5所示,插入部柔性可控器械11具有规则排列的镂空结构,或者沿轴线镂空结构的宽度和间隙大小沿某个方向线性或者非线性减小/增大,使得插入部柔性可控器械11的弯曲刚度逐渐变化,插入部柔性可控器械11末端或者根部更加柔软。并沿轴向分布着多组插入部导丝通道111,每组插入部导丝通道111凹向插入部柔性可控器械11的内壁,插入部导丝通道111中通过插入部牵引导丝112,插入部牵引导丝112在插入部柔性可控器械11远端的插入部导丝通道中焊接或者粘接。本设计沿周向可以均匀分布3组或4组插入部导丝通道。插入部柔性可控器械11采用增材制造一体成型工艺制造而成,可以整体制造出多组插入部导丝通道111和镂空结构。由于不需要额外的插入部导丝通道零件,可以减少插入部柔性可控器械11的外径尺寸,使得插入部内镜容易进入更高的支气管分支进行手术操作单一零件减少工艺复杂度、装配复杂度,降低成本。
可以通过插入部牵引导丝112控制插入部柔性可控器械11的弯曲。 插入部牵引导丝112是由驱动机构控制导丝的拉伸/松弛状态。当张紧插入部柔性可控器械11的某一侧导丝,并松弛另一侧的所有导丝,那么插入部柔性可控器械11将向该侧弯曲。通过对不同导丝施加不同的张力或者位移,可以实现插入部柔性可控器械11向任意方向上弯曲。
如图6所示,插入部镜身13与插入部柔性可控器械11通过插入部连接件12进行连接安装。连接件近端连接插入部镜身13,并且与内部台阶相接,远端连接插入部柔性可控器械11,插入部柔性可控器械11插入连接件中,与插入部镜身13相接。连接件安装后外径与插入部柔性可控器械保护套16一致。
插入部柔性可控器械11中通过的插入部牵引导丝、摄像头线束、工具通道等结构可从插入部镜身对应的腔道中穿过。图7为插入部镜身截面的一个示例,包括三个周向沿120°分布的插入部牵引导丝腔道131、摄像头线束腔道132、磁定位传感器腔道133、两个对称的光纤腔道134和工具通道腔道135。插入部镜身13是通过精密挤出工艺生产制造,使用材料不限于PE(聚乙烯)、PEBAX(聚醚酰胺嵌段共聚物)、TPU(聚氨酯橡胶)等材料。不同腔道是相互平行的独立腔道,腔道间壁厚可选择0.05mm、0.1mm、0.15mm、0.2mm等。为保证插入导管时镜身不容易产生弯折现象,可选用邵氏硬度达到50D以上硬度的材料。使用精密挤出的多通道镜身可以有效隔离不同线束,防止线束缠绕;减少线束与线束、线束与外壁的摩擦;加工精度高,可以在挤出多个腔的同时,限制外径尺寸;插入部镜身13加工效率高、成本低,非常适用于一次性柔性内窥镜的镜身。
如图8所示,摄像头组件14包括摄像头141、(两颗)LED灯142、透明的摄像头先端143。摄像头和LED分别安装在摄像头先端上,固定方式不限于粘接。LED可以透过摄像头先端发出亮光,照亮摄像头视野。工具通道15安装在摄像头先端上,并与摄像头先端头部的通道轴线对齐,工具穿过工具通道后将从此处出来。
