WO2024000450A1 - 一种QoS流的控制方法、装置及计算机存储介质 - Google Patents

一种QoS流的控制方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2024000450A1
WO2024000450A1 PCT/CN2022/102943 CN2022102943W WO2024000450A1 WO 2024000450 A1 WO2024000450 A1 WO 2024000450A1 CN 2022102943 W CN2022102943 W CN 2022102943W WO 2024000450 A1 WO2024000450 A1 WO 2024000450A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional entity
core network
network functional
terminal
qos
Prior art date
Application number
PCT/CN2022/102943
Other languages
English (en)
French (fr)
Inventor
吴锦花
沈洋
王德乾
刘建宁
毛玉欣
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/102943 priority Critical patent/WO2024000450A1/zh
Priority to CN202280002499.2A priority patent/CN117643109A/zh
Publication of WO2024000450A1 publication Critical patent/WO2024000450A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a QoS flow control method, device and computer storage medium.
  • XR and media services have the characteristics of high throughput, low latency, and high reliability requirements, they require high power consumption on the terminal side, and the battery power of the terminal may affect the user experience.
  • the present disclosure provides a QoS flow control method, device and computer storage medium to match business traffic characteristics and terminal energy consumption management, thereby ensuring business requirements and user experience.
  • a quality of service (QoS) flow control method which can be applied to the first core network functional entity in the communication system, such as policy control function (PCF) entity.
  • the method may include: the first core network functional entity receives terminal status information (UE status information) from the second core network functional entity, and the terminal status information is used to represent the power consumption status of the terminal; the first core network functional entity responds to the terminal status according to the terminal status. information to perform QoS updates on the QoS flow.
  • UE status information terminal status information
  • PCF policy control function
  • the first core network functional entity may be a PCF entity
  • the second core network functional entity may be a session management function (SMF) entity.
  • SMF session management function
  • the QoS flow includes at least one of the following: terminal QoS flow; session QoS flow; service data flow QoS flow.
  • the terminal status information includes at least one of the following: battery power; battery life; power supply mode; CPU load; and terminal overheating status.
  • the QoS flow is a guaranteed bit rate (guaranteed bit rate, GBR) QoS flow
  • the QoS parameters of the QoS flow include: guaranteed flow bit rate (guaranteed flow bit rate, GFBR) and/or maximum flow bit rate (maximum flow bit rate, MFBR).
  • the first core network functional entity performs QoS updates on the QoS flow based on the terminal status information, including: the first core network functional entity lowers or increases the GFBR based on the terminal status information.
  • the above method also includes: the first core network functional entity sends MFBR to the third core network functional entity, and the MFBR is used by the third core network functional entity to perform QoS update on the downlink GBR QoS flow; and/or , the first core network functional entity sends the MFBR to the access network functional entity, and the MFBR is used by the access network functional entity to perform QoS updates on the uplink and/or downlink GBR QoS flows.
  • the third core network function entity may be a user plan function (UPF) entity.
  • UPF user plan function
  • the QoS flow is a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: aggregate maximum bit rate (aggregate maximum bit rate, AMBR).
  • the first core network functional entity performs QoS updates on the QoS flow based on the terminal status information, including: the first core network functional entity reduces or increases AMBR based on the terminal status information.
  • AMBR includes at least one of the following: AMBR per terminal, AMBR per session.
  • the above method further includes: the first core network functional entity sends the per-session AMBR to the third core network functional entity, and the per-session AMBR is used for the third core network functional entity.
  • the core network functional entity performs QoS updates on the uplink and/or downlink session QoS flows; or, the first core network functional entity sends the AMBR of each session to the terminal, and the AMBR of each session is used by the terminal to perform protocol data based on the non-GBR QoS flow.
  • the above method in response to the AMBR including the AMBR of each terminal, the above method further includes: the first core network functional entity sends the AMBR of each terminal to the access network functional entity, and the AMBR of each terminal is used for the access network function.
  • the entity performs QoS updates for each terminal's upstream and/or downstream non-GBR QoS flows.
  • the QoS flow is a GBR QoS flow or a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: maximum bit rate (maximum bit rate, MBR) per slice per terminal.
  • the above method in response to the QoS parameter including the MBR of each terminal and each slice, the above method further includes: the first core network functional entity sends the MBR of each terminal and each slice to the access network functional entity, and the MBR of each terminal and each slice is sent to the access network functional entity.
  • MBR is used by the access network functional entity to perform QoS updates on the PDU session QoS flow corresponding to the terminal's single network slice selection assistance information (single network slice selection assistance information, S-NSSAI).
  • the first core network functional entity receives terminal status information from the second core network functional entity, including: the first core network functional entity sends a subscription request message to the second core network functional entity, and the subscription request message The first event used to request terminal status information association; when the first event satisfies the event reporting condition, the first core network functional entity receives the terminal status information sent by the second core network functional entity.
  • a QoS flow control method which method can be applied to a second core network functional entity in a communication system, such as an SMF entity.
  • the method includes: the second core network functional entity receives terminal status information from the terminal, and the terminal status information is used to represent the power consumption status of the terminal; the second core network functional entity performs one of the following: the second core network functional entity performs one of the following according to the terminal status information to perform QoS updates on the QoS flow; the second core network functional entity sends terminal status information to the first core network functional entity, and the terminal status information is also used by the first core network functional entity to determine the QoS parameters of the QoS flow.
  • the second core network functional entity may be an SMF entity
  • the first core network functional entity may be a PCF entity
  • the QoS flow includes at least one of the following: QoS flow of the terminal; QoS flow of the session; QoS flow of the service data flow.
  • the terminal status information includes at least one of the following: battery power; battery life; power supply mode; CPU load; terminal overheating status.
  • the QoS flow is a GBR QoS flow
  • the QoS parameters of the QoS flow include: GFBR and/or MFBR.
  • the above method further includes: the second core network functional entity receives the MFBR sent by the first core network functional entity; the second core network functional entity sends the MFBR to the third Core network functional entity, MFBR is used by the third core network functional entity to perform QoS updates on the downlink GBR QoS flow.
  • the third core network functional entity may be a UPF entity.
  • the QoS flow is a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: AMBR.
  • AMBR includes at least one of the following: AMBR per terminal, AMBR per session.
  • the above method in response to the AMBR including per-session AMBR, the above method further includes: the second core network functional entity receives the per-session AMBR sent by the first core network functional entity; the second core network functional entity receives the per-session AMBR.
  • the AMBR of the session is sent to the third core network functional entity, and the AMBR of each session is used by the third core network functional entity to perform QoS updates on the downlink and/or downlink session QoS flows.
  • the second core network functional entity receives terminal status information, including: the second core network functional entity receives terminal status information sent by the terminal, and the terminal status information is carried in the non-access stratum (NAS) )parameter.
  • NAS non-access stratum
  • terminal status information is carried in protocol configuration option (PCO) parameters or terminal core network capability parameters (UE 5GSM Core Network Capability).
  • PCO protocol configuration option
  • UE 5GSM Core Network Capability terminal core network capability parameters
  • the second core network functional entity receives the terminal status information, including: the second core network functional entity receives the terminal status information sent by the access network functional entity, and the terminal status information is obtained from the access network functional entity.
  • the access network (AN) parameters are taken out and added to the NAS parameters.
  • the above method further includes: the second core network functional entity performs static rule activation and QoS authorization update according to the QoS parameters.
  • the second core network functional entity sends terminal status information to the first core network functional entity, including: the second core network functional entity queries event subscriptions and confirms subscription to the first event associated with the terminal status information; When the event reporting conditions are met, the second core network functional entity sends terminal status information to the first core network functional entity.
  • the second core network functional entity sends terminal status information to the first core network functional entity, including: the second core network functional entity sends the terminal status information to the first core network functional entity according to the terminal's subscription data and/or operator policy.
  • the network function entity sends terminal status information.
  • a QoS flow control device may be the first core network functional entity in the communication system or the chip or system-on-chip of the first core network functional entity. It may also be the first core network functional entity.
  • the functional modules in the network functional entity are used to implement the methods described in the above embodiments.
  • the control device can realize the functions performed by the first core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the device may include: a receiving module configured to receive terminal status information from the second core network functional entity, where the terminal status information is used to represent the power consumption status of the terminal; a processing module configured to process the QoS flow according to the terminal status information. Perform QoS updates.
  • the first core network functional entity may be a PCF entity
  • the second core network functional entity may be an SMF entity
  • the QoS flow includes at least one of the following: terminal QoS flow; session QoS flow; service data flow QoS flow.
  • the terminal status information includes at least one of the following: battery power; battery life; power supply mode; CPU load; and terminal overheating status.
  • the QoS flow is a GBR QoS flow
  • the QoS parameters of the QoS flow include: GFBR and/or MFBR.
  • the processing module is configured to reduce or increase the GFBR according to the terminal status information.
  • the above device further includes: a sending module configured to send an MFBR to a third core network functional entity, where the MFBR is used by the third core network functional entity to perform QoS update on the downlink GBR QoS flow; and/or , sending the MFBR to the access network functional entity.
  • the MFBR is used by the access network functional entity to perform QoS updates on the uplink and/or downlink GBR QoS flows.
  • the third core network functional entity may be a UPF entity.
  • the QoS flow is a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: AMBR.
  • the processing module is configured to reduce or increase the AMBR according to the terminal status information.
  • AMBR includes at least one of the following: AMBR per terminal, AMBR per session.
  • the above device in response to the AMBR including the AMBR per session, further includes: a sending module configured to send the AMBR per session to the third core network functional entity, and the AMBR per session is used for the third core network functional entity.
  • the core network functional entity performs QoS updates on the upstream and/or downlink session QoS flows; or sends the AMBR of each session to the terminal, and the AMBR of each session is used by the terminal to perform PDU session-based upstream rate limiting on non-GBR QoS flows.
  • the above device in response to the AMBR including the AMBR of each terminal, the above device further includes: a sending module configured to: send the AMBR of each terminal to the access network functional entity, and the AMBR of each terminal is used for the access network
  • the functional entity performs QoS updates for each terminal's upstream and/or downstream non-GBR QoS flows.
  • the QoS flow is a GBR QoS flow or a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: MBR per terminal per slice.
  • the above device in response to the QoS parameter including the MBR of each terminal and each slice, the above device further includes: a sending module configured to send the MBR of each terminal and each slice to the access network functional entity, and the MBR of each terminal and each slice.
  • MBR is used by the access network functional entity to perform QoS updates on the PDU session QoS flow corresponding to the terminal's S-NSSAI.
  • the above device further includes: a sending module configured to send a subscription request message to the second core network functional entity, where the subscription request message is used to request the first event associated with the terminal status information; a receiving module configured to It is configured to receive terminal status information sent by the second core network functional entity when the first event satisfies the event reporting condition.
  • a QoS flow control device may be the second core network functional entity in the communication system or the chip or system-on-chip of the second core network functional entity. It may also be the second core network functional entity.
  • the functional modules in the network functional entity are used to implement the methods described in the above embodiments.
  • the control device can realize the functions performed by the second core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the control device may include: a receiving module configured to receive terminal status information from the terminal, where the terminal status information is used to represent the power consumption status of the terminal; a processing module configured to perform QoS updates on the QoS flow based on the terminal status information; The sending module is configured to send terminal status information to the first core network functional entity, and the terminal status information is also used by the first core network functional entity to determine QoS parameters of the QoS flow.
  • the second core network functional entity may be an SMF entity
  • the first core network functional entity may be a PCF entity
  • the QoS flow includes at least one of the following: QoS flow of the terminal; QoS flow of the session; QoS flow of the service data flow.
  • the terminal status information includes at least one of the following: battery power; battery life; power supply mode; CPU load; and terminal overheating status.
  • the QoS flow is a GBR QoS flow
  • the QoS parameters of the QoS flow include: GFBR and/or MFBR.
  • the receiving module in response to the QoS parameters including MFBR, is configured to receive the MFBR sent by the first core network functional entity; the sending module is configured to send the MFBR to the third core network functional entity, MFBR Used by the third core network functional entity to perform QoS updates on the downlink GBR QoS flow.
  • the third core network functional entity may be a UPF entity.
  • the QoS flow is a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: AMBR.
  • AMBR includes at least one of the following: AMBR per terminal, AMBR per session.
  • the receiving module in response to the AMBR including per-session AMBR, is configured to receive the per-session AMBR sent by the first core network functional entity; and the sending module is configured to send the per-session AMBR to The third core network functional entity, the per-session AMBR is used by the third core network functional entity to perform QoS updates on the downlink and/or downlink session QoS flows.
