WO2024000759A1 - 一种多场辅助磨料冲刷抛光方法与装置 - Google Patents

一种多场辅助磨料冲刷抛光方法与装置 Download PDF

Info

Publication number
WO2024000759A1
WO2024000759A1 PCT/CN2022/113173 CN2022113173W WO2024000759A1 WO 2024000759 A1 WO2024000759 A1 WO 2024000759A1 CN 2022113173 W CN2022113173 W CN 2022113173W WO 2024000759 A1 WO2024000759 A1 WO 2024000759A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
flow channel
workpiece
ultrasonic
Prior art date
Application number
PCT/CN2022/113173
Other languages
English (en)
French (fr)
Inventor
郭江
康仁科
秦璞
郭东明
Original Assignee
大连理工大学
大连理工大学宁波研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学, 大连理工大学宁波研究院 filed Critical 大连理工大学
Publication of WO2024000759A1 publication Critical patent/WO2024000759A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/006Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor for grinding the interior surfaces of hollow workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/12Accessories; Protective equipment or safety devices; Installations for exhaustion of dust or for sound absorption specially adapted for machines covered by group B24B31/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention belongs to the field of polishing processing methods and relates to a complex internal flow channel polishing method assisted by multiple fields.
  • patent CN113211291A proposes a polishing device and method for additive manufacturing of high-temperature alloy internal flow channels. Based on the traditional abrasive flow, this device and method can adapt to the polishing of various high-temperature alloy parts through a special polishing device with variable space. The internal flow channel polishing is carried out according to the size, but it is only suitable for inner flow channel parts with simple structure.
  • Patent CN107460484B uses polishing liquid to chemically polish the inner flow channel of polished nickel-based alloy workpieces. Although the prepared polishing liquid can effectively erode the bumps on the surface of the inner flow channel, it can also protect the concave spots on the surface from excessive erosion.
  • Patent CN 109079590 B A polishing method based on magnetic field-assisted non-Newtonian fluid thickening. It uses an external magnetic field to increase the viscosity of the non-Newtonian fluid and an external polishing fluid circulation device. However, this is mainly aimed at polishing the outer surface, and it is difficult for high-viscosity fluids to enter the long diameter. Relatively large and complex internal flow channel.
  • Patent CN112339269A proposes a 3D printed thrust chamber complex internal flow channel polishing device that uses vibrating high-pressure water and bubbles to flush the inner wall of the flow channel to flush away dirt and impurities on the surface.
  • this device method only uses abrasive water flow. Internal flow channel polishing due to cavitation effect is low efficiency and the polishing effect is not ideal.
  • Patent CN111299592A proposes a method for modifying the surface of parts prepared by additive manufacturing through ultrasonic cavitation and abrasive particle impact, through the collapse of cavitation bubbles on the surface of the part and the abrasive accelerated by the collapse of the cavitation bubbles. The combination of abrasive particles impacting the surface removes material from the surface of the component.
  • the present invention proposes a multi-field auxiliary abrasive scouring and polishing process.
  • the present invention provides a multi-field auxiliary abrasive scouring and polishing process to solve the problems of poor surface quality and low polishing efficiency of complex and slender internal flow channels in mechanical parts containing internal flow channels.
  • the multi-field auxiliary abrasive scouring and polishing process device includes a working platform 1, an abrasive pool 4, a heating device 3, an ultrasonic device 7, a peristaltic pump 9, and a clamping table 14.
  • the clamping platform 14 is installed at the bottom of the abrasive tank 4, and a through hole for placing the vacuum suction cup 12 is provided in the middle of the clamping platform 14.
  • the workpiece 13 is fixed above the clamping table 14 through a clamp 15.
  • the workpiece 13 is provided with an internal flow channel 11 that meanders through (penetrates up and down).
  • the bottom outlet of the inner flow channel 11 of the workpiece is connected to the pump hose 10 through the vacuum suction cup 12 .
  • the liquid level of the polishing fluid 5 in the abrasive pool 4 of the device is maintained at a position three-quarters away from the bottom of the abrasive pool 4, submerging the workpiece 13 and the heating device 3, and not overfilling to prevent overflow.
  • the ultrasonic device 7 of the device is installed above the abrasive pool 4, and its ultrasonic tool handle is submerged in the abrasive pool 4.
  • the vibrating end of the tool handle is close to and facing the top entrance of the inner flow channel 11 of the workpiece, and its ultrasonic vibration is used to form ultrasonic waves in the polishing fluid 5.
  • the polishing fluid enters the surface of the inner flow channel 11 of the workpiece and causes cavitation.
  • the tiny bubbles or bubble nuclei in it undergo oscillation, growth, shrinkage and collapse under the action of ultrasonic waves.
  • the shear stress generated makes the inner flow channel surface unstable.
  • the cracks at the bottom of the regular shape expand, and eventually the irregular shape of the inner flow channel surface is completely separated from the inner flow channel surface, forming cavitation erosion on the inner flow channel surface.
  • the high-pressure jet generated by the collapse of the cavitation bubble drives the liquid and abrasive particles to impact.
  • the surface of the workpiece produces micro-removal effects, thereby achieving the effect of polishing the surface of the inner flow channel.
  • the heating device 3 of the device is installed on the top of one side of the abrasive pool 4, and its heating end extends into the abrasive pool 4 to heat the polishing liquid 5 in the pool, keep the polishing liquid 5 in a boiling state, and increase the bubble production in the polishing liquid 5.
  • the pressure difference is used to form a flash evaporation effect and promote the cavitation effect.
  • the polishing liquid 5 contains magnetic abrasives 6, which can be produced by sintering or atomization. They are ferromagnetic matrix micropowders with hard abrasive grains embedded on the surface. Under the action of the peristaltic pump 9, the magnetic abrasive 6 enters the inner flow channel of the workpiece 13 with the polishing liquid, and erodes the surface of the inner flow channel under the hydrodynamic force of the polishing liquid 5.
