WO2024020759A1 - 一种QoS流的控制方法、装置及计算机存储介质 - Google Patents

一种QoS流的控制方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2024020759A1
WO2024020759A1 PCT/CN2022/107722 CN2022107722W WO2024020759A1 WO 2024020759 A1 WO2024020759 A1 WO 2024020759A1 CN 2022107722 W CN2022107722 W CN 2022107722W WO 2024020759 A1 WO2024020759 A1 WO 2024020759A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
terminal
core network
qos configuration
network function
Prior art date
Application number
PCT/CN2022/107722
Other languages
English (en)
French (fr)
Inventor
吴锦花
沈洋
刘建宁
毛玉欣
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/107722 priority Critical patent/WO2024020759A1/zh
Priority to CN202280002822.6A priority patent/CN117769825A/zh
Publication of WO2024020759A1 publication Critical patent/WO2024020759A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a QoS flow control method, device and computer storage medium.
  • XR and media services have the characteristics of high throughput, low latency, and high reliability requirements, they require high power consumption on the terminal side, and the battery power of the terminal may affect the user experience.
  • the present disclosure provides a QoS flow control method, device and computer storage medium to match business traffic characteristics and terminal energy consumption management, thereby ensuring business requirements and user experience.
  • a quality of service (QoS) flow control method which can be applied to access network functional entities in a communication system.
  • the method may include: the access network functional entity receives terminal status information (UE status information) of the first core network functional entity, and the terminal status information is used to represent the power consumption status of the terminal; the access network functional entity obtains Determine the first QoS configuration of the QoS flow associated with the terminal in the alternative QoS configuration; the access network functional entity sends the first QoS configuration to the second core network functional entity, and the first QoS configuration is used for the terminal, the second core network functional entity, At least one of the third core network functional entity and the application functional entity performs QoS update.
  • UE status information terminal status information
  • the access network functional entity obtains Determine the first QoS configuration of the QoS flow associated with the terminal in the alternative QoS configuration
  • the access network functional entity sends the first QoS configuration to the second core network functional entity, and the first QoS configuration is used for the terminal, the second core network functional entity
  • the first core network functional entity may be an access and mobility management function (AMF) entity
  • the second core network functional entity may be a session management function (SMF) entity
  • the third core network functional entity is a policy control function (PCF) entity (which can also be described as the first PCF entity).
  • PCF policy control function
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configurations based on the terminal status information, including: the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal based on the terminal status information and the alternative QoS configuration.
  • the terminal status management indication in the QoS configuration determines the first QoS configuration.
  • the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configurations based on the terminal status information, including: the access network functional entity determines the first QoS configuration of the QoS flow associated with the terminal based on the terminal status information and the configured The association between the terminal status information and the QoS configuration determines the first QoS configuration.
  • the above method further includes: the access network functional entity receiving the association relationship sent by the second core network functional entity; or the access network functional entity configuring the association relationship according to the local policy and/or operator policy.
  • the above method further includes: the access network functional entity performs QoS update on the QoS flow associated with the terminal according to the first QoS configuration.
  • the above method further includes: the access network functional entity receiving the alternative QoS configuration sent by the second core network functional entity.
  • the access network functional entity receives terminal status information from the application functional entity, including: the access network functional entity receives a non-access stratum (NAS) sent by the first core network functional entity. Messages, NAS messages carry terminal status information.
  • NAS non-access stratum
  • the access network functional entity sends the first QoS configuration to the first core network functional entity, including: the access network functional entity sends a NAS message to the first core network functional entity, and the NAS message carries the first QoS configuration.
  • a QoS configuration is possible implementations.
  • a QoS flow control method which method can be applied to a first core network functional entity in a communication system.
  • the method includes: the first core network functional entity receives terminal status information sent by the terminal, and the terminal status information is used to represent the power consumption status of the terminal; the first core network functional entity sends the terminal status information to the access network functional entity, and the terminal status information It is also used for the access network device to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configuration.
  • the first QoS configuration is used for the terminal, the second core network functional entity, the third core network functional entity and the application functional entity. Perform QoS updates.
  • the first core network functional entity may be an AMF entity
  • the second core network functional entity may be an SMF entity
  • the third core network functional entity may be a PCF entity (which may also be described as the first PCF entity).
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the above method further includes: the first core network functional entity sends a first request message to the terminal, where the first request message is used to request terminal status information.
  • the first core network functional entity receives terminal status information sent by the terminal device, including: the first core network functional entity receives a non-access layer NAS message sent by the terminal, and the NAS message carries the terminal status information. .
  • the above method further includes: the first core network functional entity receives the first QoS configuration sent by the access network functional entity; the first core network functional entity performs the QoS flow associated with the terminal according to the first QoS configuration. to perform QoS updates.
  • the first core network functional entity receives the first QoS configuration sent by the access network functional entity, including: the first core network functional entity receives a NAS message sent by the access network functional entity, and the NAS message carries There is a first QoS configuration.
  • a QoS flow control method which method can be applied to a third core network functional entity in a communication system.
  • the method includes: a third core network functional entity receives a first QoS configuration sent from an access network functional entity, and the first QoS configuration is a terminal association determined by the access network functional entity from an alternative QoS configuration according to the terminal status information of the terminal.
  • the third core network functional entity performs at least one of the following: performs QoS update on the QoS flow associated with the terminal according to the first QoS configuration; sends the first QoS configuration, the first QoS configuration to the application functional entity Used to perform QoS updates on one or more of the application functional entities.
  • the first core network functional entity may be an AMF entity
  • the second core network functional entity may be an SMF entity
  • the third core network functional entity may be a PCF entity (which may also be described as the first PCF entity).
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the above method further includes: the third core network functional entity receives the first QoS configuration sent by the second core network functional entity, and the first QoS configuration is sent by the access network functional entity to the second core network functional entity.
  • the third core network functional entity receives the first QoS configuration sent by the second core network functional entity, including: the third core network functional entity sends a subscription request message to the second core network functional entity, and the subscription request The message is used to request the first event associated with the first QoS configuration; when the first event satisfies the event reporting condition, the third core network functional entity receives the first QoS configuration sent by the second core network functional entity.
  • the above method further includes: the third core network functional entity sends a first QoS configuration to the fourth core network functional entity, where the first QoS configuration is used by the fourth core network functional entity to perform QoS update.
  • the fourth core network functional entity is other PCF (ie, the second PCF), and the second PCF may be one or more.
  • the above method further includes: the third core network functional entity receiving the alternative QoS configuration sent by the application functional entity.
  • the above method further includes: the third core network functional entity sends the alternative QoS configuration to the access network functional entity.
  • a QoS flow control method which method can be applied to the second core network functional entity in the communication system.
  • the method includes: the second core network functional entity receives the first QoS configuration sent by the access network functional entity, and the first QoS configuration is the terminal associated with the terminal determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the terminal.
  • the second core network functional entity performs at least one of the following: performs QoS update on the QoS flow associated with the terminal according to the first QoS configuration; sends the first QoS to the terminal and/or the third core network functional entity Configuration, the first QoS configuration is used for one or more of the terminal, the third core network functional entity and the application functional entity to perform QoS update.
  • the first core network functional entity may be an AMF entity
  • the second core network functional entity may be an SMF entity
  • the third core network functional entity may be a PCF entity (which may also be described as the first PCF entity).
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the second core network functional entity sends the first QoS configuration to the third core network functional entity, including: the second core network functional entity queries the subscription event and determines the first event associated with the first QoS configuration; When the first event satisfies the event reporting condition, the second core network functional entity sends the first QoS configuration to the third core network functional entity.
  • the first core network functional entity sends the first QoS configuration to the terminal, including: the first core network functional entity sends a NAS message to the terminal, and the NAS message carries the first QoS configuration.
  • a communication device can be an access network functional entity in the communication system or a chip or system-on-chip of the access network functional entity. It can also be a control device used in the access network functional entity.
  • Functional modules that implement the methods described in the above embodiments.
  • the control device can realize the functions performed by the access network functional entities in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the device may include: a receiving module configured to receive terminal status information of the first core network functional entity, where the terminal status information is used to represent the power consumption status of the terminal; a processing module configured to select from the alternative QoS based on the terminal status information.
  • the first QoS configuration of the QoS flow associated with the terminal is determined in the configuration; the sending module is configured to send the first QoS configuration to the second core network functional entity, and the first QoS configuration is used for the terminal, the second core network functional entity, and the third At least one of the core network functional entity and the application functional entity performs QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the processing module is configured to determine the first QoS configuration according to the terminal status information and the terminal status management indication in the alternative QoS configuration.
  • the processing module is configured to determine the first QoS configuration based on the terminal status information and the association between the configured terminal status information and the QoS configuration.
  • the receiving module is configured to receive the association relationship sent by the second core network functional entity; or, the access network functional entity configures the association relationship according to local policies and/or operator policies.
  • the processing module is configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration.
  • the receiving module is configured to receive the alternative QoS configuration sent by the second core network functional entity.
  • the receiving module is configured to receive a NAS message sent by the first core network functional entity, where the NAS message carries terminal status information.
  • the access network functional entity sends the first QoS configuration to the first core network functional entity, including: the access network functional entity sends a NAS message to the first core network functional entity, and the NAS message carries the first QoS configuration.
  • a QoS configuration is possible implementations.
  • a communication device may be the first core network functional entity in the communication system or a chip or system-on-chip of the first core network functional entity. It may also be the first core network functional entity.
  • the functional modules used to implement the methods described in the above embodiments.
  • the control device can realize the functions performed by the first core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the control device may include: a receiving module configured to receive terminal status information sent by the terminal, and the terminal status information is used to represent the power consumption status of the terminal; a sending module configured to send the terminal status information to the access network functional entity.
  • the status information is also used by the access network device to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configurations.
  • the first QoS configuration is used for the terminal, the second core network functional entity, the third core network functional entity and the application. Functional entities perform QoS updates.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the sending module is configured to send a first request message to the terminal, where the first request message is used to request terminal status information.
  • the receiving module is configured to receive a NAS message sent by the terminal, and the NAS message carries terminal status information.
  • the above device further includes: a processing module; a receiving module configured to receive the first QoS configuration sent by the access network functional entity; and a processing module configured to associate the terminal with the first QoS configuration.
  • the QoS flow performs QoS updates.
  • the receiving module is configured to receive a NAS message sent by the access network functional entity, where the NAS message carries the first QoS configuration.
  • a communication device can be a third core network functional entity in the communication system or a chip or system-on-chip of the third core network functional entity. It can also be a third core network functional entity.
  • the functional modules used to implement the methods described in the above embodiments.
  • the control device can realize the functions performed by the third core network functional entity in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the control device may include: a receiving module configured to receive the first QoS configuration sent from the access network functional entity, where the first QoS configuration is determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the terminal.
  • the device further includes at least one of the following: a processing module configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration; a sending module configured to send a request to the application The functional entity sends a first QoS configuration, and the first QoS configuration is used to apply one or more of the functional entities to perform QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the receiving module is configured to receive the first QoS configuration sent by the second core network functional entity, and the first QoS configuration is sent by the access network functional entity to the second core network functional entity.
  • the sending module is configured to send a subscription request message to the second core network functional entity, where the subscription request message is used to request a first event associated with the first QoS configuration; the receiving module is configured to When an event satisfies the event reporting condition, the first QoS configuration sent by the second core network functional entity is received.
  • the sending module is configured to send the first QoS configuration to the fourth core network functional entity, where the first QoS configuration is used by the fourth core network functional entity to perform QoS update.
  • the receiving module is configured to receive the alternative QoS configuration sent by the application function entity.
  • the sending module is configured to send the alternative QoS configuration to the access network functional entity.
  • a communication device can be an application function entity in the communication system or a chip or system-on-chip of the application function entity. It can also be an application function entity used to implement the above-mentioned embodiments. function module of the method described above.
  • the control device can realize the functions performed by the application function entities in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the control device may include: a receiving module configured to receive a first QoS configuration sent by the access network functional entity, where the first QoS configuration is a terminal determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the terminal.
  • the device further includes at least one of the following: a processing module configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration; a sending module configured to send a message to the terminal and /Or the third core network functional entity sends the first QoS configuration, and the first QoS configuration is used for one or more of the terminal, the third core network functional entity and the application functional entity to perform QoS update.
  • a processing module configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration
  • a sending module configured to send a message to the terminal and /Or the third core network functional entity sends the first QoS configuration, and the first QoS configuration is used for one or more of the terminal, the third core network functional entity and the application functional entity to perform QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the processing module is configured to query subscription events and determine the first event associated with the first QoS configuration; the sending module is configured to, when the first event meets the event reporting condition, the second core The network function entity sends the first QoS configuration to the third core network function entity.
  • the sending module is configured to send a NAS message to the terminal, where the NAS message carries the first QoS configuration.
  • a communication device such as an access network functional entity, a first core network functional entity, a second core network functional entity, a third core network functional entity, and an application functional entity.
  • the communication device may include: a memory and a processor; the processor is connected to the memory and is configured to execute the computer-executable instructions stored in the memory to implement the above first to fourth aspects and any possible implementation manner thereof.
  • a core network communication system including: a first core network functional entity, a second core network functional entity, a third core network functional entity and an application functional entity.
  • the first core network functional entity is configured to: perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration, and the first QoS configuration is such that the access network functional entity selects from the alternative QoS according to the terminal status information of the terminal.
  • the QoS configuration of the QoS flow associated with the terminal determined in the configuration; the second core network functional entity is configured to: perform QoS updates on the QoS flow associated with the terminal according to the first QoS configuration; send the third core network functional entity A QoS configuration; the third core network functional entity is configured to: receive the first QoS configuration sent by the second core network functional entity; perform QoS updates on the QoS flow associated with the terminal according to the first QoS configuration; and provide the application function entity with Send first QoS configuration.
  • the first core network functional entity may be an AMF entity
  • the second core network functional entity may be an SMF entity
  • the third core network functional entity may be a PCF entity (which may also be described as the first PCF entity).
  • the above-mentioned core network communication system further includes: a fourth core network functional entity; a third core network functional entity configured to send the first QoS configuration to the fourth core network functional entity; a fourth core network functional entity
  • the functional entity is configured to: receive the first QoS configuration sent by the third core network functional entity; and perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration.
  • the fourth core network functional entity is other PCF (ie, the second PCF), and the second PCF may be one or more.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium; when the instructions are run on a computer, they are used to perform the above-mentioned first to fourth aspects and any possible method thereof. The method described in the embodiment.
  • a computer program or computer program product is provided.
  • the computer program product When the computer program product is executed on a computer, the computer implements the method described in the first to second aspects and any possible implementation manner thereof. method.