  • the receiving module is configured to receive terminal status information sent by the terminal, and the terminal status information is carried in NAS parameters.
  • terminal status information is carried in PCO parameters or UE 5GSM Core Network Capability.
  • the receiving module is configured to receive terminal status information sent by the access network functional entity.
  • the terminal status information is taken out from the AN parameters and added to the NAS parameters by the access network functional entity.
  • the processing module is configured to perform static rule activation and QoS authorization update according to QoS parameters.
  • the processing module is configured to query event subscriptions for the entity and confirm the first event associated with the subscription terminal status information; the sending module is configured to send a message to the first core network when event reporting conditions are met. Functional entities send terminal status information.
  • the sending module is configured to send terminal status information to the first core network functional entity according to the terminal's subscription data and/or operator policy.
  • a communication device such as a first core network functional entity
  • the communication device may include: a memory and a processor; the processor is connected to the memory and is configured to implement the above-mentioned first aspect and any possible implementation manner thereof by executing computer-executable instructions stored on the memory. QoS flow control method.
  • a communication device such as a second core network functional entity
  • the communication device may include: a memory and a processor; the processor is connected to the memory and configured to implement the above second aspect and any possible implementation manner thereof by executing computer-executable instructions stored on the memory. QoS flow control method.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium; when the instructions are run on a computer, they are used to perform the above-mentioned first to second aspects and any possible method thereof.
  • a computer program or computer program product is provided.
  • the computer program product When executed on a computer, the computer implements QoS as described in the above first to second aspects and any possible implementation manner thereof. Flow control method.
  • terminal status information of the terminal is provided to the first core network functional entity (such as PCF) through the second core network functional entity (i.e., SMF entity), so that the first core network functional entity can match service traffic according to the terminal status information.
  • the first core network functional entity such as PCF
  • SMF entity second core network functional entity
  • Figure 1 is an architectural schematic diagram of a 5G communication system in an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of the implementation of the first QoS flow control method in an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of an implementation process for performing QoS updates on GBR QoS flows in an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of an implementation process for performing QoS updates on non-GBR QoS flows in an embodiment of the present disclosure
  • Figure 5A is a schematic flowchart of the implementation of the second QoS flow control method in an embodiment of the present disclosure
  • Figure 5B is a schematic flowchart of the implementation of the third QoS flow control method in an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of a QoS flow control device in an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a network functional entity in an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other. For example, without departing from the scope of the embodiments of the present disclosure, “first information” may also be called “second information”, and similarly, “second information” may also be called “first information”. Depending on the context, the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • the technical solution of the embodiment of the present disclosure relates to the architecture of a communication system.
  • the communication system may be a 5G communication system or a future evolution communication system.
  • access network functional entities which can also be described as access network functional entities, access network elements, access network functional components, access network functional modules, etc.
  • core Network function (NF) entity can also be described as core network equipment, core network element, core network functional component, core network functional module, etc.
  • At least one core network functional entity is located in the core network (ie 5GC).
  • the terminal is used to report terminal status information (UE status information) indicating its own power consumption status to the core network side; at least one core network functional entity has at least the following functions: perform QoS updates on the QoS flow based on the received terminal status information. .
  • the above QoS flow is the QoS flow of the first service of the terminal.
  • the first service may include XR service, mobile media service, etc., wherein XR service and mobile media service may also be called XRM service, or may be described as XR ⁇ M service.
  • FIG. 1 is an architectural schematic diagram of a 5G communication system in an embodiment of the present disclosure.
  • the above-mentioned 5G communication system 100 may include a 5G Radio Access Network (RAN) and a 5G Core Network (5GC).
  • the 5G wireless access network may include next generation radio access network (NG RAN).
  • NG RAN 101 communicates with the terminal (or terminal device) 102 through the Uu interface.
  • the 5G core network may include: at least one core network functional entity mentioned above, such as access and mobility management function (AMF) entity 1031, SMF entity 1032, PCF entity 1033, UPF entity 1034, etc.
  • AMF access and mobility management function
  • the above communication system may also include other network functional entities (which may also be called network elements, network devices, etc.), which are not specifically limited in the embodiment of the present disclosure.
  • PCF PCF
  • SMF SMF
  • Other entities are similar and will not be listed one by one.
  • N3 Communication interface between UPF 1034 and NG RAN 101.
  • N4 The interface between SMF 1032 and UPF 1034, used to transfer information between the control plane and the user plane (user plan, UP), including controlling the delivery of UP-oriented forwarding rules, QoS control rules, traffic statistics rules, etc. Report UP information.
  • N2 The interface between AMF 1031 and NG RAN 101, used to transmit wireless bearer control information from the core network side to NG RAN 101, etc.
  • N1 The interface between AMF 1031 and terminal 102, has nothing to do with access, and is used to transmit QoS control rules to terminal 102, etc.
  • any two entities can use service-oriented communication.
  • the interfaces Namf and Npcf used for communication between AMF and PCF are both service-oriented interfaces.
  • the interface Nsmf is also a service-oriented interface.
  • the above-mentioned terminal may be a terminal device with a wireless communication function and a wireless sensing function, and may also be called user equipment (UE).
  • Terminals can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, or an industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal may also be a handheld device, a vehicle-mounted device, a wearable device, a computing device, or other processing device connected to a wireless modem with wireless communication functions and wireless sensing functions.
  • the terminal device can also be called by different names in different networks, for example: terminal device, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , terminal, wireless communication equipment, user agent or user device, cellular phone, cordless phone, session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital processing (personal digital) assistant, PDA), 5G communication system or terminals in future evolution communication systems, etc.
  • terminal device access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , terminal, wireless communication equipment, user agent or user device, cellular phone, cordless phone, session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital processing (personal digital) assistant, PDA), 5G communication system or terminals in future evolution communication systems, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • the above-mentioned access network functional entity may be a functional entity used by the access network side to support communication terminals to access the wireless communication system.
  • it can be the next generation base station (next generation NodeB, gNB), transmission reception point (TRP), relay node (relay node), access point (AP), etc. in the 5G communication system.
  • next generation base station next generation NodeB, gNB
  • TRP transmission reception point
  • relay node relay node
  • AP access point
  • each functional entity and interface are only exemplary, and not all functions of each functional entity are necessary when applied in the embodiments of the present disclosure.
  • the functional entities of the access network and core network may be physical physical devices or virtualized devices, which are not limited here.
  • the communication system in the embodiment of the present disclosure may also include other devices not shown in Figure 1, which are not limited here.
  • XR and media (extend reality and media, XRM) business In 5G networks, mobile media services, XR, cloud games, video-based machine or drone remote control, etc. are expected to contribute more and more traffic to 5G networks.
  • XR and media (extend reality and media, XRM) business Especially XR and media (extend reality and media, XRM) business.
  • XRM business has the characteristics of high throughput, low latency, and high reliability requirements, and requires high power consumption on the terminal side. The battery power of the terminal may affect the user experience.
  • connection management connection management
  • CM connection management
  • MICO mobile initiated connection only
  • extended DRX extended discontinuous reception
  • eDRX extended discontinuous reception
  • the terminal device in the communication system may be a UE as an example
  • the access network functional entity may be a base station as an example
  • the first core network functional entity may be a PCF as an example
  • the second core network functional entity may be a PCF as an example.
  • the network function entity may be other PCF as an example
  • the third core network function entity may be UPF as an example
  • the application function entity may be AF as an example to describe the QoS flow control method proposed in the embodiment of the present disclosure.
  • the terminal, access network functional entity, first core network functional entity, second core network functional entity, third core network functional entity and application functional entity may also have the same or similar functions. and other functional entities with connection relationships, which are not limited in the embodiments of the present disclosure.
  • embodiments of the present disclosure provide a QoS flow control method.
  • PCF is deployed in the above communication system.
  • PCF performs QoS control on QoS flows based on terminal status information.
  • PCF 1033 connected to AMF 1031 and SMF 1032 can correspond to AM PCF (PCF for access and mobility control) and SM PCF (PCF for session management) respectively.
  • AM PCF and SM PCF may Not the same PCF entity.
  • PCF is not deployed in the above communication system.
  • SMF performs static rule activation and QoS authorization update based on QoS parameters.
  • Figure 2 is a schematic flowchart of the implementation of the first QoS flow control method in an embodiment of the present disclosure.
  • the QoS flow control method is applied to the first core network functional entity (such as PCF) side, and the QoS flow control method may include S201 to S202.
  • the first core network functional entity receives the terminal status information (UE status information) sent from the second core network functional entity (such as SMF).
  • the terminal status information is used to indicate the power consumption status of the UE.
  • the terminal status information includes one or more parameters related to the UE performance.
  • the UE status information may include at least one of the following: UE battery level, UE battery life, UE's power supply mode (powered mode), UE's CPU load, UE overheating status (UE overheating status).
  • parameters related to UE power consumption may include other parameters.
  • the power supply mode of the UE may include: battery-powered mode (battery-powered) and power supply mode (mains/wall-powered).
  • the battery power supply mode refers to using the built-in battery of the UE to provide power
  • the power supply mode refers to using a power adapter to connect to a power source such as a wall socket, a mobile socket, etc., to power the UE.
  • the UE can send its own terminal status information to the SMF, and the SMF then sends it to the PCF.
  • SMF may also perform S203 before S201.
  • the SMF receives the terminal status information sent by the UE.
  • the SMF may, but is not limited to, obtain the terminal status information sent by the UE in the following manner.
  • the execution of S201 is not affected by the access network (without RAN impact).
  • the UE carries the terminal status information in NAS parameters and sends it to the access network functional entity (such as the base station), and the base station forwards the NAS parameters to the SMF via the AMF.
  • the access network functional entity such as the base station
  • the base station forwards the NAS parameters to the SMF via the AMF.
  • terminal status information can be carried in NAS parameters such as PCO parameters and UE 5GSM Core Network Capability.
  • the execution of S201 is affected by the access network (with RAN impact).
  • the UE carries the terminal status information in the AN parameter and sends it to the access network functional entity (such as the base station).
  • the base station takes the terminal status information out of the AN parameter and then carries it in the NAS parameter and forwards it to the SMF via the AMF.
  • the SMF needs to determine whether the PCF needs the terminal status information of the UE. If so, the SMF sends the terminal status information to the PCF. For example, if the UE's subscription information needs to include terminal status information, the SMF can provide the PCF with the UE's terminal status information.
  • the contract information is downloaded by SMF from the unified data management (UDM) functional entity.
  • the PCF can also send a subscription request message to the SMF to subscribe to events associated with the terminal status information (i.e., the first event, UE status information event). Then, in S201, after receiving the terminal status information of the UE, the SMF can query the event subscription and confirm that the PCF has subscribed to the first event; then, if the event reporting conditions are met, the SMF sends the terminal status information to the PCF.
  • the event reporting conditions may be UE status changes, various network policies of the first service and/or threshold arrivals in network configuration, power supply mode matching, immediate reporting upon receipt, periodic reporting, etc.
  • event reporting conditions may also include other conditions, which are not specifically limited in this embodiment of the disclosure.
  • S202 The PCF performs QoS update on the QoS flow associated with the UE according to the terminal status information.
  • the PCF can update the QoS flow associated with the UE according to the power consumption status of the UE.
  • the QoS flow associated with the UE may be related to the first service.
  • the first service may be an XRM service or an XRM service group.
  • the above-mentioned QoS flows may be of different granularities, for example, they may be session-specific (ie, session QoS flow) or service-oriented (eg, business data flow QoS flow). This is not the case in the embodiments of the present disclosure. Specific limitations.
  • the PCF can determine corresponding QoS parameters for one or more sessions of a service (ie, the first service) of the UE according to the terminal status information.
  • the PCF may determine corresponding QoS parameters for a service of the UE (ie, the first service) based on the terminal status information.
  • "OK” can be described as “setting”, “generating”, “updating”, etc.
  • the above-mentioned QoS flows may be GBR QoS flows and non-GBR QoS flows.
  • the corresponding QoS parameters are also different.
  • the QoS parameters of the QoS flow may include: GFBR and/or MFBR.
  • the QoS parameters of the QoS flow can include: AMBR.
  • AMBR can be divided into: AMBR per terminal (UE-AMBR) and AMBR per session (session-AMBR) according to different granularities.
  • the QoS parameters of the QoS flow may also include: MBR (UE-session-MBR) per terminal per slice.
  • S202 may include: the PCF decreases or increases one or more of the GFBR and MFBR according to the terminal status information, so as to GBR QoS flow performs QoS updates.