  • the magnetic abrasive grain 6 is driven by the external magnetic field device 2 It is close to the inner wall of the inner flow channel under the action, and at the same time, the vibration wave impact of the ultrasonic device 7 directly drives the magnetic abrasive 6 in the polishing fluid to move at a high speed in the vibration direction, causing impact on the surface of the inner flow channel, thereby achieving material removal on the surface of the inner flow channel 11 of the workpiece. Micro removal.
  • the working platform 1 has an L-shaped structure.
  • the abrasive pool 4 of the device is placed on the horizontal plate of the working platform 1.
  • a vertical slide is provided on the longitudinal rod of the working platform 1.
  • the vertical rod is installed on the working platform 1, and can move up and down with the vertical rod surrounding the abrasive pool 4, thereby ensuring that the magnetic abrasive 6 is close to the inner wall of the inner flow channel of the workpiece, thereby improving the material removal of the abrasive particles on the inner flow channel surface. Effect.
  • the polishing liquid 5 in the abrasive pool 4 is selectively prepared according to the different workpieces to be processed. At a certain temperature, the convex peaks and valleys in the inner flow channel surface are selectively self-dissolved through the erosion of the chemical reagents in the polishing liquid 5 , thus making the metal surface smooth and bright.
  • the pump inlet hose 10, peristaltic pump 9, and pump outlet hose 8 form a polishing fluid circulation device.
  • the outlet hose 8 is connected to the polishing fluid 5 from the top of the abrasive pool 4, and the pump inlet hose 10 is connected to the polishing fluid 5 from the bottom of the abrasive pool 4.
  • the flow channels 11 in the workpiece are connected.
  • the polishing liquid and magnetic abrasive particles 6 flowing out from the inner flow channel 11 of the workpiece return to the abrasive pool 4 through the inlet pump hose 10, the peristaltic pump 9, and the outlet hose 8 respectively, thereby realizing the circulation of the polishing liquid 5 during the polishing process. effect. Through this process, high-quality and high-efficiency polishing of complex and slender internal channels in mechanical parts containing internal channels can be achieved.
  • a multi-field assisted abrasive scouring and polishing process based on the above-mentioned polishing device.
  • the process flow is used to polish the inner surface of mechanical parts containing internal flow channels. Includes the following steps:
  • Step 1 Arrange and install the array of magnetic poles 16 on the fixed ring 17 to form the magnetic field device 2. Install the fixed ring 17 on the vertical rod of the working platform 1, and move it up and down to select a suitable working height.
  • Step 2 Select the appropriate clamp 15, fix the workpiece 13 on the clamping table 14, and connect the flow channel 11 in the workpiece 13 with the pump inlet hose 10 through the vacuum suction cup 12.
  • Step 3 Put polishing fluid 5 and abrasive particles 6 into the abrasive pool 4, so that the liquid level in the abrasive pool 4 does not cover the workpiece 13, rises to about three-quarters of the abrasive pool 4, and the heating end of the heating device 3 is And the vibrating end of the ultrasonic device 7 is immersed in the polishing liquid 5 .
  • Step 4 Turn on the heating device 3 to continuously increase the temperature of the polishing fluid 5 in the abrasive pool 4 and reach a boiling state.
  • Step 5 Adjust the position of the ultrasonic device 7 so that the vibrating end of the ultrasonic tool holder is close to and facing the inner flow channel 11 of the workpiece.
  • Step 6 Turn on the ultrasonic device 7 to realize ultrasonic vibration at the end.
  • the ultrasonic wave forms an ultrasonic field in the polishing fluid 5, causing the polishing fluid 5 to reach cavitation conditions.
  • Step 7 The magnetic field device 2 is energized and magnetized, the peristaltic pump 9 is turned on, the polishing fluid 5 and the magnetic abrasive particles are sucked into the inner flow channel 11, and the flash evaporation condition is reached at the entrance of the inner flow channel 11 of the workpiece.
  • Set its working parameters adjust the flow rate of the polishing liquid 5 in the workpiece inner flow channel 11, circulate the polishing liquid 5, and polish the workpiece inner flow channel 11.
  • Step 8 Demagnetize the magnetic field device 2, turn off the peristaltic pump 9, the heating device 3, and the ultrasonic device 7 successively. After the polishing fluid 5 cools down, take the workpiece 13 out of the fixture 15 and clean the workpiece.
  • the present invention proposes a multi-field assisted abrasive scouring and polishing process, which uses three material removal methods: chemical surface modification, ultrasonic cavitation, and abrasive scouring to simultaneously polish the inner surface of the workpiece to achieve 360-degree coverage of the internal flow channel of the workpiece.
  • Fully polished which makes up for the shortcomings of material removal in a single polishing mechanism, and improves the polishing quality and polishing efficiency of the inner flow channel.
  • the present invention is equipped with a heating device to generate a flash evaporation effect when the polishing fluid enters the flow channel in the workpiece to form a pressure difference, causing the polishing fluid to undergo a violent phase change, generating a large number of bubbles, and aggravating the cavitation of the fluid in the abrasive pool.
  • the cavitation degree of cavitation bubbles on the flow channel in the workpiece is improved.
  • the present invention By setting up an ultrasonic device, the present invention not only provides cavitation conditions for the polishing liquid, but also stirs and mixes the polishing liquid and abrasives to ensure the homogeneity of the chemical reagents in the polishing liquid and the uniform distribution of abrasive grains, thereby Make the polishing fluid and abrasive particles polish the inner flow channel of the workpiece evenly.
  • the present invention can replace the fixture according to different workpieces, ensuring that different workpieces can use the process device for internal flow channel polishing, ensuring the flexibility, adjustability and practicality of the process.
  • the present invention can save costs and bring huge environmental benefits by realizing the recycling of polishing fluid during the polishing process.
  • the present invention mainly uses ultrasonic to drive abrasive vibration, ultrasonic cavitation, and chemical polishing liquid corrosion to remove materials on the surface of the inner flow channel. It does not require a fast flow rate and avoids the need for internal flow channel parts with a large aspect ratio. Characteristic parts such as turns and sharp corners of the inner flow channel are over-polished due to the erosion of the polishing fluid, ensuring uniform removal in different areas of the inner flow channel.