  • the terminal status information of the terminal is provided to the access network functional entity through the first core network functional entity (ie, the AMF entity), so that the access network functional entity can match the service traffic characteristics and terminal energy consumption management according to the terminal status information. , that is, selecting the corresponding QoS configuration according to the power consumption status of the terminal to ensure business needs and user experience.
  • the terminal status information provided by the first core network functional entity is used as additional information for policy determination, which can reduce the use of wireless interface network resources, especially when resources are limited.
  • the first core network functional entity provides the terminal status information of the terminal to the access network functional entity, so that the user's key applications are allowed to run in the power saving mode, thereby improving the user experience and extending the battery life, rather than shutting down completely.
  • Figure 1 is an architectural schematic diagram of a 5G communication system in an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of the implementation of the first QoS flow control method in an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of the implementation of the second QoS flow control method in an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of the implementation of the third QoS flow control method in an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of the implementation of the fourth QoS flow control method in an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of the implementation of the fifth QoS flow control method in the embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a network functional entity in an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other. For example, without departing from the scope of the embodiments of the present disclosure, “first information” may also be called “second information”, and similarly, “second information” may also be called “first information”. Depending on the context, the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • the technical solution of the embodiment of the present disclosure relates to the architecture of a communication system.
  • the communication system may be a 5G communication system or a future evolution communication system.
  • access network functional entities which can also be described as access network functions, access network elements, access network functional components, access network functional modules, etc.
  • core network function core network Function entity
  • At least one core network functional entity is located in the core network (ie 5GC).
  • the terminal is used to report terminal status information (UE status information) indicating its own power consumption status to the core network side; at least one core network functional entity has at least the following functions: providing the received terminal status information to the access network functional entity , receiving the first QoS configuration determined by the access network functional entity for the QoS flow associated with the terminal based on the terminal status information, and performing QoS update on the QoS flow associated with the terminal based on the received first QoS configuration, and, going to the next level
  • the core network functional entity sends the first QoS configuration for the next-level core network functional entity to perform QoS update on the QoS flow associated with the terminal.
  • the above QoS flow is the QoS flow of the first service of the terminal.
  • the first service may include XR service, mobile media service, etc., wherein XR service and mobile media service may also be called XRM service, or may be described as XR ⁇ M service.
  • FIG. 1 is an architectural schematic diagram of a 5G communication system in an embodiment of the present disclosure.
  • the above-mentioned 5G communication system 100 may include a 5G Radio Access Network (RAN) and a 5G Core Network (5GC).
  • the 5G wireless access network may include next generation radio access network (NG RAN).
  • NG RAN 101 communicates with the terminal (or terminal device) 102 through the Uu interface.
  • the 5G core network may include: at least one core network functional entity mentioned above, such as access and mobility management function (AMF) entity 1031, SMF entity 1032, PCF entity 1033, UPF entity 1034, AF entity 1035, NEF entity 1036, TSCTSF entity 1037, etc.
  • AMF access and mobility management function
  • the above communication system may also include other network functional entities (which may also be called network elements, network devices, etc.), which are not specifically limited in the embodiment of the present disclosure.
  • both the third-party (3rd) application function (AF) entity and the operator (operator) AF entity belong to AF entities.
  • third-party AF entities such as instant messaging service servers, electronic payment service servers, etc.
  • operator AF entities such as the agent-call session control function in the IP multimedia system) proxy-call session control function, P-CSCF) entity
  • third-party AF entities need to pass NEF entities when interacting with PCF entities.
  • the above operator AF entity can also be described as a trusted or trusted AF entity, and the above third party AF can also be described as an untrusted or untrusted AF entity.
  • PCF PCF
  • SMF SMF
  • Other entities are similar and will not be listed one by one.
  • N3 Communication interface between UPF 1034 and NG RAN 101.
  • N4 The interface between SMF 1032 and UPF 1034, used to transfer information between the control plane and the user plane (user plan, UP), including controlling the delivery of UP-oriented forwarding rules, QoS control rules, traffic statistics rules, etc. Report UP information.
  • N2 The interface between AMF 1031 and NG RAN 101, used to transmit wireless bearer control information from the core network side to NG RAN 101, etc.
  • N1 The interface between AMF 1031 and terminal 102, has nothing to do with access, and is used to transmit QoS control rules to terminal 102, etc.
  • the communication between any two entities can use service-oriented communication.
  • the interfaces Nnef and Npcf used for communication between NEF and PCF are both service-oriented interfaces.
  • the interfaces Naf, Ntsctsf, Namf and Nsmf are all service-oriented interfaces.
  • the above-mentioned terminal may be a terminal device with a wireless communication function and a wireless sensing function, and may also be called user equipment (UE).
  • Terminals can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, or an industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal may also be a handheld device, a vehicle-mounted device, a wearable device, a computing device, or other processing device connected to a wireless modem with wireless communication functions and wireless sensing functions.
  • the terminal device can also be called by different names in different networks, for example: terminal device, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , terminal, wireless communication equipment, user agent or user device, cellular phone, cordless phone, session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital processing (personal digital) assistant, PDA), 5G communication system or terminals in future evolution communication systems, etc.
  • terminal device access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , terminal, wireless communication equipment, user agent or user device, cellular phone, cordless phone, session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital processing (personal digital) assistant, PDA), 5G communication system or terminals in future evolution communication systems, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • the above-mentioned access network functional entity may be a functional entity used by the access network side to support communication terminals to access the wireless communication system.
  • it can be the next generation base station (next generation NodeB, gNB), transmission reception point (TRP), relay node (relay node), access point (AP), etc. in the 5G communication system.
  • next generation base station next generation NodeB, gNB
  • TRP transmission reception point
  • relay node relay node
  • AP access point
  • each functional entity and interface are only exemplary, and not all functions of each functional entity are necessary when applied in the embodiments of the present disclosure.
  • the functional entities of the access network and core network may be physical physical devices or virtualized devices, which are not limited here.
  • the communication system in the embodiment of the present disclosure may also include other devices not shown in Figure 1, which are not limited here.
  • XR and media (extend reality and media, XRM) business In 5G networks, mobile media services, XR, cloud games, video-based machine or drone remote control, etc. are expected to contribute more and more traffic to 5G networks.
  • XR and media (extend reality and media, XRM) business Especially XR and media (extend reality and media, XRM) business.
  • XRM business has the characteristics of high throughput, low latency, and high reliability requirements, and requires high power consumption on the terminal side. The battery power of the terminal may affect the user experience.
  • CM connection management
  • MICO mobile initiated connection only
  • extended DRX extended discontinuous reception
  • eDRX extended discontinuous reception
  • the terminal device in the communication system may be a UE as an example
  • the first core network functional entity may be an AMF as an example
  • the second core network functional entity may be an SMF as an example
  • the third core network functional entity may be an SMF as an example.
  • the core network functional entity may take the PCF as an example
  • the fourth core network functional entity may take other PCFs as an example
  • the application functional entity may be an AF as an example.
  • the terminal, access network functional entity, first core network functional entity, second core network functional entity, third core network functional entity, fourth core network functional entity and application functional entity are also It may be other functional entities with the same or similar functions and connection relationships, which are not limited in this embodiment of the disclosure.
  • embodiments of the present disclosure provide a QoS flow control method.
  • FIG. 2 is a schematic flowchart of the implementation of the first QoS flow control method in an embodiment of the present disclosure.
  • the QoS flow control method is applied to an access network functional entity (such as RAN)
  • the QoS flow control method may include S201 to S204.
  • the access network functional entity receives the terminal status information (UE status information) sent from the AMF.
  • UE status information UE status information
  • the terminal status information is used to indicate the power consumption status of the UE.
  • the terminal status information includes one or more parameters related to the UE performance.
  • the UE status information may include at least one of the following: UE battery level, UE battery life, UE's power supply mode (powered mode), UE's CPU load, UE overheating status (UE overheating status).
  • parameters related to UE power consumption may include other parameters.
  • the power supply mode of the UE may include: battery-powered mode (battery-powered) and power supply mode (mains/wall-powered).
  • the battery power supply mode refers to using the built-in battery of the UE to provide power
  • the power supply mode refers to using a power adapter to connect to a power source such as a wall socket, a mobile socket, etc., to power the UE.
  • the UE reports its own terminal status information to the AMF, and then the AMF sends it to the access network functional entity.
  • the UE in order to have as little impact as possible on the access network functional entity and the UE interface, the UE can send terminal status information to the AMF through NAS messages (such as N2 SM information).
  • NAS messages such as N2 SM information
  • the access network functional entity determines the first QoS configuration (QoS profile) of the QoS flow associated with the UE from the alternative QoS configurations based on the terminal status information.
  • QoS configuration can also be understood as QoS level, and QoS configuration and QoS level are in one-to-one correspondence.
  • the PCF can send one or more alternative QoS configurations (alternative QoS profile) to the access network functional entity.
  • the access network functional entity can select the QoS configuration of the QoS flow associated with the UE (i.e., the first QoS configuration) from the alternative QoS configurations according to the power consumption status of the UE, thereby according to the QoS configuration performs QoS updates.
  • the above-mentioned “alternative” can also be described as “optional”, “replaceable”, “candidate”, etc.
  • the QoS flow associated with the UE may be related to the first service.
  • the first service may be an XRM service or an XRM service group.
  • the above-mentioned QoS flows may be of different granularities, for example, they may be session-specific (ie, session QoS flow) or service-oriented (eg, business data flow QoS flow). This is not the case in the embodiments of the present disclosure. Specific limitations.
  • the access network functional entity can determine the corresponding QoS configuration for one or more sessions of a service (ie, the first service) of the UE according to the terminal status information.
  • the PCF can target a service of the UE according to the terminal status information.
  • the above alternative QoS configuration may include at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink Guaranteed bit rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among which, the terminal status management indication is used to indicate whether the alternative QoS configuration supports for terminal status management.
  • packet delay budget packet delay budget
  • packet error rate packet error rate
  • uplink guaranteed bit rate uplink guaranteed bit rate
  • DL guaranteed bit rate downlink Guaranteed bit rate
  • average window averaging window
  • maximum data burst volume maximum data burst volume
  • the above-mentioned packet delay budget refers to the packet delay budget corresponding to the alternative QoS configuration
  • the above-mentioned packet error rate refers to the packet error rate corresponding to the alternative QoS configuration
  • the above-mentioned uplink guaranteed bit rate refers to the corresponding packet error rate to the alternative QoS configuration.
  • the uplink guaranteed bit rate; the above downlink guaranteed bit rate refers to the downlink guaranteed bit rate corresponding to the alternative QoS configuration; the above average window refers to the average window corresponding to the alternative QoS configuration; the above maximum data burst volume refers to the backup The maximum data burst amount corresponding to the selected QoS configuration; the above terminal status management indication is information indicating whether the alternative QoS configuration is used for terminal status management.
  • the QoS parameters i.e., alternative QoS parameter sets
  • the expanded alternative QoS configuration can be applied It is used for Guaranteed Bit Rate (GBR) QoS flows and can also be applied to non-GBR QoS flows.
  • GRR Guaranteed Bit Rate
  • the PCF can indicate to the access network functional entity whether the alternative QoS configuration is used for terminal status management by whether to carry the terminal status management indication in the alternative QoS configuration.
  • the terminal status management indication carried in the alternative QoS configuration indicates that the alternative QoS configuration is used for terminal status management, and the information that the alternative QoS configuration does not carry the terminal status management indication indicates that the alternative QoS configuration is not used for terminal status management.
  • the PCF may indicate to the access network functional entity whether the alternative QoS configuration is used for terminal status management through the value of the terminal status management indication.
  • the terminal status management indication takes a first value, it indicates that the alternative QoS configuration is used for terminal status management information, and if the terminal status management indication takes a second value, it indicates that the alternative QoS configuration is not used for terminal status management information.
  • the PCF can also use other methods to set the terminal status management indication, which is not specifically limited in the embodiments of the present disclosure.
  • the access network functional entity can determine whether the alternative QoS configuration is used for terminal status management according to the terminal status management indication, and then use the terminal status information to determine whether the alternative QoS configuration is used for terminal status management.
  • the QoS configuration of the QoS flow associated with the UE is determined in the managed alternative QoS configuration.
  • the PCF can send alternative QoS configurations for terminal status management to the access network functional entity. Then, after receiving these alternative QoS configurations, the access network functional entity will know the received The alternative QoS configuration is used for terminal status management, and then S202 is performed.
  • the PCF may also receive alternative QoS configurations sent by the AF. Further, the PCF can determine the alternative QoS configuration to be sent to the access network functional entity according to the QoS policy.
  • the PCF may send one or more alternative QoS configurations to the access network functional entity in the form of a list (such as alternative QoS (alternative QoS)).
  • alternative QoS alternative QoS
  • the access network functional entity may also determine the first QoS configuration based on the terminal status information and the association between the terminal status information and the QoS configuration.
  • the access network functional entity or PCF can configure the association between terminal status information and QoS configuration.
  • the access network functional entity can determine the QoS configuration of the QoS flow associated with the UE based on the terminal status information from the AF by querying the association between the terminal status information and the QoS configuration.
  • the PCF can send the association between terminal status information and QoS configuration to the access network functional entity; or, the access network functional entity configures the above-mentioned association according to local policies and/or operator policies.
  • the access network functional entity can also obtain the above-mentioned association relationship through other methods, and the embodiments of the present disclosure do not specifically limit this.
  • S203 The access network functional entity performs QoS update based on the first QoS configuration.
  • the access network functional entity determines the corresponding first QoS configuration according to the power consumption status of the UE, it uses the first QoS configuration to perform QoS updates on the QoS flow associated with the UE.
  • the access network functional entity sends the first QoS configuration to the SMF.
  • the access network functional entity may send the first QoS configuration to the UE, 5GC (including AMF, SMF and/or PCF) and AF.
  • the access network functional entity may send the first QoS configuration to the UE, 5GC (including AMF, SMF and/or PCF) and AF by initiating a PDU session modification procedure.
  • the access network functional entity first sends the first QoS configuration to the SMF, and then the SMF sends it to the AMF and PCF.
  • the PCF sends the received first QoS configuration to the AF.
  • the SMF may also send the first QoS configuration to the UE.
  • the UE, AMF, SMF, PCF and AF may perform QoS update according to the first QoS configuration.
  • the access network functional entity when it sends the first QoS configuration to the PCF through SMF in S204, it may also send the terminal status information corresponding to the first QoS configuration (that is, the terminal status information from the AF) to PCF, so that the PCF can decide whether the first QoS configuration is suitable for the current power consumption state of the UE based on the latest terminal status information received by itself and the terminal status information sent by the access network functional entity, thereby determining whether to provide the first QoS configuration to the access network functional entity. More appropriate alternative QoS configurations, adjustment of QoS policies, etc., to optimize QoS control.
  • the access network functional entity sends the first QoS configuration to the SMF through a NAS message (such as N2 SM information).