  • Figure 3 is a schematic flowchart of an implementation of performing QoS updates on GBR QoS flows in an embodiment of the present disclosure.
  • the PCF can also perform at least the following: One: S301 and S302.
  • PCF sends QoS parameters (such as GFBR and/or MFBR) to the UPF entity.
  • QoS parameters are used by UPF to perform QoS updates on the downlink GBR QoS flow.
  • PCF can send QoS parameters to SMF through Npcf and Nsmf, and then SMF sends it to UPF. After receiving the QoS parameters, UPF uses the QoS parameters to perform QoS updates on the downstream GBR QoS flow.
  • the PCF sends QoS parameters to the base station.
  • the QoS parameters are used by the base station to perform QoS updates on the uplink and/or downlink GBR QoS flows.
  • the PCF can send the QoS parameters to the AMF through Npcf and Namf, and then the AMF sends it to the base station. After receiving the QoS parameters, the base station uses the QoS parameters to perform QoS updates on the uplink and/or downlink GBR QoS flows.
  • AMF and SMF can also obtain the QoS parameters sent by PCF by subscribing to events.
  • AMF can subscribe to PCF for events related to QoS parameters. After the QoS parameters, PCF queries the subscription events and confirms the events associated with the QoS parameters. When the event meets the reporting conditions, PCF sends QoS parameters to AMF.
  • SMF can also subscribe to PCF for events related to QoS parameters. After PCF determines the QoS parameters, it queries the subscription events and confirms the events associated with the QoS parameters. When the event meets the reporting conditions, PCF sends QoS parameters to SMF.
  • AMF and SMF can also use other methods to obtain QoS parameters from PCF, and this is not specifically limited in the embodiments of the present disclosure.
  • S202 may also include: PCF lowers or increases AMBR based on the terminal status information to perform QoS updates for the non-GBR QoS flow. For example, if the terminal status information indicates that the temperature of the UE is too high and cannot meet the current bandwidth demand, the PCF reduces the Session-AMBR of the first service of the UE.
  • Figure 4 is a schematic flowchart of an implementation of QoS update for non-GBR QoS flows in an embodiment of the present disclosure.
  • the PCF can also Perform at least one of the following: S401 to S403.
  • PCF sends session-AMBR to UPF, so that UPF uses session-AMBR to perform QoS updates on the uplink and/or downlink session QoS flows.
  • PCF first sends session-AMBR to SMF, and then SMF sends it to UPF.
  • the PCF sends session-AMBR to the UE, causing the UE to perform PDU session-based uplink rate limitation on non-GBR QoS flows.
  • the PCF sends the UE-AMBR to the base station, so that the base station performs QoS updates on the uplink and/or downlink non-GBR QoS flows of each UE.
  • PCF can also perform other QoS updates for the GBR QoS flow, which is not specifically limited in this embodiment of the disclosure.
  • the QoS flow is a GBR QoS flow or a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: MBR per terminal per slice (UE-slice-MBR).
  • the above method includes: the PCF sends the UE-slice-MBR to the base station, so that the base station performs QoS update on the PDU session QoS flow corresponding to the S-NSSAI of the UE.
  • S-NSSAI is used to identify a network slice (slice).
  • the UE can correspond to one or more PDU sessions on one slice, and the one or more PDU sessions are sessions of the first service. Then, after receiving the UE-slice-MBR, the base station uses the UE-slice-MBR to perform QoS updates for the QoS flows of all sessions of the first service on the slice corresponding to the S-NSSAI of the UE.
  • the base station admission control should ensure that the sum of the GFBR values of the admitted GBR QoS flow does not exceed the UE-Slice-MBR. If the QoS flow cannot be Accepted, the base station shall reject the establishment or modification of the QoS flow. And, the base station should ensure that the aggregate bit rate of all GBR and non-GBR QoS flows belonging to the PDU sessions corresponding to the UE's S-NSSAI does not exceed the UE-Slice-MBR, while always ensuring the GFBR of each GBR QoS flow of these PDU sessions.
  • the QoS parameters sent by the PCF may be updated QoS parameters.
  • PCF completes the process of performing QoS control based on terminal status information.
  • embodiments of the present disclosure also provide a QoS flow control method, which is applied in the above-mentioned first scenario.
  • Figure 5A is a schematic flowchart of the implementation of the second QoS flow control method in the embodiment of the present disclosure. Referring to Figure 5A, this QoS flow control method can be applied to the second core network functional entity (such as SMF) side.
  • the QoS flow The control method may include S501 to S503.
  • the second core network functional entity (such as SMF) receives the terminal status information sent by the UE.
  • the terminal status information is used to indicate the power consumption status of the UE.
  • SMF may, but is not limited to, obtain the terminal status information sent by the UE in the following manner.
  • the execution of S501 is not affected by the access network (without RAN impact).
  • the UE carries the terminal status information in NAS parameters and sends it to the access network functional entity (such as the base station), and the base station forwards the NAS parameters to the SMF via the AMF.
  • the access network functional entity such as the base station
  • the base station forwards the NAS parameters to the SMF via the AMF.
  • terminal status information can be carried in NAS parameters such as PCO parameters and UE 5GSM Core Network Capability.
  • the execution of S501 is affected by the access network (with RAN impact).
  • the UE carries the terminal status information in the AN parameter and sends it to the access network functional entity (such as the base station).
  • the base station takes the terminal status information out of the AN parameter and then carries it in the NAS parameter and forwards it to the SMF via the AMF.
  • SMF executes S502 after S501.
  • S502 SMF sends terminal status information to PCF.
  • the terminal status information is also used by the PCF to perform QoS updates on the QoS flow associated with the UE.
  • the SMF needs to determine whether the PCF needs the terminal status information of the UE, and if so, the SMF sends the terminal status information to the PCF. For example, if the UE's subscription information needs to include terminal status information, the SMF can provide the UE's terminal status information to the PCF.
  • the contract information is downloaded by SMF from the UDM functional entity.
  • the PCF can also send a subscription request message to the SMF to subscribe to events associated with the terminal status information (i.e., the first event, UE status information event). Then, after S501, after receiving the terminal status information of the UE, the SMF can query the event subscription and confirm that the PCF has subscribed to the first event; then, when the event reporting conditions are met, the SMF executes S502 and sends the terminal status to the PCF. information.
  • the event reporting conditions may be UE status changes, various network policies of the first service and/or threshold arrivals in network configuration, power supply mode matching, immediate reporting upon receipt, periodic reporting, etc.
  • event reporting conditions may also include other conditions, which are not specifically limited in this embodiment of the disclosure.
  • the SMF can also perform S503 to S504.
  • the SMF receives the QoS parameters (such as GFBR and/or MFBR) sent by the PCF.
  • QoS parameters such as GFBR and/or MFBR
  • the SMF sends the QoS parameters to the third core network functional entity (such as UPF), so that the UPF performs QoS updates on the downlink GBR QoS flow.
  • the third core network functional entity such as UPF
  • the PCF can send the GFBR and/or MFBR to the SMF, and the SMF sends the GFBR and/or MFBR to the UPF, so that the UPF performs QoS updates on the downlink GBR QoS flow.
  • the SMF may also perform S505 and S506.
  • S505 SMF receives the QoS parameters (such as session-AMBR) sent by PCF.
  • QoS parameters such as session-AMBR
  • the SMF sends the QoS parameters to the UPF, so that the UPF performs QoS updates on the uplink and/or downlink session QoS flows.
  • the PCF can send the session-AMBR to the SMF, and the SMF sends the session-AMBR to the UPF, so that the UPF performs QoS updates on the uplink and/or downlink session QoS flows.
  • the QoS parameters received by the SMF in S505 and S505 may be updated QoS parameters.
  • Figure 5B is a schematic flowchart of the implementation of the third QoS flow control method in an embodiment of the present disclosure. Referring to Figure 5B, after S501, the SMF can also perform S507.
  • S507 SMF performs QoS update on the QoS flow according to the terminal status information.
  • the control policy of the QoS flow can be decided on the SMF side. Then, after receiving the terminal status information of the UE, the SMF can perform static rule activation and QoS authorization update according to the power consumption status of the UE.
  • terminal status information of the terminal is provided to the first core network functional entity (such as PCF) through the second core network functional entity (i.e., SMF entity), so that the first core network functional entity can match service traffic according to the terminal status information.
  • the first core network functional entity such as PCF
  • SMF entity second core network functional entity
  • FIG. 6 is a schematic structural diagram of a QoS flow control device in the embodiment of the present disclosure.
  • the control device 600 can It includes: processing module 601, receiving module 602 and sending module 603.
  • control device 600 may be the first core network functional entity (such as PCF) in the communication system or the chip or system-on-chip of the first core network functional entity, or may also be the first core network functional entity.
  • the control device 600 can realize the functions performed by the first core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 602 is configured to receive terminal status information from the second core network functional entity, where the terminal status information is used to represent the power consumption status of the terminal; the processing module 601 is configured to process the QoS flow according to the terminal status information. Perform QoS updates.
  • the first core network functional entity may be PCF
  • the second core network functional entity may be SMF
  • the QoS flow includes at least one of the following: terminal QoS flow; session QoS flow; service data flow QoS flow.
  • the terminal status information includes at least one of the following: battery power; battery life; power supply mode; CPU load; and terminal overheating status.
  • the QoS flow is a GBR QoS flow
  • the QoS parameters of the QoS flow include: GFBR and/or MFBR.
  • the processing module 601 is configured to reduce or increase the GFBR according to the terminal status information.
  • the sending module 603 is configured to send the MFBR to the third core network functional entity.
  • the MFBR is used by the third core network functional entity to perform QoS updates on the downlink GBR QoS flow; and/or, to the access
  • the network functional entity sends MFBR, which is used by the access network functional entity to perform QoS updates on the uplink and/or downlink GBR QoS flows.
  • the third core network functional entity may be UPF.
  • the QoS flow is a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: AMBR.
  • the processing module 601 is configured to reduce or increase the AMBR according to the terminal status information.
  • AMBR includes at least one of the following: AMBR per terminal, AMBR per session.
  • the sending module 603 in response to the AMBR including the AMBR per session, is configured to send the AMBR per session to the third core network functional entity, and the AMBR per session is used for the third core network functional entity. Perform QoS updates on upstream and/or downstream session QoS flows; or, send per-session AMBR to the terminal, and the per-session AMBR is used by the terminal to perform PDU session-based upstream rate limiting on non-GBR QoS flows.
  • the sending module 603 in response to the AMBR including the AMBR of each terminal, is configured to: send the AMBR of each terminal to the access network functional entity, and the AMBR of each terminal is used by the access network functional entity to Perform QoS updates for each terminal's upstream and/or downstream non-GBR QoS flows.
  • the QoS flow is a GBR QoS flow or a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: MBR per terminal per slice.
  • the sending module 603 in response to the QoS parameters including the MBR per terminal per slice, is configured to send the MBR per terminal per slice to the access network functional entity, and the MBR per terminal per slice is used for access.
  • the network access functional entity performs QoS updates on the PDU session QoS flow corresponding to the terminal's S-NSSAI.
  • the sending module 603 is configured to send a subscription request message to the second core network functional entity, where the subscription request message is used to request the first event associated with the terminal status information; the receiving module 602 is configured to When the first event satisfies the event reporting condition, receive the terminal status information sent by the second core network functional entity.
  • control device 600 can be the second core network functional entity in the communication system or a chip or system-on-chip of the second core network functional entity, and can also be used in the second core network functional entity to implement The functional modules of the methods described in the above embodiments.
  • the control device 600 can implement the functions performed by the second core network functional entity in the above embodiments, and these functions can be implemented by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 602 is configured to receive terminal status information from the terminal, and the terminal status information is used to represent the power consumption status of the terminal; the processing module 601 is configured to perform QoS updates on the QoS flow according to the terminal status information; send Module 603 is configured to send terminal status information to the first core network functional entity.
  • the terminal status information is also used by the first core network functional entity to determine QoS parameters of the QoS flow.
  • the second core network functional entity may be SMF
  • the first core network functional entity may be PCF
  • the QoS flow includes at least one of the following: QoS flow of the terminal; QoS flow of the session; QoS flow of the service data flow.
  • the terminal status information includes at least one of the following: battery power; battery life; power supply mode; CPU load; and terminal overheating status.
  • the QoS flow is a GBR QoS flow
  • the QoS parameters of the QoS flow include: GFBR and/or MFBR.
  • the receiving module 602 in response to the QoS parameters including MFBR, is configured to receive the MFBR sent by the first core network functional entity; the sending module 603 is configured to send the MFBR to the third core network functional entity , MFBR is used by the third core network functional entity to perform QoS updates on the downlink GBR QoS flow.