  • the present invention is different from traditional abrasive flow processing in which relatively viscous muddy abrasive grains are directly added to the internal flow channel of the part to be processed, and avoids the need for During flow channel processing, the adhesion residue of abrasive particles on the surface of the flow channel in the workpiece, especially in the characteristic parts such as turns and sharp corners, ensures to a certain extent that the inner flow channel in the workpiece is clean after processing.
  • the present invention uses magnetic abrasives and a magnetic yoke.
  • the abrasives are flushed against the inner wall in the inner flow channel for material removal.
  • the vibration radiation surface of the ultrasonic device directly drives the abrasive particles in the liquid to move at high speed in the vibration direction.
  • the impact on the workpiece surface causes micro-plastic deformation and micro-damage removal on the workpiece surface, which greatly improves the physical removal efficiency of abrasive erosion on the inner flow channel surface.
  • Figure 1 is a flow chart of the multi-field assisted abrasive scouring and polishing process for the internal flow channel of the workpiece in this application.
  • FIG. 2 is a structural schematic diagram of the process of the present application.
  • Figure 3 is a schematic top view of the process device of the present application.
  • Figure 4 is a schematic diagram of cavitation erosion of the inner flow channel surface in the process of this application.
  • FIG. 2 it is a structural schematic diagram of the ultrasonic-assisted chemical abrasive erosion and polishing process for polishing the internal flow channel of the workpiece according to the present invention.
  • a multi-field assisted abrasive scouring and polishing process which is used to polish each internal flow channel in a mechanical part containing an internal flow channel.
  • the multi-field auxiliary abrasive scouring and polishing process device includes a working platform 1, an abrasive pool 4, a heating device 3, an ultrasonic device 7, a peristaltic pump 9, and a clamping table 14.
  • the clamping platform 14 of the device is installed at the bottom of the abrasive pool 4, where the workpiece 13 is fixed above the clamping platform 14 through a clamp 15, and the outlet of the internal flow channel 11 of the workpiece 13 is connected to the pump hose 10 through a vacuum suction cup 12 .
  • the liquid level of the polishing liquid 5 in the abrasive pool 4 of the device is kept at a position three-quarters of the way from the bottom of the abrasive pool 4, and should not be overfilled to prevent the polishing liquid from overflowing.
  • the heating device 3 of the device is installed above the abrasive pool 4, and its heating end extends into the abrasive pool 4 to heat the polishing liquid 5 in the pool, keep the polishing liquid 5 in a boiling state, increase the bubbles in the polishing liquid 5, and at the same time make the polishing
  • the pressure difference is used to form a flash evaporation effect.
  • the ultrasonic device 7 of the device is installed above the abrasive pool 4, and its ultrasonic tool handle is submerged in the abrasive pool 4, close to and facing the entrance of the inner flow channel 11 of the workpiece. After it emits ultrasonic waves, the ultrasonic waves form an ultrasonic field in the polishing fluid 5, so that Cavitation occurs when it enters the inner flow channel 11 of the workpiece 13.
  • the tiny bubbles or bubble nuclei therein undergo oscillation, growth, shrinkage and collapse under the action of ultrasonic waves.
  • the shear stress generated makes the surface of the inner flow channel irregular. The cracks at the bottom expand, and eventually the irregular shape of the inner flow channel surface is completely separated from the inner flow channel surface, forming cavitation erosion on the inner flow channel surface.
  • the high-pressure jet generated by the collapse of the cavitation bubble pushes the liquid and abrasive particles to impact the workpiece surface. , producing a micro-removal effect, thereby achieving the effect of polishing the surface of the inner flow channel.
  • the magnetic abrasives 6 of the device enter the inner flow channel 11 of the workpiece along with the polishing liquid 5 under the action of the peristaltic pump 9, and erode the surface of the inner flow channel 11 under the hydrodynamic force of the polishing liquid 5.
  • the magnetic abrasives 6 Since the magnetic device 2 is close to the inner wall of the inner flow channel 11, the vibration radiation surface of the ultrasonic device directly drives the magnetic abrasive 6 in the polishing fluid 5 to move at high speed in the vibration direction, causing impact on the surface of the inner flow channel 11, thereby achieving internal polishing.
  • the material on the surface of the flow channel 11 is micro-removed.
  • the abrasive pool 4 of the device is placed on the working platform 1.
  • the fixed ring 17 is loaded with the magnetic pole 16 and is installed on the longitudinal rod of the working platform 1, and can move up and down around the abrasive pool 1 with the longitudinal rod, thereby ensuring that the magnetic abrasive 3 is tight. Stick to the inner wall of the inner flow channel 10 of the workpiece, thereby improving the material removal effect of abrasive erosion on the surface of the inner flow channel 10 .
  • the polishing liquid 2 in the abrasive pool 1 of the device is selectively prepared according to the different workpieces 8 to be processed.
  • the erosion of the chemical reagents in the polishing liquid 5 causes the selective formation of convex peaks and valleys on the surface of the inner flow channel. Self-dissolving, thus making the metal surface smooth and bright.
  • the vacuum suction cup 12 of the device is used to connect the pump inlet hose 10 and the workpiece 13 while ensuring the communication between the internal flow channel 11 of the workpiece 13 and the pump inlet hose 10 .
  • the pump inlet hose 10, peristaltic pump 9, and pump outlet hose 8 of the device form a polishing fluid circulation device.
  • the polishing fluid 5 and magnetic abrasive particles 6 flowing out from the inner flow channel 11 of the workpiece pass through the pump inlet hose 10, respectively.
  • the peristaltic pump 9 and the pump outlet hose 8 return to the abrasive pool 4 to realize the circulation of polishing fluid during the polishing process. Through this process, high-quality and high-efficiency polishing of complex and slender internal channels in mechanical parts containing internal channels can be achieved.
  • the present invention proposes a multi-field auxiliary grinding method.