  • a NAS message such as N2 SM information
  • S203 and S204 can be executed at the same time, or S203 can be executed first and then S204, which is not specifically limited in this embodiment of the disclosure.
  • FIG 3 is a schematic flowchart of the implementation of the second QoS flow control method in an embodiment of the present disclosure.
  • the QoS flow control method is applied to the first core network functional entity (such as AMF ) side, the QoS flow control method may include S301 to S305.
  • AMF receives the terminal status information (UE status information) sent by the UE.
  • the terminal status information is used to indicate the power consumption status of the UE.
  • the terminal status information includes one or more parameters related to the UE performance.
  • the UE status information may include at least one of the following: UE battery level, UE battery life, UE's power supply mode (powered mode), UE's CPU load, UE overheating status (UE overheating status).
  • parameters related to UE power consumption may include other parameters.
  • the power supply mode of the UE may include: battery-powered mode (battery-powered) and power supply mode (mains/wall-powered).
  • the battery power supply mode refers to using the built-in battery of the UE to provide power
  • the power supply mode refers to using a power adapter to connect to a power source such as a wall socket, a mobile socket, etc., to power the UE.
  • the UE can report its own terminal status information to the AMF, and then the AMF sends it to the access network functional entity.
  • the UE in order to have as little impact as possible on the access network functional entity and the UE interface, the UE can send terminal status information to the AMF through NAS messages (such as N2 SM information).
  • NAS messages such as N2 SM information
  • S201 can be multiplexed with the UE's registration procedure (registration procedure), the UE triggered service request procedure (UE Triggered Service Request procedure), etc.
  • registration procedure registration procedure
  • UE triggered service request procedure UE Triggered Service Request procedure
  • the AMF sends the terminal status information to the access network functional entity.
  • the terminal status information is also used by the access network functional entity to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configurations.
  • the AMF can provide it to the access network functional entity.
  • the AMF can send terminal status information to the access network functional entity through NAS messages (such as N2 SM information).
  • the above S302 can be multiplexed with the PDU session establishment process.
  • it can also be reused in other processes, and this is not specifically limited in the embodiments of the present disclosure.
  • the QoS flow associated with the UE may be related to the first service.
  • the first service may be an XRM service or an XRM service group.
  • the above-mentioned QoS flows may be of different granularities, for example, they may be session-specific (ie, session QoS flow) or service-oriented (eg, business data flow QoS flow). This is not the case in the embodiments of the present disclosure. Specific limitations.
  • the access network functional entity can determine corresponding QoS parameters for one or more sessions of a service (ie, the first service) of the UE according to the terminal status information.
  • the PCF may determine corresponding QoS parameters for a service of the UE (ie, the first service) based on the terminal status information.
  • "OK” can be described as “setting”, “generating”, “updating”, etc.
  • the above method may further include: S303 to S304.
  • the AMF receives the first QoS configuration from the access network functional entity.
  • the access network functional entity determines the first QoS configuration from the alternative QoS configurations, it can send the first QoS configuration to the SMF, and then the SMF sends it to the AMF.
  • the access network functional entity may also directly send the first QoS configuration to the AMF.
  • the access network function entity can send it to the AMF through a NAS message (such as N1 message).
  • AMF performs QoS update based on the first QoS configuration.
  • the AMF uses the first QoS configuration to perform QoS updates on the QoS flow associated with the UE.
  • the execution process of AMF can also refer to the description of the AMF execution process in the embodiment of FIG. 1. For the sake of simplicity, no details will be described here.
  • FIG 4 is a schematic flowchart of the implementation of the third QoS flow control method in an embodiment of the present disclosure.
  • the QoS flow control method is applied to the third core network functional entity (such as PCF ) side, the QoS flow control method may include S401 to S405.
  • PCF receives the first QoS configuration from SMF.
  • the SMF can provide the first QoS configuration to the PCF.
  • the first QoS configuration is the QoS configuration of the QoS flow associated with the UE determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the UE.
  • the QoS flow associated with the UE may be related to the first service.
  • the first service may be an XRM service or an XRM service group.
  • the above-mentioned QoS flows may be of different granularities, for example, they may be session-specific (ie, session QoS flow) or service-oriented (eg, business data flow QoS flow). This is not the case in the embodiments of the present disclosure. Specific limitations.
  • the access network functional entity can determine the corresponding QoS configuration for one or more sessions of a service (ie, the first service) of the UE according to the terminal status information.
  • the PCF may determine the corresponding QoS configuration for a service of the UE (ie, the first service) based on the terminal status information.
  • "OK” can be described as “setting”, “generating”, “updating”, etc.
  • the PCF may also send one or more alternative QoS configurations to the access network functional entity.
  • the access network functional entity can select the QoS configuration of the QoS flow associated with the UE (ie, the first QoS configuration) from the alternative QoS configurations according to the power consumption status of the UE, thereby QoS updates are performed based on the QoS configuration.
  • the one or more alternative QoS configurations may be sent by the AF to the PCF.
  • the PCF may also determine the alternative QoS configuration sent to the access network functional entity according to the QoS policy.
  • the PCF may send one or more alternative QoS configurations to the access network functional entity in the form of a list (such as alternative QoS (alternative QoS)).
  • alternative QoS alternative QoS
  • the PCF may send a subscription request message to the SMF.
  • the subscription request message is used to request the first event associated with the first QoS configuration.
  • the PCF receives The first QoS configuration sent by SMF.
  • the PCF can subscribe to the SMF for events associated with the first QoS configuration. After receiving the first QoS configuration, the SMF queries the subscription events and confirms the events associated with the first QoS configuration. When the event meets the reporting conditions, the SMF sends the first QoS configuration to the PCF.
  • the PCF may also use other methods to obtain the first QoS configuration from the SMF, which is not specifically limited in this embodiment of the disclosure.
  • PCF performs QoS update based on the first QoS configuration.
  • the PCF uses the first QoS configuration to perform QoS updates on the QoS flow associated with the UE.
  • the PCF sends the first QoS configuration to the AF for the AF to perform QoS update.
  • the PCF may, but is not limited to, send the first QoS configuration to the AF through the following path.
  • the PCF directly sends the first QoS configuration to the AF. It can be understood that PCF sends the first QoS configuration to AF through Npcf and Naf. At this time, AF is trusted AF.
  • PCF sends the first QoS configuration to AF through NEF. It can be understood that PCF sends the first QoS configuration to NEF through Npcf and Nnef, and NEF sends the first QoS configuration to AF through Nnef and Naf. At this time, AF is an untrusted AF.
  • PCF sends the first QoS configuration to AF through TSCTSF. It can be understood that PCF sends the first QoS configuration to TSCTSF through Npcf and Ntsctsf, and TSCTSF sends the first QoS configuration to AF through Ntsctsf and Naf.
  • AF is a trusted AF
  • the first service is a time-sensitive service.
  • PCF sends the first QoS configuration to AF through NEF and TSCTSF. It can be understood that PCF sends the first QoS configuration to NEF through Npcf and Nnef, NEF sends the first QoS configuration to TSCTSF through Nnef and Ntsctsf, and TSCTSF sends the first QoS configuration to AF through Ntsctsf and Naf.
  • AF is an untrusted AF
  • the first service is a time-sensitive service.
  • the first QoS configuration may have different transmission paths. It should be noted that the above is only an example of the transmission path of the first QoS configuration and does not limit the transmission method and transmission path of the first QoS configuration.
  • the first QoS configuration can also be transmitted from the PCF to the AF using other paths.
  • the NEF can also send the first QoS configuration to the user data register (user data repository, UDR) functional entity or unified data management (unified data management) , UDM) functional entity to store business characteristic parameters as AMF associated parameter storage, SMF associated parameter storage or application data.
  • UDR user data repository
  • UDM unified data management
  • S402 and S403 can be executed at the same time, or S402 can be executed first and then S403, which is not specifically limited in this embodiment of the disclosure.
  • the above method may also include:
  • the PCF can also send the first QoS configuration to other PCFs, and the first QoS configuration is used by other PCFs to perform QoS updates on the QoS flow.
  • PCF can be recorded as PCF0
  • PCF can provide the first QoS configuration to other PCFs (such as PCF 1, PCF 2, PCF 3,...) , for other PCFs to execute the QoS update process described in S304 above.
  • PCF 0 After PCF 0 receives the first QoS configuration, it can directly send it to other PCFs such as PCF 1, PCF 2, and PCF 3. Alternatively, other PCFs such as PCF 1, PCF 2, PCF 3, etc. can also subscribe to PCF 0 for events associated with the first QoS configuration (i.e., the first event). When the first event meets the reporting conditions, PCF 0 sends the first QoS configuration to other PCFs such as PCF 1, PCF 2, and PCF 3. Furthermore, all PCFs subscribe to NEF for events associated with the first QoS configuration. When the events meet the reporting conditions, NEF sends the first QoS configuration to all PCFs. Of course, multiple PCFs can also obtain the first QoS configuration through other methods, which are not specifically limited in this embodiment of the disclosure.
  • the execution process of PCF can also refer to the description of the execution process of the PCF side in the above embodiments of Figures 2 to 3. For the sake of brevity of the description, no further description is given here.
  • embodiments of the present disclosure also provide a QoS flow control method.
  • Figure 5 is a schematic flowchart of the implementation of the fourth QoS flow control method in an embodiment of the present disclosure. As shown in Figure 4, in this embodiment, the QoS flow control method is applied to the second core network functional entity (such as SMF ) side, the QoS flow control method may include S501 to S504.
  • the QoS flow control method may include S501 to S504.
  • the SMF receives the first QoS configuration sent by the access network functional entity.
  • the first QoS configuration is the QoS configuration of the QoS flow associated with the UE determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the UE.
  • the access network functional entity determines the corresponding first QoS configuration according to the terminal status information provided by the AMF, it sends the first QoS configuration to the SMF, and the SMF forwards it to the UE, 5GC and AF.
  • the access network function entity may send the first QoS configuration to the SMF through a NAS message (such as N2 SM information).
  • a NAS message such as N2 SM information
  • the SMF may perform at least one of S502 to S504.
  • S502 SMF performs QoS update based on the first QoS configuration.
  • S503 SMF sends the first QoS configuration to PCF, and the first QoS configuration is used by PCF and/or AF to perform QoS update;
  • the SMF sends the first QoS configuration to the UE, where the first QoS configuration is used for the UE to perform QoS update.
  • S502, S503 and S504 can be executed simultaneously or sequentially, and this is not specifically limited in the embodiment of the present disclosure.
  • the execution process of SMF can be referred to the description of the SMF execution process in the above embodiments of Figures 2 to 4. For the sake of simplicity of the description, no further description is given here.
  • embodiments of the present disclosure also provide a QoS flow control method.
  • Figure 5 is a schematic flowchart of the implementation of the fifth QoS flow control method in the embodiment of the present disclosure. As shown in Figure 5, this QoS flow control method can be applied to the application function entity (such as AF) side to control the QoS flow.
  • the method may include S501 to S502.
  • the AF receives the first QoS configuration sent by the PCF.
  • the AF sends a subscription request message to the PCF.
  • the subscription request message is used to request the first event associated with the first QoS configuration.
  • the AF receives The first QoS configuration sent by PCF.
  • S602 AF performs QoS update based on the first QoS configuration.
  • the execution flow of AF can be referred to the description of the execution flow of AF in the above embodiments of FIGS. 2 to 5 .
  • the execution flow of AF can be referred to the description of the execution flow of AF in the above embodiments of FIGS. 2 to 5 .
  • no further description is given here.
  • the access network functional entity is provided with the terminal status information of the UE through the AMF entity, so that the access network functional entity can match the service traffic characteristics and terminal energy consumption management according to the terminal status information, that is, according to the power consumption of the terminal. Select the corresponding QoS configuration according to the status to ensure business requirements and user experience.
  • the terminal status information provided by AMF is used as additional information for policy determination, which can reduce the use of wireless interface network resources, especially when resources are limited.
  • providing the terminal status information of the UE to the access network functional entity through the AMF can support the use of network resources according to the capabilities of the terminal.
  • the AMF provides the terminal status information of the UE to the access network functional entity, allowing the user's key applications to be run in the power saving mode, thereby improving the user experience and extending the battery life, rather than shutting down completely.
  • Figure 7 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • the communication device 700 may include: a processing module 701; The receiving module 702 and the sending module 703.
  • the communication device 700 can be an access network functional entity in the communication system or a chip or system-on-chip of the access network functional entity. It can also be an access network functional entity used to implement the above embodiments. Function module of the method described.
  • the communication device 700 can realize the functions performed by the access network functional entities in the above embodiments, and these functions can be realized by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 702 is configured to receive the terminal status information of the first core network functional entity, and the terminal status information is used to represent the power consumption status of the terminal; the processing module 701 is configured to, according to the terminal status information, select from the alternative QoS The first QoS configuration of the QoS flow associated with the terminal is determined in the configuration; the sending module 703 is configured to send the first QoS configuration to the second core network functional entity, and the first QoS configuration is used for the terminal, the second core network functional entity, and the second core network functional entity. At least one of the three core network functional entities and the application functional entity performs QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the processing module 701 is configured to determine the first QoS configuration according to the terminal status information and the terminal status management indication in the alternative QoS configuration.
  • the processing module 701 is configured to determine the first QoS configuration based on the terminal status information and the association between the configured terminal status information and the QoS configuration.
  • the receiving module 702 is configured to receive the association relationship sent by the second core network functional entity; or, the access network functional entity configures the association relationship according to local policies and/or operator policies.
  • the processing module 701 is configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration.
  • the receiving module 702 is configured to receive the alternative QoS configuration sent by the second core network functional entity.
  • the receiving module 702 is configured to receive a NAS message sent by the first core network functional entity, where the NAS message carries terminal status information.
  • the access network functional entity sends the first QoS configuration to the first core network functional entity, including: the access network functional entity sends a NAS message to the first core network functional entity, and the NAS message carries the first QoS configuration.
  • a QoS configuration is possible implementations.
  • the communication device 700 may be the first core network functional entity or a chip or system-on-chip of the first core network functional entity in the communication system, and may also be a first core network functional entity used to implement The functional modules of the methods described in the above embodiments.
  • the communication device 700 can implement the functions performed by the first core network functional entity in the above embodiments, and these functions can be implemented by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 702 is configured to receive terminal status information sent by the terminal, and the terminal status information is used to represent the power consumption status of the terminal; the sending module 703 is configured to send the terminal status information to the access network functional entity.
  • the terminal status The information is also used by the access network device to determine the first QoS configuration of the QoS flow associated with the terminal from the alternative QoS configurations.
  • the first QoS configuration is used for the terminal, the second core network functional entity, the third core network functional entity and the application function.
  • the entity performs QoS updates.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the sending module 703 is configured to send a first request message to the terminal, where the first request message is used to request terminal status information.
  • the receiving module 702 is configured to receive NAS messages sent by the terminal, and the NAS messages carry terminal status information.