  • the third core network functional entity may be UPF.
  • the QoS flow is a non-GBR QoS flow
  • the QoS parameters of the QoS flow include: AMBR.
  • AMBR includes at least one of the following: AMBR per terminal, AMBR per session.
  • the receiving module 602 in response to the AMBR including per-session AMBR, is configured to receive the per-session AMBR sent by the first core network functional entity; the sending module 603 is configured to convert the per-session AMBR Sent to the third core network functional entity, the per-session AMBR is used by the third core network functional entity to perform QoS updates on downlink and/or downlink session QoS flows.
  • the receiving module 602 is configured to receive terminal status information sent by the terminal, and the terminal status information is carried in NAS parameters.
  • terminal status information is carried in PCO parameters or UE 5GSM Core Network Capability.
  • the receiving module 602 is configured to receive terminal status information sent by the access network functional entity.
  • the terminal status information is taken out from the AN parameters and added to the NAS parameters by the access network functional entity.
  • the processing module 601 is configured to perform static rule activation and QoS authorization update according to QoS parameters.
  • the processing module 601 is configured to query the event subscription for the entity and confirm the subscription to the first event associated with the terminal status information; the sending module 603 is configured to send the first event to the first event when the event reporting conditions are met.
  • the core network functional entity sends terminal status information.
  • the sending module 603 is configured to send terminal status information to the first core network functional entity according to the terminal's subscription data and/or operator policy.
  • the receiving module 602 mentioned in the embodiment of the present disclosure may be a receiving interface, a receiving circuit or a receiver, etc.; the sending module 603 may be a sending interface, a sending circuit or a transmitter, etc.; and the processing module 601 may be one or more processors.
  • FIG. 7 is a schematic structural diagram of a communication device in an embodiment of the present disclosure. As shown in Figure 7, the communication device 700 uses general computer hardware, including a processor 701, a memory 702, a bus 703, an input device 704 and an output device. Device 705.
  • memory 702 may include computer storage media in the form of volatile and/or non-volatile memory, such as read-only memory and/or random access memory.
  • Memory 702 may store an operating system, application programs, other program modules, executable code, program data, user data, and the like.
  • Input device 704 may be used to enter commands and information to a communication device, such as a keyboard or pointing device such as a mouse, trackball, touch pad, microphone, joystick, game pad, satellite television dish, scanner, or similar device. These input devices may be connected to processor 701 via bus 703 .
  • the output device 705 can be used for communication devices to output information.
  • the output device 705 can also be other peripheral output devices, such as speakers and/or printing devices. These output devices can also be connected to the processor 701 through the bus 703. .
  • the communication device may be connected to a network through the antenna 706, such as a local area network (LAN).
  • LAN local area network
  • the computer execution instructions stored in the control device can be stored in a remote storage device and are not limited to local storage.
  • the communication device executes the relay communication method on the UE side or the network device side in the above embodiments.
  • the specific execution process refer to the above embodiments. , which will not be described in detail here.
  • the above-mentioned memory 702 stores computer execution instructions for realizing the functions of the processing module 601, the receiving module 602 and the sending module 603 in FIG. 6 .
  • the functions/implementation processes of the processing module 601, the receiving module 602 and the sending module 603 in Figure 6 can all be implemented by the processor 701 in Figure 7 calling the computer execution instructions stored in the memory 702.
  • the processor 701 in Figure 7 calling the computer execution instructions stored in the memory 702.
  • embodiments of the present disclosure provide a network functional entity, such as a first core network functional entity or a second core network functional entity.
  • FIG 8 is a schematic structural diagram of a network functional entity in an embodiment of the present disclosure.
  • the network functional entity 800 may include a processing component 801, which further includes one or more processors, and is represented by a memory 802 A memory resource used to store instructions, such as application programs, that can be executed by processing component 801.
  • An application program stored in memory 802 may include one or more modules, each of which corresponds to a set of instructions.
  • the processing component 801 is configured to execute instructions to perform any of the foregoing methods applied to the network device.
  • the network function entity 800 may also include a power supply component 803 configured to perform power management of the network function entity 800, a wired or wireless network interface 804 configured to connect the network function entity 800 to the network, and an input/output (I/O ) interface 805.
  • the network function entity 800 may operate based on an operating system stored in the memory 802, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • an embodiment of the present disclosure also provides a communication device, such as a first core network functional entity, including: a memory and a processor; the processor is connected to the memory and is configured to execute computer executable data stored on the memory. Instructions are provided to implement the QoS flow control method on the first core network functional entity side as described in one or more of the above embodiments.
  • an embodiment of the present disclosure also provides a communication device, such as a second core network functional entity, including: a memory and a processor; the processor is connected to the memory and is configured to execute computer executable data stored on the memory. Instructions are provided to implement the QoS flow control method on the second core network functional entity side as described in one or more of the above embodiments.
  • embodiments of the present disclosure also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium; when the instructions are run on the computer, they are used to execute the network in one or more of the above embodiments. QoS flow control method on the functional entity side.
  • the network functional entity may include: a first core network functional entity or a second core network functional entity.
  • embodiments of the present disclosure also provide a computer program or computer program product.