  • the particle erosion polishing process has high polishing efficiency and good polishing quality for the internal flow channel.
  • Step 1 Arrange and install the yoke array on the fixed ring, install the fixed ring on the vertical rod of the working platform, and move it up and down to select the appropriate working height.
  • Step 2 Select the appropriate fixture 15 and fix the workpiece 13 on the clamping table 14.
  • the internal flow channel 11 of the workpiece is three sections and two bends, with an inner diameter of 5mm and a length of 120mm. Its outlet passes through the vacuum suction cup 12 and the pump hose 10. Connected.
  • Step 3 Put the polishing fluid and abrasive grains into the abrasive pool 4 so that the liquid level in the abrasive pool 4 does not cover the workpiece 13 and rises to about three-quarters of the abrasive pool 1, and make the heating end of the heating device 3
  • the ultrasonic tool handle of the ultrasonic device 7 is immersed in the polishing liquid 5 .
  • Step 4 Turn on the heating device 3 to continuously increase the temperature of the polishing fluid 5 in the abrasive pool 4 to 100°C under standard atmospheric pressure, reaching a boiling state.
  • Step 5 Adjust the position of the ultrasonic device 7 so that the vibrating end of the ultrasonic tool handle is close to and facing the entrance of the flow channel 11 in the workpiece.
  • Step 6 Turn on the ultrasonic device 7, set the ultrasonic frequency to 20 kHz, the ultrasonic tool handle vibrates to emit ultrasonic waves, and the ultrasonic waves form an ultrasonic field in the polishing fluid 5, so that the polishing fluid reaches cavitation conditions.
  • Step 7 The magnetic field device 2 is energized and magnetized, and the magnetic field intensity is set to 5000 Gauss. Turn on the peristaltic pump 9, set its flow rate to 300 mL/min, and perform 5 cycles of polishing fluid through the peristaltic pump 9 to polish the inner flow channel of the workpiece 13.
  • Step 8 Demagnetize the magnetic field device 2, turn off the peristaltic pump 9, the heating device 3, and the ultrasonic device 7 successively. After the polishing fluid 5 cools down, take the workpiece 13 out of the fixture 15 and clean the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

一种多场辅助磨料冲刷抛光方法与装置,包括磨料池、加热装置、超声装置、蠕动泵、装夹台。装夹台安装于磨料池底部,工件固定于装夹台上方,工件内设有曲折贯通内流道,内流道出口与入泵软管连通,超声装置的刀柄振动端正对内流道顶部入口,磨料池一侧顶部设置加热装置。使用时,首先,将磁极安装于工作平台纵杆上,将工件内流道与入泵软管连通。其次,向磨料池中放入抛光液和磨粒,使加热装置的加热端和超声装置的振动端浸入抛光液,并开启加热装置、超声装置。最后,磁场装置通电通磁,开启蠕动泵,对内流道进行抛光。本发明结构简单,使用方便,效率高,能解决含内流道的机械零件内的复杂细长内流道的表面质量差、抛光效率不高的问题。

Description

一种多场辅助磨料冲刷抛光方法与装置 技术领域
本发明属于抛光加工方法领域,涉及一种多场辅助下的复杂内流道抛光方法。
背景技术
在当前机械加工领域内,复杂内表面加工约占机械加工量的三分之一左右,尤其是在航空航天、医疗器械、石油化工等领域内,对内流道的加工需求更高也更迫切。由于制造方法等原因,粗成型制造出的工件内流道的表面比较粗糙,在使用过程容易产生流道流阻大、溶液残余多等问题,所以要采用抛光等方式提升内流道的表面质量从而改善其内部流体的流动特性,而传统的抛光方法对小尺寸、长径比大、路径复杂的内流道进行抛光效果难以满足需求。所以亟需开发出一种高效、适用范围广的内流道抛光工艺和装备来解决工件复杂内流道的表面质量问题。