  • the above device further includes: a processing module 701; a receiving module 702, configured to receive the first QoS configuration sent by the access network functional entity; and the processing module 701, configured to, according to the first QoS configuration, Perform QoS updates on QoS flows associated with the terminal.
  • the receiving module 702 is configured to receive a NAS message sent by the access network functional entity, where the NAS message carries the first QoS configuration.
  • the communication device 700 can be the third core network functional entity in the communication system or a chip or system-on-chip of the third core network functional entity, and can also be used in the third core network functional entity to implement The functional modules of the methods described in the above embodiments.
  • the communication device 700 can implement the functions performed by the third core network functional entity in the above embodiments, and these functions can be implemented by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 702 is configured to receive the first QoS configuration sent from the access network functional entity.
  • the first QoS configuration is the terminal association determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the terminal.
  • QoS configuration of the QoS flow the device further includes at least one of the following: a processing module 701, configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration; a sending module 703, configured to send a request to the application
  • the functional entity sends a first QoS configuration, and the first QoS configuration is used for one or more of the terminal application functional entities to perform QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the receiving module 702 is configured to receive the first QoS configuration sent by the second core network functional entity.
  • the first QoS configuration is sent by the access network functional entity to the second core network functional entity.
  • the sending module 703 is configured to send a subscription request message to the second core network functional entity, where the subscription request message is used to request the first event associated with the first QoS configuration; the receiving module 702 is configured to When the first event satisfies the event reporting condition, receive the first QoS configuration sent by the second core network functional entity.
  • the sending module 703 is configured to send the first QoS configuration to the fourth core network functional entity, where the first QoS configuration is used by the fourth core network functional entity to perform QoS update.
  • the receiving module 702 is configured to receive the alternative QoS configuration sent by the application function entity.
  • the sending module 703 is configured to send the alternative QoS configuration to the access network functional entity.
  • the communication device 700 can be an application function entity in the communication system or a chip or system-on-chip of the application function entity. It can also be an application function entity used to implement the methods described in the above embodiments. functional module.
  • the communication device 700 can implement the functions performed by the application function entities in the above embodiments, and these functions can be implemented by hardware executing corresponding software. These hardware or software include one or more modules corresponding to the above functions.
  • the receiving module 702 is configured to receive the first QoS configuration sent by the access network functional entity, where the first QoS configuration is associated with the terminal determined by the access network functional entity from the alternative QoS configuration according to the terminal status information of the terminal.
  • QoS configuration of the QoS flow the device further includes at least one of the following: a processing module 701 configured to perform QoS update on the QoS flow associated with the terminal according to the first QoS configuration; a sending module 703 configured to send a message to the terminal and /Or the third core network functional entity sends the first QoS configuration, and the first QoS configuration is used for one or more of the terminal, the third core network functional entity and the application functional entity to perform QoS update.
  • the terminal status information includes at least one of the following: battery power, battery life, power supply mode, CPU load, and terminal overheating status.
  • the alternative QoS configuration includes at least one of the following: packet delay budget (packet delay budget), packet error rate (packet error rate), uplink guaranteed bit rate (UL guaranteed bit rate), downlink guaranteed bit Rate (DL guaranteed bit rate), average window (averaging window), maximum data burst volume (maximum data burst volume), terminal status management indication; among them, the terminal status management indication is used to indicate whether the alternative QoS configuration is supported for the terminal Status management.
  • the processing module 701 is configured to query subscription events and determine the first event associated with the first QoS configuration; the sending module 703 is configured to, when the first event satisfies the event reporting condition, the first event The second core network functional entity sends the first QoS configuration to the third core network functional entity.
  • the sending module 703 is configured to send a NAS message to the terminal, where the NAS message carries the first QoS configuration.
  • the receiving module 702 mentioned in the embodiment of the present disclosure may be a receiving interface, a receiving circuit or a receiver, etc.; the sending module 703 may be a sending interface, a sending circuit or a transmitter, etc.; and the processing module 701 may be one or more processors.
  • FIG. 8 is a schematic structural diagram of a communication device in an embodiment of the present disclosure.
  • the communication device 800 uses general computer hardware, including a processor 801, a memory 802, a bus 803, an input device 804 and an output device.
  • memory 802 may include computer storage media in the form of volatile and/or non-volatile memory, such as read-only memory and/or random access memory.
  • Memory 802 may store an operating system, application programs, other program modules, executable code, program data, user data, and the like.
  • Input device 804 may be used to input commands and information to a communication device, such as a keyboard or pointing device such as a mouse, trackball, touch pad, microphone, joystick, game pad, satellite television antenna, scanner, or similar device. These input devices may be connected to processor 801 via bus 803 .
  • the output device 805 can be used for communication devices to output information.
  • the output device 805 can also be other peripheral output devices, such as speakers and/or printing devices. These output devices can also be connected to the processor 801 through the bus 803. .
  • the communication device may be connected to a network through the antenna 806, such as a local area network (LAN).
  • LAN local area network
  • the computer execution instructions stored in the control device can be stored in a remote storage device and are not limited to local storage.
  • the communication device executes the relay communication method on the UE side or the network device side in the above embodiments.
  • the specific execution process refer to the above embodiments. , which will not be described in detail here.
  • the above-mentioned memory 802 stores computer execution instructions for realizing the functions of the processing module 701, the receiving module 702 and the sending module 703 in FIG. 7 .
  • the functions/implementation processes of the processing module 701, the receiving module 702 and the sending module 703 in Figure 7 can all be implemented by the processor 801 in Figure 8 calling the computer execution instructions stored in the memory 802.
  • the processor 801 in Figure 8 calling the computer execution instructions stored in the memory 802.
  • embodiments of the present disclosure provide a network functional entity, such as an access network functional entity, a first core network functional entity, a second core network functional entity or a third core network functional entity.
  • FIG 8 is a schematic structural diagram of a network functional entity in an embodiment of the present disclosure.
  • the network functional entity 900 may include a processing component 901, which further includes one or more processors, and is represented by a memory 902 A memory resource used to store instructions, such as application programs, that can be executed by processing component 901.
  • the application program stored in memory 902 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 901 is configured to execute instructions to perform any of the foregoing methods applied to the network device.
  • the network function entity 900 may also include a power supply component 903 configured to perform power management of the network function entity 900, a wired or wireless network interface 904 configured to connect the network function entity 900 to the network, and an input/output (I/O ) interface 905.