  • the computer program product When the computer program product is executed on a computer, it causes the computer to implement the QoS flow on the network function entity side in one or more of the above embodiments.
  • the network functional entity may include: a first core network functional entity or a second core network functional entity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Power Sources (AREA)

Abstract

本公开提供了一种QoS流的控制方法、装置及计算机存储介质。该控制方法可以应用于5G系统中。该方法可以包括:第一核心网功能实体接收来自第二核心网功能实体的终端状态信息,所述终端状态信息用于表示终端的功耗状态;所述第一核心网功能实体根据所述终端状态信息,对QoS流执行QoS更新。在本公开中,通过第二核心网功能实体(如SMF)向第一核心网功能实体(如PCF)提供终端的终端状态信息,使得第一核心网功能实体能够根据终端的功耗状态对QoS流进行控制,以保障业务需求和用户体验。

Description

一种QoS流的控制方法、装置及计算机存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种QoS流的控制方法、装置及计算机存储介质。
背景技术
在第五代移动网络(5th generation mobile networks,5G)技术中,移动媒体服务、云扩展现实(extend reality,XR)、云游戏、基于视频的机器或无人机远程控制等,有望为5G网络贡献越来越多的流量。
目前,由于XR和媒体业务具有高吞吐量、低时延、高可靠性要求的特点,需要终端侧的高功耗,终端的电池电量可能会影响用户体验。
那么,如何匹配业务流量特性和终端能耗管理是一种亟待解决的问题。
发明内容
本公开提供了一种QoS流的控制方法、装置及计算机存储介质,以匹配业务流量特性和终端能耗管理,从而保障业务需求和用户体验。
根据本公开的第一方面提供一种服务质量(quality of service,QoS)流的控制方法,可以应用于通信系统中的第一核心网功能实体,如策略和控制功能(policy control function,PCF)实体。该方法可以包括:第一核心网功能实体接收来自第二核心网功能实体的终端状态信息(UE status information),终端状态信息用于表示终端的功耗状态;第一核心网功能实体根据终端状态信息,对QoS流执行QoS更新。
在本公开中,第一核心网功能实体可以为PCF实体,第二核心网功能实体可以为会话管理(session management function,SMF)实体。
在一些可能的实施方式中,QoS流包括以下至少之一:终端QoS流;会话QoS流;业务数据流QoS流。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量;电池寿命;供电模式;CPU负荷;终端过热状态。
在一些可能的实施方式中,QoS流为保证比特速率(guaranteed bit rate,GBR)QoS流,QoS流的QoS参数包括:保证流量比特率(guaranteed flow bit rate,GFBR)和/或最大流比特率(maximum flow bit rate,MFBR)。
在一些可能的实施方式中,第一核心网功能实体根据终端状态信息,对QoS流执行QoS更新,包括:第一核心网功能实体根据终端状态信息,降低或者升高GFBR。
在一些可能的实施方式中,上述方法还包括:第一核心网功能实体向第三核心网功能实体发送MFBR,MFBR用于第三核心网功能实体对下行GBR QoS流执行QoS更新;和/或,第一核心网功能 实体向接入网功能实体发送MFBR,MFBR用于接入网功能实体对上行和/或下行GBR QoS流执行QoS更新。
在本公开中,第三核心网功能实体可以为用户面功能(user plan function,UPF)实体。
在一些可能的实施方式中,QoS流为非GBR QoS流,QoS流的QoS参数包括:聚合最大比特率(aggregate maximum bit rate,AMBR)。
在一些可能的实施方式中,第一核心网功能实体根据终端状态信息,对QoS流执行QoS更新,包括:第一核心网功能实体根据终端状态信息,降低或者升高AMBR。
在一些可能的实施方式中,AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
在一些可能的实施方式中,响应于AMBR包括每会话的AMBR,上述方法还包括:第一核心网功能实体将每会话的AMBR发送给第三核心网功能实体,每会话的AMBR用于第三核心网功能实体对上行和/或下行会话QoS流执行QoS更新;或,第一核心网功能实体将每会话的AMBR发送给终端,每会话的AMBR用于终端对非GBR QoS流执行基于协议数据单元(protocol data unit,PDU)会话的上行速率限制。
在一些可能的实施方式中,响应于AMBR包括每终端的AMBR,上述方法还包括:第一核心网功能实体向接入网功能实体发送每终端的AMBR,每终端的AMBR用于接入网功能实体对每个终端的上行和/或下行非GBR QoS流执行QoS更新。
在一些可能的实施方式中,QoS流为GBR QoS流或非GBR QoS流,QoS流的QoS参数包括:每终端每切片的最大比特率(maximum bit rate,MBR)。
在一些可能的实施方式中,响应于QoS参数包括每终端每切片的MBR,上述方法还包括:第一核心网功能实体向接入网功能实体发送每终端每切片的MBR,每终端每切片的MBR用于接入网功能实体对终端的单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)对应的PDU会话QoS流执行QoS更新。
在一些可能的实施方式中,第一核心网功能实体接收来自第二核心网功能实体的终端状态信息,包括:第一核心网功能实体向第二核心网功能实体发送订阅请求消息,订阅请求消息用于请求终端状态信息关联的第一事件;在第一事件满足事件上报条件的情况下,第一核心网功能实体接收第二核心网功能实体发送的终端状态信息。
根据本公开的第二方面提供一种QoS流的控制方法,该方法可以应用于通信系统中的第二核心网功能实体,如SMF实体。该方法包括:第二核心网功能实体接收来自终端的终端状态信息,终端状态信息用于表示终端的功耗状态;第二核心网功能实体执行以下之一:第二核心网功能实体根据终端状态信息,对QoS流执行QoS更新;第二核心网功能实体向第一核心网功能实体发送终端状态信息,终端状态信息还用于第一核心网功能实体确定QoS流的QoS参数。
在本公开中,第二核心网功能实体可以为SMF实体,第一核心网功能实体为PCF实体。
在一些可能的实施方式中,QoS流包括以下至少之一:终端的QoS流;会话的QoS流;业务数据流的QoS流。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量;电池寿命;供电模式; CPU负荷;终端过热状态。
在一些可能的实施方式中,QoS流为GBR QoS流,QoS流的QoS参数包括:GFBR和/或MFBR。
在一些可能的实施方式中,响应于QoS参数包括MFBR,上述方法还包括:第二核心网功能实体接收第一核心网功能实体发送的MFBR;第二核心网功能实体将的MFBR发送给第三核心网功能实体,MFBR用于第三核心网功能实体对下行GBR QoS流执行QoS更新。
在本公开中,第三核心网功能实体可以为UPF实体。
在一些可能的实施方式中,QoS流为非GBR QoS流,QoS流的QoS参数包括:AMBR。
在一些可能的实施方式中,AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
在一些可能的实施方式中,响应于AMBR包括每会话的AMBR,上述方法还包括:第二核心网功能实体接收第一核心网功能实体发送的每会话的AMBR;第二核心网功能实体将每会话的AMBR发送给第三核心网功能实体,每会话的AMBR用于第三核心网功能实体对下行和/或下行会话QoS流执行QoS更新。
在一些可能的实施方式中,第二核心网功能实体接收终端状态信息,包括:第二核心网功能实体接收终端发送的终端状态信息,终端状态信息承载于非接入层(non access stratum,NAS)参数。
在一些可能的实施方式中,终端状态信息携带于协议配置选项(protocol configuration option,PCO)参数或者终端的核心网能力参数(UE 5GSM Core Network Capability)。
在一些可能的实施方式中,第二核心网功能实体接收终端状态信息,包括:第二核心网功能实体接收接入网功能实体发送的终端状态信息,终端状态信息是由接入网功能实体从接入网(access network,AN)参数中取出并加入NAS参数的。
在一些可能的实施方式中,上述方法还包括:第二核心网功能实体根据QoS参数,执行静态规则激活和QoS授权更新。
在一些可能的实施方式中,第二核心网功能实体向第一核心网功能实体发送终端状态信息,包括:第二核心网功能实体查询事件订阅,确认订阅终端状态信息关联的第一事件;在满足事件上报条件的情况下,第二核心网功能实体向第一核心网功能实体发送终端状态信息。
在一些可能的实施方式中,第二核心网功能实体向第一核心网功能实体发送终端状态信息,包括:第二核心网功能实体根据终端的签约数据和/或运营商策略,向第一核心网功能实体发送终端状态信息。
根据本公开的第三方面提供一种QoS流的控制装置,该控制装置可以为通信系统中的第一核心网功能实体或者第一核心网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该控制装置可以实现上述各实施例中第一核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该装置可以包括:接收模块,被配置为接收来自第二核心网功能实体的终端状态信息,终端状态信息用于表示终端的功耗状态;处理模块,被配置为根据终端状态信息,对QoS流执行QoS更新。
在本公开中,第一核心网功能实体可以为PCF实体,第二核心网功能实体可以为SMF实体。
在一些可能的实施方式中,QoS流包括以下至少之一:终端QoS流;会话QoS流;业务数据流QoS流。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量;电池寿命;供电模式;CPU负荷;终端过热状态。
在一些可能的实施方式中,QoS流为GBR QoS流,QoS流的QoS参数包括:GFBR和/或MFBR。
在一些可能的实施方式中,处理模块,被配置为根据终端状态信息,降低或者升高GFBR。
在一些可能的实施方式中,上述装置还包括:发送模块,被配置为向第三核心网功能实体发送MFBR,MFBR用于第三核心网功能实体对下行GBR QoS流执行QoS更新;和/或,向接入网功能实体发送MFBR,MFBR用于接入网功能实体对上行和/或下行GBR QoS流执行QoS更新。
在本公开中,第三核心网功能实体可以为UPF实体。
在一些可能的实施方式中,QoS流为非GBR QoS流,QoS流的QoS参数包括:AMBR。
在一些可能的实施方式中,处理模块,被配置为根据终端状态信息,降低或者升高AMBR。
在一些可能的实施方式中,AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
在一些可能的实施方式中,响应于AMBR包括每会话的AMBR,上述装置还包括:发送模块,被配置为将每会话的AMBR发送给第三核心网功能实体,每会话的AMBR用于第三核心网功能实体对上行和/或下行会话QoS流执行QoS更新;或,将每会话的AMBR发送给终端,每会话的AMBR用于终端对非GBR QoS流执行基于PDU会话的上行速率限制。
在一些可能的实施方式中,响应于AMBR包括每终端的AMBR,上述装置还包括:发送模块,被配置为:向接入网功能实体发送每终端的AMBR,每终端的AMBR用于接入网功能实体对每个终端的上行和/或下行非GBR QoS流执行QoS更新。
在一些可能的实施方式中,QoS流为GBR QoS流或非GBR QoS流,QoS流的QoS参数包括:每终端每切片的MBR。
在一些可能的实施方式中,响应于QoS参数包括每终端每切片的MBR,上述装置还包括:发送模块,被配置为向接入网功能实体发送每终端每切片的MBR,每终端每切片的MBR用于接入网功能实体对终端的S-NSSAI对应的PDU会话QoS流执行QoS更新。
在一些可能的实施方式中,上述装置还包括:发送模块,被配置为向第二核心网功能实体发送订阅请求消息,订阅请求消息用于请求终端状态信息关联的第一事件;接收模块,被配置为在第一事件满足事件上报条件的情况下,接收第二核心网功能实体发送的终端状态信息。
根据本公开的第四方面提供一种QoS流的控制装置,该控制装置可以为通信系统中的第二核心网功能实体或者第二核心网功能实体的芯片或者片上系统,还可以为第二核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该控制装置可以实现上述各实施例中第二核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该控制装置可以包括:接收模块,被配置为接收来自终端的终端状态信息,终端状态信息 用于表示终端的功耗状态;处理模块,被配置为根据终端状态信息,对QoS流执行QoS更新;发送模块,被配置为向第一核心网功能实体发送终端状态信息,终端状态信息还用于第一核心网功能实体确定QoS流的QoS参数。
在本公开中,第二核心网功能实体可以为SMF实体,第一核心网功能实体为PCF实体。
在一些可能的实施方式中,QoS流包括以下至少之一:终端的QoS流;会话的QoS流;业务数据流的QoS流。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量;电池寿命;供电模式;CPU负荷;终端过热状态。
在一些可能的实施方式中,QoS流为GBR QoS流,QoS流的QoS参数包括:GFBR和/或MFBR。
在一些可能的实施方式中,响应于QoS参数包括MFBR,接收模块,被配置为接收第一核心网功能实体发送的MFBR;发送模块,被配置为将MFBR发送给第三核心网功能实体,MFBR用于第三核心网功能实体对下行GBR QoS流执行QoS更新。
在本公开中,第三核心网功能实体可以为UPF实体。
在一些可能的实施方式中,QoS流为非GBR QoS流,QoS流的QoS参数包括:AMBR。
在一些可能的实施方式中,AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
在一些可能的实施方式中,响应于AMBR包括每会话的AMBR,接收模块,被配置为接收第一核心网功能实体发送的每会话的AMBR;发送模块,被配置为将每会话的AMBR发送给第三核心网功能实体,每会话的AMBR用于第三核心网功能实体对下行和/或下行会话QoS流执行QoS更新。
在一些可能的实施方式中,接收模块,被配置为接收终端发送的终端状态信息,终端状态信息承载于NAS参数。
在一些可能的实施方式中,终端状态信息携带于PCO参数或者UE 5GSM Core Network Capability。
在一些可能的实施方式中,接收模块,被配置为接收接入网功能实体发送的终端状态信息,终端状态信息是由接入网功能实体从AN参数中取出并加入NAS参数的。
在一些可能的实施方式中,处理模块,被配置为根据QoS参数,执行静态规则激活和QoS授权更新。
在一些可能的实施方式中,处理模块,被配置为实体查询事件订阅,确认订阅终端状态信息关联的第一事件;发送模块,被配置为在满足事件上报条件的情况下,向第一核心网功能实体发送终端状态信息。
在一些可能的实施方式中,发送模块,被配置为根据终端的签约数据和/或运营商策略,向第一核心网功能实体发送终端状态信息。
根据本公开的第五方面提供一种通信装置,如第一核心网功能实体。该通信装置可以包括:存储器和处理器;处理器与存储器连接,被配置为通过执行存储在存储器上的计算机可执行指令,以实现如上述第一方面及其任一可能的实施方式所述的QoS流的控制方法。
根据本公开的第六方面提供一种通信装置,如第二核心网功能实体。该通信装置可以包括:存储器和处理器;处理器与存储器连接,被配置为通过执行存储在存储器上的计算机可执行指令,以实现如上述第二方面及其任一可能的实施方式所述的QoS流的控制方法。