如图9所示,为固定摄像头先端,并且确定先端的朝向,先端将从头部插入柔性可控器械11内腔,并使用U形槽限制其周向转动。摄像头先端可以使用3D打印、注塑或者机加工等方式制造。
如图10所示,外鞘组件2包括鞘柔性可控器械21、鞘连接件22、鞘 镜身23、鞘先端24、鞘柔性可控器械保护套25。鞘柔性可控器械保护套25的安装方式与插入部柔性可控器械保护套16相同。鞘连接件22与鞘柔性可控器械21和鞘镜身23的配合关系,与插入部内镜类似,鞘连接件外径与装配后的鞘柔性可控器械保护套一致,安装方法此处不再赘述。
如图11所示,鞘柔性可控器械21包括镂空结构、鞘牵引导丝通道211和鞘牵引导丝212,鞘牵引导丝通道沿周向分布3、4或者6组,沿轴向至少有两组。每组通道内穿过一根导丝,导丝在柔性可控器械最前端的通道内固定,固定方式不限于焊接和粘接。为加强鞘柔性可控器械的刚度,鞘柔性可控器械的外径、壁厚均比插入部柔性可控器械大,并且鞘柔性可控器械长度较短,整体刚度高。
如图12所示,为了插入部内镜能够顺利通过鞘柔性可控器械,鞘柔性可控器械内部最大可允许通过圆柱体边界213大于插入部内镜任一截面直径。并且,鞘柔性可控器械弯曲时,内部空间仍然允许插入部内镜通过。
与插入部内镜类似,外鞘组件也是用精密挤出的多通道导管作为鞘镜身21。使用材料不限于PE(聚乙烯)、PEBAX(聚醚酰胺嵌段共聚物)、TPU(聚氨酯橡胶)等高分子材料。
图13是其一个实例,包括圆周分布的6个导丝腔道231和1个插入部腔道232,当实际使用导丝腔道少于6个时,导丝腔道也可以作为光纤腔道。外鞘组件2的内径大于插入部内镜1的任意截面直径。为提高进镜效率,并为插入部内镜1提供支撑,鞘镜身21硬度一般会大于插入部镜身,可选用邵氏硬度60D、70D、80D、90D等硬度材料进行挤出。
为防止鞘柔性可控器械锐利边缘暴露,对人体和插入部内镜造成伤害,外鞘组件2末端安装有鞘先端24。如图14和图15所示,鞘先端24从远端插入鞘柔性可控器械21内部,并抵在头部,通过胶粘等方式固定。鞘先端24外径与鞘柔性可控器械保护套25一致。鞘先端24表面和内部边缘均做圆滑处理。
本申请采用的插入部内镜1和外鞘组件2的组合设计方案,一大优势在于两组可全向弯曲可控的柔性器械的组合运动,使得该柔性内窥镜可以进入深部细小的腔道,例如肺支气管中更深分支中。
当系统初始化时,插入部内镜1和外鞘组件2的牵引导丝均为松弛状 态,二者均未弯曲。通常在柔性内窥镜手术的第一阶段,插入部内镜的大部分结构缩在外鞘组件内部,仅摄像头先端从外鞘组件前段伸出。此时,插入部内镜和外鞘组件可视为一个整体内镜,由驱动机构驱动机器人系统进行整体的进镜和转向运动。图16展示了柔性内窥镜机器人系统初始状态,插入部内镜和外鞘组件导丝均处于自由状态。图17和图18展示了插入部内镜和外鞘组件导丝均处于自由状态下,柔性内窥镜两个侧面的状态。图19展示了当鞘柔性可控器械弯曲时,柔性内窥镜的弯曲状态。