  • the network function entity 900 may operate based on an operating system stored in the memory 902, such as Windows Server TM, Mac OS X TM, Unix TM, Linux TM, FreeBSD TM or similar.
  • the embodiment of the present disclosure also provides a communication device, such as an access network functional entity, a first core network functional entity, a second core network functional entity or a third core network functional entity, including: a memory and a processor ;
  • the processor is connected to the memory and is configured to execute the computer-executable instructions stored on the memory to implement the method described in one or more of the above embodiments.
  • embodiments of the present disclosure also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium; when the instructions are run on the computer, they are used to execute the network in one or more of the above embodiments. Methods on the entity side of the function.
  • the network functional entity may include: for example, an access network functional entity, a first core network functional entity, a second core network functional entity, or a third core network functional entity.
  • embodiments of the present disclosure also provide a computer program or computer program product.
  • the computer program product When the computer program product is executed on a computer, the computer implements the method on the entity side of the network function in one or more of the above embodiments.
  • the network functional entity may include: for example, an access network functional entity, a first core network functional entity, a second core network functional entity, or a third core network functional entity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种QoS流的控制方法、装置及计算机存储介质。该控制方法可以应用于5G系统中。该方法可以包括:接入网功能实体接收来自第一核心网功能实体的终端状态信息,所述终端状态信息用于表示终端的功耗状态;所述接入网功能实体根据所述终端状态信息,从备选QoS配置中确定所述终端关联的QoS流的第一QoS配置;所述接入网功能实体向第二核心网功能实体发送所述第一QoS配置,所述第一QoS配置用于所述终端、所述第二核心网功能实体、第三核心网功能实体以及应用功能实体中的至少之一执行QoS更新。

Description

一种QoS流的控制方法、装置及计算机存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种QoS流的控制方法、装置及计算机存储介质。
背景技术
在第五代移动网络(5th generation mobile networks,5G)技术中,移动媒体服务、云扩展现实(extend reality,XR)、云游戏、基于视频的机器或无人机远程控制等,有望为5G网络贡献越来越多的流量。
目前,由于XR和媒体业务具有高吞吐量、低时延、高可靠性要求的特点,需要终端侧的高功耗,终端的电池电量可能会影响用户体验。
那么,如何匹配业务流量特性和终端能耗管理是一种亟待解决的问题。
发明内容
本公开提供了一种QoS流的控制方法、装置及计算机存储介质,以匹配业务流量特性和终端能耗管理,从而保障业务需求和用户体验。
根据本公开的第一方面提供一种服务质量(quality of service,QoS)流的控制方法,可以应用于通信系统中的接入网功能实体。该方法可以包括:接入网功能实体接收第一核心网功能实体的终端状态信息(UE status information),终端状态信息用于表示终端的功耗状态;接入网功能实体根据终端状态信息,从备选QoS配置中确定终端关联的QoS流的第一QoS配置;接入网功能实体向第二核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第二核心网功能实体、第三核心网功能实体以及应用功能实体中的至少之一执行QoS更新。
在本公开中,第一核心网功能实体可以为接入与移动性管理功能(access and mobility management function,AMF)实体,第二核心网功能实体为会话管理功能(session management function,SMF)实体,第三核心网功能实体为为策略和控制功能(policy control function,PCF)实体(也可以描述为第一PCF实体)。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,接入网功能实体根据终端状态信息,从备选QoS配置中确定终端关联 的QoS流的第一QoS配置,包括:接入网功能实体根据终端状态信息以及备选QoS配置中的终端状态管理指示,确定第一QoS配置。
在一些可能的实施方式中,接入网功能实体根据终端状态信息,从备选QoS配置中确定终端关联的QoS流的第一QoS配置,包括:接入网功能实体根据终端状态信息以及配置的终端状态信息与QoS配置的关联关系,确定第一QoS配置。
在一些可能的实施方式中,上述方法还包括:接入网功能实体接收第二核心网功能实体发送的关联关系;或,接入网功能实体根据本地策略和/或运营商策略配置关联关系。
在一些可能的实施方式中,上述方法还包括:接入网功能实体根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,上述方法还包括:接入网功能实体接收第二核心网功能实体发送的备选QoS配置。
在一些可能的实施方式中,接入网功能实体接收来自应用功能实体的终端状态信息,包括:接入网功能实体接收第一核心网功能实体发送的非接入层(non access stratum,NAS)消息,NAS消息携带有终端状态信息。
在一些可能的实施方式中,接入网功能实体向第一核心网功能实体发送第一QoS配置,包括:接入网功能实体向第一核心网功能实体发送NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第二方面提供一种QoS流的控制方法,该方法可以应用于通信系统中的第一核心网功能实体。该方法包括:第一核心网功能实体接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;第一核心网功能实体向接入网功能实体发送终端状态信息,终端状态信息还用于接入网设备从备选QoS配置中确定终端关联的QoS流的第一QoS配置,第一QoS配置用于终端、第二核心网功能实体、第三核心网功能实体以及应用功能实体执行QoS更新。
在本公开中,第一核心网功能实体可以为AMF实体,第二核心网功能实体为SMF实体,第三核心网功能实体为为PCF实体(也可以描述为第一PCF实体)。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,上述方法还包括:第一核心网功能实体向终端发送第一请求消息,第一请求消息用于请求终端状态信息。
在一些可能的实施方式中,第一核心网功能实体接收终端设备发送的终端状态信息,包括:第一核心网功能实体接收终端发送的非接入层NAS消息,NAS消息中携带有终端状态信息。
在一些可能的实施方式中,上述方法还包括:第一核心网功能实体接收接入网功能实体发送的第 一QoS配置;第一核心网功能实体根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,第一核心网功能实体接收接入网功能实体发送的第一QoS配置,包括:第一核心网功能实体接收接入网功能实体发送的NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第三方面提供一种QoS流的控制方法,该方法可以应用于通信系统中的第三核心网功能实体。该方法包括:第三核心网功能实体接收来自接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从备选QoS配置中确定的终端关联的QoS流的QoS配置;第三核心网功能实体执行以下至少之一:根据第一QoS配置,对终端关联的QoS流的执行QoS更新;向应用功能实体发送第一QoS配置,第一QoS配置用于应用功能实体中的一个或者多个执行QoS更新。
在本公开中,第一核心网功能实体可以为AMF实体,第二核心网功能实体为SMF实体,第三核心网功能实体为为PCF实体(也可以描述为第一PCF实体)。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,上述方法还包括:第三核心网功能实体接收第二核心网功能实体发送的第一QoS配置,第一QoS配置是由接入网功能实体发送给第二核心网功能实体的。
在一些可能的实施方式中,第三核心网功能实体接收第二核心网功能实体发送的第一QoS配置,包括:第三核心网功能实体向第二核心网功能实体发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件;在第一事件满足事件上报条件的情况下,第三核心网功能实体接收第二核心网功能实体发送的第一QoS配置。
在一些可能的实施方式中,上述方法还包括:第三核心网功能实体向第四核心网功能实体发送第一QoS配置,第一QoS配置用于第四核心网功能实体执行QoS更新。
在本公开中,第四核心网功能实体为其他PCF(即第二PCF),第二PCF可以为一个或者多个。
在一些可能的实施方式中,上述方法还包括:第三核心网功能实体接收应用功能实体发送的备选QoS配置。
在一些可能的实施方式中,上述方法还包括:第三核心网功能实体向接入网功能实体发送备选QoS配置。
根据本公开的第四方面提供一种QoS流的控制方法,该方法可以应用于通信系统中的第二核心网功能实体。该方法包括:第二核心网功能实体接收接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从备选QoS配置中确定的终端关联的QoS流的QoS配置;第二核心网功能实体执行以下至少之一:根据第一QoS配置,对终端关联的QoS流的执行 QoS更新;向终端和/或第三核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第三核心网功能实体以及应用功能实体中的一个或者多个执行QoS更新。
在本公开中,第一核心网功能实体可以为AMF实体,第二核心网功能实体为SMF实体,第三核心网功能实体为为PCF实体(也可以描述为第一PCF实体)。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,第二核心网功能实体向第三核心网功能实体发送第一QoS配置,包括:第二核心网功能实体查询订阅事件,确定第一QoS配置关联的第一事件;在第一事件满足事件上报条件的情况下,第二核心网功能实体向第三核心网功能实体发送第一QoS配置。
在一些可能的实施方式中,第一核心网功能实体向终端发送第一QoS配置,包括:第一核心网功能实体向终端发送NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第五方面提供一种通信装置,该控制装置可以为通信系统中的接入网功能实体或者接入网功能实体的芯片或者片上系统,还可以为接入网功能实体中用于实现上述各个实施例所述的方法的功能模块。该控制装置可以实现上述各实施例中接入网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该装置可以包括:接收模块,被配置为接收第一核心网功能实体的终端状态信息,终端状态信息用于表示终端的功耗状态;处理模块,被配置为根据终端状态信息,从备选QoS配置中确定终端关联的QoS流的第一QoS配置;发送模块,被配置为向第二核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第二核心网功能实体、第三核心网功能实体以及应用功能实体中的至少之一执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块,被配置为根据终端状态信息以及备选QoS配置中的终端状态管理指示,确定第一QoS配置。
在一些可能的实施方式中处理模块,被配置为根据终端状态信息以及配置的终端状态信息与QoS配置的关联关系,确定第一QoS配置。
在一些可能的实施方式中,接收模块,被配置为接收第二核心网功能实体发送的关联关系;或,接入网功能实体根据本地策略和/或运营商策略配置关联关系。
在一些可能的实施方式中,处理模块,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,接收模块,被配置为接收第二核心网功能实体发送的备选QoS配置。
在一些可能的实施方式中,接收模块,被配置为接收第一核心网功能实体发送的NAS消息,NAS消息携带有终端状态信息。
在一些可能的实施方式中,接入网功能实体向第一核心网功能实体发送第一QoS配置,包括:接入网功能实体向第一核心网功能实体发送NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第六方面提供一种通信装置,该控制装置可以为通信系统中的第一核心网功能实体或者第一核心网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该控制装置可以实现上述各实施例中第一核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该控制装置可以包括:接收模块,被配置为接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;发送模块,被配置为向接入网功能实体发送终端状态信息,终端状态信息还用于接入网设备从备选QoS配置中确定终端关联的QoS流的第一QoS配置,第一QoS配置用于终端、第二核心网功能实体、第三核心网功能实体以及应用功能实体执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,发送模块,被配置为向终端发送第一请求消息,第一请求消息用于请求终端状态信息。
在一些可能的实施方式中,接收模块,被配置为接收终端发送的NAS消息,NAS消息中携带有终端状态信息。
在一些可能的实施方式中,上述装置还包括:处理模块;接收模块,被配置为接收接入网功能实体发送的第一QoS配置;处理模块,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,接收模块,被配置为接收接入网功能实体发送的NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第七方面提供一种通信装置,该控制装置可以为通信系统中的第三核心网功能实体或者第三核心网功能实体的芯片或者片上系统,还可以为第三核心网功能实体中用于实现上述各个实 施例所述的方法的功能模块。该控制装置可以实现上述各实施例中第三核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该控制装置可以包括:接收模块,被配置为接收来自接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从备选QoS配置中确定的终端关联的QoS流的QoS配置;所述装置还包括以下至少之一:处理模块,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新;发送模块,被配置为向应用功能实体发送第一QoS配置,第一QoS配置用于应用功能实体中的一个或者多个执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,接收模块,被配置为接收第二核心网功能实体发送的第一QoS配置,第一QoS配置是由接入网功能实体发送给第二核心网功能实体的。
在一些可能的实施方式中,发送模块,被配置为向第二核心网功能实体发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件;接收模块,被配置为在第一事件满足事件上报条件的情况下,接收第二核心网功能实体发送的第一QoS配置。
在一些可能的实施方式中,发送模块,被配置为向第四核心网功能实体发送第一QoS配置,第一QoS配置用于第四核心网功能实体执行QoS更新。
在一些可能的实施方式中,接收模块,被配置为接收应用功能实体发送的备选QoS配置。
在一些可能的实施方式中,发送模块,被配置为向接入网功能实体发送备选QoS配置。
根据本公开的第八方面提供一种通信装置,该控制装置可以为通信系统中的应用功能实体或者应用功能实体的芯片或者片上系统,还可以为应用功能实体中用于实现上述各个实施例所述的方法的功能模块。该控制装置可以实现上述各实施例中应用功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。该控制装置可以包括:接收模块,被配置为接收接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从备选QoS配置中确定的终端关联的QoS流的QoS配置;所述装置还包括以下至少之一:处理模块,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新;发送模块,被配置为向终端和/或第三核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第三核心网功能实体以及应用功能实体中的一个或者多个执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay  budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块,被配置为查询订阅事件,确定第一QoS配置关联的第一事件;发送模块,被配置为在第一事件满足事件上报条件的情况下,第二核心网功能实体向第三核心网功能实体发送第一QoS配置。
在一些可能的实施方式中,发送模块,被配置为向终端发送NAS消息,NAS消息中携带有第一QoS配置。
根据本公开的第九方面提供一种通信装置,如接入网功能实体、第一核心网功能实体、第二核心网功能实体、第三核心网功能实体、应用功能实体。该通信装置可以包括:存储器和处理器;处理器与存储器连接,被配置为通执行存储在存储器上的计算机可执行指令,以实现如上述第一至四方面及其任一可能的实施方式所述的QoS流的控制方法。
根据本公开的第十方面提供一种核心网通信系统,包括:第一核心网功能实体、第二核网功能实体、第三核网功能实体以及应用功能实体。其中,第一核心网功能实体,被配置为:根据第一QoS配置,对终端关联的QoS流的执行QoS更新,第一QoS配置为接入网功能实体根据终端的终端状态信息从备选QoS配置中确定的终端关联的QoS流的QoS配置;第二核心网功能实体,被配置为:根据第一QoS配置,对终端关联的QoS流的执行QoS更新;向第三核心网功能实体发送第一QoS配置;第三核心网功能实体,被配置为:接收第二核心网功能实体发送的第一QoS配置;根据第一QoS配置,对终端关联的QoS流的执行QoS更新;向应用功能实体发送第一QoS配置。
在本公开中,第一核心网功能实体可以为AMF实体,第二核心网功能实体为SMF实体,第三核心网功能实体为为PCF实体(也可以描述为第一PCF实体)。