根据本公开的第七方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;当指令在计算机上运行时,用于执行如上述第一至二方面及其任一可能的实施方式所述的QoS流的控制方法。
根据本公开的第八方面提供一种计算机程序或计算机程序产品,当计算机程序产品在计算机上被执行时,使得计算机实现如上述第一至二方面及其任一可能的实施方式所述的QoS流的控制方法。
在本公开中,通过第二核心网功能实体(即SMF实体)向第一核心网功能实体(如PCF)提供终端的终端状态信息,使得第一核心网功能实体能够根据终端状态信息匹配业务流量特性和终端能耗管理,即根据终端的功耗状态对QoS流进行控制,以保障业务需求和用户体验。
应当理解的是,本公开的第三至八方面与本公开的第一至二方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本公开实施例中的5G通信系统的一种架构示意图;
图2为本公开实施例中的第一种QoS流的控制方法的实施流程示意图;
图3为本公开实施例中的一种对GBR QoS流执行QoS更新的实施流程示意图;
图4为本公开实施例中的一种对非GBR QoS流执行QoS更新的实施流程示意图;
图5A为本公开实施例中的第二种QoS流的控制方法的实施流程示意图;
图5B为本公开实施例中的第三种QoS流的控制方法的实施流程示意图;
图6为本公开实施例中的一种QoS流的控制装置的结构示意图;
图7为本公开实施例中的一种通信装置的结构示意图;
图8为本公开实施例中的一种网络功能实体的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,“第一信息”也可以被称为“第二信息”,类似地,“第二信息”也可以被称为“第一信息”。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
进一步地,在本公开实施例的描述中,“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本公开实施例的描述中,“多个”可以指两个或多于两个。
本公开实施例的技术方案涉及一种通信系统的架构。该通信系统可以是5G通信系统或未来演进通信系统。在该通信系统的架构中,存在终端、接入网功能实体(也可以描述为接入网功能实体、接入网网元、接入网功能组件、接入网功能模块等)以及至少一个核心网功能(network function,NF)实体(也可以描述为核心网设备、核心网网元、核心网功能组件、核心网功能模块等)。至少一个核心网功能实体位于核心网(即5GC)中。终端用于向核心网侧上报用于指示自身功耗状态的终端状态信息(UE status information);至少一个核心网功能实体至少具备以下功能:根据接收到的终端状态信息,对QoS流执行QoS更新。在实际应用中,上述QoS流为终端的第一业务的QoS流。第一业务可以包括XR业务、移动媒体业务等,其中,XR业务和移动媒体业务也可以称为XRM业务,也可以描述为XR\M业务。
在下文中,将以5G通信系统为例对本公开实施例进行解释和说明。需要说明的是,本公开实施例同样适用于5G通信系统之后的任何未来演进通信系统,本公开实施例对此不作具体限定。
图1为本公开实施例中的5G通信系统的一种架构示意图。参见图1,上述5G通信系统100可以包括5G无线接入网(RAN)和5G核心网(5GC)。5G无线接入网可以包括下一代无线接入网(next generation radio access network,NG RAN)。NG RAN 101通过Uu接口与终端(或称为终端设备)102通信。5G核心网可以包括:上述至少一个核心网功能实体,如接入和移动性管理功能(access and mobility management function,AMF)实体1031、SMF实体1032、PCF实体1033、UPF实体1034等。在本公开实施例中,上述通信系统还可以包括其他网络功能实体(也可以称之为网元、网络设备等),本公开实施例对此不作具体限定。
为了描述更为简洁,在后续描述时,将各个功能实体中的“实体”去掉,比如PCF实体简称为PCF,SMF实体简称为SMF,其它实体类似,不再一一例举。
在本公开实施例中,在上述5G通信系统100中,各个核心网功能实体之间可以设置有以下接口:
N3:UPF 1034与NG RAN 101之间的通信接口。
N4:SMF 1032与UPF 1034之间的接口,用于控制面与用户面(user plan,UP)之间传递信息,包括控制面向UP的转发规则、QoS控制规则、流量统计规则等的下发以及UP的信息上报。
N2:AMF 1031与NG RAN 101之间的接口,用于传递核心网侧至NG RAN 101的无线承载控制信息等。
N1:AMF 1031与终端102之间的接口,与接入无关,用于向终端102传递QoS控制规则等。
在图1中,PCF、AMF以及SMF之间,任意两个实体之间通信可以采用服务化通信方式,比如 AMF与PCF之间通信采用的接口Namf和Npcf均为服务化的接口,同理,接口Nsmf也为服务化的接口。
上述终端可以是一种具有无线通信功能和无线感知功能的终端设备,也可以称为用户设备(user equipment,UE)。终端可以部署在陆地上,包括室内或室外、手持、可穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是手机(mobile phone)、平板电脑(tablet computer)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端装置、增强现实(augmented reality,AR)终端装置、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。终端也可以是具有无线通信功能和无线感知功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备等。可选的,在不同的网络中终端装置还可以叫做不同的名称,例如:终端装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、5G通信系统或未来演进通信系统中的终端等。
上述接入网功能实体可以为接入网侧用于支持通信终端接入无线通信系统的功能实体。例如,可以是5G通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等。
需要说明的是,在图1所示的通信系统中,各功能实体以及接口仅为示例性的,各个功能实体在应用于本公开实施例中时,并非全部功能都是必需的。接入网和核心网的功能实体可以是物理上的实体设备,也可以是虚拟化的设备,在此不做限定。当然,本公开实施例中的通信系统还可以包括未在图1中示出的其他设备,在此不做限定。
在5G网络中,移动媒体服务、XR、云游戏、基于视频的机器或无人机远程控制等,有望为5G网络贡献越来越多的流量。尤其是XR以及媒体(extend reality and media,XRM)业务。XRM业务具有高吞吐量、低时延、高可靠性要求的特点,需要终端侧的高功耗,终端的电池电量可能会影响用户体验。
目前,基于现有的终端实现,考虑到业务流量特性,在3GPP中已经定义了终端省电增强方案。例如,终端在不同连接状态(connection management,CM)下的省电模式,如CM-IDLE(空闲态)的省电模式以及RRC非激活状态下的CM-CONNECTED(连接)的省电模式,还定义了仅终端发起连接(mobile initiated connection only,MICO)模式、扩展不连续接收(extended DRX,eDRX)模式等。但是,上述方案均为专门为具有超低功耗的物联网终端而设计的。如果在智能手机上使用这些解决方案,用户体验将受到很大影响。
所以,如何匹配业务流量特性和终端能耗管理是一种亟待解决的问题。
在本公开实施例中,在以下实施例中,通信系统中的终端设备可以以UE为例、接入网功能实体为基站为例、第一核心网功能实体可以以PCF为例、第二核心网功能实体为其他PCF为例、第三核心网功能实体可以以UPF为例以及应用功能实体为AF为例,对本公开实施例提出的QoS流的控制方法进 行说明。在5G通信系统及其演进版本中,终端、接入网功能实体、第一核心网功能实体、第二核心网功能实体、第三核心网功能实体以及应用功能实体也可能是具有相同或相似功能和连接关系的其他功能实体,本公开实施例对此不作限定。
为了解决上述问题,结合上述通信系统,本公开实施例提供一种QoS流的控制方法。
在上述通信系统中,可以且不限于存在以下两种场景。
第一种场景,在上述通信系统中部署有PCF。PCF根据终端状态信息对QoS流的进行QoS控制。在该架构中,与AMF 1031和SMF 1032所连接的PCF 1033可以分别对应AM PCF(PCF for access and mobility control)和SM PCF(PCF for session management),在实际部署场景中AM PCF和SM PCF可能不是同一个PCF实体。
第二种场景,在上述通信系统中未部署PCF。此时,SMF根据QoS参数,执行静态规则激活和QoS授权更新。
在一些可能的实施方式中,针对于上述第一种场景,图2为本公开实施例中的第一种QoS流的控制方法的实施流程示意图,如图2所示,在本实施例中,QoS流的控制方法应用于第一核心网功能实体(如PCF)侧,该QoS流的控制方法可以包括S201至S202。
S201,第一核心网功能实体(如PCF)接收来自第二核心网功能实体(如SMF)发送的终端状态信息(UE status information)。
其中,终端状态信息用于表示该UE的功耗状态。示例性的,终端状态信息包括与UE性能相关的一个或者多个参数,如UE status information可以包括以下至少之一:UE的电池电量(UE battery level)、UE的电池寿命(UE battery life)、UE的供电模式(powered mode)、UE的CPU负荷、UE过热状态(UE overheating status)。当然,在本公开实施例中,与UE功耗相关的参数可以包括其他这里,上述UE的供电模式可以包括:电池供电模式(battery-powered)以及电源供电模式(mains/wall-powered)。这里,电池供电模式是指使用UE的内置电池进行供电,电源供电模式是指使用电源适配器连接至如墙壁插座、移动插座等与电源连接,对UE进行供电。
应理解的,UE可以向SMF发送自身的终端状态信息,SMF再向PCF发送。
在一些可能的实施方式中,在S201之前,SMF还可以执行S203。
S203,SMF接收UE发送的终端状态信息。
在一实施例中,SMF可以且不限于采用以下方式获得UE发送的终端状态信息。
第一种方式,S201的执行不受接入网影响(without RAN impact)。在这种情况下,UE将终端状态信息携带于NAS参数发送给接入网功能实体(如基站),基站将NAS参数经由AMF转发给SMF。示例性的,终端状态信息可以携带于PCO参数、UE 5GSM Core Network Capability等NAS参数。
第二种方式,S201的执行受接入网影响(with RAN impact)。在这种情况下,UE将终端状态信息携带于AN参数发送给接入网功能实体(如基站),基站将终端状态信息从AN参数中取出,再携带于NAS参数经由AMF转发给SMF。
在一些可能的实施方式中,SMF在S201中,需要确定PCF是否需要UE的终端状态信息,如果 需要,则SMF将终端状态信息发送给PCF。示例性的,如果UE的签约信息(subscription information)中需要包括终端状态信息,SMF可以向PCF提供UE的终端状态信息。这里,签约信息是SMF从统一数据管理(unified data management,UDM)功能实体下载得到的。
或者,PCF还可以向SMF发送订阅请求消息,以订阅终端状态信息关联的事件(即第一事件,UE status information event)。那么,在S201中,SMF在收到UE的终端状态信息之后,可以查询事件订阅,确认PCF订阅了第一事件;那么,在满足事件上报条件的情况下,SMF向PCF发送终端状态信息。示例性的,事件上报条件可以为UE状态改变、第一业务的各种网络策略和/或网络配置中的阈值到达、供电模式匹配、接收到立即上报、周期性上报等。当然,事件上报条件还可以包括其他条件,本公开实施例对此不做具体限定。
S202,PCF根据终端状态信息,对UE关联的QoS流执行QoS更新。
可以理解的,PCF在接收到UE的终端状态信息后,可以根据UE的功耗状态,对UE关联的QoS流进行QoS更新。
这里,UE关联的QoS流可以与第一业务相关。在本公开实施例中,第一业务可以为XRM业务或者XRM业务组(service group)。
在一些可能的实施方式中,上述QoS流可以是不同粒度的,如可以是针对会话的(即会话QoS流)、针对业务的(如业务数据流QoS流),本公开实施例对此不做具体限定。
可以理解的,PCF根据终端状态信息可以针对于UE的一个业务(即第一业务)的一个或者多个会话,确定相应的QoS参数。或者,PCF根据终端状态信息可以针对于UE的一个业务(即第一业务),确定相应的QoS参数。这里,“确定”可以描述为“设置”、“生成”、“更新”等。
在一些可能的实施方式中,上述QoS流可以为GBR QoS流和非GBR QoS流。针对于不同类型的QoS流,对应的QoS参数也是不同的。示例性的,对于QoS流为GBR QoS流,QoS流的QoS参数可以包括:GFBR和/或MFBR。对于QoS流为非GBR QoS流,QoS流的QoS参数可以包括:AMBR。其中,AMBR根据不同粒度可以分为:每终端的AMBR(UE-AMBR)、每会话的AMBR(session-AMBR)。
在一实施例中,对于QoS流为GBR QoS流或非GBR QoS流,QoS流的QoS参数还可以包括:每终端每切片的MBR(UE-session-MBR)。
在一些可能的实施方式中,在UE关联的QoS流为GBR QoS流的情况下,S202可以包括:PCF根据终端状态信息,降低或者升高GFBR和MFBR中的一个或者多个,以此来对GBR QoS流执行QoS更新。
在一些可能的实施方式中,图3为本公开实施例中的一种对GBR QoS流执行QoS更新的实施流程示意图,参见图3,在PCF执行S202进行QoS更新之后,PCF还可以执行以下至少之一:S301和S302。
S301,PCF向UPF实体发送QoS参数(如GFBR和/或MFBR),QoS参数用于UPF对下行GBR QoS流执行QoS更新。
可以理解的,PCF可以通过Npcf和Nsmf将QoS参数发送至SMF,再由SMF发送给UPF。UPF 接收到QoS参数后,使用该QoS参数对下行GBR QoS流执行QoS更新。
S302,PCF向基站发送QoS参数,QoS参数用于基站对上行和/或下行GBR QoS流执行QoS更新。
可以理解的,PCF可以通过Npcf和Namf将QoS参数发送至AMF,再由AMF发送给基站。基站接收到QoS参数后,使用该QoS参数对上行和/或下行GBR QoS流执行QoS更新。
在上述S301和S302中,AMF、SMF也可以通过订阅事件,获得PCF发送的QoS参数。示例性的,AMF可以向PCF订阅QoS参数关联的事件。PCF在QoS参数后,查询订阅事件,确认QoS参数关联的事件。在事件满足上报条件的情况下,PCF向AMF发送QoS参数。类似的,SMF也可以向PCF订阅QoS参数关联的事件。PCF在确定QoS参数后,查询订阅事件,确认QoS参数关联的事件。在事件满足上报条件的情况下,PCF向SMF发送QoS参数。当然,AMF、SMF还可以采用其他方式从PCF处获得QoS参数,本公开实施例对此不做具体限定。
在一些可能的实施方式中,在QoS流为非GBR QoS流的情况下,S202还可以包括:PCF根据终端状态信息,降低或者升高AMBR,以此来对非GBR QoS流执行QoS更新。例如,终端状态信息表示UE的温度过高无法满足当前带宽需求,则PCF降低该UE的第一业务的Session-AMBR。
在一些可能的实施方式中,图4为本公开实施例中的一种对非GBR QoS流执行QoS更新的实施流程示意图,参见图4,针对于不同的QoS参数,在S202之后,PCF还可以执行以下至少之一:S401至S403。
S401,PCF将session-AMBR发送给UPF,使得UPF使用session-AMBR对上行和/或下行会话QoS流执行QoS更新。这里,PCF将session-AMBR先发给SMF,在由SMF发送给UPF。
S402,PCF将session-AMBR发送给UE,使得UE对非GBR QoS流执行基于PDU会话的上行速率限制。