当柔性内窥镜机器人系统行进至接近目标位置时,例如抵达目标位置的上一级分支或者抵达外鞘组件无法进入的分支时,驱动机构无法驱动整体往前进镜。由于外鞘组件刚度较插入部柔性可控器械和插入部镜身大很多,此时驱动机构维持外鞘组件的位置和弯曲角度,并将插入部内镜单独推出,驱动其进行进镜和转向。外鞘组件为插入部内镜提供支撑。图20示出了当外鞘组件保持形状,将插入部内镜推出的工作状态。图21示出了当外鞘组件保持形状,插入部内镜弯曲转向的工作状态。
当柔性内窥镜机器人系统的插入部内镜继续行进至目标位置后,手术工具将从工具通道中伸出,进行采样、穿刺等手术操作。
本申请提供的柔性内窥镜,可以一次性使用,也可以重复使用。
本申请提供的柔性内窥镜,采用插入部内镜和外鞘组件的两级组合方案,外鞘组件和插入部内镜的组合运动可以实现柔性内窥镜能够进入支气管的深层次分支中。外鞘组件能够全方向弯曲,弯曲角度能够常规支气管分支弯曲需求。插入部内镜配备高清摄像头和标准工具通道,能够进入支气管7级以上的分支,能够全方位弯曲,弯曲角度满足绝大多数支气管分支需求。外鞘组件刚度大,能够为插入部内镜和插入部镜身提供支撑,使得插入部内镜进一步深入支气管。
采用精密挤出多通道导管作为插入部内镜和外鞘组件的镜身。多通道插入管可以一次成型出所有所需的腔道,并且精度高、加工快,材料选择性多。使用多通道插入管作为镜身,可以有效梳理各类线束,无需多余的通管道,大大减少镜身内的零件数量,降低装配复杂度,极大地降低成本,非常适用于一次性柔性内窥镜。精密挤出加工精度高,设计时只需要极薄的壁厚,因此可以将镜身外径小型化。
插入部柔性可控器械和鞘柔性可控器械均为单一零件,包括插入部牵引导丝通道、摄像头先端安装结构、镂空结构等等,使用增材制造技术制造柔性可控器械可以极大地减少柔性可控器械单元的零件数量和装配难度,并且降低柔性可控器械单元的制造成本,适用于一次性支气管。增材制造机精度高,以上所提的柔性可控器械单元壁厚均在0.05mm-0.5mm。
另一方面,本申请实施例还提供一种柔性内窥镜机器人,包括上述实施例中所述的柔性内窥镜,本申请实施例提供的柔性内窥镜机器人包括的柔性内窥镜可以参考上述实施例,且能够达到相同的技术效果,在此不再对本实施例中与上述实施例相同的部分及有益效果进行具体赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种柔性内窥镜,包括:插入部内镜和外鞘组件;
    外鞘组件具有轴向贯通的腔道;
    外鞘组件的内径大于插入部内镜的外径,插入部内镜在外鞘组件的腔道内穿过;
    外鞘组件的整体刚度大于插入部内镜的整体刚度;
    插入部内镜和外鞘组件分别独立受控于驱动机构,独立完成进镜、退镜和弯曲。
  2. 根据权利要求1所述的柔性内窥镜,其中,插入部内镜包括插入部柔性可控器械、插入部连接件、插入部镜身、摄像头组件、工具通道和插入部柔性可控器械保护套;
    插入部柔性可控器械呈管道状;
    摄像头组件安装于插入部柔性可控器械的远端;
    插入部柔性可控器械的近端通过插入部连接件与插入部镜身的远端连接;