在一些可能的实施方式中,上述核心网通信系统还包括:第四核心网功能实体;第三核心网功能实体,被配置为向第四核心网功能实体发送第一QoS配置;第四核心网功能实体,被配置为:接收第三核心网功能实体发送的第一QoS配置;根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在本公开中,第四核心网功能实体为其他PCF(即第二PCF),第二PCF可以为一个或者多个。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
根据本公开的十一方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;当指 令在计算机上运行时,用于执行如上述第一至四方面及其任一可能的实施方式所述的方法。
根据本公开的第十二方面提供一种计算机程序或计算机程序产品,当计算机程序产品在计算机上被执行时,使得计算机实现如上述第一至二方面及其任一可能的实施方式所述的方法。
在本公开中,通过第一核心网功能实体(即AMF实体)向接入网功能实体提供终端的终端状态信息,使得接入网功能实体能够根据终端状态信息匹配业务流量特性和终端能耗管理,即根据终端的功耗状态选择对应的QoS配置,以保障业务需求和用户体验。进一步地,第一核心网功能实体提供的终端状态信息作为策略确定的附加信息,能够减少对无线接口网络资源的使用,尤其是在资源有限的情况下。进一步地,通过第一核心网功能实体向接入网功能实体提供终端的终端状态信息,能够支持根据终端的能力使用网络资源。进一步地,通过第一核心网功能实体向接入网功能实体提供终端的终端状态信息,使得在省电模式下允许运行用户关键的应用程序,以此来改善用户体验,同时能够延长电池寿命,而不是完全关闭。
应当理解的是,本公开的第五至十二方面与本公开的第一至四方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本公开实施例中的5G通信系统的一种架构示意图;
图2为本公开实施例中的第一种QoS流的控制方法的实施流程示意图;
图3为本公开实施例中的第二种QoS流的控制方法的实施流程示意图;
图4为本公开实施例中的第三种QoS流的控制方法的实施流程示意图;
图5为本公开实施例中的第四种QoS流的控制方法的实施流程示意图;
图6为本公开实施例中的第五种QoS流的控制方法的实施流程示意图
图7为本公开实施例中的一种通信装置的结构示意图;
图8为本公开实施例中的一种通信装置的结构示意图;
图9为本公开实施例中的一种网络功能实体的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,“第一信息”也可以被称为“第二信息”,类似地,“第二信息”也可以被称为“第一信息”。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
进一步地,在本公开实施例的描述中,“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本公开实施例的描述中,“多个”可以指两个或多于两个。
本公开实施例的技术方案涉及一种通信系统的架构。该通信系统可以是5G通信系统或未来演进通信系统。在该通信系统的架构中,存在终端、接入网功能实体(也可以描述为接入网功能、接入网网元、接入网功能组件、接入网功能模块等)以及至少一个核心网功能(core network function)实体(也可以描述为核心网功能、核心网设备、核心网网元、核心网功能组件、核心网功能模块等)。至少一个核心网功能实体位于核心网(即5GC)中。终端用于向核心网侧上报用于指示自身功耗状态的终端状态信息(UE status information);至少一个核心网功能实体至少具备以下功能:将接收到的终端状态信息提供给接入网功能实体,接收接入网功能实体根据终端状态信息为终端关联的QoS流确定的第一QoS配置,并根据接收到的第一QoS配置,对终端关联的QoS流执行QoS更新,以及,向下一级核心网功能实体发送第一QoS配置,以用于下一级核心网功能实体对终端关联的QoS流执行QoS更新。在实际应用中,上述QoS流为终端的第一业务的QoS流。第一业务可以包括XR业务、移动媒体业务等,其中,XR业务和移动媒体业务也可以称为XRM业务,也可以描述为XR\M业务。
在下文中,将以5G通信系统为例对本公开实施例进行解释和说明。需要说明的是,本公开实施例同样适用于5G通信系统之后的任何未来演进通信系统,本公开实施例对此不作具体限定。
图1为本公开实施例中的5G通信系统的一种架构示意图。参见图1,上述5G通信系统100可以包括5G无线接入网(RAN)和5G核心网(5GC)。5G无线接入网可以包括下一代无线接入网(next generation radio access network,NG RAN)。NG RAN 101通过Uu接口与终端(或称为终端设备)102通信。5G核心网可以包括:上述至少一个核心网功能实体,如接入和移动性管理功能(access and mobility management function,AMF)实体1031、SMF实体1032、PCF实体1033、UPF实体1034、AF实体1035、NEF实体1036、TSCTSF实体1037等。在本公开实施例中,上述通信系统还可以包括其他网络功能实体(也可以称之为网元、网络设备等),本公开实施例对此不作具体限定。
需要说明的是,在图1中第三方(3rd)应用功能(application function,AF)实体和运行商(operator)AF实体都属于AF实体。区别在于:第三方AF实体(如即时通信业务服务器、电子支付业务服务器等)不受运营商管控,而运营商AF实体(如IP多媒体系统(IP multimedia system)中的代理-呼叫会话控制功能(proxy-call session control function,P-CSCF)实体)受运营商管控。第三方AF实体与PCF实体交互时需要通过NEF实体。上述运营商AF实体还可以描述为受信的或者可信的AF实体,上述第三方AF还可以描述为非受信的或者不可信的AF实体。
另外,为了描述更为简洁,在后续描述时,将各个功能实体中的“实体”去掉,比如PCF实体简称 为PCF,SMF实体简称为SMF,其它实体类似,不再一一例举。
在本公开实施例中,在上述5G通信系统100中,各个核心网功能实体之间可以设置有以下接口:
N3:UPF 1034与NG RAN 101之间的通信接口。
N4:SMF 1032与UPF 1034之间的接口,用于控制面与用户面(user plan,UP)之间传递信息,包括控制面向UP的转发规则、QoS控制规则、流量统计规则等的下发以及UP的信息上报。
N2:AMF 1031与NG RAN 101之间的接口,用于传递核心网侧至NG RAN 101的无线承载控制信息等。
N1:AMF 1031与终端102之间的接口,与接入无关,用于向终端102传递QoS控制规则等。
在图1中,NEF、PCF、TSCTSF、AMF以及SMF之间,任意两个实体之间通信可以采用服务化通信方式,比如NEF与PCF之间通信采用的接口Nnef和Npcf均为服务化的接口,同理,接口Naf、Ntsctsf、Namf以及Nsmf均为服务化的接口。
上述终端可以是一种具有无线通信功能和无线感知功能的终端设备,也可以称为用户设备(user equipment,UE)。终端可以部署在陆地上,包括室内或室外、手持、可穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是手机(mobile phone)、平板电脑(tablet computer)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端装置、增强现实(augmented reality,AR)终端装置、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。终端也可以是具有无线通信功能和无线感知功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备等。可选的,在不同的网络中终端装置还可以叫做不同的名称,例如:终端装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、5G通信系统或未来演进通信系统中的终端等。
上述接入网功能实体可以为接入网侧用于支持通信终端接入无线通信系统的功能实体。例如,可以是5G通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等。
需要说明的是,在图1所示的通信系统中,各功能实体以及接口仅为示例性的,各个功能实体在应用于本公开实施例中时,并非全部功能都是必需的。接入网和核心网的功能实体可以是物理上的实体设备,也可以是虚拟化的设备,在此不做限定。当然,本公开实施例中的通信系统还可以包括未在图1中示出的其他设备,在此不做限定。
在5G网络中,移动媒体服务、XR、云游戏、基于视频的机器或无人机远程控制等,有望为5G网络贡献越来越多的流量。尤其是XR以及媒体(extend reality and media,XRM)业务。XRM业务具有高吞吐量、低时延、高可靠性要求的特点,需要终端侧的高功耗,终端的电池电量可能会影响用户体验。
目前,基于现有的终端实现,考虑到业务流量特性,在3GPP中已经定义了终端省电增强方案。例 如,终端在不同连接管理(connection management,CM)下的省电模式,如CM-IDLE(空闲态)的省电模式以及RRC非激活状态下的CM-CONNECTED(连接)的省电模式,还定义了仅终端发起连接(mobile initiated connection only,MICO)模式、扩展不连续接收(extended DRX,eDRX)模式等。但是,上述方案均为专门为具有超低功耗的物联网终端而设计的。如果在智能手机上使用这些解决方案,用户体验将受到很大影响。
所以,如何匹配业务流量特性和终端能耗管理是一种亟待解决的问题。
在本公开实施例中,在以下实施例中,通信系统中的终端设备可以以UE为例、第一核心网功能实体可以以AMF为例、第二核心网功能实体为SMF为例、第三核心网功能实体可以以PCF为例,第四核心网功能实体可以以其他PCF为例以及应用功能实体为AF为例,对本公开实施例提出的QoS流的控制方法进行说明。在5G通信系统及其演进版本中,终端、接入网功能实体、第一核心网功能实体、第二核心网功能实体、第三核心网功能实体、第四核心网功能实体以及应用功能实体也可能是具有相同或相似功能和连接关系的其他功能实体,本公开实施例对此不作限定。
为了解决上述问题,结合上述通信系统,本公开实施例提供一种QoS流的控制方法。
图2为本公开实施例中的第一种QoS流的控制方法的实施流程示意图,如图2所示,在本实施例中,QoS流的控制方法应用于接入网功能实体(如RAN)侧,该QoS流的控制方法可以包括S201至S204。
S201,接入网功能实体接收来自AMF发送的终端状态信息(UE status information)。
其中,终端状态信息用于表示该UE的功耗状态。示例性的,终端状态信息包括与UE性能相关的一个或者多个参数,如UE status information可以包括以下至少之一:UE的电池电量(UE battery level)、UE的电池寿命(UE battery life)、UE的供电模式(powered mode)、UE的CPU负荷、UE过热状态(UE overheating status)。当然,在本公开实施例中,与UE功耗相关的参数可以包括其他这里,上述UE的供电模式可以包括:电池供电模式(battery-powered)以及电源供电模式(mains/wall-powered)。这里,电池供电模式是指使用UE的内置电池进行供电,电源供电模式是指使用电源适配器连接至如墙壁插座、移动插座等与电源连接,对UE进行供电。
可以理解的,UE将自身的终端状态信息上报给AMF,再由AMF发送给接入网功能实体。
在一实施例中,为了尽可能的不影响(no Impact)接入网功能实体和UE接口,UE可以通过NAS消息(如N2 SM information)向AMF发送终端状态信息。
需要说明的是,上述S201可以与分组数据单元(packet data unit,PDU)建立流程(PDU session establishment procedure)进行复用。当然,还可以复用于其他流程,本公开实施例对此不作具体限定。
S202,接入网功能实体根据终端状态信息,从备选QoS配置中确定UE关联的QoS流的第一QoS配置(QoS profile)。
这里,QoS配置也可以理解为QoS等级(QoS level),QoS配置与QoS等级是一一对应的。
可以理解的,PCF可以向接入网功能实体发送一个或者多个备选QoS配置(alternative QoS profile)。接入网功能实体在接收到UE的终端状态信息后,可以根据UE的功耗状态,从备选QoS 配置中选择与UE关联的QoS流的QoS配置(即第一QoS配置),从而根据该QoS配置进行QoS更新。可以理解的,上述“备选”还可以描述为“可选的”、“可替代的”、“候选”等。
这里,UE关联的QoS流可以与第一业务相关。在本公开实施例中,第一业务可以为XRM业务或者XRM业务组(service group)。
在一些可能的实施方式中,上述QoS流可以是不同粒度的,如可以是针对会话的(即会话QoS流)、针对业务的(如业务数据流QoS流),本公开实施例对此不做具体限定。
可以理解的,接入网功能实体根据终端状态信息可以针对于UE的一个业务(即第一业务)的一个或者多个会话,确定相应的QoS配置。或者,PCF根据终端状态信息可以针对于UE的一个业务
(即第一业务),确定相应的QoS配置。这里,“确定”可以描述为“设置”、“生成”、“更新”等。
在一些可能的实施方式中,上述备选QoS配置可以包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
可以理解的,上述分组延迟预算是指该备选QoS配置对应的分组延迟预算;上述分组差错率指该备选QoS配置对应的分组差错率;上述上行保障比特速率是指该备选QoS配置对应的上行保障比特速率;上述下行保障比特速率是指该备选QoS配置对应的下行保障比特速率;上述平均窗口是指该备选QoS配置对应的平均窗口;上述最大数据突发量是指该备选QoS配置对应的最大数据突发量;上述终端状态管理指示是指示该备选QoS配置是否用于终端状态管理的信息。
需要说明的是,在本公开实施例中,对现有通信协议中定义的备选QoS配置中的QoS参数(即alternative QoS parameter sets)进行了扩展,使得扩展后的备选QoS配置既可以适用于保障比特速率(Guaranteed Bit Rate,GBR)QoS流,也可以适用于non GBR QoS流。
在实际应用中,PCF可以通过是否在备选QoS配置中携带终端状态管理指示向接入网功能实体指示该备选QoS配置是否用于终端状态管理的信息。例如,备选QoS配置中携带终端状态管理指示表示该备选QoS配置用于终端状态管理的信息,备选QoS配置中未携带终端状态管理指示表示该备选QoS配置不用于终端状态管理的信息。或者,PCF可以通过终端状态管理指示的值(value)向接入网功能实体指示该备选QoS配置是否用于终端状态管理的信息。例如,终端状态管理指示取值为第一值表示该备选QoS配置用于终端状态管理的信息,终端状态管理指示取值为第二值表示该备选QoS配置不用于终端状态管理的信息。当然,PCF还可以采用其他方式设置终端状态管理指示,本公开实施例对此不做具体限定。
相应地,在S202中,接入网功能实体在接收到备选QoS配置后,可以根据终端状态管理指示确定该备选QoS配置是否用于终端状态管理,进而根据终端状态信息从用于终端状态管理的备选QoS配置中确定UE关联的QoS流的QoS配置。
在一些可能的实施方式中,PCF可以向接入网功能实体发送用于终端状态管理的备选QoS配置, 那么,接入网功能实体在接收到这些备选QoS配置后,便知晓接收到的备选QoS配置用于终端状态管理,进而执行S202。
在一些可能的实施方式中,PCF还可以接收AF发送的备选QoS配置。进一步地,PCF可以根据QoS策略,确定发送给接入网功能实体的备选QoS配置。
在一些可能的实施方式中,PCF可以将一个或者多个备选QoS配置以列表(如备选QoS(alternative QoS))的形式发送给接入网功能实体。
在另一些可能的实施方式中,在S202中,接入网功能实体还可以根据终端状态信息以及终端状态信息与QoS配置的关联关系,确定第一QoS配置。
可以理解的,接入网功能实体或者PCF可以配置终端状态信息与QoS配置的关联关系。在S202中,接入网功能实体可以通过查询终端状态信息与QoS配置的关联关系,根据来自AF的终端状态信息确定UE关联的QoS流的QoS配置。
在一些可能的实施方式中,PCF可以向接入网功能实体发送终端状态信息与QoS配置的关联关系;或者,接入网功能实体根据本地策略和/或运营商策略配置上述关联关系。当然,接入网功能实体还可以通过其他方式得到上述关联关系,本公开实施例对此不作具体限定。
S203,接入网功能实体基于第一QoS配置进行QoS更新。
可以理解的,接入网功能实体在根据UE的功耗状态确定对应的第一QoS配置后,使用该第一QoS配置对UE关联的QoS流进行QoS更新。
S204,接入网功能实体向SMF发送第一QoS配置。
可以理解的,为了统一QoS配置,接入网功能实体在确定第一QoS配置后,可以将第一QoS配置发送给UE、5GC(包括AMF、SMF和/或PCF)以及AF。示例性的,接入网功能实体可以通过发起PDU会话修改流程(PDU session modification procedure),将第一QoS配置发送给UE、5GC(包括AMF、SMF和/或PCF)以及AF。在PDU会话修改流程中,接入网功能实体先将第一QoS配置发送给SMF,再由SMF发送给AMF和PCF,PCF将接收到的第一QoS配置发送给AF。另外,SMF还可以将第一QoS配置发送给UE。当UE、AMF、SMF、PCF以及AF接收到第一QoS配置后,可以根据第一QoS配置执行QoS更新。
在一些可能的实施方式中,接入网功能实体在S204中通过SMF向PCF发送第一QoS配置时,还可以将第一QoS配置对应的终端状态信息(即来自AF的终端状态信息)发送给PCF,以便于PCF基于自身最新收到的终端状态信息以及接入网功能实体发送的终端状态信息来决策第一QoS配置是否适合UE当前的功耗状态,从而确定是否向接入网功能实体提供更合适的备选QoS配置、调整QoS策略等,进而优化QoS控制。
示例性的,在S204中,接入网功能实体通过NAS消息(如N2 SM information)向SMF发送第一QoS配置。
需要说明的是,上述S203和S204可以同时执行,也可以先执行S203再执行S204,本公开实施例对此不做具体限定。
图3为本公开实施例中的第二种QoS流的控制方法的实施流程示意图,如图3所示,在本实施例 中,QoS流的控制方法应用于第一核心网功能实体(如AMF)侧,该QoS流的控制方法可以包括S301至S305。
S301,AMF接收UE发送的终端状态信息(UE status information)。
其中,终端状态信息用于表示该UE的功耗状态。示例性的,终端状态信息包括与UE性能相关的一个或者多个参数,如UE status information可以包括以下至少之一:UE的电池电量(UE battery level)、UE的电池寿命(UE battery life)、UE的供电模式(powered mode)、UE的CPU负荷、UE过热状态(UE overheating status)。当然,在本公开实施例中,与UE功耗相关的参数可以包括其他这里,上述UE的供电模式可以包括:电池供电模式(battery-powered)以及电源供电模式(mains/wall-powered)。这里,电池供电模式是指使用UE的内置电池进行供电,电源供电模式是指使用电源适配器连接至如墙壁插座、移动插座等与电源连接,对UE进行供电。
应理解的,UE可以将自身的终端状态信息上报给AMF,再由AMF发送给接入网功能实体。
在一实施例中,为了尽可能的不影响(no Impact)接入网功能实体和UE接口,UE可以通过NAS消息(如N2 SM information)向AMF发送终端状态信息。
需要说明的是,上述S201可以与UE的注册流程(registration procedure)、UE触发的服务请求流程(UE Triggered Service Request procedure)等进行复用。当然,还可以复用于其他流程,本公开实施例对此不作具体限定。
S302,AMF向接入网功能实体发送终端状态信息。
其中,终端状态信息还用于接入网功能实体从备选QoS配置中确定终端关联的QoS流的第一QoS配置。
可以理解的,AMF在接收到UE的终端状态信息后,可以提供给接入网功能实体。示例性的,AMF可以通过NAS消息(如N2 SM information)向接入网功能实体发送终端状态信息。
示例性的,上述S302可以与PDU会话建立流程进行复用。当然,还可以复用于其他流程,本公开实施例对此不作具体限定。
这里,UE关联的QoS流可以与第一业务相关。在本公开实施例中,第一业务可以为XRM业务或者XRM业务组(service group)。
在一些可能的实施方式中,上述QoS流可以是不同粒度的,如可以是针对会话的(即会话QoS流)、针对业务的(如业务数据流QoS流),本公开实施例对此不做具体限定。