S403,PCF向基站发送UE-AMBR,使得基站对每个UE的上行和/或下行非GBR QoS流执行QoS更新。
当然,针对于GBR QoS流,PCF还可以执行其他QoS更新,本公开实施例对此不作具体限定。
在一些可能的实施方式中,QoS流为GBR QoS流或非GBR QoS流,QoS流的QoS参数包括:每终端每切片的MBR(UE-slice-MBR)。
在一些可能的实施方式中,上述S202之后,上述方法包括:PCF向基站发送UE-slice-MBR,使得基站对UE的S-NSSAI对应的PDU会话QoS流执行QoS更新。S-NSSAI用于标识一个网络切片(slice)。
应理解的,UE在一个slice上可以对应一个或者多个PDU会话,这一个或者多个PDU会话为第一业务的会话。那么,基站在接收到UE-slice-MBR后,使用UE-slice-MBR对该UE在S-NSSAI对应的slice上的、针对于第一业务的所有会话的QoS流执行QoS更新。
需要注意的是,每当接收到建立或修改GBR QoS流的请求时,基站准入控制应确保已准入的GBR QoS流的GFBR值之和不超过UE-Slice-MBR,如果QoS流不能被接纳,基站应拒绝QoS流的建立或修改。以及,基站应确保属于UE的S-NSSAI对应的PDU会话的所有GBR和非GBR QoS流的 聚合比特率不超过UE-Slice-MBR,同时始终保证这些PDU会话的每个GBR QoS流的GFBR。
在上述过程中,若S202为QoS更新过程,则PCF发送的QoS参数可以为更新后的QoS参数。
通过上述过程,PCF完成了根据终端状态信息,执行QoS控制的过程。
至此,便实现了在第一中场景下PCF对QoS流的QoS控制过程。
需要说明的是,上述QoS控制过程可以与PDU会话建立过程(PDU Session Establishment procedure)等进行复用。当然,还可以复用于其他过程,本公开实施例对此不作具体限定。
在一些可能的实施方式中,本公开实施例还提供一种QoS流的控制方法,应用于上述第一种场景下。图5A为本公开实施例中的第二种QoS流的控制方法的实施流程示意图,参见图5A,该QoS流的控制方法可以应用于第二核心网功能实体(如SMF)侧,QoS流的控制方法可以包括S501至S503。
S501,第二核心网功能实体(如SMF)接收UE发送的终端状态信息。
其中,终端状态信息用于表示UE的功耗状态。
在一些可能的实施方式中,SMF可以且不限于采用以下方式获得UE发送的终端状态信息。
第一种方式,S501的执行不受接入网影响(without RAN impact)。在这种情况下,UE将终端状态信息携带于NAS参数发送给接入网功能实体(如基站),基站将NAS参数经由AMF转发给SMF。示例性的,终端状态信息可以携带于PCO参数、UE 5GSM Core Network Capability等NAS参数。
第二种方式,S501的执行受接入网影响(with RAN impact)。在这种情况下,UE将终端状态信息携带于AN参数发送给接入网功能实体(如基站),基站将终端状态信息从AN参数中取出,再携带于NAS参数经由AMF转发给SMF。
在一些可能的实施方式中,针对于第一种场景,SMF在S501之后,执行S502。
S502,SMF向PCF发送终端状态信息。
其中,终端状态信息还用于PCF对UE关联的QoS流执行QoS更新。
在一些可能的实施方式中,SMF在S201中,需要确定PCF是否需要UE的终端状态信息,如果需要,则SMF将终端状态信息发送给PCF。示例性的,如果UE的签约信息中需要包括终端状态信息,SMF可以向PCF提供UE的终端状态信息。这里,签约信息是SMF从UDM功能实体下载得到的。
或者,PCF还可以向SMF发送订阅请求消息,以订阅终端状态信息关联的事件(即第一事件,UE status information event)。那么,在S501之后,SMF在收到UE的终端状态信息之后,可以查询事件订阅,确认PCF订阅了第一事件;那么,在满足事件上报条件的情况下,SMF执行S502,向PCF发送终端状态信息。示例性的,事件上报条件可以为UE状态改变、第一业务的各种网络策略和/或网络配置中的阈值到达、供电模式匹配、接收到立即上报、周期性上报等。当然,事件上报条件还可以包括其他条件,本公开实施例对此不做具体限定。
在一些可能的实施方式中,仍参见图5A,针对于QoS流为GBR QoS流,在S502之后,SMF还可以执行S503至S504。
S503,SMF接收PCF发送的QoS参数(如GFBR和/或MFBR)。
S504,SMF将QoS参数发送给第三核心网功能实体(如UPF),使得UPF对下行GBR QoS流执行QoS更新。
应理解的,PCF在执行S301时,可以将GFBR和/或MFBR发送给SMF,SMF将GFBR和/或MFBR发送给UPF,以使得UPF对下行GBR QoS流执行QoS更新。
需要说明的是,S503和S304的执行过程可以参见上述图2至图3实施例中对S301的描述,在此不做赘述。
在另一些可能的实施方式中,仍参见图5A,针对于QoS流为非GBR QoS流,在S502之后,SMF还可以执行S505和S506。
S505,SMF接收PCF发送的QoS参数(如session-AMBR)。
S506,SMF将QoS参数发送给UPF,使得UPF对上行和/或下行会话QoS流执行QoS更新。
应理解的,PCF在执行S401时,可以将session-AMBR发送给SMF,SMF将session-AMBR发送给UPF,以使得UPF对上行和/或下行会话QoS流执行QoS更新。
需要说明的是,S505至S506的执行过程可以参见上述图2和图4实施例中对S401的描述,在此不做赘述。
在上述过程中,若S202为QoS更新过程,则S505和S505中SMF接收的QoS参数可以为更新后的QoS参数。
至此,通过上述过程,在第一场景下,SMF完成了根据终端状态信息,执行QoS更新的过程。
在一些可能的实施方式中,针对于第二场景,图5B为本公开实施例中的第三种QoS流的控制方法的实施流程示意图,参见图5B,在S501之后,SMF还可以执行S507。
S507,SMF根据终端状态信息,对QoS流执行QoS更新。
应理解的,在第二种场景下,由于通信系统中未部署PCF,所以,QoS流的控制策略可以在SMF侧进行决策。那么,SMF在收到UE的终端状态信息后,可以根据UE的功耗状态,执行静态规则激活和QoS授权更新。
在本公开中,通过第二核心网功能实体(即SMF实体)向第一核心网功能实体(如PCF)提供终端的终端状态信息,使得第一核心网功能实体能够根据终端状态信息匹配业务流量特性和终端能耗管理,即根据终端的功耗状态对QoS流进行控制,以保障业务需求和用户体验。
基于相同的发明构思,本公开实施例提供一种QoS流的控制装置,图6为本公开实施例中的一种QoS流的控制装置的结构示意图,参见图6所示,该控制装置600可以包括:处理模块601、接收模块602以及发送模块603。
在一些可能的实施方式中,该控制装置600可以为通信系统中的第一核心网功能实体(如PCF)或者第一核心网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该控制装置600可以实现上述各实施例中第一核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块602,被配置为接收来自第二核心网功能实体的终端状态信息,终端状态信息 用于表示终端的功耗状态;处理模块601,被配置为根据终端状态信息,对QoS流执行QoS更新。
在本公开中,第一核心网功能实体可以为PCF,第二核心网功能实体可以为SMF。
在一些可能的实施方式中,QoS流包括以下至少之一:终端QoS流;会话QoS流;业务数据流QoS流。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量;电池寿命;供电模式;CPU负荷;终端过热状态。
在一些可能的实施方式中,QoS流为GBR QoS流,QoS流的QoS参数包括:GFBR和/或MFBR。
在一些可能的实施方式中,处理模块601,被配置为根据终端状态信息,降低或者升高GFBR。
在一些可能的实施方式中,发送模块603,被配置为向第三核心网功能实体发送MFBR,MFBR用于第三核心网功能实体对下行GBR QoS流执行QoS更新;和/或,向接入网功能实体发送MFBR,MFBR用于接入网功能实体对上行和/或下行GBR QoS流执行QoS更新。
在本公开中,第三核心网功能实体可以为UPF。
在一些可能的实施方式中,QoS流为非GBR QoS流,QoS流的QoS参数包括:AMBR。
在一些可能的实施方式中,处理模块601,被配置为根据终端状态信息,降低或者升高AMBR。
在一些可能的实施方式中,AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
在一些可能的实施方式中,响应于AMBR包括每会话的AMBR,发送模块603,被配置为将每会话的AMBR发送给第三核心网功能实体,每会话的AMBR用于第三核心网功能实体对上行和/或下行会话QoS流执行QoS更新;或,将每会话的AMBR发送给终端,每会话的AMBR用于终端对非GBR QoS流执行基于PDU会话的上行速率限制。
在一些可能的实施方式中,响应于AMBR包括每终端的AMBR,发送模块603,被配置为:向接入网功能实体发送每终端的AMBR,每终端的AMBR用于接入网功能实体对每个终端的上行和/或下行非GBR QoS流执行QoS更新。
在一些可能的实施方式中,QoS流为GBR QoS流或非GBR QoS流,QoS流的QoS参数包括:每终端每切片的MBR。
在一些可能的实施方式中,响应于QoS参数包括每终端每切片的MBR,发送模块603,被配置为向接入网功能实体发送每终端每切片的MBR,每终端每切片的MBR用于接入网功能实体对终端的S-NSSAI对应的PDU会话QoS流执行QoS更新。
在一些可能的实施方式中,发送模块603,被配置为向第二核心网功能实体发送订阅请求消息,订阅请求消息用于请求终端状态信息关联的第一事件;接收模块602,被配置为在第一事件满足事件上报条件的情况下,接收第二核心网功能实体发送的终端状态信息。
在一些可能的实施方式中,该控制装置600可以为通信系统中的第二核心网功能实体或者第二核心网功能实体的芯片或者片上系统,还可以为第二核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该控制装置600可以实现上述各实施例中第二核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块602,被配置为接收来自终端的终端状态信息,终端状态信息用于表示终端的功耗状态;处理模块601,被配置为根据终端状态信息,对QoS流执行QoS更新;发送模块603,被配置为向第一核心网功能实体发送终端状态信息,终端状态信息还用于第一核心网功能实体确定QoS流的QoS参数。
在本公开中,第二核心网功能实体可以为SMF,第一核心网功能实体为PCF。
在一些可能的实施方式中,QoS流包括以下至少之一:终端的QoS流;会话的QoS流;业务数据流的QoS流。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量;电池寿命;供电模式;CPU负荷;终端过热状态。
在一些可能的实施方式中,QoS流为GBR QoS流,QoS流的QoS参数包括:GFBR和/或MFBR。
在一些可能的实施方式中,响应于QoS参数包括MFBR,接收模块602,被配置为接收第一核心网功能实体发送的MFBR;发送模块603,被配置为将MFBR发送给第三核心网功能实体,MFBR用于第三核心网功能实体对下行GBR QoS流执行QoS更新。
在本公开中,第三核心网功能实体可以为UPF。
在一些可能的实施方式中,QoS流为非GBR QoS流,QoS流的QoS参数包括:AMBR。
在一些可能的实施方式中,AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
在一些可能的实施方式中,响应于AMBR包括每会话的AMBR,接收模块602,被配置为接收第一核心网功能实体发送的每会话的AMBR;发送模块603,被配置为将每会话的AMBR发送给第三核心网功能实体,每会话的AMBR用于第三核心网功能实体对下行和/或下行会话QoS流执行QoS更新。
在一些可能的实施方式中,接收模块602,被配置为接收终端发送的终端状态信息,终端状态信息承载于NAS参数。
在一些可能的实施方式中,终端状态信息携带于PCO参数或者UE 5GSM Core Network Capability。
在一些可能的实施方式中,接收模块602,被配置为接收接入网功能实体发送的终端状态信息,终端状态信息是由接入网功能实体从AN参数中取出并加入NAS参数的。
在一些可能的实施方式中,处理模块601,被配置为根据QoS参数,执行静态规则激活和QoS授权更新。
在一些可能的实施方式中,处理模块601,被配置为实体查询事件订阅,确认订阅终端状态信息关联的第一事件;发送模块603,被配置为在满足事件上报条件的情况下,向第一核心网功能实体发送终端状态信息。
在一些可能的实施方式中,发送模块603,被配置为根据终端的签约数据和/或运营商策略,向第一核心网功能实体发送终端状态信息。
需要说明的是,处理模块601、接收模块602以及发送模块603的具体实现过程可参考图2至图 5B实施例的详细描述,为了说明书的简洁,这里不再赘述。
本公开实施例中提到的接收模块602可以为接收接口、接收电路或者接收器等;发送模块603可以为发送接口、发送电路或者发送器等;处理模块601可以为一个或者多个处理器。
基于相同的发明构思,本公开实施例提供一种通信装置,该通信装置可以为上述一个或者多个实施例中所述的第一核心网功能实体或第二核心网功能实体。图7为本公开实施例中的一种通信装置的结构示意图,参见图7所示,通信装置700,采用了通用的计算机硬件,包括处理器701、存储器702、总线703、输入设备704和输出设备705。
在一些可能的实施方式中,存储器702可以包括以易失性和/或非易失性存储器形式的计算机存储媒体,如只读存储器和/或随机存取存储器。存储器702可以存储操作系统、应用程序、其他程序模块、可执行代码、程序数据、用户数据等。
输入设备704可以用于向通信设备输入命令和信息,输入设备704如键盘或指向设备,如鼠标、轨迹球、触摸板、麦克风、操纵杆、游戏垫、卫星电视天线、扫描仪或类似设备。这些输入设备可以通过总线703连接至处理器701。
输出设备705可以用于通信设备输出信息,除了监视器之外,输出设备705还可以为其他外围输出设各,如扬声器和/或打印设备,这些输出设备也可以通过总线703连接到处理器701。
通信设备可以通过天线706连接到网络中,例如连接到局域网(local area network,LAN)。在联网环境下,控制备中存储的计算机执行指令可以存储在远程存储设备中,而不限于在本地存储。
当通信设备中的处理器701执行存储器702中存储的可执行代码或应用程序时,通信设备以执行以上实施例中的UE侧或者网络设备侧的中继通信方法,具体执行过程参见上述实施例,在此不再赘述。
此外,上述存储器702中存储有用于实现图6中的处理模块601、接收模块602以及发送模块603的功能的计算机执行指令。图6中的处理模块601、接收模块602以及发送模块603的功能/实现过程均可以通过图7中的处理器701调用存储器702中存储的计算机执行指令来实现,具体实现过程和功能参考上述相关实施例。
基于相同的发明构思,本公开实施例提供一种网络功能实体,如第一核心网功能实体或者第二核心网功能实体。
图8为本公开实施例中的一种网络功能实体的结构示意图,参见图8所示,网络功能实体800可以包括处理组件801,其进一步包括一个或多个处理器,以及由存储器802所代表的存储器资源,用于存储可由处理组件801的执行的指令,例如应用程序。存储器802中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件801被配置为执行指令,以执行上述方法前述应用在所述网络设备的任一方法。
网络功能实体800还可以包括一个电源组件803被配置为执行网络功能实体800的电源管理,一个有线或无线网络接口804被配置为将网络功能实体800连接到网络,和一个输入输出(I/O)接口805。网络功能实体800可以操作基于存储在存储器802的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
基于相同的发明构思,本公开实施例还一种通信装置,如第一核心网功能实体,包括:存储器和处理器;处理器与存储器连接,被配置为通过执行存储在存储器上的计算机可执行指令,以实现如上述一个或者多个实施例所述的第一核心网功能实体侧的QoS流的控制方法。