    工具通道的远端安装与摄像头组件上,并贯穿整个插入部内镜;
    插入部柔性可控器械保护套具有弹性和亲水性,套在插入部柔性可控器械的外表面。
  3. 根据权利要求2所述的柔性内窥镜,其中,插入部镜身采用精密挤出工艺制造而成。
  4. 根据权利要求2所述的柔性内窥镜,其中,插入部内镜还包括插入部牵引导丝;
    插入部柔性可控器械的壁采用镂空结构,插入部柔性可控器械沿轴向分布着多组凹向插入部柔性可控器械内壁的插入部导丝通道;
    插入部牵引导丝穿过插入部导丝通道;
    插入部牵引导丝的远端固定于插入部柔性可控器械远端的插入部导丝通道中。
  5. 根据权利要求4所述的柔性内窥镜,其中,插入部柔性可控器械采用增材制造一体成型工艺制造而成。
  6. 根据权利要求2所述的柔性内窥镜,其中,插入部柔性可控器械保护套的安装步骤如下:
    将插入部柔性可控器械保护套穿过一个内径大于插入部柔性可控器械、长度小于插入部柔性可控器械的金属管;金属管侧壁设置微型小孔,且在微型小孔处连接一根中空的金属细管,金属细管中间空腔对准微型小孔,金属细管的另一端连接负压装置;
    将插入部柔性可控器械保护套的两端翻起套在金属管两端;使插入部柔性可控器械保护套外壁和金属管内壁形成封闭空间;
    利用负压装置抽出封闭空间中的空气,使插入部柔性可控器械保护套外壁紧贴金属管内壁;
    将柔性可控器械穿过插入部柔性可控器械保护套;
    卸掉负压装置,使插入部柔性可控器械保护套套在插入部柔性可控器械的外表面。
  7. 根据权利要求1所述的柔性内窥镜,其中,外鞘组件包括鞘柔性可控器械、鞘连接件、鞘镜身、鞘先端、鞘柔性可控器械保护套;
    鞘柔性可控器械呈管道状;
    鞘先端安装于鞘柔性可控器械的远端;
    鞘柔性可控器械的近端通过鞘连接件与鞘镜身的远端连接;
    鞘柔性可控器械保护套具有弹性和亲水性,套在鞘柔性可控器械的外表面。
  8. 根据权利要求7所述的柔性内窥镜,其中,鞘镜身采用精密挤出工艺制造而成。
  9. 根据权利要求7所述的柔性内窥镜,其中,插入部内镜还包括鞘牵引导丝;
    鞘柔性可控器械的壁采用镂空结构,鞘柔性可控器械沿轴向分布着多组凹向鞘柔性可控器械内壁的鞘导丝通道;
    鞘牵引导丝穿过鞘导丝通道;
    鞘牵引导丝的远端固定于鞘柔性可控器械远端的鞘导丝通道中。
  10. 一种柔性内窥镜机器人,包括权利要求1至9中的任一项所述的柔性内窥镜。
PCT/CN2022/125023 2022-06-30 2022-10-13 柔性内窥镜及柔性内窥镜机器人 WO2024000926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210772891.7 2022-06-30
CN202210772891.7A CN115281586A (zh) 2022-06-30 2022-06-30 柔性内窥镜及柔性内窥镜机器人