可以理解的,接入网功能实体根据终端状态信息可以针对于UE的一个业务(即第一业务)的一个或者多个会话,确定相应的QoS参数。或者,PCF根据终端状态信息可以针对于UE的一个业务(即第一业务),确定相应的QoS参数。这里,“确定”可以描述为“设置”、“生成”、“更新”等。
在一些可能的实施方式中,在S302之后,上述方法还可以包括:S303至S304。
S303,AMF接收来自接入网功能实体的第一QoS配置。
可以理解的,接入网功能实体在从备选的QoS配置中确定出第一QoS配置后,可以将第一QoS配置发送给SMF,再由SMF发送给AMF。或者,接入网功能实体也可以直接将第一QoS配置发送给 AMF。示例性的,接入网功能实体可以通过NAS消息(如N1 message)发送给AMF。
需要说明的是,上述S303可以与PDU会话修改流程进行复用。当然,还可以复用于其他流程,本公开实施例对此不作具体限定。
S304,AMF基于第一QoS配置进行QoS更新。
可以理解的,AMF在接收到根据UE的功耗状态确定的第一QoS配置后,使用该第一QoS配置对UE关联的QoS流进行QoS更新。
在本公开实施中,AMF的执行流程还可以参见上述图1实施例中对AMF执行流程的描述,为了说明书简洁,在此不做赘述。
图4为本公开实施例中的第三种QoS流的控制方法的实施流程示意图,如图4所示,在本实施例中,QoS流的控制方法应用于第三核心网功能实体(如PCF)侧,该QoS流的控制方法可以包括S401至S405。
S401,PCF接收来自SMF的第一QoS配置。
可以理解的,SMF在接收到接入网功能实体发送的第一QoS配置后,可以将第一QoS配置提供给PCF。
在本公开实施例中,第一QoS配置为接入网功能实体根据UE的终端状态信息从备选QoS配置中确定的UE关联的QoS流的QoS配置。
这里,UE关联的QoS流可以与第一业务相关。在本公开实施例中,第一业务可以为XRM业务或者XRM业务组(service group)。
在一些可能的实施方式中,上述QoS流可以是不同粒度的,如可以是针对会话的(即会话QoS流)、针对业务的(如业务数据流QoS流),本公开实施例对此不做具体限定。
可以理解的,接入网功能实体根据终端状态信息可以针对于UE的一个业务(即第一业务)的一个或者多个会话,确定相应的QoS配置。或者,PCF根据终端状态信息可以针对于UE的一个业务(即第一业务),确定相应的QoS配置。这里,“确定”可以描述为“设置”、“生成”、“更新”等。
在一些可能的实施方式中,在S401之前,PCF还可以向接入网功能实体发送一个或者多个备选QoS配置。如此,接入网功能实体在接收到UE的终端状态信息后,可以根据UE的功耗状态,从备选QoS配置中选择与UE关联的QoS流的QoS配置(即第一QoS配置),从而根据该QoS配置进行QoS更新。
在一些可能的实施方式中,上述一个或者多个备选QoS配置可以是AF发送给PCF的。
在一实施例中,PCF接收AF发送的备选QoS配置后,还可以根据QoS策略,确定发送给接入网功能实体的备选QoS配置。
在一些可能的实施方式中,PCF可以将一个或者多个备选QoS配置以列表(如备选QoS(alternative QoS))的形式发送给接入网功能实体。
在一些可能的实施方式中,在S401,PCF可以向SMF发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件,在第一事件满足事件上报条件的情况下,PCF接收SMF发送的第 一QoS配置。
可以理解的,PCF可以向SMF订阅第一QoS配置关联的事件。SMF在接收到第一QoS配置后,查询订阅事件,确认第一QoS配置关联的事件。在事件满足上报条件的情况下,SMF向PCF发送第一QoS配置。当然,PCF还可以采用其他方式从SMF处获得第一QoS配置,本公开实施例对此不做具体限定。
S402,PCF基于第一QoS配置进行QoS更新。
可以理解的,PCF在接收到根据UE的功耗状态确定的第一QoS配置后,使用该第一QoS配置对UE关联的QoS流进行QoS更新。
S403,PCF向AF发送第一QoS配置,以供AF执行QoS更新。
在一些可能的实施方式中,PCF可以且不限于通过以下路径向AF发送第一QoS配置。
第一种路径,PCF直接向AF发送第一QoS配置。可以理解的,PCF通过Npcf和Naf将第一QoS配置发送给AF。此时,AF为受信的AF。
第二种路径,PCF通过NEF向AF发送第一QoS配置。可以理解的,PCF通过Npcf和Nnef将第一QoS配置发送给NEF,NEF再通过Nnef和Naf将第一QoS配置发送给AF,此时,AF为非受信的AF。
第三种路径,PCF通过TSCTSF向AF发送第一QoS配置。可以理解的,PCF通过Npcf和Ntsctsf将第一QoS配置发送给TSCTSF,TSCTSF再通过Ntsctsf和Naf将第一QoS配置发送给AF,此时,AF为受信的AF,第一业务为时间敏感业务。
第四种路径,PCF通过NEF和TSCTSF向AF发送第一QoS配置。可以理解的,PCF通过Npcf和Nnef将第一QoS配置发送给NEF,NEF通过Nnef和Ntsctsf将第一QoS配置发送给TSCTSF,TSCTSF再通过Ntsctsf和Naf将第一QoS配置发送给AF,此时,AF为非受信的AF,第一业务为时间敏感业务。
由上述第一种方式至第四种方式可知,对于不同AF的类型和/或第一业务的类型,在PCF与AF的之间的可以设置一个或者多个NF,如上述NEF、TSCTSF等。相应的,第一QoS配置可以存在不同的传输路径。需要说明的是,以上仅为第一QoS配置的传输路径的示例,并不对第一QoS配置的传输方式和传输路径造成限定,第一QoS配置还可以采用其他路径由PCF传输至AF。
当然,随着通信系统的演进,上述NF可以存在其他的部署情况,本公开实施例对此不作具体限定。
在一些可能的实施方式中,NEF在接收到AF发送的第一QoS配置之后,还可以将第一QoS配置发送至用户数据寄存器(user data repository,UDR)功能实体或统一数据管理(unified data management,UDM)功能实体,以作为AMF关联参数存储、SMF关联参数存储或应用数据的业务特性参数存储。
需要说明的是,上述S402和S403可以同时执行,也可以先执行S402再执行S403,本公开实施例对此不做具体限定。
另外,上述S401和S403可以与PDU会话修改流程进行复用。当然,还可以复用于其他流程, 本公开实施例对此不作具体限定。
在一些可能的实施方式中,在S401之后,上述方法还可以包括:
S404,PCF还可以向其他PCF发送第一QoS配置,第一QoS配置用于其他PCF对QoS流执行QoS更新。
应理解的,在多UE场景下,不同UE可以对应于不同PCF。那么,当一个PCF(可以记为PCF0)接收到来自接入网功能实体的第一QoS配置后,可以将第一QoS配置提供给其他PCF(如PCF 1、PCF 2、PCF 3、……),以供其他PCF执行如上述S304所述的QoS更新流程。
示例性的,PCF 0在接收到第一QoS配置后,可以直接发送给PCF 1、PCF 2、PCF 3等其他PCF。或者,PCF 1、PCF 2、PCF 3等其他PCF也可以向PCF 0订阅第一QoS配置关联的事件(即第一事件)。在第一事件满足上报条件的情况下,PCF 0向PCF 1、PCF 2、PCF 3等其他PCF发送第一QoS配置。再者,所有的PCF向NEF订阅第一QoS配置关联的事件,在事件满足上报条件的情况下,NEF向所有PCF发送第一QoS配置。当然,多个PCF还可以通过其他方式获得第一QoS配置,本公开实施例对此不做具体限定。
在本公开实施中,PCF的执行流程还可以参见上述图2至图3实施例中对PCF侧执行流程的描述,为了说明书简洁,在此不做赘述。
在一些可能的实施方式中,本公开实施例还提供一种QoS流的控制方法。图5为本公开实施例中的第四种QoS流的控制方法的实施流程示意图,如图4所示,在本实施例中,QoS流的控制方法应用于第二核心网功能实体(如SMF)侧,该QoS流的控制方法可以包括S501至S504。
S501,SMF接收接入网功能实体发送的第一QoS配置。
其中,第一QoS配置为接入网功能实体根据UE的终端状态信息从备选QoS配置中确定的UE关联的QoS流的QoS配置。
可以理解的,接入网功能实体在根据AMF提供的终端状态信息确定对应的第一QoS配置后,将第一QoS配置发送给SMF,由SMF转发给UE、5GC以及AF。
在一实施例中,接入网功能实体可以通过NAS消息(如N2 SM information)向SMF发送第一QoS配置。
在S501之后,SMF可以执行S502至S504中的至少之一。
S502,SMF基于第一QoS配置执行QoS更新。
S503,SMF向PCF发送第一QoS配置,第一QoS配置用于PCF和/或AF执行QoS更新;
S504,SMF向UE发送第一QoS配置,第一QoS配置用于UE执行QoS更新。
需要说明的是,上述S501至S504可以与PDU会话修改流程进行复用。当然,还可以复用于其他流程,本公开实施例对此不作具体限定。
另外,S502、S503以及S504可以同时执行,也可以顺序执行,本公开实施例对此不做具体限定。
在本公开实施中,SMF的执行流程可以参见上述图2至图4实施例中对SMF执行流程的描述,为了说明书简洁,在此不做赘述。
在一些可能的实施方式中,本公开实施例还提供一种QoS流的控制方法。图5为本公开实施例中的第五种QoS流的控制方法的实施流程示意图,如图5所示,该QoS流的控制方法可以应用于应用功能实体(如AF)侧,QoS流的控制方法可以包括S501至S502。
S601,AF接收PCF发送的第一QoS配置。
在一些可能的实施方式中,在S503中,AF向PCF发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件,在第一事件满足事件上报条件的情况下,AF接收PCF发送的第一QoS配置。
S602,AF基于第一QoS配置执行QoS更新。
在本公开实施中,AF的执行流程可以参见上述图2至图5实施例中对AF执行流程的描述,为了说明书简洁,在此不做赘述。
至此,便实现了对QoS流的QoS控制流程。
在本公开实施例中,通过AMF实体向接入网功能实体提供UE的终端状态信息,使得接入网功能实体能够根据终端状态信息匹配业务流量特性和终端能耗管理,即根据终端的功耗状态选择对应的QoS配置,以保障业务需求和用户体验。进一步地,AMF提供的终端状态信息作为策略确定的附加信息,能够减少对无线接口网络资源的使用,尤其是在资源有限的情况下。进一步地,通过AMF向接入网功能实体提供UE的终端状态信息,能够支持根据终端的能力使用网络资源。进一步地,通过AMF向接入网功能实体提供UE的终端状态信息,使得在省电模式下允许运行用户关键的应用程序,以此来改善用户体验,同时能够延长电池寿命,而不是完全关闭。
基于相同的发明构思,本公开实施例提供一种通信装置,图7为本公开实施例中的一种通信装置的结构示意图,参见图7所示,该通信装置700可以包括:处理模块701、接收模块702以及发送模块703。
在一些可能的实施方式中,通信装置700可以为通信系统中的接入网功能实体或者接入网功能实体的芯片或者片上系统,还可以为接入网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置700可以实现上述各实施例中接入网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块702,被配置为接收第一核心网功能实体的终端状态信息,终端状态信息用于表示终端的功耗状态;处理模块701,被配置为根据终端状态信息,从备选QoS配置中确定终端关联的QoS流的第一QoS配置;发送模块703,被配置为向第二核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第二核心网功能实体、第三核心网功能实体以及应用功能实体中的至少之一执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data  burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块701,被配置为根据终端状态信息以及备选QoS配置中的终端状态管理指示,确定第一QoS配置。
在一些可能的实施方式中处理模块701,被配置为根据终端状态信息以及配置的终端状态信息与QoS配置的关联关系,确定第一QoS配置。
在一些可能的实施方式中,接收模块702,被配置为接收第二核心网功能实体发送的关联关系;或,接入网功能实体根据本地策略和/或运营商策略配置关联关系。
在一些可能的实施方式中,处理模块701,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,接收模块702,被配置为接收第二核心网功能实体发送的备选QoS配置。
在一些可能的实施方式中,接收模块702,被配置为接收第一核心网功能实体发送的NAS消息,NAS消息携带有终端状态信息。
在一些可能的实施方式中,接入网功能实体向第一核心网功能实体发送第一QoS配置,包括:接入网功能实体向第一核心网功能实体发送NAS消息,NAS消息中携带有第一QoS配置。
在一些可能的实施方式中,该通信装置700可以为通信系统中的第一核心网功能实体或者第一核心网功能实体的芯片或者片上系统,还可以为第一核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置700可以实现上述各实施例中第一核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块702,被配置为接收终端发送的终端状态信息,终端状态信息用于表示终端的功耗状态;发送模块703,被配置为向接入网功能实体发送终端状态信息,终端状态信息还用于接入网设备从备选QoS配置中确定终端关联的QoS流的第一QoS配置,第一QoS配置用于终端、第二核心网功能实体、第三核心网功能实体以及应用功能实体执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,发送模块703,被配置为向终端发送第一请求消息,第一请求消息用于请求终端状态信息。
在一些可能的实施方式中,接收模块702,被配置为接收终端发送的NAS消息,NAS消息中携带有终端状态信息。
在一些可能的实施方式中,上述装置还包括:处理模块701;接收模块702,被配置为接收接入网功能实体发送的第一QoS配置;处理模块701,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新。
在一些可能的实施方式中,接收模块702,被配置为接收接入网功能实体发送的NAS消息,NAS消息中携带有第一QoS配置。
在一些可能的实施方式中,该通信装置700可以为通信系统中的第三核心网功能实体或者第三核心网功能实体的芯片或者片上系统,还可以为第三核心网功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置700可以实现上述各实施例中第三核心网功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块702,被配置为接收来自接入网功能实体发送的第一QoS配置,第一QoS配置为接入网功能实体根据终端的终端状态信息从备选QoS配置中确定的终端关联的QoS流的QoS配置;所述装置还包括以下至少之一:处理模块701,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新;发送模块703,被配置为向应用功能实体发送第一QoS配置,第一QoS配置用于终应用功能实体中的一个或者多个执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,接收模块702,被配置为接收第二核心网功能实体发送的第一QoS配置,第一QoS配置是由接入网功能实体发送给第二核心网功能实体的。
在一些可能的实施方式中,发送模块703,被配置为向第二核心网功能实体发送订阅请求消息,订阅请求消息用于请求第一QoS配置关联的第一事件;接收模块702,被配置为在第一事件满足事件上报条件的情况下,接收第二核心网功能实体发送的第一QoS配置。
在一些可能的实施方式中,发送模块703,被配置为向第四核心网功能实体发送第一QoS配置,第一QoS配置用于第四核心网功能实体执行QoS更新。
在一些可能的实施方式中,接收模块702,被配置为接收应用功能实体发送的备选QoS配置。
在一些可能的实施方式中,发送模块703,被配置为向接入网功能实体发送备选QoS配置。
在一些可能的实施方式中,该通信装置700可以为通信系统中的应用功能实体或者应用功能实体的芯片或者片上系统,还可以为应用功能实体中用于实现上述各个实施例所述的方法的功能模块。该通信装置700可以实现上述各实施例中应用功能实体所执行的功能,这些功能可以通过硬件执行相应的软件实现。这些硬件或软件包括一个或多个上述功能相应的模块。
相应的,接收模块702,被配置为接收接入网功能实体发送的第一QoS配置,第一QoS配置为接 入网功能实体根据终端的终端状态信息从备选QoS配置中确定的终端关联的QoS流的QoS配置;所述装置还包括以下至少之一:处理模块701,被配置为根据第一QoS配置,对终端关联的QoS流的执行QoS更新;发送模块703,被配置为向终端和/或第三核心网功能实体发送第一QoS配置,第一QoS配置用于终端、第三核心网功能实体以及应用功能实体中的一个或者多个执行QoS更新。
在一些可能的实施方式中,终端状态信息包括以下至少之一:电池电量、电池寿命、供电模式、CPU负荷以及终端过热状态。
在一些可能的实施方式中,备选QoS配置包括以下至少之一:分组延迟预算(packet delay budget)、分组差错率(packet error rate)、上行保障比特速率(UL guaranteed bit rate)、下行保障比特速率(DL guaranteed bit rate)、平均窗口(averaging window)、最大数据突发量(maximum data burst volume)、终端状态管理指示;其中,终端状态管理指示用于指示备选QoS配置是否支持用于终端状态管理。
在一些可能的实施方式中,处理模块701,被配置为查询订阅事件,确定第一QoS配置关联的第一事件;发送模块703,被配置为在第一事件满足事件上报条件的情况下,第二核心网功能实体向第三核心网功能实体发送第一QoS配置。
在一些可能的实施方式中,发送模块703,被配置为向终端发送NAS消息,NAS消息中携带有第一QoS配置。
需要说明的是,处理模块701、接收模块702以及发送模块703的具体实现流程可参考图2至图6实施例的详细描述,为了说明书的简洁,这里不再赘述。
本公开实施例中提到的接收模块702可以为接收接口、接收电路或者接收器等;发送模块703可以为发送接口、发送电路或者发送器等;处理模块701可以为一个或者多个处理器。
基于相同的发明构思,本公开实施例提供一种通信装置,该通信装置可以为上述一个或者多个实施例中所述的第一核心网功能实体或应用功能实体。图8为本公开实施例中的一种通信装置的结构示意图,参见图8所示,通信装置800,采用了通用的计算机硬件,包括处理器801、存储器802、总线803、输入设备804和输出设备805。
在一些可能的实施方式中,存储器802可以包括以易失性和/或非易失性存储器形式的计算机存储媒体,如只读存储器和/或随机存取存储器。存储器802可以存储操作系统、应用程序、其他程序模块、可执行代码、程序数据、用户数据等。
输入设备804可以用于向通信设备输入命令和信息,输入设备804如键盘或指向设备,如鼠标、轨迹球、触摸板、麦克风、操纵杆、游戏垫、卫星电视天线、扫描仪或类似设备。这些输入设备可以通过总线803连接至处理器801。
输出设备805可以用于通信设备输出信息,除了监视器之外,输出设备805还可以为其他外围输出设各,如扬声器和/或打印设备,这些输出设备也可以通过总线803连接到处理器801。
通信设备可以通过天线806连接到网络中,例如连接到局域网(local area network,LAN)。在联网环境下,控制备中存储的计算机执行指令可以存储在远程存储设备中,而不限于在本地存储。
当通信设备中的处理器801执行存储器802中存储的可执行代码或应用程序时,通信设备以执行 以上实施例中的UE侧或者网络设备侧的中继通信方法,具体执行流程参见上述实施例,在此不再赘述。
此外,上述存储器802中存储有用于实现图7中的处理模块701、接收模块702以及发送模块703的功能的计算机执行指令。图7中的处理模块701、接收模块702以及发送模块703的功能/实现流程均可以通过图8中的处理器801调用存储器802中存储的计算机执行指令来实现,具体实现流程和功能参考上述相关实施例。
基于相同的发明构思,本公开实施例提供一种网络功能实体,如接入网功能实体、第一核心网功能实体、第二核心网功能实体或第三核心网功能实体。
图8为本公开实施例中的一种网络功能实体的结构示意图,参见图8所示,网络功能实体900可以包括处理组件901,其进一步包括一个或多个处理器,以及由存储器902所代表的存储器资源,用于存储可由处理组件901的执行的指令,例如应用程序。存储器902中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件901被配置为执行指令,以执行上述方法前述应用在所述网络设备的任一方法。
网络功能实体900还可以包括一个电源组件903被配置为执行网络功能实体900的电源管理,一个有线或无线网络接口904被配置为将网络功能实体900连接到网络,和一个输入输出(I/O)接口905。网络功能实体900可以操作基于存储在存储器902的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