为了解决复杂内流道的内表面质量问题,研究人员提出了磁力研磨、化学腐蚀、超声抛光等技术,但是这些内流道抛光工艺在加工适用范围、加工效率、加工质量等方面存在一些限制或不足,专利CN113211291A提出了一种增材制造高温合金内流道的抛光装置及方法,该装置和方法在传统磨料流的基础上尽管能够通过可变空间的专用抛光装置适应各种高温合金部件的大小进行内流道抛光,但只适用于结构简单的内流道零件,而针对复杂内流道零件,特别是对于大长径比的内流道零件,容易在转弯、尖角等特征部位造成过度抛光,导致零件壁厚减薄,使内流道不同区域去除量不均匀,甚至导致零件报废,同时其也没能解决传统磨料流抛光存在的设备复杂,半流体磨料调制困难等问题。专利CN107460484B使用抛光液对抛光镍基合金工件内流道进行化学抛光,该方法尽管配制的抛光液既能高效地侵蚀内流道表面的凸点,又能保护表面的凹点不被过量侵蚀,从而达到理想的抛光效果,但其抛光液针对性强,只适用于耐腐蚀的镍基合金工件,仅仅依靠化学作用实现材料去除,抛光效率低,不适用于批量加工,且其化学试剂不符合绿色制造理念。专利CN 109079590 B一种基于磁场辅助的非牛顿流体增稠的抛光方法,利用外置磁场提高非牛顿流体粘度,同时外置抛光液循环装置,但是这个主要针对外表面抛光,高粘度流体难以进入长径比较大的复杂内流道。专利CN112339269A提出了一种3D打印推力室复杂内流道抛光装置,利用振动的高压水和气泡对流道的内壁进行冲洗,从而将表面的污垢和杂质冲洗掉,但该装置方法只利用磨粒水流和空化效应进行内流道抛光,效率较低且抛光效果不理想。专利CN111299592A提出了一种通过超声空化和磨粒撞击对通过增材制造制备的部件的表面进行修整的方法,通过空化气泡在部件表面上塌缩和因空化气泡塌缩而加速的磨料磨粒撞击该表面的组合来从部件的表面移除材料,但在常温状态下流体中的气泡气泡仅靠空化作用产生,空化效应材料去除效果较弱,且对于含内流道特别是复杂内流道的工件来说,其磨料磨粒在内流道不易贴壁,主要依靠空化效应进行抛光,对内流道表面的材料去除效果不理想。
为了满足工件复杂内流道的表面质量要求,提高内流道抛光效率,且抛光过程稳定、效果均匀,本发明提出了一种多场辅助磨料冲刷抛光工艺。
技术问题
针对现有技术存在的问题,本发明提供一种多场辅助磨料冲刷抛光工艺,以解决含内流道的机械零件内的复杂细长内流道的表面质量差、抛光效率不高的问题。
技术解决方案
一种多场辅助磨料冲刷抛光装置,所述多场辅助磨料冲刷抛光流程装置包括工作平台1、磨料池4、加热装置3、超声装置7、蠕动泵9、装夹台14。
所述的装夹台14安装于磨料池4的底部,装夹台14中部设有放置真空吸盘12的通孔。所述的工件13通过夹具15固定于装夹台14上方,所述的工件13内设有曲折贯通(上下贯通)的内流道11。工件的内流道11的底部出口通过真空吸盘12与入泵软管10连通。
所述装置的磨料池4内抛光液5的液面保持在距磨料池4底部四分之三的位置,淹没过工件13和加热装置3,不要过满,防止溢出。
所述装置的超声装置7安装于磨料池4上方,其超声刀柄没入磨料池4,刀柄振动端靠近并正对工件内流道11顶部入口,利用其超声振动在抛光液5中形成超声波动,抛光液进入工件内流道11表面并发生空化,其中的微小气泡或泡核在超声波的作用下历经振荡、生长、收缩及溃灭,其产生的剪切应力使内流道表面不规则形状底部的裂缝扩展,最终使内流道表面不规则形状与内流道表面完全脱离,形成对内流道表面的空蚀,同时空化泡溃破产生的高压射流推动液体和磨粒冲击工件表面,产生微去除作用,从而达到对内流道表面抛光的效果。
所述装置的加热装置3安装于磨料池4一侧顶部,其加热端伸入磨料池4,用于加热池内抛光液5,使抛光液5保持沸腾状态,增加抛光液5中的气泡产量,同时使饱和抛光液5在进入工件13内流道时,利用压力差形成闪蒸效应,促进空化效果。
所述抛光液5中含有磁性磨料6,可由烧结法或雾化法制得,为表面嵌有硬质磨粒相的铁磁性基体微粉。磁性磨料6在蠕动泵9的作用下,随抛光液进入工件13内流道,在抛光液5的流体动力下对内流道表面进行冲蚀作用,同时磁性磨粒6由于外加磁场装置2的作用下紧贴内流道内壁,同时超声装置7的振动波动冲击直接驱动抛光液中的磁性磨料6沿振动方向高速运动,对内流道表面产生冲击,实现对工件内流道11表面的材料微去除。
所述工作平台1为L型结构,所述装置的磨料池4放置于工作平台1水平板上,工作平台1的纵杆上设有垂向滑道,磁场装置2固定环17装载磁轭后安装于工作平台1的纵杆,且可随纵杆环绕磨料池4且可进行上下移动,从而保证了磁性磨料6紧贴工件内流道内壁,从而提高内流道表面磨粒冲刷的材料去除效果。
所述磨料池4中的抛光液5根据加工工件的不同进行选择性配制,在一定温度下,通过抛光液5中化学试剂的侵蚀作用使内流道表面发生凸峰和凹谷选择性自溶解,从而使金属表面变得平整和光亮。
所述入泵软管10、蠕动泵9、出泵软管8形成抛光液循环装置,出泵软管8从磨料池4顶部与抛光液5连通,入泵软管10从磨料池4底部与工件内流道11连通。从工件内流道11流出的抛光液和磁性磨粒6,分别经入泵软管10、蠕动泵9、出泵软管8重新返回磨料池4内,实现抛光过程中的抛光液5的循环作用。通过本工艺流程可以实现含内流道的机械零件内的复杂细长内流道的高质量、高效率抛光。
一种基于上述抛光装置实现的多场辅助磨料冲刷抛光工艺,该工艺流程用于对含内流道的机械零件内的内表面进行抛光。包括如下步骤:
步骤一、将磁极16阵列排布安装于固定环17上形成磁场装置2,将固定环17安装于工作平台1的纵杆上,上下移动选择合适工作高度。
步骤二、选择合适的夹具15,将工件13固定于装夹台14上,通过真空吸盘12将工件13内流道11与入泵软管10二者连通。
步骤三、向磨料池4中放入抛光液5和磨粒6,使磨料池4中液面没过工件13,升至磨料池4的四分之三左右,并使加热装置3的加热端和超声装置7的振动端浸入抛光液5。
步骤四、开启加热装置3,使磨料池4中抛光液5的温度不断升高,达到沸腾状态。
步骤五、调整超声装置7位置,使其超声刀柄振动端靠近并正对工件内流道11的。
步骤六、开启超声装置7,实现端部超声振动,超声波动在抛光液5中形成超声场,使抛光液5达到空化条件。
步骤七、磁场装置2通电通磁,开启蠕动泵9,将抛光液5及磁性磨粒吸入内流道11,并在工件内流道11入口处达到闪蒸条件。设置其工作参数,调整抛光液5在工件内流道11内的流速,进行抛光液5循环,对工件内流道11进行抛光。