Publications (1)

Publication Number Publication Date
WO2024000926A1 true WO2024000926A1 (zh) 2024-01-04

Family

ID=83821420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125023 WO2024000926A1 (zh) 2022-06-30 2022-10-13 柔性内窥镜及柔性内窥镜机器人

Country Status (2)

Country Link
CN (1) CN115281586A (zh)
WO (1) WO2024000926A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064811A (ja) * 1999-08-19 2001-03-13 Eiko Kk 手袋装着装置
JP2002159436A (ja) * 2000-11-24 2002-06-04 Asahi Optical Co Ltd 内視鏡の外装チューブ装着構造及び内視鏡の外装チューブ装着方法
CN104883991A (zh) * 2012-09-19 2015-09-02 南洋理工大学 柔性主从式机器人内窥镜检查系统
CN105769344A (zh) * 2016-02-14 2016-07-20 西安力邦医疗电子有限公司 一种带消毒的弹性手套检测及穿戴设备
CN105939647A (zh) * 2013-10-24 2016-09-14 奥瑞斯外科手术机器人公司 机器人辅助腔内外科手术系统及相关方法
CN107148235A (zh) * 2014-09-10 2017-09-08 直观外科手术操作公司 使用配合的导管尖端和工具的装置、系统及方法
CN111436893A (zh) * 2020-05-14 2020-07-24 江苏工大博实医用机器人研究发展有限公司 一种医用柔性管状工具
CN112617728A (zh) * 2020-12-30 2021-04-09 上海市胸科医院 一种气管镜镜鞘及其操作装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100010298A1 (en) * 2008-07-14 2010-01-14 Ethicon Endo-Surgery, Inc. Endoscopic translumenal flexible overtube
CN107518860A (zh) * 2017-06-29 2017-12-29 杭州无创光电有限公司 内窥镜蛇骨结构及内窥镜
CN110547880A (zh) * 2018-05-31 2019-12-10 优必克股份有限公司 医疗器械的真空保护套安装组件及其装设方法
CN112155504B (zh) * 2020-09-08 2023-01-06 新光维医疗科技(苏州)股份有限公司 一种用于十二指肠的子母一体式肠镜
CN114533211A (zh) * 2020-11-26 2022-05-27 微创优通医疗科技(上海)有限公司 医用导管及医疗装置
CN112829280A (zh) * 2020-12-31 2021-05-25 威士邦(厦门)环境科技有限公司 一种管内壁贴膜工艺
CN113842102A (zh) * 2021-09-23 2021-12-28 上海微创医疗机器人(集团)股份有限公司 柔性部件、柔性探入器及内窥镜装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064811A (ja) * 1999-08-19 2001-03-13 Eiko Kk 手袋装着装置
JP2002159436A (ja) * 2000-11-24 2002-06-04 Asahi Optical Co Ltd 内視鏡の外装チューブ装着構造及び内視鏡の外装チューブ装着方法
CN104883991A (zh) * 2012-09-19 2015-09-02 南洋理工大学 柔性主从式机器人内窥镜检查系统
CN105939647A (zh) * 2013-10-24 2016-09-14 奥瑞斯外科手术机器人公司 机器人辅助腔内外科手术系统及相关方法
CN107148235A (zh) * 2014-09-10 2017-09-08 直观外科手术操作公司 使用配合的导管尖端和工具的装置、系统及方法
CN105769344A (zh) * 2016-02-14 2016-07-20 西安力邦医疗电子有限公司 一种带消毒的弹性手套检测及穿戴设备
CN111436893A (zh) * 2020-05-14 2020-07-24 江苏工大博实医用机器人研究发展有限公司 一种医用柔性管状工具
CN112617728A (zh) * 2020-12-30 2021-04-09 上海市胸科医院 一种气管镜镜鞘及其操作装置

Also Published As

Publication number Publication date
CN115281586A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US20230320574A1 (en) Coaxial micro-endoscope
US10426925B2 (en) Medical devices for the identification and treatment of bodily passages
US6458076B1 (en) Multi-lumen medical device
EP1558124B1 (en) Endoscopic imaging system including removable deflection device
US20120053419A1 (en) Highly Articulable Catheter
EP1949924A1 (en) Treatment device for endoscope and double tube for the treatment device
WO2013146203A1 (ja) 医療用処置具
US20160095510A1 (en) Attachment device for a ureteroscope
JP2007020972A (ja) 内視鏡用体内留置バルーンカテーテル
JP2023524080A (ja) 内視鏡屈曲セクション
WO2024000926A1 (zh) 柔性内窥镜及柔性内窥镜机器人
US20230165444A1 (en) Endoscope with enhanced steering wire arrangement
WO2019102679A1 (ja) 内視鏡の先端部および内視鏡
JP6151145B2 (ja) 医療用の長尺部材、および接続部材
CN212214357U (zh) 一种多功能导管
CN115281587B (zh) 控制柔性内窥镜机器人的方法及装置
US20150196286A1 (en) Flexible tube assembly
CN113350653A (zh) 一种多功能导管
CN219206861U (zh) 通道组件和内窥镜
JP4847175B2 (ja) 内視鏡システム、及び内視鏡挿入補助具
CN218792191U (zh) 一种内窥镜的插入管、插入组件及内窥镜
US20230263375A1 (en) Endoscope Comprising a Bending Section Having Displaced Steering Wire Lumens
WO2021075229A1 (ja) 気管支鏡、及びその使用方法
CN217090816U (zh) 一种用于内镜带有注射针的圈套器装置
CN116649876A (zh) 一种软镜机器人的驱动系统以及软镜机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949011

Country of ref document: EP

Kind code of ref document: A1