基于相同的发明构思,本公开实施例还一种通信装置,如接入网功能实体、第一核心网功能实体、第二核心网功能实体或第三核心网功能实体,包括:存储器和处理器;处理器与存储器连接,被配置为通执行存储在存储器上的计算机可执行指令,以实现如上述一个或者多个实施例所述的方法。
基于相同的发明构思,本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;当指令在计算机上运行时,用于执行上述一个或者多个实施例中网络功能实体侧的方法。这里,网络功能实体可以包括:如接入网功能实体、第一核心网功能实体、第二核心网功能实体或第三核心网功能实体。
基于相同的发明构思,本公开实施例还提供一种计算机程序或计算机程序产品,当计算机程序产品在计算机上被执行时,使得计算机实现上述一个或者多个实施例中网络功能实体侧的方法。这里,网络功能实体可以包括:如接入网功能实体、第一核心网功能实体、第二核心网功能实体或第三核心网功能实体。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (41)

  1. 一种服务质量QoS流的控制方法,应用于接入网功能,其特征在于,所述方法包括:
    接收来自第一核心网功能的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    根据所述终端状态信息,从备选QoS配置中确定所述终端关联的QoS流的第一QoS配置;
    向第二核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述终端、所述第二核心网功能、第三核心网功能以及应用功能中的至少之一执行QoS更新。
  2. 根据权利要求1所述的方法,其中,所述第一核心网功能为接入与移动性管理功能AMF,所述第二核心网功能为会话功能管理SMF,所述第三核心网功能为策略和控制功能PCF。
  3. 根据权利要求1所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  4. 根据权利要求1所述的方法,其中,所述备选QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述备选QoS配置是否支持用于终端状态管理。
  5. 根据权利要求4所述的方法,其中,所述根据所述终端状态信息,从备选QoS配置中确定所述终端关联的QoS流的第一QoS配置,包括:
    根据所述终端状态信息以及所述备选QoS配置中的终端状态管理指示,确定所述第一QoS配置。
  6. 根据权利要求1所述的方法,其中,所述根据所述终端状态信息,从备选QoS配置中确定所述终端关联的QoS流的第一QoS配置,包括:
    根据所述终端状态信息以及配置的终端状态信息与QoS配置的关联关系,确定所述第一QoS配置。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    接收所述第二核心网功能发送的所述关联关系;或,
    根据本地策略和/或运营商策略配置所述关联关系。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    接收所述第二核心网功能发送的所述备选QoS配置。
  10. 根据权利要求1所述的方法,其中,所述接收来自应用功能的终端状态信息,包括:
    接收第一核心网功能发送的非接入层NAS消息,所述NAS消息携带有所述终端状态信息。
  11. 根据权利要求1所述的方法,其中,所述向所述第一核心网功能发送所述第一QoS配置,包括:
    向所述第一核心网功能发送NAS消息,所述NAS消息中携带有所述第一QoS配置。
  12. 一种服务质量QoS流的控制方法,应用于第一核心网功能,所述方法包括:
    接收终端发送的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    向接入网功能发送所述终端状态信息,所述终端状态信息还用于所述接入网设备从备选QoS配置中确定所述终端关联的QoS流的第一QoS配置,所述第一QoS配置用于所述终端、第二核心网功能、第三核心网功能以及应用功能执行QoS更新。
  13. 根据权利要求12所述的方法,其中,所述第一核心网功能为接入与移动性管理功能AMF,所述第二核心网功能为会话功能管理SMF,所述第三核心网功能为策略和控制功能PCF。
  14. 根据权利要求12所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  15. 根据权利要求12所述的方法,其中,所述备选QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述备选QoS配置是否支持用于终端状态管理。
  16. 根据权利要求12所述的方法,其中,所述方法还包括:
    向所述终端发送第一请求消息,所述第一请求消息用于请求所述终端状态信息。
  17. 根据权利要求12所述的方法,其中,接收终端设备发送的终端状态信息,包括:
    接收所述终端发送的非接入层NAS消息,所述NAS消息中携带有所述终端状态信息。
  18. 根据权利要求12所述的方法,其中,所述方法还包括:
    接收所述接入网功能发送的所述第一QoS配置;
    根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新。
  19. 根据权利要求18所述的方法,其中,接收所述接入网功能发送的所述第一QoS配置,包括:
    接收所述接入网功能发送的非接入层NAS消息,所述NAS消息中携带有所述第一QoS配置。
  20. 一种服务质量QoS流的控制方法,应用于第三核心网功能,所述方法包括:
    接收接入网功能发送的第一QoS配置,所述第一QoS配置为所述接入网功能根据终端的终端状态信息从备选QoS配置中确定的所述终端关联的QoS流的QoS配置;
    第三核心网功能执行以下至少之一:
    根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;
    向第四核心网功能和/或应用功能发送所述第一QoS配置,所述第一QoS配置用于所述第四核心网功能和/或应用功能执行QoS更新。
  21. 根据权利要求20所述的方法,其中,所述第一核心网功能为接入与移动性管理功能AMF,所述第二核心网功能为会话功能管理SMF,所述第三核心网功能为第一策略和控制功能PCF,第四核心网功能为第二PCF。
  22. 根据权利要求20所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  23. 根据权利要求20所述的方法,其中,所述备选QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述备选QoS配置是否支持用于终端状态管理。
  24. 根据权利要求20所述的方法,其中,所述方法还包括:
    接收所述第二核心网功能发送的所述第一QoS配置,所述第一QoS配置是由所述接入网功能发送给所述第二核心网功能的。
  25. 根据权利要求24所述的方法,其中,接收所述第二核心网功能发送的所述第一QoS配置,包括:
    向所述第二核心网功能发送订阅请求消息,所述订阅请求消息用于请求所述第一QoS配置关联的第一事件;
    在所述第一事件满足事件上报条件的情况下,接收所述第二核心网功能发送的所述第一QoS配置。
  26. 根据权利要求20所述的方法,其中,所述方法还包括:
    接收所述应用功能发送的所述备选QoS配置。
  27. 根据权利要求20所述的方法,其中,所述方法还包括:
    向所述接入网功能发送所述备选QoS配置。
  28. 一种服务质量QoS流的控制方法,应用于第二核心网功能,包括:
    接收接入网功能发送的第一QoS配置,所述第一QoS配置为所述接入网功能根据终端的终端状态信息从备选QoS配置中确定的所述终端关联的QoS流的QoS配置;
    执行以下至少之一:
    根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;
    向所述终端和/或第三核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述终端、所述第三核心网功能以及所述应用功能中的一个或者多个执行QoS更新。
  29. 根据权利要求28所述的方法,其中,所述第一核心网功能为接入与移动性管理功能AMF,所述第二核心网功能为会话功能管理SMF,所述第三核心网功能为策略和控制功能PCF。
  30. 根据权利要求28所述的方法,其中,所述终端状态信息包括以下至少之一:
    电池电量;
    电池寿命;
    供电模式;
    CPU负荷;
    终端过热状态。
  31. 根据权利要求28所述的方法,其中,所述备选QoS配置包括以下至少之一:
    分组延迟预算;
    分组差错率;
    上行保障比特速率;
    下行保障比特速率;
    平均窗口;
    最大数据突发量;
    终端状态管理指示,所述终端状态管理指示用于指示所述备选QoS配置是否支持用于终端状态管理。
  32. 根据权利要求28所述的方法,其中,所述向第三核心网功能发送所述第一QoS配置,包括:
    查询订阅事件,以确定所述第一QoS配置关联的第一事件;
    在所述第一事件满足事件上报条件的情况下,向所述第三核心网功能发送所述第一QoS配置。
  33. 根据权利要求28所述的方法,其中,所述向所述终端发送所述第一QoS配置,包括:
    向所述终端发送非接入层NAS消息,所述NAS消息中携带有所述第一QoS配置。
  34. 一种通信装置,包括:
    接收模块,被配置为接收来自第一核心网功能的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    处理模块,被配置为根据所述终端状态信息,从备选QoS配置中确定所述终端关联的QoS流的第一QoS配置;
    发送模块,被配置为向第二核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述终端、所述第二核心网功能、第三核心网功能以及应用功能中的至少之一执行QoS更新。
  35. 一种通信装置,包括:
    接收模块,被配置为接收终端发送的终端状态信息,所述终端状态信息用于表示终端的功耗状态;
    发送模块,被配置为向接入网功能发送所述终端状态信息,所述终端状态信息还用于所述接入网设备从备选QoS配置中确定所述终端关联的QoS流的第一QoS配置,所述第一QoS配置用于所述终端、第二核心网功能、第三核心网功能以及应用功能执行QoS更新。
  36. 一种通信装置,包括:
    接收模块,被配置为接收来自接入网功能发送的第一QoS配置,所述第一QoS配置为所述接入网功能根据终端的终端状态信息从备选QoS配置中确定的所述终端关联的QoS流的QoS配置;
    所述装置还包括以下至少之一:
    处理模块,被配置为根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;
    发送模块,被配置为向第四核心网功能和/或应用功能发送所述第一QoS配置,所述第一QoS配置用于所述第四核心网功能以及应用功能中的一个或者多个执行QoS更新。
  37. 一种通信装置,包括:
    接收模块,被配置为接收接入网功能发送的第一QoS配置,所述第一QoS配置为所述接入网功能根据终端的终端状态信息从备选QoS配置中确定的所述终端关联的QoS流的QoS配置;
    所述装置还包括以下至少之一:
    处理模块,被配置为根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;
    发送模块,被配置为向所述终端和/或第三核心网功能发送所述第一QoS配置,所述第一QoS配置用于所述终端、所述第三核心网功能以及所述应用功能中的一个或者多个执行QoS更新。
  38. 一种核心网通信系统,包括:第一核心网功能、第二核心网功能、第三核心网功能以及应用功能;其中,
    所述第一核心网功能,被配置为:根据来自接入网功能的第一QoS配置,对终端关联的QoS流的执行QoS更新,所述第一QoS配置为所述接入网功能根据所述终端的终端状态信息从备选QoS配置中确定的;
    所述第二核心网功能,被配置为:根据来自所述接入网功能的第一QoS配置,对所述终端关联的QoS流的执行QoS更新;向第三核心网功能发送所述第一QoS配置;
    所述第三核心网功能,被配置为:接收所述第二核心网功能发送的所述第一QoS配置;根据所述第一QoS配置,对所述终端关联的QoS流的执行QoS更新;向应用功能发送所述第一QoS配置,所述第一QoS配置用于所述应用功能执行QoS更新。
  39. 根据权利要求38所述的系统,其中,所述第一核心网功能为接入与移动性管理功能AMF,所述第二核心网功能为会话功能管理SMF,所述第三核心网功能为第一策略和控制功能PCF。
  40. 一种通信装置,其特征在于,包括:存储器和处理器;所述处理器与所述存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,以实现如权利要求1至33任一项所述的方法。
  41. 一种计算机存储介质,存储有计算机可执行指令,其特征在于,所述计算机可执行指令被处理器执行后能够实现如权利要求1至33任一项所述的方法。
PCT/CN2022/107722 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质 WO2024020759A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/107722 WO2024020759A1 (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质
CN202280002822.6A CN117769825A (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107722 WO2024020759A1 (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2024020759A1 true WO2024020759A1 (zh) 2024-02-01

Family

ID=89704877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107722 WO2024020759A1 (zh) 2022-07-25 2022-07-25 一种QoS流的控制方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN117769825A (zh)
WO (1) WO2024020759A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644353A (zh) * 2018-10-31 2019-04-16 北京小米移动软件有限公司 配置调整方法、装置、电子设备和计算机可读存储介质
US20210219151A1 (en) * 2018-06-20 2021-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for online services applications and application functions to provide ue-generated information to network data analytics to support network automation and optimization
WO2021228373A1 (en) * 2020-05-12 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Optimized model transmission
WO2022048746A1 (en) * 2020-09-02 2022-03-10 Lenovo (Singapore) Pte. Ltd. Qos profile adaptation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219151A1 (en) * 2018-06-20 2021-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for online services applications and application functions to provide ue-generated information to network data analytics to support network automation and optimization
CN109644353A (zh) * 2018-10-31 2019-04-16 北京小米移动软件有限公司 配置调整方法、装置、电子设备和计算机可读存储介质
WO2021228373A1 (en) * 2020-05-12 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Optimized model transmission
WO2022048746A1 (en) * 2020-09-02 2022-03-10 Lenovo (Singapore) Pte. Ltd. Qos profile adaptation

Also Published As

Publication number Publication date
CN117769825A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US20210314795A1 (en) Data Collection Method, Device, and System
US11627625B2 (en) UE behavior with rejection of resume request
US11832340B2 (en) Session management method and apparatus
CN107046714B (zh) 一种数据传输方法、装置和系统
US11310658B2 (en) Method and apparatus for determining status of terminal device, and device
WO2018127003A1 (zh) 一种确定寻呼周期的方法及装置
WO2021081875A1 (zh) Rrc连接状态控制方法、装置及存储介质
WO2020147019A1 (en) Apparatus and method of performing a group communication
US20230354237A1 (en) Method and apparatus for determining transmission delay, device, and storage medium
WO2019238050A1 (zh) 一种通信方法及装置
WO2024020759A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2020168467A1 (en) Terminal and method for performing a group communication
WO2020142884A1 (zh) 切换传输路径的方法及装置
WO2024000445A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2024020760A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2024000450A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2023245458A1 (zh) 一种信息上报方法、装置及计算机存储介质
CN111108785B (zh) 用于无线网络的网络切片特定寻呼周期
WO2022016338A1 (zh) 一种通信方法及装置
US20230397044A1 (en) Data transmission method and apparatus
WO2022206663A1 (zh) Pdu会话建立方法、相关设备及可读存储介质
WO2023045839A1 (zh) 通信方法、装置、核心网设备及通信设备
WO2024032552A1 (zh) 通信方法、装置及存储介质
US11653307B2 (en) Modifying idle mode DRX on wireless devices
WO2022067730A1 (zh) 一种双终端设备进行数据传输的方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002822.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952226

Country of ref document: EP

Kind code of ref document: A1