步骤八、磁场装置2退磁,先后关闭蠕动泵9、加热装置3、超声装置7,待抛光液5冷却后,将工件13从夹具15中取出,清洗工件。
有益效果
(1)本发明提出了一种多场辅助磨料冲刷抛光工艺,采用化学表面改性、超声空化、磨料冲刷三种材料去除方式同时对工件内表面进行抛光,实现对工件内流道的360度充分抛光,弥补了单个抛光机理材料去除的弊端,提高了内流道的抛光质量和抛光效率。
(2)本发明通过设置有加热装置,在抛光液进入工件内流道形成压力差的同时,产生闪蒸效应,使抛光液发生剧烈相变,产生大量气泡,加剧磨料池内流体的空化,提高了空化气泡对工件内流道的空蚀程度。
(3)本发明通过设置超声装置,在为抛光液提供空化条件的同时,还对抛光液和磨料起搅拌混合作用,保证抛光液中化学试剂的均质及磨料磨粒的均匀分布,从而使抛光液和磨料磨粒对工件内流道的抛光均匀。
(4)本发明通过设置夹具,可根据不同工件进行更换夹具,保证不同工件均能使用该工艺装置进行内流道抛光,保证了工艺的灵活可调性及实用性。
(5)本发明通过实现抛光过程中抛光液的循环使用,能够节约成本,带来巨大的环保效益。
(6)本发明主要通过超声带动磨粒振动、超声空化、化学抛光液腐蚀进行内流道表面的材料去除,不需要较快流速,避免了对大长径比的内流道零件在其内流道转弯、尖角等特征部位由于抛光液冲刷造成的过度抛光,保证了内流道不同区域去除量均匀。
(7)本发明通过在抛光液中掺杂磨料磨粒的方式,区别于将具有相当黏性的泥状磨粒直接加入待加工零件内流道的传统磨料流加工,避免了传统磨料流内流道加工时磨料磨粒在工件内流道表面尤其是转弯、尖角等特征部位的粘附残留,一定程度上保证工件内流道加工后的洁净。
(8)本发明使用磁性磨料和设置磁轭,通过磁场作用使磨料在内流道内紧贴内壁冲刷进行材料去除,同时超声装置的振动辐射面直接驱动液体中的磨粒沿振动方向高速运动,对工件表面产生冲击,使工件表面产生微塑性变形和微破损去除,极大提高了内流道表面磨料冲刷的物理去除效率。
(9)本发明工艺多种作用机理相辅相成,在超声振动作用下,液体中产生空化现象,空化泡溃破产生的高压射流推动液体和磨粒冲击工件表面,提高了抛光液和磨粒对内流道表面的接触程度,空化效应在一定程度上促进了化学腐蚀和磨粒冲刷对内流道表面的去除效率。
附图说明
图1为本申请针对工件内流道进行多场辅助磨料冲刷抛光工艺的流程图。
图2为本申请工艺的结构示意图;
图3为本申请工艺装置的俯视示意图;
图4为本申请工艺中空化空蚀内流道表面的原理图;
图中:1工作平台;2磁场装置;3加热装置;4磨料池;5抛光液;6磁性磨粒;7超声装置;8出泵软管;9蠕动泵;10出泵软管;11工件内流道;12真空吸盘;13工件;14装夹台;15夹具;16磁极;17固定环。
本发明的实施方式
结合附图2及附图3详细对本发明的用于内表面抛光方法加以说明。
如图2所示,为本发明的用于抛光工件内流道的超声辅助化学磨粒冲刷抛光工艺的结构示意图。
一种多场辅助磨料冲刷抛光工艺,该工艺流程用于对含内流道的机械零件内的各个内流道进行抛光。所述多场辅助磨料冲刷抛光流程装置包括工作平台1、磨料池4、加热装置3、超声装置7、蠕动泵9、装夹台14。
所述装置的装夹台14安装于磨料池4的底部,其中工件13通过夹具15固定于装夹台14上方,工件13的内流道11出口与入泵软管10通过真空吸盘12进行连通。所述装置的磨料池4内抛光液5的液面保持在距磨料池4底部四分之三的位置,不要过满,防止抛光液溢出。
所述装置的加热装置3安装于磨料池4上方,其加热端伸入磨料池4,用于加热池内抛光液5,使抛光液5保持沸腾状态,增加抛光液5中的气泡,同时使抛光液5在进入内流道11时,利用压力差形成闪蒸效应。
所述装置的超声装置7安装于磨料池4上方,其超声刀柄没入磨料池4,靠近并正对工件内流道11入口,其发出超声波后,超声波在抛光液5中形成超声场,使其进入工件13的内流道11时发生空化,其中的微小气泡或泡核在超声波的作用下历经振荡、生长、收缩及溃灭,其产生的剪切应力使内流道表面不规则形状底部的裂缝扩展,最终使内流道表面不规则形状与内流道表面完全脱离,形成对内流道表面的空蚀,同时空化泡溃破产生的高压射流推动液体和磨粒冲击工件表面,产生微去除作用,从而达到对内流道表面抛光的效果。
所述装置的磁性磨料6在蠕动泵9的作用下,随抛光液5进入工件内流道11,在抛光液5的流体动力下对内流道11表面进行冲蚀作用,同时磁性磨粒6由于磁力装置2的作用下紧贴内流道11内壁,使得超声装置的振动辐射面直接驱动抛光液5中的磁性磨料6沿振动方向高速运动,对内流道11表面产生冲击,实现对内流道11表面的材料微去除。
所述装置的磨料池4放置于工作平台1上,固定环17装载磁极16后安装于工作平台1的纵杆,且可随纵杆环绕磨料池1进行上下移动,从而保证了磁性磨料3紧贴工件内流道10内壁,从而提高内流道10表面磨粒冲刷的材料去除效果。
所述装置磨料池1中的抛光液2根据加工工件8的不同进行选择性配制,在一定温度下,通过抛光液5中化学试剂的侵蚀作用使内流道表面发生凸峰和凹谷选择性自溶解,从而使金属表面变得平整和光亮。
所述装置的真空吸盘12,用于连接入泵软管10和工件13,同时保证工件13的内流道11与入泵软管10的连通。
所述装置的入泵软管10、蠕动泵9、出泵软管8形成抛光液循环装置,从工件内流道11流出的抛光液5和磁性磨粒6,分别经入泵软管10、蠕动泵9、出泵软管8重新返回磨料池4内,实现抛光过程中的抛光液循环作用。通过本工艺流程可以实现含内流道的机械零件内的复杂细长内流道的高质量、高效率抛光。
由于内流道在工件内部,体积小且大多曲折多弯,传统的抛光方法很难对小尺寸、长径比大、路径复杂的内流道进行抛光,本发明提出了一种多场辅助磨粒冲刷抛光工艺,对内流道的抛光效率高、抛光质量好,具体实施步骤如下:
步骤一、将磁轭阵列排布安装于固定环上,将固定环安装于工作平台纵杆上,上下移动选择合适工作高度。
步骤二、选择合适的夹具15,将工件13固定于装夹台14上,工件内流道11为三段两弯型,内径5mm,长度120mm,其出口通过真空吸盘12与入泵软管10连通。
步骤三、向磨料池4中放入抛光液和磨料磨粒,使磨料池4中液面没过工件13,升至磨料池1的四分之三左右,并使加热装置3的加热端和超声装置7的超声刀柄浸入抛光液5。
步骤四、开启加热装置3,在标准大气压下,使磨料池4中抛光液5的温度不断升高至100℃,达到沸腾状态。
步骤五、调整超声装置7位置,使其超声刀柄振动端靠近并正对工件内流道11的入口。
步骤六、开启超声装置7,设置超声频率为20kHz,超声刀柄振动发出超声波,超声波在抛光液5中形成超声场,使抛光液达到空化条件。
步骤七、磁场装置2通电通磁,磁场强度设置为5000高斯。开启蠕动泵9,设置其流速为300mL/min,通过蠕动泵9进行抛光液5循环,对工件13内流道进行抛光。