基于相同的发明构思,本公开实施例还一种通信装置,如第二核心网功能实体,包括:存储器和处理器;处理器与存储器连接,被配置为通过执行存储在存储器上的计算机可执行指令,以实现如上述一个或者多个实施例所述的第二核心网功能实体侧的QoS流的控制方法。
基于相同的发明构思,本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;当指令在计算机上运行时,用于执行上述一个或者多个实施例中网络功能实体侧的QoS流的控制方法。这里,网络功能实体可以包括:第一核心网功能实体或第二核心网功能实体。
基于相同的发明构思,本公开实施例还提供一种计算机程序或计算机程序产品,当计算机程序产品在计算机上被执行时,使得计算机实现上述一个或者多个实施例中网络功能实体侧的QoS流的控制方法这里,网络功能实体可以包括:第一核心网功能实体或第二核心网功能实体。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种服务质量QoS流的控制方法,包括:
    第一核心网功能实体接收来自第二核心网功能实体的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    所述第一核心网功能实体根据所述终端状态信息,对QoS流执行QoS更新。
  2. 根据权利要求1所述的方法,其中,所述QoS流包括以下至少之一:
    终端QoS流;
    会话QoS流;
    业务数据流QoS流。
  3. 根据权利要求1所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  4. 根据权利要求1所述的方法,其中,所述QoS流为保证比特速率GBR QoS流,所述QoS流的QoS参数包括:保证流量比特率GFBR和/或最大流比特率MFBR。
  5. 根据权利要求4所述的方法,其中,所述第一核心网功能实体根据所述终端状态信息,对QoS流执行QoS更新,包括:
    所述第一核心网功能实体根据所述终端状态信息,降低或者升高所述GFBR。
  6. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述第一核心网功能实体向第三核心网功能实体发送MFBR,所述MFBR用于所述第三核心网功能实体对下行GBR QoS流执行QoS更新;和/或,
    所述第一核心网功能实体向接入网功能实体发送MFBR,所述MFBR用于所述接入网功能实体对上行和/或下行GBR QoS流执行QoS更新。
  7. 根据权利要求1所述的方法,其中,所述QoS流为非GBR QoS流,所述QoS流的QoS参数包括:聚合最大比特率AMBR。
  8. 根据权利要求7所述的方法,其中,所述第一核心网功能实体根据所述终端状态信息,对QoS流执行QoS更新,包括:
    所述第一核心网功能实体根据所述终端状态信息,降低或者升高所述AMBR。
  9. 根据权利要求7所述的方法,其中,所述AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
  10. 根据权利要求9所述的方法,其中,响应于所述AMBR包括每会话的AMBR,所述方法还包括:
    所述第一核心网功能实体将所述每会话的AMBR发送给第三核心网功能实体,所述每会话的 AMBR用于所述第三核心网功能实体对上行和/或下行会话QoS流执行QoS更新;或,
    所述第一核心网功能实体将所述每会话的AMBR发送给所述终端,所述每会话的AMBR用于所述终端对所述非GBR QoS流执行基于分组数据单元PDU会话的上行速率限制。
  11. 根据权利要求9所述的方法,其中,响应于所述AMBR包括每终端的AMBR,所述方法还包括:
    所述第一核心网功能实体向接入网功能实体发送所述每终端的AMBR,所述每终端的AMBR用于所述接入网功能实体对每个终端的上行和/或下行非GBR QoS流执行QoS更新。
  12. 根据权利要求1所述的方法,其中,所述QoS流为GBR QoS流或非GBR QoS流,所述QoS流的QoS参数包括:每终端每切片的最大比特率MBR。
  13. 根据权利要求12所述的方法,其中,响应于所述QoS参数包括每终端每切片的MBR,所述方法还包括:
    所述第一核心网功能实体向接入网功能实体发送所述每终端每切片的MBR,每终端每切片的MBR用于所述接入网功能实体对所述终端的与单网络切片选择辅助信息S-NSSAI对应的PDU会话QoS流执行QoS更新。
  14. 根据权利要求1所述的方法,其中,所述第一核心网功能实体接收来自第二核心网功能实体的终端状态信息,包括:
    所述第一核心网功能实体向所述第二核心网功能实体发送订阅请求消息,所述订阅请求消息用于请求所述终端状态信息关联的第一事件;
    在所述第一事件满足事件上报条件的情况下,所述第一核心网功能实体接收所述第二核心网功能实体发送的所述终端状态信息。
  15. 一种服务质量QoS流的控制方法,包括:
    第二核心网功能实体接收来自终端的终端状态信息,所述终端状态信息用于表示所述终端的功耗状态;
    所述第二核心网功能实体执行以下之一:
    所述第二核心网功能实体根据所述终端状态信息,对QoS流执行QoS更新;
    所述第二核心网功能实体向第一核心网功能实体发送所述终端状态信息,所述终端状态信息还用于所述第一核心网功能实体确定QoS流的QoS参数。
  16. 根据权利要求15所述的方法,其中,所述QoS流包括以下至少之一:
    终端的QoS流;
    会话的QoS流;
    业务数据流的QoS流。
  17. 根据权利要求15所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  18. 根据权利要求15所述的方法,其中,所述QoS流为GBR QoS流,所述QoS流的QoS参数包括:保证流量比特率GFBR和/或最大流比特率MFBR。
  19. 根据权利要求18所述的方法,其中,响应于所述QoS参数包括所述MFBR,所述方法还包括:
    所述第二核心网功能实体接收所述第一核心网功能实体发送的MFBR;
    所述第二核心网功能实体将所述MFBR发送给第三核心网功能实体,所述MFBR用于所述第三核心网功能实体对下行GBR QoS流执行QoS更新。
  20. 根据权利要求15所述的方法,其中,所述QoS流为非GBR QoS流,所述QoS流的QoS参数包括:聚合最大比特率AMBR。
  21. 根据权利要求20所述的方法,其中,所述AMBR包括以下至少之一:每终端的AMBR、每会话的AMBR。
  22. 根据权利要求21所述的方法,其中,响应于所述AMBR包括每会话的AMBR,所述方法还包括:
    所述第二核心网功能实体接收所述第一核心网功能实体发送的每会话的AMBR;
    所述第二核心网功能实体将所述每会话的AMBR发送给第三核心网功能实体,所述每会话的AMBR用于所述第三核心网功能实体对下行和/或下行会话QoS流执行QoS更新。
  23. 根据权利要求15所述的方法,其中,所述第二核心网功能实体接收终端状态信息,包括:
    所述第二核心网功能实体接收所述终端发送的所述终端状态信息,所述终端状态信息承载于非接入层NAS参数。
  24. 根据权利要求23所述的方法,其中,所述终端状态信息携带于协议配置选项PCO参数或者终端的核心网能力参数。
  25. 根据权利要求15所述的方法,其中,所述第二核心网功能实体接收终端状态信息,包括:
    所述第二核心网功能实体接收接入网功能实体发送的所述终端状态信息,所述终端状态信息是由所述接入网功能实体从接入网AN参数中取出并加入NAS参数的。
  26. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述第二核心网功能实体根据所述QoS参数,执行静态规则激活和QoS授权更新。
  27. 根据权利要求15所述的方法,其中,所述第二核心网功能实体向第一核心网功能实体发送所述终端状态信息,包括:
    所述第二核心网功能实体查询事件订阅,确认订阅所述终端状态信息关联的第一事件;
    在满足事件上报条件的情况下,所述第二核心网功能实体向所述第一核心网功能实体发送所述终端状态信息。
  28. 根据权利要求15所述的方法,其中,所述第二核心网功能实体向第一核心网功能实体发送所述终端状态信息,包括:
    所述第二核心网功能实体根据所述终端的签约数据和/或运营商策略,向所述第一核心网功能实体发送所述终端状态信息。
  29. 一种服务质量QoS流的控制装置,包括:
    接收模块,被配置为接收来自第二核心网功能实体的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    处理模块,被配置为根据所述终端状态信息,对QoS流执行QoS更新。
  30. 一种服务质量QoS流的控制装置,包括:
    接收模块,被配置为接收来自终端的终端状态信息,所述终端状态信息用于表示所述终端的功耗状态;
    处理模块,被配置为根据所述终端状态信息,对QoS流执行QoS更新;
    发送模块,被配置为向第一核心网功能实体发送所述终端状态信息,所述终端状态信息还用于所述第一核心网功能实体确定QoS流的QoS参数。
  31. 一种通信装置,其特征在于,包括:存储器和处理器;所述处理器与所述存储器连接,被配置为通过执行存储在所述存储器上的计算机可执行指令,以实现如权利要求1至28任一项所述的服务质量QoS流的控制方法。
  32. 一种计算机存储介质,存储有计算机可执行指令,其特征在于,所述计算机可执行指令被处理器执行后能够实现如权利要求1至28任一项所述的服务质量QoS流的控制方法。
PCT/CN2022/102943 2022-06-30 2022-06-30 一种QoS流的控制方法、装置及计算机存储介质 WO2024000450A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/102943 WO2024000450A1 (zh) 2022-06-30 2022-06-30 一种QoS流的控制方法、装置及计算机存储介质
CN202280002499.2A CN117643109A (zh) 2022-06-30 2022-06-30 一种QoS流的控制方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102943 WO2024000450A1 (zh) 2022-06-30 2022-06-30 一种QoS流的控制方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2024000450A1 true WO2024000450A1 (zh) 2024-01-04

Family

ID=89383827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102943 WO2024000450A1 (zh) 2022-06-30 2022-06-30 一种QoS流的控制方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN117643109A (zh)
WO (1) WO2024000450A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402245A (zh) * 2013-07-24 2013-11-20 中国联合网络通信集团有限公司 一种非连续接收drx周期的配置方法、设备及系统
CN108632882A (zh) * 2017-03-17 2018-10-09 电信科学技术研究院 一种码率控制方法、pcf实体、amf实体及smf实体
WO2021228373A1 (en) * 2020-05-12 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Optimized model transmission
WO2021244761A1 (en) * 2020-06-03 2021-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Reducing battery consumption of wireless devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402245A (zh) * 2013-07-24 2013-11-20 中国联合网络通信集团有限公司 一种非连续接收drx周期的配置方法、设备及系统
CN108632882A (zh) * 2017-03-17 2018-10-09 电信科学技术研究院 一种码率控制方法、pcf实体、amf实体及smf实体
WO2021228373A1 (en) * 2020-05-12 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Optimized model transmission
WO2021244761A1 (en) * 2020-06-03 2021-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Reducing battery consumption of wireless devices

Also Published As

Publication number Publication date
CN117643109A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN109792684B (zh) 使ue保持唤醒
EP3621360B1 (en) System information transmission method and related device
WO2021036925A1 (zh) 通信方法及装置
WO2018127003A1 (zh) 一种确定寻呼周期的方法及装置
WO2017133295A1 (zh) 数据传输方法、装置和系统
CN112584545B (zh) 数据传输方法及装置
WO2021081875A1 (zh) Rrc连接状态控制方法、装置及存储介质
WO2021189235A1 (zh) 一种数据传输方法及装置、通信设备
WO2024000193A1 (zh) 一种中继通信方法、装置、设备及存储介质
WO2022143464A1 (zh) 确定传输时延的方法、装置、设备及存储介质
US20080232254A1 (en) Explicit service flow tear-down during connection setup in wireless network communications
WO2024000450A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2021031035A1 (zh) 一种通信方法及装置
WO2024000445A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2023245458A1 (zh) 一种信息上报方法、装置及计算机存储介质
WO2024020759A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2022042652A1 (zh) 上行数据处理方法、装置、网络设备、终端设备及介质
WO2022082772A1 (zh) 一种数据传输方法和相关装置
WO2022222081A1 (zh) 通信方法、装置、设备及存储介质
WO2024020760A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2021097671A1 (zh) 辅助信息传输方法、装置、终端、接入网设备及存储介质
WO2023197320A1 (zh) 上行定位参考信号的配置方法、装置、设备及存储介质
WO2024000435A1 (zh) 物联网设备的管理方法、装置、设备和存储介质
WO2022016338A1 (zh) 一种通信方法及装置
WO2022160275A1 (zh) 无线通信方法、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002499.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948553

Country of ref document: EP

Kind code of ref document: A1