步骤八、磁场装置2退磁,先后关闭蠕动泵9、加热装置3、超声装置7,待抛光液5冷却后,将工件13从夹具15中取出,清洗工件。
以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种多场辅助磨料冲刷抛光装置,其特征在于,所述的多场辅助磨料冲刷抛光流程装置包括工作平台(1)、磁场装置(2)、磨料池(4)、加热装置(3)、超声装置(7)、蠕动泵(9)、装夹台(14);
    所述装夹台(14)安装于磨料池(4)底部,装夹台(14)中部设有放置真空吸盘(12)的通孔;工件(13)通过夹具(15)固定于装夹台(14)上方,工件(13)内设有曲折贯通的内流道(11),内流道(11)底部出口通过真空吸盘(12)与入泵软管(10)连通;
    所述超声装置(7)安装于磨料池(4)上方,其刀柄振动端正对工件内流道(11)顶部入口,利用其超声振动在抛光液(5)中形成超声波动,抛光液进入工件内流道(11)表面并发生空化,达到对内流道表面抛光的效果;
    所述加热装置(3)安装于磨料池(4)一侧顶部,用于加热池内抛光液(5),使抛光液(5)保持沸腾状态,同时使饱和抛光液(5)在进入内流道(11)时,利用压力差形成闪蒸效应,促进空化效果;
    所述抛光液(5)中含有磁性磨料(6),为表面嵌有硬质磨粒相的铁磁性基体微粉;磁性磨料(6)在蠕动泵(9)作用下,随抛光液进入内流道(11),实现对工件内流道(11)表面的材料微去除;
    所述工作平台(1)为L型结构,所述磨料池(4)放置于工作平台(1)水平板上,工作平台(1)的纵杆上设有垂向滑道,磁场装置(2)的固定环(17)装载磁轭后安装于垂向滑道上能够上下移动,保证磁性磨料(6)紧贴工件内流道内壁,提高内流道表面磨粒冲刷的材料去除效果;
    所述蠕动泵(9)与入泵软管(10)、出泵软管(8)形成抛光液循环装置,实现抛光过程中的抛光液(5)的循环作用。
  2. 一种基于权利要求1所述的抛光装置实现的多场辅助磨料冲刷抛光工艺,其特征在于,该工艺流程用于对含内流道的机械零件内的内表面进行抛光;包括如下步骤:
    步骤一、将磁极(16)阵列排布安装于固定环(17)上形成磁场装置(2),将固定环(17)安装于工作平台(1)纵杆上,上下移动选择合适工作高度;
    步骤二、选择合适的夹具(15),将工件(13)固定于装夹台(14)上,通过真空吸盘(12)将工件(13)内流道(11)与入泵软管(10)二者连通;
    步骤三、向磨料池(4)中放入抛光液(5)和磁性磨料(6),使磨料池(4)中液面没过工件(13),升至磨料池(4)的四分之三左右,并使加热装置(3)的加热端和超声装置(7)的振动端浸入抛光液(5);
    步骤四、开启加热装置(3),使磨料池(4)中抛光液(5)的温度不断升高,达到沸腾状态;
    步骤五、调整超声装置(7)位置,使其超声刀柄振动端靠近并正对工件内流道(11)的;
    步骤六、开启超声装置(7),实现端部超声振动,超声波动在抛光液(5)中形成超声场,使抛光液(5)达到空化条件;
    步骤七、磁场装置(2)通电通磁,开启蠕动泵(9),将抛光液(5)及磁性磨粒吸入内流道(11),并在工件内流道(11)入口处达到闪蒸条件;设置其工作参数,调整抛光液(5)在工件内流道(11)内的流速,进行抛光液(5)循环,对工件内流道(11)进行抛光;
    步骤八、磁场装置(2)退磁,先后关闭蠕动泵(9)、加热装置(3)、超声装置(7),待抛光液(5)冷却后,取出工件(13)。
PCT/CN2022/113173 2022-06-29 2022-08-18 一种多场辅助磨料冲刷抛光方法与装置 WO2024000759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210746928.9A CN115157020B (zh) 2022-06-29 2022-06-29 一种多场辅助磨料冲刷抛光方法与装置
CN202210746928.9 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024000759A1 true WO2024000759A1 (zh) 2024-01-04

Family

ID=83489986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113173 WO2024000759A1 (zh) 2022-06-29 2022-08-18 一种多场辅助磨料冲刷抛光方法与装置

Country Status (2)

Country Link
CN (1) CN115157020B (zh)
WO (1) WO2024000759A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264007A (ja) * 2001-03-12 2002-09-18 Japan Science & Technology Corp 曲がり管内面の磁気援用研磨方法およびその装置
CN105643029A (zh) * 2016-01-14 2016-06-08 辽宁科技大学 一种电化学磁力研磨光整加工合金管的方法及装置
CN109227396A (zh) * 2018-08-07 2019-01-18 太原理工大学 超声空化耦合水力空化高效分散磁流变抛光液循环装置
CN110281085A (zh) * 2019-07-25 2019-09-27 广东工业大学 一种集群磁流变研磨抛光装置及其使用方法
CN111716158A (zh) * 2020-06-03 2020-09-29 大连理工大学 一种内表面的抛光方法及装置
CN113561047A (zh) * 2021-09-23 2021-10-29 长沙理工大学 一种孔内表面复合抛光方法及装置
CN113770818A (zh) * 2021-09-14 2021-12-10 太原理工大学 一种二维超声振动磁流变液精密光整加工装置及方法
CN114473834A (zh) * 2022-01-27 2022-05-13 大连理工大学 一种微细结构非接触式抛光装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221742A (ja) * 1997-09-30 1999-08-17 Hoya Corp 研磨方法及び研磨装置並びに磁気記録媒体用ガラス基板及び磁気記録媒体
JP2001180921A (ja) * 1999-12-27 2001-07-03 Kenichi Fujita 酸化カーボンコロイド及びそれを用いた植物生育剤
JP2002239879A (ja) * 2001-02-09 2002-08-28 Ooita Ken 超音波振動加工法
JP2003175452A (ja) * 2001-12-11 2003-06-24 Kyoei Denko Kk ステンレスパイプの内面研磨方法
JP4351902B2 (ja) * 2003-12-12 2009-10-28 株式会社東芝 磁気研磨方法および磁気研磨装置
CN101579833B (zh) * 2009-06-05 2011-08-31 东华大学 高效率可控多磨头磁流变抛光装置
CN103551927B (zh) * 2013-11-11 2016-08-24 广东工业大学 一种电泳辅助超声振动驱动磨粒运动抛光微孔的装置及加工方法
CN104148993B (zh) * 2014-08-14 2016-05-18 厦门大学 微型焊针内孔研磨装置
US11597049B2 (en) * 2017-12-06 2023-03-07 Qingdao university of technology Nanofluid minimum quantity lubrication grinding device of ultrasonic vibration assisted grinding fluid micro-channel infiltration
CN108857598B (zh) * 2018-07-11 2020-03-10 山东大学 基于电磁超声振动复合能场的内孔加工系统及方法
CN111687308B (zh) * 2019-03-14 2022-05-06 河南理工大学 一种可调式金属超薄片落料冲孔去毛刺超声复合模具
CN114589636B (zh) * 2022-03-14 2023-02-17 陕西捷特智能科技有限公司 基于磁导向气动往复射流3d复杂零件内流道清理装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264007A (ja) * 2001-03-12 2002-09-18 Japan Science & Technology Corp 曲がり管内面の磁気援用研磨方法およびその装置
CN105643029A (zh) * 2016-01-14 2016-06-08 辽宁科技大学 一种电化学磁力研磨光整加工合金管的方法及装置
CN109227396A (zh) * 2018-08-07 2019-01-18 太原理工大学 超声空化耦合水力空化高效分散磁流变抛光液循环装置
CN110281085A (zh) * 2019-07-25 2019-09-27 广东工业大学 一种集群磁流变研磨抛光装置及其使用方法
CN111716158A (zh) * 2020-06-03 2020-09-29 大连理工大学 一种内表面的抛光方法及装置
CN113770818A (zh) * 2021-09-14 2021-12-10 太原理工大学 一种二维超声振动磁流变液精密光整加工装置及方法
CN113561047A (zh) * 2021-09-23 2021-10-29 长沙理工大学 一种孔内表面复合抛光方法及装置
CN114473834A (zh) * 2022-01-27 2022-05-13 大连理工大学 一种微细结构非接触式抛光装置及方法

Also Published As

Publication number Publication date
CN115157020A (zh) 2022-10-11
CN115157020B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN202427678U (zh) 超声波清洗机
CN105970260A (zh) 一种在喷射电沉积加工过程中改善均匀性的方法
CN108856128A (zh) 调节室部件
Lee et al. Two-dimensional vibration-assisted magnetic abrasive finishing of stainless steel SUS304
CN105803493B (zh) 复杂薄壁型面制造的微幅运动镂空阳极电铸系统及方法
US6315885B1 (en) Method and apparatus for electropolishing aided by ultrasonic energy means
CN111515480B (zh) 一种微粒辅助掩膜电解加工的装置及方法
US11000782B2 (en) Method and apparatus for cleaning substrates using high temperature chemicals and ultrasonic device
WO2024000759A1 (zh) 一种多场辅助磨料冲刷抛光方法与装置
CN106695568A (zh) 一种光纤预制棒抛光液循环系统
JP4169239B2 (ja) 液中表面加工装置および加工方法
CN110497257A (zh) 一种复合型高精研磨去毛刺工艺
EP1057546A1 (en) Megasonic cleaner
US5196107A (en) Dispersion plating method
CN206436143U (zh) 一种光纤预制棒抛光液循环系统
CN113584568B (zh) 一种金属微细结构的电化学高精度抛光方法
JP2008296351A (ja) 基板処理装置及び基板処理方法
CN113146425A (zh) 一种深度拉丝的金属拉丝工艺
CN106540978A (zh) 一种带有表面磨削功能的微挤压模具
JP2594378B2 (ja) ワ−クのバリ取り・表面研磨方法
CN217594473U (zh) 一种氧化铝精抛液生产用超声分散装置
JP2836888B2 (ja) 板状体の洗浄方法
CN110777407A (zh) 一种超声波电镀装置
CN110587776A (zh) 一种3d打印陶瓷管内表面的加工装置
CN105331938A (zh) 靶材组件的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948850

Country of ref document: EP

Kind code of ref document: A1